Science.gov

Sample records for electromagnetic fields created

  1. What Are Electromagnetic Fields?

    MedlinePlus

    ... sources of electromagnetic fields Besides natural sources the electromagnetic spectrum also includes fields generated by human-made sources: ... ability to break bonds between molecules. In the electromagnetic spectrum, gamma rays given off by radioactive materials, cosmic ...

  2. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  3. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  4. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  5. Covariant electromagnetic field lines

    NASA Astrophysics Data System (ADS)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  6. [Electromagnetic fields hypersensitivity].

    PubMed

    Sobiczewska, Elzbieta; Szmigielski, Stanisław

    2009-01-01

    The development of industry, particularly of new technologies in communication systems, gives rise to the number and diversty of electromagnetic field (EMF) sources in the environment. These sources, including power-frequent, radiofrequent and microwaves, make human life richer, safer and easier. But at the same time, there is growing concern about possible health risks connected with EMF exposure. An increasing number of persons have recently reported on a variety of health problems induced, in their opinion, by exposure to EMF. It is important to note that EMF levels to which these individuals are exposed are generally well below the recommended exposure limits and are certainly far below those known to produce any adverse effects. These persons call themselves "electromagnetic hypersensitivity individuals" And complain about experiencing various types of non-specific symptoms, including dermatological, neurological and vegetative. In the present paper, the problem of electromagnetic hypersensitivity phenomenon is discussed based on the recently published literature.

  7. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  8. Proca and electromagnetic fields

    SciTech Connect

    Hillion, P.; Quinnerz, S.

    1986-07-01

    In the framework of the proper orthochronous Lorentz group, the old connection is revived between the electromagnetic field characterized by a self-dual tensor and a traceless second-rank spinor obeying the Proca equation. The relationship between this spinor and the Hertz potential also considered as a self-dual tensor is emphasized. The extension of this formalism to meet the covariance under the full Lorentz group is also discussed.

  9. Carter separable electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, D.

    2000-02-01

    The purely electromagnetic analogue in flat space of Kerr's metric in general relativity is only rarely considered. Here we carry out in flat space a programme similar to Carter's investigation of metrics in general relativity in which the motion of a charged particle is separable. We concentrate on the separability of the motion (be it classical, relativistic or quantum) of a charged particle in electromagnetic fields that lie in planes through an axis of symmetry. In cylindrical polar coordinates (t,R,φ,z) the four-vector potential takes the form [formmu2] is the unit toroidal vector. The forms of the functions Φ(R,z) and A(R,z) are sought that allow separable motion. This occurs for relativistic motion only when AR,Φ and A2-Φ2 are all of the separable form ζ(λ)-η(μ)]/(λ-μ), where ζ and η are arbitrary functions, and λ and μ are spheroidal coordinates or degenerations thereof. The special forms of A and Φ that allow this are deduced. They include the Kerr metric analogue, with E+iB=-∇{q[(r-ia).(r-ia)]-1/2}. Rather more general electromagnetic fields allow separation when the motion is non-relativistic. The investigation is extended to fields that lie in parallel planes. Connections to Larmor's theorem are remarked upon.

  10. Effect of Thermal Gradients Created by Electromagnetic Fields on Cell-Membrane Electroporation Probed by Molecular-Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Song, J.; Garner, A. L.; Joshi, R. P.

    2017-02-01

    The use of nanosecond-duration-pulsed voltages with high-intensity electric fields (˜100 kV /cm ) is a promising development with many biomedical applications. Electroporation occurs in this regime, and has been attributed to the high fields. However, here we focus on temperature gradients. Our numerical simulations based on molecular dynamics predict the formation of nanopores and water nanowires, but only in the presence of a temperature gradient. Our results suggest a far greater role of temperature gradients in enhancing biophysical responses, including possible neural stimulation by infrared lasers.

  11. Electromagnetic Fields and Cancer

    MedlinePlus

    ... are in the ionizing radiation part of the electromagnetic spectrum and can damage DNA or cells directly. Low- ... in the non-ionizing radiation part of the electromagnetic spectrum and are not known to damage DNA or ...

  12. Interactions between electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Schwan, H. P.

    1985-02-01

    We applied for this grant to support a workshop at Erice, Italy. This workshop has been commonly called Erice School and the main subject of this workshop is the interaction of electromagnetic fields with biological cells and molecules. The grant from ONR enabled us to invite American scientists to participants in this workshop and deliver scientific papers. The duration of the Erice School was ten days. Therefore, we had sufficient time to discuss the problems of electromagnetic radiations. Vigorous discussions took place during official sessions and during private conversations. The participants of this workshop are mostly those who have been active in the research on bioelectromagnetics, but there are some numbers of speakers who discussed the basic electrical and magnetic properties of polyelectrolytes, biological membranes and tissue. The workshop was unique in that there were participants with a variety of training backgrounds. This enabled us to exchange the information between applied scientists and basic scientists. Also, active exchanges of opinions took place between biological scientists and physical scientists.

  13. Nonlinear electromagnetic fields and symmetries

    NASA Astrophysics Data System (ADS)

    Barjašić, Irena; Gulin, Luka; Smolić, Ivica

    2017-06-01

    We extend the classical results on the symmetry inheritance of the canonical electromagnetic fields, described by the Maxwell's Lagrangian, to a much wider class of models, which include those of the Born-Infeld, power Maxwell and the Euler-Heisenberg type. Symmetry inheriting fields allow the introduction of electromagnetic scalar potentials and these are proven to be constant on the Killing horizons. Finally, using the relations obtained along the analysis, we generalize and simplify the recent proof for the symmetry inheritance of the 3-dimensional case, as well as give the first constraint for the higher dimensional electromagnetic fields.

  14. Transition of electromagnetic wave by suddenly created magneto plasma

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer P.

    2017-02-01

    The theory of the interaction of electromagnetic waves with a suddenly created magneto plasma is presented. It is shown that a linearly polarized wave propagating along the magnetic field is converted into a frequency upshifted two forward and two backward propagating waves; in each propagation direction, one is right hand circular polarization and the other one is left hand circular polarization. A static wiggler magnetic field is also produced. The combined forward and backward waves are amplitude modulated with rotating polarizations. The extent of the frequency upshift increases with the increases of the plasma density and the background magnetic field intensity. By increasing the background magnetic field, the required plasma density for the frequency upshift is reduced; consequently, the drop rate of the conversion efficiency with the increase in the frequency upshift of the combined forward wave can be reduced considerably; the conversion efficiency of the combined backward wave also increases.

  15. Electromagnetic Field Effects in Explosives

    NASA Astrophysics Data System (ADS)

    Tasker, D. G.; Whitley, V. H.; Lee, R. J.

    2009-12-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: enhancement of performance; and control of initiation and growth of reaction. Two series of experiments were performed to determine the effects of 1-T magnetic fields on explosive initiation and growth in the modified gap test and on the propagation of explosively generated plasma into air. The results have implications for the control of reactions in explosives and for the use of electromagnetic particle velocity gauges.

  16. Electromagnetic fields and public health.

    PubMed Central

    Aldrich, T E; Easterly, C E

    1987-01-01

    A review of the literature is provided for the topic of health-related research and power frequency electromagnetic fields. Minimal evidence for concern is present on the basis of animal and plant research. General observation would accord with the implication that there is no single and manifest health effect as the result of exposure to these fields. There are persistent indications, however, that these fields have biologic activity, and consequently, there may be a deleterious component to their action, possibly in the presence of other factors. Power frequency electromagnetic field exposures are essentially ubiquitous in modern society, and their implications in the larger perspective of public health are unclear at this time. Electromagnetic fields represent a methodological obstacle for epidemiologic studies and a quandary for risk assessment; there is need for more data. PMID:3319560

  17. String theory in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Makeenko, Yuri M.; Semenoff, Gordon W.; Szabo, Richard J.

    2003-02-01

    A review of various aspects of superstrings in background electromagnetic fields is presented. Topics covered include the Born-Infeld action, spectrum of open strings in background gauge fields, the Schwinger mechanism, finite-temperature formalism and Hagedorn behaviour in external fields, Debye screening, D-brane scattering, thermodynamics of D-branes, and noncommutative field and string theories on D-branes. The electric field instabilities are emphasized throughout and contrasted with the case of magnetic fields. A new derivation of the velocity-dependent potential between moving D-branes is presented, as is a new result for the velocity corrections to the one-loop thermal effective potential.

  18. Explanations, Education, and Electromagnetic Fields.

    ERIC Educational Resources Information Center

    Friedman, Sharon M.

    Explaining complex scientific and environmental subjects in the mass media is difficult to do, particularly under such constraints as short deadlines and lack of space or time. When a scientific controversy and human health risk are involved, this becomes an even harder task to accomplish. The subject of electromagnetic fields (EMF) involves…

  19. Health hazards and electromagnetic fields.

    PubMed

    Saunders, T

    2003-11-01

    Biological rhythms, physical wellbeing and mental states are dependent on our electrical brainwave system interacting with the extremely weak electromagnetic fields generated by the Earth's telluric and Cosmic radiations. In a single generation, since the evolution of humankind over millions of years, we are exposed to a wide range of powerful, artificially generated electromagnetic radiation which adversely affects the subtle balance in nature's energy fields and has become the source of so-called 'diseases of civilization'. This also includes electromagnetic sensitivity. Generally, there is a lack of awareness and understanding of the impact electromagnetic fields can have upon health and wellbeing.Our ancestors were acutely aware that certain locations, were perceived to have a positive energy field which was beneficial to health and vitality. Over time, these areas are now referred to as sacred sites for spiritual ceremony and as healing centres. In contrast, there are other geographical locations that can have a negative effect upon health and these are known as geopathic stress zones. It is believed that such zones can interfere with the brain's normal function that inhibits the release of melatonin and other endocrine secretions needed to replenish the immune system. Geopathic stress can affect animals and plant life as well as human beings and significantly contributes to sick building syndrome (SBS). Whilst there is an increasing body of opinion amongst eminent researchers and scientists who are addressing these issues, the establishment professions are slow to change. However, very gradually, modern allopathic medicine and attitudes are beginning to recognise the extraordinary wisdom and efficacy of ancient traditions such as acupuncture, light, colour and other therapies based on the understanding and treatment of the interaction of a person's electromagnetic subtle body and the immediate environment. These and many other 'complementary' therapies may

  20. Extremely low frequency electromagnetic fields

    SciTech Connect

    Wilson, B.W. . Chemical Sciences Dept.); Stevens, R.G. ); Anderson, L.E. . Life Sciences Center)

    1990-01-01

    The authors focus on that which seems to be the central scientific issue emerging from current ELF research in epidemiology and in the laboratory; namely, can ELF electromagnetic fields interact with biological systems in such a way as to increase cancer risk The authors examine how cancer risk might be related to two reproducible biological effects of ELF exposure: effects on the pineal gland and circadian biology, and effects on calcium homeostasis in cells. Because they are concerned with the possible biological mechanisms of carcinogenesis, epidemiological studies are only briefly reviewed.

  1. 78 FR 33633 - Human Exposure to Radiofrequency Electromagnetic Fields

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... to Radiofrequency Electromagnetic Fields; Reassessment of Exposure to Radiofrequency Electromagnetic..., and 95 Human Exposure to Radiofrequency Electromagnetic Fields AGENCY: Federal Communications... electromagnetic fields. More specifically, the Commission clarifies evaluation procedures and references...

  2. Quantization of Electromagnetic Fields in Cavities

    NASA Technical Reports Server (NTRS)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  3. Electromagnetic fields in cased borehole

    SciTech Connect

    Lee, Ki Ha; Kim, Hee Joon; Uchida, Toshihiro

    2001-07-20

    Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring.

  4. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, David M.; Haynes, Howard D.; Casada, Donald A.

    1993-01-01

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  5. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, D.M.; Haynes, H.D.; Casada, D.A.

    1993-03-16

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  6. Medical applications of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lai, Henry C.; Singh, Narendra P.

    2010-04-01

    In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.

  7. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1997-06-24

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 26 figs.

  8. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-02-10

    An apparatus and method for generating homogeneous electromagnetic fields within a volume is disclosed. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 39 figs.

  9. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  10. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-05-05

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 55 figs.

  11. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James Terry

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  12. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1997-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially cancelling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  13. Nanomechanical electric and electromagnetic field sensor

    DOEpatents

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  14. Interaction of electromagnetic fields and biological tissues

    NASA Astrophysics Data System (ADS)

    Darshan Shrivastava, Bhakt; Barde, Ravindra; Mishra, Ashutosh; Phadke, S.

    2014-09-01

    This paper deals with the electromagnetic field interact in biological tissues. It is actually one of the important challenges for the electromagnetic field for the recent years. The experimental techniques are use in Broad-band Dielectric Measurement (BDM) with LCR meters. The authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biological tissues. Experimental work carried out done in inter-university consortium (IUC) Indore. The major difficulties that appear are related to the material properties, to the effect of the electromagnetic problem and to the thermal model of the biological tissues.

  15. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  16. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  17. Quantum diffusion of electromagnetic fields of ultrarelativistic spin-half particles

    NASA Astrophysics Data System (ADS)

    Peroutka, Balthazar; Tuchin, Kirill

    2017-10-01

    We compute electromagnetic fields created by a relativistic charged spin-half particle in empty space at distances comparable to the particle Compton wavelength. The particle is described as a wave packet evolving according to the Dirac equation. It produces the electromagnetic field that is essentially different from the Coulomb field due to the quantum diffusion effect.

  18. On electromagnetic fields and their applications in the early universe

    NASA Astrophysics Data System (ADS)

    Ahonen, Jarkko Tapani

    1998-07-01

    The field equations of the electromagnetic field, combined with models of the early universe, make it possible to study electromagnetic phenomena at the early stages of the universe. Electromagnetic fields provide us with a tool to estimate electrical conductivity and transport coefficients (heat conductivity and viscosity) in the primordial plasma of the hot early universe. Electrical conductivity plays an important role, for example, in the dissipation of the axion field (a weakly interacting dark matter candidate) and in the creation and dissipation of the primordial magnetic field. On the other hand, heat conductivity and shear viscosity are important, for example, in connection with primordial density perturbations, i.e., galaxy formation, early phase transitions, and primordial magnetic fields. First, in paper I, we derived the equations of motion for the axion field coupled with an electromagnetic field. It was found that energy from the axion field can be transferred to the electromagnetic field. Therefore the damping of the axion field depends on electrical conductivity but that the electromagnetic dissipation cannot, however, significantly damp the axion field. In paper II we developed the tools with which to estimate electrical conductivity in the primordial plasma. We used the Boltzmann collision equation to study how a beam of charged particles will be scattered in the early hot universe. We integrated the collision integral numerically by a simple Monte Carlo integration routine. We discovered that the charged leptons give the largest contribution to the electrical conductivity; the quark contribution was found to be negligible. In Paper III, we estimated with an Abelian Higgs model what kind of a primordial magnetic field can be created in first order phase transition bubble collisions. Assuming that the Abelian model reflects the properties of the full electroweak case, we found that the seed field created is of the right order of magnitude in order

  19. Program For Displaying Computed Electromagnetic Fields

    NASA Technical Reports Server (NTRS)

    Hom, Kam W.

    1995-01-01

    EM-ANIMATE computer program specialized visualization displays and animates output data on near fields and surface currents computed by electromagnetic-field program - in particular MOM3D (LAR-15074). Program based on windows and contains user-friendly, graphical interface for setting viewing options, selecting cases, manipulating files, and like. Written in FORTRAN 77. EM-ANIMATE also available as part of package, COS-10048, includes MOM3D, IRIS program computing near-field and surface-current solutions of electromagnetic-field equations.

  20. Controlling the Electromagnetic Field Confinement with Metamaterials

    PubMed Central

    Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran

    2016-01-01

    The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained. PMID:27886230

  1. Controlling the Electromagnetic Field Confinement with Metamaterials

    NASA Astrophysics Data System (ADS)

    Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran

    2016-11-01

    The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained.

  2. Characterizing and Designing Localized Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Borzdov, Georgy N.

    2004-11-01

    An approach to characterizing and designing localized electromagnetic fields in complex media and free space, based on the use of differentiable manifolds, differentiable mappings, and the rotation group, is discussed. Families of exact time-harmonic solutions to Maxwell's equations -- standing waves defined by spherical harmonics, and localized fields defined by the rotation group -- are presented.

  3. Differential form representation of stochastic electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haider, Michael; Russer, Johannes A.

    2017-09-01

    In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.

  4. Electromagnetic fields in bone repair and adaptation

    NASA Astrophysics Data System (ADS)

    McLeod, Kenneth J.; Rubin, Clinton T.; Donahue, Henry J.

    1995-01-01

    The treatment of delayed union of bone fractures has served for the past 20 years as the principal testing ground for determining whether nonionizing electromagnetic fields can have any substantial, long-term effects in clinical medicine. Recent double-blinded clinical trials have confirmed the significance of the reported effects on bone healing and have led to the suggestion that electromagnetic fields may also be useful in the treatment of other orthopedic problems such as fresh fractures, stabilization of prosthetic implants, or even the prevention or treatment of osteoporosis. However, the design of appropriate treatment regimens for these new applications would be greatly facilitated if it were understood how the biological cells within bone tissue sense these low-frequency, and remarkably low level, electromagnetic fields. Here we address the engineering and physical science aspects of this problem. We review the characteristics of clinically used electromagnetic fields and discuss which components of these fields may actually be responsible for altering the activity of the bone cells. We then consider several physical mechanisms which have been proposed to explain how the cells within the bone or fracture tissue detect this field component.

  5. Electromagnetic fluctuations generated in the boundary layer of laboratory-created ionospheric depletions

    SciTech Connect

    Liu, Yu; Lei, Jiuhou; Cao, Jinxiang; Xu, Liang

    2016-01-15

    Ionospheric depletions, produced by release of attachment chemicals into the ionosphere, were widely investigated and taken as a potential technique for the artificial modification of space weather. In this work, we reported the experimental evidence of spontaneously generated electromagnetic fluctuations in the boundary layer of laboratory-created ionospheric depletions. These depletions were produced by releasing attachment chemicals into the ambient plasmas. Electron density gradients and sheared flows arose in the boundary layer between the ambient and the negative ions plasmas. These generated electromagnetic fluctuations with fundamental frequency f{sub 0} = 70 kHz lie in the lower hybrid frequency range, and the mode propagates with angles smaller than 90° (0.3π–0.4π) relative to the magnetic field. Our results revealed that these observed structures were most likely due to electromagnetic components of the electron-ion hybrid instability. This research demonstrates that electromagnetic fluctuations also can be excited during active release experiments, which should be considered as an essential ingredient in the boundary layer processes of ionospheric depletions.

  6. Electromagnetic field interactions with biological systems

    SciTech Connect

    Frey, A.H. )

    1993-02-01

    This is a report on Symposia organized by the International Society for Bioelectricity and presented at the 1992 FASEB Meeting. The presentations summarized here were intended to provide a sampling of new and fruitful lines of research. The theme topics for the Symposia were cancer, neural function, cell signaling, pineal gland function, and immune system interactions. Living organisms are complex electrochemical systems that evolved over billions of years in a world with a relatively simple weak magnetic field and with few electromagnetic energy emitters. As is characteristic of living organisms, they interacted with and adapted to this environment of electric and magnetic fields. In recent years there has been a massive introduction of equipment that emits electromagnetic fields in an enormous range of new frequencies, modulations, and intensities. As living organisms have only recently found themselves immersed in this new and virtually ubiquitous environment, they have not had the opportunity to adapt to it. This gives biologists the opportunity to use these electromagnetic fields as probes to study the functioning of living systems. This is a significant opportunity, as new approaches to studying living systems so often provide the means to make great leaps in science. In recent years, a diversity of biologists have carried out experiments using electromagnetic fields to study the function of living cells and systems. This approach is now becoming quite fruitful and is yielding data that are advancing our knowledge in diverse areas of biology. 25 refs., 6 figs., 3 tabs.

  7. Photon Propagation in Slowly Varying Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Karbstein, F.

    2017-03-01

    Effective theory of soft photons in slowly varying electromagnetic background fields is studied at one-loop order in QED. This is of relevance for the study of all-optical signatures of quantum vacuum nonlinearity in realistic electromagnetic background fields as provided by high-intensity lasers. The central result derived in this article is a new analytical expression for the photon polarization tensor in two linearly polarized counterpropagating pulsed Gaussian laser beams. Treating the peak field strengths of both laser beams as free parameters, this field configuration can be considered as interpolating between the limiting cases of a purely right- or left-moving laser beam (if one of the peak field strengths is set equal to zero) and the standing-wave type scenario with two counter-propagating beams of equal strength.

  8. Radiated fields from an electromagnetic pulse simulator

    NASA Astrophysics Data System (ADS)

    Pelletier, M.; Delisle, G. Y.; Kashyap, S.

    Simulators of electromagnetic pulses allow generation within a limited time of very high-intensity fields such as those produced in a nuclear explosion. These fields can be radiated out of the test zone at a lower but nevertheless significant level; if the intensity of these fields is sufficiently high, damage to humans and electronic equipment can result. An evaluation of the potential danger of these simulator emissions requires knowledge of the amplitude, duration, and the energy of the radiated impulses. A technique is presented for calculating the fields radiated by a parallel-plane electromagnetic pulse simulator. The same method can also be applied to a rhombic type simulator. Sample numerical results are presented along with the calculations of the energy and power density and a discussion of the formation of the field in the frequency domain.

  9. Electromagnetic fields and infant incubators.

    PubMed

    Bearer, C F

    1994-01-01

    Two models of infant incubators were studied to determine the strength of the magnetic field generated by the heater and fan motors. Measurements were taken at intervals along the center line of the incubator. The results show that fields greater than 100 milligauss and 25 milligauss were measured in the C-86 and C-100 model Isolettes, respectively.

  10. Electromagnetic field parameters and instrumentation

    NASA Astrophysics Data System (ADS)

    Sheppard, A. R.; Jones, R. A.; Stell, M. E.; Adey, W. R.; Bawin, S.

    1986-07-01

    We studied the effects of the electric and magnetic components of a Loran-C type waveform on three biological systems. Neurochemical assays of brain neurotransmitter substances indicate field-related changes in the levels of norepinephrine in the hippocampus and in the number and affinities of the opiate receptors in the cortex. Behavioral data showed that rats trained in an operant conditioning task did not reliably detect any electric field strength used. Biochemical data demonstrated that the Loran-C field did not modify basal ornithine decarboxylase activity in primary bone cells.

  11. LEM—electromagnetic fields measurement laboratory

    NASA Astrophysics Data System (ADS)

    Annino, A.; Falciglia, F.; Musumeci, F.; Oliveri, M.; Privitera, G.; Triglia, A.

    2000-04-01

    The widespread presence of electromagnetic waves and the relative problems regarding them have favored the constitution of the LEM at the DMFCI in Catania University, where competence has been developing in this sector for about 10 years. Full operativeness has been reached as far as the electromagnetic field measurements in anthropized environments are concerned. Other research will be undertaken as soon as further funds are available. Some problems connected with the perfecting of measurements instruments and the results of emission measurements of cellular telephones are presented.

  12. Gene transcription and electromagnetic fields

    SciTech Connect

    Henderson, A.S.

    1992-01-01

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  13. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    SciTech Connect

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-04-15

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  14. Coherent polarization driven by external electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Apostol, M.; Ganciu, M.

    2010-11-01

    The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.

  15. Electromagnetic field of a linear antenna

    NASA Astrophysics Data System (ADS)

    Derby, Norman; Olbert, Stanislaw

    2008-11-01

    Animated computer simulations of the electric field of a radiating antenna can capture the attention of students in introductory electromagnetism courses and stimulate active discussions. The simulations raise questions not usually addressed in textbooks. In certain cases, some of the field lines appear to move toward the antenna, the speed of the field lines can change as they move, and the field lines exhibit strange behavior (circling or splitting) at certain points. Because their fields can be expressed in terms of elementary functions, animations of point dipole antennas are common, but animations showing the fields of antennas with more realistic lengths are not as common because analytical expressions for these fields are not as well known. We show that it is possible to derive analytical expressions in terms of elementary functions for the electromagnetic field of linear antennas of finite length. We draw attention to an open-source method for displaying the fine details within the field patterns and then give a general discussion of singular points and their motions, derive expressions for their location and phase velocity, and apply these results to some of the phenomena that are visible in visualizations of the fields of various antennas.

  16. Electromagnetic field induced biological effects in humans.

    PubMed

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  17. Basic Discoveries in Electromagnetic Field Visualization

    NASA Astrophysics Data System (ADS)

    Shindo, Daisuke

    2014-01-01

    Basic discoveries in the electromagnetic field visualization are presented, mentioning the late Dr. A. Tonomura's significant achievements in this field. First, the discovery of the electron biprism interferences by G. Möllenstedt and his colleagues was noted. Having studied Möllenstedt's interference experiments, A. Tonomura and his colleagues have extended the electron holography system to clearly prove the physical reality of vector potentials, the so-called Aharonov-Bohm effect. They also succeeded in observing the dynamic motions of magnetic flux quanta (fluxons) in a superconducting Nb film. In a joint research with A. Tonomura, we succeeded in visualizing a fluxon pinned by an insulating particle in a high-Tc Y-Ba-Cu-O superconductor by combining electron holography and scanning ion microscopy. As the study of a scalar potential, the visualization of the orbits of electron-induced secondary electrons around positively charged biological specimens was noted. Finally, although the electromagnetic field analysis using electron holography on the basis of Maxwell's equations seems to be promising, it is pointed out that there have been some controversies on the interpretation and treatment of electromagnetic field.

  18. Electromagnetic field radiation model for lightning strokes to tall structures

    SciTech Connect

    Motoyama, H.; Janischewskyj, W.; Hussein, A.M.; Chisholm, W.A.; Chang, J.S.; Rusan, R.

    1996-07-01

    This paper describes observation and analysis of electromagnetic field radiation from lightning strokes to tall structures. Electromagnetic field waveforms and current waveforms of lightning strokes to the CN Tower have been simultaneously measured since 1991. A new calculation model of electromagnetic field radiation is proposed. The proposed model consists of the lightning current propagation and distribution model and the electromagnetic field radiation model. Electromagnetic fields calculated by the proposed model, based on the observed lightning current at the CN Tower, agree well with the observed fields at 2km north of the tower.

  19. [Safety and electromagnetic compatibility in sanitary field].

    PubMed

    Bini, M; Feroldi, P; Ferri, C; Ignesti, A; Olmi, R; Priori, S; Riminesi, C; Tobia, L

    2012-01-01

    In sanitary field and especially in a hospital, multiple sources of non ionizing radiation are used for diagnostic and therapeutic aims. In sanitary sector both workers and users are present at the same time, and in some cases general population could need higher protection than workers in relationship to the exposition to electromagnetic fields. In order to protect health and safety of patients, general population and workers of hospitals and with the aim to identify, analyze, evaluate and study its level of significance, electrical, magnetic and electromagnetic sources Research Italian project Si.C.E.O. (Safety And Electromagnetic Compatibility In Sanitary Field) was instituted. Target of our research project was to deepen risk of exposition elements with analysis of outdoor (e.g. power lines, transmission cabinets) and indoor (e.g. equipment for physical therapy) sources, located in sanitary structures and to verify the level exposition of workers and common population end the respect of specific regulation, and finally to define technical and organizational measures really useful for protection and reduction of risk.

  20. On electromagnetic field problems in inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Mohsen, A.

    1973-01-01

    Analysis of electromagnetic fields in inhomogeneous media is of practical interest in general scattering and propagation problems and in the study of lenses. For certain types of inhomogeneities, the fields may be represented in terms of two scalars. In a general orthogonal coordinate system, these potentials satisfy second order differential equations. Exact solutions of these equations are known only for a few particular cases and in general, an approximate or numerical technique must be employed. The present work reviews and generalizes some of the main methods of attack of the problem. The results are presented in a form appropriate for numerical computation.

  1. A New Theory of the Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2017-01-01

    This author has previously introduced a new theory of the Electromagnetic Field and its interaction with matter. There was from the start a problem with Einstein's formulation of Invariants and its use in describing The EM field. The photon produced by first varying a stationary Electric field in one observer's reference frame is not the same as a photon produced from varying the a stationary Magnetic Field. The Magnetic field photon is thought of as being ``off the mass shell''. The Quantum information seems to carry with it an ordering of these events. You see this ordering in Wick's theory and in Feynman diagrams. This author is proposing that other fields can vary first in another Observers reference frame, not just the ``Scalar Field'' or the ``Fermion Field'', but many other forms of Energy. If the ``Nuclear Field'' varies first, it results in Quantum information that produces a photon that has the Nuclear Field in it and also the Magnetic Field, this is the strange effect seen in Nuclear Magnetic Resonance. This author proposed that there is a large number of photons with different properties, because of this ordering of events that occurs in Quantum Information. One of these photons is the Neutrino which appears to be a three field photon. This is Kriske's Field Theory.

  2. Optimization methods in control of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Angell, Thomas S.; Kleinman, Ralph E.

    1991-05-01

    This program is developing constructive methods for certain constrained optimization problems arising in the design and control of electromagnetic fields and in the identification of scattering objects. The problems addressed fall into three categories: (1) the design of antennas with optimal radiation characteristics measured in terms of directivity; (2) the control of the electromagnetic scattering characteristics of an object, in particular the minimization of its radar cross section, by the choice of material properties; and (3) the determination of the shape of scattering objects with various electromagnetic properties from scattered field data. The main thrust of the program is toward the development of constructive methods based on the use of complete families of solutions of the time-harmonic Maxwell equations in the infinite domain exterior to the radiating or scattering body. During the course of the work an increasing amount of attention has been devoted to the use of iterative methods for the solution of various direct and inverse problems. The continued investigation and development of these methods and their application in parameter identification has become a significant part of the program.

  3. Self field electromagnetism and quantum phenomena

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    1994-07-01

    Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.

  4. [Combined biological effect of electromagnetic fields and chemical substances (toxic)].

    PubMed

    Kamedula, M; Kamedula, T

    1996-01-01

    The authors present results of own measurements and examinations as well as the literature data on the occurrence and effect of direct, low and high frequency electromagnetic fields and chemicals. In real working conditions and in experimental conditions, the following relations can be observed: 1) concomitant occurrence of electromagnetic fields and chemicals, e.g. processes of electrolysis, inductive and dielectric heating; 2) experimental studies of combined effect of electromagnetic fields and chemicals on e.g. cancer development: 3) drug effect modified by electromagnetic fields; 4) effect of chemicals produced in materials under the influence of electromagnetic fields. There are only a few publications on medical examinations of workers exposed simultaneously to electromagnetic fields and chemicals. However, even in those reported studies, an attempt to distinguish changes in the health state due to electromagnetic fields, and due to chemicals has field. The studies of the effect of electromagnetic fields which modify the effect of carcinogenic substances have not yielded unequivocal results. Electromagnetic fields may modify significantly the effect of some psychotropic and hormonal drugs. Under the influence of pyrolisis, induced by thermal effect of electromagnetic fields, toxic substances or substances with harmful biological effect may occur in some materials.

  5. Giant field enhancement in electromagnetic Helmholtz nanoantenna

    NASA Astrophysics Data System (ADS)

    Chevalier, Paul; Bouchon, Patrick; Greffet, Jean-Jacques; Pelouard, Jean-Luc; Haïdar, Riad; Pardo, Fabrice

    2014-11-01

    Inspired by the acoustic Helmholtz resonator, we propose a slit-box electromagnetic nanoantenna able to concentrate the energy of an incident beam into surfaces a thousand times smaller than with a classical lens. This design produces a giant electric field enhancement throughout the slit. The intensity enhancement reaches 104 in the visible range up to 108 in the THz range even with focused beams, thanks to an omnidirectional reception. These properties could target applications requiring extreme light concentration, such as surface-enhanced infrared absorption, nonlinear optics, and biophotonics.

  6. Biomarkers of induced electromagnetic field and cancer.

    PubMed

    Behari, J; Paulraj, R

    2007-01-01

    The present article delineates the epidemiological and experimental studies of electromagnetic field which affects various tissues of human body. These affects lead to cell proliferation, which may lead to cancer formation. Certain biomarkers have been identified which are one way or the other responsible for tumor promotion or co-promotion. These are (i) melatonin, a hormone secreted by pineal gland, (ii) Ca2+, which is essential in the regulation of the resting membrane potential and in the sequence of events in synaptic excitation and neurotransmitter, release are affected by electromagnetic field, (iii) ornithine decarboxylase (ODC), a rate-limiting enzyme in the biosynthesis of polyamines, considered as a useful biological marker; over expression of ODC can cause cell transformation and enhancement of tumor promotion. (iv) protein kinase is an enzyme, which transfers phosphate groups from ATP to hydroxyl groups in the amino acid chains of acceptor proteins, and (v) Na+-K+ ATPase, which transports sodium and potassium ions across the membrane has a critical role in living cells. The various possible mechanisms depending upon non equilibrium thermodynamics, co-operativism, stochastic and resonance are discussed as possible models of signal transduction in cytosol, thereby controlling the transcription phenomena. Finally a mechanism comprising the extremely low frequency and radio frequency (RF)/microwave (MW) modulated field is compared.

  7. Geometrization conditions for perfect fluids, scalar fields, and electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Torre, Charles; Krongos, Dionisios

    2016-03-01

    The classical Rainich conditions are a system of geometric conditions, expressed purely in terms of the spacetime metric, which are necessary and sufficient for the metric to define a solution to the Einstein-Maxwell equations with a non-null electromagnetic field. We obtain analogous ``geometrization'' conditions for other matter sources. Specifically, we find geometric conditions which are necessary and sufficient for a metric to define a solution to the Einstein equations with a perfect fluid source, and to define a solution to the Einstein-scalar field equations. These conditions work in any dimension, allow for a cosmological constant, and allow for an arbitrary self-interaction potential in the scalar field case. We also generalize the classical Rainich conditions to include a cosmological constant and we obtain geometrization conditions which are applicable to the case of null electromagnetic fields. This work was supported in part by Grant No. OCI-1148331 from the National Science Foundation.

  8. Transient electromagnetic fields near large earthing systems

    SciTech Connect

    Grcev, L.D.; Menter, F.E.

    1996-05-01

    Electromagnetic compatibility studies require knowledge of transient voltages that may be developed near earthing systems during lightning discharge, since such voltages may be coupled to sensitive electronic circuits. For such purpose accurate evaluation of transient electric field near to and/or at the surface of the grounding conductors is necessary. In this paper, a procedure for computation of transient fields near large earthing systems, as a response to a typical lightning current impulse, based on computational methodology developed in the field of antennas, is presented. Computed results are favorably compared with published measurement results. The model is applied to check the common assumption that the soil ionization can be neglected in case of large earthing systems. Presented results show that the soil ionization threshold is met and exceeded during typical lightning discharge in a large earthing system.

  9. Near-field radiofrequency electromagnetic exposure assessment.

    PubMed

    Rubtsova, Nina; Perov, Sergey; Belaya, Olga; Kuster, Niels; Balzano, Quirino

    2015-09-01

    Personal wireless telecommunication devices, such as radiofrequency (RF) electromagnetic field (EMF) sources operated in vicinity of human body, have possible adverse health effects. Therefore, the correct EMF assessment is necessary in their near field. According to international near-field measurement criteria, the specific absorption rate (SAR) is used for absorbed energy distribution assessment in tissue simulating liquid phantoms. The aim of this investigation is to validate the relationship between the H-field of incident EMF and absorbed energy in phantoms. Three typical wireless telecommunication system frequencies are considered (900, 1800 and 2450 MHz). The EMF source at each frequency is an appropriate half-wave dipole antenna and the absorbing medium is a flat phantom filled with the suitable tissue simulating liquid. Two methods for SAR estimation have been used: standard procedure based on E-field measured in tissue simulating medium and a proposed evaluation by measuring the incident H-field. Compared SAR estimations were performed for various distances between sources and phantom. Also, these research data were compared with simulation results, obtained by using finite-difference time-domain method. The acquired data help to determine the source near-field space characterized by the smallest deviation between SAR estimation methods. So, this region near the RF source is suitable for correct RF energy absorption assessment using the magnetic component of the RF fields.

  10. Super strong electromagnetic fields and their applications

    SciTech Connect

    Bulanov, Sergei V.

    2007-07-11

    The progress in the ultra-intense laser technologies continues to open up new fields of physics. The laser accelerator development enters a new matured stage at which it becomes possible to manipulate in a controllable way the parameters of accelerated charged particle beams. In the electron acceleration the particle injection by breaking wake waves left by the laser pulse in underdense plasmas or by interacting two laser pulses results in the quasi-mono-energetic beam production. When the ions are accelerated during the laser-matter interaction the tailored multi-layer foil targets provide conditions for the high quality proton beam generation. When the laser pulse radiation pressure is dominant, the laser energy is transformed efficiently into the energy of fast ions. Ultrahigh intense electromagnetic fields can be generated due to the laser pulse compression, carrier frequency upshifting, and focusing by a counterpropagating breaking plasma wave, relativistic flying mirrors.

  11. Electromagnetic fields with vanishing scalar invariants

    NASA Astrophysics Data System (ADS)

    Ortaggio, Marcello; Pravda, Vojtěch

    2016-06-01

    We determine the class of p-forms {\\boldsymbol{F}} that possess vanishing scalar invariants (VSIs) at arbitrary order in an n-dimensional spacetime. Namely, we prove that {\\boldsymbol{F}} is a VSI if and only if if it is of type N, its multiple null direction {\\boldsymbol{\\ell }} is ‘degenerate Kundt’, and {\\pounds }{\\boldsymbol{\\ell }}{\\boldsymbol{F}}=0. The result is theory-independent. Next, we discuss the special case of Maxwell fields, both at the level of test fields and of the full Einstein-Maxwell equations. These describe electromagnetic non-expanding waves propagating in various Kundt spacetimes. We further point out that a subset of these solutions possesses a universal property, i.e. they also solve (virtually) any generalized (non-linear and with higher derivatives) electrodynamics, possibly also coupled to Einstein’s gravity.

  12. Electromagnetic field patterning or crystal light

    NASA Astrophysics Data System (ADS)

    Słupski, Piotr; Wymysłowski, Artur; Czarczyński, Wojciech

    2016-12-01

    Using the orbital angular momentum of light for the development of a vortex interferometer, the underlying physics requires microwave/RF models,1 as well as quantum mechanics for light1, 2 and fluid flow for semiconductor devices.3, 4 The combination of the aforementioned physical models yields simulations and results such as optical lattices,1 or an Inverse Farday effect.5 The latter is explained as the absorption of optical angular momentum, generating extremely high instantenous magnetic fields due to radiation friction. An algorithmic reduction across the computational methods used in microwaves, lasers, quantum optics and holography is performed in order to explain electromagnetic field interactions in a single computational framework. This work presents a computational model for photon-electron interactions, being a simplified gauge theory described using differentials or disturbances (photons) instead of integrals or fields. The model is based on treating the Z-axis variables as a Laplace fluid with spatial harmonics, and the XY plane as Maxwell's equations on boundaries. The result is a unified, coherent, graphical computational method of describing the photon qualitatively, quantitatively and with proportion. The model relies on five variables and is described using two equations, which use emitted power, cavity wavelength, input frequency, phase and time. Phase is treated as a rotated physical dimension under gauge theory of Feynmann's QED. In essence, this model allows the electromagnetic field to be treated with it's specific crystallography. The model itself is described in Python programming language. PACS 42.50.Pq, 31.30.J-, 03.70.+k, 11.10.-z, 67.10.Hk

  13. On Acceptable Exposures to Short Pulses of Electromagnetic Fields

    DTIC Science & Technology

    2015-09-01

    NAWCWD TP 8791 On Acceptable Exposures to Short Pulses of Electromagnetic Fields by Francis X. Canning, PhD Physics...prepared in response to a request to study the effects of exposure to short pulses of electromagnetic fields. The author is a physicist at the Naval... Exposures to Short Pulses of Electromagnetic Fields (U) 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S

  14. Evaluation of uncertainty in the measurement of environmental electromagnetic fields.

    PubMed

    Vulević, B; Osmokrović, P

    2010-09-01

    With regard to Non-ionising radiation protection, the relationship between human exposure to electromagnetic fields and health is controversial. Electromagnetic fields have become omnipresent in the daily environment. This paper assesses the problem of how to compare a measurement result with a limit fixed by the standard for human exposure to electric, magnetic and electromagnetic fields (0 Hz-300 GHz). The purpose of the paper is an appropriate representation of the basic information about evaluation of measurement uncertainty.

  15. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  16. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  17. Properties of electromagnetic field focusing probe.

    PubMed

    Yamanashi, W S; Yassa, N A; Hill, D L; Patil, A A; Lester, P D

    1988-11-01

    The electromagnetic field focusing (EFF) apparatus consists of a radio frequency generator, solenoidal coil, and a hand-held or catheter probe. Applications such as aneurysm treatment, angioplasty, and neurosurgery in various models have been reported. The probe is operated in the near field (within one wavelength of an electromagnetic field source) of a coil inducing eddy currents in biological tissues, producing maximal convergence of the induced current at the probe tip. The probe produces very high temperatures depending on the wattage selected for the given radio frequency of output power. The high temperature can be used in cutting, cauterizing, or vaporizing. The EFF probe is comparable to different types of lasers and to bipolar and monopolar cautery. The EFF probe can be used with catheters or endoscopes. Objectives of this study were to determine what the thermal properties of the EFF probe are and how instrument parameters can be varied to obtain different temperatures in the tissue near the probe tip. In this study an F2 catheter was used as an insulated sheath and the tip of the guide wire was used as the probe tip. Different powers, wave forms, coil-to-probe distances, and probe-tip lengths were tested on a phantom that simulates tissue electrical properties. Some of the experiments were conducted under normal saline to simulate treatment of tissue with body fluids such as blood vessels or brain tissue under normal physiologic conditions. It is concluded that the EFF probe has the advantages of easy manipulation, relative safety, cost effectiveness, and a high degree of spatial control.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. The electromagnetic field equations for moving media

    NASA Astrophysics Data System (ADS)

    Ivezić, T.

    2017-05-01

    In this paper a formulation of the field equation for moving media is developed by the generalization of an axiomatic geometric formulation of the electromagnetism in vacuum (Ivezić T 2005 Found. Phys. Lett. 18 401). First, the field equations with bivectors F (x) and ℳ(x) are presented and then these equations are written with the 4D vectors E(x), B(x), P (x) and M(x). The latter contain both the 4D velocity vector u of a moving medium and the 4D velocity vector v of the observers who measure E and B fields. They do not appear in previous literature. All these equations are also written in the standard basis and compared with Maxwell’s equations with 3D vectors. In this approach the Ampère-Maxwell law and Gauss’s law are inseparably connected in one law and the same happens with Faraday’s law and the law that expresses the absence of magnetic charge. It is shown that Maxwell’s equations with 3D vectors and the field equations with 4D geometric quantities are not equivalent in 4D spacetime

  19. Visualizing electromagnetic fields in metals by MRI

    NASA Astrophysics Data System (ADS)

    Chandrashekar, Chandrika Sefcikova; Shellikeri, Annadanesh; Chandrashekar, S.; Taylor, Erika A.; Taylor, Deanne M.

    2017-02-01

    Based upon Maxwell's equations, it has long been established that oscillating electromagnetic (EM) fields incident upon a metal surface, decay exponentially inside the conductor, leading to a virtual absence of EM fields at sufficient depths. Magnetic resonance imaging (MRI) utilizes radiofrequency (r.f.) EM fields to produce images. Here we present a visualization of a virtual EM vacuum inside a bulk metal strip by MRI, amongst several findings. At its simplest, an MRI image is an intensity map of density variations across voxels (pixels) of identical size (=Δ x Δ y Δ z ). By contrast in bulk metal MRI, we uncover that despite uniform density, intensity variations arise from differing effective elemental volumes (voxels) from different parts of the bulk metal. Further, we furnish chemical shift imaging (CSI) results that discriminate different faces (surfaces) of a metal block according to their distinct nuclear magnetic resonance (NMR) chemical shifts, which holds much promise for monitoring surface chemical reactions noninvasively. Bulk metals are ubiquitous, and MRI is a premier noninvasive diagnostic tool. Combining the two, the emerging field of bulk metal MRI can be expected to grow in importance. The findings here may impact further development of bulk metal MRI and CSI.

  20. Auditory Spatial Receptive Fields Created by Multiplication

    NASA Astrophysics Data System (ADS)

    Peña, José Luis; Konishi, Masakazu

    2001-04-01

    Examples of multiplication by neurons or neural circuits are scarce, although many computational models use this basic operation. The owl's auditory system computes interaural time (ITD) and level (ILD) differences to create a two-dimensional map of auditory space. Space-specific neurons are selective for combinations of ITD and ILD, which define, respectively, the horizontal and vertical dimensions of their receptive fields. A multiplication of separate postsynaptic potentials tuned to ITD and ILD, rather than an addition, can account for the subthreshold responses of these neurons to ITD-ILD pairs. Other nonlinear processes improve the spatial tuning of the spike output and reduce the fit to the multiplicative model.

  1. Inelastic deformation of conductive bodies in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Altenbach, Holm; Morachkovsky, Oleg; Naumenko, Konstantin; Lavinsky, Denis

    2016-09-01

    Inelastic deformation of conductive bodies under the action of electromagnetic fields is analyzed. Governing equations for non-stationary electromagnetic field propagation and elastic-plastic deformation are presented. The variational principle of minimum of the total energy is applied to formulate the numerical solution procedure by the finite element method. With the proposed method, distributions of vector characteristics of the electromagnetic field and tensor characteristics of the deformation process are illustrated for the inductor-workpiece system within a realistic electromagnetic forming process.

  2. Mortality in workers exposed to electromagnetic fields.

    PubMed Central

    Milham, S

    1985-01-01

    In an occupational mortality analysis of 486,000 adult male death records filed in Washington State in the years 1950-1982, leukemia and the non-Hodgkin's lymphomas show increased proportionate mortality ratios (PMRs) in workers employed in occupations with intuitive exposures to electromagnetic fields. Nine occupations of 219 were considered to have electric or magnetic field exposures. These were: electrical and electronic technicians, radio and telegraph operators, radio and television repairmen, telephone and power linemen, power station operators, welders, aluminum reduction workers, motion picture projectionists and electricians. There were 12,714 total deaths in these occupations. Eight of the nine occupations had PMR increases for leukemia [International Classification of Diseases (ICD), seventh revision 204] and seven of the nine occupations had PMR increases for the other lymphoma category (7th ICD 200.2, 202). The highest PMRs were seen for acute leukemia: (67 deaths observed, 41 deaths expected; PMR 162), and in the other lymphomas (51 deaths observed, 31 deaths expected; PMR 164). No increase in mortality was seen for Hodgkin's disease or multiple myeloma. These findings offer some support for the hypothesis that electric and magnetic fields may be carcinogenic. PMID:4085433

  3. Mortality in workers exposed to electromagnetic fields

    SciTech Connect

    Milham, S. Jr.

    1985-10-01

    In an occupational mortality analysis of 486,000 adult male death records filed in Washington State in the years 1950-1982, leukemia and the non-Hodgkin's lymphomas show increased proportionate mortality ratios (PMRs) in workers employed in occupations with intuitive exposures to electromagnetic fields. Nine occupations of 219 were considered to have electric or magnetic field exposures. These were: electrical and electronic technicians, radio and telegraph operators, radio and television repairmen, telephone and power linemen, power station operators, welders, aluminum reduction workers, motion picture projectionists and electricians. There were 12,714 total deaths in these occupations. Eight of the nine occupations had PMR increases for leukemia (International Classification of Diseases (ICD), seventh revision 204) and seven of the nine occupations had PMR increases for the other lymphoma category (7th ICD 200.2, 202). The highest PMRs were seen for acute leukemia: (67 deaths observed, 41 deaths expected; PMR 162), and in the other lymphomas (51 deaths observed, 31 deaths expected; PMR 164). No increase in mortality was seen for Hodgkin's disease or multiple myeloma. These findings offer some support for the hypothesis that electric and magnetic fields may be carcinogenic.

