Science.gov

Sample records for electromagnetic fields enhance

  1. Could Radiotherapy Effectiveness Be Enhanced by Electromagnetic Field Treatment?

    PubMed Central

    Francisco, Artacho-Cordón; del Mar, Salinas-Asensio María; Irene, Calvente; Sandra, Ríos-Arrabal; Josefa, León; Elisa, Román-Marinetto; Nicolás, Olea; Isabel, Núñez María

    2013-01-01

    One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy. PMID:23867611

  2. Electromagnetic field enhancement and light localization in deterministic aperiodic nanostructures

    NASA Astrophysics Data System (ADS)

    Gopinath, Ashwin

    The control of light matter interaction in periodic and random media has been investigated in depth during the last few decades, yet structures with controlled degree of disorder such as Deterministic Aperiodic Nano Structures (DANS) have been relatively unexplored. DANS are characterized by non-periodic yet long-range correlated (deterministic) morphologies and can be generated by the mathematical rules of symbolic dynamics and number theory. In this thesis, I have experimentally investigated the unique light transport and localization properties in planar dielectric and metal (plasmonics) DANS. In particular, I have focused on the design, nanofabrication and optical characterization of DANS, formed by arranging metal/dielectric nanoparticles in an aperiodic lattice. This effort is directed towards development of on-chip nanophotonic applications with emphasis on label-free bio-sensing and enhanced light emission. The DANS designed as Surface Enhanced Raman Scattering (SERS) substrate is composed of multi-scale aperiodic nanoparticle arrays fabricated by e-beam lithography and are capable of reproducibly demonstrating enhancement factors as high as ˜107. Further improvement of SERS efficiency is achieved by combining DANS formed by top-down approach with bottom-up reduction of gold nanoparticles, to fabricate novel nanostructures called plasmonic "nano-galaxies" which increases the SERS enhancement factors by 2--3 orders of magnitude while preserving the reproducibility. In this thesis, along with presenting details of fabrication and SERS characterization of these "rationally designed" SERS substrates, I will also present results on using these substrates for detection of DNA nucleobases, as well as reproducible label-free detection of pathogenic bacteria with species specificity. In addition to biochemical detection, the combination of broadband light scattering behavior and the ability for the generation of reproducible high fields in DANS make these

  3. Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices.

    PubMed

    Ahn, Wonmi; Boriskina, Svetlana V; Hong, Yan; Reinhard, Björn M

    2012-01-11

    We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications.

  4. Enhanced responsiveness to parathyroid hormone and induction of functional differentiation of cultured rabbit costal chondrocytes by a pulsed electromagnetic field.

    PubMed

    Hiraki, Y; Endo, N; Takigawa, M; Asada, A; Takahashi, H; Suzuki, F

    1987-10-22

    Pulsed electromagnetic fields promote healing of delayed united and ununited fractures by triggering a series of events in fibrocartilage. We examined the effects of a pulsed electromagnetic field (recurrent bursts, 15.4 Hz, of shorter pulses of an average of 2 gauss) on rabbit costal chondrocytes in culture. A pulsed electromagnetic field slightly reduced the intracellular cyclic adenosine 3',5'-monophosphate (cAMP) level in the culture. However, it significantly enhanced cAMP accumulation in response to parathyroid hormone (PTH) to 140% of that induced by PTH in its absence, while it did not affect cAMP accumulation in response to prostaglandin E1 or prostaglandin I2. The effect on cAMP accumulation in response to PTH became evident after exposure of the cultures to the pulsed electromagnetic field for 48 h, and was dependent upon the field strength. cAMP accumulation in response to PTH is followed by induction of ornithine decarboxylase, a good marker of differentiated chondrocytes, after PTH treatment for 4 h. Consistent with the enhanced cAMP accumulation, ornithine decarboxylase activity induced by PTH was also increased by the pulsed electromagnetic field to 170% of that in cells not exposed to a pulsed electromagnetic field. Furthermore, stimulation of glycosaminoglycan synthesis, a differentiated phenotype, in response to PTH was significantly enhanced by a pulsed electromagnetic field. Thus, a pulsed electromagnetic field enhanced a series of events in rabbit costal chondrocytes in response to PTH. These findings show that exposure of chondrocytes to a pulsed electromagnetic field resulted in functional differentiation of the cells.

  5. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  6. Suppressing Turbulence and Enhancing the Liquid Suspension Flow in Pipeline with Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Gu, G. Q.; Tao, R.

    2014-03-01

    Flows through pipes are the most common and important transportation of fluids. To enhance the flow output along pipeline, it requires reducing the fluid viscosity and suppressing turbulence simultaneously and effectively. Unfortunately, no method is currently available to accomplish both goals simultaneously. Fore example, heating reduces the fluid viscosity, but makes turbulence worse. Here we show that the symmetry breaking physics provides an efficient solution for this issue. When a strong electromagnetic field is applied in the flow direction in a small section of pipeline, the field polarizes and aggregates the particles suspended inside the base liquid into short chains along the flow direction. Such aggregation breaks the symmetry and makes the fluid viscosity anisotropic. Along the flow direction, the viscosity is significantly reduced; in the directions perpendicular to the flow, the viscosity is substantially increased. The turbulence is thus suppressed as all rotating motions and vertexes are suppressed. Only the flow along the pipeline is enhanced and the outflow is improved. The method is extremely energy efficient since it only aggregates the particles and does not heat the suspensions. Recent field tests on pipeline fully support the theoretical prediction.

  7. [Electromagnetic fields hypersensitivity].

    PubMed

    Sobiczewska, Elzbieta; Szmigielski, Stanisław

    2009-01-01

    The development of industry, particularly of new technologies in communication systems, gives rise to the number and diversty of electromagnetic field (EMF) sources in the environment. These sources, including power-frequent, radiofrequent and microwaves, make human life richer, safer and easier. But at the same time, there is growing concern about possible health risks connected with EMF exposure. An increasing number of persons have recently reported on a variety of health problems induced, in their opinion, by exposure to EMF. It is important to note that EMF levels to which these individuals are exposed are generally well below the recommended exposure limits and are certainly far below those known to produce any adverse effects. These persons call themselves "electromagnetic hypersensitivity individuals" And complain about experiencing various types of non-specific symptoms, including dermatological, neurological and vegetative. In the present paper, the problem of electromagnetic hypersensitivity phenomenon is discussed based on the recently published literature.

  8. Elucidating the sole contribution from electromagnetic near-fields in plasmon-enhanced Cu2O photocathodes

    DOE PAGES

    DuChene, Joseph S.; Williams, Benjamin P.; Johnston-Peck, Aaron C.; Qiu, Jingjing; Gomes, Mathieu; Amilhau, Maxime; Bejleri, Donald; Weng, Jiena; Su, Dong; Huo, Fengwei; et al

    2015-11-05

    Despite many promising reports of plasmon-enhanced photocatalysis, the inability to identify the individual contributions from multiple enhancement mechanisms has delayed the development of general design rules for engineering efficient plasmonic photocatalysts. Herein, we construct a plasmonic photocathode comprised of Au@SiO2 (core@shell) nanoparticles embedded within a Cu2O nanowire network to exclusively examine the contribution from one such mechanism: electromagnetic near-field enhancement. The influence of the local electromagnetic field intensity is correlated with the overall light-harvesting efficiency of the device through variation of the SiO2 shell thickness (5—22 nm) to systematically tailor the distance between the plasmonic Au nanoparticles and the Cu2Omore » nanowires. A three-fold increase in device photocurrent is achieved upon integrating the Au@SiO2 nanoparticles into the Cu2O nanowire network, further enabling a ~40% reduction in semiconductor film thickness while maintaining photocathode performance. Photoelectrochemical results are further correlated with photoluminescence studies and optical simulations to confirm that the near-field enhancement is the sole mechanism responsible for increased light absorption in the plasmonic photocathode.« less

  9. Laser ablation of polymer coatings allows for electromagnetic field enhancement mapping around nanostructures

    SciTech Connect

    Fiutowski, J.; Maibohm, C.; Kjelstrup-Hansen, J.; Rubahn, H.-G.

    2011-05-09

    Subdiffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures. The accompanying field enhancement substantially lowers the ablation threshold of the polymer film and thus creates local ablation spots and corresponding topographic modifications of the polymer film. Such modifications are quantified straightforwardly via scanning electron microscopy and atomic force microscopy. Thickness variation in the polymer film enables the investigation of either the initial ablation phase or ablation induced by collective enhancement effects.

  10. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  11. Proca and electromagnetic fields

    SciTech Connect

    Hillion, P.; Quinnerz, S.

    1986-07-01

    In the framework of the proper orthochronous Lorentz group, the old connection is revived between the electromagnetic field characterized by a self-dual tensor and a traceless second-rank spinor obeying the Proca equation. The relationship between this spinor and the Hertz potential also considered as a self-dual tensor is emphasized. The extension of this formalism to meet the covariance under the full Lorentz group is also discussed.

  12. Electromagnetic fields and cells.

    PubMed

    Goodman, R; Chizmadzhev, Y; Shirley-Henderson, A

    1993-04-01

    There is strong public interest in the possibility of health effects associated with exposure to extremely low frequency (elf) electromagnetic (EM) fields. Epidemiological studies suggest a probable, but controversial, link between exposure to elf EM fields and increased incidence of some cancers in both children and adults. There are hundreds of scientific studies that have tested the effects of elf EM fields on cells and whole animals. A growing number of reports show that exposure to elf EM fields can produce a large array of effects on cells. Of interest is an increase in specific transcripts in cultured cells exposed to EM fields. The interaction mechanism with cells, however, remains elusive. Evidence is presented for a model based on cell surface interactions with EM fields.

  13. Ag@SiO2 Core-shell Nanoparticles for Probing Spatial Distribution of Electromagnetic Field Enhancement via Surface-Enhanced Raman Scattering

    SciTech Connect

    Wang, Wei; Li, Zhipeng; Gu, Baohua; Zhang, Zhenyu; Xu, Hongxing

    2009-01-01

    We show that the spatial distribution of the electromagnetic (EM) field enhancement can be probed directly via dynamic evolution of surface-enhanced Raman scattering (SERS) of Rhodamine 6G (R6G) molecules as they diffuse into Ag@SiO2 core-shell nanoparticles. The porous silica shell limits the diffusion of R6G molecules towards inner Ag cores, thereby allowing direct observation and quantification of the spatial distribution of SERS enhancement as molecules migrate from the low to high EM fields inside the dielectric silica shell. Our experimental evidence is validated by the generalized Mie theory, and the approach can potentially offer a novel platform for further investigating the site and spatial distribution of the EM fields and the EM versus chemical enhancement of SERS due to molecular confinement within the Ag@SiO2 nanoshell.

  14. Photonic electromagnetic field sensor apparatus

    NASA Astrophysics Data System (ADS)

    Hilliard, Donald P.; Mensa, Dean L.

    1993-07-01

    An electromagnetic field sensor apparatus which measures the field strength and phase of an incident electromagnetic field as well as the angle of arrival of an incident electromagnetic field is presented. The electromagnetic field sensor apparatus comprises a Luneberg lens which focuses an incoming planar electromagnetic wave entering on one side of the Luneberg lens onto a point on the opposite side of the lens. A photonic sensor is positioned on the Luneberg lens at the point upon which the electromagnetic wave is focused. A light source is located along an optical path which passes through the photonic sensor for transmitting polarized light through the sensor. The photonic sensor modulates the polarized light passing therethrough when the photonic sensor detects the incident electromagnetic wave.

  15. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, Ross D.; Deis, Gary A.

    1992-01-01

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  16. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  17. Photonic electromagnetic field sensor apparatus

    NASA Astrophysics Data System (ADS)

    Hilliard, Donald P.; Mensa, Dean L.

    1993-09-01

    An electromagnetic field sensor apparatus which measures the amplitude, phase, frequency and polarization of an incoming electromagnetic field as well as the angle of arrival of an incident electromagnetic field is introduced. A Luneberg lens focuses an incoming electromagnetic wave entering on one side of the Luneberg lens onto a point on the opposite side of the lens. A pair of photonic sensor which may be electro-optic modulators or Pockel cells are positioned on the Luneberg lens at the point upon which the incident electromagnetic wave is focused. The sensing axis of one of the electro-optic modulators is perpendicular to the sensing axis of the other electro-optic modulator. Polarized light is provided to each photonic sensor along an optical path which passes through the sensor. Each photonic sensor modulates the polarized light passing therethrough when the photonic sensor detects the incident electromagnetic wave.

  18. Why do electromagnetic pulses enhance bone growth?

    PubMed

    Bowen, Samuel P; Mancini, Jay D; Fessatidis, Vassilios; Grabiner, Mark

    2008-02-01

    The excitation probability of substrate molecules involved in the production of growth factors influencing the division of chondrocytes in the growth layer of bone under the influence of pulsed electromagnetic fields is studied theoretically in a quantum mechanical model calculation. In this model matrix elements and anti-bonding energy levels are assumed known and the dynamics of the interaction with pulsed electromagnetic fields is derived. The derivation makes it clear that continuous pulsing or large driving currents can overwhelm local diffusive transport to the growth plane resulting in a loss of its enhancement properties. Optimal locations within a pair of Helmholtz coils for enhancement of bone growth are also investigated and found to be close to the coils. The work presented here is believed to be the first derivation in a model calculation of a physical basis for the effects of pulsed electromagnetic fields on bone growth and fusion.

  19. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  20. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    SciTech Connect

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-04-15

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  1. Extremely low-frequency electromagnetic fields enhance the proliferation and differentiation of neural progenitor cells cultured from ischemic brains.

    PubMed

    Cheng, Yannan; Dai, Yiqin; Zhu, Ximin; Xu, Haochen; Cai, Ping; Xia, Ruohong; Mao, Lizhen; Zhao, Bing-Qiao; Fan, Wenying

    2015-10-21

    In the mammalian brain, neurogenesis persists throughout the embryonic period and adulthood in the subventricular zone of the lateral ventricle and the granular zone (dentate gyrus) of the hippocampus. Newborn neural progenitor cells (NPCs) in the two regions play a critical role in structural and functional plasticity and neural regeneration after brain injury. Previous studies have reported that extremely low-frequency electromagnetic fields (ELF-EMF) could promote osteogenesis, angiogenesis, and cardiac stem cells' differentiation, which indicates that ELF-EMF might be an effective tool for regenerative therapy. The present studies were carried out to examine the effects of ELF-EMF on hippocampal NPCs cultured from embryonic and adult ischemic brains. We found that exposure to ELF-EMF (50 Hz, 0.4 mT) significantly enhanced the proliferation capability both in embryonic NPCs and in ischemic NPCs. Neuronal differentiation was also enhanced after 7 days of cumulative ELF-EMF exposure, whereas glial differentiation was not influenced markedly. The expression of phosphorylated Akt increased during the proliferation process when ischemic NPCs were exposed to ELF-EMF. However, blockage of the Akt pathway abolished the ELF-EMF-induced proliferation of ischemic NPCs. These data show that ELF-EMF promotes neurogenesis of ischemic NPCs and suggest that this effect may occur through the Akt pathway.Video abstract, Supplemental Digital Content 1, http://links.lww.com/WNR/A347.

  2. Self-dual electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.

    2010-08-01

    We demonstrate the utility of self-dual fields in electrodynamics. Stable configurations of free electromagnetic fields can be represented as superpositions of standing waves, each possessing zero Poynting vector and zero orbital angular momentum. The standing waves are themselves superpositions of self-dual and anti-self-dual solutions. The idea of self-duality provides additional insights into the geometrical and spectral properties of stable electromagnetic configurations, such as those responsible for the formation of ball lightning.

  3. Enhanced Microfluidic Electromagnetic Measurements

    NASA Technical Reports Server (NTRS)

    Giovangrandi, Laurent (Inventor); Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  4. What Are Electromagnetic Fields?

    MedlinePlus

    ... with distance from it. Conductors such as metal shield them very effectively. Other materials, such as building ... with distance from the source. Most building materials shield electric fields to some extent. Magnetic fields arise ...

  5. Medical applications of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lai, Henry C.; Singh, Narendra P.

    2010-04-01

    In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.

  6. String theory in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Makeenko, Yuri M.; Semenoff, Gordon W.; Szabo, Richard J.

    2003-02-01

    A review of various aspects of superstrings in background electromagnetic fields is presented. Topics covered include the Born-Infeld action, spectrum of open strings in background gauge fields, the Schwinger mechanism, finite-temperature formalism and Hagedorn behaviour in external fields, Debye screening, D-brane scattering, thermodynamics of D-branes, and noncommutative field and string theories on D-branes. The electric field instabilities are emphasized throughout and contrasted with the case of magnetic fields. A new derivation of the velocity-dependent potential between moving D-branes is presented, as is a new result for the velocity corrections to the one-loop thermal effective potential.

  7. Surpassingly competitive electromagnetic field enhancement at the silica/silver interface for selective intracellular surface enhanced Raman scattering detection.

    PubMed

    Radziuk, Darya; Möhwald, Helmuth

    2015-03-24

    A thin plasmonic nanofilm is formed by preformed silver nanoparticles (30 nm) in the matrix of poly(vinyl alcohol) adsorbed on silica microparticles (1.5 μm) (SiO2@Ag-PVA). By applying finite element method (FEM) analysis the surface enhanced Raman spectroscopy (SERS) enhancement factors (EFs) can reach 10(5) with higher values from 10(9) to 10(11) in the silver layer of 5 nm thickness. Nanoparticles in the SiO2@Ag-PVA nanofilm need at least 15 nm radius to exhibit SERS EFs greater than 10(7). High values of this enhancement at the silver/silica interface of spherical geometry can be reached faster by using a 532 nm compared to 785 nm excitation wavelength. By this approach different SERS spectral features can be distinguished between live fibroblasts with spread ("healthy" state) or round ("unhealthy" state) shapes. Characteristic features of secondary protein structures, detection of different acidic conditions and cholesterol with at least a 3-fold higher sensitivity are examined. Moreover, a greater amount of glucose (glucogen) and also tyrosine can be monitored in real time. This is important in identification of higher risk of diabetes as well as in several genetic metabolic disorders (e.g., phenylketonuria, tyrosinaemia type II and tyrosinosis).

  8. Surpassingly competitive electromagnetic field enhancement at the silica/silver interface for selective intracellular surface enhanced Raman scattering detection.

    PubMed

    Radziuk, Darya; Möhwald, Helmuth

    2015-03-24

    A thin plasmonic nanofilm is formed by preformed silver nanoparticles (30 nm) in the matrix of poly(vinyl alcohol) adsorbed on silica microparticles (1.5 μm) (SiO2@Ag-PVA). By applying finite element method (FEM) analysis the surface enhanced Raman spectroscopy (SERS) enhancement factors (EFs) can reach 10(5) with higher values from 10(9) to 10(11) in the silver layer of 5 nm thickness. Nanoparticles in the SiO2@Ag-PVA nanofilm need at least 15 nm radius to exhibit SERS EFs greater than 10(7). High values of this enhancement at the silver/silica interface of spherical geometry can be reached faster by using a 532 nm compared to 785 nm excitation wavelength. By this approach different SERS spectral features can be distinguished between live fibroblasts with spread ("healthy" state) or round ("unhealthy" state) shapes. Characteristic features of secondary protein structures, detection of different acidic conditions and cholesterol with at least a 3-fold higher sensitivity are examined. Moreover, a greater amount of glucose (glucogen) and also tyrosine can be monitored in real time. This is important in identification of higher risk of diabetes as well as in several genetic metabolic disorders (e.g., phenylketonuria, tyrosinaemia type II and tyrosinosis). PMID:25704061

  9. Explanations, Education, and Electromagnetic Fields.

    ERIC Educational Resources Information Center

    Friedman, Sharon M.

    Explaining complex scientific and environmental subjects in the mass media is difficult to do, particularly under such constraints as short deadlines and lack of space or time. When a scientific controversy and human health risk are involved, this becomes an even harder task to accomplish. The subject of electromagnetic fields (EMF) involves…

  10. Physiologic regulation in electromagnetic fields.

    PubMed

    Michaelson, S M

    1982-01-01

    Electromagnetic fields have been demonstrated to elicit thermoregulatory responses, neuroendocrine, neurochemical modulations, and behavioral reactions. These physiologic regulatory processes are exquisitely tuned, interrelated functions that constitute sensitive indicators of organismic responses to radiofrequency energy absorption (the radiofrequency portion of the electromagnetic spectrum includes as one part microwaves). Assessment of the integration and correlation of these functions relative to the thermal inputs and homeokinetic reactions of the individual subjected to radiofrequency energy should permit differentiation between potential hazards that might compromise the individual's ability to maintain normal physiologic function and effects that are compensated by physiologic redundancy.

  11. Physiologic regulation in electromagnetic fields

    SciTech Connect

    Michaelson, S.M.

    1982-01-01

    Electromagnetic fields have been demonstrated to elicit thermoregulatory responses, neuroendocrine, neurochemical modulations, and behavioral reactions. These physiologic regulatory processes are exquisitely tuned, interrelated functions that constitute sensitive indicators of organismic responses to radiofrequency energy absorption (the radiofrequency portion of the electromagnetic spectrum includes as one part microwaves). Assessment of the integration and correlation of these functions relative to the thermal inputs and homeokinetic reactions of the individual subjected to radiofrequency energy should permit differentiation between potential hazards that might compromise the individual's ability to maintain normal physiologic function and effects that are compensated by physiologic redundancy.

  12. Electromagnetic field in optics

    NASA Astrophysics Data System (ADS)

    Varga, Peter; Torok, Peter

    1998-09-01

    A linearly polarized plane wave traversing an optically transparent system rarely maintains its linear polarization. In this work we discuss two aspects of this phenomenon. First, we consider the effect of a high aperture lens on polarization. This case is of utmost importance in confocal and near field microscopy and, in general, focusing. Second, the role of the polarization in hologram reconstruction is discussed.