  4. Electromagnetic polarizabilities: Lattice QCD in background fields

    SciTech Connect

    W. Detmold, B.C. Tiburzi, A. Walker-Loud

    2012-04-01

    Chiral perturbation theory makes definitive predictions for the extrinsic behavior of hadrons in external electric and magnetic fields. Near the chiral limit, the electric and magnetic polarizabilities of pions, kaons, and nucleons are determined in terms of a few well-known parameters. In this limit, hadrons become quantum mechanically diffuse as polarizabilities scale with the inverse square-root of the quark mass. In some cases, however, such predictions from chiral perturbation theory have not compared well with experimental data. Ultimately we must turn to first principles numerical simulations of QCD to determine properties of hadrons, and confront the predictions of chiral perturbation theory. To address the electromagnetic polarizabilities, we utilize the background field technique. Restricting our attention to calculations in background electric fields, we demonstrate new techniques to determine electric polarizabilities and baryon magnetic moments for both charged and neutral states. As we can study the quark mass dependence of observables with lattice QCD, the lattice will provide a crucial test of our understanding of low-energy QCD, which will be timely in light of ongoing experiments, such as at COMPASS and HI gamma S.

  5. Electromagnetic fields and male breast cancer.

    PubMed

    Tynes, T

    1993-01-01

    The aetiology of male breast cancer is still considered to be rather unclear. Epidemiological studies have recently shown an excess risk of male breast cancer in "electrical workers" with potential exposure to electromagnetic (EM) fields. Interest on the possible association between pineal function and breast cancer has come into focus. The pineal hormone melatonin has been shown to reduce the incidence of experimentally-induced breast cancer in rats, the hormone is oncostatic and cytotoxic to breast, ovarian, and bladder cancer cell lines in vitro. Treatment of cancer patients with orally administered melatonin has been tried. Pineal function in humans is suppressed by light-at-night (LAN). Animal studies have shown that exposure to 60-Hz electric fields may also suppress the nocturnal rise in pineal melatonin production in adult rats. Breast cancer is the leading cause of cancer death among women in industrialised world. No good explanation has so far been provided for the increased incidence of this site during the last decades, although changes in fertility factors have had some effect. If new epidemiological and experimental data give support to the hypothesis that exposure to LAN and EM fields may increase breast cancer risk, this may have regulatory and political consequences for future use of electric power.

  6. Electromagnetic field at finite temperature: A first order approach

    NASA Astrophysics Data System (ADS)

    Casana, R.; Pimentel, B. M.; Valverde, J. S.

    2006-10-01

    In this work we study the electromagnetic field at finite temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.

  7. Electromagnetically induced transparency in modulated laser fields

    NASA Astrophysics Data System (ADS)

    Jiao, Yuechun; Yang, Zhiwei; Zhang, Hao; Zhang, Linjie; Raithel, Georg; Zhao, Jianming; Jia, Suotang

    2017-02-01

    We study electromagnetically induced transparency (EIT) in a room-temperature cesium vapor cell using wavelength-modulated probe laser light. In the utilized cascade level scheme, the probe laser drives the lower transition 6S {}1/2(F = 4) → 6P {}3/2 (F’ = 5), while the coupling laser drives the Rydberg transition 6P {}3/2 → 57S {}1/2. The probe laser has a fixed average frequency and is modulated at a frequency of a few kHz, with a variable modulation amplitude in the range of tens of MHz. The probe transmission is measured as a function of the detuning of the coupling laser from the Rydberg resonance. The first-harmonic demodulated EIT signal has two peaks that are, in the case of large modulation amplitude, separated by the peak-to-peak modulation amplitude of the probe laser times a scaling factor {λ }{{p}}/{λ }{{c}}, where {λ }{{p}} and {λ }{{c}} are the probe- and coupling-laser wavelengths. The scaling factor is due to Doppler shifts in the EIT geometry. Second-harmonic demodulated EIT signals, obtained with small modulation amplitudes, yield spectral lines that are much narrower than corresponding lines in the modulation-free EIT spectra. The resultant spectroscopic resolution enhancement is conducive to improved measurements of radio-frequency (RF) fields based on Rydberg-atom EIT, an approach in which the response of Rydberg atoms to RF fields is exploited to characterize RF fields. Here, we employ wavelength modulation spectroscopy to reduce the uncertainty of atom-based frequency and field measurement of an RF field in the VHF radio band.

  8. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  9. Assessment of Electromagnetic Fields at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ficklen, Carter B.

    1995-01-01

    This report presents the results of an assessment of ElectroMagnetic Fields (EMF) completed at NASA Langley Research Center as part of the Langley Aerospace Research Summer Scholars Program. This project was performed to determine levels of electromagnetic fields, determine the significance of the levels present, and determine a plan to reduce electromagnetic field exposure, if necessary. This report also describes the properties of electromagnetic fields and their interaction with humans. The results of three major occupational epidemiological studies is presented to determine risks posed to humans by EMF exposure. The data for this report came from peer-reviewed journal articles and government publications pertaining to the health effects of electromagnetic fields.

  10. Fluxes of electromagnetic field energy in HTSC transformers

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Dzhafarov, E. A.

    2016-12-01

    The transfer of electric power in an HTSC electromagnetic system is considered using the Poynting vector. An analysis of the process of transfer of electromagnetic field energy in HTSC transformers with and without an iron core is given. It is shown that the power of an HTSC transformer increases when its magnetic core is made from amorphous electrical steel. Schemes of HTSC transformers with a localized magnetic field are given with cylindrical and disk symmetrical interleaved windings providing the cost-saving process of transfer of large electromagnetic energy at a high degree of its uniformity and improve the factor of nonuniformity of electromagnetic flux density.

  11. Classical electromagnetic fields from quantum sources in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Holliday, Robert; McCarty, Ryan; Peroutka, Balthazar; Tuchin, Kirill

    2017-01-01

    Electromagnetic fields are generated in high energy nuclear collisions by spectator valence protons. These fields are traditionally computed by integrating the Maxwell equations with point sources. One might expect that such an approach is valid at distances much larger than the proton size and thus such a classical approach should work well for almost the entire interaction region in the case of heavy nuclei. We argue that, in fact, the contrary is true: due to the quantum diffusion of the proton wave function, the classical approximation breaks down at distances of the order of the system size. We compute the electromagnetic field created by a charged particle described initially as a Gaussian wave packet of width 1 fm and evolving in vacuum according to the Klein-Gordon equation. We completely neglect the medium effects. We show that the dynamics, magnitude and even sign of the electromagnetic field created by classical and quantum sources are different.

  12. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    PubMed Central

    Consales, Claudia; Merla, Caterina; Marino, Carmela; Benassi, Barbara

    2012-01-01

    Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system. PMID:22991514

  13. 78 FR 33654 - Reassessment of Exposure to Radiofrequency Electromagnetic Fields Limits and Policies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Electromagnetic Fields Limits and Policies AGENCY: Federal Communications Commission. ACTION: Proposed rule... electromagnetic fields. The Commission's further proposals reflect an effort to provide more efficient, practical... RF electromagnetic fields. The Commission underscores that in conducting this review it will...

  14. Cell membrane thermal gradients induced by electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Garner, Allen L.; Deminsky, Maxim; Bogdan Neculaes, V.; Chashihin, V.; Knizhnik, Andrey; Potapkin, Boris

    2013-06-01

    While electromagnetic fields induce structural changes in cell membranes, particularly electroporation, much remains to be understood about membrane level temperature gradients. For instance, microwaves induce cell membrane temperature gradients (∇T) and bioeffects with little bulk temperature change. Recent calculations suggest that nanosecond pulsed electric fields (nsPEFs) may also induce such gradients that may additionally impact the electroporation threshold. Here, we analytically and numerically calculate the induced ∇T as a function of pulse duration and pulse repetition rate. We relate ∇T to the thermally induced cell membrane electric field (Em) by assuming the membrane behaves as a thermoelectric such that Em ˜ ∇T. Focusing initially on applying nsPEFs to a uniform membrane, we show that reducing pulse duration and increasing pulse repetition rate (or using higher frequency for alternating current (AC) fields) maximizes the magnitude and duration of ∇T and, concomitantly, Em. The maximum ∇T initially occurs at the interface between the cell membrane and extracellular fluid before becoming uniform across the membrane, potentially enabling initial molecular penetration and subsequent transport across the membrane. These results, which are equally applicable to AC fields, motivate further studies to elucidate thermoelectric behavior in a model membrane system and the coupling of the Em induced by ∇T with that created directly by the applied field.

  15. Simultaneous Electromagnetic Tracking and Calibration for Dynamic Field Distortion Compensation.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2016-08-01

    Electromagnetic (EM) tracking systems are highly susceptible to field distortion. The interference can cause measurement errors up to a few centimeters in clinical environments, which limits the reliability of these systems. Unless corrected for, this measurement error imperils the success of clinical procedures. It is therefore fundamental to dynamically calibrate EM tracking systems and compensate for measurement error caused by field distorting objects commonly present in clinical environments. We propose to combine a motion model with observations of redundant EM sensors and compensate for field distortions in real time. We employ a simultaneous localization and mapping technique to accurately estimate the pose of the tracked instrument while creating the field distortion map. We conducted experiments with six degrees-of-freedom motions in the presence of field distorting objects in research and clinical environments. We applied our approach to improve the EM tracking accuracy and compared our results to a conventional sensor fusion technique. Using our approach, the maximum tracking error was reduced by 67% for position measurements and by 64% for orientation measurements. Currently, clinical applications of EM trackers are hampered by the adverse distortion effects. Our approach introduces a novel method for dynamic field distortion compensation, independent from preoperative calibrations or external tracking devices, and enables reliable EM navigation for potential applications.

  16. Interpreting marine controlled source electromagnetic field behaviour with streamlines

    NASA Astrophysics Data System (ADS)

    Pethick, A. M.; Harris, B. D.

    2013-10-01

    Streamlines represent particle motion within a vector field as a single line structure and have been used in many areas of geophysics. We extend the concept of streamlines to interactive three dimensional representations of the coupled vector fields generated during marine controlled source electromagnetic surveys. These vector fields have measurable amplitudes throughout many hundreds of cubic kilometres. Electromagnetic streamline representation makes electromagnetic interactions within complex geo-electrical setting comprehensible. We develop an interface to rapidly compute and interactively visualise the electric and magnetic fields as streamlines for 3D marine controlled source electromagnetic surveys. Several examples highlighting how interactive use has value in marine controlled source electromagnetic survey design, interpretation and teaching are provided. The first videos of electric, magnetic and Poynting vector field streamlines are provided along with the first published example of the airwave represented as streamlines. We demonstrate that the electric field airwave is a circulating vortex moving down and out from the air-water interface towards the ocean floor. The use of interactive streamlines is not limited to marine controlled source electromagnetic methods. Streamlines provides a high level visualisation tool for interpreting the electric and magnetic field behaviour generated by a wide range of electromagnetic survey configurations for complex 3D geo-electrical settings.

  17. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    PubMed

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  18. An experiment to study strong electromagnetic fields at RHIC

    SciTech Connect

    Fatyga, M. ); Norbury, J.W. . Dept. of Physics)

    1990-01-01

    We present a description of an experiment which can be used to search for effects of strong electromagnetic fields on the production of e{sup +}e{sup {minus}} pairs in the elastic scattering of two heavy ions at RHIC. A very brief discussion of other possible studies of electromagnetic phenomena at RHIC is also presented.

  19. The van Cittert-Zernike theorem for electromagnetic fields.

    PubMed

    Ostrovsky, Andrey S; Martínez-Niconoff, Gabriel; Martínez-Vara, Patricia; Olvera-Santamaría, Miguel A

    2009-02-02

    The van Cittert-Zernike theorem, well known for the scalar optical fields, is generalized for the case of vector electromagnetic fields. The deduced theorem shows that the degree of coherence of the electromagnetic field produced by the completely incoherent vector source increases on propagation whereas the degree of polarization remains unchanged. The possible application of the deduced theorem is illustrated by an example of optical simulation of partially coherent and partially polarized secondary source with the controlled statistical properties.

  20. Algebraic structure of general electromagnetic fields and energy flow

    SciTech Connect

    Hacyan, Shahen

    2011-08-15

    Highlights: > Algebraic structure of general electromagnetic fields in stationary spacetime. > Eigenvalues and eigenvectors of the electomagnetic field tensor. > Energy-momentum in terms of eigenvectors and Killing vector. > Explicit form of reference frame with vanishing Poynting vector. > Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.

  1. [Electromagnetic fields in melting divisions of nickel production].

    PubMed

    Nikitina, V N; Liashko, G G; Nikanov, A N; Nikitina, N Iu

    2004-01-01

    The authors evaluated electromagnetic situation in melting divisions, on transformer substation. Studies covered alternating electric and magnetic fields of industrial frequencies and direct magnetic fields in fire mode of nickel production on workplaces during working shifts. Results proved that induction of the magnetic fields varies widely. Magnetic fields influence is accidental and remains additional factor affecting human body.

  2. [Computational radiofrequency electromagnetic field dosimetry in evaluation of biological effects].

    PubMed

    Perov, S Iu; Kudryashov, Iu B; Rubtsova, N B

    2012-01-01

    Given growing computational resources, radiofrequency electromagnetic field dosimetry is becoming more vital in the study of biological effects of non-ionizing electromagnetic radiation. The study analyzes numerical methods which are used in theoretical dosimetry to assess the exposure level and specific absorption rate distribution. The advances of theoretical dosimetry are shown. Advantages and disadvantages of different methods are analyzed in respect to electromagnetic field biological effects. The finite-difference time-domain method was implemented in detail; also evaluated were possible uncertainties of complex biological structure simulation for bioelectromagnetic investigations.

  3. Effects of Electromagnetic Fields on Fish and Invertebrates

    SciTech Connect

    Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno

    2010-10-13

    In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.

  4. [Pulsed electromagnetic fields (PEMF)--results in evidence based medicine].

    PubMed

    Pieber, Karin; Schuhfried, Othmar; Fialka-Moser, Veronika

    2007-01-01

    Therapy with electromagnetic fields has a very old tradition in medicine. The indications are widespread, whereas little is known about the effects. Controlled randomizied studies with positive results for pulsed electromagnetic fields (PEMF) are available for osteotomies, the healing of skin wounds, and osteoarthritis. Comparison of the studies is difficult because of the different doses applied and intervals of therapy. Therefore recommendations regarding an optimal dosis and interval are, depending on the disease, quite variable.

  5. Electromagnetic fields and potentials generated by massless charged particles

    SciTech Connect

    Azzurli, Francesco; Lechner, Kurt

    2014-10-15

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string. - Highlights: • First exact solution of Maxwell’s equations for massless charges in arbitrary motion. • Explicit expressions of electromagnetic fields and potentials. • Derivations are rigorous and based on distribution theory. • The form of the field depends heavily on whether the motion is bounded or unbounded. • The electromagnetic field contains unexpected Dirac-delta-function contributions.

  6. Biological effects of prolonged exposure to ELF electromagnetic fields in rats: III. 50 Hz electromagnetic fields.

    PubMed

    Zecca, L; Mantegazza, C; Margonato, V; Cerretelli, P; Caniatti, M; Piva, F; Dondi, D; Hagino, N

    1998-01-01

    Groups of adult male Sprague Dawley rats (64 rats each) were exposed for 8 months to electromagnetic fields (EMF) of two different field strength combinations: 5microT - 1kV/m and 100microT - 5kV/m. A third group was sham exposed. Field exposure was 8 hrs/day for 5 days/week. Blood samples were collected for hematology determinations before the onset of exposure and at 12 week intervals. At sacrifice, liver, heart, mesenteric lymph nodes, bone marrow, and testes were collected for morphology and histology assessments, while the pineal gland and brain were collected for biochemical determinations. At both field strength combinations, no pathological changes were observed in animal growth rate, in morphology and histology of the collected tissue specimens (liver, heart, mesenteric lymph nodes, testes, bone marrow), and in serum chemistry. An increase in norepinephrine levels occurred in the pineal gland of rats exposed to the higher field strength. The major changes in the brain involved the opioid system in frontal cortex, parietal cortex, and hippocampus. From the present findings it may be hypothesized that EMF may cause alteration of some brain functions.

  7. Electromagnetic field strength levels surrounding electronic article surveillance (EAS) systems.

    PubMed

    Harris, C; Boivin, W; Boyd, S; Coletta, J; Kerr, L; Kempa, K; Aronow, S

    2000-01-01

    Electronic article surveillance (EAS) is used in many applications throughout the world to prevent theft. EAS systems produce electromagnetic (EM) energy around exits to create an EM interrogation zone through which protected items must pass before leaving the establishment. Specially designed EAS tags are attached to these items and must either be deactivated or removed prior to passing through the EAS EM interrogation zone to prevent the alarm from sounding. Recent reports in the scientific literature have noted the possibility that EM energy transmitted by EAS systems may interfere with the proper operation of sensitive electronic medical devices. The Food and Drug Administration has the regulatory responsibility to ensure the safety and effectiveness of medical devices. Because of the possibility of electromagnetic interference (EMI) between EAS systems and electronic medical devices, in situ measurements of the electric and magnetic fields were made around various types of EAS systems. Field strength levels were measured around four types of EAS systems: audio frequency magnetic, pulsed magnetic resonant, radio frequency, and microwave. Field strengths from these EAS systems varied with magnetic fields as high as 1073.6 Am(-1) (in close proximity to the audio frequency magnetic EAS system towers), and electric fields up to 23.8 Vm(-1) (in close proximity to the microwave EAS system towers). Medical devices are only required to withstand 3 Vm(-1) by the International Electrotechnical Commission's current medical device standards. The modulation scheme of the signal transmitted by some types of EAS systems (especially the pulsed magnetic resonant) has been shown to be more likely to cause EMI with electronic medical devices. This study complements other work in the field by attaching specific characteristics to EAS transmitted EM energy. The quantitative data could be used to relate medical device EMI with specific field strength levels and signal waveforms

  8. [The influence of electromagnetic fields on flora and fauna].

    PubMed

    Rochalska, Małgorzata

    2009-01-01

    This paper presents the influence of natural and artificial electromagnetic fields (EMF) on fauna and flora. The mechanisms of Earth's magnetic field detection and the use of this skill by migratory animals to faultlessly reach the destination of their travel are discussed, as well as the positive effects of electric and magnetic fields on plants relative to their physiology, yielding and health. EMF influence on social insects and animal organisms, including possible DNA damages and DNA repair systems, is presented. The influence of high frequency electromagnetic fields on birds nesting is also discussed.

  9. Nonlinear electromagnetic fields as a source of universe acceleration

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2016-04-01

    A model of nonlinear electromagnetic fields with a dimensional parameter β is proposed. From PVLAS experiment the bound on the parameter β was obtained. Electromagnetic fields are coupled with the gravitation field and we show that the universe accelerates due to nonlinear electromagnetic fields. The magnetic universe is considered and the stochastic magnetic field is a background. After inflation the universe decelerates and approaches to the radiation era. The range of the scale factor, when the causality of the model and a classical stability take place, was obtained. The spectral index, the tensor-to-scalar ratio, and the running of the spectral index were estimated which are in approximate agreement with the Planck, WMAP, and BICEP2 data.

  10. Basic Materials for Electromagnetic Field Standards

    DTIC Science & Technology

    2003-03-04

    choliner- gic processes // Labor Hygiene and Biological Effects of electromagnetic waves of ra- diofrequencies. Proceedings of 3rd All-Union Symposium...Microwave on Blood asparthate Amine transferase Enzymatic System. J. Radiation biology and ecol - ogy (Russian academy of sciences) 2001. Vol. 41. No.1...under Increased Temperature. J. Radiation biology and ecol - ogy (Russian academy of sciences) 2002. Vol. 42. No.1, pp. 191–193. 13. T.P. Semenova

  11. MESA: a new configuration for measuring electromagnetic field fluctuations.

    PubMed

    Harte, T M; Black, D L; Hollinshead, M T

    1999-11-01

    This paper describes how the multi-energy sensor array has been refitted to meet the needs of measuring geomagnetic and other types of electromagnetic phenomena in an environment. This portable laptop computer system was designed to measure the interaction of multiple frequencies with the psychological and physiological processes that underlie human exposure to electromagnetic fields across the spectra. New sensors and analytical software have been implemented in the new configuration.

  12. Suppression and control of leakage field in electromagnetic helical microwiggler

    SciTech Connect

    Ohigashi, N.; Tsunawaki, Y.; Imasaki, K.

    1995-12-31

    Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.

  13. Analytical model for electromagnetic cascades in rotating electric field

    SciTech Connect

    Nerush, E. N.; Bashmakov, V. F.; Kostyukov, I. Yu.

    2011-08-15

    Electromagnetic cascades attract a lot of attention as an important quantum electrodynamics effect that will reveal itself in various electromagnetic field configurations at ultrahigh intensities. We study cascade dynamics in rotating electric field analytically and numerically. The kinetic equations for the electron-positron plasma and gamma-quanta are formulated. The scaling laws are derived and analyzed. For the cascades arising far above the threshold the dependence of the cascade parameters on the field frequency is derived. The spectra of high-energy cascade particles are calculated. The analytical results are verified by numerical simulations.

  14. Electromagnetic Fields Produced by Inclined Return Stroke Channel

    NASA Astrophysics Data System (ADS)

    Nemamcha, Abdelmalek; Houabes, Mourad

    2014-05-01

    In this paper further theoretical investigations to understand and elucidate recently raised questions on the characteristics of lightning return-strokes curried out. Using Antenna Theory (AT) model, which is extended to take into account the channel inclination, the electromagnetic fields expressions for vertical dipole are completed, and an inclined channel is properly modeled, vertical electric and azimuthally magnetic fields are computed at different distances (close, intermediate and far distance ranges). The computations show that amplitudes and wave forms of the electromagnetic fields at close and intermediate lightning environment are considerably affected by the channel inclination.

  15. Electromagnetic homeostasis and the role of low-amplitude electromagnetic fields on life organization.

    PubMed

    De Ninno, Antonella; Pregnolato, Massimo

    2017-01-01

    The appearance of endogenous electromagnetic fields in biological systems is a widely debated issue in modern science. The electrophysiological fields have very tiny intensities and it can be inferred that they are rapidly decreasing with the distance from the generating structure, vanishing at very short distances. This makes very hard their detection using standard experimental methods. However, the existence of fast-moving charged particles in the macromolecules inside both intracellular and extracellular fluids may envisage the generation of localized electric currents as well as the presence of closed loops, which implies the existence of magnetic fields. Moreover, the whole set of oscillatory frequencies of various substances, enzymes, cell membranes, nucleic acids, bioelectrical phenomena generated by the electrical rhythm of coherent groups of cells, cell-to-cell communication among population of host bacteria, forms the increasingly complex hierarchies of electromagnetic signals of different frequencies which cover the living being and represent a fundamental information network controlling the cell metabolism. From this approach emerges the concept of electromagnetic homeostasis: that is, the capability of the human body to maintain the balance of highly complex electromagnetic interactions within, in spite of the external electromagnetic noisy environment. This concept may have an important impact on the actual definitions of heal and disease.

  16. Health Effects of Electromagnetic Fields: A Review of Literature.

    ERIC Educational Resources Information Center

    White, George L.; And Others

    1995-01-01

    Current evidence suggests that the effects of electromagnetic fields (EMF) disturb cell homeostasis at very low intensities by influencing discrete intracellular magnetic fields. The article reviews current research about the health effects of EMF, examining historical implications, childhood studies, adult studies, and popular press reports, and…

  17. Health Effects of Electromagnetic Fields: A Review of Literature.

    ERIC Educational Resources Information Center

    White, George L.; And Others

    1995-01-01

    Current evidence suggests that the effects of electromagnetic fields (EMF) disturb cell homeostasis at very low intensities by influencing discrete intracellular magnetic fields. The article reviews current research about the health effects of EMF, examining historical implications, childhood studies, adult studies, and popular press reports, and…

  18. External Field QED on Cauchy Surfaces for Varying Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Deckert, D.-A.; Merkl, F.

    2016-08-01

    The Shale-Stinespring Theorem (J Math Mech 14:315-322, 1965) together with Ruijsenaar's criterion (J Math Phys 18(4):720-737, 1977) provide a necessary and sufficient condition for the implementability of the evolution of external field quantum electrodynamics between constant-time hyperplanes on standard Fock space. The assertion states that an implementation is possible if and only if the spatial components of the external electromagnetic four-vector potential {A_μ} are zero. We generalize this result to smooth, space-like Cauchy surfaces and, for general {A_μ}, show how the second-quantized Dirac evolution can always be implemented as a map between varying Fock spaces. Furthermore, we give equivalence classes of polarizations, including an explicit representative, that give rise to those admissible Fock spaces. We prove that the polarization classes only depend on the tangential components of {A_μ} w.r.t. the particular Cauchy surface, and show that they behave naturally under Lorentz and gauge transformations.

  19. Students Create Their Own Field Guide.

    ERIC Educational Resources Information Center

    Grinstad, Roxanne

    2001-01-01

    Describes how K-8 students wrote and illustrated a field guide at Bay View School. Presents some examples from the "Bay View Nature Trail Guide Book" and includes suggestions for teachers on how to proceed in drawing illustrations and writing entries for different grade levels. (YDS)

  20. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields.

    PubMed

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields.

  1. The effect of pulsed electromagnetic field therapy on food sensitivity.

    PubMed

    Monro, Jean A; Puri, Basant K

    2015-01-01

    Owing to the involvement of the immune system in the etiology of food sensitivity, and because pulsed electromagnetic field therapy is associated with beneficial immunologic changes, it was hypothesized that pulsed electromagnetic fields may have a beneficial effect on food sensitivity. A small pilot study was carried out in patients suffering from food sensitivity, with the antigen leukocyte antibody test being employed to index the degree of food sensitivity in terms of the number of foods to which each patient reacted. It was found that a 1-week course of pulsed electromagnetic field therapy, consisting of one hour's treatment per day, resulted in a reduction in the mean number of reactive foods of 10.75 (p < 0.05). On the basis of these results, a larger study is warranted.

  2. Quantum processes in short and intensive electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Titov, A. I.; Kämpfer, Burkhard; Hosaka, Atsushi; Takabe, Hideaki

    2016-05-01

    This work provides an overview of our recent results in studying two most important and widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g. laser) wave field or generalized Breit-Wheeler process, and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that the probabilities of particle production in both processes are determined by interplay of two dynamical effects, where the first one is related to the shape and duration of the pulse and the second one is non-linear dynamics of the interaction of charged fermions with a strong electromagnetic field. We elaborate suitable expressions for the production probabilities and cross sections, convenient for studying evolution of the plasma in presence of strong electromagnetic fields.

  3. Electromagnetic Propulsion System for Spacecraft using Geomagnetic fields and Superconductors

    NASA Astrophysics Data System (ADS)

    Dadhich, Anang

    This thesis concentrates on developing an innovative method to generate thrust force for spacecraft in localized geomagnetic fields by various electromagnetic systems. The proposed electromagnetic propulsion system is an electromagnet, like normal or superconducting solenoid, having its own magnetic field which interacts with the planet's magnetic field to produce a reaction thrust force. The practicality of the system is checked by performing simulations in order the find the varying radius, velocity, and acceleration changes. The advantages, challenges, various optimization techniques, and viability of such a propulsion system in present day and future are discussed. The propulsion system such developed is comparable to modern MPD Thrusters and electric engines, and has various applications like spacecraft propulsion, orbit transfer and stationkeeping.

  4. The electromagnetic bio-field: clinical experiments and interferences

    PubMed Central

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-01-01

    Introduction: One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. Material and methods: The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. Results: The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. Conclusions: The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express. PMID:22802878

  5. The electromagnetic bio-field: clinical experiments and interferences.

    PubMed

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-06-12

    One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.

  6. Novel electromagnetic field probes with ultrasonic transmission lines for field measurements with minimum interaction

    NASA Astrophysics Data System (ADS)

    Dürr, W.; Oppelt, R.

    1990-02-01

    Electromagnetic field probes are described which use ultrasonic transmission lines for signal transmission from a small electric or magnetic measuring dipole to the data processing unit. These transmission lines are made of nonmetallic material with low permittivity and permeability so that its interaction with the field to be measured is minimum. In particular, there is no evidence of energy leakage via surface or sheath waves, which normally cause problems when usual metallic connecting cables are used. This is especially important when measuring near fields of antennas or fields in resonators with high Q factors. Wide-band operation was achieved by amplitude modulating the field to be measured at a low frequency. The purpose of this modulation is to create a low-frequency (kHz) signal which can be transmitted via an ultrasonic line, designed to resonate at this low frequency. The radio frequency (rf) itself can extend over a broad range since the ultrasonic line does not transmit this frequency directly. Since the ultrasonic line is operated at a low frequency, its design and manufacture including ultrasonic transducers are essentially simple, even for field probes working in the gigahertz range. The design of the transmission line and of the measuring dipoles with demodulation circuitry are described. The probe performance is discussed for a magnetic field probe used for field measurements in resonant antennas for magnetic resonance imaging in the frequency range up to about 200 MHz. A typical field measurement result is presented for this application.

  7. Kinetic theory of plasma equilibrium in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Gorbunov, L. M.; Gradov, O. M.; Ziunder, D.; Ramazashvili, R. R.

    1981-04-01

    The present study examines the equilibrium of a direct-current-carrying plasma in an electromagnetic field under the assumption that the particles escaping from the plasma have a Maxwellian distribution. It is shown that an equilibrium state is possible only in the case of a definite relationship between the amplitude of the incident wave and the concentration of escaping particles. Attention is given to spatial variations of the electromagnetic field, and of the plasma density and flow velocity. The application of these effects in microwave devices is discussed.

  8. Near-field thermal electromagnetic transport: An overview

    NASA Astrophysics Data System (ADS)

    Edalatpour, Sheila; DeSutter, John; Francoeur, Mathieu

    2016-07-01

    A general near-field thermal electromagnetic transport formalism that is independent of the size, shape and number of heat sources is derived. The formalism is based on fluctuational electrodynamics, where fluctuating currents due to thermal agitation are added to Maxwell's curl equations, and is thus valid for heat sources in local thermodynamic equilibrium. Using a volume integral formulation, it is shown that the proposed formalism is a generalization of the classical electromagnetic scattering framework in which thermal emission is implicitly assumed to be negligible. The near-field thermal electromagnetic transport formalism is afterwards applied to a problem involving three spheres with size comparable to the wavelength, where all multipolar interactions are taken into account. Using the thermal discrete dipole approximation, it is shown that depending on the dielectric function, the presence of a third sphere slightly affects the spatial distribution of power absorbed compared to the two-sphere case. A transient analysis shows that despite a non-uniform spatial distribution of power absorbed, the sphere temperature remains spatially uniform at any instant due to the fact that the thermal resistance by conduction is much smaller than the resistance by radiation. The formalism proposed in this paper is general, and could be used as a starting point for adapting solution methods employed in traditional electromagnetic scattering problems to near-field thermal electromagnetic transport.

  9. Optimal control of electromagnetic field using metallic nanoclusters

    NASA Astrophysics Data System (ADS)

    Grigorenko, Ilya; Haas, Stephan; Balatsky, Alexander; Levi, A. F. J.

    2008-04-01

    The dielectric properties of metallic nanoclusters in the presence of an applied electromagnetic field are investigated using the non-local linear response theory. In the quantum limit we find a nontrivial dependence of the induced field and charge distributions on the spatial separation between the clusters and on the frequency of the driving field. Using a genetic algorithm, these quantum functionalities are exploited to custom-design sub-wavelength lenses with a frequency-controlled switching capability.

  10. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, Ki H.; Xie, Gan Q.

    1994-01-01

    A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

  11. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, K.H.; Xie, G.Q.

    1994-12-13

    A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

  12. Deformation methods in modelling of the inner magnetospheric electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Toivanen, P. K.

    2007-12-01

    Various deformation methods have been widely used in animation image processing. In common terms, they are mathematical presentations of deformations of an image drawn on an elastic material under stretching or compression of the material. Such a method has also been used in modelling of the magnetospheric magnetic fields, and recently been generalized to include also the electric fields. In this presentations, the theory of the deformation method and an application in a form of a new global magnetospheric electromagnetic field model are previewed. The main focus of the presentation is on the inner magnetospheric current systems and associated electromagnetic fields during quiet and disturbed periods. Finally, a short look at the modern deformation methods in image processing is taken. These methods include the Free Form Deformations and Moving Least Squares Deformations, and their future applications in magnetospheric field modelling are discussed.

  13. Ionization of atoms in strong low-frequency electromagnetic field

    SciTech Connect

    Krainov, V. P.

    2010-08-15

    The ionization of atoms in a low-frequency linearly polarized electromagnetic field (the photon energy is much lower than the ionization potential of an atom) is considered under new conditions, in which the Coulomb interaction of an electron with the atomic core in the final state of the continuum cannot be considered in perturbation theory in the interaction of the electron with the electromagnetic field. The field is assumed to be much weaker that the atomic field. In these conditions, the classical motion of the electron in the final state of the continuum becomes chaotic (so-called dynamic chaos). Using the well-known Chirikov method of averaging over chaotic variations of the phase of motion, the problem can be reduced to non-linear diffusion on the energy scale. We calculate the classical electron energy in the final state, which is averaged over fast chaotic oscillations and takes into account both the Coulomb field and the electromagnetic field. This energy is used to calculate the probability of ionization from the ground state of the atom to a lower-lying state in the continuum using the Landau-Dykhne approximation (to exponential accuracy). This ionization probability noticeably depends on the field frequency. Upon a decrease in frequency, a transition to the well-known tunnel ionization limit with a probability independent of the field frequency is considered.

  14. Electromagnetic time reversal focusing of near field waves in metamaterials

    NASA Astrophysics Data System (ADS)

    Chabalko, Matthew J.; Sample, Alanson P.

    2016-12-01

    Precise control of electromagnetic energy on a deeply subwavelength scale in the near field regime is a fundamentally challenging problem. In this letter we demonstrate the selective focusing of electromagnetic energy via the electromagnetic time reversal in the near field of a metamaterial. Our analysis begins with fundamental mathematics, and then is extended to the experimental realm where focusing in space and time of the magnetic fields in the near field of a 1-Dimensional metamaterial is shown. Under time reversal focusing, peak instantaneous fields at receiver locations are at minimum ˜200% greater than other receivers. We then leverage the strong selective focusing capabilities of the system to show individual and selective powering of light emitting diodes connected to coil receivers placed in the near field of the metamaterial. Our results show the possibility of improving display technologies, near field imaging systems, increasing channel capacity of near field communication systems, and obtaining a greater control of energy delivery in wireless power transfer systems.

  15. Relativistic Particle in Electromagnetic Fields with a Generalized Uncertainty Principle

    NASA Astrophysics Data System (ADS)

    Merad, M.; Zeroual, F.; Falek, M.

    2012-05-01

    In this paper, we propose to solve the relativistic Klein-Gordon and Dirac equations subjected to the action of a uniform electromagnetic field with a generalized uncertainty principle in the momentum space. In both cases, the energy eigenvalues and their corresponding eigenfunctions are obtained. The limit case is then deduced for a small parameter of deformation.

  16. Transducer measures temperature differentials in presence of strong electromagnetic fields

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Measurement of temperature rise of cooling water under pressure and in strong electromagnetic fields is accomplished by a transducer using a magnetically shielded thermocouple arrangement. The thermocouple junctions are immersed in oil to isolate them from electric currents in the water.

  17. What Message Should Health Educators Give regarding Electromagnetic Fields?

    ERIC Educational Resources Information Center

    Al-Khamees, Nedaa A.

    2008-01-01

    The possibility of extremely low frequency electromagnetic fields (ELF EMF) causing a number of medical conditions and common symptoms remains a concern and presents somewhat of a quandary to health educators in view of conflicting results. This study investigated the relationship of a number of EMF sources to reported symptoms in an attempt to,…

  18. What Message Should Health Educators Give regarding Electromagnetic Fields?

    ERIC Educational Resources Information Center

    Al-Khamees, Nedaa A.

    2008-01-01

    The possibility of extremely low frequency electromagnetic fields (ELF EMF) causing a number of medical conditions and common symptoms remains a concern and presents somewhat of a quandary to health educators in view of conflicting results. This study investigated the relationship of a number of EMF sources to reported symptoms in an attempt to,…

  19. Electromagnetic Field in Lyra Manifold: A First Order Approach

    NASA Astrophysics Data System (ADS)

    Casana, R.; de Melo, C. A. M.; Pimentel, B. M.

    2005-12-01

    We discuss the coupling of the electromagnetic field with a curved and torsioned Lyra manifold using the Duffin-Kemmer-Petiau theory. We will show how to obtain the equations of motion and energy-momentum and spin density tensors by means of the Schwinger Variational Principle.

  20. Oscillator strength sum rules with an external electromagnetic field

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.; Sabin, John R.; Öhrn, Yngve; Oddershede, J.

    1998-04-01

    We demonstrate that the Bethe, and therefore the Thomas-Reiche-Kuhn, sum rule is unaffected by the presence of an applied external electromagnetic field in the exact case. We use the consequence that the first-order perturbation contribution must also vanish to derive a necessary condition for the completeness of computational one-electron basis sets.

  1. Does three-dimensional electromagnetic field inherit the spacetime symmetries?

    NASA Astrophysics Data System (ADS)

    Cvitan, M.; Dominis Prester, P.; Smolić, I.

    2016-04-01

    We prove that the electromagnetic field in a (1+2)-dimensional spacetime necessarily inherits the symmetries of the spacetime metric in a large class of generalized Einstein-Maxwell theories. The Lagrangians of the studied theories have general diff-covariant gravitational part and include both the gravitational and the gauge Chern-Simons terms.

  2. Effects of pulsed electromagnetic fields on benign prostate hyperplasia.

    PubMed

    Giannakopoulos, Xenophon K; Giotis, Christos; Karkabounas, Spyridon Ch; Verginadis, Ioannis I; Simos, Yannis V; Peschos, Dimitrios; Evangelou, Angelos M

    2011-12-01

    Benign prostate hyperplasia (BPH) has been treated with various types of electromagnetic radiation methods such as transurethral needle ablation (TUNA), interstitial laser therapy (ILC), holmium laser resection (HoLRP). In the present study, the effects of a noninvasive method based on the exposure of patients with BPH to a pulsative EM Field at radiofrequencies have been investigated. Twenty patients with BPH, aging 68-78 years old (y.o), were enrolled in the study. Patients were randomly divided into two groups: the treatment group (10 patients, 74.0 ± 5.7 y.o) treated with the α-blocker Alfusosin, 10 mg/24 h for at least 4 weeks, and the electromagnetic group (10 patients, 73.7 ± 6.3 y.o) exposed for 2 weeks in a very short wave duration, pulsed electromagnetic field at radiofrequencies generated by an ion magnetic inductor, for 30 min daily, 5 consecutive days per week. Patients of both groups were evaluated before and after drug and EMF treatment by values of total PSA and prostatic PSA fraction, acid phosphate, U/S estimation of prostate volume and urine residue, urodynamic estimation of urine flow rate, and International Prostate Symptom Score (IPSS). There was a statistically significant decrease before and after treatment of IPSS (P < 0.02), U/S prostate volume (P < 0.05), and urine residue (P < 0.05), as well as of mean urine flow rate (P < 0.05) in patients of the electromagnetic group, in contrast to the treatment group who had only improved IPSS (P < 0.05). There was also a significant improvement in clinical symptoms in patients of the electromagnetic group. Follow-up of the patients of this group for one year revealed that results obtained by EMFs treatment are still remaining. Pulsed electromagnetic field at radiofrequencies may benefit patients with benign prostate hyperplasia treated by a non-invasive method.

  3. QED effective action in magnetic field backgrounds and electromagnetic duality

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    2011-09-01

    In the in-out formalism we advance a method of the inverse scattering matrix for calculating effective actions in pure magnetic field backgrounds. The one-loop effective actions are found in a localized magnetic field of Sauter type and approximately in a general magnetic field by applying the uniform semiclassical approximation. The effective actions exhibit the electromagnetic duality between a constant electric field and a constant magnetic field and between E(x)=Esech2(x/L) and B(x)=Bsech2(x/L).

  4. Electromagnetic fields from mobile phone base station - variability analysis.

    PubMed

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.

  5. [Clinical monitoring in areas of exposure to radiofrequency electromagnetic fields].

    PubMed

    Suvorov, I M

    2013-01-01

    Clinical syndromes induced by high intensity radiofrequency electromagnetic field chronic exposure are described. Persons injured by occupational exposure have been observed central nervous system changes in diencephalic syndrome form, cardio-vascular system changes revealed in atherosclerosis, isch(a)emic heart disease and coronary insufficiency rapid progressive expansion. General public living in territory of radar station exposure zone different functional disorders have been identified: vegetative dystonia (asthenovegetative syndrome), thrombocytopenia, decrease of blood coagulation index, and thyroid gland function changes. Observed diseases clinical variability may be determined by electromagnetic exposure characteristics.

  6. Meta-gated channel for the discrete control of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Wang, Hui; Shi, Ayuan; Zhang, Aofang; Wang, Jing; Gao, Dongxing; Lei, Zhenya; Hu, Bowei

    2016-08-01

    We demonstrate the meta-gate controlled wave propagation through multiple metallic plates with properly devised sub-wavelength defect apertures. Different from using gradient refractive-index meta-materials or phase-discontinuity meta-surfaces to produce the discrepancy between the incident angle and the refractive angle, our technique redirects electromagnetic fields by setting-up discrete transmission gateways between adjacent meta-gates and creates the perfect channels for the wave propagation. Electromagnetic fields can be assigned in the response of the driving frequency of meta-gates with extraordinary transmissions and propagate simply relying on their pre-set locations as illustrated by the meta-gate guided electromagnetic fields travelling in the paths of the Silk-Road and the contour line of Xi'an city where the Silk-Road starts. The meta-gate concept, offering the feasibility of the discrete control of electromagnetic fields with gating routes, may pave an alternative way for precisely transmitting of signals and efficiently sharing of resource in the communication.

  7. Numerical Analysis of Electromagnetic Fields in Multiscale Model

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Fang, Guang-You; Ji, Yi-Cai

    2015-04-01

    Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. Supported in part by China Postdoctoral Science Foundation under Grant No. 201M550839, and in part by the Key Research Program of the Chinese Academy of Sciences under Grant No. KGZD-EW-603

  8. Electromagnetic Field Effects in Semiconductor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  9. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  10. Proton Radiography as an electromagnetic field and density perturbation diagnostic

    SciTech Connect

    Mackinnon, A; Patel, P; Town, R; Edwards, M; Phillips, T; Lerner, S; Price, D; Hicks, D; Key, M; Hatchett, S; Wilks, S; King, J; Snavely, R; Freeman, R; Boehlly, T; Koenig, M; Martinolli, E; Lepape, S; Benuzzi-Mounaix, A; Audebert, P; Gauthier, J; Borghesi, M; Romagnani, L; Toncian, T; Pretzler, G; Willi, O

    2004-04-15

    Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with MeV protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter . PACS numbers: 52.50.Jm, 52.40.Nk, 52.40.Mj, 52.70.Kz

  11. Momentum of the electromagnetic field in transparent dielectric media

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2007-09-01

    We present arguments in favor of the proposition that the momentum of light inside a transparent dielectric medium is the arithmetic average of the Minkowski and Abraham momenta. Using the Lorentz transformation of the fields (and of the coordinates) from a stationary to a moving reference frame, we show the consistent transformation of electromagnetic energy and momentum between the two frames. We also examine the momentum of static (i.e., time-independent) electromagnetic fields, and show that the close connection that exists between the Poynting vector and the momentum density extends all the way across the frequency spectrum to this zero-frequency limit. In the specific example presented in this paper, the static field inside a non-absorbing dielectric material turns out to have the Minkowski momentum.

  12. Effect of electromagnetic fields on the creation of scalar particles in a flat Robertson-Walker space-time

    NASA Astrophysics Data System (ADS)

    Haouat, S.; Chekireb, R.

    2012-06-01

    The influence of electromagnetic fields on the creation of scalar particles from vacuum in a flat Robertson-Walker space-time is studied. The Klein-Gordon equation with varying electric field and constant magnetic one is solved. The Bogoliubov transformation method is applied to calculate the pair creation probability and the number density of created particles. It is shown that the electric field amplifies the creation of scalar particles while the magnetic field minimizes it.

  13. Laboratory Studies of the Short-term Responses of Freshwater Fish to Electromagnetic Fields

    SciTech Connect

    Bevelhimer, Mark S; Cada, Glenn F; Fortner, Allison M; Schweizer, Peter E; Riemer, Kristina P

    2013-01-01

    Hydrokinetic energy technologies are being proposed as an environmentally preferred means of generating electricity from river and tidal currents. Among the potential issues that must be investigated in order to resolve environmental concerns are the effects on aquatic organisms of electromagnetic fields created by underwater generators and transmission cables. The behavioral responses of common freshwater fishes to static and variable electromagnetic fields (EMF) that may be emitted by hydrokinetic projects were evaluated in laboratory experiments. Various fish species were exposed to either static (DC) EMF fields created by a permanent bar magnet or variable (AC) EMF fields created by a switched electromagnet for 48 h, fish locations were recorded with a digital imaging system, and changes in activity level and distribution relative to the magnet position were quantified at 5-min intervals. Experiments with fathead minnows, redear sunfish, striped bass, lake sturgeon, and channel catfish produced mixed results. Except for fathead minnows there was no effect on activity level. Only redear sunfish and channel catfish exhibited a change in distribution relative to the position of the magnet with an apparent attraction to the EMF source. In separate experiments, rapid behavioral responses of paddlefish and lake sturgeon to onset of the AC field were recorded with high-speed video. Paddlefish did not react to a variable, 60-Hz magnetic field like that which would be emitted by an AC generator or cable, but lake sturgeon consistently responded to the variable, AC-generated magnetic field with a variety of altered swimming behaviors. These results will be useful for determining under what circumstances cables or generators need to be positioned to minimize interactions with sensitive species.

  14. Controlling Electromagnetic Field by Graded Meta-materials

    NASA Astrophysics Data System (ADS)

    Sun, Lei

    Metamaterials , i.e. artificial materials with electromagnetic properties not readily available in nature, have become a major research topic in both scientific and engineering communities. Being different from conventional materials, metamaterials possess peculiar electromagnetic properties, e.g. negative refractive index, depending on their structures. In particular, metamaterials form a basis for achieving cloaking device that makes an object invisible or transparency to the probing electromagnetic wave. This topic has significant impact on various fields ranging from optics, medicine, biology to nanotechnology. Several cloaking techniques have been proposed by different research groups, namely, anomalous localized resonance, transformation optics, and scattering cancellation, etc. Each of them has its own advantages and disadvantages. For instance, the limitation in working frequency is a primary disadvantage of them. This thesis is concentrated on controlling electromagnetic field by graded metamaterials, i.e, metamaterials with graded structures, with the objective to realize the broadband electromagnetic transparency by extending the working frequency. Regarding the limitations of existing cloaking techniques, we propose the graded model based on the scattering cancellation technique, because it does not rely on resonant phenomena, and is fairly robust to relatively high variations of the shape and electromagnetic properties of the cloaked object. We modify the original Mie theory and Rayleigh scattering theory to deal with the graded metamaterial structures, and calculate the scattering cross section of graded isotropic and anisotropic spherical structures, an alytically and numerically. For the graded isotropic spherical structure, we achieve the exact analytic expressions for both full-wave and Rayleigh scattering cross sections, within our modified Mie theory and Rayleigh scattering theory. The numerical studies on the scattering cross sections clearly

  15. Consequences of Coupled Electromagnetic-Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Smalley, Larry

    2002-01-01

    In the late 1980s there was a flurry of activities involving the newly discovered high Tc superconductors in the development of new devices such as more efficient current transmission, transformers, generators, and motors. One such developmental project by Podkletnov in 1992 noted some small, anomalous gravitational behaviors. A following unpublished paper by Podkletnov 1995 provided data with larger effects using a larger (approx. 25 cm) superconducting disk. Unfortunately this disk was extremely fragile and was broken beyond repair. To date, these experiments have not been successfully repeated because of the difficulties of producing stable, durable (and fired) superconducting disks. This problem with firing these disks has been solved by Li. What remains is to install the disk in "motor", at superconducting temperatures in the presence of appropriately tailored magnetic fields.

  16. Designing localized electromagnetic fields in a source-free space.

    PubMed

    Borzdov, George N

    2002-06-01

    An approach to characterizing and designing localized electromagnetic fields, based on the use of differentiable manifolds, differentiable mappings, and the group of rotation, is presented. By way of illustration, novel families of exact time-harmonic solutions to Maxwell's equations in the source-free space--localized fields defined by the rotation group--are obtained. The proposed approach provides a broad spectrum of tools to design localized fields, i.e., to build-in symmetry properties of oscillating electric and magnetic fields, to govern the distributions of their energy densities (both size and form of localization domains), and to set the structure of time-average energy fluxes. It is shown that localized fields can be combined as constructive elements to obtain a complex field structure with desirable properties, such as one-, two-, or three-dimensional field gratings. The proposed approach can be used in designing localized electromagnetic fields to govern motion and state of charged and neutral particles. As an example, motion of relativistic electrons in one-dimensional and three-dimensional field gratings is treated.