  13. Health hazards and electromagnetic fields.

    PubMed

    Saunders, T

    2003-11-01

    Biological rhythms, physical wellbeing and mental states are dependent on our electrical brainwave system interacting with the extremely weak electromagnetic fields generated by the Earth's telluric and Cosmic radiations. In a single generation, since the evolution of humankind over millions of years, we are exposed to a wide range of powerful, artificially generated electromagnetic radiation which adversely affects the subtle balance in nature's energy fields and has become the source of so-called 'diseases of civilization'. This also includes electromagnetic sensitivity. Generally, there is a lack of awareness and understanding of the impact electromagnetic fields can have upon health and wellbeing.Our ancestors were acutely aware that certain locations, were perceived to have a positive energy field which was beneficial to health and vitality. Over time, these areas are now referred to as sacred sites for spiritual ceremony and as healing centres. In contrast, there are other geographical locations that can have a negative effect upon health and these are known as geopathic stress zones. It is believed that such zones can interfere with the brain's normal function that inhibits the release of melatonin and other endocrine secretions needed to replenish the immune system. Geopathic stress can affect animals and plant life as well as human beings and significantly contributes to sick building syndrome (SBS). Whilst there is an increasing body of opinion amongst eminent researchers and scientists who are addressing these issues, the establishment professions are slow to change. However, very gradually, modern allopathic medicine and attitudes are beginning to recognise the extraordinary wisdom and efficacy of ancient traditions such as acupuncture, light, colour and other therapies based on the understanding and treatment of the interaction of a person's electromagnetic subtle body and the immediate environment. These and many other 'complementary' therapies may

  14. Health hazards and electromagnetic fields.

    PubMed

    Saunders, T

    2003-11-01

    Biological rhythms, physical wellbeing and mental states are dependent on our electrical brainwave system interacting with the extremely weak electromagnetic fields generated by the Earth's telluric and Cosmic radiations. In a single generation, since the evolution of humankind over millions of years, we are exposed to a wide range of powerful, artificially generated electromagnetic radiation which adversely affects the subtle balance in nature's energy fields and has become the source of so-called 'diseases of civilization'. This also includes electromagnetic sensitivity. Generally, there is a lack of awareness and understanding of the impact electromagnetic fields can have upon health and wellbeing.Our ancestors were acutely aware that certain locations, were perceived to have a positive energy field which was beneficial to health and vitality. Over time, these areas are now referred to as sacred sites for spiritual ceremony and as healing centres. In contrast, there are other geographical locations that can have a negative effect upon health and these are known as geopathic stress zones. It is believed that such zones can interfere with the brain's normal function that inhibits the release of melatonin and other endocrine secretions needed to replenish the immune system. Geopathic stress can affect animals and plant life as well as human beings and significantly contributes to sick building syndrome (SBS). Whilst there is an increasing body of opinion amongst eminent researchers and scientists who are addressing these issues, the establishment professions are slow to change. However, very gradually, modern allopathic medicine and attitudes are beginning to recognise the extraordinary wisdom and efficacy of ancient traditions such as acupuncture, light, colour and other therapies based on the understanding and treatment of the interaction of a person's electromagnetic subtle body and the immediate environment. These and many other 'complementary' therapies may

  15. Elucidating the sole contribution from electromagnetic near-fields in plasmon-enhanced Cu2O photocathodes

    SciTech Connect

    DuChene, Joseph S.; Williams, Benjamin P.; Johnston-Peck, Aaron C.; Qiu, Jingjing; Gomes, Mathieu; Amilhau, Maxime; Bejleri, Donald; Weng, Jiena; Su, Dong; Huo, Fengwei; Stach, Eric A.; Wei, Wei David

    2015-11-05

    Despite many promising reports of plasmon-enhanced photocatalysis, the inability to identify the individual contributions from multiple enhancement mechanisms has delayed the development of general design rules for engineering efficient plasmonic photocatalysts. Herein, we construct a plasmonic photocathode comprised of Au@SiO2 (core@shell) nanoparticles embedded within a Cu2O nanowire network to exclusively examine the contribution from one such mechanism: electromagnetic near-field enhancement. The influence of the local electromagnetic field intensity is correlated with the overall light-harvesting efficiency of the device through variation of the SiO2 shell thickness (5—22 nm) to systematically tailor the distance between the plasmonic Au nanoparticles and the Cu2O nanowires. A three-fold increase in device photocurrent is achieved upon integrating the Au@SiO2 nanoparticles into the Cu2O nanowire network, further enabling a ~40% reduction in semiconductor film thickness while maintaining photocathode performance. Photoelectrochemical results are further correlated with photoluminescence studies and optical simulations to confirm that the near-field enhancement is the sole mechanism responsible for increased light absorption in the plasmonic photocathode.

  16. Electromagnetic fields and health outcomes.

    PubMed

    Knave, B

    2001-09-01

    Over the past two decades, there has been increasing interest in the biological effects and possible health outcomes of weak, low-frequency electric and magnetic fields. Epidemiological studies on magnetic fields and cancer, reproduction and neurobehavioural reactions have been presented. More recently, neurological, degenerative and heart diseases have also been reported to be related to such electromagnetic fields. Furthermore, the increased use of mobile phones worldwide has focussed interest on the possible effects of radiofrequency fields of higher frequencies. In this paper, a summary is given on electromagnetic fields and health outcomes and what policy is appropriate--"no restriction to exposure", "prudent avoidance" or "expensive interventions"? The results of research studies have not been unambiguous; studies indicating these fields as being a health hazard have been published and so were studies indicating no risk at all. In "positive" studies, different types of effects have been reported despite the use of the same study design, e.g., in epidemiological cancer studies. There are uncertainties as to exposure characteristics, e.g., magnetic field frequency and exposure intermittence, and not much is known about possible confounding or effect-modifying factors. The few animal cancer studies reported have not given much help in risk assessment; and in spite of a large number of experimental cell studies, no plausible and understandable mechanisms have been presented by which a carcinogenic effect could be explained. Exposure to electromagnetic fields occurs everywhere: in the home, at work, in school, etc. Wherever there are electric wires, electric motors and electronic equipment, electromagnetic fields are created. This is one of the reasons why exposure assessment is difficult. For epidemiologists, the problems is not on the effect side as registers of diseases exist in many countries today. The problem is that epidemiologists do not know the relevant

  17. [Nonionizing radiation and electromagnetic fields].

    PubMed

    Bernhardt, J H

    1991-01-01

    Nonionising radiation comprises all kinds of radiation and fields of the electromagnetic spectrum where biological matter is not ionised, as well as mechanical waves such as infrasound and ultrasound. The electromagnetic spectrum is subdivided into individual sections and includes: Static and low-frequency electric and magnetic fields including technical applications of energy with mains frequency, radio frequency fields, microwaves and optic radiation (infrared, visible light, ultraviolet radiation including laser). The following categories of persons can be affected by emissions by non-ionising radiation: Persons in the environment and in the household, workers, patients undergoing medical diagnosis or treatment. If the radiation is sufficiently intense, or if the fields are of appropriate strength, a multitude of effects can occur (depending on the type of radiation), such as heat and stimulating or irritating action, inflammations of the skin or eyes, changes in the blood picture, burns or in some cases cancer as a late sequel. The ability of radiation to penetrate into the human body, as well as the types of interaction with biological tissue, with organs and organisms, differs significantly for the various kinds of nonionising radiation. The following aspects of nonionising radiation are discussed: protection of humans against excessive sunlight rays when sunbathing and when exposed to UV radiation (e.g. in solaria); health risks of radio and microwaves (safety of microwave cookers and mobile radio units); effects on human health by electric and magnetic fields in everyday life.

  18. [Nonionizing radiation and electromagnetic fields].

    PubMed

    Bernhardt, J H

    1991-01-01

    Nonionising radiation comprises all kinds of radiation and fields of the electromagnetic spectrum where biological matter is not ionised, as well as mechanical waves such as infrasound and ultrasound. The electromagnetic spectrum is subdivided into individual sections and includes: Static and low-frequency electric and magnetic fields including technical applications of energy with mains frequency, radio frequency fields, microwaves and optic radiation (infrared, visible light, ultraviolet radiation including laser). The following categories of persons can be affected by emissions by non-ionising radiation: Persons in the environment and in the household, workers, patients undergoing medical diagnosis or treatment. If the radiation is sufficiently intense, or if the fields are of appropriate strength, a multitude of effects can occur (depending on the type of radiation), such as heat and stimulating or irritating action, inflammations of the skin or eyes, changes in the blood picture, burns or in some cases cancer as a late sequel. The ability of radiation to penetrate into the human body, as well as the types of interaction with biological tissue, with organs and organisms, differs significantly for the various kinds of nonionising radiation. The following aspects of nonionising radiation are discussed: protection of humans against excessive sunlight rays when sunbathing and when exposed to UV radiation (e.g. in solaria); health risks of radio and microwaves (safety of microwave cookers and mobile radio units); effects on human health by electric and magnetic fields in everyday life. PMID:1837859

  19. Extremely low frequency electromagnetic fields

    SciTech Connect

    Wilson, B.W. . Chemical Sciences Dept.); Stevens, R.G. ); Anderson, L.E. . Life Sciences Center)

    1990-01-01

    The authors focus on that which seems to be the central scientific issue emerging from current ELF research in epidemiology and in the laboratory; namely, can ELF electromagnetic fields interact with biological systems in such a way as to increase cancer risk The authors examine how cancer risk might be related to two reproducible biological effects of ELF exposure: effects on the pineal gland and circadian biology, and effects on calcium homeostasis in cells. Because they are concerned with the possible biological mechanisms of carcinogenesis, epidemiological studies are only briefly reviewed.

  20. Quantization of Electromagnetic Fields in Cavities

    NASA Technical Reports Server (NTRS)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  1. Electromagnetic field and brain development.

    PubMed

    Kaplan, Suleyman; Deniz, Omur Gulsum; Önger, Mehmet Emin; Türkmen, Aysın Pınar; Yurt, Kıymet Kübra; Aydın, Işınsu; Altunkaynak, Berrin Zuhal; Davis, Devra

    2016-09-01

    Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)'s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system.

  2. Electromagnetic field and brain development.

    PubMed

    Kaplan, Suleyman; Deniz, Omur Gulsum; Önger, Mehmet Emin; Türkmen, Aysın Pınar; Yurt, Kıymet Kübra; Aydın, Işınsu; Altunkaynak, Berrin Zuhal; Davis, Devra

    2016-09-01

    Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)'s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system. PMID:26686296

  3. Biological effects of electromagnetic fields.

    PubMed

    Adey, W R

    1993-04-01

    Life on earth has evolved in a sea of natural electromagnetic (EM) fields. Over the past century, this natural environment has sharply changed with introduction of a vast and growing spectrum of man-made EM fields. From models based on equilibrium thermodynamics and thermal effects, these fields were initially considered too weak to interact with biomolecular systems, and thus incapable of influencing physiological functions. Laboratory studies have tested a spectrum of EM fields for bioeffects at cell and molecular levels, focusing on exposures at athermal levels. A clear emergent conclusion is that many observed interactions are not based on tissue heating. Modulation of cell surface chemical events by weak EM fields indicates a major amplification of initial weak triggers associated with binding of hormones, antibodies, and neurotransmitters to their specific binding sites. Calcium ions play a key role in this amplification. These studies support new concepts of communication between cells across the barriers of cell membranes; and point with increasing certainty to an essential physical organization in living matter, at a far finer level than the structural and functional image defined in the chemistry of molecules. New collaborations between physical and biological scientists define common goals, seeking solutions to the physical nature of matter through a strong focus on biological matter. The evidence indicates mediation by highly nonlinear, nonequilibrium processes at critical steps in signal coupling across cell membranes. There is increasing evidence that these events relate to quantum states and resonant responses in biomolecular systems, and not to equilibrium thermodynamics associated with thermal energy exchanges and tissue heating.

  4. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, D.M.; Haynes, H.D.; Casada, D.A.

    1993-03-16

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  5. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, David M.; Haynes, Howard D.; Casada, Donald A.

    1993-01-01

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  6. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  7. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-05-05

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 55 figs.

  8. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-02-10

    An apparatus and method for generating homogeneous electromagnetic fields within a volume is disclosed. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 39 figs.

  9. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1997-06-24

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 26 figs.

  10. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James Terry

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  11. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1997-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially cancelling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  12. Biomarkers of induced electromagnetic field and cancer.

    PubMed

    Behari, J; Paulraj, R

    2007-01-01

    The present article delineates the epidemiological and experimental studies of electromagnetic field which affects various tissues of human body. These affects lead to cell proliferation, which may lead to cancer formation. Certain biomarkers have been identified which are one way or the other responsible for tumor promotion or co-promotion. These are (i) melatonin, a hormone secreted by pineal gland, (ii) Ca2+, which is essential in the regulation of the resting membrane potential and in the sequence of events in synaptic excitation and neurotransmitter, release are affected by electromagnetic field, (iii) ornithine decarboxylase (ODC), a rate-limiting enzyme in the biosynthesis of polyamines, considered as a useful biological marker; over expression of ODC can cause cell transformation and enhancement of tumor promotion. (iv) protein kinase is an enzyme, which transfers phosphate groups from ATP to hydroxyl groups in the amino acid chains of acceptor proteins, and (v) Na+-K+ ATPase, which transports sodium and potassium ions across the membrane has a critical role in living cells. The various possible mechanisms depending upon non equilibrium thermodynamics, co-operativism, stochastic and resonance are discussed as possible models of signal transduction in cytosol, thereby controlling the transcription phenomena. Finally a mechanism comprising the extremely low frequency and radio frequency (RF)/microwave (MW) modulated field is compared.

  13. [Health effects of electromagnetic fields].

    PubMed

    Röösli, Martin

    2013-12-01

    Use of electricity causes extremely low frequency magnetic fields (ELF-MF) and wireless communication devices emit radiofrequency electromagnetic fields (RF-EMF). Average ELF-MF exposure is mainly determined by high voltage power lines and transformers at home or at the workplace, whereas RF-EMF exposure is mainly caused by devices operating close to the body (mainly mobile and cordless phones). Health effects of EMF are controversially discussed. The IARC classified ELF-MF and RF-EMF as possible carcinogenic. Most consistent epidemiological evidence was found for an association between ELF-MF and childhood leukaemia. If causal, 1 - 4 percent of all childhood leukaemia cases could be attributed to ELF-MF. Epidemiological research provided some indications for an association between ELF-MF and Alzheimer's diseases as well as amyotrophic lateral sclerosis, although not entirely consistent. Regarding mobile phones and brain tumours, some studies observed an increased risk after heavy or long term use on the one hand. On the other hand, brain tumour incidence was not found to have increased in the last decade in Sweden, England or the US. Acute effects of RF-EMF on non-specific symptoms of ill health seem unlikely according to randomized and double blind provocation studies. However, epidemiological research on long term effects is still limited. Although from the current state of the scientific knowledge a large individual health risk from RF-EMF exposure is unlikely, even a small risk would have substantial public health relevance because of the widespread use of wireless communication technologies.

  14. Nanomechanical electric and electromagnetic field sensor

    SciTech Connect

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  15. Expanding use of pulsed electromagnetic field therapies.

    PubMed

    Markov, Marko S

    2007-01-01

    Various types of magnetic and electromagnetic fields are now in successful use in modern medicine. Electromagnetic therapy carries the promise to heal numerous health problems, even where conventional medicine has failed. Today, magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and a variety of diseases and pathologies. Millions of people worldwide have received help in treatment of the musculoskeletal system, as well as for pain relief. Pulsed electromagnetic fields are one important modality in magnetotherapy. Recent technological innovations, implementing advancements in computer technologies, offer excellent state-of-the-art therapy. PMID:17886012

  16. Interaction of electromagnetic fields and biological tissues

    NASA Astrophysics Data System (ADS)

    Darshan Shrivastava, Bhakt; Barde, Ravindra; Mishra, Ashutosh; Phadke, S.

    2014-09-01

    This paper deals with the electromagnetic field interact in biological tissues. It is actually one of the important challenges for the electromagnetic field for the recent years. The experimental techniques are use in Broad-band Dielectric Measurement (BDM) with LCR meters. The authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biological tissues. Experimental work carried out done in inter-university consortium (IUC) Indore. The major difficulties that appear are related to the material properties, to the effect of the electromagnetic problem and to the thermal model of the biological tissues.

  17. Relativistic diffusive motion in thermal electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2013-04-01

    We discuss relativistic dynamics in a random electromagnetic field which can be considered as a high temperature limit of the quantum electromagnetic field in a heat bath (cavity) moving with a uniform velocity w. We derive a diffusion approximation for the particle’s dynamics generalizing the diffusion of Schay and Dudley. It is shown that the Jüttner distribution is the equilibrium state of the diffusion.

  18. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  19. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  20. Erythrocyte rouleau formation under polarized electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Sebastián, José Luis; San Martín, Sagrario Muñoz; Sancho, Miguel; Miranda, José Miguel; Álvarez, Gabriel

    2005-09-01

    We study the influence of an external electromagnetic field of 1.8GHz in the formation or disaggregation of long rouleau of identical erythrocyte cells. In particular we calculate the variation of the transmembrane potential of an individual erythrocyte illuminated by the external field due to the presence of the neighboring erythrocytes in the rouleau, and compare the total electric energy of isolated cells with the total electric energy of the rouleau. We show that the polarization of the external electromagnetic field plays a fundamental role in the total energy variation of the cell system, and consequently in the formation or disaggregation of rouleau.

  1. Electromagnetic instabilities attributed to a cross-field ion drift

    NASA Technical Reports Server (NTRS)

    Chang, C. L.; Wong, H. K.; Wu, C. S.

    1990-01-01

    Instabilities due to a cross-field ion flow are reexamined by including the electromagnetic response of the ions, which has been ignored in existing discussions. It is found that this effect can lead to significant enhancement of the growth rate. Among the new results, a purely growing, electromagnetic unstable mode with a wave vector k parallel to the ambient magnetic field is found. The plasma configuration under consideration is similar to that used in the discussion of the well-known modified-two-stream instability. This instability has a growth rate faster than the ion cyclotron frequency, and is not susceptible to high-plasma-beta stabilization.

  2. Electromagnetic fields in bone repair and adaptation

    NASA Astrophysics Data System (ADS)

    McLeod, Kenneth J.; Rubin, Clinton T.; Donahue, Henry J.

    1995-01-01

    The treatment of delayed union of bone fractures has served for the past 20 years as the principal testing ground for determining whether nonionizing electromagnetic fields can have any substantial, long-term effects in clinical medicine. Recent double-blinded clinical trials have confirmed the significance of the reported effects on bone healing and have led to the suggestion that electromagnetic fields may also be useful in the treatment of other orthopedic problems such as fresh fractures, stabilization of prosthetic implants, or even the prevention or treatment of osteoporosis. However, the design of appropriate treatment regimens for these new applications would be greatly facilitated if it were understood how the biological cells within bone tissue sense these low-frequency, and remarkably low level, electromagnetic fields. Here we address the engineering and physical science aspects of this problem. We review the characteristics of clinically used electromagnetic fields and discuss which components of these fields may actually be responsible for altering the activity of the bone cells. We then consider several physical mechanisms which have been proposed to explain how the cells within the bone or fracture tissue detect this field component.

  3. Electromagnetic field interactions with biological systems

    SciTech Connect

    Frey, A.H. )

    1993-02-01

    This is a report on Symposia organized by the International Society for Bioelectricity and presented at the 1992 FASEB Meeting. The presentations summarized here were intended to provide a sampling of new and fruitful lines of research. The theme topics for the Symposia were cancer, neural function, cell signaling, pineal gland function, and immune system interactions. Living organisms are complex electrochemical systems that evolved over billions of years in a world with a relatively simple weak magnetic field and with few electromagnetic energy emitters. As is characteristic of living organisms, they interacted with and adapted to this environment of electric and magnetic fields. In recent years there has been a massive introduction of equipment that emits electromagnetic fields in an enormous range of new frequencies, modulations, and intensities. As living organisms have only recently found themselves immersed in this new and virtually ubiquitous environment, they have not had the opportunity to adapt to it. This gives biologists the opportunity to use these electromagnetic fields as probes to study the functioning of living systems. This is a significant opportunity, as new approaches to studying living systems so often provide the means to make great leaps in science. In recent years, a diversity of biologists have carried out experiments using electromagnetic fields to study the function of living cells and systems. This approach is now becoming quite fruitful and is yielding data that are advancing our knowledge in diverse areas of biology. 25 refs., 6 figs., 3 tabs.

  4. Electromagnetic field parameters and instrumentation

    NASA Astrophysics Data System (ADS)

    Sheppard, A. R.; Jones, R. A.; Stell, M. E.; Adey, W. R.; Bawin, S.

    1986-07-01

    We studied the effects of the electric and magnetic components of a Loran-C type waveform on three biological systems. Neurochemical assays of brain neurotransmitter substances indicate field-related changes in the levels of norepinephrine in the hippocampus and in the number and affinities of the opiate receptors in the cortex. Behavioral data showed that rats trained in an operant conditioning task did not reliably detect any electric field strength used. Biochemical data demonstrated that the Loran-C field did not modify basal ornithine decarboxylase activity in primary bone cells.

  5. Generalized electromagnetic fields in a chiral medium

    NASA Astrophysics Data System (ADS)

    Bisht, P. S.; Singh, Jivan; Negi, O. P. S.

    2007-09-01

    The time-dependent Dirac-Maxwell's equations in the presence of electric and magnetic sources are reformulated in a chiral medium, and the solutions for the classical problem are obtained in a unique, simple and consistent manner. The quaternion reformulation of generalized electromagnetic fields in the chiral medium has also been discussed in a compact, simple and consistent manner.