  17. Radiotelephone with reduced electromagnetic field in human head

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1995-01-01

    The quarter-wave monopole base driven over a circular ground plane with a finite radius has applications in over-the-horizon radar and on surveillance aircraft. A new use, for which the analysis is given in this paper, is as an over-the-head-mounted antenna for cellular telephones. With this design, the electromagnetic field in the head and the associated specific absorption rate of electromagnetic energy are greatly reduced when compared with the conventional hand-held transceiver. A complete analysis is carried out of the electromagnetic field on the surface of the head and throughout its interior when the head is modeled as a cylinder with the electrical properties of the brain enclosed in a wall with the thickness and electrical properties of the skull. Graphs and tables are provided that give the field in the air on the surface of the head and in the skull and brain. The far field is also determined. The results are compared with those obtained with the hand-held radiotelephone (King, 1995).

  18. Electromagnetic fields in the exterior of an oscillating relativistic star - II. Electromagnetic damping

    NASA Astrophysics Data System (ADS)

    Rezzolla, Luciano; Ahmedov, Bobomurat J.

    2016-07-01

    An important issue in the asteroseismology of compact and magnetized stars is the determination of the dissipation mechanism which is most efficient in damping the oscillations when these are produced. In a linear regime and for low-multipolarity modes, these mechanisms are confined to either gravitational-wave or electromagnetic losses. We here consider the latter and compute the energy losses in the form of Poynting fluxes, Joule heating and Ohmic dissipation in a relativistic oscillating spherical star with a dipolar magnetic field in vacuum. While this approach is not particularly realistic for rapidly rotating stars, it has the advantage that it is fully analytic and that it provides expressions for the electric and magnetic fields produced by the most common modes of oscillation both in the vicinity of the star and far away from it. In this way, we revisit and extend to a relativistic context the classical estimates of McDermott et al. Overall, we find that general-relativistic corrections lead to electromagnetic damping time-scales that are at least one order of magnitude smaller than in Newtonian gravity. Furthermore, with the only exception of g (gravity) modes, we find that f (fundamental), p (pressure), i (interface) and s (shear) modes are suppressed more efficiently by gravitational losses than by electromagnetic ones.

  19. [New mechanisms of biological effects of electromagnetic fields].

    PubMed

    Buchachenko, A L; Kuznetsov, D A; Berdinskiĭ, V L

    2006-01-01

    The production of ATP in mitochondria depends on the magnesium nuclear spin and magnetic moment of a Mg2+ ion in creatine kinase and ATPase. This suggests that enzymatic synthesis of ATP is an ion-radical process and thus depends on the external magnetic field (magnetobiology originates from this fact) and microwave fields, which control the spin states of ion-radical pairs and affect the ATP synthesis. The chemical mechanism of ATP synthesis and the origin of biological effects of electromagnetic (microwave) fields are discussed.

  20. Invariant superoscillatory electromagnetic fields in 3D-space

    NASA Astrophysics Data System (ADS)

    Makris, K. G.; Papazoglou, D. G.; Tzortzakis, S.

    2017-01-01

    We derive exact solutions of Maxwell’s equations based on superoscillatory superpositions of vectorial Bessel beams. These novel beams are diffraction-free and can support subwavelength features in their transverse electromagnetic fields, without the presence of any evanescent waves. These features can be propagated into the far field. Approximate solutions in closed form are also derived based on asymptotic expansions of Bessel functions for simple prescribed subwavelength patterns. The superoscillatory characteristics of both electric, magnetic field components (transverse and longitudinal), and the Poynting vector, as well as, the effect of nonparaxiality are systematically investigated.

  1. Effects of noise and electromagnetic fields on reproductive outcomes.

    PubMed Central

    Meyer, R E; Aldrich, T E; Easterly, C E

    1989-01-01

    Much public health research has been directed to studies of cancer risks due to chemical agents. Recently, increasing attention has been given to adverse reproductive outcomes as another, shorter-term biologic indicator of public health impact. Further, several low-level ubiquitous physical agents have been implicated recently as possibly affecting human health. These physical factors (noise and electromagnetic fields) represent difficult topics for research with epidemiologic study methods. This paper provides a brief review of the published data related to the risk of adverse reproductive outcomes and exposure to noise or electromagnetic fields. The discussion includes ideas for possible biologic mechanisms, considerations for exposure assessment, and suggestions for epidemiologic research. PMID:2667980

  2. Soft hairs on isolated horizon implanted by electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mao, Pujian; Wu, Xiaoning; Zhang, Hongbao

    2017-03-01

    Inspired by the recent proposal of soft hair on black holes in Hawking et al (2016 Phys. Rev. Lett. 116 231301), we have shown that an isolated horizon carries soft hairs implanted by electromagnetic fields. The solution space and the asymptotic symmetries of Einstein–Maxwell theory have been worked out explicitly near the isolated horizon. The conserved current has been computed and an infinite number of near horizon charges have been introduced from the electromagnetic fields associated with the asymptotic U(1) symmetry near the horizon, which indicates the fact that the isolated horizon carries a large amount of soft electric hairs. The soft electric hairs, i.e. asymptotic U(1) charges, are shown to be equivalent to the electric multipole moments of isolated horizons. It is further argued that the isolated horizon supertranslation is from the ambiguity of its foliation and an analogue of memory effect on horizon can be expected.

  3. Acoustic effect of an electromagnetic pulsed UHF field

    SciTech Connect

    Kapyrin, Yu.V.; Moiseev, V.I.; Petrenko, V.V.

    1988-06-01

    During the course of studies on the Fakel linear accelerator it was found that the metal structures of the electrodynamic components of the accelerator are subjected to ultrasonic vibrations, the intensity and spectral composition of which depend on the operating regimes of its high-frequency system and on the conditions of resonance energy exchange between the electromagnetic field and the particle beam. From the results of calculations and measurements, the authors of this paper propose, without ruling out the contribution of other sources, that the ultrasonic signals observed in the irises and regular square waveguides of an accelerator can be attributed to the A ponderomotive effect of powerful pulses of the high-frequency electromagnetic field.

  4. Asseleration of ions in turbulent electromagnetic field during dipolarization events

    NASA Astrophysics Data System (ADS)

    Zhukova, Elena; Popov, Victor

    2017-04-01

    In spite of the long time interest for the acceleration of hight energetic ions in the Earth's magnetotail, considerable uncertainty remains as to the quantitative influence of different acceleration mechanism and their modifications. Both theoretical and numerical studies predict a hardening of the energy spectra of the particles wandering into the current sheet. Such energetic ion fluxes in the near-Earth tail were usually observed during magnetic dipolarizations or presence of turbulent electromagnetic field in the central region of current sheet that can effectively interact with the charged particles and energize them. The results demonstrate particle acceleration by separate two mechanisms and by their joint action. Both acceleration mechanisms lead to the formation of powered tails in proton distribution functions. Generally acceleration on magnetic dipolarization can be more effective in comparison with turbulent electromagnetic field.

  5. Immunorehabilitating effect of ultrahigh frequency electromagnetic fields in immunocompromised animals.

    PubMed

    Pershin, S B; Bobkova, A S; Derevnina, N A; Sidorov, V D

    2013-06-01

    We observed immunorehabilitation effects of ultrahigh frequency electromagnetic fields (microwaves) in immunocompromised animals. It was shown that microwave irradiation of the thyroid gland area could abolish actinomycin D- and colchicine-induced immunosuppression and did not affect immunosuppression caused by 5-fluorouracil. These findings suggest that changes in the hormonal profile of the organism during microwave exposure can stimulate the processes of transcription and mitotic activity of lymphoid cells.

  6. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    SciTech Connect

    Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan

    2008-08-11

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  7. Systemic Effects of Electromagnetic Fields in Patients with Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Cañedo-Dorantes, L.; Valle, L.; Uruchurtu, E.; Medel, A.; García-Mayen, F.; Serrano-Luna, G.

    2003-09-01

    Healing of acute myocardial infarction (AMI) is associated with inflammatory response, which promotes healing and scar formation. Activation of a local inflammatory response in patients with sequel of AMI could have an important role to enhance angiogenesis and regeneration of hibernating myocardial tissue. Chronic arterial leg ulcers have a similar etiology, and healing has been promoted by exposure to extremely low frequency electromagnetic fields (ELF). We report the evolution of three AMI patients with sequel of AMI that were exposed to ELF.

  8. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  9. Low-frequency electromagnetic field in a Wigner crystal

    SciTech Connect

    Stupka, Anton

    2013-03-15

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  10. Effects of Pulsed Electromagnetic Fields on Osteoporosis Model

    NASA Astrophysics Data System (ADS)

    Xiaowei, Yang; Liming, Wang; Guan, Z. C.; Yaou, Zhang; Xiangpeng, Wang

    The purpose of this paper was to investigate the preventive effects and long term effects of extremely low frequency pulsed electromagnetic fields (PEMFs), generated by circular coils and pulsed electromagnetic fields stimulators, on osteoporosis in bilaterally ovariectomized rats. In preventive experiment, thirty three-month old female Sprague-Dawley rats were randomly divided into three different groups: sham (SHAM), ovariectomy (OVX), PEMFs stimulation (PEMFs). All rats were subjected to bilaterally ovariectomy except those in SHAM group. The PEMFs group was exposed to pulsed electromagnetic fields with frequency 15 Hz, peak magnetic induction density 2.2mT and exposure time 2 hours per day. The bone mineral density (BMD) of vertebra and left femur were measured by dual energy X-ray absorptiometry at eighth week, twelfth week and sixteenth week after surgery. In long term effects experiment, forty four rats were randomly divided into sham (14 rats, SHAM), ovariectomy group (10 rats, OVX), 15Hz PEMFs group(10 rats, 15Hz) and 30Hz PEMFs group(10 rats, 30Hz) at twenty-sixth week after surgery. Rats in PEMFs groups were stimulated sixteen weeks. In preventive experiment, the Corrected BMD of vertebra and femur was significantly higher than that of OVX group after 16 weeks (P<0.001, P<0.001 respectively). In long term effects experiment, the vertebral BMD of 15Hz PEMFs group and 30Hz PEMFs group was significantly higher than that of OVX groups (P<0.01, P<0.05 respectively). The experimental results demonstrated that extremely low intensity, low frequency, single pulsed electromagnetic fields significantly slowed down the loss of corrected vertebral and femoral BMD in bilaterally ovariectomized rats and suggest that PEMFs may be beneficial in the treatment of osteoporosis.

  11. Electromagnetic field interacting with a semi-infinite plasma.

    PubMed

    Apostol, M; Vaman, G

    2009-07-01

    Plasmon and polariton modes are derived for an ideal semi-infinite (half-space) plasma by using a general, unifying procedure based on the equation of motion of the polarization and the electromagnetic potentials. Known results are reproduced in a much more direct manner, and new ones are derived. The approach consists of representing the charge disturbances by a displacement field in the positions of the moving particles (electrons). The propagation of an electromagnetic wave in this plasma is treated by using the retarded electromagnetic potentials. The resulting integral equations are solved, and the reflected and refracted fields are computed, as well as the reflection coefficient. Generalized Fresnel relations are thereby obtained for any incidence angle and polarization. Bulk and surface plasmon-polariton modes are identified. As is well known, the field inside the plasma is either damped (evanescent) or propagating (transparency regime), and the reflection coefficient exhibits an abrupt enhancement on passing from the propagating regime to the damped one (total reflection).

  12. Offshore windmills and the effects of electromagnetic fields on fish.

    PubMed

    Ohman, Marcus C; Sigray, Peter; Westerberg, Håkan

    2007-12-01

    With the large scale developments of offshore windpower the number of underwater electric cables is increasing with various technologies applied. A wind farm is associated with different types of cables used for intraturbine, array-to-transformer, and transformer-to-shore transmissions. As the electric currents in submarine cables induce electromagnetic fields there is a concern of how they may influence fishes. Studies have shown that there are fish species that are magneto-sensitive using geomagnetic field information for the purpose of orientation. This implies that if the geomagnetic field is locally altered it could influence spatial patterns in fish. There are also physiological aspects to consider, especially for species that are less inclined to move as the exposure could be persistent in a particular area. Even though studies have shown that magnetic fields could affect fish, there is at present limited evidence that fish are influenced by the electromagnetic fields that underwater cables from windmills generate. Studies on European eel in the Baltic Sea have indicated some minor effects. In this article we give an overview on the type of submarine cables that are used for electric transmissions in the sea. We also describe the character of the magnetic fields they induce. The effects of magnetic fields on fish are reviewed and how this may relate to the cables used for offshore wind power is discussed.

  13. Electromagnetic fields in medicine - The state of art.

    PubMed

    Pasek, Jarosław; Pasek, Tomasz; Sieroń-Stołtny, Karolina; Cieślar, Grzegorz; Sieroń, Aleksander

    2016-01-01

    Intense development of methods belonging to physical medicine has been noted recently. There are treatment methods, which in many cases lead to reduction treatment time and positively influence on quality of life treatment patients. The present physical medicine systematically extends their therapeutic possibilities. This above applies to illnesses and injuries of locomotor system, diseases affecting of soft tissues, as well as chronic wounds. The evidence on this are the results of basic and clinical examinations relating the practical use of electromagnetic fields in medicine. In this work the authors introduced the procedure using the current knowledge relating to physical characteristic and biological effects of the magnetic fields. In the work the following methods were used: static magnetic fields, spatial magnetic fields, the variable magnetic fields both with laser therapy (magnetolaserotherapy) and variable magnetic fields both with light optical non-laser (magnetoledtherapy) talked.

  14. Reconstruction of velocity fields in electromagnetic flow tomography

    PubMed Central

    Lehtikangas, Ossi; Karhunen, Kimmo

    2016-01-01

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185961

  15. Reconstruction of velocity fields in electromagnetic flow tomography.

    PubMed

    Lehtikangas, Ossi; Karhunen, Kimmo; Vauhkonen, Marko

    2016-06-28

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  16. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  17. Electromagnetic field properties in the vicinity of a massive wormhole

    SciTech Connect

    Novikov, I. D.; Shatskiy, A. A.

    2011-12-15

    It is proved that not only massless but also traversable massive wormholes can have electromagnetic 'hair.' An analysis is also presented of the passage from a traversable wormhole to the limit of a Reissner-Nordstroem black hole, with the corresponding disappearance of 'hair.' A general method is developed for solving stationary axisymmetric Maxwell's equations in the field of a massive, spherically symmetric wormhole. As a particular example of application of the method, a solution is found to the axisymmetric magnetostatic problem for a current loop in the field of the Bronnikov-Ellis-Morris-Thorne wormhole.

  18. Electromagnetic field redistribution in hybridized plasmonic particle-film system

    NASA Astrophysics Data System (ADS)

    Fang, Yurui; Huang, Yingzhou

    2013-04-01

    Combining simulation and experiment, we demonstrate that a metal nanoparticle dimer on a gold film substrate can confine more energy in the particle/film gap because of the hybridization of the dimer resonant lever and the continuous state of the film. The hybridization may even make the electric field enhancement in the dimer/film gap stronger than in the gap between particles. The resonant peak can be tuned by varying the size of the particles and the film thickness. This electromagnetic field redistribution has tremendous applications in sensor, photocatalysis and solar cell, etc., especially considering ultrasensitive detection of tracing molecule on substrates.

  19. Electromagnetic Field Quantization in Time-Dependent Linear Media

    SciTech Connect

    Pedrosa, I. A.; Rosas, Alexandre

    2009-07-03

    We present a quantization scheme for the electromagnetic field in time-dependent homogeneous nondispersive conducting and nonconducting linear media without sources. Using the Coulomb gauge, we demonstrate this quantization can be mapped into a damped (attenuated) time-dependent quantum harmonic oscillator. Remarkably, we find that the time dependence of the permittivity, for epsilon>0, gives rise to an attenuation of the radiation field. Afterwards, we obtain the exact wave functions for this problem and consider an exponential time accretion of the permittivity as a particular case.

  20. On a remarkable electromagnetic field in the Einstein Universe

    NASA Astrophysics Data System (ADS)

    Kopiński, Jarosław; Natário, José

    2017-06-01

    We present a time-dependent solution of the Maxwell equations in the Einstein universe, whose electric and magnetic fields, as seen by the stationary observers, are aligned with the Clifford parallels of the 3-sphere S^3. The conformal equivalence between Minkowski's spacetime and (a region of) the Einstein cylinder is then exploited in order to obtain a knotted, finite energy, radiating solution of the Maxwell equations in flat spacetime. We also discuss similar electromagnetic fields in expanding closed Friedmann models, and compute the matter content of such configurations.

  1. Electromagnetic field occupational exposure: non-thermal vs. thermal effects.

    PubMed

    Israel, M; Zaryabova, V; Ivanova, M

    2013-06-01

    There are a variety of definitions for "non-thermal effects" included in different international standards. They start by the simple description that they are "effects of electromagnetic energy on a body that are not heat-related effects", passing through the very general definition related to low-level effects: "biological effects ascribed to exposure to low-level electric, magnetic and electromagnetic fields, i.e. at or below the corresponding dosimetric reference levels in the frequency range covered in this standard (0 Hz-300 GHz)", and going to the concrete definition of "the stimulation of muscles, nerves, or sensory organs, vertigo or phosfenes". Here, we discuss what kind of effect does the non-thermal one has on human body and give data of measurements in different occupations with low-frequency sources of electromagnetic field such as electric power distribution systems, transformers, MRI systems and : video display units (VDUs), whereas thermal effects should not be expected. In some of these workplaces, values above the exposure limits could be found, nevertheless that they are in the term "non-thermal effects" on human body. Examples are workplaces in MRI, also in some power plants. Here, we will not comment on non-thermal effects as a result of RF or microwave exposure because there are not proven evidence about the existance of such effects and mechanisms for them are not clear.

  2. Synergistic health effects between chemical pollutants and electromagnetic fields.

    PubMed

    Ledoigt, Gérard; Sta, Chaima; Goujon, Eric; Souguir, Dalila; El Ferjani, Ezzeddine

    2015-01-01

    Humans and ecosystems are exposed to highly variable and unknown cocktail of chemicals and radiations. Although individual chemicals are typically present at low concentrations, they can interact with each other resulting in additive or potentially synergistic mixture effects. This was also observed with products obtained by radiation actions such as sunlight or electromagnetic fields that can change the effects of chemicals, such as pesticides, and metal trace elements on health. Concomitant presence of various pesticides and their transformation products adds further complexity to chemical risk assessment since chronic inflammation is a key step for cancer promotion. Degradation of a parent molecule can produce several by-products which can trigger various toxic effects with different impacts on health and environment. For instance, the cocktail of sunlight irradiated sulcotrione pesticide has a greater cytotoxicity and genotoxicity than parent molecule, sulcotrione, and questions about the impact of photochemical process on environment. Adjuvants were shown to modify the biological features of pesticides. Addition of other elements, metals or biological products, can differently enhance cell toxicity of pesticides or electromagnetic radiations suggesting a synergy in living organisms. Electromagnetic fields spreading, pesticide by-products and mixtures monitoring become greater for environmental contamination evaluations.

  3. Noise induced calcium oscillations in a cell exposed to electromagnetic fields.

    PubMed

    Zhang, Yuhong; Zhao, Yongli; Chen, Yafei; Yuan, Changqing; Zhan, Yong

    2015-01-01

    The effects of noise on the calcium oscillations in a cell exposed to electromagnetic fields are described by a dynamic model. Noise is a very important factor to be considered in the dynamic research on the calcium oscillations in a cell exposed to electromagnetic fields. Some meaningful results have been obtained here based on the discussion. The results show that the pattern of intracellular calcium oscillations exposure to electromagnetic fields can be influenced by noise. Furthermore, the intracellular calcium oscillations exposure to electromagnetic fields can also be induced by noise. And the work has also studied the relationships between the voltage sensitive calcium channel's open probability and electromagnetic field. The result can provide new insights into constructive roles and potential applications of selecting appropriate electromagnetic field frequency during the research of biological effect of electromagnetic field.

  4. Plasma effects in electromagnetic field interaction with biological tissue

    NASA Astrophysics Data System (ADS)

    Sharma, R. P.; Batra, Karuna; Excell, Peter S.

    2011-02-01

    Theoretical analysis is presented of the nonlinear behavior of charge carriers in biological tissue under the influence of varying low-intensity electromagnetic (EM) field. The interaction occurs because of the nonlinear force arising due to the gradient of the EM field intensity acting on free electrons in the conduction band of proteins in metabolically active biological cell membrane receptors leading to a redistribution of charge carriers. Field dependence of the resulting dielectric constant is investigated by a suitable modification to include an additional electronic contribution term to the three-term Debye model. The exogenous EM field propagating in this nonlinear cellular medium satisfies the nonlinear Schrödinger equation and can be affected significantly. Resulting field effect can be substantially augmented and effective rectification/demodulation can occur. Possible implications of this modification on biological processes in white and grey matter are discussed.

  5. Effects of Bluetooth device electromagnetic field on hearing: pilot study.

    PubMed

    Balachandran, R; Prepageran, N; Prepagaran, N; Rahmat, O; Zulkiflee, A B; Hufaida, K S

    2012-04-01

    The Bluetooth wireless headset has been promoted as a 'hands-free' device with a low emission of electromagnetic radiation. To evaluate potential changes in hearing function as a consequence of using Bluetooth devices, by assessing changes in pure tone audiography and distortion production otoacoustic emissions. Prospective study. Thirty adult volunteers were exposed to a Bluetooth headset device (1) on 'standby' setting for 6 hours and (2) at full power for 10 minutes. Post-exposure hearing was evaluated using pure tone audiography and distortion production otoacoustic emission testing. There were no statistically significant changes in hearing, as measured above, following either exposure type. Exposure to the electromagnetic field emitted by a Bluetooth headset, as described above, did not decrease hearing thresholds or alter distortion product otoacoustic emissions.

  6. Work and energy for particles in electromagnetic field

    NASA Astrophysics Data System (ADS)

    Babajanyan, S. G.

    2017-07-01

    Defining the energy and work for particles interacting with electromagnetic field (EMF) is an open problem, because—due to the gauge-freedom—there exist various non-equivalent possibilities. It is argued that a consistent definition can be provided via the Lorenz gauge. To this end, I work out a system of two electromagnetically coupled classical particles. One of them is much heavier and models the source of work. The definition of energy in the Lorenz gauge is causal and consistent, because it leads to an approximate conservation law due to which the work done by the heavy particle (source of work) can be defined either via the kinetic energy of the heavy particle, or via the full time-dependent energy (kinetic + potential in the Lorenz gauge) of the light particle.

  7. Biological effects from electromagnetic field exposure and public exposure standards.

    PubMed

    Hardell, Lennart; Sage, Cindy

    2008-02-01

    During recent years there has been increasing public concern on potential health risks from power-frequency fields (extremely low frequency electromagnetic fields; ELF) and from radiofrequency/microwave radiation emissions (RF) from wireless communications. Non-thermal (low-intensity) biological effects have not been considered for regulation of microwave exposure, although numerous scientific reports indicate such effects. The BioInitiative Report is based on an international research and public policy initiative to give an overview of what is known of biological effects that occur at low-intensity electromagnetic fields (EMFs) exposure. Health endpoints reported to be associated with ELF and/or RF include childhood leukaemia, brain tumours, genotoxic effects, neurological effects and neurodegenerative diseases, immune system deregulation, allergic and inflammatory responses, breast cancer, miscarriage and some cardiovascular effects. The BioInitiative Report concluded that a reasonable suspicion of risk exists based on clear evidence of bioeffects at environmentally relevant levels, which, with prolonged exposures may reasonably be presumed to result in health impacts. Regarding ELF a new lower public safety limit for habitable space adjacent to all new or upgraded power lines and for all other new constructions should be applied. A new lower limit should also be used for existing habitable space for children and/or women who are pregnant. A precautionary limit should be adopted for outdoor, cumulative RF exposure and for cumulative indoor RF fields with considerably lower limits than existing guidelines, see the BioInitiative Report. The current guidelines for the US and European microwave exposure from mobile phones, for the brain are 1.6 W/Kg and 2 W/Kg, respectively. Since use of mobile phones is associated with an increased risk for brain tumour after 10 years, a new biologically based guideline is warranted. Other health impacts associated with exposure to

  8. The universal C*-algebra of the electromagnetic field II. Topological charges and spacelike linear fields

    NASA Astrophysics Data System (ADS)

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2017-02-01

    Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.

  9. Effects of electromagnetic fields on fecundity in the chicken.

    PubMed

    Krueger, W F; Giarola, A J; Bradley, J W; Shrekenhamer, A

    1975-02-28

    Egg production was reduced when young laying hens were kept in contact with metal cages while being continuously exposed to the following cw fields: a vhf field at a frequency of 260 MHz, with an incident power that decreased from 100 to 4mW during the experiment; a uhf field at a frequency of 915 MHz, with an incident power of 800 mW during the first 2.5 weeks, zero during the following week, and 200 mW for the remainder of the experiment; a uhf field at 2.435 GHz, with an incident power of 800 mW; an elf electric field at a frequency of 60 Hz, with a calculated value of field strength of 1600 V/m; an elf magnetic field at 60 Hz, with a value of magnetic flux density of 1.4G. With the exception of the hens exposed to the uhf field at 915 MHz, all other treated groups laid significantly less eggs than the controls (p smaller than or equal to 0.01). This reduction (similar 15% less than the controls) began with the first 4-week production period. The egg production curves for the hens exposed to the vhf field at 260 MHz and to the uhf field at 2.435 GHz were approximately the same beginning with the sixth week of production, and they maintained comparable production levels for the remainder of the experiment. An 8% total drop in production also was experienced in the group of birds exposed to the 915-MHz field, which pulsed because of equipment failure. Egg production rate curves for the birds in the elf electric and magnetic fields were substantially different from those exhibited by birds in the other electromagnetic fields. The birds in the E-field regained a production level comparable to the controls after 11 weeks production, whereas those in the B-field dropped to 31% production, which was approximately 40% poorer than the controls by the twelfth week of production. Fertility of cocks and hens was not affected by continuous low-power vhf and uhf near-zone electromagnetic exposure or elf electric or magnetic field treatment. Fertility was exceptionally good

  10. Electromagnetic field of a charge traveling into an anisotropic medium.

    PubMed

    Galyamin, Sergey N; Tyukhtin, Andrey V

    2011-11-01

    We analyze the electromagnetic field generated by a point charge intersecting the interface between vacuum and a nonmagnetic anisotropic medium with a plasma-type dispersion of the dielectric permittivity tensor. After penetrating the medium, the charge moves along its main axis. The total field is presented as a sum of a self-field (i.e., a charge field in a corresponding unbounded medium) and a scattered field associated with the boundary influence. We show that the self-field in the considered anisotropic medium is divided into a quasistatic field and a wave field (the so-called "plasma trace" is absent in the case under consideration). Under certain conditions, the Vavilov-Cherenkov radiation generated in the medium is reversed (i.e., the energy flux density vector forms an obtuse angle with the direction of the charge motion). Accordingly, so-called reversed Cherenkov-transition radiation (RCTR) can be generated. We analytically and numerically investigate both the scattered field and the total one, and we show that RCTR exists in the vacuum region if the charge velocity exceeds a certain threshold value associated with total internal reflection. Computations of the Fourier harmonics of the field as well as the total field itself demonstrate that RCTR in vacuum can be a dominant effect. Some properties of RCTR can be useful for diagnostics of particle bunches and determination of medium characteristics.

  11. Electromagnetic field of a charge traveling into an anisotropic medium

    NASA Astrophysics Data System (ADS)

    Galyamin, Sergey N.; Tyukhtin, Andrey V.

    2011-11-01

    We analyze the electromagnetic field generated by a point charge intersecting the interface between vacuum and a nonmagnetic anisotropic medium with a plasma-type dispersion of the dielectric permittivity tensor. After penetrating the medium, the charge moves along its main axis. The total field is presented as a sum of a self-field (i.e., a charge field in a corresponding unbounded medium) and a scattered field associated with the boundary influence. We show that the self-field in the considered anisotropic medium is divided into a quasistatic field and a wave field (the so-called “plasma trace” is absent in the case under consideration). Under certain conditions, the Vavilov-Cherenkov radiation generated in the medium is reversed (i.e., the energy flux density vector forms an obtuse angle with the direction of the charge motion). Accordingly, so-called reversed Cherenkov-transition radiation (RCTR) can be generated. We analytically and numerically investigate both the scattered field and the total one, and we show that RCTR exists in the vacuum region if the charge velocity exceeds a certain threshold value associated with total internal reflection. Computations of the Fourier harmonics of the field as well as the total field itself demonstrate that RCTR in vacuum can be a dominant effect. Some properties of RCTR can be useful for diagnostics of particle bunches and determination of medium characteristics.

  12. Electromagnetic field of a charge traveling into an anisotropic medium

    SciTech Connect

    Galyamin, Sergey N.; Tyukhtin, Andrey V.

    2011-11-15

    We analyze the electromagnetic field generated by a point charge intersecting the interface between vacuum and a nonmagnetic anisotropic medium with a plasma-type dispersion of the dielectric permittivity tensor. After penetrating the medium, the charge moves along its main axis. The total field is presented as a sum of a self-field (i.e., a charge field in a corresponding unbounded medium) and a scattered field associated with the boundary influence. We show that the self-field in the considered anisotropic medium is divided into a quasistatic field and a wave field (the so-called 'plasma trace' is absent in the case under consideration). Under certain conditions, the Vavilov-Cherenkov radiation generated in the medium is reversed (i.e., the energy flux density vector forms an obtuse angle with the direction of the charge motion). Accordingly, so-called reversed Cherenkov-transition radiation (RCTR) can be generated. We analytically and numerically investigate both the scattered field and the total one, and we show that RCTR exists in the vacuum region if the charge velocity exceeds a certain threshold value associated with total internal reflection. Computations of the Fourier harmonics of the field as well as the total field itself demonstrate that RCTR in vacuum can be a dominant effect. Some properties of RCTR can be useful for diagnostics of particle bunches and determination of medium characteristics.

  13. Instability-driven electromagnetic fields in coronal plasmas

    SciTech Connect

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; Delettrez, J.; Meyerhofer, D. D.

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature and density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.

  14. Instability-driven electromagnetic fields in coronal plasmas

    DOE PAGES

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; ...

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature andmore » density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.« less

  15. Human disease resulting from exposure to electromagnetic fields.

    PubMed

    Carpenter, David O

    2013-01-01

    Electromagnetic fields (EMFs) include everything from cosmic rays through visible light to the electric and magnetic fields associated with electricity. While the high frequency fields have sufficient energy to cause cancer, the question of whether there are human health hazards associated with communication radiofrequency (RF) EMFs and those associated with use of electricity remains controversial. The issue is more important than ever given the rapid increase in the use of cell phones and other wireless devices. This review summarizes the evidence stating that excessive exposure to magnetic fields from power lines and other sources of electric current increases the risk of development of some cancers and neurodegenerative diseases, and that excessive exposure to RF radiation increases risk of cancer, male infertility, and neurobehavioral abnormalities. The relative impact of various sources of exposure, the great range of standards for EMF exposure, and the costs of doing nothing are also discussed.

  16. ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.

    SciTech Connect

    BELEGGIA,M.; POZZI, G.; TONOMURA, A.

    2007-01-01

    It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.

  17. Cosmological magnetic fields from inflation in extended electromagnetism

    SciTech Connect

    Beltran Jimenez, Jose; Maroto, Antonio L.

    2011-01-15

    In this work we consider an extended electromagnetic theory in which the scalar state which is usually eliminated by means of the Lorenz condition is allowed to propagate. This state has been shown to generate a small cosmological constant in the context of standard inflationary cosmology. Here we show that the usual Lorenz gauge-breaking term now plays the role of an effective electromagnetic current. Such a current is generated during inflation from quantum fluctuations and gives rise to a stochastic effective charge density distribution. Because of the high electric conductivity of the cosmic plasma after inflation, the electric charge density generates currents which give rise to both vorticity and magnetic fields on sub-Hubble scales. Present upper limits on vorticity coming from temperature anisotropies of the CMB are translated into lower limits on the present value of cosmic magnetic fields. We find that, for a nearly scale invariant vorticity spectrum, magnetic fields B{sub {lambda}>}10{sup -12} G are typically generated with coherence lengths ranging from subgalactic scales up to the present Hubble radius. Those fields could act as seeds for a galactic dynamo or even account for observations just by collapse and differential rotation of the protogalactic cloud.

  18. A review on Electromagnetic fields (EMFs) and the reproductive system

    PubMed Central

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-01-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted. PMID:27648194

  19. A review on Electromagnetic fields (EMFs) and the reproductive system.

    PubMed

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-07-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted.

  20. Using triaxial magnetic fields to create high susceptibility particle composites.

    PubMed

    Martin, James E; Venturini, Eugene; Gulley, Gerald L; Williamson, Jonathan

    2004-02-01

    We report on the use of triaxial magnetic fields to create a variety of isotropic and anisotropic magnetic particle/polymer composites with significantly enhanced magnetic susceptibilities. A triaxial field is a superposition of three orthogonal ac magnetic fields, each generated by a Helmholtz coil in series resonance with a tunable capacitor bank. Field frequencies are in the range of 150-400 Hz. Because both the field amplitudes and frequencies can be varied, a rich variety of structures can be created. Perhaps the most unusual effects occur when either two or three of the field components are heterodyned to give beat frequencies on the order of 1 Hz. This leads to a striking particle dynamics that evolves into surprising structures during resin gelation. These structures are found to have perhaps the highest susceptibility that a particle composite can have. The susceptibility anisotropy of these composites can be controlled over a wide range by judicious adjustment of the relative field amplitudes. These experimental data are supported by large-scale Brownian dynamics simulations of the complex many-body interactions that occur in triaxial magnetic fields. These simulations show that athermal three-dimensional field heterodyning leads to structures with a susceptibility that is as high as that achieved with thermal annealing. Thus with coherent particle motions we can achieve magnetostatic energies that are quite close to the ground state.

  1. Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells.

    PubMed

    Duan, Weixia; Liu, Chuan; Zhang, Lei; He, Mindi; Xu, Shangcheng; Chen, Chunhai; Pi, Huifeng; Gao, Peng; Zhang, Yanwen; Zhong, Min; Yu, Zhengping; Zhou, Zhou

    2015-03-01

    Extremely low-frequency electromagnetic fields (ELF-EMF) and radiofrequency electromagnetic fields (RF-EMF) have been considered to be possibly carcinogenic to humans. However, their genotoxic effects remain controversial. To make experiments controllable and results comparable, we standardized exposure conditions and explored the potential genotoxicity of 50 Hz ELF-EMF and 1800 MHz RF-EMF. A mouse spermatocyte-derived GC-2 cell line was intermittently (5 min on and 10 min off) exposed to 50 Hz ELF-EMF at an intensity of 1, 2 or 3 mT or to RF-EMF in GSM-Talk mode at the specific absorption rates (SAR) of 1, 2 or 4 W/kg. After exposure for 24 h, we found that neither ELF-EMF nor RF-EMF affected cell viability using Cell Counting Kit-8. Through the use of an alkaline comet assay and immunofluorescence against γ-H2AX foci, we found that ELF-EMF exposure resulted in a significant increase of DNA strand breaks at 3 mT, whereas RF-EMF exposure had insufficient energy to induce such effects. Using a formamidopyrimidine DNA glycosylase (FPG)-modified alkaline comet assay, we observed that RF-EMF exposure significantly induced oxidative DNA base damage at a SAR value of 4 W/kg, whereas ELF-EMF exposure did not. Our results suggest that both ELF-EMF and RF-EMF under the same experimental conditions may produce genotoxicity at relative high intensities, but they create different patterns of DNA damage. Therefore, the potential mechanisms underlying the genotoxicity of different frequency electromagnetic fields may be different.

  2. Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages.

    PubMed

    Ross, Christina L; Harrison, Benjamin S

    2013-01-01

    In the treatment of bacterial infections, antibiotics have proven to be very effective, but the way in which antibiotics are dosed can create a lag time between the administration of the drug and its absorption at the site of insult. The time it takes an antibiotic to reach therapeutic levels can often be significantly increased if the vascular system is compromized. Bacteria can multiply pending the delivery of the drug, therefore, developing treatments that can inhibit the inflammatory response while waiting for antibiotics to take effect could help prevent medical conditions such as septic shock. The aim of this study was to examine the effect of a pulsed electromagnetic field on the production of inflammatory markers tumor necrosis factor (TNF), transcription factor nuclear factor kappa B (NFkB), and the expression of the A20 (tumor necrosis factor-alpha-induced protein 3), in an inflamed-cell model. Lipopolysaccharide-challenged cells were exposed to a pulsed electromagnetic field at various frequencies in order to determine which, if any, frequency would affect the TNF-NFkB-A20 inflammatory response pathway. Our study revealed that cells continuously exposed to a pulsed electromagnetic field at 5 Hz demonstrated significant changes in the downregulation of TNF-α and NFkB and also showed a trend in the down regulation of A20, as compared with controls. This treatment could be beneficial in modulating the immune response, in the presence of infection.

  3. Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages

    PubMed Central

    Ross, Christina L; Harrison, Benjamin S

    2013-01-01

    In the treatment of bacterial infections, antibiotics have proven to be very effective, but the way in which antibiotics are dosed can create a lag time between the administration of the drug and its absorption at the site of insult. The time it takes an antibiotic to reach therapeutic levels can often be significantly increased if the vascular system is compromized. Bacteria can multiply pending the delivery of the drug, therefore, developing treatments that can inhibit the inflammatory response while waiting for antibiotics to take effect could help prevent medical conditions such as septic shock. The aim of this study was to examine the effect of a pulsed electromagnetic field on the production of inflammatory markers tumor necrosis factor (TNF), transcription factor nuclear factor kappa B (NFkB), and the expression of the A20 (tumor necrosis factor-alpha-induced protein 3), in an inflamed-cell model. Lipopolysaccharide-challenged cells were exposed to a pulsed electromagnetic field at various frequencies in order to determine which, if any, frequency would affect the TNF-NFkB-A20 inflammatory response pathway. Our study revealed that cells continuously exposed to a pulsed electromagnetic field at 5 Hz demonstrated significant changes in the downregulation of TNF-α and NFkB and also showed a trend in the down regulation of A20, as compared with controls. This treatment could be beneficial in modulating the immune response, in the presence of infection. PMID:23576877

  4. Dynamics of Cometary Dust Particles in Electromagnetic Radiation Fields

    NASA Astrophysics Data System (ADS)

    Herranen, Joonas; Markkanen, Johannes; Penttilä, Antti; Muinonen, Karri

    2016-10-01

    The formation of cometary dust tails and comae is based on solar radiation pressure. The pressure effects of electromagnetic radiation were originally conceptualized in Kepler's observations of the tails of comets and formulated mathematically by Maxwell in 1873. Today, the dynamics of cometary dust are known to be governed by gravity, electromagnetic forces, drag, solar wind, and solar radiation pressure.Solar radiation pressure has its roots in absorption, emission, and scattering of electromagnetic radiation. Due to modern advances in so-called integral equation methods in electromagnetics, a new approach of studying the effect of radiation pressure on cometary dust dynamics can be constructed. We solve the forces and torques due to radiation pressure for an arbitrarily shaped dust particle using volume integral equation methods.We then present a framework for solving the equations of motion of cometary dust particles due to radiative interactions. The solution is studied in a simplified cometary environment, where the radiative effects are studied at different orbits. The rotational and translational equations of motion are solved directly using a quaternion-based integrator. The rotational and translational equations of motion affect dust particle alignment and concentration. This is seen in the polarization of the coma. Thus, our direct dynamical approach can be used in modelling the observed imaging photo-polarimetry of the coma.In future studies, the integrator can be further extended to an exemplary comet environment, taking into account the drag, and the electric and magnetic fields. This enables us to study the dynamics of a single cometary dust particle based on fundamental physics.Acknowledgments. Research supported, in part, bythe European Research Council (ERC, grant Nr. 320773).

  5. Above-threshold ionization in two electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Bardfield, Rina Shoshana

    1997-11-01

    Above-threshold ionization (ATI) is a process in which a target atom absorbs more than the minimum number of photons from an applied electromagnetic field than are required for ionization, and is characterized by several peaks in the photoelectron spectrum which are separated from each other by the energy of a single photon (Agostini et al. 1979). The experiments of interest in this work involve ATI at microwave frequencies (Gallagher 1988, Gallagher and Scholz 1989), where the frequency of the field is too low to be able to see individual peaks in the spectrum. What is seen is that, in the presence of a weak assisting field, a very large number of microwave photons are absorbed. This problem cannot be treated using standard methods, due both to the intensity of the microwave field and to the large numbers of photons absorbed. The focus of this work is on the development of new analytical techniques to examine the interaction of an atomic system with two simultaneous electromagnetic fields. Specifically, the work focuses on above-threshold ionization in combined microwave and laser fields, where the microwave field is a very strong, very low frequency field, so that standard techniques, such as perturbation theory, do not apply. The work is based on two theoretical methods especially designed for use in intense field problems. These are the Strong Field Approximation (SFA) (Reiss 1980, 1992, 1996), which describes the ionization of an atom by an intense field in which the detached electron remains free in the field after ionization occurs, and the Momentum Translation Approximation (MTA) (Reiss 1970a, 1970b, 1989), which describes the dressing of a bound atomic state by a strong field in which the field can alter the state of the electron without necessarily causing transitions. The laser field, which is much weaker, is treated by traditional techniques. The theory is developed in general terms using S-matrix methods, with particular cases being modeled using

  6. An Optimization of Pulsed ElectroMagnetic Fields Study

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  7. An Optimization of Pulsed ElectroMagnetic Fields Study

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  8. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields.

    PubMed

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers' exposure to the electromagnetic field have been considered: workers' body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards.

  9. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields

    PubMed Central

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers’ exposure to the electromagnetic field have been considered: workers’ body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards. PMID:26323781

  10. Electromagnetic generation of sound in metals in a magnetic field

    NASA Astrophysics Data System (ADS)

    Aronov, I. E.; Fal'ko, V. L.

    1992-11-01

    A wide range of phenomena of the electromagnetic generation of sound in metals in a magnetic field is reviewed. All phenomena of mutual conversion of waves and of sound generation are due to the interaction of conduction electrons with phonons. A wide variety of resonance effects in a magnetic field determines numerous mechanisms for direct sound generation by an external microwave. The basic equations and boundary conditions for the problem of electron-phonon interaction in metals are presented in the quasiclassical approximation. In the low-temperature region under the conditions of the anomalous skin effect the wave conversion is caused, besides by inductive interaction, also by electron-phonon interaction via the deformation potential. The major conversion mechanism of an electromagnetic wave into sound results in various resonance effects in a magnetic field in conditions of strong spatial dispersion. We present an exact solution of the problem for an alkali metal in a magnetic field normal to the surface. We analyze the asymptotic approximations related with the skin-effect anomaly, the coupling of electromagnetic and acoustic waves in metals, and the role of surface scattering. We study the effect of resonance renormalization of electron-phonon interaction in metals with a complex dispersion law, which results in a partial compensation of resonance singularities and appears in Doppler-shifted cyclotron resonances. The doppleron-phonon resonance and its polarization effects are investigated. The electromagnetic generation of sound in metals in a magnetic field parallel to the surface is due to the additional mechanism of selecting “effective” electrons, where resonance effects are observed. We study geometric and cyclotron resonances, and the resonance coupling of a sound wave with a cyclotron wave. The amplitude and phase of the generated sound depend on the character of electron scattering on the metal boundary because in specular scattering a group of

  11. RF Electromagnetic Field Treatment of Tetragonal Kesterite CZTSSe Light Absorbers.

    PubMed

    Semenenko, Mykola O; Babichuk, Ivan S; Kyriienko, Oleksandr; Bodnar, Ivan V; Caballero, Raquel; Leon, Maximo

    2017-12-01

    In this work, we propose a method to improve electro-optical and structural parameters of light-absorbing kesterite materials. It relies on the application of weak power hydrogen plasma discharges using electromagnetic field of radio frequency range, which improves homogeneity of the samples. The method allows to reduce strain of light absorbers and is suitable for designing solar cells based on multilayered thin film structures. Structural characteristics of tetragonal kesterite Cu2ZnSn(S, Se)4 structures and their optical properties were studied by Raman, infrared, and reflectance spectroscopies. They revealed a reduction of the sample reflectivity after RF treatment and a modification of the energy band structure.

  12. Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.

    2000-01-01

    This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.

  13. RF Electromagnetic Field Treatment of Tetragonal Kesterite CZTSSe Light Absorbers

    NASA Astrophysics Data System (ADS)

    Semenenko, Mykola O.; Babichuk, Ivan S.; Kyriienko, Oleksandr; Bodnar, Ivan V.; Caballero, Raquel; Leon, Maximo

    2017-06-01

    In this work, we propose a method to improve electro-optical and structural parameters of light-absorbing kesterite materials. It relies on the application of weak power hydrogen plasma discharges using electromagnetic field of radio frequency range, which improves homogeneity of the samples. The method allows to reduce strain of light absorbers and is suitable for designing solar cells based on multilayered thin film structures. Structural characteristics of tetragonal kesterite Cu2ZnSn(S, Se)4 structures and their optical properties were studied by Raman, infrared, and reflectance spectroscopies. They revealed a reduction of the sample reflectivity after RF treatment and a modification of the energy band structure.

  14. Phenomenological local field enhancement factor distributions around electromagnetic hot spots

    NASA Astrophysics Data System (ADS)

    Le Ru, E. C.; Etchegoin, P. G.

    2009-05-01

    We propose a general phenomenological description of the enhancement factor distribution for surface-enhanced Raman scattering (SERS) and other related phenomena exploiting large local field enhancements at hot spots. This description extends naturally the particular case of a single (fixed) hot spot, and it is expected to be "universal" for many classes of common SERS substrates containing a collection of electromagnetic hot spots with varying geometrical parameters. We further justify it from calculations with generalized Mie theory. The description studied here provides a useful starting point for a qualitative (and semiquantitative) understanding of experimental data and, in particular, the analysis of the statistics of single-molecule SERS events.

  15. Healing of Chronic Wounds through Systemic Effects of Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Cañedo, L.; Trigos, I.; García-Cantú, R.; Godina-Nava, J. J.; Serrano, G.

    2002-08-01

    Extremely low frequency electromagnetic fields (ELF) were configured to interact with peripheral blood mononuclear cells (PBMC). These ELF were applied in the arm to five patients with chronic wounds resistant to medical and surgical treatment. Wound healing began in all patients during the first two weeks after ELF exposure permiting their previously unresponsive chronic wounds to function as internal controls. All lesions were cured or healed >70% in less than four months. Systemic effects were explained by ELF activation of PBMC and their transportation through the blood to the affected site. This therapy is effective in selected patients with chronic wounds.

  16. Basics of quantum field theory of electromagnetic interaction processes in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Hieu Nguyen, Van

    2016-09-01

    The content of this work is the study of electromagnetic interaction in single-layer graphene by means of the perturbation theory. The interaction of electromagnetic field with Dirac fermions in single-layer graphene has a peculiarity: Dirac fermions in graphene interact not only with the electromagnetic wave propagating within the graphene sheet, but also with electromagnetic field propagating from a location outside the graphene sheet and illuminating this sheet. The interaction Hamiltonian of the system comprising electromagnetic field and Dirac fermions fields contains the limits at graphene plane of electromagnetic field vector and scalar potentials which can be shortly called boundary electromagnetic field. The study of S-matrix requires knowing the limits at graphene plane of 2-point Green functions of electromagnetic field which also can be shortly called boundary 2-point Green functions of electromagnetic field. As the first example of the application of perturbation theory, the second order terms in the perturbative expansions of boundary 2-point Green functions of electromagnetic field as well as of 2-point Green functions of Dirac fermion fields are explicitly derived. Further extension of the application of perturbation theory is also discussed.