  6. Gene transcription and electromagnetic fields

    SciTech Connect

    Henderson, A.S.

    1992-01-01

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  7. LEM—electromagnetic fields measurement laboratory

    NASA Astrophysics Data System (ADS)

    Annino, A.; Falciglia, F.; Musumeci, F.; Oliveri, M.; Privitera, G.; Triglia, A.

    2000-04-01

    The widespread presence of electromagnetic waves and the relative problems regarding them have favored the constitution of the LEM at the DMFCI in Catania University, where competence has been developing in this sector for about 10 years. Full operativeness has been reached as far as the electromagnetic field measurements in anthropized environments are concerned. Other research will be undertaken as soon as further funds are available. Some problems connected with the perfecting of measurements instruments and the results of emission measurements of cellular telephones are presented.

  8. Relativistic diffusive motion in random electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2011-08-01

    We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Jüttner equilibrium at the inverse temperature β-1 = mc2. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).

  9. Electromagnetic wave scattering by an external field

    NASA Astrophysics Data System (ADS)

    Sannikov, S. S.

    1995-08-01

    The quantum electrodynamics of bilocal fields is used to calculate the triangular Feynman diagrams describing the elastic scattering of a classical electromagnetic wave by an external Coulomb field. The total contribution of the diagrams is nonzero because of the violation of both the Furry theorem (CP or T symmetries) and the Ward identities. The cross section for this scattering process is found for low and high energies. A comparison with Compton scattering and Euler—Heisenberg scattering is given.

  10. Visualization of circuit card electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Zwillinger, Daniel

    1995-01-01

    Circuit boards are used in nearly every electrical appliance. Most board failures cause differing currents in the circuit board traces and components. This causes the circuit board to radiate a differing electromagnetic field. Imaging this radiated field, which is equivalent to measuring the field, could be used for error detection. Using estimates of the fields radiated by a low power digital circuit board, properties of known materials, and available equipment, we determined how well the following technologies could be used to visualize circuit board electromagnetic fields (prioritized by promise): electrooptical techniques, magnetooptical techniques, piezoelectric techniques, thermal techniques, and electrodynamic force technique. We have determined that sensors using the electrooptical effect (Pockels effect) appear to be sufficiently sensitive for use in a circuit board imaging system. Sensors utilizing the magnetooptical effect may also be adequate for this purpose, when using research materials. These sensors appear to be capable of achieving direct broadband measurements. We also reviewed existing electromagnetic field sensors. Only one of the sensors (recently patented) was specifically designed for circuit board measurements.

  11. Subwavelength resonant antennas enhancing electromagnetic energy harvesting

    NASA Astrophysics Data System (ADS)

    Oumbe Tekam, Gabin; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-04-01

    In this work, an electromagnetic energy harvester operating at microwave frequencies is designed based on a cut- wire metasurface. This metamaterial is known to contain a quasistatic electric dipole resonator leading to a strong resonant electric response when illuminated by electromagnetic fields.1 Starting from an equivalent electrical circuit, we analytically design the parameters of the system to tune the resonance frequency of the harvester at the desired frequency band. Subsequently, we compare these results with numerical simulations, which have been obtained using finite elements numerical simulations. Finally, we optimize the design by investigating the best arrangement for energy harvesting by coupling in parallel and in series many single layers of cut-wire metasurfaces. We also discuss the implementation of different geometries and sizes of the cut-wire metasurface for achieving different center frequencies and bandwidths.

  12. Radiofrequency Electromagnetic Field Map of Timisoara

    NASA Astrophysics Data System (ADS)

    Stefu, N.; Solyom, I.; Arama, A.

    2015-12-01

    There are many electromagnetic field (EMF) sources nowadays acting simultaneously, especially in urban areas, making the theoretical estimation of electromagnetic power at ground level very difficult. This paper reports on EMF maps built with measurements collected in Timisoara, at various radiofrequencies. A grid of 15×15 squares was built (approximate resolution 400m x 400m) and measurements of the average and maximum values of the electric field E, magnetic field H and total power density S at 0.9, 1.8 and 2.4 GHz were collected in every node of the grid. Positions of the nodes in terms of latitude and longitude were also collected. Maps were built presenting the spatial distribution of the measured quantities over Timisoara. Potential influences of EMF on public health are discussed.

  13. Electromagnetic field induced biological effects in humans.

    PubMed

    Kaszuba-Zwolińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  14. Systemic Effects of Electromagnetic Fields in Patients with Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Cañedo-Dorantes, L.; Valle, L.; Uruchurtu, E.; Medel, A.; García-Mayen, F.; Serrano-Luna, G.

    2003-09-01

    Healing of acute myocardial infarction (AMI) is associated with inflammatory response, which promotes healing and scar formation. Activation of a local inflammatory response in patients with sequel of AMI could have an important role to enhance angiogenesis and regeneration of hibernating myocardial tissue. Chronic arterial leg ulcers have a similar etiology, and healing has been promoted by exposure to extremely low frequency electromagnetic fields (ELF). We report the evolution of three AMI patients with sequel of AMI that were exposed to ELF.

  15. [Safety and electromagnetic compatibility in sanitary field].

    PubMed

    Bini, M; Feroldi, P; Ferri, C; Ignesti, A; Olmi, R; Priori, S; Riminesi, C; Tobia, L

    2012-01-01

    In sanitary field and especially in a hospital, multiple sources of non ionizing radiation are used for diagnostic and therapeutic aims. In sanitary sector both workers and users are present at the same time, and in some cases general population could need higher protection than workers in relationship to the exposition to electromagnetic fields. In order to protect health and safety of patients, general population and workers of hospitals and with the aim to identify, analyze, evaluate and study its level of significance, electrical, magnetic and electromagnetic sources Research Italian project Si.C.E.O. (Safety And Electromagnetic Compatibility In Sanitary Field) was instituted. Target of our research project was to deepen risk of exposition elements with analysis of outdoor (e.g. power lines, transmission cabinets) and indoor (e.g. equipment for physical therapy) sources, located in sanitary structures and to verify the level exposition of workers and common population end the respect of specific regulation, and finally to define technical and organizational measures really useful for protection and reduction of risk.

  16. Hamiltonian dynamics of the parametrized electromagnetic field

    NASA Astrophysics Data System (ADS)

    Barbero G, J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.

    2016-06-01

    We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.

  17. On electromagnetic field problems in inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Mohsen, A.

    1973-01-01

    Analysis of electromagnetic fields in inhomogeneous media is of practical interest in general scattering and propagation problems and in the study of lenses. For certain types of inhomogeneities, the fields may be represented in terms of two scalars. In a general orthogonal coordinate system, these potentials satisfy second order differential equations. Exact solutions of these equations are known only for a few particular cases and in general, an approximate or numerical technique must be employed. The present work reviews and generalizes some of the main methods of attack of the problem. The results are presented in a form appropriate for numerical computation.

  18. Electromagnetic-field exposure and cancer.

    PubMed

    Brown, H D; Chattopadhyay, S K

    1988-05-01

    Electromagnetic fields are a ubiquitous part of man's environment. Natural sources of energy have been present, and possibly have contributed to the processes of the evolution of living forms. In very recent time, however, exploitation of the properties of the electromagnetic spectrum, has added variables in intensity, frequency, modulation frequency, and alterations in contributions of electrical and magnetic components. Biological impact has been little studied and poorly defined. Animal carcinogenesis studies and human epidemiological data indicate that exposure to nonionizing radiation can play a role in cancer causation. Numerous effects at the physiological and biochemical level have been reported; many are of such a nature that a relationship to the causation of neoplastic transformation can rationally be hypothesized. Many bioeffects of electromagnetic fields can be adequately and economically explained in terms of heat effects alone. However, observations of frequency-, pulse form or modulation-, and intensity-specificity as well as effects opposite to that known for temperature-rise, imply direct interaction of radiant energy with biomolecules. The possibility of such direct interaction has been shown in quantum mechanical models.

  19. Bianchi class B spacetimes with electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kei

    2012-02-01

    We carry out a thorough analysis on a class of cosmological space-times which admit three spacelike Killing vectors of Bianchi class B and contain electromagnetic fields. Using dynamical system analysis, we show that a family of electro-vacuum plane-wave solutions of the Einstein-Maxwell equations is the stable attractor for expanding universes. Phase dynamics are investigated in detail for particular symmetric models. We integrate the system exactly for some special cases to confirm the qualitative features. Some of the obtained solutions have not been presented previously to the best of our knowledge. Finally, based on those analyses, we discuss the relation between those homogeneous models and perturbations of open Friedmann-Lemaitre-Robertson-Walker universes. We argue that the electro-vacuum plane-wave modes correspond to a certain long-wavelength limit of electromagnetic perturbations.

  20. Vacuum birefringence in strong inhomogeneous electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Gies, Holger; Reuter, Maria; Zepf, Matt

    2015-10-01

    Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of nonlinear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generation of FEL/high-field laser facilities.

  1. Radiation (absorbing) boundary conditions for electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Bevensee, R. M.; Pennock, S. T.

    1987-01-01

    An important problem in finite difference or finite element computation of the electromagnetic field obeying the space-time Maxwell equations with self-consistent sources is that of truncating the outer numerical boundaries properly to avoid spurious numerical reflection. Methods for extrapolating properly the fields just beyond a numerical boundary in free space have been treated by a number of workers. This report avoids plane wave assumptions and derives boundary conditions more directly related to the source distribution within the region. The Panofsky-Phillips' relations, which enable one to extrapolate conveniently the vector field components parallel and perpendicular to a radial from the coordinate origin chosen near the center of the charge-current distribution are used to describe the space-time fields.

  2. Electromagnetic fields on a quantum scale. I.

    PubMed

    Grimes, Dale M; Grimes, Craig A

    2002-10-01

    This is the first in a series of two articles, the second of which provides an exact electro-magnetic field description of photon emission, absorption, and radiation pattern. Photon energy exchanges are analyzed and shown to be the triggered, regenerative response of a non-local eigenstate electron. This first article presents a model-based, hidden variable analysis of quantum theory that provides the statistical nature of wave functions. The analysis uses the equations of classical electro-magnetism and conservation of energy while modeling an eigenstate electron as a nonlocal entity. Essential to the analysis are physical properties that were discovered and analyzed only after the historical interpretation of quantum mechanics was established: electron non-locality and the standing electro-magnetic energy that accompanies and encompasses an active, electrically small volume. The standing energy produces a driving radiation reaction force that, under certain circumstances, is many orders of magnitude larger than currently accepted values. These properties provide a sufficient basis for the Schrödinger equation as a descriptor of non-relativistic eigenstate electrons in or near equilibrium. The uncertainty principle follows, as does the exclusion principle. The analysis leads to atomic stability and causality in the sense that the status of physical phenomena at any instant specifies the status an instant later.

  3. Translation operator for finite dmensional electromagnetic fields

    SciTech Connect

    Howard, A.Q. Jr.

    1981-04-01

    Computation of electromagnetic fields in particular applications is usually accompanied by the adhoc assumption that the field contains a finite number of degrees of freedom. Herein, this assumption is made at the outset. It is shown that if an annular region between two closed surfaces contains no sources or sinks and is isotropic, lossless and homogeneous, a unique translation operator can be defined algebraically. Conservation of energy defines the translation operator T to within an arbitrary unitary transformation. The conditions of causality, unitarity and energy conservation are shown to uniquely determine T. Both scalar and vector fields are treated. In both of these cases, frequency and time domain transforms are computed. The transform T is compared with the analagous one as derived from the time domain Stratton-Chu Formulation. The application to a radiation condition boundary constraint on finite difference and finite element computations is discussed.

  4. Near-field radiofrequency electromagnetic exposure assessment.

    PubMed

    Rubtsova, Nina; Perov, Sergey; Belaya, Olga; Kuster, Niels; Balzano, Quirino

    2015-09-01

    Personal wireless telecommunication devices, such as radiofrequency (RF) electromagnetic field (EMF) sources operated in vicinity of human body, have possible adverse health effects. Therefore, the correct EMF assessment is necessary in their near field. According to international near-field measurement criteria, the specific absorption rate (SAR) is used for absorbed energy distribution assessment in tissue simulating liquid phantoms. The aim of this investigation is to validate the relationship between the H-field of incident EMF and absorbed energy in phantoms. Three typical wireless telecommunication system frequencies are considered (900, 1800 and 2450 MHz). The EMF source at each frequency is an appropriate half-wave dipole antenna and the absorbing medium is a flat phantom filled with the suitable tissue simulating liquid. Two methods for SAR estimation have been used: standard procedure based on E-field measured in tissue simulating medium and a proposed evaluation by measuring the incident H-field. Compared SAR estimations were performed for various distances between sources and phantom. Also, these research data were compared with simulation results, obtained by using finite-difference time-domain method. The acquired data help to determine the source near-field space characterized by the smallest deviation between SAR estimation methods. So, this region near the RF source is suitable for correct RF energy absorption assessment using the magnetic component of the RF fields. PMID:26444190

  5. Near-field radiofrequency electromagnetic exposure assessment.

    PubMed

    Rubtsova, Nina; Perov, Sergey; Belaya, Olga; Kuster, Niels; Balzano, Quirino

    2015-09-01

    Personal wireless telecommunication devices, such as radiofrequency (RF) electromagnetic field (EMF) sources operated in vicinity of human body, have possible adverse health effects. Therefore, the correct EMF assessment is necessary in their near field. According to international near-field measurement criteria, the specific absorption rate (SAR) is used for absorbed energy distribution assessment in tissue simulating liquid phantoms. The aim of this investigation is to validate the relationship between the H-field of incident EMF and absorbed energy in phantoms. Three typical wireless telecommunication system frequencies are considered (900, 1800 and 2450 MHz). The EMF source at each frequency is an appropriate half-wave dipole antenna and the absorbing medium is a flat phantom filled with the suitable tissue simulating liquid. Two methods for SAR estimation have been used: standard procedure based on E-field measured in tissue simulating medium and a proposed evaluation by measuring the incident H-field. Compared SAR estimations were performed for various distances between sources and phantom. Also, these research data were compared with simulation results, obtained by using finite-difference time-domain method. The acquired data help to determine the source near-field space characterized by the smallest deviation between SAR estimation methods. So, this region near the RF source is suitable for correct RF energy absorption assessment using the magnetic component of the RF fields.

  6. Enhancement of Cortical Network Activity in vitro and Promotion of GABAergic Neurogenesis by Stimulation with an Electromagnetic Field with a 150 MHz Carrier Wave Pulsed with an Alternating 10 and 16 Hz Modulation.

    PubMed

    Gramowski-Voß, Alexandra; Schwertle, Hans-Joachim; Pielka, Anna-Maria; Schultz, Luise; Steder, Anne; Jügelt, Konstantin; Axmann, Jürgen; Pries, Wolfgang

    2015-01-01

    In recent years, various stimuli were identified capable of enhancing neurogenesis, a process which is dysfunctional in the senescent brain and in neurodegenerative and certain neuropsychiatric diseases. Applications of electromagnetic fields to brain tissue have been shown to affect cellular properties and their importance for therapies in medicine is recognized. In this study, differentiating murine cortical networks on multiwell microelectrode arrays were repeatedly exposed to an extremely low-electromagnetic field (ELEMF) with alternating 10 and 16 Hz frequencies piggy backed onto a 150 MHz carrier frequency. The ELEMF exposure stimulated the electrical network activity and intensified the structure of bursts. Further, the exposure to electromagnetic fields within the first 28 days in vitro of the differentiation of the network activity induced also reorganization within the burst structure. This effect was already most pronounced at 14 days in vitro after 10 days of exposure. Overall, the development of cortical activity under these conditions was accelerated. These functional electrophysiological changes were accompanied by morphological ones. The percentage of neurons in the neuron glia co-culture was increased without affecting the total number of cells, indicating an enhancement of neurogenesis. The ELEMF exposure selectively promoted the proliferation of a particular population of neurons, evidenced by the increased proportion of GABAergic neurons. The results support the initial hypothesis that this kind of ELEMF stimulation could be a treatment option for specific indications with promising potential for CNS applications, especially for degenerative diseases, such as Alzheimer's disease and other dementias.

  7. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  8. Plant Responses to High Frequency Electromagnetic Fields.

    PubMed

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  9. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  10. Truesdell invariance in relativistic electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Walwadkar, B. B.; Virkar, K. V.

    1984-01-01

    The Truesdell derivative of a contravariant tensor fieldX ab is defined with respect to a null congruencel a analogous to the Truesdell stress rate in classical continuum mechanics. The dynamical consequences of the Truesdell invariance with respect to a timelike vectoru a of the stress-energy tensor characterizing a charged perfect fluid with null conductivity are the conservation of pressure (p), charged density (e) an expansion-free flow, constancy of the Maxwell scalars, and vanishing spin coefficientsα+¯β = ¯σ - λ = τ = 0 (assuming freedom conditionsk = λ = ɛ ψ + ¯γ = 0). The electromagnetic energy momentum tensor for the special subcases of Ruse-Synge classification for typesA andB are described in terms of the spin coefficients introduced by Newman-Penrose.

  11. Synergistic health effects between chemical pollutants and electromagnetic fields.

    PubMed

    Ledoigt, Gérard; Sta, Chaima; Goujon, Eric; Souguir, Dalila; El Ferjani, Ezzeddine

    2015-01-01

    Humans and ecosystems are exposed to highly variable and unknown cocktail of chemicals and radiations. Although individual chemicals are typically present at low concentrations, they can interact with each other resulting in additive or potentially synergistic mixture effects. This was also observed with products obtained by radiation actions such as sunlight or electromagnetic fields that can change the effects of chemicals, such as pesticides, and metal trace elements on health. Concomitant presence of various pesticides and their transformation products adds further complexity to chemical risk assessment since chronic inflammation is a key step for cancer promotion. Degradation of a parent molecule can produce several by-products which can trigger various toxic effects with different impacts on health and environment. For instance, the cocktail of sunlight irradiated sulcotrione pesticide has a greater cytotoxicity and genotoxicity than parent molecule, sulcotrione, and questions about the impact of photochemical process on environment. Adjuvants were shown to modify the biological features of pesticides. Addition of other elements, metals or biological products, can differently enhance cell toxicity of pesticides or electromagnetic radiations suggesting a synergy in living organisms. Electromagnetic fields spreading, pesticide by-products and mixtures monitoring become greater for environmental contamination evaluations.

  12. Synergistic health effects between chemical pollutants and electromagnetic fields.

    PubMed

    Ledoigt, Gérard; Sta, Chaima; Goujon, Eric; Souguir, Dalila; El Ferjani, Ezzeddine

    2015-01-01

    Humans and ecosystems are exposed to highly variable and unknown cocktail of chemicals and radiations. Although individual chemicals are typically present at low concentrations, they can interact with each other resulting in additive or potentially synergistic mixture effects. This was also observed with products obtained by radiation actions such as sunlight or electromagnetic fields that can change the effects of chemicals, such as pesticides, and metal trace elements on health. Concomitant presence of various pesticides and their transformation products adds further complexity to chemical risk assessment since chronic inflammation is a key step for cancer promotion. Degradation of a parent molecule can produce several by-products which can trigger various toxic effects with different impacts on health and environment. For instance, the cocktail of sunlight irradiated sulcotrione pesticide has a greater cytotoxicity and genotoxicity than parent molecule, sulcotrione, and questions about the impact of photochemical process on environment. Adjuvants were shown to modify the biological features of pesticides. Addition of other elements, metals or biological products, can differently enhance cell toxicity of pesticides or electromagnetic radiations suggesting a synergy in living organisms. Electromagnetic fields spreading, pesticide by-products and mixtures monitoring become greater for environmental contamination evaluations. PMID:26598938

  13. Inelastic deformation of conductive bodies in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Altenbach, Holm; Morachkovsky, Oleg; Naumenko, Konstantin; Lavinsky, Denis

    2015-12-01

    Inelastic deformation of conductive bodies under the action of electromagnetic fields is analyzed. Governing equations for non-stationary electromagnetic field propagation and elastic-plastic deformation are presented. The variational principle of minimum of the total energy is applied to formulate the numerical solution procedure by the finite element method. With the proposed method, distributions of vector characteristics of the electromagnetic field and tensor characteristics of the deformation process are illustrated for the inductor-workpiece system within a realistic electromagnetic forming process.

  14. Inelastic deformation of conductive bodies in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Altenbach, Holm; Morachkovsky, Oleg; Naumenko, Konstantin; Lavinsky, Denis

    2016-09-01

    Inelastic deformation of conductive bodies under the action of electromagnetic fields is analyzed. Governing equations for non-stationary electromagnetic field propagation and elastic-plastic deformation are presented. The variational principle of minimum of the total energy is applied to formulate the numerical solution procedure by the finite element method. With the proposed method, distributions of vector characteristics of the electromagnetic field and tensor characteristics of the deformation process are illustrated for the inductor-workpiece system within a realistic electromagnetic forming process.

  15. Mortality in workers exposed to electromagnetic fields

    SciTech Connect

    Milham, S. Jr.

    1985-10-01

    In an occupational mortality analysis of 486,000 adult male death records filed in Washington State in the years 1950-1982, leukemia and the non-Hodgkin's lymphomas show increased proportionate mortality ratios (PMRs) in workers employed in occupations with intuitive exposures to electromagnetic fields. Nine occupations of 219 were considered to have electric or magnetic field exposures. These were: electrical and electronic technicians, radio and telegraph operators, radio and television repairmen, telephone and power linemen, power station operators, welders, aluminum reduction workers, motion picture projectionists and electricians. There were 12,714 total deaths in these occupations. Eight of the nine occupations had PMR increases for leukemia (International Classification of Diseases (ICD), seventh revision 204) and seven of the nine occupations had PMR increases for the other lymphoma category (7th ICD 200.2, 202). The highest PMRs were seen for acute leukemia: (67 deaths observed, 41 deaths expected; PMR 162), and in the other lymphomas (51 deaths observed, 31 deaths expected; PMR 164). No increase in mortality was seen for Hodgkin's disease or multiple myeloma. These findings offer some support for the hypothesis that electric and magnetic fields may be carcinogenic.

  16. Electromagnetic polarizabilities: Lattice QCD in background fields

    SciTech Connect

    W. Detmold, B.C. Tiburzi, A. Walker-Loud

    2012-04-01

    Chiral perturbation theory makes definitive predictions for the extrinsic behavior of hadrons in external electric and magnetic fields. Near the chiral limit, the electric and magnetic polarizabilities of pions, kaons, and nucleons are determined in terms of a few well-known parameters. In this limit, hadrons become quantum mechanically diffuse as polarizabilities scale with the inverse square-root of the quark mass. In some cases, however, such predictions from chiral perturbation theory have not compared well with experimental data. Ultimately we must turn to first principles numerical simulations of QCD to determine properties of hadrons, and confront the predictions of chiral perturbation theory. To address the electromagnetic polarizabilities, we utilize the background field technique. Restricting our attention to calculations in background electric fields, we demonstrate new techniques to determine electric polarizabilities and baryon magnetic moments for both charged and neutral states. As we can study the quark mass dependence of observables with lattice QCD, the lattice will provide a crucial test of our understanding of low-energy QCD, which will be timely in light of ongoing experiments, such as at COMPASS and HI gamma S.

  17. Analysis of electromagnetic enhancement by a groove doublet in gold substrate.

    PubMed

    Zhang, Siwen; Liu, Haitao; Mu, Guoguang

    2012-12-01

    A semianalytical Fabry-Perot model is presented to investigate the electromagnetic enhancement by double grooves in gold substrate. The influence of hybrid wave (HW) propagating along the metal surface on field enhancement is explored systematically with a HW model. Simulation results imply that the hybrid generated by one groove can affect the mode fields in the other groove after propagating along the metallic surface. Giant electromagnetic field intensity at resonance condition is found for the groove distance of 0.6λ with the contribution of surface waves, which is nearly independent of the incidence wavelength and groove width.

  18. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  19. Surface-enhanced Raman spectroscopy of double-shell hollow nanoparticles: electromagnetic and chemical enhancements.

    PubMed

    Mahmoud, Mahmoud A

    2013-05-28

    Enhancements of the Raman signal by the newly prepared gold-palladium and gold-platinum double-shell hollow nanoparticles were examined and compared with those using gold nanocages (AuNCs). The surface-enhanced Raman spectra (SERS) of thiophenol adsorbed on the surface of AuNCs assembled into a Langmuir-Blodgett monolayer were 10-fold stronger than AuNCs with an inner Pt or Pd shell. The chemical and electromagnetic enhancement mechanisms for these hollow nanoparticles were further proved by comparing the Raman enhancement of nitrothiophenol and nitrotoulene. Nitrothiophenol binds to the surface of the nanoparticles by covalent interaction, and Raman enhancement by both the two mechanisms is possible, while nitrotoulene does not form any chemical bond with the surface of the nanoparticles and hence no chemical enhancement is expected. Based on discrete dipole approximation (DDA) calculations and the experimental SERS results, AuNCs introduced a high electromagnetic enhancement, while the nanocages with inner Pt or Pd shell have a strong chemical enhancement. The optical measurements of the localized surface plasmon resonance (LSPR) of the nanocages with an outer Au shell and an inner Pt or Pd shell were found, experimentally and theoretically, to be broad compared with AuNCs. The possible reason could be due to the decrease of the coherence time of Au oscillated free electrons and fast damping of the plasmon energy. This agreed well with the fact that a Pt or Pd inner nanoshell decreases the electromagnetic field of the outer Au nanoshell while increasing the SERS chemical enhancement.

  20. Influence of magnetic fields on calcium salts crystal formation: an explanation of the 'pulsed electromagnetic field' technique for bone healing.

    PubMed

    Madroñero, A

    1990-09-01

    In the search for a mechanism by means of which a magnetic field deparalyses non-unions and enhances bone tissue formation, the influence of continuous magnetic fields on the formation of calcium phosphate crystal seeds has been investigated. From this perspective, an explanation is given of a working mode in conventional equipment for pulsed electromagnetic field treatment; this is compared with multifunction equipment.

  1. Assessment of Electromagnetic Fields at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ficklen, Carter B.

    1995-01-01

    This report presents the results of an assessment of ElectroMagnetic Fields (EMF) completed at NASA Langley Research Center as part of the Langley Aerospace Research Summer Scholars Program. This project was performed to determine levels of electromagnetic fields, determine the significance of the levels present, and determine a plan to reduce electromagnetic field exposure, if necessary. This report also describes the properties of electromagnetic fields and their interaction with humans. The results of three major occupational epidemiological studies is presented to determine risks posed to humans by EMF exposure. The data for this report came from peer-reviewed journal articles and government publications pertaining to the health effects of electromagnetic fields.

  2. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury.

  3. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    PubMed

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  4. Overview on the standardization in the field of electromagnetic compatibility

    NASA Astrophysics Data System (ADS)

    Goldberg, Georges

    1989-04-01

    Standardization in the domain of electromagnetic compatibility (EMC) is discussed, with specific reference to the standards of the International Electrotechnical Commission, the Comite International Special des Perturbations Radioelectriques, and the Comite Europeen de Normalisation Electrotechnique. EMC fields considered include radiocommunications, telecommunications, biological effects, and data transmission. Standards are presented for such electromagnetic disturbances as low-frequency, high-frequency, conduction, and radiation phenomena.

  5. Algebraic structure of general electromagnetic fields and energy flow

    SciTech Connect

    Hacyan, Shahen

    2011-08-15

    Highlights: > Algebraic structure of general electromagnetic fields in stationary spacetime. > Eigenvalues and eigenvectors of the electomagnetic field tensor. > Energy-momentum in terms of eigenvectors and Killing vector. > Explicit form of reference frame with vanishing Poynting vector. > Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.

  6. On Projecting Discretized Electromagnetic Fields with Unstructured Grids

    SciTech Connect

    Lee, Lie-Quan; Candel, Arno; Kabel, Andrea; Li, Zenghai; /SLAC

    2008-08-13

    A new method for projecting discretized electromagnetic fields on one unstructured grid to another grid is presented in this paper. Two examples are used for studying the errors of different projection methods. The analysis shows that the new method is very effective on balancing both the error of the electric field and that of the magnetic field (or curl of the electric field).

  7. Effects of Electromagnetic Fields on Fish and Invertebrates

    SciTech Connect

    Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno

    2010-10-13

    In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.

  8. Probing the electromagnetic field distribution within a metallic nanodisk.

    PubMed

    Meneses-Rodríguez, David; Ferreiro-Vila, Elías; Prieto, Patricia; Anguita, José; González, María U; García-Martín, José M; Cebollada, Alfonso; García-Martín, Antonio; Armelles, Gaspar

    2011-12-01

    A Co nanolayer is used as a local probe to evaluate the vertical inhomogeneous distribution of the electromagnetic (EM) field within a resonant metallic nanodisk. Taking advantage of the direct relation between the magneto-optical activity and the electromagnetic field intensity in the Co layer, it is shown that the nonuniform EM distribution within the nanodisk under plasmon resonant conditions has maximum values close to the upper and lower flat faces, and a minimum value in the middle.

  9. Electromagnetic fields and potentials generated by massless charged particles

    SciTech Connect

    Azzurli, Francesco; Lechner, Kurt

    2014-10-15

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string. - Highlights: • First exact solution of Maxwell’s equations for massless charges in arbitrary motion. • Explicit expressions of electromagnetic fields and potentials. • Derivations are rigorous and based on distribution theory. • The form of the field depends heavily on whether the motion is bounded or unbounded. • The electromagnetic field contains unexpected Dirac-delta-function contributions.

  10. Role of hybrid wave in electromagnetic enhancement by a metallic groove doublet.

    PubMed

    Zhang, Siwen; Liu, Haitao; Sun, Xiaodong

    2014-06-01

    We provide an elaborate investigation on the role of a hybrid wave (HW) in electromagnetic enhancement by a groove doublet in metallic substrate. A simple HW model is built to explore the detailed effect of HW on electromagnetic enhancement. The effective range of electromagnetic enhancement is obtained within 0.1λ away from a metal surface. The excitation of HW by a single groove has a gentle growth (from 0.03 to 0.26) as the groove gets wide, which implies that the emerging field of HW launched by a single groove is quite weak for narrow ones. HW, being like an "energy porter," takes away partial energy from the Fabry-Perot resonance, which will be further coupled into the fundamental mode in the other groove after traveling along the metal surface. Our analysis reveals a compensation of electromagnetic enhancement for wide grooves attributed to the appearance of HW. The dependence of HW and electromagnetic enhancement on the noble metal type is also discussed.

  11. Induced electromagnetic field by seismic waves in Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Gao, Yongxin; Chen, Xiaofei; Hu, Hengshan; Wen, Jian; Tang, Ji; Fang, Guoqing

    2014-07-01

    Studied in this article are the properties of the electromagnetic (EM) fields generated by an earthquake due to the motional induction effect, which arises from the motion of the conducting crust across the Earth's magnetic field. By solving the governing equations that couple the elastodynamic equations with Maxwell equations, we derive the seismoelectromagnetic wavefields excited by a single-point force and a double-couple source in a full space. Two types of EM disturbances can be generated, i.e., the coseismic EM field accompanying the seismic wave and the independently propagating EM wave which arrives much earlier than the seismic wave. Simulation of an Mw6.1 earthquake shows that at a receiving location where the seismic acceleration is on the order of 0.1 m/s2, the coseismic electric and magnetic fields are on the orders of 1 μV/m and 0.1 nT, respectively, agreeing with the EM data observed in 2008 Mw6.1 Qingchuan earthquake, China, and indicating that the motional induction effect is effective enough to generate observable EM signal. We also simulated the EM signals observed by Haines et al. which were called the Lorentz fields and cannot be explained by the electrokinetic effect. The result shows that the EM wave generated by a horizontal force can explain the data well, suggesting that the motional induction effect is responsible for the Lorentz fields. The motional induction effect is compared with the electrokinetic effect, showing the overall conclusion that the former dominates the mechanoelectric conversion under low-frequency and high-conductivity conditions while the latter dominates under high-frequency and low-conductivity conditions.

  12. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots

    PubMed Central

    Alonso-González, P.; Albella, P.; Schnell, M.; Chen, J.; Huth, F.; García-Etxarri, A.; Casanova, F.; Golmar, F.; Arzubiaga, L.; Hueso, L.E.; Aizpurua, J.; Hillenbrand, R.

    2012-01-01

    Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to trace experimentally. Here we study elastically scattered light from an individual object located in the well-defined hot spot of single antennas, as a new approach to resolve the role of the antenna in the scattering process. We provide experimental evidence that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering. We also measure the phase shift of the scattered light, which provides a novel and unambiguous fingerprint of surface-enhanced light scattering. PMID:22353715

  13. Comments about the electromagnetic field in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    McLerran, L.; Skokov, V.

    2014-09-01

    In this article we discuss the properties of electromagnetic fields in heavy-ion collisions and consequences for observables. We address quantitatively the issue of the magnetic field lifetime in a collision including the electric and chiral magnetic conductivities. We show that for reasonable parameters, the magnetic field created by spectators in a collision is not modified by the presence of matter.

  14. Nonlinear electromagnetic fields as a source of universe acceleration

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2016-04-01

    A model of nonlinear electromagnetic fields with a dimensional parameter β is proposed. From PVLAS experiment the bound on the parameter β was obtained. Electromagnetic fields are coupled with the gravitation field and we show that the universe accelerates due to nonlinear electromagnetic fields. The magnetic universe is considered and the stochastic magnetic field is a background. After inflation the universe decelerates and approaches to the radiation era. The range of the scale factor, when the causality of the model and a classical stability take place, was obtained. The spectral index, the tensor-to-scalar ratio, and the running of the spectral index were estimated which are in approximate agreement with the Planck, WMAP, and BICEP2 data.

  15. Electromagnetic waves in optical fibres in a magnetic field

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Burdanova, M. G.

    2016-03-01

    A new method is reported of recording the secondary radiation of luminescent substances based on the use of capillary fibres of great length. Theoretical analysis of the dispersion curves of electromagnetic radiation in capillary fibres doped with erbium ions Er3+ has been established. The Lorentz model is used for describing the dispersion properties of electromagnetic waves in a homogeneous medium doped with rare-earth ions. The dispersion dependencies of polariton and axion-polariton waves in erbium nitrate hydrate are determined on the basis of the model of the interaction between electromagnetic waves and the resonance electronic states of erbium ions in the absence and presence of a magnetic field.

  16. Seismo-electromagnetic thin-bed responses: Natural signal enhancements?

    NASA Astrophysics Data System (ADS)

    Grobbe, N.; Slob, E. C.

    2016-04-01

    We study if nature can help us overcome the very low signal-to-noise ratio of seismo-electromagnetic converted fields by investigating the effects of thin-bed geological structures on the seismo-electromagnetic signal. To investigate the effects of bed thinning on the seismo-electromagnetic interference patterns, we numerically simulate seismo-electromagnetic wave propagation through horizontally layered media with different amounts and thicknesses of thin beds. We distinguish two limits of bed thickness. Below the upper limit, the package of thin beds starts acting like an "effective" medium. Below the lower limit, further thinning does not affect the seismo-electromagnetic interface response signal strength anymore. We demonstrate seismo-electromagnetic sensitivity to changes in medium parameters on a spatial scale much smaller than the seismic resolution. Increasing amounts of thin beds can cause the interface response signal strength to increase or decrease. Whether constructive or destructive interference occurs seems to be dependent on the seismo-electromagnetic coupling coefficient contrasts. When the combined result of the contrast, between upper half-space and package of thin beds and the internal thin-bed contrast, is positive, constructive interference occurs. Destructive interference occurs when the combined contrast is negative. Maximum amplitude tuning occurs for thicknesses of thin-bed packages similar to the dominant pressure and shear wavelengths. Artifacts due to model periodicity are excluded by comparing periodic media with random models. By simulating moving oil/water contacts during production, where the oil layer is gradually being thinned, seismo-electromagnetic signals are proven very sensitive to oil/water contacts. An oil layer with a thickness of <1% of the dominant shear wavelength is still recognized.

  17. Suppression and control of leakage field in electromagnetic helical microwiggler

    SciTech Connect

    Ohigashi, N.; Tsunawaki, Y.; Imasaki, K.

    1995-12-31

    Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.

  18. Analytical model for electromagnetic cascades in rotating electric field

    SciTech Connect

    Nerush, E. N.; Bashmakov, V. F.; Kostyukov, I. Yu.

    2011-08-15

    Electromagnetic cascades attract a lot of attention as an important quantum electrodynamics effect that will reveal itself in various electromagnetic field configurations at ultrahigh intensities. We study cascade dynamics in rotating electric field analytically and numerically. The kinetic equations for the electron-positron plasma and gamma-quanta are formulated. The scaling laws are derived and analyzed. For the cascades arising far above the threshold the dependence of the cascade parameters on the field frequency is derived. The spectra of high-energy cascade particles are calculated. The analytical results are verified by numerical simulations.

  19. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    SciTech Connect

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-15

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  20. [Development of innovative methods of electromagnetic field evaluation for portable radio-station].

    PubMed

    Rubtsova, N B; Perov, S Iu; Bogacheva, E V; Kuster, N

    2013-01-01

    The results of portable radio-station "Radiy-301" electromagnetic fields (EMF) emission measurement and specific absorption rate data evaluation has shown that workers' exposure EMF levels may elevate hygienic norms and hereupon can be health risk factor. Possible way of portable radio-station EMF dosimetry enhancement by means of domestic and international approaches harmonization is considered.

  1. External Field QED on Cauchy Surfaces for Varying Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Deckert, D.-A.; Merkl, F.

    2016-08-01

    The Shale-Stinespring Theorem (J Math Mech 14:315-322, 1965) together with Ruijsenaar's criterion (J Math Phys 18(4):720-737, 1977) provide a necessary and sufficient condition for the implementability of the evolution of external field quantum electrodynamics between constant-time hyperplanes on standard Fock space. The assertion states that an implementation is possible if and only if the spatial components of the external electromagnetic four-vector potential {A_μ} are zero. We generalize this result to smooth, space-like Cauchy surfaces and, for general {A_μ}, show how the second-quantized Dirac evolution can always be implemented as a map between varying Fock spaces. Furthermore, we give equivalence classes of polarizations, including an explicit representative, that give rise to those admissible Fock spaces. We prove that the polarization classes only depend on the tangential components of {A_μ} w.r.t. the particular Cauchy surface, and show that they behave naturally under Lorentz and gauge transformations.

  2. Health Effects of Electromagnetic Fields: A Review of Literature.

    ERIC Educational Resources Information Center

    White, George L.; And Others

    1995-01-01

    Current evidence suggests that the effects of electromagnetic fields (EMF) disturb cell homeostasis at very low intensities by influencing discrete intracellular magnetic fields. The article reviews current research about the health effects of EMF, examining historical implications, childhood studies, adult studies, and popular press reports, and…

  3. [Effect of electromagnetic fields on movement of microorganisms].

    PubMed

    Zel'nichenko, A T; Koval'chuk, V S; Posudin, Iu I

    1988-01-01

    Relationships between the motor activity and orientation of microorganisms and parameters of the electromagnetic field and of the microorganisms themselves were investigated. It has been shown that the type of microorganism and field amplitude produces the strongest influence on the behaviour of microorganisms in the fields. Theoretical relationships of the value of rotating moment and the field parameters, microorganism and environment were obtained. The results of the experiments well agree with the theory. PMID:3224110

  4. Macroscopic vacuum effects in an inhomogeneous and nonstationary electromagnetic field

    SciTech Connect

    Gal'tsov, D.V.; Nikitina, N.S.

    1983-04-01

    Macroscopic effects of vacuum polarization by a strong nonuniform and nonstationary fields, which are kinematically forbidden in the case of a uniform magnetic field, are considered. Calculations are perfomed for the deflection of a light beam in the field of a magnetic dipole, for the production of photon pairs by an inclined rotator, and for doubling and modulation of the frequency in scattering of low-frequency electromagnetic waves by the magnetic field of an inclined rotator.

  5. On guided versus deflected fields in controlled-source electromagnetics

    NASA Astrophysics Data System (ADS)

    Swidinsky, Andrei

    2015-06-01

    The detection of electrically resistive targets in applied geophysics is of interest to the hydrocarbon, mining and geotechnical industries. Elongated thin resistive bodies have been extensively studied in the context of offshore hydrocarbon exploration. Such targets guide electromagnetic fields in a process which superficially resembles seismic refraction. On the other hand, compact resistive bodies deflect current in a process which has more similarities to diffraction and scattering. The response of a real geological structure is a non-trivial combination of these elements-guiding along the target and deflection around its edges. In this note the electromagnetic responses of two end-member models are compared: a resistive layer, which guides the electromagnetic signal, and a resistive cylinder, which deflects the fields. Results show that the response of a finite resistive target tends to saturate at a much lower resistivity than a resistive layer, under identical survey configurations. Furthermore, while the guided electromagnetic fields generated by a buried resistive layer contain both anomalous horizontal and vertical components, the process of electromagnetic deflection from a buried resistive cylinder creates mainly anomalous vertical fields. Finally, the transmitter orientation with respect to the position of a finite body is an important survey parameter: when the distance to the target is much less than the host skin depth, a transmitter pointing towards the resistive cylinder will produce a stronger signal than a transmitter oriented azimuthally with respect to the cylinder surface. The opposite situation is observed when the distance to the target is greater than the host skin depth.

  6. Microstructure and Mechanical Properties of Al-8 pct Si Alloy Prepared by Direct Chill Casting Under Electromagnetic and Ultrasonic Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Yubo; Jie, Jinchuan; Wu, Li; Fu, Ying; Li, Mu; Lu, Yiping; Li, Tingju

    2014-04-01

    The intermediate frequency electromagnetic field and power ultrasonic field were applied during the direct chill (DC) casting process of Al-8 pct Si alloy. The effects of different physical fields on the solidification microstructure and mechanical properties were studied. The results show that compared to the conventional casting without any treatments, refined microstructures and improved mechanical properties can be obtained when the electromagnetic or ultrasonic field is applied individually. For the case of compound fields, the electromagnetic field can increase the ultrasonic treated region, while the ultrasonic field can enhance the refinement effect of electromagnetic field. Owing to the advantages of both electromagnetic and ultrasonic fields, the microstructure obtained under the compound fields is fine and uniform, leading to a remarkable enhancement of mechanical properties. The interaction mechanism between intermediate frequency electromagnetic field and power ultrasonic field was discussed. The present study may be useful for grain refinement and improvement of mechanical properties of alloys during the DC casting process which is now widely used in industry.

  7. Integral equations for the electromagnetic field in dielectrics

    NASA Astrophysics Data System (ADS)

    Mostowski, Jan; Załuska-Kotur, Magdalena A.

    2016-09-01

    We study static the electric field and electromagnetic waves in dielectric media. In contrast to the standard approach, we use, formulate and solve integral equations for the field. We discuss the case of an electrostatic field of a point charge placed inside a dielectric; the integral equation approach allows us to find and interpret the dielectric constant in terms of molecular polarizability. Next we discuss propagation of electromagnetic waves using the same integral equation approach. We derive the dispersion relation and find the reflection and transmission coefficients at the boundary between the vacuum and the dielectric. The present approach supplements the standard approach based on macroscopic Maxwell equations and contributes to better a understanding of some electromagnetic effects.