  17. Creating superfluid vortex rings in artificial magnetic fields

    NASA Astrophysics Data System (ADS)

    Sachdeva, Rashi; Busch, Thomas

    2017-03-01

    Artificial gauge fields are versatile tools that allow the dynamics of ultracold atoms in Bose-Einstein condensates to be influenced. Here we discuss a method of artificial gauge field generation stemming from the evanescent fields of the curved surface of an optical nanofiber. The exponential decay of the evanescent fields leads to large gradients in the generalized Rabi frequency and therefore to the presence of geometric vector and scalar potentials. By solving the Gross-Pitaevskii equation in the presence of the artificial gauge fields originating from the fundamental Hybrid mode (HE11) mode of the fiber, we show that vortex rings can be created in a controlled manner. We also calculate the magnetic fields resulting from the higher order HE21, Transverse electric mode (TE01), and Transverse magnetic mode (TM01) and compare them to the fundamental HE11 mode.

  18. Creation of an Effective Magnetic Field in Ultracold Atomic Gases Using Electromagnetically Induced Transparency

    SciTech Connect

    Juzeliunas, G.; Oehberg, P.

    2005-09-15

    We consider the influence of the control and probe beams in the electromagnetically induced transparency configuration on the mechanical motion of ultracold atomic gases (atomic Bose-Einstein condensates or degenerate Fermi gases). We carry out a microscopic analysis of the interplay between radiation and matter and show that the two beams of light can provide an effective magnetic field acting on electrically neutral atoms in the case where the probe beam has an orbital angular momentum. As an example, we demonstrate how a Meissner-like effect can be created in an atomic Bose-Einstein condensate.

  19. Controlling dispersion forces between small particles with artificially created random light fields

    PubMed Central

    Brügger, Georges; Froufe-Pérez, Luis S.; Scheffold, Frank; José Sáenz, Juan

    2015-01-01

    Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir–Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems. PMID:26096622

  20. Controlling dispersion forces between small particles with artificially created random light fields.

    PubMed

    Brügger, Georges; Froufe-Pérez, Luis S; Scheffold, Frank; José Sáenz, Juan

    2015-06-22

    Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir-Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems.

  1. Electromagnetic field tapering using all-dielectric gradient index materials

    PubMed Central

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-01-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes. PMID:27464989

  2. Conserved currents for electromagnetic fields in the Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Grant, Alexander; Flanagan, Eanna

    2017-01-01

    For any classical linear Lagrangian field theory, the symplectic product provides a conserved current that is bilinear on the space of solutions. Given a linear mapping from the space of solutions into itself, a ``symmetry operator'', one can therefore generate quadratic conserved currents for any linear classical field theory. We apply this procedure to the case of electromagnetism on a Kerr background, showing that this procedure can generate the conserved currents given by Andersson, Bäckdahl, and Blue, as well as two new conserved currents. These currents reduce to the sum of (positive powers of) the Carter constants of the photons in the geometric optics limit, and generalize the current for scalar fields discovered by Carter. We furthermore show that the fluxes of these new currents through null infinity and the horizon are finite.

  3. Electromagnetic field tapering using all-dielectric gradient index materials.

    PubMed

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-07-28

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.

  4. Electromagnetic field tapering using all-dielectric gradient index materials

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-07-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.

  5. Time dependent electromagnetic fields and 4-dimensional Stokes' theorem

    NASA Astrophysics Data System (ADS)

    Andosca, Ryan; Singleton, Douglas

    2016-11-01

    Stokes' theorem is central to many aspects of physics—electromagnetism, the Aharonov-Bohm effect, and Wilson loops to name a few. However, the pedagogical examples and research work almost exclusively focus on situations where the fields are time-independent so that one need only deal with purely spatial line integrals (e.g., ∮ A . d x ) and purely spatial area integrals (e.g., ∫ ( ∇ × A ) . d a = ∫ B . d a ). Here, we address this gap by giving some explicit examples of how Stokes' theorem plays out with time-dependent fields in a full 4-dimensional spacetime context. We also discuss some unusual features of Stokes' theorem with time-dependent fields related to gauge transformations and non-simply connected topology.

  6. Weak scattering of scalar and electromagnetic random fields

    NASA Astrophysics Data System (ADS)

    Tong, Zhisong

    This dissertation encompasses several studies relating to the theory of weak potential scattering of scalar and electromagnetic random, wide-sense statistically stationary fields from various types of deterministic or random linear media. The proposed theory is largely based on the first Born approximation for potential scattering and on the angular spectrum representation of fields. The main focus of the scalar counterpart of the theory is made on calculation of the second-order statistics of scattered light fields in cases when the scattering medium consists of several types of discrete particles with deterministic or random potentials. It is shown that the knowledge of the correlation properties for the particles of the same and different types, described with the newly introduced pair-scattering matrix, is crucial for determining the spectral and coherence states of the scattered radiation. The approach based on the pair-scattering matrix is then used for solving an inverse problem of determining the location of an "alien" particle within the scattering collection of "normal" particles, from several measurements of the spectral density of scattered light. Weak scalar scattering of light from a particulate medium in the presence of optical turbulence existing between the scattering centers is then approached using the combination of the Born's theory for treating the light interaction with discrete particles and the Rytov's theory for light propagation in extended turbulent medium. It is demonstrated how the statistics of scattered radiation depend on scattering potentials of particles and the power spectra of the refractive index fluctuations of turbulence. This theory is of utmost importance for applications involving atmospheric and oceanic light transmission. The second part of the dissertation includes the theoretical procedure developed for predicting the second-order statistics of the electromagnetic random fields, such as polarization and linear momentum

  7. Robust multiscale field-only formulation of electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2017-01-01

    We present a boundary integral formulation of electromagnetic scattering by homogeneous bodies that are characterized by linear constitutive equations in the frequency domain. By working with the Cartesian components of the electric E and magnetic H fields and with the scalar functions (r .E ) and (r .H ) where r is a position vector, the problem can be cast as having to solve a set of scalar Helmholtz equations for the field components that are coupled by the usual electromagnetic boundary conditions at material boundaries. This facilitates a direct solution for the surface values of E and H rather than having to work with surface currents or surface charge densities as intermediate quantities in existing methods. Consequently, our formulation is free of the well-known numerical instability that occurs in the zero-frequency or long-wavelength limit in traditional surface integral solutions of Maxwell's equations and our numerical results converge uniformly to the static results in the long-wavelength limit. Furthermore, we use a formulation of the scalar Helmholtz equation that is expressed as classically convergent integrals and does not require the evaluation of principal value integrals or any knowledge of the solid angle. Therefore, standard quadrature and higher order surface elements can readily be used to improve numerical precision for the same number of degrees of freedom. In addition, near and far field values can be calculated with equal precision, and multiscale problems in which the scatterers possess characteristic length scales that are both large and small relative to the wavelength can be easily accommodated. From this we obtain results for the scattering and transmission of electromagnetic waves at dielectric boundaries that are valid for any ratio of the local surface curvature to the wave number. This is a generalization of the familiar Fresnel formula and Snell's law, valid at planar dielectric boundaries, for the scattering and transmission

  8. Self-localized and self-constricted electromagnetic field in plasma and atmosphere

    SciTech Connect

    Alanakyan, Yu. R.

    2016-05-15

    A possibility of creation of a super-high-frequency electromagnetic-field clot in the plasma is shown. Two cases of the field self-localization in the plasma are considered. In the first case, a super-high-frequency electric field creates an annular channel by displacing the plasma and induces a curl-like magnetic field inside. In the second case, the electric field creates a toroidal channel where different field structures are possible. For example, the magnetic lines of the force are aligned along the big circle of the torus, while the curl-like electric lines are aligned along the small circle. Otherwise, the magnetic field is curl-like and the electric-field lines are aligned along the big circle. We evaluate the electric field energy that is required for a curl-like structure of about 3 cm in size to exist during 10 s in the atmospheric air. This energy sustains plasma in the vicinity of the curl-like area.

  9. Electromagnetic field optimisation procedure for the microwave oven

    NASA Astrophysics Data System (ADS)

    Xiaowei, G.; Lin, M.; Yiqin, S.

    2010-03-01

    This article introduces one method for optimising a microwave oven using microwave CAD technology. The precision model of a microwave oven cavity is created by high-frequency electromagnetic simulation software, and the electric characteristic parameter of the materials are set in the cavity so the simulation model is very close to a practical oven cavity. A new experimental set-up consisting of a multimode microwave cavity, a dielectric parametric test system, a vector network analyser, a microwave power source (magnetron) and a thermo-graphic camera has been built and tested. Comparing the simulation result with the experimental measures (phase polar and power loss), their total properties are consistent. It is proved that the method presented here is practical and useful. So optimisation of the oven design is easily done by modifying the cavity model.

  10. Radio frequency electromagnetic fields: cancer, mutagenesis, and genotoxicity.

    PubMed

    Heynick, Louis N; Johnston, Sheila A; Mason, Patrick A

    2003-01-01

    We present critiques of epidemiologic studies and experimental investigations, published mostly in peer-reviewed journals, on cancer and related effects from exposure to nonionizing electromagnetic fields in the nominal frequency range of 3 kHz to 300 GHz of interest to Subcommittee 4 (SC4) of the International Committee on Electromagnetic Safety (ICES). The major topics discussed are presented under the headings Epidemiologic and Other Findings on Human Exposure, Mammals Exposed In Vivo, Mammalian Live Tissues and Cell Preparations Exposed In Vitro, and Mutagenesis and Genotoxicity in Microorganisms and Fruit Flies. Under each major topic, we present minireviews of papers on various specific endpoints investigated. The section on Epidemiologic and Other Findings on Human Exposure is divided into two subsections, the first on possible carcinogenic effects of exposure from emitters not in physical contact with the populations studied, for example, transmitting antennas and other devices. Discussed in the second subsection are studies of postulated carcinogenic effects from use of mobile phones, with prominence given to brain tumors from use of cellular and cordless telephones in direct physical contact with an ear of each subject. In both subsections, some investigations yielded positive findings, others had negative findings, including papers directed toward experimentally verifying positive findings, and both were reported in a few instances. Further research on various important aspects may resolve such differences. Overall, however, the preponderance of published epidemiologic and experimental findings do not support the supposition that in vivo or in vitro exposures to such fields are carcinogenic.

  11. Quantum Mechanics Action of ELF Electromagnetic Fields on Living Organisms

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.

    2010-10-01

    There is presently an intense discussion if extremely low frequency electromagnetic field (ELF-EMF) exposure has consequences for human health. This include exposure to structures and appliances from this range of frequency in the electromagnetic (EM) spectrum. Biological effects of such exposures have been noted frequently, although the implications for specific health effects is not that clear. The basic interactions mechanisms between such fields and living matter is unknown. Numerous hypotheses have been suggested, although none is convincingly supported by experimental data. Various cellular components, processes, and systems can be affected by EMF exposure. Since it is unlikely that EMF can induce DNA damage directly, most studies have examined EMF effects on the cell membrane level, general and specific gene expression, and signal transduction pathways. Even more, a large number of studies have been performed regarding cell proliferation, cell cycle regulation, cell differentiation, metabolism, and various physiological characteristics of cells. The aim of this letter is present the hypothesis of a possible quantum mechanic effect generated by the exposure of ELF EMF, an event which is compatible with the multitude of effects observed after exposure. Based on an extensive literature review, we suggest that ELF EMF exposure is able to perform such activation restructuring the electronic level of occupancy of free radicals in molecules interacting with DNA structures.

  12. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-09-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.

  13. Electromagnetic dissipation during asymmetric reconnection with a moderate guide field

    NASA Astrophysics Data System (ADS)

    Genestreti, Kevin; Burch, James; Cassak, Paul; Torbert, Roy; Phan, Tai; Ergun, Robert; Giles, Barbara; Russell, Chris; Wang, Shan; Akhavan-Tafti, Mojtaba; Varsani, Ali

    2017-04-01

    We calculate the work done on the plasma by the electromagnetic (EM) field, ⃗Jṡ⃗E', and analyze the related electron currents and electric fields, focusing on a single asymmetric guide field electron diffusion region (EDR) event observed by MMS on 8 December 2015. For this event, each of the four MMS spacecraft observed dissipation of EM energy at the in-plane magnetic null point, though large-scale generation/dissipation was observed inconsistently on the magnetospheric side of the boundary. The current at the null was carried by a beam-like population of magnetosheath electrons traveling anti-parallel to the guide field, whereas the current on the Earthward side of the boundary was carried by crescent-shaped electron distributions. We also analyze the terms in Ohm's law, finding a large residual electric field throughout the EDR, inertial and pressure divergence fields at the null, and pressure divergence fields at the magnetosphere-side EDR. Our analysis of the terms in Ohm's law suggests that the EDR had significant three-dimensional structure.

  14. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    PubMed Central

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-01-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation. PMID:27634482

  15. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, Robert P.

    1993-01-01

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  16. The dielectric response to the magnetic field of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shouvik; Mukhopadhyay, Sourabh; Datta, Prasanta Kumar

    2017-04-01

    Light-matter interaction in transparent dielectrics is revisited, including the magnetic force on bound charges in the Lorentz oscillator model. The parameter ranges of incident radiation and the medium on which the magnetic field of the electromagnetic radiation will have a significant effect are traced using Floquet theory. The analysis reveals that the threshold intensity for a significant response of the magnetic field of the radiation at the second harmonic of the incident radiation can be reduced to {10}12 {{W}}{{cm}}-2 for off resonant and even lower for resonant interaction. This phenomenon has already been observed indirectly in experiments [1, 2]. Induced magnetizing current due to the magnetic force is shown to originate from a modified dielectric response, which may be useful in future magneto-optic devices, solar energy harvesting, and studying the ultrafast dynamics in doped dielectrics.

  17. Acceleration of adiabatic quantum dynamics in electromagnetic fields

    SciTech Connect

    Masuda, Shumpei; Nakamura, Katsuhiro

    2011-10-15

    We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.

  18. Electromagnetic field limits set by the V-Curve.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Hudson, Howard Gerald

    2014-07-01

    When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.

  19. Photon merging and splitting in electromagnetic field inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Karbstein, Felix; Seegert, Nico

    2016-04-01

    We investigate photon merging and splitting processes in inhomogeneous, slowly varying electromagnetic fields. Our study is based on the three-photon polarization tensor following from the Heisenberg-Euler effective action. We put special emphasis on deviations from the well-known constant field results, also revisiting the selection rules for these processes. In the context of high-intensity laser facilities, we analytically determine compact expressions for the number of merged/split photons as obtained in the focal spots of intense laser beams. For the parameter range of typical petawatt class laser systems as pump and probe, we provide estimates for the numbers of signal photons attainable in an actual experiment. The combination of frequency upshifting, polarization dependence and scattering off the inhomogeneities renders photon merging an ideal signature for the experimental exploration of nonlinear quantum vacuum properties.

  20. Theory of a ring laser. [electromagnetic field and wave equations

    NASA Technical Reports Server (NTRS)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1973-01-01

    Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.

  1. Geometric entropy and edge modes of the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Donnelly, William; Wall, Aron C.

    2016-11-01

    We calculate the vacuum entanglement entropy of Maxwell theory in a class of curved spacetimes by Kaluza-Klein reduction of the theory onto a two-dimensional base manifold. Using two-dimensional duality, we express the geometric entropy of the electromagnetic field as the entropy of a tower of scalar fields, constant electric and magnetic fluxes, and a contact term, whose leading-order divergence was discovered by Kabat. The complete contact term takes the form of one negative scalar degree of freedom confined to the entangling surface. We show that the geometric entropy agrees with a statistical definition of entanglement entropy that includes edge modes: classical solutions determined by their boundary values on the entangling surface. This resolves a long-standing puzzle about the statistical interpretation of the contact term in the entanglement entropy. We discuss the implications of this negative term for black hole thermodynamics and the renormalization of Newton's constant.

  2. Near-field electromagnetic theory for thin solar cells.

    PubMed

    Niv, A; Gharghi, M; Gladden, C; Miller, O D; Zhang, X

    2012-09-28

    Current methods for evaluating solar cell efficiencies cannot be applied to low-dimensional structures where phenomena from the realm of near-field optics prevail. We present a theoretical approach to analyze solar cell performance by allowing rigorous electromagnetic calculations of the emission rate using the fluctuation-dissipation theorem. Our approach shows the direct quantification of the voltage, current, and efficiency of low-dimensional solar cells. This approach is demonstrated by calculating the voltage and the efficiency of a GaAs slab solar cell for thicknesses from several microns down to a few nanometers. This example highlights the ability of the proposed approach to capture the role of optical near-field effects in solar cell performance.

  3. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, R.P.

    1993-03-02

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C. The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  4. Interaction of extremely-low-frequency electromagnetic fields with humans

    SciTech Connect

    Tenforde, T.S.

    1991-07-01

    At a macroscopic level, the effects of extremely low frequency (ELF) electromagnetic fields on humans are well understood based on fundamental physical principles, but far less is known about the nature of the interactions at a cellular or molecular level. Current evidence suggests the effects of ELF on cellular biochemistry are due to interactions with the cell membrane. Elucidation of the mechanism that underlies this transmembrane signaling is critical for a molecular-level understanding of ELF field effects. Further research is also required to clarify a possible link between ELF exposure and increased cancer risk, since estimated ELF exposure in occupational or residential settings is much lower that the levels used in laboratory studies. There is a clear need for additional epidemiological research in which qualitative dosimetry is used to characterize ELF exposure and careful attention is given to possible effects of confounding variables. 24 refs.

  5. Relativistic particle acceleration by obliquely propagating electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Villalón, Elena; Burke, William J.

    1987-12-01

    The relativistic equations of motion are analyzed for charged particles in a magnetized plasma and externally imposed electromagnetic fields (ω, k), which have wave vectors k that are at arbitrary angles. The particle energy is obtained from a set of nonlinear differential equations, as a function of time, initial conditions, and cyclotron harmonic numbers. For a given cyclotron resonance, the energy oscillates in time within the limits of a potential well; stochastic acceleration occurs if the widths of different Hamiltonian potentials overlap. The net energy gain for a given harmonic increase with the angle of propagation, and decreases as the magnitude of the wave magnetic field increases. Potential applications of these results to the acceleration of ionsopheric electrons are presented.

  6. Electromagnetic fields and the induction of DNA strand breaks.

    PubMed

    Ruiz-Gómez, Miguel J; Martínez-Morillo, Manuel

    2009-01-01

    The International Agency for Research on Cancer (IARC) has classified the extremely low-frequency (ELF) electromagnetic fields (EMF) as "possible carcinogenic" based on the reported effects. The purpose of this work is to review and compare the recent findings related to the induction of DNA strand breaks (DNA-SB) by magnetic field (MF) exposure. We found 29 studies (genotoxic and epigenetic) about the induction of DNA-SB by MF. 50% showed effect of MF and 50% showed no DNA-SB. Nevertheless, considering only genotoxic or only epigenetic studies, 37.5% and 69.2% found induction of DNA-SB by MF, respectively. In relation to these data it seems that MF could act as a co-inductor of DNA damage rather than as a genotoxic agent per se. Nevertheless, the published results, in some cases conflicting with negative findings, do not facilitate to obtain a common consensus about MF effects and biophysical interaction mechanisms.

  7. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1977-01-01

    The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  8. Theory of a ring laser. [electromagnetic field and wave equations

    NASA Technical Reports Server (NTRS)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1973-01-01

    Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.

  9. Assessment of the Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields

    DTIC Science & Technology

    2003-06-01

    the Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5d. TASK NUMBER 6. AUTHOR(S) Dr... Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields (EMFs) (From 1 June 2002 to 31 May 2003 for 12 months) Nikolai Konstantinovich Chemeris...International Science and Technology Center (ISTC), Moscow. 2 ISTC 2350 Assessment of the Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields

  10. A. A. Ukhtomskii's dominance principle of brain activity in the perception of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Kholodov, Yu. A.

    1994-01-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a “placebo” or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.

  11. A. A. Ukhtomskii`s dominance principle of brain activity in the perception of electromagnetic fields

    SciTech Connect

    Kholodov, Yu.A.

    1994-07-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a {open_quotes}placebo{close_quotes} or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.

  12. Effects of Pulse Electromagnetic Field on Corrosion Resistance of Al-5 % Cu Alloy

    NASA Astrophysics Data System (ADS)

    Wang, B.; Tang, L. D.; Qi, J. G.; Wang, J. Z.

    2013-03-01

    It was investigated that corrosion resistance of Al-5 % Cu alloy was influenced by pulse electromagnetic field (PEMF). The morphologies were observed by scanning election microscopy (SEM). The corrosion behaviors were investigated by potentiodynamic polarization tests and immersion tests. The results indicated that corrosion resistance of samples could be increased by using pulse electromagnetic field, moreover, the optimum parameter of pulse electromagnetic field in this experiment was showed as follows: 500 V, 3 Hz, 30 s. Decreasing the quantity of eutectic in grain boundaries and refining the grains were main causations for increasing corrosion resistance of Al-5 % Cu alloy with pulse electromagnetic field.

  13. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    SciTech Connect

    Galilo, Bogdan V.; Nedelko, Sergei N.

    2011-11-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.

  14. Probing intergalactic magnetic fields with simulations of electromagnetic cascades

    NASA Astrophysics Data System (ADS)

    Alves Batista, Rafael; Saveliev, Andrey; Sigl, Günter; Vachaspati, Tanmay

    2016-10-01

    We determine the effect of intergalactic magnetic fields on the distribution of high-energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called "Large Sphere Observer" method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q -statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S -statistics. Both methods provide a quantitative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B ≳10-15 G and magnetic coherence lengths Lc≳100 Mpc . We show that the S -statistics has a better performance than the Q -statistics when assessing magnetic helicity from the simulated halos.

  15. Setting prudent public health policy for electromagnetic field exposures.

    PubMed

    Carpenter, David O; Sage, Cindy

    2008-01-01

    Electromagnetic fields (EMF) permeate our environment, coming both from such natural sources as the sun and from manmade sources like electricity, communication technologies and medical devices. Although life on earth would not be possible without sunlight, increasing evidence indicates that exposures to the magnetic fields associated with electricity and to communication frequencies associated with radio, television, WiFi technology, and mobile cellular phones pose significant hazards to human health. The evidence is strongest for leukemia from electricity-frequency fields and for brain tumors from communication-frequency fields, yet evidence is emerging for an association with other diseases as well, including neurodegenerative diseases. Some uncertainty remains as to the mechanism(s) responsible for these biological effects, and as to which components of the fields are of greatest importance. Nevertheless, regardless of whether the associations are causal, the strengths of the associations are sufficiently strong that in the opinion of the authors, taking action to reduce exposures is imperative, especially for the fetus and children. Inaction is not compatible with the Precautionary Principle, as enunciated by the Rio Declaration. Because of ubiquitous exposure, the rapidly expanding development of new EMF technologies and the long latency for the development of such serious diseases as brain cancers, the failure to take immediate action risks epidemics of potentially fatal diseases in the future.

  16. Electromagnetic Form Factors of Hadrons in Quantum Field Theories

    SciTech Connect

    Dominguez, C. A.

    2008-10-13

    In this talk, recent results are presented of calculations of electromagnetic form factors of hadrons in the framework of two quantum field theories (QFT), (a) Dual-Large N{sub c} QCD (Dual-QCD{sub {infinity}}) for the pion, proton, and {delta}(1236), and (b) the Kroll-Lee-Zumino (KLZ) fully renormalizable Abelian QFT for the pion form factor. Both theories provide a QFT platform to improve on naive (tree-level) Vector Meson Dominance (VMD). Dual-QCD{sub {infinity}} provides a tree-level improvement by incorporating an infinite number of zero-width resonances, which can be subsequently shifted from the real axis to account for the time-like behaviour of the form factors. The renormalizable KLZ model provides a QFT improvement of VMD in the framework of perturbation theory. Due to the relative mildness of the {rho}{pi}{pi} coupling, and the size of loop suppression factors, the perturbative expansion is well defined in spite of this being a strong coupling theory. Both approaches lead to considerable improvements of VMD predictions for electromagnetic form factors, in excellent agreement with data.

  17. [Methods of dosimetry in evaluation of electromagnetic fields' biological action].

    PubMed

    Rubtsova, N B; Perov, S Iu

    2012-01-01

    Theoretical and experimental dosimetry can be used for adequate evaluation of the effects of radiofrequency electromagnetic fields. In view of the tough electromagnetic environment in aircraft, pilots' safety is of particular topicality. The dosimetric evaluation is made from the quantitative characteristics of the EMF interaction with bio-objects depending on EM energy absorption in a unit of tissue volume or mass calculated as a specific absorbed rate (SAR) and measured in W/kg. Theoretical dosimetry employs a number of computational methods to determine EM energy, as well as the augmented method of boundary conditions, iterative augmented method of boundary conditions, moments method, generalized multipolar method, finite-element method, time domain finite-difference method, and hybrid methods combining several decision plans modeling the design philosophy of navigation, radiolocation and human systems. Because of difficulties with the experimental SAR estimate, theoretical dosimetry is regarded as the first step in analysis of the in-aircraft conditions of exposure and possible bio-effects.

  18. Using strong electromagnetic fields to control x-ray processes.

    SciTech Connect

    Young, L.; Buth, C.; Dunford, R. W.; Ho, P.; Kanter, E. P.; Kraessig, B.; Peterson, E. R.; Rohringer, N.; Santra, R.; Southworth, S. H.

    2010-06-01

    Exploration of a new ultrafast-ultrasmall frontier in atomic and molecular physics has begun. Not only is is possible to control outer-shell electron dynamics with intense ultrafast optical lasers, but now control of inner-shell processes has become possible by combining intense infrared/optical lasers with tunable sources of X-ray radiation. This marriage of strong-field laser and X-ray physics has led to the discovery of methods to control reversibly resonant X-ray absorption in atoms and molecules on ultrafast timescales. Using a strong optical dressing field, resonant X-ray absorption in atoms can be markedly suppressed, yielding an example of electromagnetically induced transparency for x rays. Resonant X-ray absorption can also be controlled in molecules using strong non-resonant, polarized laser fields to align the framework of a molecule, and therefore its unoccupied molecular orbitals to which resonant absorption occurs. At higher laser intensities, ultrafast field ionization produces an irreversible change in X-ray absorption. Finally, the advent of X-ray free electron lasers enables first exploration of non-linear X-ray processes.

  19. [Effects of radiofrequency electromagnetic fields on mammalian spermatogenesis].

    PubMed

    Susa, Martina; Pavicić, Ivan

    2007-12-01

    This article reviews studies about the effects of radiofrequency electromagnetic (RF EM) fields on male reproductive system and reproductive health in mammals. According to current data, there are almost 4 million active mobile phone lines in Croatia while this number has risen to 2 billion in the world. Increased use of mobile technology raises scientific and public concern about possible hazardous effects of RF fields on human health. The effects of radiofrequencies on reproductive health and consequences for the offspring are still mainly unknown. A number of in vivo and in vitro studies indicated that RF fields could interact with charged intracellular macromolecular structures. Results of several laboratory studies on animal models showed how the RF fields could affect the mammalian reproductive system and sperm cells. Inasmuch as, in normal physiological conditions spermatogenesis is a balanced process of division, maturation and storage of cells, it is particularly vulnerable to the chemical and physical environmental stimuli. Especially sensitive could be the cytoskeleton, composed of charged proteins; actin, intermedial filaments and microtubules. Cytoskeleton is a functional and structural part of the cell that has important role in the sperm motility, and is actively involved in the morphologic changes that occur during mammalian spermiogenesis.

  20. Equations of a moving mirror and the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Octavio Castaños, Luis; Weder, Ricardo

    2015-06-01

    We consider a system composed of a mobile slab and the electromagnetic field. We assume that the slab is made of a material that has the following properties when it is at rest: it is linear, isotropic, non-magnetizable, and ohmic with zero free charge density. Using instantaneous Lorentz transformations, we deduce the set of self-consistent equations governing the dynamics of the system and we obtain approximate equations to first order in the velocity and the acceleration of the slab. As a consequence of the motion of the slab, the field must satisfy a wave equation with damping and slowly varying coefficients plus terms that are small when the time-scale of the evolution of the mirror is much larger than that of the field. Also, the motion of the slab and its interaction with the field introduce two effects in the slab’s equation of motion. The first one is a position- and time-dependent mass related to the effective mass taken in phenomenological treatments of this type of systems. The second one is a velocity-dependent force that can give rise to friction and that is related to the much sought cooling of mechanical objects.

  1. Could Radiotherapy Effectiveness Be Enhanced by Electromagnetic Field Treatment?

    PubMed Central

    Francisco, Artacho-Cordón; del Mar, Salinas-Asensio María; Irene, Calvente; Sandra, Ríos-Arrabal; Josefa, León; Elisa, Román-Marinetto; Nicolás, Olea; Isabel, Núñez María

    2013-01-01

    One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy. PMID:23867611

  2. Coherent electromagnetic field imaging through Fourier transform heterodyne

    SciTech Connect

    Cooke, B.J.; Laubscher, B.E.; Olivas, N.L.; Goeller, R.M.; Cafferty, M.; Briles, S.D.; Galbraith, A.E. |; Grubler, A.C. |

    1998-12-31

    The authors present a detection process capable of directly imaging the transverse amplitude, phase, and if desired, Doppler shift of coherent electromagnetic fields. Based on coherent detection principles governing conventional heterodyned RADAR/LIDAR systems, Fourier Transform Heterodyne (FTH) incorporates transverse spatial encoding of the local oscillator for image capture. Appropriate selection of spatial encoding functions, or basis set, allows image retrieval by way of classic Fourier manipulations. Of practical interest: (1) imaging is accomplished on a single element detector requiring no additional scanning or moving components, and (2) a wide variety of appropriate spatial encoding functions exist that may be adaptively configured in real-time for applications requiring optimal detection. In this paper, they introduce the underlying principles governing FTH imaging, followed by demonstration of concept via a simple experimental setup based on a HeNe laser and a 69 element spatial phase modulator.

  3. Finite element modeling of electromagnetic fields and waves using NASTRAN

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  4. Electromagnetic field-induced stimulation of Bruton's tyrosine kinase.

    PubMed

    Kristupaitis, D; Dibirdik, I; Vassilev, A; Mahajan, S; Kurosaki, T; Chu, A; Tuel-Ahlgren, L; Tuong, D; Pond, D; Luben, R; Uckun, F M

    1998-05-15

    Here we present evidence that exposure of DT40 lymphoma B-cells to low energy electromagnetic fields (EMF) results in activation of phospholipase C-gamma 2 (PLC-gamma2), leading to increased inositol phospholipid turnover. PLC-gamma2 activation in EMF-stimulated cells is mediated by stimulation of the Bruton's tyrosine kinase (BTK), a member of the Src-related TEC family of protein tyrosine kinases, which acts downstream of LYN kinase and upstream of PLC-gamma2. B-cells rendered BTK-deficient by targeted disruption of the btk gene did not show enhanced PLC-gamma2 activation in response to EMF exposure. Introduction of the wild-type (but not a kinase domain mutant) human btk gene into BTK-deficient B-cells restored their EMF responsiveness. Thus, BTK exerts a pivotal and mandatory function in initiation of EMF-induced signaling cascades in B-cells.

  5. Electromagnetic field energy density in homogeneous negative index materials.

    PubMed

    Shivanand; Webb, Kevin J

    2012-05-07

    An exact separation of both electric and magnetic energies into stored and lost energies is shown to be possible in the special case when the wave impedance is independent of frequency. A general expression for the electromagnetic energy density in such a dispersive medium having a negative refractive index is shown to be accurate in comparison with numerical results. Using an example metamaterial response that provides a negative refractive index, it is shown that negative time-averaged stored energy can occur. The physical meaning of this negative energy is explained as the energy temporarily borrowed by the field from the material. This observation for negative index materials is of interest when approaching properties for a perfect lens. In the broader context, the observation of negative stored energy is of consequence in the study of dispersive materials.

  6. Electromagnetic pulse (EMP), Part I: Effects on field medical equipment

    SciTech Connect

    Vandre, R.H.; Klebers, J.; Tesche, F.M.; Blanchard, J.P. )

    1993-04-01

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation has the potential to cover an area as large as the continental United States with damaging levels of EMP radiation. In this study, two of seven items of medical equipment were damaged by an EMP simulator. Computer circuit analysis of 17 different items showed that 11 of the 17 items would be damaged by current surges on the power cords, while two would be damaged by current surges on external leads. This research showed that a field commander can expect approximately 65% of his electronic medical equipment to be damaged by a single nuclear detonation as far as 2,200 km away.

  7. Annals of conflicting results: looking back on electromagnetic field research.

    PubMed

    Schoen, D

    1996-11-15

    Few environmental health issues are as contentious as the question of whether exposure to electromagnetic fields (EMFs) from power lines increases cancer risk. Among the many actors in this controversy, epidemiologists have played the leading role in raising the question and motivating research. Epidemiologic studies of the effects of exposure to power-line EMFs include the investigation by Dr. Gilles Thériault and colleagues into incidence rates of cancer among electric-utility workers in Quebec, Ontario and France. With the development of personal dosimeters to measure exposure to electric, magnetic and pulsed EMFs, occupational studies in the 1990s have made an important methodologic advance. But, as Thériault explains, improvements in assessing exposure have not yet translated into clear and consistent findings.

  8. Human exposure to radiofrequency electromagnetic fields. Final rule.

    PubMed

    2013-06-04

    This document resolves several issues regarding compliance with the Federal Communications Commission's (FCC's) regulations for conducting environmental reviews under the National Environmental Policy Act (NEPA) as they relate to the guidelines for human exposure to RF electromagnetic fields. More specifically, the Commission clarifies evaluation procedures and references to determine compliance with its limits, including specific absorption rate (SAR) as a primary metric for compliance, consideration of the pinna (outer ear) as an extremity, and measurement of medical implant exposure. The Commission also elaborates on mitigation procedures to ensure compliances with its limits, including labeling and other requirements for occupational exposure classification, clarification of compliance responsibility at multiple transmitter sites, and labeling of fixed consumer transmitters.

  9. Paternal occupational exposure to electromagnetic fields and neuroblastoma in offspring

    SciTech Connect

    Wilkins, J.R. 3d.; Hundley, V.D. )

    1990-06-01

    Investigators in Texas have reported an association between paternal employment in jobs linked with exposure to electromagnetic fields and risk of neuroblastoma in offspring. In an attempt to replicate this finding, the authors conducted a case-control study in Ohio. A total of 101 incident cases of neuroblastoma were identified through the Columbus (Ohio) Children's Hospital Tumor Registry. All cases were born sometime during the period 1942-1967. From a statewide roster of birth certificates, four controls were selected for each case, with individual matching on the case's year of birth, race, and sex, and the mother's county of residence at the time of the (index) child's birth. Multiple definitions were employed to infer the potential for paternal occupational exposure to electromagnetic fields from the industry/occupation statements on the birth certificates. Case-control comparisons revealed adjusted odds ratios ranging in magnitude from 0.5 to 1.9. For two of the exposure definitions employed--both of which are similar to one used by the Texas investigators--the corresponding odds ratios were modestly elevated (odds ratios = 1.6 and 1.9). Notably, the magnitude of these odds ratios is not inconsistent with the Texas findings, where the exposure definition referred to yielded an odds ratio of 2.1. Because the point estimates in this study are imprecise, and because the biologic plausibility of the association is uncertain, the results reported here must be interpreted cautiously. However, the apparent consistency between two independent studies suggests that future evaluation of the association is warranted.

  10. Electromagnetic interference with cardiac pacemakers and implantable cardioverter-defibrillators from low-frequency electromagnetic fields in vivo.

    PubMed

    Tiikkaja, Maria; Aro, Aapo L; Alanko, Tommi; Lindholm, Harri; Sistonen, Heli; Hartikainen, Juha E K; Toivonen, Lauri; Juutilainen, Jukka; Hietanen, Maila

    2013-03-01

    Electromagnetic interference (EMI) can pose a danger to workers with pacemakers and implantable cardioverter-defibrillators (ICDs). At some workplaces electromagnetic fields are high enough to potentially inflict EMI. The purpose of this in vivo study was to evaluate the susceptibility of pacemakers and ICDs to external electromagnetic fields. Eleven volunteers with a pacemaker and 13 with an ICD were exposed to sine, pulse, ramp, and square waveform magnetic fields with frequencies of 2-200 Hz using Helmholtz coil. The magnetic field flux densities varied to 300 µT. We also tested the occurrence of EMI from an electronic article surveillance (EAS) gate, an induction cooktop, and a metal inert gas (MIG) welding machine. All pacemakers were tested with bipolar settings and three of them also with unipolar sensing configurations. None of the bipolar pacemakers or ICDs tested experienced interference in any of the exposure situations. The three pacemakers with unipolar settings were affected by the highest fields of the Helmholtz coil, and one of them also by the EAS gate and the welding cable. The induction cooktop did not interfere with any of the unipolarly programmed pacemakers. Magnetic fields with intensities as high as those used in this study are rare even in industrial working environments. In most cases, employees can return to work after implantation of a bipolar pacemaker or an ICD, after an appropriate risk assessment. Pacemakers programmed to unipolar configurations can cause danger to their users in environments with high electromagnetic fields, and should be avoided, if possible.

  11. Radiation from particles moving in small-scale magnetic fields created in solid-density laser-plasma laboratory experiments

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.; Medvedev, Mikhail V.

    2015-11-01

    Plasmas created by high-intensity lasers are often subject to the formation of kinetic-streaming instabilities, such as the Weibel instability, which lead to the spontaneous generation of high-amplitude, tangled magnetic fields. These fields typically exist on small spatial scales, i.e., "sub-Larmor scales." Radiation from charged particles moving through small-scale electromagnetic (EM) turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation, and it carries valuable information on the statistical properties of the EM field structure and evolution. Consequently, this radiation from laser-produced plasmas may offer insight into the underlying electromagnetic turbulence. Here, we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments.

  12. Radiation from particles moving in small-scale magnetic fields created in solid-density laser-plasma laboratory experiments

    SciTech Connect

    Keenan, Brett D. Medvedev, Mikhail V.

    2015-11-15

    Plasmas created by high-intensity lasers are often subject to the formation of kinetic-streaming instabilities, such as the Weibel instability, which lead to the spontaneous generation of high-amplitude, tangled magnetic fields. These fields typically exist on small spatial scales, i.e., “sub-Larmor scales.” Radiation from charged particles moving through small-scale electromagnetic (EM) turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation, and it carries valuable information on the statistical properties of the EM field structure and evolution. Consequently, this radiation from laser-produced plasmas may offer insight into the underlying electromagnetic turbulence. Here, we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments.

  13. Do the standard expressions for the electromagnetic field momentum need any modifications?

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-10-01

    We investigate here the question raised in the literature about the correct expression for the electromagnetic field momentum, especially when static or stationary fields are involved. For this, we examine a couple of simple but intriguing cases. First, we consider a system configuration in which electromagnetic field momentum is present even though the system is stationary. We trace the electromagnetic momentum to be present in the form of a continuous transport of electromagnetic energy from one part of the system to another, without causing any net change in the energy of the system. In a second case, we show that the electromagnetic momentum is zero irrespective of whether the charged system is static or in motion, even though the electromagnetic energy is present throughout. We demonstrate that the conventional formulation of electromagnetic field momentum describes the systems consistently without any real contradictions. Here, we also make exposition of a curiosity where electromagnetic energy decreases when the charged system gains velocity. Then we discuss the more general question that has been raised: Are the conventional formulas for energy-momentum of electromagnetic fields valid for all cases? Specifically, in the case of so-called "bound fields," do we need to change to some modified definitions? We show that in all cases it is only the conventional formulas that lead to results consistent with the rest of physics, including the special theory of relativity, and that any proposed modifications are thus superfluous.

  14. Electromagnetic field and cylindrical compact objects in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem ul Haq

    2016-05-01

    In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.

  15. Analyzing Exposures to Electromagnetic Fields in an Intensive Care Unit

    PubMed Central

    Gökmen, Necati; Erdem, Sabri; Toker, Kadir Atilla; Öçmen, Elvan; Gökmen, Başak Ilgım; Özkurt, Ahmet

    2016-01-01

    Objective In this study, we conducted a numerical analysis of exposure to electromagnetic fields (EMFs) in a hospital’s intensive care unit that is one of the most crucial one in terms of hazardous areas among all service units. This is a new study for measuring exposure to EMFs in an intensive care unit as well as other healthcare services in Turkey. Methods We measured the EMFs in the intensive care unit with a SRM-3006 (selective radiation metre), which was used for measurement of the absolute and the limit values of high frequency EMFs. The measurement points were chosen to represent the highest levels of exposure to which a person might be subjected. We obtained a dataset that included 5929 observations, with 96 extreme values, through measuring the magnetic field in terms of V/m. Results The measurements show the frequency varies from 47 MHz to 2.5 GHz as 17 frequency ranges at the measurement point as well. According to these findings, the referenced maximum safety limit was not exceeded. However, it was also found that mobile telecommunication was the most critical cause of magnetic fields. Conclusion Further studies need to be performed with different frequency antennas to assess the EMFs in intensive care units. PMID:27909603

  16. Singularities in the Transverse Fields of Electromagnetic Waves. II. Observations on the Electric Field

    NASA Astrophysics Data System (ADS)

    Hajnal, J. V.

    1987-12-01

    Electromagnetic waves propagating in free space contain three kinds of singularities called C lines, S surfaces and disclinations. The paper describes observations of these singularities in two different monochromatic microwave fields. The observations confirm all the theoretically predicted properties of the singularities that could be tested. As expected, the singularities were found to be prominent structural features of the fields and in consequence to provide an economical means of characterizing their structure. A notable result is the observation of both right-hand and left-hand C lines in a field that is nominally uniformly left-hand circularly polarized. This is in agreement with the previous assertion that, in general, electromagnetic wavefields contain both right-hand and left-hand polarized regions.

  17. The use of the rotating electromagnetic field for hardening treatment of details

    NASA Astrophysics Data System (ADS)

    Lebedev, V. A.; Kochubey, A. A.; Kiricheck, A. V.

    2017-02-01

    The article discusses energy aspects of details’ hardening with convective flows of freely moving indenters under the conditions of the rotating electromagnetic field. Results of theoretical studies of the kinetics of the movement of the ferromagnetic indenters are presented and the energy model of the state of the rotating magnetic liquefied layer is proposed, formed under the influence of the rotating electromagnetic field.

  18. Spontaneous topological transitions of electromagnetic fields in spatially inhomogeneous C P -odd domains

    NASA Astrophysics Data System (ADS)

    Tuchin, Kirill

    2016-12-01

    Metastable C P -odd domains of the hot QCD matter are coupled to QED via the chiral anomaly. The topology of electromagnetic field in these domains is characterized by magnetic helicity. It is argued, using the Maxwell-Chern-Simons model, that spatial inhomogeneity of the domains induces spontaneous transitions of electromagnetic field between the opposite magnetic helicity states.

  19. Simulation Study of Magnetic Fields generated by the Electromagnetic Filamentation Instability driven by Pair Loading

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hededal, C.; Hardee, P.; Mizuno, Y.; Fishman, G. J.

    2007-01-01

    Using a 3-D relativistic particle-in-cell (RPIC) code, we have investigated particle acceleration associated with a relativistic electron-positron (cold) jet propagating into ambient electron-positron and electron-ion plasmas without initial magnetic fields in order to investigate the nonlinear stage of the Weibel instability. We have also performed simulations with broad Lorentz factor distribution of jet electrons and positrons, which are assumed to be created by the photon annihilation. The growth time and nonlinear saturation levels depend on the initial jet parallel velocity distributions and ambient plasma. Simulations show that the Weibel instability created in the collisionless shocks accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The nonlinear fluctuation amplitude of densities, currents, electric, and magnetic fields in the electron-ion ambient plasma are larger than those in the electron-positron ambient plasma. We have shown that plasma instabilities driven by these streaming electron-positron pairs are responsible for the excitation of near-equipartition, turbulent magnetic fields. These fields maintain a strong saturated level on timescales much longer than the electron skin depth at least for the duration of the simulations. Our results reveal the importance of the electromagnetic filamentation instability in ensuring an effective coupling between electron-positron pairs and ions, and may help explain the origin of large upstream fields in GRB shock.

  20. Modeling of interactions of electromagnetic fields with human bodies

    NASA Astrophysics Data System (ADS)

    Caputa, Krzysztof

    Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere

  1. Idiopathic environmental intolerance attributed to electromagnetic fields (formerly 'electromagnetic hypersensitivity'): An updated systematic review of provocation studies.

    PubMed

    Rubin, G James; Nieto-Hernandez, Rosa; Wessely, Simon

    2010-01-01

    Idiopathic Environmental Intolerance attributed to electromagnetic fields (IEI-EMF; formerly 'electromagetic hypersensitivity') is a medically unexplained illness in which subjective symptoms are reported following exposure to electrical devices. In an earlier systematic review, we reported data from 31 blind provocation studies which had exposed IEI-EMF volunteers to active or sham electromagnetic fields and assessed whether volunteers could detect these fields or whether they reported worse symptoms when exposed to them. In this article, we report an update to that review. An extensive literature search identified 15 new experiments. Including studies reported in our earlier review, 46 blind or double-blind provocation studies in all, involving 1175 IEI-EMF volunteers, have tested whether exposure to electromagnetic fields is responsible for triggering symptoms in IEI-EMF. No robust evidence could be found to support this theory. However, the studies included in the review did support the role of the nocebo effect in triggering acute symptoms in IEI-EMF sufferers. Despite the conviction of IEI-EMF sufferers that their symptoms are triggered by exposure to electromagnetic fields, repeated experiments have been unable to replicate this phenomenon under controlled conditions. A narrow focus by clinicians or policy makers on bioelectromagnetic mechanisms is therefore, unlikely to help IEI-EMF patients in the long-term.

  2. Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.

    PubMed

    Niu, D; Zhu, F; Qiu, R; Niu, Q

    2016-01-01

    High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.

  3. Three-dimensional electromagnetic breathers in carbon nanotubes with the field inhomogeneity along their axes

    NASA Astrophysics Data System (ADS)

    Zhukov, Alexander V.; Bouffanais, Roland; Fedorov, Eduard G.; Belonenko, Mikhail B.

    2013-10-01

    We study the propagation of extremely short electromagnetic three-dimensional bipolar pulses in an array of semiconductor carbon nanotubes. The heterogeneity of the pulse field along the axis of the nanotubes is accounted for the first time. The evolution of the electromagnetic field and the charge density of the sample are described by Maxwell's equations supplemented by the continuity equation. Our analysis reveals for the first time the possibility of propagation of three-dimensional electromagnetic breathers in CNTs arrays. Specifically, we found that the propagation of short electromagnetic pulse induces a redistribution of the electron density in the sample.

  4. Implementation Of External Magnetic Fields To Create Pressure High Density Plasmas On The Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Azzari, Phil; Hopson, Jordan; Frank, Jordan; Crilly, Paul; James, Royce; Karama, Jackson; Duke-Tinson, Omar; Paolino, Richard; Sandri, Eva; Sherman, Justin; Wright, Erin; Turk, Jeremy

    2016-10-01

    HPX Plasmas are created by imparting directed energy into a Pyrex tube preloaded with Ar gas at fill pressures on the order of 10-4 mTorr utilizing an RF power supply and matching box that can deliver about 250 W of power in the 20 MHz to 100 MHz frequency range. It has been demonstrated [1] that a uniform magnetic field in lower energy level plasmas can facilitate a decrease in inertial effects, which promotes energy conservation within the plasma to provide the necessary external energy in the plasma's magnetic field required to reach the Helicon Mode. This uniform magnetic field will be created by a set of electromagnets capable of producing 1000 gauss. These electromagnets, provided by Princeton Plasma Physics Laboratory will facilitate W-mode production. After reaching the Helicon Mode, the plasma must be forced along the Pyrex tube by an acceleration coil in order to come in contact with several diagnostic probes and to be propelled into a viewing port so Thompson Scattering can be conducted. The progress on the development of the acceleration coil and electromagnets will be presented. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.

  5. Electromagnetic fluid drift turbulence in static ergodic magnetic fields

    SciTech Connect

    Reiser, D.; Scott, B.