  8. The effect of pulsed electromagnetic field therapy on food sensitivity.

    PubMed

    Monro, Jean A; Puri, Basant K

    2015-01-01

    Owing to the involvement of the immune system in the etiology of food sensitivity, and because pulsed electromagnetic field therapy is associated with beneficial immunologic changes, it was hypothesized that pulsed electromagnetic fields may have a beneficial effect on food sensitivity. A small pilot study was carried out in patients suffering from food sensitivity, with the antigen leukocyte antibody test being employed to index the degree of food sensitivity in terms of the number of foods to which each patient reacted. It was found that a 1-week course of pulsed electromagnetic field therapy, consisting of one hour's treatment per day, resulted in a reduction in the mean number of reactive foods of 10.75 (p < 0.05). On the basis of these results, a larger study is warranted.

  9. Near-field thermal electromagnetic transport: An overview

    NASA Astrophysics Data System (ADS)

    Edalatpour, Sheila; DeSutter, John; Francoeur, Mathieu

    2016-07-01

    A general near-field thermal electromagnetic transport formalism that is independent of the size, shape and number of heat sources is derived. The formalism is based on fluctuational electrodynamics, where fluctuating currents due to thermal agitation are added to Maxwell's curl equations, and is thus valid for heat sources in local thermodynamic equilibrium. Using a volume integral formulation, it is shown that the proposed formalism is a generalization of the classical electromagnetic scattering framework in which thermal emission is implicitly assumed to be negligible. The near-field thermal electromagnetic transport formalism is afterwards applied to a problem involving three spheres with size comparable to the wavelength, where all multipolar interactions are taken into account. Using the thermal discrete dipole approximation, it is shown that depending on the dielectric function, the presence of a third sphere slightly affects the spatial distribution of power absorbed compared to the two-sphere case. A transient analysis shows that despite a non-uniform spatial distribution of power absorbed, the sphere temperature remains spatially uniform at any instant due to the fact that the thermal resistance by conduction is much smaller than the resistance by radiation. The formalism proposed in this paper is general, and could be used as a starting point for adapting solution methods employed in traditional electromagnetic scattering problems to near-field thermal electromagnetic transport.

  10. CRC handbook of biological effects of electromagnetic fields

    SciTech Connect

    Polk, C.; Postow, E.

    1986-01-01

    This book presents the current knowledge about the effects of electromagnetic fields on living matter. The three-part format covers dielectric permittivity and electrical conductivity of biological materials; effects of direct current and low frequency fields; and effects of radio frequency (including microwave) fields. The parts are designed to be consulted independently or in sequence, depending upon the needs of the reader. Useful appendixes on measurement units and safety standards are also included.

  11. CRC handbook of biological effects of electromagnetic fields

    SciTech Connect

    Polk, C. . Dept. of Electrical Engineering); Postow, E. )

    1986-01-01

    This book presents current knowledge about the effects of electromagnetic fields on living matter. The three-part format covers: dielectric permittivity and electrical conductivity of biological materials; effects of direct current and low frequency fields; and effects of radio frequency (including microwave) fields. The parts are designed to be consulted independently or in sequence, depending upon the needs of the reader. Useful appendixes on measurement units and safety standards are also included.

  12. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, K.H.; Xie, G.Q.

    1994-12-13

    A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

  13. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, Ki H.; Xie, Gan Q.

    1994-01-01

    A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

  14. A physically motivated quantization of the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Bennett, Robert; Barlow, Thomas M.; Beige, Almut

    2016-01-01

    The notion that the electromagnetic field is quantized is usually inferred from observations such as the photoelectric effect and the black-body spectrum. However accounts of the quantization of this field are usually mathematically motivated and begin by introducing a vector potential, followed by the imposition of a gauge that allows the manipulation of the solutions of Maxwell’s equations into a form that is amenable for the machinery of canonical quantization. By contrast, here we quantize the electromagnetic field in a less mathematically and more physically motivated way. Starting from a direct description of what one sees in experiments, we show that the usual expressions of the electric and magnetic field observables follow from Heisenberg’s equation of motion. In our treatment, there is no need to invoke the vector potential in a specific gauge and we avoid the commonly used notion of a fictitious cavity that applies boundary conditions to the field.

  15. Oxidative and genotoxic effects of 900 MHz electromagnetic fields in the earthworm Eisenia fetida.

    PubMed

    Tkalec, Mirta; Stambuk, Anamaria; Srut, Maja; Malarić, Krešimir; Klobučar, Göran I V

    2013-04-01

    Accumulating evidence suggests that exposure to radiofrequency electromagnetic field (RF-EMF) can have various biological effects. In this study the oxidative and genotoxic effects were investigated in earthworms Eisenia fetida exposed in vivo to RF-EMF at the mobile phone frequency (900 MHz). Earthworms were exposed to the homogeneous RF-EMF at field levels of 10, 23, 41 and 120 V m(-1) for a period of 2h using a Gigahertz Transversal Electromagnetic (GTEM) cell. At the field level of 23 V m(-1) the effect of longer exposure (4h) and field modulation (80% AM 1 kHz sinusoidal) was investigated as well. All exposure treatments induced significant genotoxic effect in earthworms coelomocytes detected by the Comet assay, demonstrating DNA damaging capacity of 900 MHz electromagnetic radiation. Field modulation additionally increased the genotoxic effect. Moreover, our results indicated the induction of antioxidant stress response in terms of enhanced catalase and glutathione reductase activity as a result of the RF-EMF exposure, and demonstrated the generation of lipid and protein oxidative damage. Antioxidant responses and the potential of RF-EMF to induce damage to lipids, proteins and DNA differed depending on the field level applied, modulation of the field and duration of E. fetida exposure to 900 MHz electromagnetic radiation. Nature of detected DNA lesions and oxidative stress as the mechanism of action for the induction of DNA damage are discussed.

  16. What Message Should Health Educators Give regarding Electromagnetic Fields?

    ERIC Educational Resources Information Center

    Al-Khamees, Nedaa A.

    2008-01-01

    The possibility of extremely low frequency electromagnetic fields (ELF EMF) causing a number of medical conditions and common symptoms remains a concern and presents somewhat of a quandary to health educators in view of conflicting results. This study investigated the relationship of a number of EMF sources to reported symptoms in an attempt to,…

  17. Higher-dimensional Vaidya metric with an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Bhui, B.; Banerjee, A.

    1990-09-01

    An exterior solution is obtained for a charged radiating sphere in higher dimensions. The solution reduces to an earlier one obtained by Krori and Barua [J. Phys. A 7, 2125 (1974)] when the space-time dimension is four, and to one obtained by Iyer and Vishveshwara [J. Phys. 32, 749 (1989)] when the electromagnetic field is switched off.

  18. Electromagnetic fields from mobile phone base station - variability analysis.

    PubMed

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.

  19. Spectrally isomorphic Dirac systems: Graphene in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Jakubský, Vít

    2015-02-01

    We construct the new one-dimensional Dirac Hamiltonians that are spectrally isomorphic (not isospectral) with the known exactly solvable models. Explicit formulas for their spectra and eigenstates are provided. The operators are utilized for the description of Dirac fermions in graphene in the presence of an inhomogeneous electromagnetic field. We discuss explicit, physically relevant, examples of spectrally isomorphic systems with both nonperiodic and periodic electromagnetic barriers. In the latter case, spectrally isomorphic two- and three-gap systems associated with the Ablowitz-Kaup-Newell-Segur hierarchy are considered.

  20. Electromagnetic fields from mobile phone base station - variability analysis.

    PubMed

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis. PMID:26444202

  1. Electromagnetic hydrophone with tomographic system for absolute velocity field mapping

    NASA Astrophysics Data System (ADS)

    Grasland-Mongrain, Pol; Mari, Jean-Martial; Gilles, Bruno; Chapelon, Jean-Yves; Lafon, Cyril

    2012-06-01

    The velocity and pressure of an ultrasonic wave can be measured by an electromagnetic hydrophone made of a thin wire and a magnet. The ultrasonic wave vibrates the wire inside a magnetic field, inducing an electrical current. Previous articles reported poor spatial resolution of comparable hydrophones along the axis of the wire. In this study, submillimetric spatial resolution has been achieved by using a tomographic method. Moreover, a physical model is presented for obtaining absolute measurements. A pressure differential of 8% has been found between piezoelectric and electromagnetic hydrophone measurements. These characteristics show this technique as an alternative to standard hydrophones.

  2. Beta decay and other processes in strong electromagnetic fields

    SciTech Connect

    Akhmedov, E. Kh.

    2011-09-15

    We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of nonrelativistic charged particles. Using nuclear {beta} decay as an example, we study the weak- and strong-field limits, as well as the field-induced {beta} decay of nuclei stable in the absence of the external fields, both in the tunneling and multiphoton regimes. We also consider the possibility of accelerating forbidden nuclear {beta} decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total {beta}-decay rates are unobservably small.

  3. On the longitudinal polarization of non-paraxial electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Martínez-Herrero, R.; Mejías, P. M.; Manjavacas, A.

    2010-05-01

    Within the framework of the angular plane-wave spectrum of the electromagnetic field, the general form is given for the freely-propagating beams, exact solution of the Maxwell equations, that closely approach (in an algebraic sense) to a purely-longitudinal vectorial distribution at some transverse plane. In the rotationally symmetric case, such a field is written as the combination of radial and longitudinal components, whose propagation can be analysed independently. Several illustrative examples are also considered.

  4. Electromagnetic Field Effects in Semiconductor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  5. Electromagnetic fields and potentials generated by massless charged particles

    NASA Astrophysics Data System (ADS)

    Azzurli, Francesco; Lechner, Kurt

    2014-10-01

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard-Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string.

  6. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  7. Electromagnetic biaxial vector scanner using radial magnetic field.

    PubMed

    Han, Aleum; Cho, Ah Ran; Ju, Suna; Ahn, Si-Hong; Bu, Jong-Uk; Ji, Chang-Hyeon

    2016-07-11

    We present an electromagnetic biaxial vector-graphic scanning micromirror. In contrast to conventional electromagnetic actuators using linear magnetic field, proposed device utilizes a radial magnetic field and uniquely designed current paths to enable the 2 degree-of-freedom scanning motion. As the radial field is generated by concentrically assembled magnets placed under the scanner die, large driving torque can be generated without the aid of hermetic packaging and relatively small device volume can be achieved. Mechanical half scan angle of 6.43° and 4.20° have been achieved at DC current of 250mA and 350mA for horizontal and vertical scans, respectively. Forced actuation along both scan axes has been realized by feedback control. PMID:27410851

  8. Laser photon merging in an electromagnetic field inhomogeneity

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Karbstein, Felix; Shaisultanov, Rashid

    2014-08-01

    We study the effect of laser photon merging, or equivalently high harmonic generation, in the quantum vacuum subject to inhomogeneous electromagnetic fields. Such a process is facilitated by the effective nonlinear couplings arising from charged particle-antiparticle fluctuations in the quantum vacuum subject to strong electromagnetic fields. We derive explicit results for general kinematic and polarization configurations involving optical photons. Concentrating on merged photons in reflected channels which are preferable in experiments for reasons of noise suppression, we demonstrate that photon merging is typically dominated by the competing nonlinear process of quantum reflection, though appropriate polarization and signal filtering could specifically search for the merging process. As a byproduct, we devise a novel systematic expansion of the photon polarization tensor in plane wave fields.

  9. Biological effects and exposure criteria for radiofrequency electromagnetic fields

    SciTech Connect

    Not Available

    1986-01-01

    This report, which begins with a discussion of fundamental studies at the molecular level, presents a review of the subject matter covered in NCRP Report No. 67 on mechanisms of interaction of radiofrequency electromagnetic (RFEM) fields with tissue. The discussion continues to progressively larger scales of interaction, beginning with macromolecular and cellular effects, chromosomal and mutagenic effects, and carcinogenic effects. The scope of the subject matter is then expanded to include systemic effects such as those on reproduction, growth, and development, hematopoiesis and immunology, endocrinology and autonomic nervous function, cardiovascular effects and cerebrovascular effects. The interaction of electromagnetic fields with the central nervous system and special senses is also discussed. Also included are epidemiological studies, a discussion of thermoregulation, and a history of therapeutic applications of RFEM fields. The report concludes with human exposure criteria and rationale.

  10. Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state.

    PubMed

    Baek, Soonbong; Quan, Xiaoyuan; Kim, Soochan; Lengner, Christopher; Park, Jung-Keug; Kim, Jongpil

    2014-10-28

    Life on Earth is constantly exposed to natural electromagnetic fields (EMFs), and it is generally accepted that EMFs may exert a variety of effects on biological systems. Particularly, extremely low-frequency electromagnetic fields (EL-EMFs) affect biological processes such as cell development and differentiation; however, the fundamental mechanisms by which EMFs influence these processes remain unclear. Here we show that EMF exposure induces epigenetic changes that promote efficient somatic cell reprogramming to pluripotency. These epigenetic changes resulted from EMF-induced activation of the histone lysine methyltransferase Mll2. Remarkably, an EMF-free system that eliminates Earth's naturally occurring magnetic field abrogates these epigenetic changes, resulting in a failure to undergo reprogramming. Therefore, our results reveal that EMF directly regulates dynamic epigenetic changes through Mll2, providing an efficient tool for epigenetic reprogramming including the acquisition of pluripotency. PMID:25248035

  11. Surface-enhanced Raman scattering spectra of adsorbates on Cu2O nanospheres: charge-transfer and electromagnetic enhancement

    NASA Astrophysics Data System (ADS)

    Jiang, Li; You, Tingting; Yin, Penggang; Shang, Yang; Zhang, Dongfeng; Guo, Lin; Yang, Shihe

    2013-03-01

    Surface-enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid (4-MBA) have been investigated on the surface of Cu2O nanospheres. The SERS signals were believed to originate from the static chemical enhancement, resonant chemical enhancement and electromagnetic enhancement. The coupling between the adsorbates and the semiconductor, evidenced by the shift in absorption spectrum of modified Cu2O and the enhancement of non-totally symmetric modes of the 4-MBA and 4-mercaptopyridine (4-MPY) molecules, were invoked to explain the experimental results. Furthermore, simulations were employed to investigate the nature of the enhancement mechanisms operative between the molecules and the semiconductor. Density functional theory (DFT) calculations suggested a charge transfer (CT) transition process between the molecules and the Cu2O nanospheres. Three-dimensional finite-difference time domain (3D-FDTD) simulations were conducted to map out the electromagnetic field around the Cu2O nanospheres. The experimental and simulation results have revealed the promise of the Cu2O nanospheres as a good SERS substrate and the prospect of using the SERS substrate as a valuable tool for in situ investigation and assay of the adsorption behavior on semiconductor surfaces.Surface-enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid (4-MBA) have been investigated on the surface of Cu2O nanospheres. The SERS signals were believed to originate from the static chemical enhancement, resonant chemical enhancement and electromagnetic enhancement. The coupling between the adsorbates and the semiconductor, evidenced by the shift in absorption spectrum of modified Cu2O and the enhancement of non-totally symmetric modes of the 4-MBA and 4-mercaptopyridine (4-MPY) molecules, were invoked to explain the experimental results. Furthermore, simulations were employed to investigate the nature of the enhancement mechanisms operative between the molecules and the semiconductor

  12. [Problems of hygienic standardization of electromagnetic fields produced by teletransmitting objects].

    PubMed

    Karachev, I I

    1989-10-01

    Maximum allowable electromagnetic field levels produced by teletransmitting stations and differentiated by frequency have been described. The prospects of further studies on the improvement of hygienic standardization of electromagnetic fields have been set forth.

  13. Coupled Electromagnetic Resonators for Enhanced Communications and Telemetry

    NASA Technical Reports Server (NTRS)

    Dimmock, John O.

    2005-01-01

    Future NASA missions will require the collection of an increasing quantity and quality of data which, in turn, will place increasing demands on advanced sensors and advanced high bandwidth telemetry and communications systems. The capabilities of communication and telemetry systems depend, among other factors, on the stability, controllability and spectral purity of the carrier wave. These, in turn, depend on the quality of the oscillator, or resonator, or the Q of the system. Recent work on high Q optical resonators has indicated that the Q, or quality factor, of optical microsphere resonators can be substantially enhanced by coupling several such resonators together.1-3 In addition to the possibility of enhanced Q and increased energy storage capacity, the coupled optical resonators indicate that a wide variety of interesting and potentially useful phenomena such as induced transparency and interactive mode splitting can be observed depending critically on the morphology and configuration of the microresonators. The purpose of this SFFP has been to examine several different coupled electromagnetic oscillator configurations in order to evaluate their potential for enhanced electromagnetic communications.

  14. Electromagnetic fields in the exterior of an oscillating relativistic star - II. Electromagnetic damping

    NASA Astrophysics Data System (ADS)

    Rezzolla, Luciano; Ahmedov, Bobomurat J.

    2016-07-01

    An important issue in the asteroseismology of compact and magnetized stars is the determination of the dissipation mechanism which is most efficient in damping the oscillations when these are produced. In a linear regime and for low-multipolarity modes, these mechanisms are confined to either gravitational-wave or electromagnetic losses. We here consider the latter and compute the energy losses in the form of Poynting fluxes, Joule heating and Ohmic dissipation in a relativistic oscillating spherical star with a dipolar magnetic field in vacuum. While this approach is not particularly realistic for rapidly rotating stars, it has the advantage that it is fully analytic and that it provides expressions for the electric and magnetic fields produced by the most common modes of oscillation both in the vicinity of the star and far away from it. In this way, we revisit and extend to a relativistic context the classical estimates of McDermott et al. Overall, we find that general-relativistic corrections lead to electromagnetic damping time-scales that are at least one order of magnitude smaller than in Newtonian gravity. Furthermore, with the only exception of g (gravity) modes, we find that f (fundamental), p (pressure), i (interface) and s (shear) modes are suppressed more efficiently by gravitational losses than by electromagnetic ones.

  15. Studies of exposure of rabbits to electromagnetic pulsed fields

    SciTech Connect

    Cleary, S.F.; Nickless, F.; Liu, L.M.; Hoffman, R.

    1980-01-01

    Dutch rabbits were acutely exposed to electromagnetic pulsed (EMP) fields (pulse duration 0.4 mus, field strengths of 1--2 kV/cm and pulse repetition rates in the range of 10 to 38 Hz) for periods of up to two hours. The dependent variables investigated were pentobarbital-induced sleeping time and serum chemistry (including serum triglycerides, creatine phosphokinase (CPK) isoenzymes, and sodium and potassium). Core temperature measured immediately pre-exposure and postexposure revealed no exposure-related alterations. Over the range of field strengths and pulse durations investigated no consistent, statistically significant alterations were found in the end-points investigated.

  16. Controversies related to electromagnetic field exposure on peripheral nerves.

    PubMed

    Say, Ferhat; Altunkaynak, Berrin Zuhal; Coşkun, Sina; Deniz, Ömür Gülsüm; Yıldız, Çağrı; Altun, Gamze; Kaplan, Arife Ahsen; Kaya, Sefa Ersan; Pişkin, Ahmet

    2016-09-01

    Electromagnetic field (EMF) is a pervasive environmental presence in modern society. In recent years, mobile phone usage has increased rapidly throughout the world. As mobile phones are generally held close to the head while talking, studies have mostly focused on the central and peripheral nervous system. There is a need for further research to ascertain the real effect of EMF exposure on the nervous system. Several studies have clearly demonstrated that EMF emitted by cell phones could affect the systems of the body as well as functions. However, the adverse effects of EMF emitted by mobile phones on the peripheral nerves are still controversial. Therefore, this review summarizes current knowledge on the possible positive or negative effects of electromagnetic field on peripheral nerves.

  17. Controversies related to electromagnetic field exposure on peripheral nerves.

    PubMed

    Say, Ferhat; Altunkaynak, Berrin Zuhal; Coşkun, Sina; Deniz, Ömür Gülsüm; Yıldız, Çağrı; Altun, Gamze; Kaplan, Arife Ahsen; Kaya, Sefa Ersan; Pişkin, Ahmet

    2016-09-01

    Electromagnetic field (EMF) is a pervasive environmental presence in modern society. In recent years, mobile phone usage has increased rapidly throughout the world. As mobile phones are generally held close to the head while talking, studies have mostly focused on the central and peripheral nervous system. There is a need for further research to ascertain the real effect of EMF exposure on the nervous system. Several studies have clearly demonstrated that EMF emitted by cell phones could affect the systems of the body as well as functions. However, the adverse effects of EMF emitted by mobile phones on the peripheral nerves are still controversial. Therefore, this review summarizes current knowledge on the possible positive or negative effects of electromagnetic field on peripheral nerves. PMID:26718608

  18. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.

    PubMed

    Janesko, Benjamin G; Scuseria, Gustavo E

    2006-09-28

    We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.

  19. Growth characteristics of mung beans and water convolvuluses exposed to 425-MHz electromagnetic fields.

    PubMed

    Jinapang, Peeraya; Prakob, Panida; Wongwattananard, Pongtorn; Islam, Naz E; Kirawanich, Phumin

    2010-10-01

    Effects of high-frequency, continuous wave (CW) electromagnetic fields on mung beans (Vigna radiata L.) and water convolvuluses (Ipomoea aquatica Forssk.) were studied at different growth stages (pre-sown seed and early seedling). Specifically, the effects of the electromagnetic source's power and duration (defined as power-duration level) on the growth of the two species were studied. Mung beans and water convolvuluses were exposed to electromagnetic fields inside a specially designed chamber for optimum field absorption, and the responses of the seeds to a constant frequency at various power levels and durations of exposure were monitored. The frequency used in the experiments was 425 MHz, the field strengths were 1 mW, 100 mW, and 10 W, and the exposure durations were 1, 2, and 4 h. Results show that germination enhancement is optimum for the mung beans at 100 mW/1 h power-duration level, while for water convolvuluses the optimum germination power-duration level was 1 mW/2 h. When both seed types were exposed at the early sprouting phase with their respective optimum power-duration levels for optimum seed growth, water convolvuluses showed growth enhancement while mung bean sprouts showed no effects. Water content analysis of the seeds suggests thermal effects only at higher field strength.