    2005-12-15

    Numerical simulations of three-dimensional nonlinear electromagnetic fluid drift turbulence in a tokamak plasma with externally applied stochastic magnetic-field perturbations are presented. The contributions to the radial particle transport due to nonlinearities arising from ExB advection and magnetic flutter are investigated for perturbation fields of varying strengths in the cases of low and high collisionalities. The perturbation strength is varied to study the physics for Chirikov parameters above 1. In all the cases considered a significant increase of ExB transport is found. A static contribution in the density and velocity perturbations contributes significantly to the total radial ExB transport. For low collisionality, the external perturbation leads to enhanced density and velocity fluctuations over a broad range in the toroidal wave-number spectrum, resulting in an enhanced turbulent flux. For high collisionality, the density fluctuations stay roughly the same and the velocity fluctuations are increased in an intermediate range of the toroidal wave number spectrum, separated from the maximum of the density fluctuations, thus leaving the turbulent flux almost unchanged.

  6. Electromagnetically induced transparency resonances inverted in magnetic field

    SciTech Connect

    Sargsyan, A.; Sarkisyan, D. E-mail: david@ipr.sci.am; Pashayan-Leroy, Y.; Leroy, C.; Cartaleva, S.; Wilson-Gordon, A. D.; Auzinsh, M.

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  7. Adaptive framework for uncertainty analysis in electromagnetic field measurements.

    PubMed

    Prieto, Javier; Alonso, Alonso A; de la Rosa, Ramón; Carrera, Albano

    2015-04-01

    Misinterpretation of uncertainty in the measurement of the electromagnetic field (EMF) strength may lead to an underestimation of exposure risk or an overestimation of required measurements. The Guide to the Expression of Uncertainty in Measurement (GUM) has internationally been adopted as a de facto standard for uncertainty assessment. However, analyses under such an approach commonly assume unrealistic static models or neglect relevant prior information, resulting in non-robust uncertainties. This study proposes a principled and systematic framework for uncertainty analysis that fuses information from current measurements and prior knowledge. Such a framework dynamically adapts to data by exploiting a likelihood function based on kernel mixtures and incorporates flexible choices of prior information by applying importance sampling. The validity of the proposed techniques is assessed from measurements performed with a broadband radiation meter and an isotropic field probe. The developed framework significantly outperforms GUM approach, achieving a reduction of 28% in measurement uncertainty. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Electromagnetic cascades and the depletion of intense fields

    NASA Astrophysics Data System (ADS)

    Bulanov, Stepan; Seipt, Daniel; Heinzl, Thomas; Marklund, Mattias; Ji, Qing; Steinke, Sven; Schroeder, Carl; Esarey, Eric; Leemans, Wim P.

    2016-10-01

    The interaction of electrons, positrons, and photons with intense electromagnetic fields gives rise to multi-photon Compton and Breit-Wheeler processes. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution. Moreover the multi-photon nature of Compton and Breit-Wheeler processes implies the absorption of a significant number of photons. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to a significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. The relevance of these results to the proposed BELLA-i beamline at BELLA center at LBNL is discussed. We acknowledge support from the Office of Science of the US DOE under Contract No. DE-AC02-05CH11231.

  9. Error sources affecting thermocouple thermometry in RF electromagnetic fields.

    PubMed

    Chakraborty, D P; Brezovich, I A

    1982-03-01

    Thermocouple thermometry errors in radiofrequency (typically 13, 56 MHZ) electromagnetic fields such as are encountered in hyperthermia are described. RF currents capacitatively or inductively coupled into the thermocouple-detector circuit produce errors which are a combination of interference, i.e., 'pick-up' error, and genuine rf induced temperature changes at the junction of the thermocouple. The former can be eliminated by adequate filtering and shielding; the latter is due to (a) junction current heating in which the generally unequal resistances of the thermocouple wires cause a net current flow from the higher to the lower resistance wire across the junction, (b) heating in the surrounding resistive material (tissue in hyperthermia), and (c) eddy current heating of the thermocouple wires in the oscillating magnetic field. Low frequency theories are used to estimate these errors under given operating conditions and relevant experiments demonstrating these effects and precautions necessary to minimize the errors are described. It is shown that at 13.56 MHz and voltage levels below 100 V rms these errors do not exceed 0.1 degrees C if the precautions are observed and thermocouples with adequate insulation (e.g., Bailey IT-18) are used. Results of this study are being currently used in our clinical work with good success.

  10. Electromagnetic fluid drift turbulence in static ergodic magnetic fields

    NASA Astrophysics Data System (ADS)

    Reiser, D.; Scott, B.

    2005-12-01

    Numerical simulations of three-dimensional nonlinear electromagnetic fluid drift turbulence in a tokamak plasma with externally applied stochastic magnetic-field perturbations are presented. The contributions to the radial particle transport due to nonlinearities arising from E ×B advection and magnetic flutter are investigated for perturbation fields of varying strengths in the cases of low and high collisionalities. The perturbation strength is varied to study the physics for Chirikov parameters above 1. In all the cases considered a significant increase of E ×B transport is found. A static contribution in the density and velocity perturbations contributes significantly to the total radial E ×B transport. For low collisionality, the external perturbation leads to enhanced density and velocity fluctuations over a broad range in the toroidal wave-number spectrum, resulting in an enhanced turbulent flux. For high collisionality, the density fluctuations stay roughly the same and the velocity fluctuations are increased in an intermediate range of the toroidal wave number spectrum, separated from the maximum of the density fluctuations, thus leaving the turbulent flux almost unchanged.

  11. Convective heat transfer in engine coolers influenced by electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Karcher, C.; Kühndel, J.

    2017-08-01

    In engine coolers of off-highway vehicles, convective heat transfer at the coolant side limits both efficiency and performance density of the apparatus. Here, due to restrictions in construction and design, backwater areas and stagnation regions cannot be avoided. Those unwanted changes in flow characteristics are mainly triggered by flow deflections and sudden cross-sectional expansions. In application, mixtures of water and glysantine are used as appropriate coolants. Such coolants typically show an electrical conductivity of a few S/m. Coolant flow and convective heat transfer can then be controlled using Lorentz forces. These body forces are generated within the conducting fluid by the interactions of an electrical current density and a localized magnetic field, both of which are externally superimposed. In future application, this could be achieved by inserting electrodes in the cooler wall and a corresponding arrangement of permanent magnets. In this paper we perform numerical simulations of such magnetohydrodynamic flow in three model geometries that frequently appear in engine cooling applications: Carnot-Borda diffusor, 90° bend, and 180° bend. The simulations are carried out using the software package ANSYS Fluent. The present study demonstrates that, depending on the electromagnetic interaction parameter and the specific geometric arrangement of electrodes and magnetic field, Lorentz forces are suitable to break up eddy waters and separation zones and thus significantly increase convective heat transfer in these areas. Furthermore, the results show that hydraulic pressure losses can be reduced due to the pumping action of the Lorentz forces.

  12. Extremely low frequency electromagnetic fields and cancer: the epidemiologic evidence.

    PubMed Central

    Bates, M N

    1991-01-01

    This paper reviews the epidemiologic evidence that low frequency electromagnetic fields generated by alternating current may be a cause of cancer. Studies examining residential exposures of children and adults and studies of electrical and electronics workers are reviewed. Using conventional epidemiologic criteria for inferring causal associations, including strength and consistency of the relationship, biological plausibility, and the possibility of bias as an explanation, it is concluded that the evidence is strongly suggestive that such radiation is carcinogenic. The evidence is strongest for brain and central nervous system cancers in electrical workers and children. Weaker evidence supports an association with leukemia in electrical workers. Some evidence also exists for an association with melanoma in electrical workers. Failure to find consistent evidence of a link between residential exposures and adult cancers may be attributable to exposure misclassification. Studies so far have used imperfect surrogates for any true biologically effective magnetic field exposure. The resulting exposure misclassification has produced relative risk estimates that understate any true risk. PMID:1821368

  13. Growth inhibition of Staphylococcus aureus induced by low-frequency electric and electromagnetic fields.

    PubMed

    Obermeier, Andreas; Matl, Florian Dominik; Friess, Wolfgang; Stemberger, Axel

    2009-05-01

    Magnetic field therapy is an established technique in the treatment of pseudarthrosis. In cases of osteomylitis, palliation is also observed. This study focuses on the impact of different electric and electromagnetic fields on the growth of Staphylococcus aureus by in vitro technologies. Cultures of Staphylococcus aureus in fluid and gel-like medium were exposed to a low-frequency electromagnetic field, an electromagnetic field combined with an additional electric field, a sinusoidal electric field and a static electric field. In gel-like medium no significant difference between colony-forming units of exposed samples and non-exposed references was detected. In contrast, Staphylococcus aureus concentrations in fluid medium could clearly be reduced under the influence of the four different applied fields within 24 h of experiment. The strongest effects were observed for the direct current electric field which could decrease CFU/ml of 37%, and the low-frequency electromagnetic field with additional induced electric alternating field with a decrease of Staphylococci concentration by 36%. The effects of the electromagnetic treatment on Staphylococci within fluid medium are significantly higher than in gel-like medium. The application of low-frequency electromagnetic fields corroborates clinical situations of bone infections during magnetic field therapy. Copyright 2009 Wiley-Liss, Inc.

  14. Influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction

    SciTech Connect

    Forsberg, M.; Brodin, G.; Papadopoulos, D.

    2010-07-15

    The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the QED effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.

  15. Electromagnetic Near-Field Computations for a Broadcast Monopole Using Numerical Electromagnetics Code (NEC).

    DTIC Science & Technology

    1983-09-01

    Electromagnetic Near-FEjeid Computazions for a Broadcast Mono~ole using ’Vimerical El.ectromagnetics Code (NEC) by David Duerr T-homson Li’~enntCommander... Poggio of Lawrence Livermore Laboratory, January 1981. 3. Schelkuncff, S.A. and Friis, H.T., Antennas Theory -and ?ractice, Wiley, 1952. 4. Jordan...Virginia 22314 2. Library, Code 0142 2 Naval Postgraduate School Monterey, California 93943 3. LCDR David D. Thomson (Code 33n9)2Naval Weapons Center

  16. Electromagnetic Radiation System (EMRS) for Susceptibility Testing.

    DTIC Science & Technology

    ELECTROMAGNETIC COMPATIBILITY, *ELECTROMAGNETIC SUSCEPTIBILITY, COMMUNICATION EQUIPMENT, ELECTRONIC EQUIPMENT, ELECTROMAGNETIC RADIATION , ANTENNAS, ELECTROMAGNETIC INTERFERENCE, RADAR SIGNALS, RADIO SIGNALS, FIELD INTENSITY.

  17. Possibility of sounding Earth by using electromagnetic field of sea current

    NASA Astrophysics Data System (ADS)

    Smagin, V. P.; Fonarev, G. A.; Savchenko, V. N.

    1985-06-01

    The possibilities of determining the conductivity of bottom rocks by measuring different combinations of components of the electromagnetic field of a current on the ocean floor are analyzed. It is shown that the sea current induces an electromagnetic field in the geomagnetic field. Then a formula is derived for the magnetic component B. After determining B it is possible to find the electric field in sea water and in rocks beneath the ocean layer. The parameter epsilon is introduced which makes it possible to ascertain the vertical gradient of the magnetic field in bottom rocks; a function is derived which characterizes the magnetic field in the bottom rocks. Formulas are derived which can be used in estimating the width of a current by an electromagnetic method. It is shown, therefore, that with electromagnetic sounding in the fields of sea currents it is possible to make a simple interpretation of the experimental data within the framework of an exponential model of ocean floor conductivity.

  18. [ASSESSMENT OF OCCUPATIONAL EXPOSURE TO RADIO FREQUENCY ELECTROMAGNETIC FIELDS].

    PubMed

    Aniołczyk, Halina; Mariańska, Magda; Mamrot, Paweł

    2015-01-01

    European Union Directive 2013/35/UE provides for the implementation of EU regulations into national legislation. Our aim is to assess actual health hazards from radiofrequency eldctromagnetic field (RF EMF) (range: 100 kHz - 300 GHz) and indicate workplaces with the highest risk to employee health. Data from measurements of RF EMF performed by the Laboratory of Electromagnetic Hazards in Nofer Institute of Occupational Medicine (Łódź, Poland) were analyzed. The analysis covered the results of electric field intensity (E) for over 450 selected items. The ranges of protection zones and the extent to which maximum admissible intensity (MAI) values were also analyzed. The determinations and'measurements of EMF in the work environment met the requirements of Polish Standard, while Polish regulations on the MAI values were used as the criterion for the assessment of the exposure. The highest values of E field intensity at workplaces were measured for: electrosurgery, to 400 V/m, and short-wave diathermy units, to 220 V/m, dielectric welders to 240 V/m, within the FM radio antenna systems, to 180 V/m. The widest protection zones were noted for prototype research instruments, short-wave diathermy units, and dielectric welders. The most excessive (up to 12-fold MAI) values were recorded for dielectric welders, short-wave diathermy units (up to 11-fold) and microwave diathermy units (up to 8-fold). Our results have confirmed the high RF EMF values for physiotherapists, operators of dielectric welders, and mast maintenance workers in radio com munication facilities (especially radio and TV broadcasting stations).

  19. Consequences of rotating off-centred dipolar electromagnetic field in vacuum around Pulsars

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Pétri, J.

    2016-12-01

    Studying the electromagnetic field of pulsars is one of the key themes in neutron star physics. While most of the works assume a standard central dipolar electromagnetic field model, recently some efforts had been made in explaining how inclusion of higher field components produces drastic consequences in our understanding of these objects. We put forward the effects of a unique recently presented approach in which the magnetic axis is shifted off from the centre. It is found that the rotating off-centred dipolar electromagnetic field itself reveals the presence of the higher components within. The consequences of this approach on the shape of the polar caps and the emission diagrams are discussed.

  20. Effects of pulsed electromagnetic field frequencies on the osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Luo, Fei; Hou, Tianyong; Zhang, Zehua; Xie, Zhao; Wu, Xuehui; Xu, Jianzhong

    2012-04-01

    The purpose of this study was to evaluate the effect of different frequencies of pulsed electromagnetic fields on the osteogenic differentiation of human mesenchymal stem cells. Third-generation human mesenchymal stem cells were irradiated with different frequencies of pulsed electromagnetic fields, including 5, 25, 50, 75, 100, and 150 Hz, with a field intensity of 1.1 mT, for 30 minutes per day for 21 days. Changes in human mesenchymal stem cell morphology were observed using phase contrast microscopy. Alkaline phosphatase activity and osteocalcin expression were also determined to evaluate human mesenchymal stem cell osteogenic differentiation.Different effects were observed on human mesenchymal stem cell osteoblast induction following exposure to different pulsed electromagnetic field frequencies. Levels of human mesenchymal stem cell differentiation increased when the pulsed electromagnetic field frequency was increased from 5 hz to 50 hz, but the effect was weaker when the pulsed electromagnetic field frequency was increased from 50 Hz to 150 hz. The most significant effect on human mesenchymal stem cell differentiation was observed at of 50 hz.The results of the current study show that pulsed electromagnetic field frequency is an important factor with regard to the induction of human mesenchymal stem cell differentiation. Furthermore, a pulsed electromagnetic field frequency of 50 Hz was the most effective at inducing human mesenchymal stem cell osteoblast differentiation in vitro.

  1. Estimation of the Lithospheric Component Share in the Earth Natural Pulsed Electromagnetic Field Structure

    NASA Astrophysics Data System (ADS)

    Malyshkov, S. Y.; Gordeev, V. F.; Polyvach, V. I.; Shtalin, S. G.; Pustovalov, K. N.

    2017-04-01

    Article describes the results of the atmosphere and Earth’s crust climatic and ecological parameters integrated monitoring. The estimation is made for lithospheric component share in the Earth natural pulsed electromagnetic field structure. To estimate lithospheric component we performed a round-the-clock monitoring of the Earth natural pulsed electromagnetic field background variations at the experiment location and measured the Earth natural pulsed electromagnetic field under electric shields. Natural materials in a natural environment were used for shielding, specifically lakes with varying parameters of water conductivity. Skin effect was used in the experiment - it is the tendency of electromagnetic waves amplitude to decrease with greater depths in the conductor. Atmospheric and lithospheric component the Earth natural pulsed electromagnetic field data recorded on terrain was compared against the recorded data with atmosphere component decayed by an electric shield. In summary we have demonstrated in the experiment that thunderstorm discharge originating electromagnetic field decay corresponds to the decay calculated using Maxwell equations. In the absence of close lightning strikes the ratio of field intensity recorded on terrain to shielded field intensity is inconsistent with the ratio calculated for atmospheric sources, that confirms there is a lithospheric component present to the Earth natural pulsed electromagnetic field.

  2. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis.

    PubMed

    Zhu, Siyi; He, Hongchen; Zhang, Chi; Wang, Haiming; Gao, Chengfei; Yu, Xijie; He, Chengqi

    2017-09-01

    Postmenopausal osteoporosis (PMOP) is considered to be a well-defined subject that has caused high morbidity and mortality. In elderly women diagnosed with PMOP, low bone mass and fragile bone strength have been proven to significantly increase risk of fragility fractures. Currently, various anabolic and anti-resorptive therapies have been employed in an attempt to retain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs), first applied in treating patients with delayed fracture healing and nonunions, may turn out to be another potential and effective therapy for PMOP. PEMFs can enhance osteoblastogenesis and inhibit osteoclastogenesis, thus contributing to an increase in bone mass and strength. However, accurate mechanisms of the positive effects of PEMFs on PMOP remain to be further elucidated. This review attempts to summarize recent advances of PEMFs in treating PMOP based on clinical trials, and animal and cellular studies. Possible mechanisms are also introduced, and the future possibility of application of PEMFs on PMOP are further explored and discussed. Bioelectromagnetics. 38:406-424, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Electromagnetic fields in neonatal incubators: the reasons for an alert.

    PubMed

    Bellieni, Carlo Valerio; Nardi, Valentina; Buonocore, Giuseppe; Di Fabio, Sandra; Pinto, Iole; Verrotti, Alberto

    2017-10-08

    Neonatal incubators are important tools for sick newborns in the first few days of life. Nevertheless, their electric engine, often very close to the newborn's body, emits electromagnetic fields (EMF) to which newborns are exposed. Aim of this paper is to review the available literature on EMF exposure in incubators, and the effects of such exposures on newborns that have been investigated. We carried out a systematic review of studies about EMF emissions produced by incubators, using Medline and Embase databases from 1993 to 2017. We retrieved 15 papers that described the EMF exposure in incubators and their biological effects on babies. EMF levels in incubators appear to be between 2 and 100 mG, depending on the distance of the mattress from the electric engine. In some cases they exceed this range. These values interfere with melatonin production or with vagal tone. Even caregivers are exposed to high EMF, above 200 mG, when working at close contact with the incubators. EMF have been described as potentially hazardous for human health, and values reported in this review are an alert to prevent babies' and caregivers' exposure when close to the incubators. A precautionary approach should be adopted in future incubator design, to prevent high exposures of newborns in incubators and of caregivers as well.

  4. The role of electromagnetic fields in neurological disorders.

    PubMed

    Terzi, Murat; Ozberk, Berra; Deniz, Omur Gulsum; Kaplan, Suleyman

    2016-09-01

    In the modern world, people are exposed to electromagnetic fields (EMFs) as part of their daily lives; the important question is "What is the effect of EMFs on human health?" Most previous studies are epidemiological, and we still do not have concrete evidence of EMF pathophysiology. Several factors may lead to chemical, morphological, and electrical alterations in the nervous system in a direct or indirect way. It is reported that non-ionizing EMFs have effects on animals and cells. The changes they bring about in organic systems may cause oxidative stress, which is essential for the neurophysiological process; it is associated with increased oxidization in species, or a reduction in antioxidant defense systems. Severe oxidative stress can cause imbalances in reactive oxygen species, which may trigger neurodegeneration. This review aims to detail these changes. Special attention is paid to the current data regarding EMFs' effects on neurological disease and associated symptoms, such as headache, sleep disturbances, and fatigue. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effect of cyclophosphamide and electromagnetic fields on mouse bone marrow

    SciTech Connect

    Cadossi, R.; Zucchini, P.; Emilia, G.; Torelli, G. )

    1990-02-26

    The authors have previously shown that the exposure to low frequency pulsing electromagnetic fields (PEMF) of mice X-ray irradiated resulted in an increased damage to the bone marrow. The series of experiments here reported were designed to investigate the effect of PEMF exposure after intraperitoneum injection of 200mg/kg of cyclophosphamide (CY). Control mice were CY injected only; experimental mice were CY injected and then exposed to PEMF. Exposure to PEMF (24 hours/day) increased the rate of decline of white blood cells in peripheral blood. Spleen weight was statistically higher among control mice than among mice exposed to PEMF at day 6, 8 and 10 after CY injection. Spleen autoradiography proved to be higher among PEMF exposed mice than among controls at day 8 and 9 after CY injection. The grafting efficiency of the bone marrow obtained from control mice was higher than the grafting efficiency of the bone marrow recovered from mice exposed to PEMF. All these data indicate that the exposure to PEMF increases the cytotoxic effect of CY.

  6. Effect of electromagnetic field exposure on the reproductive system

    PubMed Central

    Park, Chan Jin

    2012-01-01

    The safety of human exposure to an ever-increasing number and diversity of electromagnetic field (EMF) sources both at work and at home has become a public health issue. To date, many in vivo and in vitro studies have revealed that EMF exposure can alter cellular homeostasis, endocrine function, reproductive function, and fetal development in animal systems. Reproductive parameters reported to be altered by EMF exposure include male germ cell death, the estrous cycle, reproductive endocrine hormones, reproductive organ weights, sperm motility, early embryonic development, and pregnancy success. At the cellular level, an increase in free radicals and [Ca2+]i may mediate the effect of EMFs and lead to cell growth inhibition, protein misfolding, and DNA breaks. The effect of EMF exposure on reproductive function differs according to frequency and wave, strength (energy), and duration of exposure. In the present review, the effects of EMFs on reproductive function are summarized according to the types of EMF, wave type, strength, and duration of exposure at cellular and organism levels. PMID:22563544

  7. Effect of extremely low frequency electromagnetic fields on bacterial membrane.

    PubMed

    Oncul, Sule; Cuce, Esra M; Aksu, Burak; Inhan Garip, Ayse

    2016-01-01

    The effect of extremely low frequency electromagnetic fields (ELF-EMF) on bacteria has attracted attention due to its potential for beneficial uses. This research aimed to determine the effect of ELF-EMF on bacterial membrane namely the membrane potential, surface potential, hydrophobicity, respiratory activity and growth. Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli were subjected to ELF-EMF, 50 Hz, 1 mT for 2 h. Membrane potential was determined by fluorescence spectroscopy with or without EDTA (Ethylenediaminetetraacetic acid) with DisC3(5) (3,3-dipropylthiacarbocyanine iodide), zeta potential measurements were performed by electrophoretic mobility, hydrophobicity of the membrane was measured with MATH (Microbial Adhesion to Hydrocarbons) test, respiratory activity was determined with CTC (5-Cyano-2,3-ditolyl tetrazolium chloride), colony forming unit (CFU) and DAPI (4',6-diamidino-2-phenylindole, dihydrochloride) was used for growth determinations. ELF-EMF caused changes in physicochemical properties of both Gram-positive and Gram-negative bacteria. Hyperpolarization was seen in S. aureus and EDTA-treated E. coli. Surface potential showed a positive shift in S. aureus contrariwise to the negative shift seen in EDTA-untreated E. coli. Respiratory activity increased in both bacteria. A slight decrease in growth was observed. These results show that ELF-EMF affects the crucial physicochemical processes in both Gram-positive and Gram-negative bacteria which need further research.

  8. Effects of Electromagnetic Fields on Automated Blood Cell Measurements.

    PubMed

    Vagdatli, Eleni; Konstandinidou, Vasiliki; Adrianakis, Nikolaos; Tsikopoulos, Ioannis; Tsikopoulos, Alexios; Mitsopoulou, Kyriaki

    2014-08-01

    The aim of this study is to investigate whether the electromagnetic fields associated with mobile phones and/or laptops interfere with blood cell counts of hematology analyzers. Random blood samples were analyzed on an Aperture Impedance hematology analyzer. The analysis was performed in four ways: (A) without the presence of any mobile phone or portable computer in use, (B) with mobile phones in use (B1: one mobile, B4: four mobiles), (C) with portable computers (laptops) in use (C1: one laptop, C3: three laptops), and (D) with four mobile phones and three laptops in use simultaneously. The results obtained demonstrated a statistically significant decrease in neutrophil, erythrocyte, and platelet count and an increase in lymphocyte count, mean corpuscular volume, and red blood cell distribution width, notably in the B4 group. Despite this statistical significance, in clinical practice, only the red blood cell reduction could be taken into account, as the mean difference between the A and B4 group was 60,000 cells/µL. In group D, the analyzer gave odd results after 11 measurements and finally stopped working. The combined and multiple use of mobile phones and computers affects the function of hematology analyzers, leading to false results. Consequently, the use of such electronic devices must be avoided.

  9. Generation of electromagnetic emission during the injection of dense supersonic plasma flows into arched magnetic field

    NASA Astrophysics Data System (ADS)

    Mansfeld, Dmitry; Golubev, Sergey; Viktorov, Mikhail; Vodopyanov, Alexander; Yushkov, George

    2015-11-01

    Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013cm-3 to 1015cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge and injected into open magnetic trap across magnetic field lines. The filling of the arched magnetic trap with plasma and further magnetic field lines break by dense plasma flow was accompanied by pulsed electromagnetic emission at electron cyclotron frequency range, which can generated by electrons in the place of intensive deceleration of plasma flow in magnetic field. Grant of Ministry of Education 14.Z50.31.0007.

  10. Influence of different types of electromagnetic fields on skin reparatory processes in experimental animals.

    PubMed

    Matic, Milan; Lazetic, Bogosav; Poljacki, Mirjana; Djuran, Verica; Matic, Aleksandra; Gajinov, Zorica

    2009-05-01

    Wound healing is a very complex process, some phases of which have only recently been explained. Magnetic and electromagnetic fields can modulate this process in a non-thermal way. The aim of this research was to compare the influence of constant and pulsed electromagnetic fields and low-level laser therapy (LLLT) on wound healing in experimental animals. The experiment was conducted on 120 laboratory rats divided into four groups of 30 animals each (constant electromagnetic field, pulsed electromagnetic field, LLLT and control group). It lasted for 21 days. Under the influence of the constant electromagnetic field the healing of the skin defect was accelerated in comparison with the control group. The difference was statistically significant in all the weeks of the experiment at the P < 0.01 level. Accelerated healing was also observed under the influence of the pulsed electromagnetic field (P < 0.05). In the group of animals exposed to LLLT, the healing of the skin defect was faster than in the control group. The statistical significance was at the P < 0.05 level. Different types of electromagnetic fields have a promoting effect on the wound healing process.

  11. Pulsed electromagnetic field with or without exercise therapy in the treatment of benign prostatic hyperplasia.

    PubMed

    Elgohary, Hany M; Tantawy, Sayed A

    2017-08-01

    [Purpose] To investigate the effect of pulsed electromagnetic field with or without exercise therapy in the treatment of benign prostatic hyperplasia. [Subjects and Methods] Sixty male patients aged 55-65 years with benign prostatic hyperplasia were invited to participate in this study. Patients were randomly assigned to Group A (n=20; patients who received pulsed electromagnetic field in addition to pelvic floor and aerobic exercises), Group B (n=20; patients who received pulsed electromagnetic field), and Group C (n=20; patients who received placebo electromagnetic field). The assessments included post-void residual urine, urine flow rate, prostate specific antigen, white blood cells count, and International Prostate Symptom Score were weighed, before and after a 4-week intervention. [Results] There were significant differences in Group A and B in all parameters. Group C showed non-significant differences in all measured variables except for International Prostate Symptom Score. Among groups, all parameters showed highly significant differences in favor of Group A. There were non-significant differences between Group A and B and significant difference between Groups A and C and between Groups B and C. [Conclusion] The present study demonstrated that electromagnetic field had a significant impact on the treatment of benign prostatic hyperplasia. Accordingly, electromagnetic field can be utilized alone or in combination with other physiotherapy modalities. Moreover, clinicians should have the capacity to perceive the advantages accomplished using extra treatment alternatives. Electromagnetic field is a safe, noninvasive method and can be used for the treatment of benign prostatic hyperplasia.

  12. Occupational exposure to electromagnetic fields and acute leukaemia: analysis of a case-control study

    PubMed Central

    Willett, E; McKinney, P; Fear, N; Cartwright, R; Roman, E

    2003-01-01

    Aims: To investigate whether the risk of acute leukaemia among adults is associated with occupational exposure to electromagnetic fields. Methods: Probable occupational exposure to electromagnetic fields at higher than typical residential levels was investigated among 764 patients diagnosed with acute leukaemia during 1991–96 and 1510 sex and age matched controls. A job exposure matrix was applied to the self reported employment histories to determine whether or not a subject was exposed to electromagnetic fields. Risks were assessed using conditional logistic regression for a matched analysis. Results: Study subjects considered probably ever exposed to electromagnetic fields at work were not at increased risk of acute leukaemia compared to those considered never exposed. Generally, no associations were observed on stratification by sex, leukaemia subtype, number of years since exposure stopped, or occupation; there was no evidence of a dose-response effect using increasing number of years exposed. However, relative to women considered never exposed, a significant excess of acute lymphoblastic leukaemia was observed among women probably exposed to electromagnetic fields at work that remained increased irrespective of time prior to diagnosis or job ever held. Conclusion: This large population based case-control study found little evidence to support an association between occupational exposure to electromagnetic fields and acute leukaemia. While an excess of acute lymphoblastic leukaemia among women was observed, it is unlikely that occupational exposure to electromagnetic fields was responsible, given that increased risks remained during periods when exposure above background levels was improbable. PMID:12883018

  13. Exposure to electromagnetic fields from laptop use of "laptop" computers.

    PubMed

    Bellieni, C V; Pinto, I; Bogi, A; Zoppetti, N; Andreuccetti, D; Buonocore, G

    2012-01-01

    Portable computers are often used at tight contact with the body and therefore are called "laptop." The authors measured electromagnetic fields (EMFs) laptop computers produce and estimated the induced currents in the body, to assess the safety of laptop computers. The authors evaluated 5 commonly used laptop of different brands. They measured EMF exposure produced and, using validated computerized models, the authors exploited the data of one of the laptop computers (LTCs) to estimate the magnetic flux exposure of the user and of the fetus in the womb, when the laptop is used at close contact with the woman's womb. In the LTCs analyzed, EMF values (range 1.8-6 μT) are within International Commission on Non-Ionizing Radiation (NIR) Protection (ICNIRP) guidelines, but are considerably higher than the values recommended by 2 recent guidelines for computer monitors magnetic field emissions, MPR II (Swedish Board for Technical Accreditation) and TCO (Swedish Confederation of Professional Employees), and those considered risky for tumor development. When close to the body, the laptop induces currents that are within 34.2% to 49.8% ICNIRP recommendations, but not negligible, to the adult's body and to the fetus (in pregnant women). On the contrary, the power supply induces strong intracorporal electric current densities in the fetus and in the adult subject, which are respectively 182-263% and 71-483% higher than ICNIRP 98 basic restriction recommended to prevent adverse health effects. Laptop is paradoxically an improper site for the use of a LTC, which consequently should be renamed to not induce customers towards an improper use.

  14. The regenerative effects of electromagnetic field on spinal cord injury.

    PubMed

    Ross, Christina L; Syed, Ishaq; Smith, Thomas L; Harrison, Benjamin S

    2017-01-01

    Traumatic spinal cord injury (SCI) is typically the result of direct mechanical impact to the spine, leading to fracture and/or dislocation of the vertebrae along with damage to the surrounding soft tissues. Injury to the spinal cord results in disruption of axonal transmission of signals. This primary trauma causes secondary injuries that produce immunological responses such as neuroinflammation, which perpetuates neurodegeneration and cytotoxicity within the injured spinal cord. To date there is no FDA-approved pharmacological agent to prevent the development of secondary SCI and induce regenerative processes aimed at healing the spinal cord and restoring neurological function. An alternative method to electrically activate spinal circuits is the application of a noninvasive electromagnetic field (EMF) over intact vertebrae. The EMF method of modulating molecular signaling of inflammatory cells emitted in the extra-low frequency range of <100 Hz, and field strengths of <5 mT, has been reported to decrease inflammatory markers in macrophages, and increase endogenous mesenchymal stem cell (MSC) proliferation and differentiation rates. EMF has been reported to promote osteogenesis by improving the effects of osteogenic media, and increasing the proliferation of osteoblasts, while inhibiting osteoclast formation and increasing bone matrix in vitro. EMF has also been shown to increase chondrogenic markers and collagen and induce neural differentiation, while increasing cell viability by over 50%. As advances are made in stem cell technologies, stabilizing the cell line after differentiation is crucial to SCI repair. Once cell-seeded scaffolds are implanted, EMF may be applied outside the wound for potential continued adjunct treatment during recovery.

  15. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Effects of Extremely Low Frequency Electromagnetic Fields on Growth and Differentiation of ’Physarum polycephalum’

    DTIC Science & Technology

    1975-04-01

    AD-AO10 187 EFFECTS OF EXTREMELY LOW FREQUENCY ELECTRO- MAGNETIC FIELDS ON GROWTH AND DIFFERENTIATION OF ’ PHYSARUM POLYCEPHALUM ’ E. M. Guodman, et al...LExtremely Low Prequency Electromagnetic Fields on Growth and Differentiation of Physarum polycephalum Technical Report Phase I (Continuous Wave) by...that weak, alternating electromagnetic fields (60 or 75 Hz, 2.0 G, 0.7 V/n) affect the cell cycle of Physarum polycephalum by increasing the interval

  17. Idiopathic Environmental Intolerance Attributed to Electromagnetic Fields: A Content Analysis of British Newspaper Reports

    PubMed Central

    Eldridge-Thomas, Buffy; Rubin, G James

    2013-01-01

    Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged

  18. Idiopathic environmental intolerance attributed to electromagnetic fields: a content analysis of British newspaper reports.

    PubMed

    Eldridge-Thomas, Buffy; Rubin, G James

    2013-01-01

    Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged

  19. Entanglement control in a superconducting qubit system by an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Q.; Xu, J. B.

    2011-08-01

    By making use of the dynamical algebraic method we investigate a quantum system consisting of superconducting qubits interacting with data buses, where the qubits are driven by time-dependent electromagnetic field and obtain an explicit expression of time evolution operator. Furthermore, we explore the entanglement dynamics and the influence of the time-dependent electromagnetic field and the initial state on the entanglement sudden death and birth for the system. It is shown that the entanglement between the qubit and bus as well as the entanglement sudden death and birth can be controlled by the time-dependent electromagnetic field.

  20. More on the covariant retarded Green's function for the electromagnetic field in de Sitter spacetime

    SciTech Connect

    Higuchi, Atsushi; Lee, Yen Cheong; Nicholas, Jack R.

    2009-11-15

    In a recent paper 2 it was shown in examples that the covariant retarded Green's functions in certain gauges for electromagnetism and linearized gravity can be used to reproduce field configurations correctly in spite of the spacelike nature of past infinity in de Sitter spacetime. In this paper we extend the work of Ref. 2 concerning the electromagnetic field and show that the covariant retarded Green's function with an arbitrary value of the gauge parameter reproduces the electromagnetic field from two opposite charges at antipodal points of de Sitter spacetime.

  1. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    SciTech Connect

    Cadena, M. S. Reyes; Chapul, L. Sanchez; Perez, Javier; Garcia, M. N. Jimenez; Lopez, M. A. Jimenez; Espindola, M. E. Sanchez; Perez, R. Paniagua; Hernandez, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodriguez

    2008-08-11

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-{beta}) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.

  2. Dynamic model for electromagnetic field and heating patterns in loaded cylindrical cavities

    SciTech Connect

    Tian, Y.L.; Black, W.M.; Sa`adaldin, H.S.; Ahmad, I.; Silberglitt, R.

    1995-07-01

    An analytical solution for the electromagnetic fields in a cylindrical cavity, partially filled with a cylindrical dielectric has been recently reported. A program based on this solution has been developed and combined with the authors` previous program for heat transfer analysis. The new software has been used to simulate the dynamic temperature profiles of microwave heating and to investigate the role of electromagnetic field in heating uniformity and stability. The effects of cavity mode, cavity dimension, the dielectric properties of loads on electromagnetic field and heating patterns can be predicted using this software.

  3. Investigation of brain potentials in sleeping humans exposed to the electromagnetic field of mobile phones.

    PubMed

    Lebedeva, N N; Sulimov, A V; Sulimova, O P; Korotkovskaya, T I; Gailus, T

    2001-01-01

    An investigation was made of 8-hour EEG tracings of sleeping humans exposed to the electromagnetic field of a GSM-standard mobile phone. To analyze the EEG-patterns, manual scoring, nonlinear dynamics, and spectral analysis were employed. It was found that, when human beings were exposed to the electromagnetic field of a cellular phone, their cerebral cortex biopotentials revealed an increase in the alpha-range power density as compared to the placebo experiment. It was also found that the dimension of EEG correlation dynamics and the relation of sleep stages changed under the influence of the electromagnetic field of a mobile phone.

  4. Operator of pair electron-ion collisions in alternating electromagnetic fields

    SciTech Connect

    Balakin, A. A.

    2008-12-15

    Collisions of electrons with ions in the presence of an alternating electromagnetic field are considered. Based on the first principles (the Liouville equations for N particles), a general expression for the collisional operator in the approximation of pair collisions at an arbitrary scattering potential, including that depending periodically on time, is derived. The problem of collisions in plasma in the presence of an electromagnetic field can be reduced to this case by introducing drift coordinates. It is shown that the method of test particles can be applied to the problem of particle collisions in an alternating electromagnetic field.

  5. Impact of Low Frequency Electromagnetic Field Exposure on the Candida Albicans

    NASA Astrophysics Data System (ADS)

    Malíková, Ivona; Janoušek, Ladislav; Fantova, Vladyslava; Jíra, Jaroslav; Kříha, Vítĕzslav

    2015-03-01

    Effect of low frequency electromagnetic field on growth of selected microorganism is studied in the article. The diploid fungus that grows both as yeast and filamentous cell was chosen for this research. The theory of ion parametric resonance was taken as the base for studying the influence of electromagnetic field on biological structures. We tested the hypothesis, whether it is possible to observe the change in growth properties of Candida albicans with an AC electromagnetic field tuned to resonance with calcium ions cyclotron frequency.

  6. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    NASA Astrophysics Data System (ADS)

    Cadena, M. S. Reyes; Chapul, L. Sánchez; Pérez, Javiér; García, M. N. Jiménez; López, M. A. Jiménez; Espíndola, M. E. Sánchez; Perez, R. Paniagua; Hernández, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodríguez

    2008-08-01

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-β) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.

  7. Induction of tamoxifen resistance in breast cancer cells by ELF electromagnetic fields

    SciTech Connect

    Girgert, Rainer . E-mail: rainer.girgert@med.uni-goettingen.de; Schimming, Hartmut; Koerner, Wolfgang; Gruendker, Carsten; Hanf, Volker

    2005-11-04

    The incidence of breast cancer in western societies has been rising ever since the Second World War. Besides the exposure to a multitude of new chemical compounds, electromagnetic field exposure has been linked to breast cancer through a radiation-mediated anti-melatonin pathway. We investigated, whether low-frequency electromagnetic field exposure interferes with the anti-estrogenic activity of tamoxifen. Two different clones of the breast cancer cell line MCF-7 were exposed to highly homogeneous 50 Hz electromagnetic fields and IC{sub 50} values were calculated from dose-response curves of tamoxifen at various field intensities. An intensity-dependent shift of tamoxifen dose-response curves to higher concentrations with a maximal response at 1.2 {mu}T was observed. Hypothetically, electromagnetic field exposure could contribute to tamoxifen resistance observed in breast cancer after long-term treatment.

  8. Induction of tamoxifen resistance in breast cancer cells by ELF electromagnetic fields.

    PubMed

    Girgert, Rainer; Schimming, Hartmut; Körner, Wolfgang; Gründker, Carsten; Hanf, Volker

    2005-11-04

    The incidence of breast cancer in western societies has been rising ever since the Second World War. Besides the exposure to a multitude of new chemical compounds, electromagnetic field exposure has been linked to breast cancer through a radiation-mediated anti-melatonin pathway. We investigated, whether low-frequency electromagnetic field exposure interferes with the anti-estrogenic activity of tamoxifen. Two different clones of the breast cancer cell line MCF-7 were exposed to highly homogeneous 50Hz electromagnetic fields and IC(50) values were calculated from dose-response curves of tamoxifen at various field intensities. An intensity-dependent shift of tamoxifen dose-response curves to higher concentrations with a maximal response at 1.2muT was observed. Hypothetically, electromagnetic field exposure could contribute to tamoxifen resistance observed in breast cancer after long-term treatment.

  9. The effects of 30 mT electromagnetic fields on hippocampus cells of rats

    PubMed Central

    Teimori, Farzaneh; Khaki, Amir A.; Rajabzadeh, Asghar; Roshangar, Leila

    2016-01-01

    Background: Despite the use of electromagnetic waves in the treatment of some acute and chronic diseases, application of these waves in everyday life has created several problems for humans, especially the nerve system. In this study, the effects of 30mT electromagnetic fields (EMFs) on the hippocampus is investigated. Methods: Twenty-four 5-month Wistar rats weighing 150–200 g were divided into two groups. The experimental group rats were under the influence of an EMF at an intensity of 3 mT for approximately 4 hours a day (from 8 AM to 12 PM) during 10 weeks. After the hippocampus was removed, thin slides were prepared for transmission electron microscope (TEM) to study the ultrastructural tissue. Cell death detection POD kits were used to determine the apoptosis rate. Results: The results of the TEM showed that, in the hippocampus of the experimental group, in comparison to the control group, there was a substantial shift; even intracellular organelles such as the mitochondria were morphologically abnormal and uncertain. The number of apoptotic cells in the exposed group compared to the control group showed significant changes. Conclusions: Similar to numerous studies that have reported the effects of EMFs on nerves system, it was also confirmed in this lecture. Hence, the hippocampus which is important in regulating emotions, behavior, motivation, and memory functions, may be impaired by the negative impacts of EMFs. PMID:27453795

  10. Statistical analysis of personal radiofrequency electromagnetic field measurements with nondetects.

    PubMed

    Röösli, Martin; Frei, Patrizia; Mohler, Evelyn; Braun-Fahrländer, Charlotte; Bürgi, Alfred; Fröhlich, Jürg; Neubauer, Georg; Theis, Gaston; Egger, Matthias

    2008-09-01

    Exposimeters are increasingly applied in bioelectromagnetic research to determine personal radiofrequency electromagnetic field (RF-EMF) exposure. The main advantages of exposimeter measurements are their convenient handling for study participants and the large amount of personal exposure data, which can be obtained for several RF-EMF sources. However, the large proportion of measurements below the detection limit is a challenge for data analysis. With the robust ROS (regression on order statistics) method, summary statistics can be calculated by fitting an assumed distribution to the observed data. We used a preliminary sample of 109 weekly exposimeter measurements from the QUALIFEX study to compare summary statistics computed by robust ROS with a naïve approach, where values below the detection limit were replaced by the value of the detection limit. For the total RF-EMF exposure, differences between the naïve approach and the robust ROS were moderate for the 90th percentile and the arithmetic mean. However, exposure contributions from minor RF-EMF sources were considerably overestimated with the naïve approach. This results in an underestimation of the exposure range in the population, which may bias the evaluation of potential exposure-response associations. We conclude from our analyses that summary statistics of exposimeter data calculated by robust ROS are more reliable and more informative than estimates based on a naïve approach. Nevertheless, estimates of source-specific medians or even lower percentiles depend on the assumed data distribution and should be considered with caution.

  11. Influence of exposure to electromagnetic field on the cardiovascular system.

    PubMed

    Jeong, J H; Kim, J S; Lee, B C; Min, Y S; Kim, D S; Ryu, J S; Soh, K S; Seo, K M; Sohn, U D

    2005-01-01

    1 We examined whether extremely low frequency electromagnetic fields (ELF-EMF) affect the basal level of cardiovascular parameters and influence of drugs acting on the sympathetic nervous system. 2 Male rats were exposed to sham control and EMF (60 Hz, 20 G) for 1 (MF-1) or 5 days (MF-5). We evaluated the alterations of blood pressure (BP), pulse pressure (PP), heart rate (HR), and the PR interval, QRS interval and QT interval on the electrocardiogram and dysrhythmic ratio in basal level and dysrhythmia induced by beta-adrenoceptor agonists. 3 In terms of the basal levels, there were no statistically significant differences among control, MF-1 and MF-5 in PR interval, QRS interval, mean BP, HR and PP. However, the QT interval, representing ventricular repolarization, was significantly reduced by MF-1 (P < 0.05). 4 (-)-Dobutamine (beta1-adrenoceptor-selective agonist)-induced tachycardia was significantly suppressed by ELF-EMF exposure in MF-1 for the increase in HR (DeltaHR), the decrease in QRS interval (DeltaQRS) and the decrease in QT (DeltaQT) interval. Adrenaline (nonselective beta-receptor agonist)-induced dysrhythmia was also significantly suppressed by ELF-EMF in MF-1 for the number of missing beats, the dysrhythmic ratio, and the increase in BP and PP. 5 These results indicated that 1-day exposure to ELF-EMF (60 Hz, 20 G) could suppress the increase in HR by affecting ventricular repolarization and may have a down-regulatory effect on responses of the cardiovascular system induced by sympathetic agonists.

  12. The effects of exposure to electromagnetic field on rat myocardium.

    PubMed

    Kiray, Amac; Tayefi, Hamid; Kiray, Muge; Bagriyanik, Husnu Alper; Pekcetin, Cetin; Ergur, Bekir Ugur; Ozogul, Candan

    2013-06-01

    Exposure to electromagnetic fields (EMFs) causes increased adverse effects on biological systems. The aim of this study was to investigate the effects of EMF on heart tissue by biochemical and histomorphological evaluations in EMF-exposed adult rats. In this study, 28 male Wistar rats weighing 200-250 g were used. The rats were divided into two groups: sham group (n = 14) and EMF group (n = 14). Rats in sham group were exposed to same conditions as the EMF group except the exposure to EMF. Rats in EMF group were exposed to a 50-Hz EMF of 3 mT for 4 h/day and 7 days/week for 2 months. After 2 months of exposure, rats were killed; the hearts were excised and evaluated. Determination of oxidative stress parameters was performed spectrophotometrically. To detect apoptotic cells, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining and caspase-3 immunohistochemistry were performed. In EMF-exposed group, levels of lipid peroxidation significantly increased and activities of superoxide dismutase and glutathione peroxidase decreased compared with sham group. The number of TUNEL-positive cells and caspase-3 immunoreactivity increased in EMF-exposed rats compared with sham. Under electron microscopy, there were mitochondrial degeneration, reduction in myofibrils, dilated sarcoplasmic reticulum and perinuclear vacuolization in EMF-exposed rats. In conclusion, the results show that the exposure to EMF causes oxidative stress, apoptosis and morphologic damage in myocardium of adult rats. The results of our study indicate that EMF-related changes in rat myocardium could be the result of increased oxidative stress. Further studies are needed to demonstrate whether the exposure to EMF can induce adverse effects on myocardium.

  13. Household electromagnetic fields and breast cancer in elderly women.

    PubMed

    Beniashvili, Djemal; Avinoach, Ilana; Baazov, David; Zusman, Itshak

    2005-01-01

    The relationship between the rate of household low-frequency electromagnetic fields (EMF) and incidences of mammary tumors was studied in 1290 clinical case-records of female patients aged 60 and more over a period of 26 years, based on the materials of the Edith Wolfson Medical Center, Israel. The studied material was divided into two groups, each corresponding to a period of 13 years. Group I included patients with mammary tumors under observation from 1978 to 1990, who rarely used EMF-generating appliances. Group II consisted of patients being under observation in the period between 1991 and 2003, characterized by much more extensive use of personal computers (more than 3 hours a day), mobile telephones, television sets, air conditioners and other household electrical appliances generating EMF. 200,527 biopsy and surgery samples were analyzed. Mammary tumors were found in 2824 women (1.4%), of which 1290 cases (45.6%) were observed in elderly women. Most of the observed tumors--1254 (97.2%)--were epithelial neoplasms. Mammary tumors were found in 585 elderly women in Group I and 705 women in Group II. The case records of these patients showed that 114 elderly women (19.5%) in Group I and 360 (51.1%) in Group II were regularly exposed to EMF (mostly from personal computers) for at least 3 hours a day (chi2=57.2, p<0.001). There was a statistically significant influence of EMF on the formation of all observed epithelial mammary tumors in Group II. This influence is most evident for invasive ductal carcinomas, which was the commonest form of cancer in elderly women.

  14. Radiofrequency-electromagnetic field exposures in kindergarten children.

    PubMed

    Bhatt, Chhavi Raj; Redmayne, Mary; Billah, Baki; Abramson, Michael J; Benke, Geza

    2017-09-01

    The aim of this study was to assess environmental and personal radiofrequency-electromagnetic field (RF-EMF) exposures in kindergarten children. Ten children and 20 kindergartens in Melbourne, Australia participated in personal and environmental exposure measurements, respectively. Order statistics of RF-EMF exposures were computed for 16 frequency bands between 88 MHz and 5.8 GHz. Of the 16 bands, the three highest sources of environmental RF-EMF exposures were: Global System for Mobile Communications (GSM) 900 MHz downlink (82 mV/m); Universal Mobile Telecommunications System (UMTS) 2100MHz downlink (51 mV/m); and GSM 900 MHz uplink (45 mV/m). Similarly, the three highest personal exposure sources were: GSM 900 MHz downlink (50 mV/m); UMTS 2100 MHz downlink, GSM 900 MHz uplink and GSM 1800 MHz downlink (20 mV/m); and Frequency Modulation radio, Wi-Fi 2.4 GHz and Digital Video Broadcasting-Terrestrial (10 mV/m). The median environmental exposures were: 179 mV/m (total all bands), 123 mV/m (total mobile phone base station downlinks), 46 mV/m (total mobile phone base station uplinks), and 16 mV/m (Wi-Fi 2.4 GHz). Similarly, the median personal exposures were: 81 mV/m (total all bands), 62 mV/m (total mobile phone base station downlinks), 21 mV/m (total mobile phone base station uplinks), and 9 mV/m (Wi-Fi 2.4 GHz). The measurements showed that environmental RF-EMF exposure levels exceeded the personal RF-EMF exposure levels at kindergartens.

  15. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents.

    PubMed

    Roser, Katharina; Schoeni, Anna; Struchen, Benjamin; Zahner, Marco; Eeftens, Marloes; Fröhlich, Jürg; Röösli, Martin

    2017-02-01

    Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF). The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body. Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents. Main contributors to the total personal RF-EMF measurements of 63.2μW/m(2) (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose. RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A prediction model for personal radio frequency electromagnetic field exposure.

    PubMed

    Frei, Patrizia; Mohler, Evelyn; Bürgi, Alfred; Fröhlich, Jürg; Neubauer, Georg; Braun-Fahrländer, Charlotte; Röösli, Martin

    2009-12-15

    Radio frequency electromagnetic fields (RF-EMF) in our daily life are caused by numerous sources such as fixed site transmitters (e.g. mobile phone base stations) or indoor devices (e.g. cordless phones). The objective of this study was to develop a prediction model which can be used to predict mean RF-EMF exposure from different sources for a large study population in epidemiological research. We collected personal RF-EMF exposure measurements of 166 volunteers from Basel, Switzerland, by means of portable exposure meters, which were carried during one week. For a validation study we repeated exposure measurements of 31 study participants 21 weeks after the measurements of the first week on average. These second measurements were not used for the model development. We used two data sources as exposure predictors: 1) a questionnaire on potentially exposure relevant characteristics and behaviors and 2) modeled RF-EMF from fixed site transmitters (mobile phone base stations, broadcast transmitters) at the participants' place of residence using a geospatial propagation model. Relevant exposure predictors, which were identified by means of multiple regression analysis, were the modeled RF-EMF at the participants' home from the propagation model, housing characteristics, ownership of communication devices (wireless LAN, mobile and cordless phones) and behavioral aspects such as amount of time spent in public transports. The proportion of variance explained (R2) by the final model was 0.52. The analysis of the agreement between calculated and measured RF-EMF showed a sensitivity of 0.56 and a specificity of 0.95 (cut-off: 90th percentile). In the validation study, the sensitivity and specificity of the model were 0.67 and 0.96, respectively. We could demonstrate that it is feasible to model personal RF-EMF exposure. Most importantly, our validation study suggests that the model can be used to assess average exposure over several months.

  17. Effect of pulsed electromagnetic fields on endoplasmic reticulum stress.

    PubMed

    Keczan, E; Keri, G; Banhegyi, G; Stiller, I

    2016-10-01

    The maintenance of protein homeostasis in the endoplasmic reticulum (ER) is crucial in cell life. Disruption of proteostasis results in ER stress that activates the unfolded protein response (UPR); a signalling network assigned to manage the accumulated misfolded or unfolded proteins. Prolonged or unresolved ER stress leads to apoptotic cell death that can be the basis of many serious diseases. Our aim was to study the effect of pulsed electromagnetic fields (PEMF), an alternative, non-invasive therapeutic method on ER stressed cell lines. First, the effect of PEMF treatment on the expression of ER stress markers was tested in three different cell lines. PEMF had no remarkable effect on ER stress protein levels in human embryonic kidney (HEK293T) and human liver carcinoma (HepG2) cell lines. However, the expression of BiP, Grp94 and CHOP were increased in HeLa cells upon PEMF exposure. Therefore, HepG2 cell line was selected for further experiments. Cells were stressed by tunicamycin and exposed to PEMF. Grp94, PDI, CHOP and PARP expression as markers of stress were monitored by Western blot and cell viability was also investigated. Tunicamycin treatment, as expected, increased the expression of Grp94, PDI, CHOP and inactivated PARP. Analysis of protein expression showed that PEMF was able to decrease the elevated level of ER chaperons Grp94, PDI and the apoptosis marker CHOP. The truncated, inactive form of PARP was also decreased. Accordingly, cell viability was also improved by PEMF exposure. These results indicate that PEMF is able to moderate ER stress induced by tunicamycin in HepG2 cells. However, our results clearly draw attention to that different cell lines may vary in the response to PEMF treatment.

  18. Impact of high electromagnetic field levels on childhood leukemia incidence.

    PubMed

    Teepen, Jop C; van Dijck, Jos A A M

    2012-08-15

    The increasing exposure to electromagnetic fields (EMFs) has raised concern, as increased exposure may result in an increased risk of childhood leukemia (CL). Besides a short introduction of CL and EMF, our article gives an evaluation of the evidence of a causal relation between EMF and CL by critically appraising the epidemiological and biological evidence. The potential impact is also estimated by the population attributable risk. The etiology of CL is largely unknown, but is probably multifactorial. EMF may be one of the environmental exposures involved. Three pooled analyses of case-control studies showed a 1.4- to 1.7-fold increased CL risk for extremely low-frequency EMF (ELF-EMF) exposure levels above 0.3 μT. Several biases may have played a role in these studies, but are unlikely to fully explain the increased risk. For effects of radiofrequency ELF evidence is lacking. None of the proposed biological mechanisms by which ELF-EMF might cause CL have been confirmed. The estimated overall population attributable risk was 1.9%, with the highest estimates in Northern America and Brazil (4.2% and 4.1%, respectively). The potential impact of EMF exposure on public health is probably limited, although in some countries exposure might be relatively high and thus might have a more substantial impact. We recommend nationwide surveys to gain more insight into the contemporary exposure levels among children. Reducing exposure from power lines near densely populated areas and schools is advised. Future epidemiological studies should focus on limiting bias. Copyright © 2012 UICC.

  19. Induction of cell activation processes by low frequency electromagnetic fields.

    PubMed

    Simkó, Myrtill

    2004-10-20

    Electromagnetic fields (EMF) such as those from electric power transmission and distribution lines (50/60 Hz) have been associated with increased risk of childhood leukemia, cancer of the nervous system, and lymphomas. Several in vitro studies on EMF effects were performed to clarify the existing controversies, define the risks, and determine the possible mechanisms of adverse effects. In some of these reports, the effects were related to other mechanisms of carcinogenesis. Modification in cell proliferation was observed after EMF exposure and a few reports on cytotoxic effects have also been published. This limited review gives an overview of the current results of scientific research regarding in vitro studies on the effects of power line frequency EMF, but also cell biological mechanisms and their potential involvement in genotoxicity and cytotoxicity are discussed. Cell cycle control and signal transduction processes are included to elucidate the biochemical background of possible interactions. Exposure to EMF has been also linked to the incidence of leukemia and other tumors in some epidemiological studies and is considered as "possibly carcinogenic to humans", but there is no well-established biological mechanism that explains such a relation. Furthermore, EMF is also shown as a stimulus for immune relevant cells (e.g., macrophages) to release free radicals. It is known that chronic activation of macrophages is associated with the onset of phagocytosis and leads to increased formation of reactive oxygen species, which themselves may cause DNA damage and are suggested to lead to carcinogenesis. To demonstrate a possible interaction between EMF and cellular systems, we present a mechanistic model describing cell activation as a major importance for cellular response.

  20. Subwavelength confinement of electromagnetic field by guided modes of dielectric micro- and nanowaveguides

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.

    2010-04-01

    Regimes enabling the strongest confinement of electromagnetic field by guided modes of dielectric micro- and nanowaveguides are identified. Waveguides of this class are shown to allow a guidance of subwavelength optical beams.

  1. Effect of radio frequency waves of electromagnetic field on the tubulin.

    PubMed

    Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi

    2013-09-01

    Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject.

  2. Characteristics of the electromagnetic wave field far away from the radiation source

    NASA Astrophysics Data System (ADS)

    Balkhanov, V. K.; Bashkuev, Yu. B.

    2017-04-01

    A solution to the Sommerfeld problem of the far (in terms of wavelengths) field of a vertical electrical dipole placed at the interface between two media has been found. The characteristics of a surface electromagnetic wave that propagates over a medium with highly inductive surface impedance δ have been determined. The spatial characteristics of the wave are expressed through the real and imaginary parts of impedance δ. It has been proved that the surface electromagnetic wave is the major contributor to the electromagnetic field of the ground wave in the case of highly inductive radio paths.

  3. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    PubMed

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  4. [Mutagenic, carcinogenic and teratogenic effects induced by radiofrequency electromagnetic field of mobile phone].

    PubMed

    Chen, Zhi-jian; He, Ji-liang

    2008-01-01

    The extensive use of mobile phones causes increasing public concern on health effects of exposure to radiofrequency (RF) electromagnetic fields. Conflicting results are found in publications on the mutagenic, carcinogenic and teratogenic effects of RF electromagnetic fields. The overwhelming findings do not support the assumption that RF exposure may induce mutagenic, carcinogenic or teratogenic effects. However, health effects from low level RF exposure need to be further studied.

  5. Deuteron electromagnetic form factors in a renormalizable formulation of chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Schindler, M. R.

    2014-03-01

    We calculate the deuteron electromagnetic form factors in a modified version of Weinberg's chiral effective field theory approach to the two-nucleon system. We derive renormalizable integral equations for the deuteron without partial wave decomposition. Deuteron form factors are extracted by applying the Lehmann-Symanzik-Zimmermann reduction formalism to the three-point correlation function of deuteron interpolating fields and the electromagnetic current operator. Numerical results of a leading-order calculation with removed cutoff regularization agree well with experimental data.

  6. [Ecological significance of electromagnetic fields: the 20th century--century of electricity, the 21st--century of magnetism].

    PubMed

    Lazetić, Bogosav

    2003-01-01

    The biosphere consists of all ecosystems of earth and is characterized by electromagnetic fields of different frequencies. Physics and natural sciences and disciplines are focused on their origin and characteristics. NATURAL ELECTROMAGNETIC FIELDS: There is a well defined idea that natural electromagnetic activity of the Earth's atmosphere throughout evolution led to appearance of electromagnetic homeostasis, i.e. maintenance of inner electromagnetic mileu. It can be supposed that during the evolution of living organisms natural electromagnetic fields were associated with biochemical processes and as a result of natural selection became an important information system and obligatory component of life. The results presented here show that there is no reason to doubt that natural electromagnetic fields are an important ecologic factor. On the contrary, we have to emphasize that natural electromagnetic environment is necessary for life on the Earth. Today intensity of artificial electromagnetic fields is ten to hundred times higher than of natural electromagnetic fields. Danger from electromagnetic fields is an acute and actual problem which increases knowing that there won't be a spot without artificial electromagnetic field on our planet.

  7. Calculation of electromagnetic fields in the near-field region of a moving scattering object

    NASA Astrophysics Data System (ADS)

    Vogel, M. H.

    1990-07-01

    The problem of scattering of electromagnetic fields by perfectly conducting, moving objects is solved with the Lorentz transformation and the plane wave formulation. Apart from the physical optics approximation, the solution is exact. The result is subsequently applied to the special case of monostatic reflection by an object that moves slowly with respect to the velocity of light. The result can be used to predict the time dependent reflection from an aircraft that passes the antenna of a proximity fuze, and the optimum fuze algorithm can be selected.

  8. Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide

    NASA Astrophysics Data System (ADS)

    Maurer, P.; Prat-Camps, J.; Cirac, J. I.; Hänsch, T. W.; Romero-Isart, O.

    2017-07-01

    We theoretically show that a dipole externally driven by a pulse with a lower-bounded temporal width, and placed inside a cylindrical hollow waveguide, can generate a train of arbitrarily short and focused electromagnetic pulses. The waveguide encloses vacuum with perfect electric conducting walls. A dipole driven by a single short pulse, which is properly engineered to exploit the linear spectral filtering of the cylindrical hollow waveguide, excites longitudinal waveguide modes that are coherently refocused at some particular instances of time, thereby producing arbitrarily short and focused electromagnetic pulses. We numerically show that such ultrafocused pulses persist outside the cylindrical waveguide at distances comparable to its radius.

  9. Grounding system analysis in transients programs applying electromagnetic field approach

    SciTech Connect

    Heimbach, M.; Grcev, L.D.

    1997-01-01

    Lightning protection studies of substations and power systems require knowledge of the dynamic behavior of large grounding grids during electromagnetic transients. This paper presents strategies which allow to incorporate complex grounding structures computed using a rigorous electromagnetic model in transients programs. A novel technique for rational function representation of frequency-dependent grounding system impedances in the EMTP is described. An arbitrary number of feeding points can be modeled as mutual coupling is taken into account. Overvoltages throughout electrical power systems and the transient ground potential rise in the surroundings of grounding structures can be computed.

  10. Hearing aids' electromagnetic immunity to environmental RF fields.

    PubMed

    Facta, S; Benedetto, A; Anglesio, L; d'Amore, G

    2004-01-01

    In this work, the electromagnetic interference on hearing aids was evaluated. Electromagnetic (EM) immunity tests on different types of hearing aids were carried out, using signals of intensity and modulation comparable to those present in the environment. The purpose of this work is to characterise the interference, establishing the immunity threshold for different frequencies and finding out which types of hearing aids are more susceptible, and in which frequency range. The tests were carried out in a GTEM cell on seven hearing aids, using AM and GSM signals in the radiofrequency (RF) range.

  11. Coupled V-structured nano-antenna for electromagnetic field enhancement

    NASA Astrophysics Data System (ADS)

    Chen, Wanli; Zhang, Wanwan; Feng, Yuanming; Lin, Wang

    2017-05-01

    Nano-antennas play an important role in many areas of science and technology. It is desirable to achieve strong electric field enhancement by nano-antenna. In this paper, we simulate a symmetrical V-structured nano-antenna that is used to regulate the electromagnetic fields in the central gap region. We study the effects of structural parameters on the charge distribution and analyze the electric field enhancement factor in the central region of the nano-antenna. Then we use structural coupling methods to strengthen electromagnetic field intensity in the central region. Our results demonstrate that the charge distribution of the nano-antenna can be controlled by regulating the structural parameters, leading to the change of electromagnetic field intensity. In addition, electric field enhancement is achieved by coupling of multiple V structures. The multiple V structure could be used in surface-enhanced Raman scattering due to the electric field enhancement in its central region.

  12. Regulation of osteogenic differentiation of human adipose-derived stem cells by controlling electromagnetic field conditions

    PubMed Central

    Kang, Kyung Shin; Hong, Jung Min; Kang, Jo A; Rhie, Jong-Won; Jeong, Young Hun; Cho, Dong-Woo

    2013-01-01

    Many studies have reported that an electromagnetic field can promote osteogenic differentiation of mesenchymal stem cells. However, experimental results have differed depending on the experimental and environmental conditions. Optimization of electromagnetic field conditions in a single, identified system can compensate for these differences. Here we demonstrated that specific electromagnetic field conditions (that is, frequency and magnetic flux density) significantly regulate osteogenic differentiation of adipose-derived stem cells (ASCs) in vitro. Before inducing osteogenic differentiation, we determined ASC stemness and confirmed that the electromagnetic field was uniform at the solenoid coil center. Then, we selected positive (30/45 Hz, 1 mT) and negative (7.5 Hz, 1 mT) osteogenic differentiation conditions by quantifying alkaline phosphate (ALP) mRNA expression. Osteogenic marker (for example, runt-related transcription factor 2) expression was higher in the 30/45 Hz condition and lower in the 7.5 Hz condition as compared with the nonstimulated group. Both positive and negative regulation of ALP activity and mineralized nodule formation supported these responses. Our data indicate that the effects of the electromagnetic fields on osteogenic differentiation differ depending on the electromagnetic field conditions. This study provides a framework for future work on controlling stem cell differentiation. PMID:23306704

  13. Influence of electromagnetic field on soliton-mediated charge transport in biological systems.

    PubMed

    Brizhik, Larissa

    2015-01-01

    It is shown that electromagnetic fields affect dynamics of Davydov's solitons which provide charge transport processes in macromolecules during metabolism of the system. There is a resonant frequency of the field at which it can cause the transition of electrons from bound soliton states into delocalised states. Such decay of solitons reduces the effectiveness of charge transport, and, therefore, inhibits redox processes. Solitons radiate their own electromagnetic field of characteristic frequency determined by their average velocity. This self-radiated field leads to synchronization of soliton dynamics and charge transport processes, and is the source of the coherence in the system. Exposition of the system to the oscillating electromagnetic field of the frequency, which coincides with the eigen-frequency of solitons can enhance eigen-radiation of solitons, and, therefore, will enhance synchronization of charge transpor, stimulate the redox processes and increase coherence in the system. Electromagnetic oscillating field causes also ratchet phenomenon of solitons, i.e., drift of solitons in macromolecules in the presence of unbiased periodic field. Such additional drift enhances the charge transport processes. It is shown that temperature facilitates the ratchet drift. In particular, temperature fluctuations lead to the lowering of the critical value of the intensity and period of the field, above which the drift of solitons takes place. Moreover, there is a stochastic resonance in the soliton dynamics in external electromagnetic fields. This means, that there is some optimal temperature at which the drift of solitons is maximal.

  14. Electric toothbrushes induce electric current in fixed dental appliances by creating magnetic fields.

    PubMed

    Kameda, Takashi; Ohkuma, Kazuo; Ishii, Nozomu; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto

    2012-01-01

    Magnetic fields can represent a health problem, especially low frequency electromagnetic fields sometimes induced by electric current in metallic objects worn or used in or on the body (as opposed to high frequency electromagnetic fields that produce heat). Electric toothbrushes are widely used because of their convenience, but the electric motors that power them may produce electromagnetic waves. In this study, we showed that electric toothbrushes generate low frequency (1-2000 Hz) magnetic fields and induce electric current in dental appliances (e. g. orthodontic and prosthetic appliances and dental implants). Current induced by electric toothbrushes might be dependent on the quantity and types of metals used, and the shape of the appliances. Furthermore, these induced currents in dental appliances could impact upon human oral health, producing pain and discomfort.

  15. Electromagnetically Driven Plasma-Field Dynamics in Modified Ionosphere

    NASA Astrophysics Data System (ADS)

    Kochetov, Andrey; Terina, Galina

    Under sounding of an artificial ionospheric turbulence by short probing radio pulses of ordinary polarization the two types of scattered signals were observed: a "caviton" signal (CS) and a "plasma" signal (PS), which appeared with the heating transmitter switching on and disap-peared after its switching off (G.I. Terina J. Atm. Terr. Phys, 57, 1995, 273, Izv. VUZov, Radiofizika, 39, 1998, 203). The scattered signal of PS type was revealed also after the heating switching off. It was called an "aftereffect plasma signal" (AEPS) (G.I. Terina Izv .VUZov, Radiofizika, 43, 2000, 958). This signal had large time and spatial delays and appeared mostly when corresponding PS had envelope fluctuations. The aftereffect phenomenon was expressed at time on CS by amplitude increasing at once after the heating transmitter turning off. The theoretical model of this phenomenon is proposed in and some peculiarities of the aftereffect phenomena of the scattered signals in modified ionospheric plasma are considered and discussed. For theoretical interpretation of the characteristics of CS and AEPS the numerical solution of nonlinear Shrüdinger equation (NSE) with driven extension were carried out in inhomogeneous plasma layer with linear electron density profile (A.V. Kochetov, V.A. Mironov, G.I. Terina, Adv. Space Reseacrh, 29, 2002, 1369) and for the one with prescribed density depletion (and A.V. Kochetov, G.I. Terina, Adv. Space Reseacrh, 38, 2006, 2490). The simulation results obtained for linear inhomogeneous plasma layer and for plasma one with density depletion al-low us to interpret the aftereffect of CS and PS qualitatively. The field amplitude increase at relaxation stage displayed at calculations allows us to interpret of CS aftereffect. The large time delays of AEPS can be explained as a result of powerful radio waves trapping in the forming at the plasma resonance regions density depletions (E. Mjøhus, J. Geophys. Res. 103, 1998, 14711; B. Eliasson and L. Stenflo, J

  16. Amyotrophic lateral sclerosis and occupational exposure to electromagnetic fields

    SciTech Connect

    Davanipour, Z.; Sobel, E.; Bowman, J.D.; Qian, Z.; Will, A.D.

    1997-03-01

    In an hypothesis-generating case-control study of amyotrophic lateral sclerosis, lifetime occupational histories were obtained. The patients (n = 28) were clinic based. The occupational exposure of interest in this report is electromagnetic fields (EMFs). This is the first and so far the only exposure analyzed in this study. Occupational exposure up to 2 years prior to estimated disease symptom onset was used for construction of exposure indices for cases. Controls (n = 32) were blood and nonblood relatives of cases. Occupational exposure for controls was through the same age as exposure for the corresponding cases. Twenty (71%) cases and 28 (88%) controls had at least 20 years of work experience covering the exposure period. The occupational history and task data were used to classify blindly each occupation for each subject as having high, medium/high, medium, medium/low, or low EMF exposure, based primarily on data from an earlier and unrelated study designed to obtain occupational EMF exposure information on workers in ``electrical`` and ``nonelectrical`` jobs. By using the length of time each subject spent in each occupation through the exposure period, two indices of exposure were constructed: total occupational exposure (E{sub 1}) and average occupational exposure (E{sub 2}). For cases and controls with at least 20 years of work experience, the odds ratio (OR) for exposure at the 75th percentile of the E{sub 1} case exposure data relative to minimum exposure was 7.5 (P < 0.02; 95% CI, 1.4--38.1) and the corresponding OR for E{sub 2} was 5.5 (P < 0.02; 95% CI, 1.3--22.5). For all cases and controls, the ORs were 2.5 (P < 0.1; 95% CI, 0.9--8.1) for E{sub 1} and 2.3 (P = 0.12; 95% CI, 0.8--6.6) for E{sub 2}. This study should be considered an hypothesis-generating study. Larger studies, using incident cases and improved exposure assessment, should be undertaken.

  17. Reflection and refraction of the electromagnetic field in a semi-infinite plasma

    NASA Astrophysics Data System (ADS)

    Apostol, M.; Vaman, G.

    2009-11-01

    We compute the reflected and refracted electromagnetic fields for an ideal semi-infinite (half-space) plasma, as well as the reflection coefficient, by using a general procedure based on equations of motion and electromagnetic potentials. The approach consists of representing the charge disturbances by a displacement field in the positions of the moving particles (electrons). The propagation of an electromagnetic wave in plasma is treated by means of the retarded electromagnetic potentials, and the resulting integral equations are solved. Generalized Fresnel's relations are thereby obtained for any incidence angle and polarization and the angles of total polarization and total reflection are derived. Bulk and surface plasmon-polariton modes are identified. As it is well known, the field inside the plasma is either damped (evanescent) or propagating (transparency regime), and the reflection coefficient exhibits an abrupt enhancement on passing from the propagating regime to the damped one (total reflection).

  18. A Note on Feynman Path Integral for Electromagnetic External Fields

    NASA Astrophysics Data System (ADS)

    Botelho, Luiz C. L.

    2017-08-01

    We propose a Fresnel stochastic white noise framework to analyze the nature of the Feynman paths entering on the Feynman Path Integral expression for the Feynman Propagator of a particle quantum mechanically moving under an external electromagnetic time-independent potential.

  19. Localized Electromagnetic Fields in Complex Media and Free Space

    DTIC Science & Technology

    2000-09-29

    subsets-termed "storms", "whirls", and " tornadoes " for the sake of brevity-for which time average energy flux is identically zero at all points...speed V <C. The solutions which describe finite-energy evolving electromagnetic storms, whirls, tornadoes are also presented.

  20. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana.

    PubMed

    Pazur, Alexander; Rassadina, Valentina

    2009-04-30

    Weak magnetic and electromagnetic fields can influence physiological processes in animals, plants and microorganisms, but the underlying way of perception is poorly understood. The ion cyclotron resonance is one of the discussed mechanisms, predicting biological effects for definite frequencies and intensities of electromagnetic fields possibly by affecting the physiological availability of small ions. Above all an influence on Calcium, which is crucial for many life processes, is in the focus of interest. We show that in Arabidopsis thaliana, changes in Ca2+-concentrations can be induced by combinations of magnetic and electromagnetic fields that match Ca2+-ion cyclotron resonance conditions. An aequorin expressing Arabidopsis thaliana mutant (Col0-1 Aeq Cy+) was subjected to a magnetic field around 65 microtesla (0.65 Gauss) and an electromagnetic field with the corresponding Ca2+ cyclotron frequency of 50 Hz. The resulting changes in free Ca2+ were monitored by aequorin bioluminescence, using a high sensitive photomultiplier unit. The experiments were referenced by the additional use of wild type plants. Transient increases of cytosolic Ca2+ were observed both after switching the electromagnetic field on and off, with the latter effect decreasing with increasing duration of the electromagnetic impact. Compared with this the uninfluenced long-term loss of bioluminescence activity without any exogenic impact was negligible. The magnetic field effect rapidly decreased if ion cyclotron resonance conditions were mismatched by varying the magnetic fieldstrength, also a dependence on the amplitude of the electromagnetic component was seen. Considering the various functions of Ca2+ as a second messenger in plants, this mechanism may be relevant for perception of these combined fields. The applicability of recently hypothesized mechanisms for the ion cyclotron resonance effect in biological systems is discussed considering it's operating at magnetic field strengths weak

  1. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana

    PubMed Central

    Pazur, Alexander; Rassadina, Valentina

    2009-01-01

    Background Weak magnetic and electromagnetic fields can influence physiological processes in animals, plants and microorganisms, but the underlying way of perception is poorly understood. The ion cyclotron resonance is one of the discussed mechanisms, predicting biological effects for definite frequencies and intensities of electromagnetic fields possibly by affecting the physiological availability of small ions. Above all an influence on Calcium, which is crucial for many life processes, is in the focus of interest. We show that in Arabidopsis thaliana, changes in Ca2+-concentrations can be induced by combinations of magnetic and electromagnetic fields that match Ca2+-ion cyclotron resonance conditions. Results An aequorin expressing Arabidopsis thaliana mutant (Col0-1 Aeq Cy+) was subjected to a magnetic field around 65 microtesla (0.65 Gauss) and an electromagnetic field with the corresponding Ca2+ cyclotron frequency of 50 Hz. The resulting changes in free Ca2+ were monitored by aequorin bioluminescence, using a high sensitive photomultiplier unit. The experiments were referenced by the additional use of wild type plants. Transient increases of cytosolic Ca2+ were observed both after switching the electromagnetic field on and off, with the latter effect decreasing with increasing duration of the electromagnetic impact. Compared with this the uninfluenced long-term loss of bioluminescence activity without any exogenic impact was negligible. The magnetic field effect rapidly decreased if ion cyclotron resonance conditions were mismatched by varying the magnetic fieldstrength, also a dependence on the amplitude of the electromagnetic component was seen. Conclusion Considering the various functions of Ca2+ as a second messenger in plants, this mechanism may be relevant for perception of these combined fields. The applicability of recently hypothesized mechanisms for the ion cyclotron resonance effect in biological systems is discussed considering it's operating at

  2. The Effect of Direct Lightning Shielding Rod on Lightning Electromagnetic Fields Aboveground

    NASA Astrophysics Data System (ADS)

    Fu, Ya-Peng; Gao, Cheng; Yang, Bo

    2017-09-01

    A practical new type direct lightning shielding rod is designed to reduce the electromagnetic radiation produced by lightning stroking to Franklin lightning rod in the paper. The Finite-Difference Time-Domain (FDTD) method is adopted for analyzing. It is the shielding layer that affects the electromagnetic fields and the insulating medium make no difference. All the electromagnetic fields amplitude obtained decrease for the shielding layer existing, regardless of any condition, but the extent is different. That is, the effect on the horizontal electric field is most noticeable, the vertical electric field comes second, minimum the azimuthal magnetic field. All the field components are affected by shielding layer height and the distance between shielding layer and lightning channel, but not significantly by the shielding layer grounding depth. The shielding effect is more obvious with lower ground conductivity, but the ground relative permittivity makes no difference.

  3. Electromagnetic Field Devices and Their Effects on Nociception and Peripheral Inflammatory Pain Mechanisms.

    PubMed

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-03-01

    Context • During cell-communication processes, endogenous and exogenous signaling affects normal and pathological developmental conditions. Exogenous influences, such as extra-low-frequency (ELF) electromagnetic fields (EMFs) have been shown to affect pain and inflammation by modulating G-protein coupling receptors (GPCRs), downregulating cyclooxygenase-2 (Cox-2) activity, and downregulating inflammatory modulators, such as tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) as well as the transcription factor nuclear factor kappa B (NF-κB). EMF devices could help clinicians who seek an alternative or complementary treatment for relief of patients chronic pain and disability. Objective • The research team intended to review the literature on the effects of EMFs on inflammatory pain mechanisms. Design • We used a literature search of articles published in PubMed using the following key words: low-frequency electromagnetic field therapy, inflammatory pain markers, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), opioid receptors, G-protein coupling receptors, and enzymes. Setting • The study took place at the Wake Forest School of Medicine in Winston-Salem, NC, USA. Results • The mechanistic pathway most often considered for the biological effects of EMF is the plasma membrane, across which the EMF signal induces a voltage change. Oscillating EMF exerts forces on free ions that are present on both sides of the plasma membrane and that move across the cell surface through transmembrane proteins. The ions create a forced intracellular vibration that is responsible for phenomena such as the influx of extracellular calcium (Ca2+) and the binding affinity of calmodulin (CaM), which is the primary transduction pathway to the secondary messengers, cAMP and cGMP, which have been found to influence inflammatory pain. Conclusions • An emerging body of evidence indicates the existence of a frequency

  4. Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge

    PubMed Central

    Żak, Arkadiusz

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557

  5. Influence of electric, magnetic, and electromagnetic fields on the circadian system: current stage of knowledge.

    PubMed

    Lewczuk, Bogdan; Redlarski, Grzegorz; Zak, Arkadiusz; Ziółkowska, Natalia; Przybylska-Gornowicz, Barbara; Krawczuk, Marek

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms-two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields.

  6. Exposure of biological preparations to radiofrequency electromagnetic fields under low gravity.

    PubMed

    Jacquot, Jean Francois; le Bail, Jean-Luc; Bardet, Michel; Tabony, James

    2010-11-01

    There is interest as to whether the electromagnetic fields used in mobile radiotelephony might affect biological processes. Other weak fields such as gravity intervene in a number of physical and biological processes. Under appropriate in vitro conditions, the macroscopic self-organization of microtubules, a major cellular component, is triggered by gravity. We wished to investigate whether self-organization might also be affected by radiotelephone electromagnetic fields. Detecting a possible effect requires removing the obscuring effects triggered by gravity. A simple manner of doing this is by rotating the sample about the horizontal. However, if the external field does not also rotate with the sample, its possible effect might also be averaged down by rotation. Here, we describe an apparatus in which both the sample and an applied radiofrequency electromagnetic field (1.8 GHz) are stationary with respect to one another while undergoing horizontal rotation. The electromagnetic field profile within the apparatus has been measured and the apparatus tested by reproducing the in vitro behavior of microtubule preparations under conditions of weightlessness. Specific adsorption rates of electromagnetic energy within a sample are measured from the initial temperature rise the incident field causes. The apparatus can be readily adapted to expose samples to various other external fields and factors under conditions of weightlessness.

  7. Particle-In-Cell simulation concerning heat-flux mitigation using electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lüskow, Karl Felix; Duras, Julia; Kemnitz, Stefan; Kahnfeld, Daniel; Matthias, Paul; Bandelow, Gunnas; Schneider, Ralf; Konigorski, Detlev

    2016-10-01

    In space missions enormous amount of money is spent for the thermal protection system for re-entry. To avoid complex materials and save money one idea is to reduce the heat-flux towards the spacecraft. The partially-ionized gas can be controlled by electromagnetic fields. For first-principle tests partially ionized argon flow from an arc-jet was used to measure the heat-flux mitigation created by an external magnetic field. In the successful experiment a reduction of 85% was measured. In this work the Particle-in-Cell (PIC) method was used to simulate this experiment. PIC is able to reproduce the heat flux mitigation qualitatively. The main mechanism is identified as a changed electron transport and by this, modified electron density due to the reaction to the applied magnetic field. Ions follow due to quasi-neutrality and influence then strongly by charge exchange collisions the neutrals dynamics and heat deposition. This work was supported by the German Space Agency DLR through Project 50RS1508.

  8. Visualizing electromagnetic fields in laser-produced counterstreaming plasma experiments for collisionless shock laboratory astrophysics

    NASA Astrophysics Data System (ADS)

    Kugland, Nathan

    2012-10-01

    In astrophysical settings, large and stable structures often emerge from turbulent supersonic plasma flows. Examples include the cosmic magnetic field and the collisionless shocks [1] in supernova remnants. In a scaled environment created with the high power lasers at OMEGA EP, proton imaging shows that large, stable electromagnetic field structures arise within counterstreaming supersonic plasmas [2]. These field structures are large compared to the fundamental turbulence scale lengths of the plasma (e.g. the Debye length and the ion skin-depth), indicating a high degree of self-organization. These features remain in place from 4 to 7 ns, indicating a high degree of stability. At early times out to at least 8 ns, intra-jet ion collisions are strong (due to relatively low thermal velocities) but inter-jet ion collisions are rare (due to relatively high flow velocities), permitting the evolution of both hydrodynamic and collisionless plasma instabilities [3, 4]. This paper will present detailed results from our laboratory astrophysics experiments. Prepared by LLNL for US DOE under Contract DE-AC52-07NA27344.[4pt] [1] H. S. Park et al, HEDP, 8, 38 (2011).[0pt] [2] N.L. Kugland et al, submitted to Nature Physics (2012).[0pt] [3] J.S. Ross et al, Phys. Plas., 19, 056501 (2012).[0pt] [3] D.D. Ryutov et al, Phys. Plas., 19, 076532 (2012).

  9. The superluminal velocities as the consequence of non-classical states of electromagnetic field

    NASA Astrophysics Data System (ADS)

    Veklenko, B. A.

    2017-06-01

    It was shown within the framework of conventional quantum electrodynamics, and without using perturbation theory, the presence of superluminal signals, transferring the information, while investigating the scattering of quantum electromagnetic field by excited atom. The superluminal signals are impossible in the theory of free fields, but their existence is predicted by the theory of interacting fields.

  10. [The effect of electromagnetic fields on living organisms: plants, birds and animals].

    PubMed

    Rochalska, Małgorzata

    2007-01-01

    Electromagnetic fields, constant and alternating, are a static element of the environment. They originate from both natural and man-made sources. Depending on the type of the field, its intensity and time of activity, they exert different effects on the natural world (plants and animals). Some animals utilize magnetic field of the earth for their own purposes.

  11. Effects of Extremely Low Frequency Electromagnetic Fields on ’Physarum polycephalum’.

    DTIC Science & Technology

    When the myxomycete Physarum polycephalum is exposed to sinusoidal (45, 60, 75 Hz) or modulated (76 Hz) electromagnetic fields, the mitotic cycle is...fields is deleterious for Physarum (or other organisms); it can be concluded, however, that these fields do significantly affect biological processes.

  12. Simple and effective monitoring of the electromagnetic field in the smart cities arena

    NASA Astrophysics Data System (ADS)

    Ares-Pena, Francisco J.; Franceschetti, Giorgio; Iodice, Antonio; Salas-Sánchez, Aarón A.

    2016-08-01

    A simple and economical method for monitoring the electromagnetic field intensity in built-up areas is presented. The method is based on the measurement of the field level over a limited number of points at street level in the city and their transmission to an operative control center, where the field values all over the city are correctly interpolated in real time. Citizens might obtain these values at their sites, via Internet, or by connecting with a dedicated call center. Numerical evaluations of the electromagnetic field intensity via the new developed model and confirming experimental results are finally presented.

  13. Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media

    SciTech Connect

    Tong Zhisong; Korotkova, Olga

    2010-09-15

    The theory of scattering of scalar stochastic fields from deterministic and random media is generalized to the electromagnetic domain under the first-order Born approximation. The analysis allows for determining the changes in spectrum, coherence, and polarization of electromagnetic fields produced on their propagation from the source to the scattering volume, interaction with the scatterer, and propagation from the scatterer to the far field. An example of scattering of a field produced by a {delta}-correlated partially polarized source and scattered from a {delta}-correlated medium is provided.

  14. Terahertz Electromagnetic Fields (0.106 THz) Do Not Induce Manifest Genomic Damage In Vitro

    PubMed Central

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment. Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm2 to 2 mW/cm2, representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction. PMID:23029508

  15. Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro.

    PubMed

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment.Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm(2) to 2 mW/cm(2), representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction.

  16. Localized electromagnetic and weak gravitational fields in the source-free space.

    PubMed

    Borzdov, G N

    2001-03-01

    Localized electromagnetic and weak gravitational time-harmonic fields in the source-free space are treated using expansions in plane waves. The presented solutions describe fields having a very small (about several wavelengths) and clearly defined core region with maximum intensity of field oscillations. In a given Lorentz frame L, a set of the obtained exact time-harmonic solutions of the free-space homogeneous Maxwell equations consists of three subsets (storms, whirls, and tornados), for which time average energy flux is identically zero at all points, azimuthal and spiral, respectively. In any other Lorentz frame L', they will be observed as a kind of electromagnetic missile moving without dispersing at speed Velectromagnetic storms, whirls, tornados, and weak gravitational fields with similar properties are also presented. The properties of these fields are illustrated in graphic form.

  17. [Prevalence of insomnia in adults aged 18 to 60 years and exposure to electromagnetic fields in households of Barranquilla, Colombia].

    PubMed

    Peñuela-Epalza, Martha Elena; Páez-Jiménez, Daniela Alejandra; Castro-Cantillo, Laura Del Carmen; Harvey-Ortega, Joyce Carolina; Eljach-Cartagena, Javier Alexander; Banquett-Henao, Luis Alejandro

    2015-08-01

    Insomnia, a sleep disorder that affects both individual and public health, has not been studied in Barranquilla. Prior studies about the effects of exposure to electromagnetic fields on sleep disorders are controversial. To estimate the prevalence of insomnia symptoms in adults aged 18 to 60 years and its relation to the presence and intensity of electromagnetic fields in two neighborhoods of Barranquilla, Colombia. A cross-sectional study was carried out in 220 households located in two neighborhoods of Barranquilla, one with high exposure to radio and cell phone antennas and the other one with low exposure. After informed consent, a survey was applied among adults residing in 220 households to investigate the presence of insomnia symptoms, socio-demographic data and intake of medicines. When it was allowed, electromagnetic fields were measured with teslameters in bedrooms. The database was created in Excel™ and the data analysis was done with SPSS™, version 18. Insomnia, mainly of the mild type, was present in 74.5% of the total study population while 25.5% reported a normal sleep pattern. According to the sleeping test score we found a higher prevalence of insomnia in the neighborhood with greater exposure to radio antennas and cell towers (85.4%) than in the one with lower exposure (63.3%), prevalence ratio 1.34 (CI 95% 1.14-1.57). This study suggests a higher prevalence of insomnia among persons living in areas with higher exposure to electromagnetic fields where the number of radio antennas and cell towers was greater.

  18. Radiation of electromagnetic waves by a dipole in an external uniform electrostatic field

    NASA Astrophysics Data System (ADS)

    Manaenkov, S. I.

    2017-01-01

    Exact solution for the electromagnetic field densities E and H of a dipole of uniformly accelerated point-charges with identical masses is discussed. It is shown that, for any fixed time t and a large distance R between the center of the dipole and the fieldpoint, | E| R -4, | H| R -5, while for large c| t| R, | E| | H| 1/ R as in spherical electromagnetic waves. Nevertheless, any irreversible radiation of electromagnetic waves is absent since the wave zone does not exist.

  19. Electromagnetic Near Field Measurements of Two Critical Assemblies

    SciTech Connect

    Goettee, Jeffrey David

    2015-11-03

    The reactors employed, Godiva IV and WSMR Fast Burst Reactor, are described first. Then the point reactor kinetics model, electromagnetic potential, and the measurement of kinetics quantities are successively discussed. In summary, reactor power produces measurable electric energy. The electric signal mimics power curve for prompt burst operations - features in logarithmic derivatives match. The electric signature should be dependent on the power and not the derivative; therefore, steady-state modes should be measurable.

  20. Study of the shielding performances of different materials regarding Electromagnetic Field Interference

    NASA Astrophysics Data System (ADS)

    Conecici, L. M.; Munteanu, C.; Purcar, I. M.

    2017-05-01

    This paper presents a computer-aided comparison of some of the most used electromagnetic shielding materials. Computer-aided design (CAD) model and the computer aided engineering (CAE) simulation technologies are used for the analysis of the electromagnetic field shielding performances of each material individually and a comparison will be established. The main topic of this comparison is to establish a proper shielding material for ElectroMagnetic Interference (EMI) sources. A three-dimensional (CAD) model of the circuit breaker coil designed in PTC Creo Elements v.18.1 environment was analyzed in Ansoft Maxwell v.15 environment in order to compute the electromagnetic field distribution. The residual (EMI) values are compared to one another and the best shielding material will be presented for this circumstances.

  1. Environmental impact of the use of radiofrequency electromagnetic fields in physiotherapeutic treatment.

    PubMed

    Gryz, Krzysztof; Karpowicz, Jolanta

    2014-01-01

    Electromagnetic fields used in physiotherapeutic treatment affect not only patients, but also physiotherapists, patients not undergoing treatment and electronic medical equipment. The aim of the work was to study the parameters of the electromagnetic fields of physiotherapeutic devices with respect to requirements regarding the protection of electronic devices, including medical implants, against electromagnetic intererence, and the protection of the general public (patients not undergoing treatment and bystanders), as well as medical personnel, against the health hazards caused by electromagnetic exposure. The spatial distribution of electric and magnetic field strength was investigated near 3 capacitive short-wave and 3 long-wave diathermies and 3 ultrasound therapy units, as along with the capacitive electric currents caused by electromagnetic field interaction in the upper limbs of the physiotherapists operating these devices. The physiotherapists' exposure to electromagnetic fields depends on the spatial organisation of the workspace and their location during treatment. Electric fields able to interfere with the function of electronic medical implants and in whic anyone not undergoing treatment should not be present were measured up to 150-200 cm away from active applicators of short-wave diathermy, and up to 40-45 cm away from long-wave diathermy ones. Electric fields in which workers should not be present were measured up to 30-40 cm away from the applicators and cables of active short-wave diathermy devices. A capacitive electric current with a strength exceeding many times the international recommendations regarding workers protection was measured in the wrist while touching applicators and cables of active short-wave diathermy devices. The strongest environmental electromagnetic hazards occur near short-wave diathermy devices, and to a lesser degree near long-wave diathermy devices, but were not found near ultrasound therapy units.

  2. Pulsed electromagnetic fields after rotator cuff repair: a randomized, controlled study.

    PubMed

    Osti, Leonardo; Buono, Angelo Del; Maffulli, Nicola

    2015-03-01

    The current study tested the hypothesis that the use of pulsed electromagnetic fields after rotator cuff repair is effective in the short term as an adjuvant treatment to reduce local inflammation, postoperative joint swelling, and recovery time, as well as to induce pain relief. Sixty-six patients who underwent shoulder arthroscopy for repair of small to medium rotator cuff tears were randomly divided into 2 groups with a block randomization procedure. Thirty-two patients underwent arthroscopic rotator cuff repair and application of pulsed electromagnetic fields postoperatively; 34 patients underwent rotator cuff repair and placebo treatment (placebo group). All patients had the same postoperative rehabilitation protocol. At 3 months from the index procedure, visual analog scale, range of motion, and University of California at Los Angeles and Constant scores were significantly better in the pulsed electromagnetic fields group than in the placebo group (P<.05). Three patients in the pulsed electromagnetic fields group and 7 patients in the placebo group had mild to moderate capsulitis (P=.2). Severe capsulitis occurred in 1 patient in the pulsed electromagnetic fields group and 2 patients in the placebo group (P=.6). At the last follow-up (minimum, 2 years), clinical and functional outcomes were further improved in both groups, with no significant intergroup differences. Application of pulsed electromagnetic fields after rotator cuff repair is safe and reduces postoperative pain, analgesic use, and stiffness in the short term. At 2 years, no difference was seen in outcomes in patients who did or did not undergo treatment with pulsed electromagnetic fields. Copyright 2015, SLACK Incorporated.

  3. Electromagnetic instability in plasmas heated by a laser field.

    PubMed

    Bendib, A; Bendib-Kalache, K; Cros, B; Deutsch, C; Maynard, G

    2017-02-01

    Electromagnetic instability is investigated in homogeneous plasmas heated by a laser wave in the range α=v_{0}^{2}/v_{t}^{2}≤2, where v_{0} is the electron quiver velocity and v_{t} is the thermal velocity. The anisotropic electron distribution function that drives unstable quasistatic electromagnetic modes is calculated numerically with the Vlasov-Landau equation in the high ion charge number approximation. A dispersion relation of electromagnetic waves which accounts for further nonlinear terms on v_{0}^{2} from previous results is derived. In typical simulation with ion charge number Z=13, a temperature T=5keV, a density n=9.8×10^{20}cm^{-3}, and a laser wavelength λ_{laser}=1.06μm, growth rates larger than 10^{12}s^{-1} in the quasicollisionless wave-number range were found for α≥1. In the same physical conditions and in the mildly collisional range a growth rate about 10^{11}s^{-1} was also obtained. The extent of the growth wave-number region increases significantly with increasing α.

  4. Electromagnetic instability in plasmas heated by a laser field

    NASA Astrophysics Data System (ADS)

    Bendib, A.; Bendib-Kalache, K.; Cros, B.; Deutsch, C.; Maynard, G.

    2017-02-01

    Electromagnetic instability is investigated in homogeneous plasmas heated by a laser wave in the range α =v02/vt2≤2 , where v0 is the electron quiver velocity and vt is the thermal velocity. The anisotropic electron distribution function that drives unstable quasistatic electromagnetic modes is calculated numerically with the Vlasov-Landau equation in the high ion charge number approximation. A dispersion relation of electromagnetic waves which accounts for further nonlinear terms on v02 from previous results is derived. In typical simulation with ion charge number Z =13 , a temperature T =5 keV , a density n =9.8 ×1020c m-3 , and a laser wavelength λlaser=1.06 μ m , growth rates larger than 1012s-1 in the quasicollisionless wave-number range were found for α ≥1 . In the same physical conditions and in the mildly collisional range a growth rate about 1011s-1 was also obtained. The extent of the growth wave-number region increases significantly with increasing α .

  5. [Reaction of the endocrine system to continuous and intermittent electromagnetic fields].

    PubMed

    Zagorskaia, E A

    1989-01-01

    This paper reviews Soviet and foreign data about the effects of low frequency electromagnetic fields of continuous and intermittent generation on the endocrine system of animals and humans. It has been shown that the pituitary-adrenal, pituitary-thyroid and reproductive systems are sensitive to these effects. It is postulated that the endocrine responses to electromagnetic effects are similar to the general adaptive reactions to various pathophysiological exposures.