  20. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    SciTech Connect

    Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan

    2008-08-11

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  1. Immunorehabilitating effect of ultrahigh frequency electromagnetic fields in immunocompromised animals.

    PubMed

    Pershin, S B; Bobkova, A S; Derevnina, N A; Sidorov, V D

    2013-06-01

    We observed immunorehabilitation effects of ultrahigh frequency electromagnetic fields (microwaves) in immunocompromised animals. It was shown that microwave irradiation of the thyroid gland area could abolish actinomycin D- and colchicine-induced immunosuppression and did not affect immunosuppression caused by 5-fluorouracil. These findings suggest that changes in the hormonal profile of the organism during microwave exposure can stimulate the processes of transcription and mitotic activity of lymphoid cells.

  2. Opinion on potential health effects of exposure to electromagnetic fields.

    PubMed

    2015-09-01

    In January 2015, the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) published its final opinion on "Potential health effects of exposure to electromagnetic fields." The purpose of this document was to update previous SCENIHR opinions in the light of recently available information since then, and to give special consideration to areas that had not been dealt with in the previous opinions or in which important knowledge gaps had been identified.

  3. Effects of Pulsed Electromagnetic Fields on Osteoporosis Model

    NASA Astrophysics Data System (ADS)

    Xiaowei, Yang; Liming, Wang; Guan, Z. C.; Yaou, Zhang; Xiangpeng, Wang

    The purpose of this paper was to investigate the preventive effects and long term effects of extremely low frequency pulsed electromagnetic fields (PEMFs), generated by circular coils and pulsed electromagnetic fields stimulators, on osteoporosis in bilaterally ovariectomized rats. In preventive experiment, thirty three-month old female Sprague-Dawley rats were randomly divided into three different groups: sham (SHAM), ovariectomy (OVX), PEMFs stimulation (PEMFs). All rats were subjected to bilaterally ovariectomy except those in SHAM group. The PEMFs group was exposed to pulsed electromagnetic fields with frequency 15 Hz, peak magnetic induction density 2.2mT and exposure time 2 hours per day. The bone mineral density (BMD) of vertebra and left femur were measured by dual energy X-ray absorptiometry at eighth week, twelfth week and sixteenth week after surgery. In long term effects experiment, forty four rats were randomly divided into sham (14 rats, SHAM), ovariectomy group (10 rats, OVX), 15Hz PEMFs group(10 rats, 15Hz) and 30Hz PEMFs group(10 rats, 30Hz) at twenty-sixth week after surgery. Rats in PEMFs groups were stimulated sixteen weeks. In preventive experiment, the Corrected BMD of vertebra and femur was significantly higher than that of OVX group after 16 weeks (P<0.001, P<0.001 respectively). In long term effects experiment, the vertebral BMD of 15Hz PEMFs group and 30Hz PEMFs group was significantly higher than that of OVX groups (P<0.01, P<0.05 respectively). The experimental results demonstrated that extremely low intensity, low frequency, single pulsed electromagnetic fields significantly slowed down the loss of corrected vertebral and femoral BMD in bilaterally ovariectomized rats and suggest that PEMFs may be beneficial in the treatment of osteoporosis.

  4. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  5. Low-frequency electromagnetic field in a Wigner crystal

    SciTech Connect

    Stupka, Anton

    2013-03-15

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  6. Challenges and Opportunities For Space Plasma Physics in the Use of Electromagnetic Fields Measurements (Invited)

    NASA Astrophysics Data System (ADS)

    Torbert, R. B.; Angelopoulos, V.

    2013-12-01

    This presentation will review recent progress and future challenges in the use of electromagnetic fields measurements for understanding space plasma phenomena. A summary of the performance of the instrumentation on the recently launched Van Allen Probes and the upcoming NASA MMS mission will describe the state-of-the-art in many of these measurements techniques. There will also be speculation on areas of possible future instrument development that will enhance new space missions.

  7. [Electromagnetic fields: damage to health due to the nocebo effect].

    PubMed

    Bonneux, L

    2007-04-28

    Environmental exposure to man-made electromagnetic fields has been steadily increasing as the growing demand for electricity and advancing technology have created many artificial sources. Over the course of the past decade, numerous sources of electromagnetic fields have become the focus of health scares, most recently mobile phones and their base stations. The predictable reaction to these health scares has been 'more research'. This comment argues that studies of the possible hazards of low-level electromagnetic fields waste scarce financial resources. Many studies have convincingly excluded detectable tangible health hazards. Bayesian logic predicts that the likelihood of false-positive results will be great in studies lacking a prior hypothesis and using non-specific health states as outcomes. The health hazards due to the maintenance of environmental scares by false-positive studies have been neglected. The nocebo hypothesis states that expectations of sickness cause sickness in the expectant individual. Maintaining anxiety by fostering doubts in gullible populations about the quality ofthe environment they live in may cause serious mental illness. Anxiety caused by health scares is an increasing public health problem, which should be addressed in its own right. PMID:17520846

  8. Offshore windmills and the effects of electromagnetic fields on fish.

    PubMed

    Ohman, Marcus C; Sigray, Peter; Westerberg, Håkan

    2007-12-01

    With the large scale developments of offshore windpower the number of underwater electric cables is increasing with various technologies applied. A wind farm is associated with different types of cables used for intraturbine, array-to-transformer, and transformer-to-shore transmissions. As the electric currents in submarine cables induce electromagnetic fields there is a concern of how they may influence fishes. Studies have shown that there are fish species that are magneto-sensitive using geomagnetic field information for the purpose of orientation. This implies that if the geomagnetic field is locally altered it could influence spatial patterns in fish. There are also physiological aspects to consider, especially for species that are less inclined to move as the exposure could be persistent in a particular area. Even though studies have shown that magnetic fields could affect fish, there is at present limited evidence that fish are influenced by the electromagnetic fields that underwater cables from windmills generate. Studies on European eel in the Baltic Sea have indicated some minor effects. In this article we give an overview on the type of submarine cables that are used for electric transmissions in the sea. We also describe the character of the magnetic fields they induce. The effects of magnetic fields on fish are reviewed and how this may relate to the cables used for offshore wind power is discussed.

  9. Experimental evaluation of the twofold electromagnetic enhancement theory of surface-enhanced resonance Raman scattering

    SciTech Connect

    Yoshida, Ken-ichi; Itoh, Tamitake; Biju, Vasudevanpillai; Ishikawa, Mitsuru; Ozaki, Yukihiro

    2009-02-15

    We examined an electromagnetic (EM) theory of surface-enhanced resonance Raman scattering (SERRS) using single Ag nanoaggregates. The SERRS-EM theory is characterized by twofold EM enhancement induced by the coupling of plasmon resonance with both excitation and emission of Raman scattering plus fluorescence. The total emission cross-section spectra of enhanced Raman scattering and enhanced fluorescence were calculated using the following parameters: the spectrum of enhancement factor induced by plasmon resonance, resonance Raman scattering overlapped with fluorescence, and excitation wavelengths. The calculations well agreed with experimental total emission cross-section spectra, thus providing strong indications that the SERRS-EM theory is quantitatively correct.

  10. Influence of electromagnetic signal of antibiotics excited by low-frequency pulsed electromagnetic fields on growth of Escherichia coli.

    PubMed

    Ke, Yin-Lung; Chang, Fu-Yu; Chen, Ming-Kun; Li, Shun-Lai; Jang, Ling-Sheng

    2013-01-01

    Energy medicine (EM) provides a new medical choice for patients, and its advantages are the noninvasive detection and nondrug treatment. An electromagnetic signal, a kind of EM, induced from antibiotic coupling with weak, extremely low-frequency pulsed electromagnetic fields (PEMFs) is utilized for investigating the growth speed of Escherichia coli (E. coli). PEMFs are produced by solenoidal coils for coupling the electromagnetic signal of antibiotics (penicillin). The growth retardation rate (GRR) of E. coli is used to investigate the efficacy of the electromagnetic signal of antibiotics. The E. coli is cultivated in the exposure of PEMFs coupling with the electromagnetic signal of antibiotics. The maximum GRR of PEMFs with and without the electromagnetic signal of antibiotics on the growth of E. coli cells in the logarithmic is 17.4 and 9.08%, respectively. The electromagnetic signal of antibiotics is successfully coupled by the electromagnetic signal coupling instrument to affect the growth of E. coli. In addition, the retardation effect on E. coli growth can be improved of by changing the carrier frequency of PEMFs coupling with the electromagnetic signal of antibiotics. GRR caused by the electromagnetic signal of antibiotics can be fixed by a different carrier frequency in a different phase of E. coli growth.

  11. Mechanism for action of electromagnetic fields on cells.

    PubMed

    Panagopoulos, Dimitris J; Karabarbounis, Andreas; Margaritis, Lukas H

    2002-10-18

    A biophysical model for the action of oscillating electric fields on cells, presented by us before [Biochem. Biophys. Res. Commun. 272(3) (2000) 634-640], is extended now to include oscillating magnetic fields as well, extended to include the most active biological conditions, and also to explain why pulsed electromagnetic fields can be more active biologically than continuous ones. According to the present theory, the low frequency fields are the most bioactive ones. The basic mechanism is the forced-vibration of all the free ions on the surface of a cell's plasma membrane, caused by an external oscillating field. We have shown that this coherent vibration of electric charge is able to irregularly gate electrosensitive channels on the plasma membrane and thus cause disruption of the cell's electrochemical balance and function [Biochem. Biophys. Res. Commun. 272(3) (2000) 634-640]. It seems that this simple idea can be easily extended now and looks very likely to be able to give a realistic basis for the explanation of a wide range of electromagnetic field bioeffects.

  12. Reconstruction of velocity fields in electromagnetic flow tomography.

    PubMed

    Lehtikangas, Ossi; Karhunen, Kimmo; Vauhkonen, Marko

    2016-06-28

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185961

  13. Reconstruction of velocity fields in electromagnetic flow tomography.

    PubMed

    Lehtikangas, Ossi; Karhunen, Kimmo; Vauhkonen, Marko

    2016-06-28

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  14. Electro-Magnetic Fields and Plasma in the Cosmos

    SciTech Connect

    Scott, Donald E.

    2006-03-21

    It is becoming widely recognized that a majority of baryons in the cosmos are in the plasma state. But, fundamental disagreements about the properties and behavior of electro-magnetic fields in these plasmas exist between the science of modern astronomy and the experimentally verified laws of electrical engineering and physics. Some astronomers claim that magnetic fields can be open-ended - that they begin on or beneath the Sun's surface and extend outward to infinity. Astrophysicists have claimed that galactic magnetic fields begin and end on molecular clouds. Electrical engineers, most physicists, and the pioneers in electromagnetic field theory disagree - magnetic fields have no beginning or end. Since these two viewpoints are mutually exclusive, both cannot be correct; one must be completely false. Many astrophysicists claim that magnetic fields are 'frozen into' electric plasma. We also examine the basis for this claim. It has been shown to be incorrect in the laboratory. The hypothetical 'magnetic merging' mechanism is also reviewed in light of both theoretical and experimental investigations. The cause of large-scale filamentation in the cosmos is also simply revealed by experimental results obtained in plasma laboratories.

  15. The Interaction of Electromagnetic Fields with Simulated Biostructures.

    NASA Astrophysics Data System (ADS)

    Li, Shuchen

    In this thesis we analyze integral equation formulations of electromagnetic scattering problems, show their relation to Maxwell equation formulations of scattering problems, and use them to predict via computer computation the response of simulated biological structures to electromagnetic radiation. Chapter I provides an overview of the problem. In the second chapter we describe scattering bodies and ambient electromagnetic fields and associated subgroups of the real orthogonal group for which one can greatly reduce the computational complexity of an electromagnetic interaction problem using symmetry groups. The results of computer calculations implementing the theory are provided. In Chapter III we show that every solution in a prescribed function space of the integral equation is a solution of Maxwell's equations, and satisfies the standard regularity conditions and the Silver-Muller radiation conditions. The methods of proof require Sobolev embedding theorems and addition theorem representations of dyadic Green's functions. We then show that in the same function space there is only one solution of the Maxwell equation formulation of the problem. This uses a novel energy relation for electromagnetic interactions which could perhaps be applied to other transmission problems. In chapter IV we investigate by computer calculation the potential ability of the blood to remove heat from irradiated tissue. The thermal response of models of cylinders of muscle equivalent material to normally incident transverse -magnetic or transverse-electric plane waves is predicted by computer calculation. These calculations are carried out when the scattering body is a solid cylinder of muscle equivalent material and when the scattering body is a two layer structure consisting on an inner column of blood at normal body temperature electromagnetically coupled to a surrounding layer of muscle equivalent material. Appendix A contains a listing of the computer programs developed as a part

  16. Addendum to `numerical modeling of an enhanced very early time electromagnetic (VETEM) prototype system'

    USGS Publications Warehouse

    Cui, T.J.; Chew, W.C.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.; Abraham, J.D.

    2000-01-01

    Two numerical models to simulate an enhanced very early time electromagnetic (VETEM) prototype system that is used for buried-object detection and environmental problems are presented. In the first model, the transmitting and receiving loop antennas accurately analyzed using the method of moments (MoM), and then conjugate gradient (CG) methods with the fast Fourier transform (FFT) are utilized to investigate the scattering from buried conducting plates. In the second model, two magnetic dipoles are used to replace the transmitter and receiver. Both the theory and formulation are correct and the simulation results for the primary magnetic field and the reflected magnetic field are accurate.

  17. Minimum uncertainty states in angular momentum and angle variables for charged particles in structured electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Rodríguez-Méndez, D.; Hacyan, S.; Jáuregui, R.

    2013-10-01

    We study the phase-space properties of a charged particle in a static electromagnetic field exhibiting vortex pairs with complementary topological charges and in a pure gauge field. A stationary solution of the Schrödinger equation that minimizes the uncertainty relations for angular momentum and trigonometric functions of the phase is obtained. It does not exhibit vortices and the angular momentum is due to the gauge field only. Increasing the topological charge of the vortices increases the regions where the Wigner function in the angle-angular momentum plane takes negative values, and thus enhances the quantum character of the dynamics.

  18. Electromagnetic field properties in the vicinity of a massive wormhole

    SciTech Connect

    Novikov, I. D.; Shatskiy, A. A.

    2011-12-15

    It is proved that not only massless but also traversable massive wormholes can have electromagnetic 'hair.' An analysis is also presented of the passage from a traversable wormhole to the limit of a Reissner-Nordstroem black hole, with the corresponding disappearance of 'hair.' A general method is developed for solving stationary axisymmetric Maxwell's equations in the field of a massive, spherically symmetric wormhole. As a particular example of application of the method, a solution is found to the axisymmetric magnetostatic problem for a current loop in the field of the Bronnikov-Ellis-Morris-Thorne wormhole.

  19. Time-Domain Computation Of Electromagnetic Fields In MMICs

    NASA Technical Reports Server (NTRS)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1995-01-01

    Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.

  20. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices. PMID:27607498

  1. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  2. Topological thermal Casimir effect for spinor and electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mota, H. F.; Bezerra, V. B.

    2015-12-01

    We obtain the thermal corrections to the Casimir energy for the neutrino and electromagnetic fields in Einstein and closed Friedmann universes containing a static, infinitely straight and thin cosmic string. The Casimir free energy is also obtained as well as their low and high temperature limits. It is shown that the vacuum energies associated with these fields, in the background considered, are given simply by the vacuum energies in the absence of the cosmic string multiplied by a factor that codifies the presence of this topological defect.

  3. Master equation for an oscillator coupled to the electromagnetic field

    SciTech Connect

    Ford, G.W. |; Lewis, J.T.; OConnell, R.F. |

    1996-12-01

    The macroscopic description of a quantum oscillator with linear passive dissipation is formulated in terms of a master equation for the reduced density matrix. The procedure used is based on the asymptotic methods of nonlinear dynamics, which enables one to obtain an expression for the general term in the weak coupling expansion. For the special example of a charged oscillator interacting with the electromagnetic field, an explicit form of the master equation through third order in this expansion is obtained. This form differs from that generally obtained using the rotating wave approximation in that there is no electromagnetic (Lamb) shift and that an explicit expression is given for the decay rate. Copyright {copyright} 1996 Academic Press, Inc.

  4. Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites

    NASA Astrophysics Data System (ADS)

    Sarychev, Andrey K.; Shalaev, Vladimir M.

    2000-09-01

    A scaling theory of local field fluctuations and optical nonlinearities is developed for random metal-dielectric composites near a percolation threshold. The theory predicts that in the optical and infrared spectral ranges the local fields are very inhomogeneous and consist of sharp peaks representing localized surface plasmons (s.p.). The localization maps the Anderson localization problem described by the random Hamiltonian with both on- and off-diagonal disorder. The local fields exceed the applied field by several orders of magnitudes resulting in giant enhancements of various optical phenomena. A new numerical method based on the developed theory is suggested. This method is employed to calculate the giant field fluctuations and enhancement of various optical processes in 2D metal-dielectric composites - semicontinuous metal films. The local field fluctuations appear to be highly correlated in space. These fluctuations result in dramatically enhanced Rayleigh and Raman light scattering. The scaling analysis is performed to describe the giant light scattering in a vicinity of the percolation threshold. The developed theory describes quantitatively enhancement of various nonlinear optical processes in percolation composites. It is shown that enhancement depends strongly on whether nonlinear multiphoton scattering includes an act of photon subtraction (annihilation). The magnitudes and spectral dependencies of enhancements in optical processes with photon subtraction, such as Raman and hyper-Raman scattering, Kerr refraction and four-wave mixing, are dramatically different from those processes without photon subtraction, such as sum-frequency and high-harmonic generation. Electromagnetic properties of metal-dielectric crystals and composites beyond the quasistatic approximation are also studied. Equations of macroscopic electromagnetism are presented for these systems. Both linear and nonlinear optical responses are considered in the case of a strong skin effect

  5. Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering.

    PubMed

    Dvoynenko, Mykhaylo M; Wang, Juen-Kai

    2007-12-15

    The authors report two methods to determine electromagnetic and chemical enhancement factors in surface-enhanced Raman scattering (SERS), which are based on saturation property and decay dynamics of photoluminescence and concurrent measurements of photoluminescence and resonance Raman scattering intensities. Considerations for experimental implementation are discussed. This study is expected to facilitate the understanding of SERS mechanisms and the advancement of the usage of SERS in chemical and biological sensor applications.

  6. METHODOLOGICAL NOTES: Force on matter in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Makarov, Vyacheslav P.; Rukhadze, Anri A.

    2009-09-01

    This article, in essence, is a continuation of the work by V L Ginzburg and V A Ugarov (Usp. Fiz. Nauk 118 175 (1976) [Sov. Phys. Usp. 19 94 (1976)]). It is shown that the results given in § 75 of the book Electrodynamics of Continuous Media by L D Landau and E M Lifshitz (Moscow: Nauka, 1982, in Russian) and in § 105 of the book Fundamentals of the Theory of Electricity by I E Tamm (Moscow: Nauka, 1989, in Russian) unambiguously follow only from the Maxwell equations of macroscopic electrodynamics, the corresponding constitutive equations, and the equations of motion of a substance (the hydrodynamic equations). These results are as follows: (1) the force acting on a unit volume of a motionless substance is given by the sum of the Helmholtz force and the Abraham force; (2) the momentum density of an electromagnetic field is the Umov-Poynting vector divided by c2, and (3) the stress tensor related to the field coincides in its form with the sum of the stress tensor of the electrostatic field and the stress tensor of the magnetostatic field. Thus, it is proved that the symmetric form of the Abraham tensor stands for the energy-momentum tensor of an electromagnetic field in a motionless medium.

  7. Cardiac torsion and electromagnetic fields: the cardiac bioinformation hypothesis.

    PubMed

    Burleson, Katharine O; Schwartz, Gary E

    2005-01-01

    Although in physiology the heart is often referred to as a simple piston pump, there are in fact two additional features that are integral to cardiac physiology and function. First, the heart as it contracts in systole, also rotates and produces torsion due to the structure of the myocardium. Second, the heart produces a significant electromagnetic field with each contraction due to the coordinated depolarization of myocytes producing a current flow. Unlike the electrocardiogram, the magnetic field is not limited to volume conduction and extends outside the body. The therapeutic potential for interaction of this cardioelectromagnetic field both within and outside the body is largely unexplored. It is our hypothesis that the heart functions as a generator of bioinformation that is central to normative functioning of body. The source of this bioinformation is based on: (1) vortex blood flow in the left ventricle; (2) a cardiac electromagnetic field and both; (3) heart sounds; and (4) pulse pressure which produce frequency and amplitude information. Thus, there is a multidimensional role for the heart in physiology and biopsychosocial dynamics. Recognition of these cardiac properties may result in significant implications for new therapies for cardiovascular disease based on increasing cardiac energy efficiency (coherence) and bioinformation from the cardioelectromagnetic field. Research studies to test this hypothesis are suggested.

  8. Controlling Metamaterial Field Enhancement at Terahertz Frequencies

    NASA Astrophysics Data System (ADS)

    Keiser, George; Seren, Huseyin; Zhang, Xin; Averitt, Richard

    2013-03-01

    With the advent of metamaterials has come an unprecedented ability to manipulate and engineer the index of refraction, n, and impedance, Z of materials. Engineering these far field properties has led to exciting developments such as negative index materials, electromagnetic cloaks, and perfect lensing. However, metamaterials can also be used to engineer designer microscopic charge distributions, current distributions, and polarizabilities. For instance, the on-resonance charge distribution in the capacitive gap of a split ring resonator (SRR) creates a localized region of high electric field enhancement that has seen prominent application in recent work. Here, we present a method to tune the magnitude of this resonant electric field enhancement. Via structural manipulation of the coupling between the SRR and a non-resonant closed conducting ring, we are able to increase and decrease the oscillator strength of the SRR and thus the field enhancement in the SRR's capacitive gap. We present numerical simulations and experimental measurements at terahertz frequencies to confirm this result.