  6. Recommendations from the Field: Creating an LGBTQ Learning Community

    ERIC Educational Resources Information Center

    Jaekel, Kathryn S.

    2015-01-01

    This article details the creation of a lesbian, gay, bisexual, transgender, and queer (LGBTQ) learning community. Created because of research that indicates chilly campus climates (Rankin, 2005), as well as particular needs of LGBTQ students in the classroom, this learning community focused upon LGBTQ topics in and out of the classroom. While…

  7. Reflections from the Field: Creating an Elementary Living Learning Makerspace

    ERIC Educational Resources Information Center

    Shively, Kathryn L.

    2017-01-01

    This article features the creation of a makerspace in the elementary education (ELED) living and learning community (LLC) residence hall. This space was created based on the growing body of literature demonstrating the rise of makerspaces across learning environments as well as the need to expose pre-service teachers (PSTs) to early field…

  8. Electromagnetic near-field interactions of a dipolar emitter with metal and metamaterial nanoslabs

    SciTech Connect

    Hakkarainen, Timo; Setaelae, Tero; Friberg, Ari T.

    2011-09-15

    We investigate the emission properties of a polarizable point dipole placed within a subwavelength distance from a silver or a slightly absorbing, negative-index metamaterial nanoslab. Using electromagnetic theory we show that in the immediate vicinity of the slab the dipole-slab interaction prevents the dipole from radiating. For the metamaterial slab close to the perfect-lens arrangement, the interaction is relatively weak and of short range. In particular, a region exists in the near zone of the metamaterial slab where the dipole emission is not disturbed by the interaction, and a bright intensity distribution of subwavelength width is created on the opposite side of the slab. This suggests that a low-loss metamaterial slab can act as a near-field imaging device which does not disturb the object. For the silver slab the interaction is stronger and it reaches over the near-field zone, adversely influencing the imaging capabilities in terms of brightness and resolution. The results are important for the development of metal and metamaterial superlenses.

  9. Electromagnetic Meissner-Effect Launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1990-01-01

    Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.

  10. Electromagnetic Meissner-Effect Launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1990-01-01

    Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.

  11. The Field Experience: Creating Successful Programs for New Teachers.

    ERIC Educational Resources Information Center

    Slick, Gloria Appelt, Ed.

    This is the first in a series of four books presenting a variety of field experience program models and philosophies that drive the programs provided to preservice teachers during their undergraduate teacher preparation. This publications focuses on developing and evaluating an effective field experience program. Several common themes emerge from…

  12. On the determination of the electromagnetic field upon scattering by a small inhomogeneous spherical object

    SciTech Connect

    Shalashov, A. G. Gospodchikov, E. D.

    2016-10-15

    An efficient and fairly simple method of solving the problem of the incidence of a plane electromagnetic wave on an inhomogeneous object with specified spherically symmetric distributions of its electric permittivity and magnetic permeability is presented. The fields inside the object and the integrated scattering and absorption cross sections are found by assuming the object to be small compared to the vacuum wavelength. Since no constraints are imposed on the scales of the fields inside the object, the method is suitable for investigating complex cases, including those associated with the local amplification and absorption of the electromagnetic field in inhomogeneous resonant media.

  13. The nonextensive parameter for nonequilibrium electron gas in an electromagnetic field

    SciTech Connect

    Yu, Haining; Du, Jiulin

    2014-11-15

    The nonextensive parameter for nonequilibrium electron gas of the plasma in an electromagnetic field is studied. We exactly obtained an expression of the q-parameter based on Boltzmann kinetic theories for plasmas, where Coulombian interactions and Lorentz forces play dominant roles. We show that the q-parameter different from unity is related by an equation to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the gas. The effect of the magnetic field on the q-parameter depends on the overall bulk velocity. Thus the q-parameter for the electron gas in an electromagnetic field represents the nonequilibrium nature or nonisothermal configurations of the plasma with electromagnetic interactions. - Highlights: • An expression of the q-parameter is obtained for nonequilibrium plasma with electromagnetic interactions. • The q-parameter is related to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the plasma. • The q-parameter represents the nonequilibrium nature of the complex plasma with electromagnetic interactions.

  14. [Proposal for magnetic/electromagnetic fields protection norms on national level].

    PubMed

    Dordević, Drago; Raković, Dejan

    2008-01-01

    The modern life is not possible without application of magnetic/electromagnetic fields, which can be both helpful and harmful for human body. The non-ionizing radiation, especially magnetic/electromagnetic fields of all frequencies (0-300 GHz), can have many harmful effects on the human health that is confirmed by numerous epidemiological studies, studies with volunteers, animal studies, and in vitro studies. Proposal for magnetic/electromagnetic fields protection norms on national level based on the WHO Program for Environment, International Commission on Non-Ionizing Radiation Protection (ICNIRP)], and WHO International EMF Project. Protection from harmful effects of the magnetic/electromagnetic fields is still a great problem in many countries of modern society--huge costs, impaired quality of life, and more important, damage to the human health. Numerous data and publications of harmful effects of the magnetic/electromagnetic fields represents one's country basic necessary documentation for making decisions and law documents for protection norms on national level concerning the health maintenance according to the ICNIRP normatives.

  15. Exact Electromagnetic Fields Produced by a Finite Wire with Constant Current

    ERIC Educational Resources Information Center

    Jimenez, J. L.; Campos, I.; Aquino, N.

    2008-01-01

    We solve exactly the problem of calculating the electromagnetic fields produced by a finite wire with a constant current, by using two methods: retarded potentials and Jefimenko's formalism. One result in this particular case is that the usual Biot-Savart law of magnetostatics gives the correct magnetic field of the problem. We also show…

  16. Public health risk from ELF (electromagnetic fields) exposure -- can it be assessed

    SciTech Connect

    Aldrich, T.E.; Easterly, C.E.

    1988-01-01

    Extremely low frequency electromagnetic fields (ELF) are a ubiquitous environmental agent. There are persistent indications that these fields have biologic activity, and consequently, there may be a deleterious component to their action. Epidemiologic researchers of ELF face several methodological obstacles, and quantitative risk assessment is in a quandary. Simply stated there is a need for more data---especially with regard to exposure assessment.

  17. Quantum analysis of fluctuations of electromagnetic fields in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Zakharov, B. G.

    2017-06-01

    We perform quantum calculations of fluctuations of the electromagnetic fields in AA collisions at RHIC and LHC energies. The analysis is based on the fluctuation-dissipation theorem. We find that in the quantum picture the field fluctuations are very small. They turn out to be much smaller than the predictions of the classical Monte Carlo simulation with the Woods-Saxon nuclear density.

  18. Exact Electromagnetic Fields Produced by a Finite Wire with Constant Current

    ERIC Educational Resources Information Center

    Jimenez, J. L.; Campos, I.; Aquino, N.

    2008-01-01

    We solve exactly the problem of calculating the electromagnetic fields produced by a finite wire with a constant current, by using two methods: retarded potentials and Jefimenko's formalism. One result in this particular case is that the usual Biot-Savart law of magnetostatics gives the correct magnetic field of the problem. We also show…

  19. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, Arthur J.; Morin, Brian G.

    1998-01-01

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors.

  20. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, A.J.; Morin, B.G.

    1998-10-13

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors. 21 figs.

  1. Magnetic field instability of a plasma in a beam of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.

    1980-04-01

    A beam of electromagnetic radiation can generate magnetic fields in plasmas. It is shown that those fields grow significantly when the incident radiation is sufficiently strong. We obtain expressions for the characteristic time of the growth of the fields as well as for their spatial distribution and point out a possible mechanism, which can lead to the formation of a quasi-stationary state. The maximum value of the magnetic field strength is estimated.

  2. Effects of pulsed electromagnetic fields on cognitive processes - a pilot study on pulsed field interference with cognitive regeneration.

    PubMed

    Maier, R; Greter, S-E; Maier, N

    2004-07-01

    Due to the ubiquitous use of cellular phones much has been speculated on secondary effects of electromagnetic irradiation emitted by those. Additionally, several studies have reported vegetative alterations as well as effects on the neuronal and molecular levels in humans. Here, using a psycho-physiological test paradigm, we examined effects of exposure to pulsed electromagnetic fields on cognitive performance. In 11 volunteers, we tested cognitive processing under field exposure (GSM standard) and under field-free conditions. To examine the hypothesized effect of pulsed fields, we applied an auditory discrimination task and determined the participant's current 'Order Threshold' value. Following a first test cycle, the volunteers had to relax for 50 min while being, or not, exposed to pulsed electromagnetic fields. Subsequently, the test was repeated. Data acquired before and after the resting phase were compared from both experimental conditions. We found that nine of the 11 test participants (81.8%) showed worse results in their auditory discrimination performance upon field exposure as compared with control conditions. Group data comparison revealed a statistical significance of P = 0.0105. We could show that the participants' cognitive performance was impaired after exposure to pulsed electromagnetic fields. With regard to this finding, we recommend that the use of cellular phones should be restricted generally and in particular in respect of physical hazard of high-risk groups, e.g. elderly, children and ill people.

  3. Electromagnetically induced phase grating.

    PubMed

    de Araujo, Luís E E

    2010-04-01

    I propose an electromagnetically induced phase grating based on the giant Kerr nonlinearity of an atomic medium under electromagnetically induced transparency. The atomic phase grating behaves similarly to an ideal sinusoidal phase grating, and it is capable of producing a pi phase excursion across a weak probe beam along with high transmissivity. The grating is created with arbitrarily weak fields, and diffraction efficiencies as high as 30% are predicted.

  4. Influence of electromagnetic field intensity on the metastable zone width of CaCO3 crystallization in circulating water

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Liang, Yandong; Chen, Si

    2016-09-01

    In this study, changes in the metastable zone width of CaCO3 crystallization was determined through conductivity titration by altering electromagnetic field parameters applied to the circulating water system. The critical conductivity value and metastable zone curves of CaCO3 crystallization were determined under different solution concentrations and electromagnetic field intensities. Experimental results indicate that the effect of the electromagnetic field intensity on the critical conductivity value intensifies with the increase of solution concentration. Moreover, the metastable zone width of CaCO3 crystallization increases with the increase of electromagnetic field intensity within 200 Gs, thereby prolonging the induction period of nucleation.

  5. Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats.

    PubMed

    Bas, O; Odaci, E; Mollaoglu, H; Ucok, K; Kaplan, S

    2009-07-01

    Widespread use of mobile phones which are a major source of electromagnetic fields might affect living organisms. However, there has been no investigation concerning prenatal exposure to electromagnetic fields or their roles in the development of the pyramidal cells of the cornu ammonis in postnatal life. Two groups of pregnant rats, a control group and an experimental group, that were exposed to an electromagnetic field were used. For obtaining electromagnetic field offspring, the pregnant rats were exposed to 900 megahertz electromagnetic fields during the 1-19th gestation days. There were no actions performed on the control group during the same period. The offspring rats were spontaneously delivered--control group (n = 6) and electromagnetic field group (n = 6). Offspring were sacrificed for stereological analyses at the end of the 4th week. Pyramidal cell number in rat cornu ammonis was estimated using the optical fractionator technique. It was found that 900 megahertz of electromagnetic field significantly reduced the total pyramidal cell number in the cornu ammonis of the electromagnetic field group (P < 0.001). Therefore, although its exact mechanism is not clear, it is suggested that pyramidal cell loss in the cornu ammonis could be due to the 900 megahertz electromagnetic field exposure in the prenatal period.

  6. [Mechanism of the effect of weak electromagnetic fields on the living body].

    PubMed

    Sidorenko, V M

    2001-01-01

    By using the model conceptions of the dielectric polarization theory, a new mechanism for the effect of electromagnetic field was proposed. The model enables one to explain the experimentally observed influence of low-frequency weak electromagnetic field on biological objects. It was shown that, at the cellular and subcellular levels, an increase in the intensity of the electric component of external electromagnetic field can occur. The magnitude of this increase is determined by the ratio of the contributions of the medium polarization and the depolarizing factor (which depends on body shape) to the total effect. As a result of this increase, a potential comparable with intrinsic biological values can be generated on neuron membranes, which must elicit nervous and physiological responses of the organism.

  7. Growth stimulation of biological cells and tissue by electromagnetic fields and uses thereof

    NASA Technical Reports Server (NTRS)

    Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)

    2004-01-01

    The present invention provides systems for growing two or three dimensional mammalian cells within a culture medium facilitated by an electromagnetic field, and preferably, a time varying electromagnetic field. The cells and culture medium are contained within a fixed or rotating culture vessel, and the electromagnetic field is emitted from at least one electrode. In one embodiment, the electrode is spaced from the vessel. The invention further provides methods to promote neural tissue regeneration by means of culturing the neural cells in the claimed system. In one embodiment, neuronal cells are grown within longitudinally extending tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time varying electrical current is conducted, the conductive channels being positioned within a culture medium.

  8. Broadband field enhancement of THz electromagnetic wave by surface-textured micron PVDF cylinders

    NASA Astrophysics Data System (ADS)

    Li, Xinxin; Liu, Xuan; Zhang, Luoning; Zhou, Jing; Liu, Dahe

    2015-07-01

    A cylindrical dimmer system is proposed to realize broadband field enhancement for terahertz (THz) electromagnetic wave. A surface-textured crescent-shaped cylinder is proposed to red-shift the absorption spectrum comparing to the traditional crescent-shaped cylinder based on the concept of spoof surface plasmons. Such cylinders made of ferroelectric polyvinylidene fluoride can realize the electromagnetic wave harvesting at terahertz frequencies with a broadband and huge absorption cross section. Two such cylinders in close proximity could achieve considerable electromagnetic field enhancement and field confinement in the gap, which could be applied in THz molecules detection, toxic chemical sensing, and safety screening and could break the detection binding that limits the molecules <100 nm.

  9. Growth Stimulation of Biological Cells and Tissue by Electromagnetic Fields and Uses Thereof

    NASA Technical Reports Server (NTRS)

    Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)

    2002-01-01

    The present invention provides systems for growing two or three dimensional mammalian cells within a culture medium facilitated by an electromagnetic field, and preferably, a time varying electromagnetic field. The cells, and culture medium are contained within a fixed or rotating culture vessel, and the electromagnetic field is emitted from at least one electrode. In one embodiment, the electrode is spaced from the vessel. The invention further provides methods to promote neural tissue regeneration by means of culturing the neural cells in the claimed system. In one embodiment, neuronal cells are grown within longitudinally extending tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time varying electrical current is conducted, the conductive channels being positioned within a culture medium.

  10. [Improvement of light-cured indirect inlays durability by means of electromagnetic field].

    PubMed

    Nidzel'skiĭ, M Ia; Korotetskaia-Zinkevich, V L

    2014-01-01

    The main strength characteristics of light-cured resins used for replacement of dental hard tissues defects are destructive stress by compression, microhardness, resistance to abrasion, impact and water absorption. The study focuses on some strength features of composite materials for inlays processed by electromagnetic field. Four sample series of light cured resin (Charisma, Heraus Kulzer, Germany) were used to assess strength features changes in various curing methods: 10 control samples were polymerized by conventional light-curing device, while 30 were additionally processed by electromagnetic field of various intensity (60, 80 and 100 Oe, 10 samples for each group). The obtained results confirm the positive effects of electromagnetic field on strength features of light-cured resins which improves the quality of inlays.

  11. Separation of particles, suspended in a conducting liquid, with the help of an alternating electromagnetic field

    SciTech Connect

    Korovin, V.M.

    1986-01-01

    The author studies MHD flow at low Reynolds numbers past a spherical particle with conductivity ..cap alpha../sub 1/ greater than or equal to0, moving in a viscous fluid at rest with conductivity ..cap alpha../sub 2/ not = ..cap alpha../sub 1/, filling the interior space of a long solenoid fed by an alternating current. It is shown that aside from the electromagnetic force calculated from the analog of Archimedes' principle, and from the Lorentz force arising from the interaction of eddy currents flowing in th particle with the magnetic field, the particle is also subjected to an electromagnetic propulsive force. A formula relating the local characteristics of the electromagnetic field with the velocity of the particle put into motion by the field but neglecting inertial effects is obtained.

  12. Growth Stimulation of Biological Cells and Tissue by Electromagnetic Fields and Uses Thereof

    NASA Technical Reports Server (NTRS)

    Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)

    2002-01-01

    The present invention provides systems for growing two or three dimensional mammalian cells within a culture medium facilitated by an electromagnetic field, and preferably, a time varying electromagnetic field. The cells, and culture medium are contained within a fixed or rotating culture vessel, and the electromagnetic field is emitted from at least one electrode. In one embodiment, the electrode is spaced from the vessel. The invention further provides methods to promote neural tissue regeneration by means of culturing the neural cells in the claimed system. In one embodiment, neuronal cells are grown within longitudinally extending tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time varying electrical current is conducted, the conductive channels being positioned within a culture medium.

  13. Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions

    DOE PAGES

    Tuchin, Kirill

    2013-01-01

    I reviewmore » the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~ m π 2 at RHIC and ~ 10 m π 2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J / ψ dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.« less

  14. Oxidative and genotoxic effects of 900 MHz electromagnetic fields in the earthworm Eisenia fetida.

    PubMed

    Tkalec, Mirta; Stambuk, Anamaria; Srut, Maja; Malarić, Krešimir; Klobučar, Göran I V

    2013-04-01

    Accumulating evidence suggests that exposure to radiofrequency electromagnetic field (RF-EMF) can have various biological effects. In this study the oxidative and genotoxic effects were investigated in earthworms Eisenia fetida exposed in vivo to RF-EMF at the mobile phone frequency (900 MHz). Earthworms were exposed to the homogeneous RF-EMF at field levels of 10, 23, 41 and 120 V m(-1) for a period of 2h using a Gigahertz Transversal Electromagnetic (GTEM) cell. At the field level of 23 V m(-1) the effect of longer exposure (4h) and field modulation (80% AM 1 kHz sinusoidal) was investigated as well. All exposure treatments induced significant genotoxic effect in earthworms coelomocytes detected by the Comet assay, demonstrating DNA damaging capacity of 900 MHz electromagnetic radiation. Field modulation additionally increased the genotoxic effect. Moreover, our results indicated the induction of antioxidant stress response in terms of enhanced catalase and glutathione reductase activity as a result of the RF-EMF exposure, and demonstrated the generation of lipid and protein oxidative damage. Antioxidant responses and the potential of RF-EMF to induce damage to lipids, proteins and DNA differed depending on the field level applied, modulation of the field and duration of E. fetida exposure to 900 MHz electromagnetic radiation. Nature of detected DNA lesions and oxidative stress as the mechanism of action for the induction of DNA damage are discussed.

  15. Effects of electric field and structure on the electromagnetically induced transparency in double quantum dot

    NASA Astrophysics Data System (ADS)

    Bejan, D.

    2017-05-01

    We theoretically investigated the effects of electric field and structural parameters of the confining potential on the optical properties of a GaAs/AlGaAs double quantum dot related to the occurrence of the electromagnetically induced transparency phenomenon, using the compact density-matrix formalism and the effective mass approximation. The dependences of the absorption coefficient, refraction index and light group velocity on the Rabi frequency of the control field, intensity of the static electric field, asymmetry parameter of the potential and dot dimension are discussed in detail. It is found that electromagnetically induced transparency occurs in the system for intermediate field values and its transparency window for probe field absorption and sub- and super-luminal frequency interval of the probe field are blueshifted by the increment of the electric field strength and dot dimension but are redshifted by the augment of the asymmetry parameter of the potential.

  16. Retardation of embryogenesis by extremely low frequency 60 Hz electromagnetic fields.

    PubMed

    Cameron, I L; Hunter, K E; Winters, W D

    1985-01-01

    Fertilized Medaka fish eggs were used to determine if electromagnetic fields, designed to simulate those beneath a high voltage power line, have biological effects on vertebrate embryo development. The newly fertilized eggs were exposed to a 60 Hz electrical field of 300 mA/m2 current density, a 60 Hz magnetic field of 1.0 gauss RMS, or to the combined electric plus magnetic fields for 48 hours. No gross abnormalities were observed in any of the embryos as they developed, but significant development delays were seen in those embryos exposed to either the magnetic or to the combined electromagnetic fields; delays were not seen in the embryos exposed to the electrical field. Thus, a 60 Hz magnetic field like that encountered in a man made powerline environment was shown to retard development of fish embryos.

  17. Electromagnetic field of a charge intersecting a cold plasma boundary in a waveguide

    SciTech Connect

    Alekhina, Tatiana Yu.; Tyukhtin, Andrey V.

    2011-06-15

    We analyze the electromagnetic field of a charge crossing a boundary between a vacuum and cold plasma in a waveguide. We obtain exact expressions for the field components and the spectral density of the transition radiation. With the steepest descent technique, we investigate the field components. We show that the electromagnetic field has a different structure in a vacuum than in cold plasma. We also develop an algorithm for the computation of the field based on a certain transformation of the integration path. The behavior of the field depending on distance and time and the spectral density depending on frequency are explored for different charge velocities. Some important physical effects are noted. A considerable increase and concentration of the field near the wave front in the plasma is observed for the case of ultrarelativistic particles. In the plasma, the mode envelopes and spectral density show zero points when the charge velocity is within certain limits.

  18. [Patient exposure to electromagnetic fields in magnetic resonance scanners: a review].

    PubMed

    Guibelalde del Castillo, E

    2013-12-01

    The use of non-ionizing electromagnetic fields in the low frequency end of the electromagnetic spectrum and static fields, radiofrequencies (RF), and microwaves is fundamental both in modern communication systems and in diagnostic medical imaging techniques like magnetic resonance imaging (MRI). The proliferation of these applications in recent decades has led to intense activity in developing regulations to guarantee their safety and to the establishment of guidelines and legal recommendations for the public, workers, and patients. In April 2012 it was foreseen that the European Parliament and Council would approve and publish a directive on the minimum health and safety requirements regarding the exposure of workers to the risks arising from electromagnetic fields, which would modify Directive 2004/40/EC. New studies related to the exposure to electromagnetic radiation and its impact on health published in recent years have led to a new postponement, and it is now foreseen that the directive will come into effect in October 2013. One of the most noteworthy aspects of the new version of the directive is the exclusion of the limits of occupational exposure to electromagnetic fields in the clinical use of MRI. In exchange for this exception, physicians and experts in protection against non-ionizing radiation are asked to make additional efforts to train workers exposed to non-ionizing radiation and to establish mechanisms to guarantee the correct application of non-ionizing electromagnetic fields in patients, along similar lines to the principles of justification and optimization established for ionizing radiation. On the basis of the most recently published studies, this article reviews some safety-related aspects to take into account when examining patients with MRI with high magnetic fields. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  19. Creating Dissonance in Pre-Service Teachers' Field Experiences

    ERIC Educational Resources Information Center

    Eisenhardt, Sara; Besnoy, Kevin; Steele, Emily

    2012-01-01

    The study is practical in nature and addresses the call for investigating effective aspects of field experiences in teacher preparation. The authors designed a framework of assignments requiring the pre-service teachers to collect data about two diverse elementary students in their assigned elementary classroom during the twelve weeks of their…

  20. Human osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF) and therapeutic application of musically modulated electromagnetic fields (TAMMEF) systems: a comparative study.

    PubMed

    Corallo, Claudio; Volpi, Nila; Franci, Daniela; Vannoni, Daniela; Leoncini, Roberto; Landi, Giacomo; Guarna, Massimo; Montella, Antonio; Albanese, Antonietta; Battisti, Emilio; Fioravanti, Antonella; Nuti, Ranuccio; Giordano, Nicola

    2013-06-01

    Osteoarthritis (OA) is the most common joint disease, characterized by matrix degradation and changes in chondrocyte morphology and metabolism. Literature reported that electromagnetic fields (EMFs) can produce benefits in OA patients, even if EMFs mechanism of action is debated. Human osteoarthritic chondrocytes isolated from femoral heads were cultured in vitro in bidimensional (2-D) flasks and in three-dimensional (3-D) alginate beads to mimic closely cartilage environment in vivo. Cells were exposed 30 min/day for 2 weeks to extremely low-frequency electromagnetic field (ELF) with fixed frequency (100 Hz) and to therapeutic application of musically modulated electromagnetic field (TAMMEF) with variable frequencies, intensities, and waveforms. Cell viability was measured at days 7 and 14, while healthy-cell density, heavily vacuolized (hv) cell density, and cluster density were measured by light microscopy only for 3-D cultures after treatments. Cell morphology was observed for 2-D and 3-D cultures by transmission electron microscopy (TEM). Chondrocyte exposure to TAMMEF enhances cell viability at days 7 and 14 compared to ELF. Light microscopy analysis showed that TAMMEF enhances healthy-cell density, reduces hv-cell density and clustering, compared to ELF. Furthermore, TEM analysis showed different morphology for 2-D (fibroblast-like) and 3-D (rounded shape) cultures, confirming light microscopy results. In conclusion, EMFs are effective and safe for OA chondrocytes. TAMMEF can positively interfere with OA chondrocytes representing an innovative non-pharmacological approach to treat OA.

  1. A spaceborne receiver for measuring electromagnetic field intensity

    NASA Technical Reports Server (NTRS)

    Reich, B. W.; Van Dusen, M. R.; Habib, E. J.

    1973-01-01

    Description of a very accurately controlled receiver for monitoring the electromagnetic radiations in both existing and projected space communication bands. Based on analysis of the existing and projected space communication bands, 108 to 174 MHz, 240 to 478 MHz, and 1535 to 1665 MHz were covered. The receiver achieves accurate control via a digitally tuned synthesizer and a wide range of digital control including frequency band coverage and gain control selection. Digital memory was provided to store 16 separate digital command instructions which can be programmed via a command data link. The receiver provides for transmission to the ground of both a predetection signal and signals in digital format, which in turn, were provided by sampling and analog-to-digital conversions.

  2. Negative index materials and time-harmonic electromagnetic field

    NASA Astrophysics Data System (ADS)

    Gralak, Boris; Maystre, Daniel

    2012-10-01

    We study the evanescent wave's behavior on a device made of a plane interface separating vacuum from a perfect negative index material. The system is described by the macroscopic Maxwell's equations with frequency-dependent permittivity and permeability. Assuming that electromagnetic sources with sinusoidal time dependence are switched on at an initial time, we show that, as time increases, evanescent waves result in surface modes at the plane interface. The time dependence of these surface modes is oscillating but not harmonic since their amplitude linearly increases with time. As a consequence, we find that the image of a point source is not a point image. The analysis avoids any ambiguity related with causality and finite energy requirements.

  3. Localization from near-source quasi-static electromagnetic fields

    SciTech Connect

    Mosher, John Compton

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.

  4. Resonances and circuit theory for the interaction of metallic disks and annuli with an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Chui, S. T.; Du, J. J.; Yau, S. T.

    2014-11-01

    To understand the nature of the electromagnetic resonances of finite metallic surfaces, we formulate a rigorous and rapidly convergent circuit theory for the interaction of a metallic disk and a metallic annulus with an electromagnetic field. Expressions for the current induced and the resonance condition are derived. A new understanding of the nature of the resonances is obtained. For half of the resonances we find a divergent electric field at the edge of the disk, even though it is smooth in shape. For the disk, we compare with previous results using vector spheroidal wave functions and found good agreement for the resonance condition. Our approach can be generalized to other finite surfaces.

  5. Effect of electromagnetic field emitted by cellular phones on fetal heart rate patterns.

    PubMed

    Celik, Onder; Hascalik, Seyma

    2004-01-15

    The study was planned to determine the effects of electromagnetic fields produced by cellular phones on baseline fetal heart rate, acceleration and deceleration. Forty pregnant women undergoing non-stress test were admitted to the study. Non-stress test was obtained while the subjects were holding the CP on stand by mode and on dialing mode, each for 5 min. Similar recordings were taken while there were no phones around for 10 min. Electromagnetic fields produced by cellular phones do not cause any demonstrable affect in fetal heart rate, acceleration and deceleration.

  6. Effects of Electromagnetic Fields in Spinal Muscular Atrophy: A Case Report

    NASA Astrophysics Data System (ADS)

    Cañedo, L.; Martínez-Mata, J.; Serrano-Luna, G.

    2004-09-01

    Spinal Muscular Atrophy Type I is a disease that rapidly progress to death in early infancy. A case report of a child with Werdnig-Hoffmann disease Type I that recovered at three years of age after two years exposure to electromagnetic fields (ELF) is presented. The child is now eleven years old and with the exception of slightly abnormal gait, the muscle mass of tights and gluteus, high, weight and his everyday activities correspond to those of a normal child his age. Hypothetical explanations for the effects of the electromagnetic fields are discussed.

  7. The effect of 50 Hz electromagnetic fields on the formation of micronuclei in rodent cell lines exposed to gamma radiation.

    PubMed

    Lagroye, I; Poncy, J L

    1997-08-01

    Low frequency electromagnetic fields (EMF) do not produce enough energy to damage DNA, in contrast to ionizing radiations. Any relationship between increased incidence of cancer and EMF must therefore be explained by a promoting effect on cellular transformation by ionizing radiation. The aim of this study was to investigate using the cytokinesis-blocked micronucleus assay a possible amplification of the genotoxic effects of ionizing radiations in cells exposed to combined static and power-frequency electromagnetic fields. Rat tracheal epithelial cell lines were first exposed in vitro to 60Co gamma rays (0, 2 and 6 Gy) and cells were then cultured for 24 h in a homogeneous sinusoidal 50 Hz magnetic field (flux density: 100 microTrms) combined with an artificial geomagnetic-like field created by the use of horizontal and vertical pairs of Helmholtz coils. Control cells were cultured in an adjacent incubator where the background EMF was about 0.1 microTrms. Under our in vitro experimental conditions, EMF appeared to have no significant direct effect on micronucleus induction in rat tracheal cell lines. However, an increased frequency of binucleated cells with micronuclei was observed in cells exposed to 6 Gy of gamma rays and EMF, compared with gamma irradiation alone. This could enhance radiation-induced genomic alterations and increase the probability of neoplastic transformation.

  8. Influence of electromagnetic fields on the enzyme activity of rheumatoid synovial fluid cells in vitro.

    PubMed

    Mohamed-Ali, H; Kolkenbrock, H; Ulbrich, N; Sörensen, H; Kramer, K D; Merker, H J

    1994-04-01

    Since positive clinical effects have been observed in the treatment of rheumatoid arthritis with electromagnetic fields of weak strength and low frequency range (magnetic field strength: 70 microT; frequency: 1.36-14.44 Hz), an attempt was made to analyse the effects of these electromagnetic fields on enzyme activity in monolayer cultures of rheumatoid synovial fluid cells after single irradiation of the cultures for 24 hours. We only investigated the matrix metalloproteinases (collagenase, gelatinase, proteinase 24.11 and aminopeptidases). It was found that electromagnetic fields of such a weak strength and low frequency range do not generally have a uniform effect on the activity of the different proteinases in vitro. While aminopeptidases do not show any great changes in activity, the peptidases hydrolysing N(2,4)-dinitrophenyl-peptide exhibit a distinct increase in activity in the late phase in culture medium without fetal calf serum. In the presence of fetal calf serum this effect is not observed and enzyme activity is diminished. Our experiments do not show whether such a phase-bound increase in the activity of proteinases in vitro is only one finding in a much broader range of effects of electromagnetic fields, or whether it is a specific effect of weak pulsed magnetic fields of 285 +/- 33 nT on enzyme activity after single irradiation. This question requires further elucidation.

  9. Exposure of salivary gland cells to low-frequency electromagnetic fields alters polypeptide synthesis.

    PubMed Central

    Goodman, R; Henderson, A S

    1988-01-01

    This study demonstrates that exposure of cells to extremely low-frequency electromagnetic fields can cause measurable changes in protein synthesis. Sciara coprophila salivary gland cells were exposed to five low-frequency (1.5-72 Hz) electromagnetic signals: three signals (1.5, 15, and 72 Hz) produced pulsed asymmetric electromagnetic fields and two signals (60 and 72 Hz) were sinusoidal. Subsequent analyses of two-dimensional gels showed that cell exposure to either type of low-frequency electromagnetic field resulted in both qualitative and quantitative changes in patterns of protein synthesis. Thus, signals producing diverse waveform characteristics induced previously undetectable polypeptides, some of which were signal specific and augmented or suppressed other polypeptides as compared with nonexposed cells. The pattern of polypeptide synthesis differed from that seen with heat shock: only five polypeptides in cells exposed to electromagnetic signals overlap those polypeptides exposed to heat shock, and the suppression of protein synthesis characteristic of heat shock does not occur. Images PMID:3375247

  10. Association between electromagnetic field exposure and abortion in pregnant women living in Tehran

    PubMed Central

    Abad, Masoumeh; Malekafzali, Hossein; Simbar, Masoumeh; Seyed Mosaavi, Hassan; Merghati Khoei, Effat

    2016-01-01

    Background: Health-related quality of life is affected by electromagnetic field exposure in each person everyday life. However, this is extremely controversial issue. Objective: Investigation of the associations between electromagnetic field exposure and miscarriage among women of Tehran. Materials and Methods: In this longitudinal study, 462 pregnant women with gestational age <12 wks from seven main regions of Tehran city in Iran with similar social and cultural status were participated. Women were interviewed face-to face to collect data. Reproductive information was collected using medical file recorded in those hospitals the subjects had delivery. The measuring device measured electromagnetic waves, Narda safety test solutions with valid calibration date at the entrance door of their houses. Results: A significant likelihood of miscarriage in women who exposed to significant level of electromagnetic wave. However, this association was not confirmed by Wald test. Conclusion: This study may not provide strong or consistent evidence that electromagnetic field exposure is associated or cause miscarriage. This issue may be due to small sample size in this study. PMID:27326421

  11. Electromagnetic field emitted by 902 MHz mobile phones shows no effects on children's cognitive function.

    PubMed

    Haarala, Christian; Bergman, Monica; Laine, Matti; Revonsuo, Antti; Koivisto, Mika; Hämäläinen, Heikki

    2005-01-01

    The present study investigated the potential effects of a standard 902 MHz global system for mobile communication (GSM) mobile phone on 10-14 years old children's cognitive function. A total of 32 children (16 boys, 16 girls) participated with their own and parental consent. The subjects were 10-14 years old (mean 12.1 years, SD 1.1). They performed a battery of cognitive tests twice in a counter-balanced order: once while exposed to an active mobile phone and once during exposure to an inactive phone. The tests were selected from those we used earlier with adults. The statistical analyses showed no significant differences between the mobile phone off and on conditions in reaction times and accuracy over all tests or in any single test. It was concluded that a standard mobile phone has no effect on children's cognitive function as measured by response speed and accuracy. The present results challenge some earlier findings suggesting that the electromagnetic field (EMF) created by an active mobile phone would facilitate cognitive functioning. Copyright 2005 Wiley-Liss, Inc

  12. Risk of childhood acute lymphoblastic leukaemia following parental occupational exposure to extremely low frequency electromagnetic fields

    PubMed Central

    Reid, A; Glass, D C; Bailey, H D; Milne, E; de Klerk, N H; Downie, P; Fritschi, L

    2011-01-01

    Background: Earlier studies have reported moderate increases in the risk of acute lymphoblastic leukaemia (ALL) among children whose mothers have been occupationally exposed to extremely low frequency (ELF) electromagnetic fields. Other studies examining parental occupational exposure to ELF and ALL have reported mixed results. Methods: In an Australian case–control study of ALL in children aged <15 years, parents were asked about tasks they undertook in each job. Exposure variables were created for any occupational exposure before the birth of the child, in jobs 2 years before birth, in jobs 1 year before birth and up to 1 year after birth. Results: In all, 379 case and 854 control mothers and 328 case and 748 control fathers completed an occupational history. Exposure to ELF in all time periods was similar in case and control mothers. There was no difference in exposure between case and control fathers. There was no association between maternal (odds ratio (OR)=0.96; 95% CI=0.74–1.25) or paternal (OR=0.78; 95% CI=0.56–1.09) exposure to ELF any time before the birth and risk of childhood ALL. Conclusion: We did not find an increased risk of ALL in offspring of parents with occupational exposure to ELF. PMID:21915123

  13. Continuous wave simulations on the propagation of electromagnetic fields through the human head.

    PubMed

    Elloian, Jeffrey M; Noetscher, Gregory M; Makarov, Sergey N; Pascual-Leone, Alvaro

    2014-06-01

    Characterizing the human head as a propagation medium is vital for the design of both on-body and implanted antennas and radio-frequency sensors. The following problem has been addressed: find the best radio-frequency path through the brain for a given receiver position-on the top of the sinus cavity. Two parameters, transmitter position and radiating frequency, should be optimized simultaneously such that 1) the propagation path through the brain is the longest; and 2) the received power is maximized. To solve this problem, we have performed a systematic and comprehensive study of the electromagnetic fields excited in the head by small on-body magnetic dipoles (small coil antennas). An anatomically accurate high-fidelity head mesh has been generated from the Visible Human Project data. The base radiator was constructed of two orthogonal magnetic dipoles in quadrature, which enables us to create a directive beam into the head. We have found at least one optimum solution. This solution implies that a distinct RF channel may be established in the brain at a certain frequency and transmitter location.

  14. Risk of childhood acute lymphoblastic leukaemia following parental occupational exposure to extremely low frequency electromagnetic fields.

    PubMed

    Reid, A; Glass, D C; Bailey, H D; Milne, E; de Klerk, N H; Downie, P; Fritschi, L

    2011-10-25

    Earlier studies have reported moderate increases in the risk of acute lymphoblastic leukaemia (ALL) among children whose mothers have been occupationally exposed to extremely low frequency (ELF) electromagnetic fields. Other studies examining parental occupational exposure to ELF and ALL have reported mixed results. In an Australian case-control study of ALL in children aged < 15 years, parents were asked about tasks they undertook in each job. Exposure variables were created for any occupational exposure before the birth of the child, in jobs 2 years before birth, in jobs 1 year before birth and up to 1 year after birth. In all, 379 case and 854 control mothers and 328 case and 748 control fathers completed an occupational history. Exposure to ELF in all time periods was similar in case and control mothers. There was no difference in exposure between case and control fathers. There was no association between maternal (odds ratio (OR)=0.96; 95% CI=0.74-1.25) or paternal (OR=0.78; 95% CI=0.56-1.09) exposure to ELF any time before the birth and risk of childhood ALL. We did not find an increased risk of ALL in offspring of parents with occupational exposure to ELF.

  15. Generation of electromagnetic emission during the injection of dense supersonic plasma flows into arched magnetic field

    NASA Astrophysics Data System (ADS)

    Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander

    2016-04-01

    Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. It can influence on the energetic electron population formation in magnetosphere of the Earth, movement of plasma flows in magnetospheres of planets, energy release during magnetic reconnection, generation of electromagnetic radiation and particle precipitation during solar flares eruption. Laboratory study of this interaction is of big interest to determine the physical mechanisms of processes in space plasmas and their detailed investigation under reproducible conditions. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015 cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013 cm-3 to 1015 cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge. Then plasma is injected in an arched open magnetic trap along or across magnetic field lines. The filling of the arched magnetic trap with dense plasma and further magnetic field lines break by dense plasma flow were experimentally demonstrated. The process of plasma deceleration during the injection of plasma flow across the magnetic field lines was experimentally demonstrated. Pulsed plasma microwave emission at the electron cyclotron frequency range was observed. It was shown that frequency spectrum of plasma emission is determined by position of deceleration region in the magnetic field of the magnetic arc, and is affected by plasma density. Frequency spectrum shifts to higher frequencies with increasing of arc current (plasma density) because the deceleration region of plasma flow moves into higher magnetic field. The observed emission can be related to the

  16. A copper-lined magnet coil with maximum field of 700 T for electromagnetic flux compression

    NASA Astrophysics Data System (ADS)

    Takeyama, Shojiro; Kojima, Eiji

    2011-10-01

    A copper-lined (CL) primary coil, which is a composite of steel and copper, was devised for the electromagnetic flux compression technique to generate ultrahigh magnetic fields. The newly developed coil was found to be highly efficient for electromagnetic energy transfer and provided stabilization of the liner implosive motion with less influence from the current feeding gap. Dynamical current density distribution of the materials used in a primary coil was evaluated and applied to the design of the CL coil. Fields of up to 730 T were achieved by employing the CL coil with an energy injected from a 4 MJ condenser bank. This value is the highest achieved thus far in an indoor setting. The peak magnetic fields were found to depend significantly on the initial seed magnetic field. The optimum seed fields for obtaining the highest peak magnetic field were determined.

  17. The Algorithm for Description of Ultrarelativistic Electron Motion in Complex Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Chorny, Anton; Dubina

    2002-08-01

    We propose the numerical methodics for solution of equation of motion for electrons in arbitrary electromagnetic fields. The main idea of the methodics is to extract the rotation force from the full force applied to a particle by electromagnetic field. This rotation force changes only the direction of motion and does not change the particle energy. As it follows from the equation of motion the rotation force depends both on magnetic field and on electric field. Usually, this force is supposed to be determined only by magnetic field. Taking into account the electric field effect on rotation of a particle allows avoiding of the high order methodics application for differential equation solutions. The simplicity of the method is that that in each step of solution we suppose that particle moves along the circle arc. Then we add the equation for the time derivative of particle kinetic energy, which is determined by electric field, and solve the obtained system of these two differential equations. The proposed methodics was used to calculate the electron motion in complex electromagnetic fields formed inside the diod, where the magnetic field is generized by external solenoids and induced current, and the electric field is produced by electrodes of complex forms.

  18. Assessment of outdoor radiofrequency electromagnetic field exposure through hotspot localization using kriging-based sequential sampling.

    PubMed

    Aerts, Sam; Deschrijver, Dirk; Verloock, Leen; Dhaene, Tom; Martens, Luc; Joseph, Wout

    2013-10-01

    In this study, a novel methodology is proposed to create heat maps that accurately pinpoint the outdoor locations with elevated exposure to radiofrequency electromagnetic fields (RF-EMF) in an extensive urban region (or, hotspots), and that would allow local authorities and epidemiologists to efficiently assess the locations and spectral composition of these hotspots, while at the same time developing a global picture of the exposure in the area. Moreover, no prior knowledge about the presence of radiofrequency radiation sources (e.g., base station parameters) is required. After building a surrogate model from the available data using kriging, the proposed method makes use of an iterative sampling strategy that selects new measurement locations at spots which are deemed to contain the most valuable information-inside hotspots or in search of them-based on the prediction uncertainty of the model. The method was tested and validated in an urban subarea of Ghent, Belgium with a size of approximately 1 km2. In total, 600 input and 50 validation measurements were performed using a broadband probe. Five hotspots were discovered and assessed, with maximum total electric-field strengths ranging from 1.3 to 3.1 V/m, satisfying the reference levels issued by the International Commission on Non-Ionizing Radiation Protection for exposure of the general public to RF-EMF. Spectrum analyzer measurements in these hotspots revealed five radiofrequency signals with a relevant contribution to the exposure. The radiofrequency radiation emitted by 900 MHz Global System for Mobile Communications (GSM) base stations was always dominant, with contributions ranging from 45% to 100%. Finally, validation of the subsequent surrogate models shows high prediction accuracy, with the final model featuring an average relative error of less than 2dB (factor 1.26 in electric-field strength), a correlation coefficient of 0.7, and a specificity of 0.96.

  19. Micro-gravity: current distributions creating a uniform force field

    NASA Astrophysics Data System (ADS)

    Vincent-Viry, O.; Mailfert, A.; Colteu, A.; Dael, A.; Gourdin, C.; Quettier, L.

    2001-02-01

    This paper presents two structures of superconducting coils able to give satisfactory solutions to the problem of generation of uniform field of high magnetic forces. The first structure is modeled by the use of purely surface current densities, whereas the second one can be described with volume current densities. Both of these structures proceed from the study of a particular expression of the complex magnetic potential introduced for structures with two-dimensional geometry. This work is carried out in a research collaboration between the GREEN and the DSM-DAPNIA department of the CEA Saclay.

  20. Using triaxial magnetic fields to create optimal particle composites.

    SciTech Connect

    Martin, James Ellis

    2004-05-01

    The properties of a particle composite can be controlled by organizing the particles into assemblies. The properties of the composite will depend on the structure of the particle assemblies, and for any give property there is some optimal structure. Through simulation and experiment we show that the application of heterodyned triaxial magnetic or electric fields generates structures that optimize the magnetic and dielectric properties of particle composites. We suggest that optimizing these properties optimizes other properties, such as transport properties, and we give as one example of this optimization the magnetostriction of magnetic particle composites formed in a silicone elastomer.

  1. Spectral degree of coherence of a random three-dimensional electromagnetic field.

    PubMed

    Korotkova, Olga; Wolf, Emil

    2004-12-01

    The complex spectral degree of coherence of a general random, statistically stationary electromagnetic field is introduced in a manner similar to the way it is defined for a beamlike field, namely, by means of Young's interference experiment. Both its modulus and its phase are measurable. We illustrate the definition by applying it to blackbody radiation emerging from a cavity. The results are of particular interest for near-field optics.

  2. [Metrology of pulse modulated electromagnetic fields with diode-type meters].

    PubMed

    Kubacki, Roman; Kieliszek, Jarosław; Sobiech, Jaromir; Puta, Robert

    2007-01-01

    Electromagnetic field meters used for occupational and general public health protection are commonly calibrated in the continuous wave conditions, but a large number of medical devices, mobile base station antennas and radars generate pulse modulated fields. The results of an analysis of additional errors of pulse fields measurements by diode-type meters (EMR 200/300, PMM and MEH) are presented in this paper.

  3. DiPerna-Lions Flow for Relativistic Particles in an Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Jabin, P.-E.; Masmoudi, N.

    2015-09-01

    We show the existence and uniqueness of a DiPerna-Lions flow for relativistic particles subject to a Lorentz force in an electromagnetic field. The electric and magnetic fields solve the linear Maxwell system in the vacuum but for singular initial conditions which are only in the physical energy space. As the corresponding force field is only in L 2, we have to perform a careful analysis of the cancellations over a trajectory.

  4. Epilepsy and electromagnetic fields: effects of simulated atmospherics and 100-Hz magnetic fields on audiogenic seizure in rats

    NASA Astrophysics Data System (ADS)

    Juutilainen, J.; Björk, E.; Saali, K.

    1988-03-01

    In order to study the possible association between epileptic seizures and natural electromagnetic fields, 32 female audiogenic seizure (AGS)-susceptible rats were exposed to simulated 10 kHz and 28 kHz atmospherics and to a sinusoidally oscillating magnetic field with a frequency of 100 Hz and field strength of 1 A/m. After the electromagnetic exposure, seizures were induced in the rats with a sound stimulus. The severity of the seizure was determined on an ordinal scale, the audiogenic response score (ARS). The time from the beginning of the sound stimulus to the onset of the seizure (seizure latency) and the duration of the convulsion was measured. No differences from the control experiments were found in the experiments with simulated atmospherics, but the 100 Hz magnetic field increased the seizure latency by about 13% ( P<0.02). The results do not support the hypothesis that natural atmospheric electromagnetic signals could affect the onset of epileptic seizures, but they suggest that AGS-susceptible rats may be a useful model for studying the biological effects of electromagnetic fields.

  5. The response of human bacteria to static magnetic field and radiofrequency electromagnetic field.

    PubMed

    Crabtree, David P E; Herrera, Brandon J; Kang, Sanghoon

    2017-10-01

    Cell phones and electronic appliances and devices are inseparable from most people in modern society and the electromagnetic field (EMF) from the devices is a potential health threat. Although the direct health effect of a cell phone and its radiofrequency (RF) EMF to human is still elusive, the effect to unicellular organisms is rather apparent. Human microbiota, including skin microbiota, has been linked to a very significant role in the health of a host human body. It is important to understand the response of human skin microbiota to the RF-EMF from cell phones and personal electronic devices, since this may be one of the potential mechanisms of a human health threat brought about by the disruption of the intimate and balanced host-microbiota relationship. Here, we investigated the response of both laboratory culture strains and isolates of skin bacteria under static magnetic field (SMF) and RF-EMF. The growth patterns of laboratory cultures of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus epidermidis under SMF were variable per different species. The bacterial isolates of skin microbiota from 4 subjects with different cell phone usage history also showed inconsistent growth responses. These findings led us to hypothesize that cell phone level RF-EMF disrupts human skin microbiota. Thus, the results from the current study lay ground for more comprehensive research on the effect of RF-EMF on human health through the human-microbiota relationship.