  9. Electromagnetic enhancement by a periodic array of nanogrooves in a metallic substrate.

    PubMed

    Zhang, Siwen; Liu, Haitao; Mu, Guoguang

    2011-05-01

    We present comprehensive investigations of the electromagnetic enhancement by a periodic array of rectangular nanogrooves in a metallic substrate. The impacts of array parameters and of illumination conditions on the enhanced electric-field intensity are explored using fully vectorial methods. The calculations are performed mainly for gold and for the visible and infrared wavelengths. The fully vectorial results are reproduced and explained by a simple Fabry-Perot model. Compared with the case of a single groove, the electric-field enhancement of the groove array is found to be much higher by almost 1 order of magnitude, which is shown to be related to the excitation of surface plasmon polaritons with the aid of the model. Practical considerations of a finite groove number and of a finite groove length are also provided.

  10. Human disease resulting from exposure to electromagnetic fields.

    PubMed

    Carpenter, David O

    2013-01-01

    Electromagnetic fields (EMFs) include everything from cosmic rays through visible light to the electric and magnetic fields associated with electricity. While the high frequency fields have sufficient energy to cause cancer, the question of whether there are human health hazards associated with communication radiofrequency (RF) EMFs and those associated with use of electricity remains controversial. The issue is more important than ever given the rapid increase in the use of cell phones and other wireless devices. This review summarizes the evidence stating that excessive exposure to magnetic fields from power lines and other sources of electric current increases the risk of development of some cancers and neurodegenerative diseases, and that excessive exposure to RF radiation increases risk of cancer, male infertility, and neurobehavioral abnormalities. The relative impact of various sources of exposure, the great range of standards for EMF exposure, and the costs of doing nothing are also discussed.

  11. Human disease resulting from exposure to electromagnetic fields.

    PubMed

    Carpenter, David O

    2013-01-01

    Electromagnetic fields (EMFs) include everything from cosmic rays through visible light to the electric and magnetic fields associated with electricity. While the high frequency fields have sufficient energy to cause cancer, the question of whether there are human health hazards associated with communication radiofrequency (RF) EMFs and those associated with use of electricity remains controversial. The issue is more important than ever given the rapid increase in the use of cell phones and other wireless devices. This review summarizes the evidence stating that excessive exposure to magnetic fields from power lines and other sources of electric current increases the risk of development of some cancers and neurodegenerative diseases, and that excessive exposure to RF radiation increases risk of cancer, male infertility, and neurobehavioral abnormalities. The relative impact of various sources of exposure, the great range of standards for EMF exposure, and the costs of doing nothing are also discussed. PMID:24280284

  12. Instability-driven electromagnetic fields in coronal plasmas

    SciTech Connect

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; Delettrez, J.; Meyerhofer, D. D.

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature and density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.

  13. Instability-driven electromagnetic fields in coronal plasmas

    DOE PAGES

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; et al

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature andmore » density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.« less

  14. ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.

    SciTech Connect

    BELEGGIA,M.; POZZI, G.; TONOMURA, A.

    2007-01-01

    It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.

  15. Cosmological magnetic fields from inflation in extended electromagnetism

    SciTech Connect

    Beltran Jimenez, Jose; Maroto, Antonio L.

    2011-01-15

    In this work we consider an extended electromagnetic theory in which the scalar state which is usually eliminated by means of the Lorenz condition is allowed to propagate. This state has been shown to generate a small cosmological constant in the context of standard inflationary cosmology. Here we show that the usual Lorenz gauge-breaking term now plays the role of an effective electromagnetic current. Such a current is generated during inflation from quantum fluctuations and gives rise to a stochastic effective charge density distribution. Because of the high electric conductivity of the cosmic plasma after inflation, the electric charge density generates currents which give rise to both vorticity and magnetic fields on sub-Hubble scales. Present upper limits on vorticity coming from temperature anisotropies of the CMB are translated into lower limits on the present value of cosmic magnetic fields. We find that, for a nearly scale invariant vorticity spectrum, magnetic fields B{sub {lambda}>}10{sup -12} G are typically generated with coherence lengths ranging from subgalactic scales up to the present Hubble radius. Those fields could act as seeds for a galactic dynamo or even account for observations just by collapse and differential rotation of the protogalactic cloud.

  16. Study on Zeeman-split spoof surface plasmon polaritons by use of spin-sensitive enhanced electromagnetic transmission

    SciTech Connect

    Wu, Li-Ting; Guo, Rui-Peng; Guo, Tian-Jing; Yang, Mu; Cui, Hai-Xu; Cao, Xue-Wei; Chen, Jing

    2014-12-21

    Structured metal surfaces could support spoof surface plasmon polaritons (SPPs), the dispersion of which is determined by the cutoff condition of guided modes in the nanostructures. We show that we can achieve split spoof SPPs by breaking the degeneracy of guided helical modes in concentric nanostructures via the classic analogue of the Zeeman effect. This split effect is shown to be observable from the spectra of enhanced electromagnetic transmission. Spin-sensitive enhanced electromagnetic transmission and the associated characteristics of field are investigated. Transmission branches versus parallel wavevector can be satisfactorily fitted by using the dispersion of spoof SPPs.

  17. MUSIC electromagnetic imaging with enhanced resolution for small inclusions

    NASA Astrophysics Data System (ADS)

    Chen, Xudong; Zhong, Yu

    2009-01-01

    This paper investigates the influence of the test dipole on the resolution of the multiple signal classification (MUSIC) imaging method applied to the electromagnetic inverse scattering problem of determining the locations of a collection of small objects embedded in a known background medium. Based on the analysis of the induced electric dipoles in eigenstates, an algorithm is proposed to determine the test dipole that generates a pseudo-spectrum with enhanced resolution. The amplitudes in three directions of the optimal test dipole are not necessarily in phase, i.e., the optimal test dipole may not correspond to a physical direction in the real three-dimensional space. In addition, the proposed test-dipole-searching algorithm is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC does not apply.

  18. A review on Electromagnetic fields (EMFs) and the reproductive system.

    PubMed

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-07-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted. PMID:27648194

  19. A review on Electromagnetic fields (EMFs) and the reproductive system

    PubMed Central

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-01-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted.

  20. A review on Electromagnetic fields (EMFs) and the reproductive system.

    PubMed

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-07-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted.

  1. A review on Electromagnetic fields (EMFs) and the reproductive system

    PubMed Central

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-01-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted. PMID:27648194

  2. Computational Electromagnetic Modeling of Optical Responses in Plasmonically Enhanced Nanoscale Devices Fabricated with Nanomasking Technique

    NASA Astrophysics Data System (ADS)

    Novak, Eric; Debu, Desalegn; Saylor, Cameron; Herzog, Joseph

    2015-03-01

    This work computationally explores plasmonic nanoscale devices fabricated with a recently developed nanomasking technique that is based on the self-aligned process. Computational electromagnetic modeling has determined enhancement factors and the plasmonic and optical properties of these structures. The nanomasking technique is a new process that is employed to overcome the resolution limits of traditional electron beam lithography and can also be used to increase resolution in photolithography fabrication as well. This technique can consistently produce accurate features with nanostructures and gaps smaller than 10 nm. These smaller dimensions can allow for increased and more localized plasmonically enhanced electric fields. These unique metal devices encompass tunable, enhanced plasmonic and optical properties that can be useful in a wide range of applications. Finite element methods are used to approximate the electromagnetic responses, giving the ability to alter the designs and dimensions in order to optimize the enhancement. Ultimately, we will fabricate devices and characterize the plasmonic properties with optical techniques, including dark-field spectroscopy, to confirm the properties with the goal of generating more efficient devices.

  3. Dynamics of Cometary Dust Particles in Electromagnetic Radiation Fields

    NASA Astrophysics Data System (ADS)

    Herranen, Joonas; Markkanen, Johannes; Penttilä, Antti; Muinonen, Karri

    2016-10-01

    The formation of cometary dust tails and comae is based on solar radiation pressure. The pressure effects of electromagnetic radiation were originally conceptualized in Kepler's observations of the tails of comets and formulated mathematically by Maxwell in 1873. Today, the dynamics of cometary dust are known to be governed by gravity, electromagnetic forces, drag, solar wind, and solar radiation pressure.Solar radiation pressure has its roots in absorption, emission, and scattering of electromagnetic radiation. Due to modern advances in so-called integral equation methods in electromagnetics, a new approach of studying the effect of radiation pressure on cometary dust dynamics can be constructed. We solve the forces and torques due to radiation pressure for an arbitrarily shaped dust particle using volume integral equation methods.We then present a framework for solving the equations of motion of cometary dust particles due to radiative interactions. The solution is studied in a simplified cometary environment, where the radiative effects are studied at different orbits. The rotational and translational equations of motion are solved directly using a quaternion-based integrator. The rotational and translational equations of motion affect dust particle alignment and concentration. This is seen in the polarization of the coma. Thus, our direct dynamical approach can be used in modelling the observed imaging photo-polarimetry of the coma.In future studies, the integrator can be further extended to an exemplary comet environment, taking into account the drag, and the electric and magnetic fields. This enables us to study the dynamics of a single cometary dust particle based on fundamental physics.Acknowledgments. Research supported, in part, bythe European Research Council (ERC, grant Nr. 320773).

  4. [Radio Frequency Electromagnetic Field Effect on the State of Na+/Ca2+ Exchange in the Isolated Rat Heart].

    PubMed

    Alabovsky, V V; Kudryshov, Yu B; Vinokurov, A A; Bogacheva, E V; Maslov, O V; Perov, S Yu

    2016-01-01

    It has been shown that a single exposure to 171 MHz electromagnetic field with 180 V/m electric field strength and 0.04 mW/kg specific absorption rate significantly alters the Na+/Ca2+ exchange in the isolated rat heart. It is assumed that enhancement of the Na+/Ca2+ exchange towards removing Ca2+ from the cardiomyocytes electromagnetic field exposure is a result of Ca2+ extraction from the sarcoplasmic reticulum and the increase of its intracellular level. PMID:27534068

  5. An Optimization of Pulsed ElectroMagnetic Fields Study

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  6. [Biological effects of exposure to electromagnetic fields: introduction].

    PubMed

    Pira, E

    2003-01-01

    A widespread agreement on the presence, if any, of an association between non deterministic effects and exposure to electromagnetic fields (ELF and RF-MW) has not been reached yet. Some critical points of the pooled analyses of data that lead to the conclusion of the International Agency for Research on Cancer (IARC) are examined. While waiting for more well planned scientific studies, it seems important for scientific experts to give the most sober interpretation of current data, considering the widespread and growing attention of the general population for this subject.

  7. Bray-Liebhafsky oscillatory reaction in the radiofrequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Stanisavljev, Dragomir R.; Velikić, Zoran; Veselinović, Dragan S.; Jacić, Nevena V.; Milenković, Maja C.

    2014-09-01

    Oscillatory Bray-Liebhafsky (BL) reaction is capacitively coupled with the electromagnetic radiation in the frequency range 60-110 MHz. Because of the specific reaction dynamics characterized by several characteristic parameters (induction period, period between chemical oscillations and their amplitude) it served as a good model system for the investigation of the effects of radiofrequent (RF) radiation. RF power of up to 0.2 W did not produce observable changes of the BL reaction parameters in the limit of the experiment reproductivity. Results indicate that, under the given experimental conditions, both dissipative and reactive properties of the solution are not considerably coupled with the RF electrical field.

  8. Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.

    2000-01-01

    This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.

  9. Healing of Chronic Wounds through Systemic Effects of Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Cañedo, L.; Trigos, I.; García-Cantú, R.; Godina-Nava, J. J.; Serrano, G.

    2002-08-01

    Extremely low frequency electromagnetic fields (ELF) were configured to interact with peripheral blood mononuclear cells (PBMC). These ELF were applied in the arm to five patients with chronic wounds resistant to medical and surgical treatment. Wound healing began in all patients during the first two weeks after ELF exposure permiting their previously unresponsive chronic wounds to function as internal controls. All lesions were cured or healed >70% in less than four months. Systemic effects were explained by ELF activation of PBMC and their transportation through the blood to the affected site. This therapy is effective in selected patients with chronic wounds.

  10. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields

    PubMed Central

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers’ exposure to the electromagnetic field have been considered: workers’ body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards. PMID:26323781

  11. Electromagnetic field tapering using all-dielectric gradient index materials

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-07-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.

  12. Electromagnetic field tapering using all-dielectric gradient index materials

    PubMed Central

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-01-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes. PMID:27464989

  13. Electromagnetic field tapering using all-dielectric gradient index materials.

    PubMed

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-01-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes. PMID:27464989

  14. Weak scattering of scalar and electromagnetic random fields

    NASA Astrophysics Data System (ADS)

    Tong, Zhisong

    This dissertation encompasses several studies relating to the theory of weak potential scattering of scalar and electromagnetic random, wide-sense statistically stationary fields from various types of deterministic or random linear media. The proposed theory is largely based on the first Born approximation for potential scattering and on the angular spectrum representation of fields. The main focus of the scalar counterpart of the theory is made on calculation of the second-order statistics of scattered light fields in cases when the scattering medium consists of several types of discrete particles with deterministic or random potentials. It is shown that the knowledge of the correlation properties for the particles of the same and different types, described with the newly introduced pair-scattering matrix, is crucial for determining the spectral and coherence states of the scattered radiation. The approach based on the pair-scattering matrix is then used for solving an inverse problem of determining the location of an "alien" particle within the scattering collection of "normal" particles, from several measurements of the spectral density of scattered light. Weak scalar scattering of light from a particulate medium in the presence of optical turbulence existing between the scattering centers is then approached using the combination of the Born's theory for treating the light interaction with discrete particles and the Rytov's theory for light propagation in extended turbulent medium. It is demonstrated how the statistics of scattered radiation depend on scattering potentials of particles and the power spectra of the refractive index fluctuations of turbulence. This theory is of utmost importance for applications involving atmospheric and oceanic light transmission. The second part of the dissertation includes the theoretical procedure developed for predicting the second-order statistics of the electromagnetic random fields, such as polarization and linear momentum

  15. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems.

    PubMed

    Pan, Liang; Huang, Yingzhou; Yang, Yanna; Xiong, Wen; Chen, Guo; Su, Xun; Wei, Hua; Wang, Shuxia; Wen, Weijia

    2015-01-01

    For the novel interpretation of Raman spectrum from molecule at metal surface, the plasmon driven surface catalysis (PDSC) reactions have become an interesting topic in the research field of surface enhanced Raman scattering (SERS). In this work, the selective PDSC reactions of p,p'-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) or 4-nitrobenzenethiol (4NBT) were demonstrated in the Ag nanowires dimer-Au film systems. The different SERS spectra collected at individual part and adjacent part of the same nanowire-film system pointed out the importance of the electromagnetic field redistribution induced by image charge on film in this selective surface catalysis, which was confirmed by the simulated electromagnetic simulated electro- magnetic field distributions. Our result indicated this electromagnetic field redistribution induced selective surface catalysis was largely affected by the polarization and wavelength of incident light but slightly by the difference in diameters between two nanowires. Our work provides a further understanding of PDSC reaction in metal nanostructure and could be a deep support for the researches on surface catalysis and surface analysis.

  16. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems

    PubMed Central

    Pan, Liang; Huang, Yingzhou; Yang, Yanna; Xiong, Wen; Chen, Guo; Su, Xun; Wei, Hua; Wang, Shuxia; Wen, Weijia

    2015-01-01

    For the novel interpretation of Raman spectrum from molecule at metal surface, the plasmon driven surface catalysis (PDSC) reactions have become an interesting topic in the research field of surface enhanced Raman scattering (SERS). In this work, the selective PDSC reactions of p,p’-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) or 4-nitrobenzenethiol (4NBT) were demonstrated in the Ag nanowires dimer-Au film systems. The different SERS spectra collected at individual part and adjacent part of the same nanowire-film system pointed out the importance of the electromagnetic field redistribution induced by image charge on film in this selective surface catalysis, which was confirmed by the simulated electromagnetic simulated electro- magnetic field distributions. Our result indicated this electromagnetic field redistribution induced selective surface catalysis was largely affected by the polarization and wavelength of incident light but slightly by the difference in diameters between two nanowires. Our work provides a further understanding of PDSC reaction in metal nanostructure and could be a deep support for the researches on surface catalysis and surface analysis. PMID:26601698

  17. Basics of quantum field theory of electromagnetic interaction processes in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Hieu Nguyen, Van

    2016-09-01

    The content of this work is the study of electromagnetic interaction in single-layer graphene by means of the perturbation theory. The interaction of electromagnetic field with Dirac fermions in single-layer graphene has a peculiarity: Dirac fermions in graphene interact not only with the electromagnetic wave propagating within the graphene sheet, but also with electromagnetic field propagating from a location outside the graphene sheet and illuminating this sheet. The interaction Hamiltonian of the system comprising electromagnetic field and Dirac fermions fields contains the limits at graphene plane of electromagnetic field vector and scalar potentials which can be shortly called boundary electromagnetic field. The study of S-matrix requires knowing the limits at graphene plane of 2-point Green functions of electromagnetic field which also can be shortly called boundary 2-point Green functions of electromagnetic field. As the first example of the application of perturbation theory, the second order terms in the perturbative expansions of boundary 2-point Green functions of electromagnetic field as well as of 2-point Green functions of Dirac fermion fields are explicitly derived. Further extension of the application of perturbation theory is also discussed.

  18. Computation of transient electromagnetic fields radiated by transmission line: An exact model

    SciTech Connect

    Shi, R.S.; Darcherif, A.; Sabonnadiere, J.C.

    1995-07-01

    A novel time domain analytical method for predicting electromagnetic field transients resulting from power line switching operations is presented in this paper. This method, which is directly derived from electromagnetic field theory of a power transmission line, allows the field transients to be accurately and efficiently calculated. It will be shown that conventional numerical methods for computing transmission line transient electromagnetic fields are in fact degenerative approximate models for this analytical method.

  19. The use of electromagnetic body forces to enhance the quality of laser welds

    NASA Astrophysics Data System (ADS)

    Ambrosy, Guenter; Berger, P.; Huegel, H.; Lindenau, D.

    2003-11-01

    The use of electromagnetic body forces in laser beam welding of aluminum alloys is a new method to shape the geometry and to enhance the quality of the weld seams. In this new approach, electromagnetic volume forces are utilized by applying magnetic fields and electric currents of various origins. Acting in the liquid metal, they directly affect the flow field and can lead to favourable conditions for the melt dynamics and energy coupling. Numerous welds with full and partial penetration using both CO2 and Nd:YAG lasers demonstrate that this method directly influences the seam geometry and top-bead topography as well as the penetration depth and the evolution of pores and cracks. In the case of full penetration, it is also possible to lift or to lower the weld pool. The method, therefore, can be used to shape the geometry and to enhance the quality of the weld seam. Depending on the orientation of an external magnetic field, significant impacts are achieved in CO2 welding, even without an external current: the shape of the cross-sectional area can be increased of up to 50% and also the seam width is changed. Whereas for such conditions with Nd:YAG lasers no significant effect could be observed, it turned out that, when an external electric current is applied, similar effects are present with both wavelengths. In further investigations, the effect of electromagnetic body forces resulting from the interaction of an external current and its self-induced magnetic field was studied. Hereby, the current was fed into the workpiece via a tungsten electrode or a filler wire. The resulting phenomena are the same independent from wavelength and means of current feed.

  20. Quantum Mechanics Action of ELF Electromagnetic Fields on Living Organisms

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.

    2010-10-01

    There is presently an intense discussion if extremely low frequency electromagnetic field (ELF-EMF) exposure has consequences for human health. This include exposure to structures and appliances from this range of frequency in the electromagnetic (EM) spectrum. Biological effects of such exposures have been noted frequently, although the implications for specific health effects is not that clear. The basic interactions mechanisms between such fields and living matter is unknown. Numerous hypotheses have been suggested, although none is convincingly supported by experimental data. Various cellular components, processes, and systems can be affected by EMF exposure. Since it is unlikely that EMF can induce DNA damage directly, most studies have examined EMF effects on the cell membrane level, general and specific gene expression, and signal transduction pathways. Even more, a large number of studies have been performed regarding cell proliferation, cell cycle regulation, cell differentiation, metabolism, and various physiological characteristics of cells. The aim of this letter is present the hypothesis of a possible quantum mechanic effect generated by the exposure of ELF EMF, an event which is compatible with the multitude of effects observed after exposure. Based on an extensive literature review, we suggest that ELF EMF exposure is able to perform such activation restructuring the electronic level of occupancy of free radicals in molecules interacting with DNA structures.

  1. Introduction to Electromagnetic Fields and Geodesics in a Tokamak

    NASA Astrophysics Data System (ADS)

    Sharma, Stephen

    Photons mediate electromagnetic radiation such that electric and magnetic particles obey the principle of least action from the applied fields. Elastic and inelastic collisions arise after summation of Lagrangian geodesics. In the case of reacting tritium and deuterium, energy is released in the form of electromagnetic radiation, neutrons, and alpha particles. Within fusion tokamaks, alpha particle energies determine if a self sustaining reaction--or ignition--will proceed. If particle mean free path is confined by electric and magnetic fields, then fusion occurs at higher frequencies. If temperature is increased and particle velocity is increased, then collision frequency increases. Modeling the nucleons as polarizable quark dielectric liquid drops increases differentiation between scattering events and fusion. When the cross section of two reactant liquid drops is coincident, fusion occurs. If cross sections do not overlap sufficiently, Coulomb scattering occurs. One strives for understanding of geometric approaches to solving for reactants' cross sections and fusion collision frequency in order to determine power output per particle and critical density of reactants.