  6. Magnetic healing, quackery, and the debate about the health effects of electromagnetic fields.

    PubMed

    Macklis, R M

    1993-03-01

    Although the biological effects of low-frequency electromagnetic radiation have been studied since the time of Paracelsus, there is still no consensus on whether these effects are physiologically significant. The recent discovery of deposits of magnetite within the human brain as well as recent, highly publicized tort litigation charging adverse effects after exposure to magnetic fields has rekindled the debate. New data suggest that electromagnetic radiation generated from power lines may lead to physiologic effects with potentially dangerous results. Whether these effects are important enough to produce major epidemiologic consequences remains to be established. The assumption of quackery that has attended this subject since the time of Mesmer's original "animal magnetism" investigations continues to hamper efforts to compile a reliable data base on the health effects of electromagnetic fields.

  7. Microfabricated sensors for the measurement of electromagnetic fields in biological tissues

    NASA Astrophysics Data System (ADS)

    Monberg, James; Henning, Albert K.

    1995-09-01

    Public awareness of the risks of exposure to electromagnetic radiation has grown over the past ten yeras. The effects of power lines on human and animal health have drawn particular attention. Some longitudinal studies of cancer rates near power lines show a significant correlation, while others show a null result. The studies have suffered from inadequate sensors for the measurement of electromagnetic radiation in vivo. In this work, we describe the design, construction, and testing of electrically passive, microfabricated single-pole antennas and coils. These sensors will be used in vivo to study the effects of electromagnetic radiation on animals. Our testing to date has been limited to in vitro studies of the magnetic field probes. Magnetic field pickup coils were fabricated with up to 100 turns, over a length of up to 1000 micrometers . Measurements were carried out with the sensors in air, and in water of various saline concentrations. Magnetic fields were applied using a Helmholtz coil. Both dc and ac fields were applied. The results indicate that small-area measurements of electromagnetic fields in vitro can be made successfully, provided adequate shielding and amplification are used.

  8. Extremely low frequency electromagnetic field measurements at the Hylaty station and methodology of signal analysis

    NASA Astrophysics Data System (ADS)

    Kulak, Andrzej; Kubisz, Jerzy; Klucjasz, Slawomir; Michalec, Adam; Mlynarczyk, Janusz; Nieckarz, Zenon; Ostrowski, Michal; Zieba, Stanislaw

    2014-06-01

    We present the Hylaty geophysical station, a high-sensitivity and low-noise facility for extremely low frequency (ELF, 0.03-300 Hz) electromagnetic field measurements, which enables a variety of geophysical and climatological research related to atmospheric, ionospheric, magnetospheric, and space weather physics. The first systematic observations of ELF electromagnetic fields at the Jagiellonian University were undertaken in 1994. At the beginning the measurements were carried out sporadically, during expeditions to sparsely populated areas of the Bieszczady Mountains in the southeast of Poland. In 2004, an automatic Hylaty ELF station was built there, in a very low electromagnetic noise environment, which enabled continuous recording of the magnetic field components of the ELF electromagnetic field in the frequency range below 60 Hz. In 2013, after 8 years of successful operation, the station was upgraded by extending its frequency range up to 300 Hz. In this paper we show the station's technical setup, and how it has changed over the years. We discuss the design of ELF equipment, including antennas, receivers, the time control circuit, and power supply, as well as antenna and receiver calibration. We also discuss the methodology we developed for observations of the Schumann resonance and wideband observations of ELF field pulses. We provide examples of various kinds of signals recorded at the station.

  9. Possible action mechanism of the electromagnetic fields in the liver cancer development: A mathematical proposal

    SciTech Connect

    Jiménez-García, Mónica Noemí; Godina-Nava, Juan José

    2012-02-08

    Currently it is known that electromagnetic field exposure can induce biological changes, although the precise effects and action mechanism of the interaction between the electromagnetic field and biological systems are not well understood. In this work we propose a possible action mechanism, concerning the effect that the extremely low frequency electromagnetic field exposure has on the early stage of liver cancer development. The model is developed studying the phenomena called oxidative stress that it appears after it is applied a carcinogenic agent used to induce hepatic cancer chemically in an experimental animal model. This physical-chemical process involves the movement of magnetic field dependent free charged particles, called free radicals. We will consider the use of the radical pairs theory as a framework, in which we will describe the spin density operator evolution by implementing the stochastic Liouville equation with hyperfine interaction. This describes how the selectivity of the interaction between spin states of the free radicals with the applied electromagnetic field, influences the development of pre-neoplastic lesions in the liver. AIP Publishing is retracting this article due to the substantial use of content in the Results and Conclusions section without proper citation of a previously published paper in Chemical Physics Letters 361 (2012) 219-225. This article is retracted from the scientific record with effect from 15 October 2015.

  10. Possible action mechanism of the electromagnetic fields in the liver cancer development: A mathematical proposal

    NASA Astrophysics Data System (ADS)

    Jiménez-García, Mónica Noemí; Godina-Nava, Juan José

    2012-02-01

    Currently it is known that electromagnetic field exposure can induce biological changes, although the precise effects and action mechanism of the interaction between the electromagnetic field and biological systems are not well understood. In this work we propose a possible action mechanism, concerning the effect that the extremely low frequency electromagnetic field exposure has on the early stage of liver cancer development. The model is developed studying the phenomena called oxidative stress that it appears after it is applied a carcinogenic agent used to induce hepatic cancer chemically in an experimental animal model. This physical-chemical process involves the movement of magnetic field dependent free charged particles, called free radicals. We will consider the use of the radical pairs theory as a framework, in which we will describe the spin density operator evolution by implementing the stochastic Liouville equation with hyperfine interaction. This describes how the selectivity of the interaction between spin states of the free radicals with the applied electromagnetic field, influences the development of pre-neoplastic lesions in the liver. AIP Publishing is retracting this article due to the substantial use of content in the Results and Conclusions section without proper citation of a previously published paper in Chemical Physics Letters 361 (2012) 219-225. This article is retracted from the scientific record with effect from 15 October 2015.

  11. The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field.

    PubMed

    Kumar, Sanjay; Kesari, Kavindra Kumar; Behari, Jitendra

    2011-01-01

    Environmental exposure to man-made electromagnetic fields has been steadily increasing with the growing demand for electronic items that are operational at various frequencies. Testicular function is particularly susceptible to radiation emitted by electromagnetic fields. This study aimed to examine the therapeutic effects of a pulsed electromagnetic field (100 Hz) on the reproductive systems of male Wistar rats (70 days old). The experiments were divided into five groups: microwave sham, microwave exposure (2.45 GHz), pulsed electromagnetic field sham, pulsed electromagnetic field (100 Hz) exposure, and microwave/pulsed electromagnetic field exposure. The animals were exposed for 2 hours/day for 60 days. After exposure, the animals were sacrificed, their sperm was used for creatine and caspase assays, and their serum was used for melatonin and testosterone assays. The results showed significant increases in caspase and creatine kinase and significant decreases in testosterone and melatonin in the exposed groups. This finding emphasizes that reactive oxygen species (a potential inducer of cancer) are the primary cause of DNA damage. However, pulsed electromagnetic field exposure relieves the effect of microwave exposure by inducing Faraday currents. Electromagnetic fields are recognized as hazards that affect testicular function by generating reactive oxygen species and reduce the bioavailability of androgen to maturing spermatozoa. Thus, microwave exposure adversely affects male fertility, whereas pulsed electromagnetic field therapy is a non-invasive, simple technique that can be used as a scavenger agent to combat oxidative stress.

  12. The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field

    PubMed Central

    Kumar, Sanjay; Kesari, Kavindra Kumar; Behari, Jitendra

    2011-01-01

    INTRODUCTION: Environmental exposure to man-made electromagnetic fields has been steadily increasing with the growing demand for electronic items that are operational at various frequencies. Testicular function is particularly susceptible to radiation emitted by electromagnetic fields. OBJECTIVES: This study aimed to examine the therapeutic effects of a pulsed electromagnetic field (100 Hz) on the reproductive systems of male Wistar rats (70 days old). METHODS: The experiments were divided into five groups: microwave sham, microwave exposure (2.45 GHz), pulsed electromagnetic field sham, pulsed electromagnetic field (100 Hz) exposure, and microwave/pulsed electromagnetic field exposure. The animals were exposed for 2 hours/day for 60 days. After exposure, the animals were sacrificed, their sperm was used for creatine and caspase assays, and their serum was used for melatonin and testosterone assays. RESULTS: The results showed significant increases in caspase and creatine kinase and significant decreases in testosterone and melatonin in the exposed groups. This finding emphasizes that reactive oxygen species (a potential inducer of cancer) are the primary cause of DNA damage. However, pulsed electromagnetic field exposure relieves the effect of microwave exposure by inducing Faraday currents. CONCLUSIONS: Electromagnetic fields are recognized as hazards that affect testicular function by generating reactive oxygen species and reduce the bioavailability of androgen to maturing spermatozoa. Thus, microwave exposure adversely affects male fertility, whereas pulsed electromagnetic field therapy is a non-invasive, simple technique that can be used as a scavenger agent to combat oxidative stress. PMID:21876981

  13. Effects of phase conjugation on electromagnetic optical fields propagating in free space

    NASA Astrophysics Data System (ADS)

    Kanseri, Bhaskar

    2017-03-01

    By using the property of phase conjugation, we demonstrate that the inverse of van Cittert–Zernike theorem holds for electromagnetic (EM) fields propagating in free space. This essentially implies that spatially incoherent partially polarized field distributions can be generated from spatially coherent partially polarized optical fields. We further utilize phase conjugation with a polarization rotator to swap the spatial coherence properties of orthogonal polarization components of EM fields on propagation, at least in free space. This study suggests that the method of phase conjugation could be potentially useful in arbitrarily manipulating spatial coherence properties of vector optical fields in the field plane.

  14. Validation of Models of Electromagnetic Fields Induced by Ocean Swell Using Bottom Mounted Sensor Systems

    NASA Astrophysics Data System (ADS)

    Bole, T.; Glover, B. A.

    2016-12-01

    The motion of conducting seawater through Earth's magnetic field induces secondary electromagnetic fields. Ocean waves, including internal waves and surface waves, produce electric and magnetic fields in this fashion. We use dynamical pressure from an absolute pressure unit deployed in approximately 100 meters of water to estimate water column velocities for observed ocean swell. These velocities serve as input to dynamical models for prediction of electric and magnetic fields due to observed swell. The predicted fields are compared favorably to observed electric and magnetic fields, providing in-situ model validation of the models.

  15. More than Lions and Tigers and Bears-- Creating Meaningful Field Trip Lessons

    ERIC Educational Resources Information Center

    Kisiel, James

    2006-01-01

    Although most teachers agree that a field trip is an important educational experience for their students, many struggle with finding a way to make it connect with their classroom curriculum. Creating an effective field trip involves creating an effective lesson plan and using the resources of the museum, zoo, or aquarium to foster inquiry and…

  16. Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy.

    PubMed

    Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi

    2017-07-18

    The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can

  17. Guiding and collimating fast electron beam by the quasi-static electromagnetic field array

    SciTech Connect

    Wang, J.; Zhao, Z. Q.; He, W. H.; Dong, K. G.; Wu, Y. C.; Zhu, B.; Zhang, T. K.; Zhang, B.; Zhang, Z. M.; Gu, Y. Q.; Cao, L. H.

    2014-10-15

    A guidance and collimation scheme for fast electron beam in a traverse periodic quasi-static electromagnetic field array is proposed with the semi-analytic method and the particle-in-cell simulation. The sheath electric fields on the surfaces of nanowires and the magnetic fields around the nanowires form a traverse periodic quasi-static electromagnetic field array. Therefore, most of the fast electrons are confined at the nanowire surfaces and transport forward. More importantly, due to the divergent property of the beams, the magnitudes of the generated fields decrease with the target depth. The lateral momenta of the electrons convert into the forward momenta through Lorenz force, and they cannot recover their initial values. Therefore, the fast electrons can be guided and collimated efficiently in the gaps between the nanowires. In our particle-in-cell simulations, the observed guiding efficiency exceeds 80% compared with the reference target.

  18. Assessment of Electromagnetic Fields inside the Communication Module of a Telecom Satellite

    NASA Astrophysics Data System (ADS)

    Birreck, D.; Guida, G.; Marley, D.; Marliani, F.; Marra, S.; Martorelli, V.

    2012-05-01

    The paper describes the evaluation of the internal electromagnetic fields in overmoded regime inside the telecommunications satellite SGEO. The sources taken into account are the leakages due to both the internal high power transmit chains and the external antennas fields coupled to the internal cavities by means of the numerous apertures present in the satellite skin. The evaluation of the antenna fields has been performed using the GTD and the PTD modules of Antenna Design Framework - Electromagnetic Satellite (ADF- EMS). The internal field computation has been performed with IDSOCT, a code integrated in ADF- EMS based on the Oversized Cavity Theory (OCT). All the transfer functions between sources and internal fields have been computed for easier evaluation of possible mitigations.

  19. Electromagnetic field of fractal distribution of charged particles

    SciTech Connect

    Tarasov, Vasily E.

    2005-08-15

    Electric and magnetic fields of fractal distribution of charged particles are considered. The fractional integrals are used to describe fractal distribution. The fractional integrals are considered as approximations of integrals on fractals. Using the fractional generalization of integral Maxwell equation, the simple examples of the fields of homogeneous fractal distribution are considered. The electric dipole and quadrupole moments for fractal distribution are derived.

  20. The quasi-stationary electromagnetic field in the solar wind

    NASA Astrophysics Data System (ADS)

    Alekseev, I. I.; Veselovskii, I. S.; Kropotkin, A. P.

    1982-02-01

    Parker's (1958, 1963) kinematic model of the interplanetary field with ideal conductivity is examined. It is shown that Parker's assumption of the absence of the meridional component (Btheta = 0) is not a necessary one. Instead, in the general case the interplanetary magnetic field can have three components (Br, Btheta, and B sub phi).

  1. Electromagnetic Scattered Field Evaluation and Data Compression Using Imaging Techniques

    NASA Technical Reports Server (NTRS)

    Gupta, I. J.; Burnside, W. D.

    1996-01-01

    This is the final report on Project #727625 between The Ohio State University and NASA, Lewis Research Center, Cleveland, Ohio. Under this project, a data compression technique for scattered field data of electrically large targets is developed. The technique was applied to the scattered fields of two targets of interest. The backscattered fields of the scale models of these targets were measured in a ra compact range. For one of the targets, the backscattered fields were also calculated using XPATCH computer code. Using the technique all scattered field data sets were compressed successfully. A compression ratio of the order 40 was achieved. In this report, the technique is described briefly and some sample results are included.

  2. An opening electromagnetic transducer

    NASA Astrophysics Data System (ADS)

    Sun, Yanhua; Kang, Yihua

    2013-12-01

    Tubular solenoids have been widely used without any change since an electrical wire was discovered to create magnetic fields by Hans Christian Oersted in 1820 and thereby the wire was first coiled as a helix into a solenoid coil by William Sturgeon in 1823 and was improved by Joseph Henry in 1829 [see http://www.myetymology.com/encyclopedia/History_of_the_electricity.html; J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, New York, 2010); and F. Winterberg, Plasma Phys. 8, 541553 (1996)]. A magnetic control method of C-shaped carrying-current wire is proposed, and thereby a new opening electromagnetic transducer evidently differing from the traditional tubular solenoid is created, capable of directly encircling and centering the acted objects in it, bringing about convenient and innovative electromagnetic energy conversion for electromagnetic heating, electromagnetic excitation, physical information capture, and electro-mechanical motion used in science research, industry, and even biomedical activities.

  3. Anthropology and cultural neuroscience: creating productive intersections in parallel fields.

    PubMed

    Brown, R A; Seligman, R

    2009-01-01

    Partly due to the failure of anthropology to productively engage the fields of psychology and neuroscience, investigations in cultural neuroscience have occurred largely without the active involvement of anthropologists or anthropological theory. Dramatic advances in the tools and findings of social neuroscience have emerged in parallel with significant advances in anthropology that connect social and political-economic processes with fine-grained descriptions of individual experience and behavior. We describe four domains of inquiry that follow from these recent developments, and provide suggestions for intersections between anthropological tools - such as social theory, ethnography, and quantitative modeling of cultural models - and cultural neuroscience. These domains are: the sociocultural construction of emotion, status and dominance, the embodiment of social information, and the dual social and biological nature of ritual. Anthropology can help locate unique or interesting populations and phenomena for cultural neuroscience research. Anthropological tools can also help "drill down" to investigate key socialization processes accountable for cross-group differences. Furthermore, anthropological research points at meaningful underlying complexity in assumed relationships between social forces and biological outcomes. Finally, ethnographic knowledge of cultural content can aid with the development of ecologically relevant stimuli for use in experimental protocols.

  4. Effect of non-ionizing electromagnetic field on the alteration of ovarian follicles in rats

    PubMed Central

    Ahmadi, Seyed Shahin; Khaki, Amir Afshin; Ainehchi, Nava; Alihemmati, Alireza; Khatooni, Azam Asghari; Khaki, Arash; Asghari, Ali

    2016-01-01

    Introduction In recent years, there has been an increase in the attention paid to safety effects, environmental and society’s health, extremely low frequency electromagnetic fields (ELF-EMF), and radio frequency electromagnetic fields (RF-EMF). The aim of this research was to determine the effect of EMF on the alteration of ovarian follicles. Methods In this experimental study at Tabriz Medical University in 2015, we did EMF exposures and assessed the alteration of rats’ ovarian follicles. Thirty three-month old rats were selected randomly from laboratory animals, and, after their ages and weights were determined, they were divided randomly into three groups. The control group consisted of 10 rats without any treatment, and they were kept in normal conditions. The second group of rats was influenced by a magnetic field of 50 Hz for eight weeks (three weeks intrauterine and five weeks ectopic). The third group of rats was influenced by a magnetic field of 50 Hz for 13 weeks (three weeks intrauterine and ten weeks ectopic). Samples were fixed in 10% buffered formaldehyde and cleared with Xylol and embedded in paraffin. After sectioning and staining, samples were studied by optic microscopy. Finally, SPSS version 17, were used for data analysis. Results EMF radiation increased the harmful effects on the formation of ovarian follicles and oocytes implantation. Studies on the effects of electromagnetic fields on ovarian follicles have shown that the nuclei of the oocytes become smaller and change shape. There were significant, harmful changes in the groups affected by electromagnetic waves. Atresia of ovarian follicles was significantly significant in both study groups compared to the control group (p < 0.05). Conclusion Exposure to electromagnetic fields during embryonic development can cause morphological changes in oocytes and affect the differentiation of oocytes and folliculogenesis, resulting in decreased ovarian reserve leading to infertility or reduced

  5. Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz-6 GHz).

    PubMed

    Gajšek, Peter; Ravazzani, Paolo; Wiart, Joe; Grellier, James; Samaras, Theodoros; Thuróczy, György

    2015-01-01

    Average levels of exposure to radiofrequency (RF) electromagnetic fields (EMFs) of the general public in Europe are difficult to summarize, as exposure levels have been reported differently in those studies in which they have been measured, and a large proportion of reported measurements were very low, sometimes falling below detection limits of the equipment used. The goal of this paper is to present an overview of the scientific literature on RF EMF exposure in Europe and to characterize exposure within the European population. A comparative analysis of the results of spot or long-term RF EMF measurements in the EU indicated that mean electric field strengths were between 0.08 V/m and 1.8 V/m. The overwhelming majority of measured mean electric field strengths were <1 V/m. It is estimated that <1% were above 6 V/m and <0.1% were above 20 V/m. No exposure levels exceeding European Council recommendations were identified in these surveys. Most population exposures from signals of radio and television broadcast towers were observed to be weak because these transmitters are usually far away from exposed individuals and are spatially sparsely distributed. On the other hand, the contribution made to RF exposure from wireless telecommunications technology is continuously increasing and its contribution was above 60% of the total exposure. According to the European exposure assessment studies identified, three population exposure categories (intermittent variable partial body exposure, intermittent variable low-level whole-body (WB) exposure and continuous low-level WB exposure) were recognized by the authors as informative for possible future risk assessment.

  6. Terahertz Solitons in Biomolecular Systems and their Excitation by External Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Bugay, A. N.

    2015-09-01

    Nonlinear dynamics of charge and acoustic excitations in cellular microtubules is considered. Different types of nonlinear solitary waves were studied taking account for dissipation. The mechanism of electro-acoustic pulse excitation by external electromagnetic field of terahertz frequency is recognized.

  7. ALTERATIONS IN CALCIUM ION ACTIVITY BY ELF AND RF ELECTROMAGNETIC FIELDS

    EPA Science Inventory



    Alterations in calcium ion activity by ELF and RF electromagnetic fields

    Introduction

    Calcium ions play many important roles in biological systems. For example, calcium ion activity can be used as an indicator of second-messenger signal-transduction processe...

  8. Fields and permeances of flat rectangular and cylindrical DC electromagnetic structures

    SciTech Connect

    Zayirnyak, M.V.; Nasar, S.A.

    1985-03-01

    Analytical solutions to the field problem of flat rectangular and axially symmetric cylindrical dc electromagnetic systems are presented. It is shown that the flat configuration is a special case of the general solution. The results are presented in normalized forms as permeance functions. Calculated results are compared with those obtained experimentally.

  9. A wave guide model of lightning currents and their electromagnetic field

    NASA Technical Reports Server (NTRS)

    Volland, H.

    1980-01-01

    Lightning channels are considered as resonant wave guides in which only standing resonant wave modes can be excited. Two types of discharging currents develop. Type 1 is an aperiodic wave; type 2 is a damped oscillation. The electromagnetic radiation field of both types of currents is calculated and compared with the observation.

  10. [Risk of electromagnetic fields in electric power stations and substations of a petrochemical plant].

    PubMed

    Castagnoli, A; Fabri, G; Romeo, A

    2003-01-01

    Authors evaluate electromagnetic field exposure in the low-frequency range (5-30,000 Hz) in electric power stations and substations of petroleum processing plant. According to the measured values and the reference exposure limits considered, they conclude that operators should be exposed without adverse effects.

  11. [Development of innovative methods of electromagnetic field evaluation for portable radio-station].

    PubMed

    Rubtsova, N B; Perov, S Iu; Bogacheva, E V; Kuster, N

    2013-01-01

    The results of portable radio-station "Radiy-301" electromagnetic fields (EMF) emission measurement and specific absorption rate data evaluation has shown that workers' exposure EMF levels may elevate hygienic norms and hereupon can be health risk factor. Possible way of portable radio-station EMF dosimetry enhancement by means of domestic and international approaches harmonization is considered.

  12. Electrical Engineers' Perceptions on Education--Electromagnetic Field Theory and Its Connection to Working Life

    ERIC Educational Resources Information Center

    Keltikangas, K.; Wallen, H.

    2010-01-01

    This paper investigates electrical engineers' perceptions on their education in Finland, with particular emphasis on the basic electromagnetic field theory courses and their applicability in working life, using two online surveys (n = 99 and n = 120). The answers show a reasonably good satisfaction with the electrical engineering studies in…

  13. Electromagnetic field distributions in waveguide-based axial-type microwave plasma source

    NASA Astrophysics Data System (ADS)

    Nowakowska, H.; Jasiński, M.; Mizeraczyk, J.

    2009-08-01

    We present results from simulations of 2D distributions of the electromagnetic field inside a waveguide-based axial-type microwave plasma source (MPS) used for hydrogen production via methane reforming. The studies are aimed at optimization of discharge processes and hydrogen production. We derive equations for determining electromagnetic field distributions and next determine the electromagnetic field distributions for two cases - without and with plasma inside the MPS. For the first case, we examine the influence of the length of the inner conductor of the coaxial line on electromagnetic field distributions. We have obtained standing wave patterns along the coaxial line and found resonances for certain positions of the coaxial line inner conductor. For the case with plasma inside the MPS, we perform calculations assuming that distributions of plasma parameters are known. Simulations are done for several values of maximum electron density. We have found that for values of electron density greater than 3× 10^{18} m^{-3} strong skin effect in the plasma is observed. Consequently, plasma may be treated as an extension of the inner conductor of the coaxial line. We have used FlexPDE software for the calculations.

  14. The Role of Angular Momentum in the Construction of Electromagnetic Multipolar Fields

    ERIC Educational Resources Information Center

    Tischler, Nora; Zambrana-Puyalto, Xavier; Molina-Terriza, Gabriel

    2012-01-01

    Multipolar solutions of Maxwell's equations are used in many practical applications and are essential for the understanding of light-matter interactions at the fundamental level. Unlike the set of plane wave solutions of electromagnetic fields, the multipolar solutions do not share a standard derivation or notation. As a result, expressions…

  15. The Role of Angular Momentum in the Construction of Electromagnetic Multipolar Fields

    ERIC Educational Resources Information Center

    Tischler, Nora; Zambrana-Puyalto, Xavier; Molina-Terriza, Gabriel

    2012-01-01

    Multipolar solutions of Maxwell's equations are used in many practical applications and are essential for the understanding of light-matter interactions at the fundamental level. Unlike the set of plane wave solutions of electromagnetic fields, the multipolar solutions do not share a standard derivation or notation. As a result, expressions…

  16. Biological Effects of Weak Electromagnetic Field on Healthy and Infected Lime (Citrus aurantifolia) Trees with Phytoplasma

    PubMed Central

    Abdollahi, Fatemeh; Niknam, Vahid; Ghanati, Faezeh; Masroor, Faribors; Noorbakhsh, Seyyed Nasr

    2012-01-01

    Exposure to electromagnetic fields (EMF) has become an issue of concern for a great many people and is an active area of research. Phytoplasmas, also known as mycoplasma-like organisms, are wall-less prokaryotes that are pathogens of many plant species throughout the world. Effects of electromagnetic fields on the changes of lipid peroxidation, content of H2O2, proline, protein, and carbohydrates were investigated in leaves of two-year-old trees of lime (Citrus aurantifolia) infected by the Candidatus Phytoplasma aurantifoliae. The healthy and infected plants were discontinuously exposed to a 10 KHz quadratic EMF with maximum power of 9 W for 5 days, each 5 h, at 25°C. Fresh and dry weight of leaves, content of MDA, proline, and protein increased in both healthy and infected plants under electromagnetic fields, compared with those of the control plants. Electromagnetic fields decreased hydrogen peroxide and carbohydrates content in both healthy and infected plants compared to those of the controls. PMID:22649313

  17. Apparent Paradoxes in Classical Electrodynamics: A Fluid Medium in an Electromagnetic Field

    ERIC Educational Resources Information Center

    Kholmetskii, A. L.; Yarman, T.

    2008-01-01

    In this paper we analyse a number of teaching paradoxes of classical electrodynamics, dealing with the relativistic transformation of energy and momentum for a fluid medium in an external electromagnetic field. In particular, we consider a moving parallel plate charged capacitor, where the electric attraction of its plates is balanced by the…

  18. Possible Mechanism of Action of the Electromagnetic Fields of Ultralow Frequency on G-protein

    SciTech Connect

    Nava, J. J. Godina; Segura, M. A. Rodriguez; Garcia, M. N. Jimenez; Cadena, M. S. Reyes

    2008-08-11

    Based in several clinical achievements and mathematical simulation of the immune sytem, previously studied, permit us to establish that a possible Mechanism of Action of ultralow frequency Electromagnetic Fields (ELF) is on G-protein as it has been proposed in specialized literature.

  19. Electrical Engineers' Perceptions on Education--Electromagnetic Field Theory and Its Connection to Working Life

    ERIC Educational Resources Information Center

    Keltikangas, K.; Wallen, H.

    2010-01-01

    This paper investigates electrical engineers' perceptions on their education in Finland, with particular emphasis on the basic electromagnetic field theory courses and their applicability in working life, using two online surveys (n = 99 and n = 120). The answers show a reasonably good satisfaction with the electrical engineering studies in…

  20. Use of Pulsing Electromagnetic Fields for the Treatment of Pelvic Stress Fractures Among Female Soldiers.

    DTIC Science & Technology

    1995-08-11

    activities. Pulsing electromagnetic fields ( PEMFs )have been shown to speed the healing of non-union fractures and we have used them successfully to...and then randomized into actual PEMF and placebo PEMF groups and treated for one hour per day until they return to duty. Changes in the bone scan are

  1. ALTERATIONS IN CALCIUM ION ACTIVITY BY ELF AND RF ELECTROMAGNETIC FIELDS

    EPA Science Inventory



    Alterations in calcium ion activity by ELF and RF electromagnetic fields

    Introduction

    Calcium ions play many important roles in biological systems. For example, calcium ion activity can be used as an indicator of second-messenger signal-transduction processe...

  2. Apparent Paradoxes in Classical Electrodynamics: A Fluid Medium in an Electromagnetic Field

    ERIC Educational Resources Information Center

    Kholmetskii, A. L.; Yarman, T.

    2008-01-01

    In this paper we analyse a number of teaching paradoxes of classical electrodynamics, dealing with the relativistic transformation of energy and momentum for a fluid medium in an external electromagnetic field. In particular, we consider a moving parallel plate charged capacitor, where the electric attraction of its plates is balanced by the…

  3. Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells

    PubMed Central

    2014-01-01

    Background Extremely low frequency electromagnetic fields aren’t considered as a real carcinogenic agent despite the fact that some studies have showed impairment of the DNA integrity in different cells lines. The aim of this study was evaluation of the late effects of a 100 Hz and 5.6 mT electromagnetic field, applied continuously or discontinuously, on the DNA integrity of Vero cells assessed by alkaline Comet assay and by cell cycle analysis. Normal Vero cells were exposed to extremely low frequency electromagnetic fields (100 Hz, 5.6 mT) for 45 minutes. The Comet assay and cell cycle analysis were performed 48 hours after the treatment. Results Exposed samples presented an increase of the number of cells with high damaged DNA as compared with non-exposed cells. Quantitative evaluation of the comet assay showed a significantly (<0.001) increase of the tail lengths, of the quantity of DNA in tail and of Olive tail moments, respectively. Cell cycle analysis showed an increase of the frequency of the cells in S phase, proving the occurrence of single strand breaks. The most probable mechanism of induction of the registered effects is the production of different types of reactive oxygen species. Conclusions The analysis of the registered comet indices and of cell cycle showed that extremely low frequency electromagnetic field of 100 Hz and 5.6 mT had a genotoxic impact on Vero cells. PMID:24401758

  4. [Effect of electromagnetic field of extremely low frequency on ATPase activity of actomyosin].

    PubMed

    Tseĭslier, Iu V; Sheliuk, O V; Martyniuk, V S; Nuryshchenko, N Ie

    2012-01-01

    The Mg2+/Ca2+ and K(+)-ATPase actomyosin activity of rabbit skeletal muscle was evaluated by the Fiske-Subbarow method during a five-hour exposition of protein solutions in electromagnetic field of extremely low frequency of 8 Hz and 25 microT induction. The results of the study of the ATPase activity of actomyosin upon electromagnetic exposure have shown statistically significant changes that are characterized by a rather complex time dynamics. After 1, 2 and 4 hours of exposure of protein solutions the effect of ELF EMF exposure inhibits the ATPase activity compared to control samples, which are not exposed to the magnetic field. By the third and fifth hours of exposure to the electromagnetic field, there is a significant increase in the ATPase activity of actomyosin. It should be noted that a similar pattern of change in enzyme activity was universal, both for the environment by Mg2+ and Ca2+, and in the absence of these ions in the buffer. This can evidence for Ca(2+)-independent ways of the infuence of electromagnetic field (EMP) on biologic objects. In our opinion, the above effects are explained by EMP influence on the dynamic properties of actomyosin solutions, which are based on the processes of spontaneous dynamic formation of structure.

  5. Nondiagonal Values of the Heat Kernel for Scalars in a Constant Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Kalinichenko, I. S.; Kazinski, P. O.

    2017-03-01

    An original method for finding the nondiagonal values of the heat kernel associated with the wave operator Fourier-transformed in time is proposed for the case of a constant external electromagnetic field. The connection of the trace of such a heat kernel to the one-loop correction to the grand thermodynamic potential is indicated. The structure of its singularities is analyzed.

  6. Biological effects of weak electromagnetic field on healthy and infected lime (Citrus aurantifolia) trees with phytoplasma.

    PubMed

    Abdollahi, Fatemeh; Niknam, Vahid; Ghanati, Faezeh; Masroor, Faribors; Noorbakhsh, Seyyed Nasr

    2012-01-01

    Exposure to electromagnetic fields (EMF) has become an issue of concern for a great many people and is an active area of research. Phytoplasmas, also known as mycoplasma-like organisms, are wall-less prokaryotes that are pathogens of many plant species throughout the world. Effects of electromagnetic fields on the changes of lipid peroxidation, content of H(2)O(2), proline, protein, and carbohydrates were investigated in leaves of two-year-old trees of lime (Citrus aurantifolia) infected by the Candidatus Phytoplasma aurantifoliae. The healthy and infected plants were discontinuously exposed to a 10 KHz quadratic EMF with maximum power of 9 W for 5 days, each 5 h, at 25 °C. Fresh and dry weight of leaves, content of MDA, proline, and protein increased in both healthy and infected plants under electromagnetic fields, compared with those of the control plants. Electromagnetic fields decreased hydrogen peroxide and carbohydrates content in both healthy and infected plants compared to those of the controls.

  7. Jet engine with electromagnetic field excitation of expendable solid-state material

    NASA Astrophysics Data System (ADS)

    Tsybin, O. Yu.; Makarov, S. B.; Ostapenko, O. N.

    2016-12-01

    Electromagnetic field action on a solid-state natural raw material is considered here in the context of producing a mechanical reactive momentum. We suggest the development of a jet engine that possesses fast control and low thrust based on desorption or sputtering of particles flow from a solid surface.

  8. Electromagnetic induction in New Zealand: analogue model and field results

    NASA Astrophysics Data System (ADS)

    Chen, J.; Dosso, H. W.; Ingham, M.

    The behaviour of electric and magnetic variations over North Island (New Zealand) is studied with the aid of a laboratory analogue model. The source field frequencies used in the analogue modelling simulate naturally occurring geomagnetic variations of 5-120 min periods. In-phase and quadrature magnetic and electric fields for a selection of traverses for the modelled region of North Island are presented. Since North Island is of a relatively narrow cross-section, the field responses, even for inland locations, are expected to show strongly the effects of the surrounding ocean. The irregular coastlines, as well as the strait between North and South Islands, lead to coastal and inland field anomalies due to induced currents being deflected and channelled to produce localized current densities. The comparison of model results with field station measurements obtained earlier individually by Ingham and by Midha for sites in the northeastern, central, and southern (near Cook Strait) regions of North Island demonstrates the large role the ocean has in the observed field responses. Differences in the model and field results at some sites are expected and should reflect the effects of the local geology and the conductive substructure related to the complex tectonics of the region not simulated in the model.

  9. Low frequency electromagnetic fields and the Belousov-Zhabotinsky reaction.

    PubMed

    Sontag, W

    2006-05-01

    Low frequency magnetic fields can influence biochemical reactions and consequently physiological rhythms and oscillations. To test this for a model reaction we used the chemical Belousov-Zhabotinsky (BZ) reaction, which is one of the simplest chemical oscillators. The oscillation frequency of the reaction was tracked optically by the absorption of blue light. Field treatment was carried out at room temperature in the middle of two Helmholtz coils. After starting the reaction, for 5 min the oscillations were monitored as control measurement, then during the next 10 min monitoring was with a magnetic field switched on, followed by a period of 5 min with the field switched off. A variety of exposure conditions have been tested: the frequency was varied between 5 and 1000 Hz, the field strength was varied up to 2.7 mT, different pulse shapes were used, the influence of the exposure temperature was tested, and the influence of the optimum exposure conditions (static magnetic field and the frequency of the dynamic field) as predicted by the ion parametric resonance (IPR) model has been measured. In conclusion, in no case any statistical significant influence of the magnetic treatment on the oscillation frequency of the BZ reaction could be detected (P > .05, t-test).

  10. Strings: A possible alternative explanation for the Unification of Gravitation Field and Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Rivera, Susana

    Throughout the last century, since the last decades of the XIX century, until present day, there had been many attempts to achieve the unification of the Forces of Nature. First unification was done by James Clerk Maxwell, with his Electromagnetic Theory. Then Max Plank developed his Quantum Theory. In 1905, Albert Einstein gave birth to the Special Relativity Theory, and in 1916 he came out with his General Relativity Theory. He noticed that there was an evident parallelism between the Gravitational Force, and the Electromagnetic Force. So, he tried to unify these forces of Nature. But Quantum Theory interposed on his way. On the 1940’s it had been developed the Quantum Electrodynamics (QED), and with it, the unified field theory had an arise interest. On the 60’s and 70’s there was developed the Quantum Chromodynamics (QCD). Along with these theories came the discovery of the strong interaction force and weak interaction force. And though there had been many attempts to unify all these forces of the nature, it could only be achieved the Unification of strong interaction, weak interaction and Electromagnetic Force. On the late 80”s and throughout the last two decades, theories such as “super-string theory”, “or the “M-theory”, among others, groups of Scientists, had been doing grand efforts and finally they came out with the unification of the forces of nature, being the only limitation the use of more than 11 dimensions. Using an ingenious mathematical tool known as the super symmetries, based on the Kaluza - Klein work, they achieve this goal. The strings of these theories are in the rank of 10-33 m. Which make them undetectable. There are many other string theories. The GEUFT theory is based on the existence of concentrated energy lines, which vibrates, expands and contracts, submitting and absorbing energy, matter and antimatter, and which yields a determined geometry, that gives as a result the formation of stars, galaxies, nebulae, clusters

  11. Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells.

    PubMed

    Falone, Stefano; Grossi, Maria R; Cinque, Benedetta; D'Angelo, Barbara; Tettamanti, Enzo; Cimini, Annamaria; Di Ilio, Carmine; Amicarelli, Fernanda

    2007-01-01

    The current study was designed to establish whether extremely low-frequency electromagnetic fields might affect neuronal homeostasis through redox-sensitive mechanisms. To this end, intracellular reactive oxygen species production, antioxidant and glutathione-based detoxifying capability and genomic integrity after extremely low-frequency electromagnetic fields exposure were investigated. Moreover, we also studied potential extremely low-frequency electromagnetic fields-dependent changes in the proliferative and differentiative cellular status. Results seem to support redox-mediated extremely low-frequency electromagnetic fields effects on biological models as, although no major oxidative damage was detected, after exposure we observed a positive modulation of antioxidant enzymatic expression, as well as a significant increase in reduced glutathione level, indicating a shift of cellular environment towards a more reduced state. In addition, extremely low-frequency electromagnetic fields treatment induced a more differentiated phenotype as well as an increased expression in peroxisome proliferators-activated receptor isotype beta, a class of transcription factors related to neuronal differentiation and cellular stress response. As second point, to deepen how extremely low-frequency electromagnetic fields treatment could affect neuroblastoma cell antioxidant capacity, we examined the extremely low-frequency electromagnetic fields-dependent modifications of cell susceptibility to pro-oxidants. Results clearly showed that 50 Hz extremely low-frequency electromagnetic fields exposure reduces cell tolerance towards oxidative attacks.

  12. Controlling electromagnetic fields at boundaries of arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Teo, Jonathon Yi Han; Wong, Liang Jie; Molardi, Carlo; Genevet, Patrice

    2016-08-01

    Rapid developments in the emerging field of stretchable and conformable photonics necessitate analytical expressions for boundary conditions at metasurfaces of arbitrary geometries. Here, we introduce the concept of conformal boundary optics: a design theory that determines the optical response for designer input and output fields at such interfaces. Given any object, we can realize coatings to achieve exotic effects like optical illusions and anomalous diffraction behavior. This approach is relevant to a broad range of applications from conventional refractive optics to the design of the next-generation of wearable optical components. This concept can be generalized to other fields of research where designer interfaces with nontrivial geometries are encountered.

  13. Exact Classical and Quantum Dynamics in Background Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Heinzl, Tom; Ilderton, Anton

    2017-03-01

    Analytic results for (Q)ED processes in external fields are limited to a few special cases, such as plane waves. However, the strong focusing of intense laser fields implies a need to go beyond the plane wave model. By exploiting Poincaré symmetry and superintegrability we show how to construct, and solve without approximation, new models of laser-matter interactions. We illustrate the method with a model of a radially polarized (TM) laser beam, for which we exactly determine the classical orbits and quantum wave functions. Including in this way the effects of transverse field structure should improve predictions and analyses for experiments at intense laser facilities.

  14. Rayleigh-Taylor-Induced Electromagnetic Fields in Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Manuel, Mario J.-E.

    Spontaneous electromagnetic fields can be important to the dynamic evolution of a plasma by directing heat flow as well as providing additional pressures on the conducting fluids through the Lorentz force. Electromagnetic fields are predicted to affect fluid behavior during the core-collapse of supernovae through generation of fields due to hydrodynamic instabilities. In the coronae of stars, self-generated magnetic fields lead to filamentary structure in the hot plasma. Recent experiments by Gregori et al. investigated sources of protogalactic magnetic fields generated by laser-produced shock waves. In inertial confinement fusion experiments, self-generated electromagnetic fields can also play a role and have recently become of great interest to the community. Present day laser facilities provide a unique opportunity to study spontaneous field-generation in these extreme environments under controlled conditions. Instability-induced electromagnetic fields were investigated using a novel monoenergetic-proton radiography system. Fusion protons generated by an 'exploding-pusher' implosion were used to probe laser-irradiated plastic foils with various preimposed surface perturbations. Imaging protons are sensitive to electromagnetic fields and density modulations in the plasma through the Lorentz force and Coulomb collisions, respectively. Corresponding x-ray radiographs of these targets provided mass density distributions and Coulomb effects on protons were assessed using a Monte Carlo code written using the Geant4 framework. Proton fluence distributions were recorded on CR-39 detectors and Fourier analyzed to infer path-integrated field strengths. Rayleigh-Taylor (RT) growth of preimposed surface perturbations generated magnetic fields by the RT-induced Biermann battery and were measured for the first time. Good data were obtained during linear growth and when compared to ideal calculations, demonstrated that field diffusion near the source played an important role

  15. Assessment of outdoor radiofrequency electromagnetic field exposure through hotspot localization using kriging-based sequential sampling

    SciTech Connect

    Aerts, Sam Deschrijver, Dirk; Verloock, Leen; Dhaene, Tom; Martens, Luc; Joseph, Wout

    2013-10-15

    In this study, a novel methodology is proposed to create heat maps that accurately pinpoint the outdoor locations with elevated exposure to radiofrequency electromagnetic fields (RF-EMF) in an extensive urban region (or, hotspots), and that would allow local authorities and epidemiologists to efficiently assess the locations and spectral composition of these hotspots, while at the same time developing a global picture of the exposure in the area. Moreover, no prior knowledge about the presence of radiofrequency radiation sources (e.g., base station parameters) is required. After building a surrogate model from the available data using kriging, the proposed method makes use of an iterative sampling strategy that selects new measurement locations at spots which are deemed to contain the most valuable information—inside hotspots or in search of them—based on the prediction uncertainty of the model. The method was tested and validated in an urban subarea of Ghent, Belgium with a size of approximately 1 km{sup 2}. In total, 600 input and 50 validation measurements were performed using a broadband probe. Five hotspots were discovered and assessed, with maximum total electric-field strengths ranging from 1.3 to 3.1 V/m, satisfying the reference levels issued by the International Commission on Non-Ionizing Radiation Protection for exposure of the general public to RF-EMF. Spectrum analyzer measurements in these hotspots revealed five radiofrequency signals with a relevant contribution to the exposure. The radiofrequency radiation emitted by 900 MHz Global System for Mobile Communications (GSM) base stations was always dominant, with contributions ranging from 45% to 100%. Finally, validation of the subsequent surrogate models shows high prediction accuracy, with the final model featuring an average relative error of less than 2 dB (factor 1.26 in electric-field strength), a correlation coefficient of 0.7, and a specificity of 0.96. -- Highlights: • We present an

  16. Non-Uniform Electromagnetic Fields in the SAMURAI TPC

    NASA Astrophysics Data System (ADS)

    Estee, J.; Barney, J.; Chajecki, Z.; Chan, C. F.; Dunn, J. W.; Gilbert, J.; Lu, F.; Lynch, W. G.; Shane, R.; Tsang, M. B.; McIntosh, A. B.; Yennello, S. J.; Famiano, M.; Isobe, T.; Sakurai, H.; Taketani, A.; Murakami, T.; Samurai-Tpc Collaboration

    2011-10-01

    A Time Projection Chamber (TPC) is being developed for the SAMURAI dipole magnet at RIKEN. The main scientific objective for the TPC is to provide constraints on the nuclear symmetry at supra-saturation density. The poster presentation will discuss the design of the TPC field cage and the external electrodes that shape the high electric fields near the cathode. Garfield calculations of the electric field as well as TOSCA calculations of the magnetic field of the SAMURAI dipole will be shown and the impact of the non-uniformity of both fields on electron transport will be discussed. These non-uniformities can introduce components into the electron drift velocity in directions other than the expected vertical direction. This poster presentation will discuss the initial design of a laser calibration system, which will be used to calibrate away the influence of these non-uniformities in the electric and magnetic fields. This work is supported by the DOE under Grant DE-SC0004835.

  17. The assessment of electromagnetic field radiation exposure for mobile phone users.

    PubMed

    Buckus, Raimondas; Strukcinskiene, Birute; Raistenskis, Juozas

    2014-12-01

    During recent years, the widespread use of mobile phones has resulted in increased human ex- posure to electromagnetic field radiation and to health risks. Increased usage of mobile phones at the close proximity raises questions and doubts in safety of mobile phone users. The aim of the study was to assess an electromagnetic field radiation exposure for mobile phone users by measuring electromagnetic field strength in different settings at the distance of 1 to 30 cm from the mobile user. In this paper, the measurements of electric field strength exposure were conducted on different brand of mobile phones by the call-related factors: urban/rural area, indoor/outdoor setting and moving/stationary mode during calls. The different types of mobile phone were placed facing the field probe at 1 cm, 10 cm, 20 cm and 30 cm distance. The highest electric field strength was recorded for calls made in rural area (indoors) while the lowest electric field strength was recorded for calls made in urban area (outdoors). Calls made from a phone in a moving car gave a similar result like for indoor calls; however, calls made from a phone in a moving car exposed electric field strength two times more than that of calls in a standing (motionless) position. Electromagnetic field radiation depends on mobile phone power class and factors, like urban or rural area, outdoor or indoor, moving or motionless position, and the distance of the mobile phone from the phone user. It is recommended to keep a mobile phone in the safe distance of 10, 20 or 30 cm from the body (especially head) during the calls.

  18. Electromagnetic field interactions with the human body: Observed effects and theories

    NASA Technical Reports Server (NTRS)

    Raines, J. K.

    1981-01-01

    The effects of nonionizing electromagnetic (EM) field interactions with the human body were reported and human related studies were collected. Nonionizing EM fields are linked to cancer in humans in three different ways: cause, means of detection, and effective treatment. Bad and benign effects are expected from nonionizing EM fields and much more knowledge is necessary to properly categorize and qualify EM field characteristics. It is concluded that knowledge of the boundary between categories, largely dependent on field intensity, is vital to proper future use of EM radiation for any purpose and the protection of the individual from hazard.

  19. On the scalar particle creation by electromagnetic fields in Robertson-Walker spacetime

    NASA Astrophysics Data System (ADS)

    Sogut, Kenan; Havare, Ali

    2015-12-01

    In the present paper, we obtained the scalar particle creation number density by using the Klein-Gordon equation coupled to the electromagnetic fields in the Robertson-Walker spacetime with the help of the Bogoliubov transformation method. We analyzed the resulting expression for the effect of a time-dependent electric field and a constant magnetic field on the particle production rate and found that the strong time-dependent electric field amplifies the particle creation and the magnetic field reduces the rate, in accordance with the previous findings.

  20. Investigation of Electromagnetic Field Threat to Fuel Tank Wiring of a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Beck, Fred B.; Deshpande, Manohar D.; Cockrell, C. R.

    2000-01-01

    National Transportation Safety Board investigators have questioned whether an electrical discharge in the Fuel Quantity Indication System (FQIS) may have initiated the TWA-800 center wing tank explosion. Because the FQIS was designed to be incapable of producing such a discharge on its own, attention has been directed to mechanisms of outside electromagnetic influence. To support the investigation, the NASA Langley Research Center was tasked to study the potential for radiated electromagnetic fields from external radio frequency (RF) transmitters and passenger carried portable electronic devices (PEDs) to excite the FQIS enough to cause arcing, sparking or excessive heating within the fuel tank.