  2. Nonstationary random acoustic and electromagnetic fields as wave diffusion processes

    NASA Astrophysics Data System (ADS)

    Arnaut, L. R.

    2007-07-01

    We investigate the effects of relatively rapid variations of the boundaries of an overmoded cavity on the stochastic properties of its interior acoustic or electromagnetic field. For quasi-static variations, this field can be represented as an ideal incoherent and statistically homogeneous isotropic random scalar or vector field, respectively. A physical model is constructed showing that the field dynamics can be characterized as a generalized diffusion process. The Langevin-It\\hato and Fokker-Planck equations are derived and their associated statistics and distributions for the complex analytic field, its magnitude and energy density are computed. The energy diffusion parameter is found to be proportional to the square of the ratio of the standard deviation of the source field to the characteristic time constant of the dynamic process, but is independent of the initial energy density, to first order. The energy drift vanishes in the asymptotic limit. The time-energy probability distribution is in general not separable, as a result of nonstationarity. A general solution of the Fokker-Planck equation is obtained in integral form, together with explicit closed-form solutions for several asymptotic cases. The findings extend known results on statistics and distributions of quasi-stationary ideal random fields (pure diffusions), which are retrieved as special cases. A summary of selected results in this paper appeared in [1].

  3. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    PubMed Central

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-01-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation. PMID:27634482

  4. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-09-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.

  5. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study.

    PubMed

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-01-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation. PMID:27634482

  6. Electromagnetic fields and the induction of DNA strand breaks.

    PubMed

    Ruiz-Gómez, Miguel J; Martínez-Morillo, Manuel

    2009-01-01

    The International Agency for Research on Cancer (IARC) has classified the extremely low-frequency (ELF) electromagnetic fields (EMF) as "possible carcinogenic" based on the reported effects. The purpose of this work is to review and compare the recent findings related to the induction of DNA strand breaks (DNA-SB) by magnetic field (MF) exposure. We found 29 studies (genotoxic and epigenetic) about the induction of DNA-SB by MF. 50% showed effect of MF and 50% showed no DNA-SB. Nevertheless, considering only genotoxic or only epigenetic studies, 37.5% and 69.2% found induction of DNA-SB by MF, respectively. In relation to these data it seems that MF could act as a co-inductor of DNA damage rather than as a genotoxic agent per se. Nevertheless, the published results, in some cases conflicting with negative findings, do not facilitate to obtain a common consensus about MF effects and biophysical interaction mechanisms.

  7. Electromagnetic field limits set by the V-Curve.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Hudson, Howard Gerald

    2014-07-01

    When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.

  8. Theory of a ring laser. [electromagnetic field and wave equations

    NASA Technical Reports Server (NTRS)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1973-01-01

    Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.

  9. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, Robert P.

    1993-01-01

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  10. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1977-01-01

    The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  11. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, R.P.

    1993-03-02

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C. The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  12. Extremely low frequency electromagnetic fields and cancer: The epidemiologic evidence

    SciTech Connect

    Bates, M.N. )

    1991-11-01

    This paper reviews the epidemiologic evidence that low frequency electromagnetic fields generated by alternating current may be cause of cancer. Studies examining residential exposures of children and adults and studies of electrical and electronics workers are reviewed. Using conventional epidemiologic criteria for inferring causal associations, including strength and consistency of the relationship, biological plausibility, and the possibility of bias as an explanation, it is concluded that the evidence is strongly suggestive that such radiation is carcinogenic. The evidence is strongest for brain and central nervous system cancers in electrical workers and children. Weaker evidence supports an association with leukemia in electrical workers. Some evidence also exists for an association with melanoma in electrical workers. Failure to find consistent evidence of a link between residential exposures and adult cancers may be attributable to exposure misclassification. Studies so far have used imperfect surrogates for any true biologically effective magnetic field exposure. The resulting exposure misclassification has produced relative risk estimates that understate any true risk.

  13. Adaptive framework for uncertainty analysis in electromagnetic field measurements.

    PubMed

    Prieto, Javier; Alonso, Alonso A; de la Rosa, Ramón; Carrera, Albano

    2015-04-01

    Misinterpretation of uncertainty in the measurement of the electromagnetic field (EMF) strength may lead to an underestimation of exposure risk or an overestimation of required measurements. The Guide to the Expression of Uncertainty in Measurement (GUM) has internationally been adopted as a de facto standard for uncertainty assessment. However, analyses under such an approach commonly assume unrealistic static models or neglect relevant prior information, resulting in non-robust uncertainties. This study proposes a principled and systematic framework for uncertainty analysis that fuses information from current measurements and prior knowledge. Such a framework dynamically adapts to data by exploiting a likelihood function based on kernel mixtures and incorporates flexible choices of prior information by applying importance sampling. The validity of the proposed techniques is assessed from measurements performed with a broadband radiation meter and an isotropic field probe. The developed framework significantly outperforms GUM approach, achieving a reduction of 28% in measurement uncertainty.

  14. Cell membrane thermal gradients induced by electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Garner, Allen L.; Deminsky, Maxim; Bogdan Neculaes, V.; Chashihin, V.; Knizhnik, Andrey; Potapkin, Boris

    2013-06-01

    While electromagnetic fields induce structural changes in cell membranes, particularly electroporation, much remains to be understood about membrane level temperature gradients. For instance, microwaves induce cell membrane temperature gradients (∇T) and bioeffects with little bulk temperature change. Recent calculations suggest that nanosecond pulsed electric fields (nsPEFs) may also induce such gradients that may additionally impact the electroporation threshold. Here, we analytically and numerically calculate the induced ∇T as a function of pulse duration and pulse repetition rate. We relate ∇T to the thermally induced cell membrane electric field (Em) by assuming the membrane behaves as a thermoelectric such that Em ˜ ∇T. Focusing initially on applying nsPEFs to a uniform membrane, we show that reducing pulse duration and increasing pulse repetition rate (or using higher frequency for alternating current (AC) fields) maximizes the magnitude and duration of ∇T and, concomitantly, Em. The maximum ∇T initially occurs at the interface between the cell membrane and extracellular fluid before becoming uniform across the membrane, potentially enabling initial molecular penetration and subsequent transport across the membrane. These results, which are equally applicable to AC fields, motivate further studies to elucidate thermoelectric behavior in a model membrane system and the coupling of the Em induced by ∇T with that created directly by the applied field.

  15. Simultaneous Electromagnetic Tracking and Calibration for Dynamic Field Distortion Compensation.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2016-08-01

    Electromagnetic (EM) tracking systems are highly susceptible to field distortion. The interference can cause measurement errors up to a few centimeters in clinical environments, which limits the reliability of these systems. Unless corrected for, this measurement error imperils the success of clinical procedures. It is therefore fundamental to dynamically calibrate EM tracking systems and compensate for measurement error caused by field distorting objects commonly present in clinical environments. We propose to combine a motion model with observations of redundant EM sensors and compensate for field distortions in real time. We employ a simultaneous localization and mapping technique to accurately estimate the pose of the tracked instrument while creating the field distortion map. We conducted experiments with six degrees-of-freedom motions in the presence of field distorting objects in research and clinical environments. We applied our approach to improve the EM tracking accuracy and compared our results to a conventional sensor fusion technique. Using our approach, the maximum tracking error was reduced by 67% for position measurements and by 64% for orientation measurements. Currently, clinical applications of EM trackers are hampered by the adverse distortion effects. Our approach introduces a novel method for dynamic field distortion compensation, independent from preoperative calibrations or external tracking devices, and enables reliable EM navigation for potential applications. PMID:26595908

  16. A. A. Ukhtomskii's dominance principle of brain activity in the perception of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Kholodov, Yu. A.

    1994-01-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a “placebo” or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.

  17. A. A. Ukhtomskii`s dominance principle of brain activity in the perception of electromagnetic fields

    SciTech Connect

    Kholodov, Yu.A.

    1994-07-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a {open_quotes}placebo{close_quotes} or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.

  18. Surface plasmon field enhancements in deterministic aperiodic structures.

    PubMed

    Shugayev, Roman

    2010-11-22

    In this paper we analyze optical properties and plasmonic field enhancements in large aperiodic nanostructures. We introduce extension of Generalized Ohm's Law approach to estimate electromagnetic properties of Fibonacci, Rudin-Shapiro, cluster-cluster aggregate and random deterministic clusters. Our results suggest that deterministic aperiodic structures produce field enhancements comparable to random morphologies while offering better understanding of field localizations and improved substrate design controllability. Generalized Ohm's law results for deterministic aperiodic structures are in good agreement with simulations obtained using discrete dipole method.

  19. Probing intergalactic magnetic fields with simulations of electromagnetic cascades

    NASA Astrophysics Data System (ADS)

    Alves Batista, Rafael; Saveliev, Andrey; Sigl, Günter; Vachaspati, Tanmay

    2016-10-01

    We determine the effect of intergalactic magnetic fields on the distribution of high-energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called "Large Sphere Observer" method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q -statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S -statistics. Both methods provide a quantitative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B ≳10-15 G and magnetic coherence lengths Lc≳100 Mpc . We show that the S -statistics has a better performance than the Q -statistics when assessing magnetic helicity from the simulated halos.

  20. Mechanisms of biological effects of radiofrequency electromagnetic fields: an overview.

    PubMed

    Erwin, D N

    1988-11-01

    Manmade sources of electromagnetic (EM) fields, and therefore human exposures to them, continue to increase. Public concerns stem from the effects reported in the literature, the visibility of the sources, and somewhat from confusion between EM fields and ionizing radiation. Protecting humans from the real hazards and allaying groundless fears requires a self-consistent body of scientific data concerning effects of the fields, levels of exposures which cause those effects, and which effects are deleterious (or beneficial or neutral). With that knowledge, appropriate guidelines for safety can be devised, while preserving the beneficial uses of radiofrequency radiation (RFR) energy for military or civilian purposes. The task is monumental because of the large and growing number of biological endpoints and the infinite array of RFR exposure conditions under which those endpoints might be examined. The only way to reach this goal is to understand the mechanisms by which EM fields interact with tissues. As in other fields of science, a mechanistic understanding of RFR effects will enable scientists to generalize from a selected few experiments to derive the "laws" of RFR bioeffects. This article gives an overview of present knowledge of those mechanisms and the part that the USAF School of Aerospace Medicine has played in expanding that knowledge.

  1. Setting prudent public health policy for electromagnetic field exposures.

    PubMed

    Carpenter, David O; Sage, Cindy

    2008-01-01

    Electromagnetic fields (EMF) permeate our environment, coming both from such natural sources as the sun and from manmade sources like electricity, communication technologies and medical devices. Although life on earth would not be possible without sunlight, increasing evidence indicates that exposures to the magnetic fields associated with electricity and to communication frequencies associated with radio, television, WiFi technology, and mobile cellular phones pose significant hazards to human health. The evidence is strongest for leukemia from electricity-frequency fields and for brain tumors from communication-frequency fields, yet evidence is emerging for an association with other diseases as well, including neurodegenerative diseases. Some uncertainty remains as to the mechanism(s) responsible for these biological effects, and as to which components of the fields are of greatest importance. Nevertheless, regardless of whether the associations are causal, the strengths of the associations are sufficiently strong that in the opinion of the authors, taking action to reduce exposures is imperative, especially for the fetus and children. Inaction is not compatible with the Precautionary Principle, as enunciated by the Rio Declaration. Because of ubiquitous exposure, the rapidly expanding development of new EMF technologies and the long latency for the development of such serious diseases as brain cancers, the failure to take immediate action risks epidemics of potentially fatal diseases in the future. PMID:18763539

  2. Setting prudent public health policy for electromagnetic field exposures.

    PubMed

    Carpenter, David O; Sage, Cindy

    2008-01-01

    Electromagnetic fields (EMF) permeate our environment, coming both from such natural sources as the sun and from manmade sources like electricity, communication technologies and medical devices. Although life on earth would not be possible without sunlight, increasing evidence indicates that exposures to the magnetic fields associated with electricity and to communication frequencies associated with radio, television, WiFi technology, and mobile cellular phones pose significant hazards to human health. The evidence is strongest for leukemia from electricity-frequency fields and for brain tumors from communication-frequency fields, yet evidence is emerging for an association with other diseases as well, including neurodegenerative diseases. Some uncertainty remains as to the mechanism(s) responsible for these biological effects, and as to which components of the fields are of greatest importance. Nevertheless, regardless of whether the associations are causal, the strengths of the associations are sufficiently strong that in the opinion of the authors, taking action to reduce exposures is imperative, especially for the fetus and children. Inaction is not compatible with the Precautionary Principle, as enunciated by the Rio Declaration. Because of ubiquitous exposure, the rapidly expanding development of new EMF technologies and the long latency for the development of such serious diseases as brain cancers, the failure to take immediate action risks epidemics of potentially fatal diseases in the future.

  3. [Methods of dosimetry in evaluation of electromagnetic fields' biological action].

    PubMed

    Rubtsova, N B; Perov, S Iu

    2012-01-01

    Theoretical and experimental dosimetry can be used for adequate evaluation of the effects of radiofrequency electromagnetic fields. In view of the tough electromagnetic environment in aircraft, pilots' safety is of particular topicality. The dosimetric evaluation is made from the quantitative characteristics of the EMF interaction with bio-objects depending on EM energy absorption in a unit of tissue volume or mass calculated as a specific absorbed rate (SAR) and measured in W/kg. Theoretical dosimetry employs a number of computational methods to determine EM energy, as well as the augmented method of boundary conditions, iterative augmented method of boundary conditions, moments method, generalized multipolar method, finite-element method, time domain finite-difference method, and hybrid methods combining several decision plans modeling the design philosophy of navigation, radiolocation and human systems. Because of difficulties with the experimental SAR estimate, theoretical dosimetry is regarded as the first step in analysis of the in-aircraft conditions of exposure and possible bio-effects.

  4. Electromagnetic Form Factors of Hadrons in Quantum Field Theories

    SciTech Connect

    Dominguez, C. A.

    2008-10-13

    In this talk, recent results are presented of calculations of electromagnetic form factors of hadrons in the framework of two quantum field theories (QFT), (a) Dual-Large N{sub c} QCD (Dual-QCD{sub {infinity}}) for the pion, proton, and {delta}(1236), and (b) the Kroll-Lee-Zumino (KLZ) fully renormalizable Abelian QFT for the pion form factor. Both theories provide a QFT platform to improve on naive (tree-level) Vector Meson Dominance (VMD). Dual-QCD{sub {infinity}} provides a tree-level improvement by incorporating an infinite number of zero-width resonances, which can be subsequently shifted from the real axis to account for the time-like behaviour of the form factors. The renormalizable KLZ model provides a QFT improvement of VMD in the framework of perturbation theory. Due to the relative mildness of the {rho}{pi}{pi} coupling, and the size of loop suppression factors, the perturbative expansion is well defined in spite of this being a strong coupling theory. Both approaches lead to considerable improvements of VMD predictions for electromagnetic form factors, in excellent agreement with data.

  5. Pulsed electromagnetic field enhances brain-derived neurotrophic factor expression through L-type voltage-gated calcium channel- and Erk-dependent signaling pathways in neonatal rat dorsal root ganglion neurons.

    PubMed

    Li, Yuan; Yan, Xiaodong; Liu, Juanfang; Li, Ling; Hu, Xinghua; Sun, Honghui; Tian, Jing

    2014-09-01

    Although pulsed electromagnetic field (PEMF) exposure has been reported to promote neuronal differentiation, the mechanism is still unclear. Here, we aimed to examine the effects of PEMF exposure on brain-derived neurotrophic factor (Bdnf) mRNA expression and the correlation between the intracellular free calcium concentration ([Ca(2+)]i) and Bdnf mRNA expression in cultured dorsal root ganglion neurons (DRGNs). Exposure to 50Hz and 1mT PEMF for 2h increased the level of [Ca(2+)]i and Bdnf mRNA expression, which was found to be mediated by increased [Ca(2+)]i from Ca(2+) influx through L-type voltage-gated calcium channels (VGCCs). However, calcium mobilization was not involved in the increased [Ca(2+)]i and BDNF expression, indicating that calcium influx was one of the key factors responding to PEMF exposure. Moreover, PD098059, an extracellular signal-regulated kinase (Erk) inhibitor, strongly inhibited PEMF-dependant Erk1/2 activation and BDNF expression, indicating that Erk activation is required for PEMF-induced upregulation of BDNF expression. These findings indicated that PEMF exposure increased BDNF expression in DRGNs by activating Ca(2+)- and Erk-dependent signaling pathways.

  6. Using strong electromagnetic fields to control x-ray processes.

    SciTech Connect

    Young, L.; Buth, C.; Dunford, R. W.; Ho, P.; Kanter, E. P.; Kraessig, B.; Peterson, E. R.; Rohringer, N.; Santra, R.; Southworth, S. H.

    2010-06-01

    Exploration of a new ultrafast-ultrasmall frontier in atomic and molecular physics has begun. Not only is is possible to control outer-shell electron dynamics with intense ultrafast optical lasers, but now control of inner-shell processes has become possible by combining intense infrared/optical lasers with tunable sources of X-ray radiation. This marriage of strong-field laser and X-ray physics has led to the discovery of methods to control reversibly resonant X-ray absorption in atoms and molecules on ultrafast timescales. Using a strong optical dressing field, resonant X-ray absorption in atoms can be markedly suppressed, yielding an example of electromagnetically induced transparency for x rays. Resonant X-ray absorption can also be controlled in molecules using strong non-resonant, polarized laser fields to align the framework of a molecule, and therefore its unoccupied molecular orbitals to which resonant absorption occurs. At higher laser intensities, ultrafast field ionization produces an irreversible change in X-ray absorption. Finally, the advent of X-ray free electron lasers enables first exploration of non-linear X-ray processes.

  7. The role of electromagnetic fields in neurological disorders.

    PubMed

    Terzi, Murat; Ozberk, Berra; Deniz, Omur Gulsum; Kaplan, Suleyman

    2016-09-01

    In the modern world, people are exposed to electromagnetic fields (EMFs) as part of their daily lives; the important question is "What is the effect of EMFs on human health?" Most previous studies are epidemiological, and we still do not have concrete evidence of EMF pathophysiology. Several factors may lead to chemical, morphological, and electrical alterations in the nervous system in a direct or indirect way. It is reported that non-ionizing EMFs have effects on animals and cells. The changes they bring about in organic systems may cause oxidative stress, which is essential for the neurophysiological process; it is associated with increased oxidization in species, or a reduction in antioxidant defense systems. Severe oxidative stress can cause imbalances in reactive oxygen species, which may trigger neurodegeneration. This review aims to detail these changes. Special attention is paid to the current data regarding EMFs' effects on neurological disease and associated symptoms, such as headache, sleep disturbances, and fatigue.

  8. Retraction: Evaluation of carcinogenic effects of electromagnetic fields (EMF).

    PubMed

    Mehic, Bakir

    2010-11-01

    The Editor-in-chief of the Bosnian Journal of Basic Medical Sciences has decided to retract the article from Bayazit V et al. [1] entitled as: "Evaluation of carcinogenic effects of electromagnetic fields (EMF)" published in Bosn J Basic Med Sci. 2010 Aug;10(3):245-50. After the editorial office was alerted of possible plagiarism in the article, it conducted thorough investigation and concluded that the article apparently represents plagiarized material from two World Health Organization reports, one European Commission report and other sources. Since this is considered scientific plagiarism and scientific misconduct, Editor-in-chief has decided to withdraw the article. The authors have agreed with the editorial office decision.

  9. Electromagnetic field and human health: Revisiting the issue

    SciTech Connect

    Harunuzzaman, M.; Iyyuni, G.

    1995-12-31

    In spite of major research efforts across the globe since this publication`s last article on the subject, the relationship between extremely low-frequency (ELF) electromagnetic fields (EMFs) and human health continues to elude scientists. However, there have been methodological refinements and sharpening of focus in investigating the link between specific health conditions and exposure to EMFs. Recently published scientific studies generally express more confidence in their findings, and more clearly identify limitations to interpreting the findings. However, a definitive answer to the EMF-health effects puzzle is yet to be found. As before, public utility commissions (PUCs) and other public agencies cannot find any clear helpful guidance on how to address the pertinent public health issue.

  10. Finite element modeling of electromagnetic fields and waves using NASTRAN

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  11. The role of electromagnetic fields in neurological disorders.

    PubMed

    Terzi, Murat; Ozberk, Berra; Deniz, Omur Gulsum; Kaplan, Suleyman

    2016-09-01

    In the modern world, people are exposed to electromagnetic fields (EMFs) as part of their daily lives; the important question is "What is the effect of EMFs on human health?" Most previous studies are epidemiological, and we still do not have concrete evidence of EMF pathophysiology. Several factors may lead to chemical, morphological, and electrical alterations in the nervous system in a direct or indirect way. It is reported that non-ionizing EMFs have effects on animals and cells. The changes they bring about in organic systems may cause oxidative stress, which is essential for the neurophysiological process; it is associated with increased oxidization in species, or a reduction in antioxidant defense systems. Severe oxidative stress can cause imbalances in reactive oxygen species, which may trigger neurodegeneration. This review aims to detail these changes. Special attention is paid to the current data regarding EMFs' effects on neurological disease and associated symptoms, such as headache, sleep disturbances, and fatigue. PMID:27083321

  12. Extremely low frequency electromagnetic fields prevent chemotherapy induced myelotoxicity.

    PubMed

    Rossi, Edoardo; Corsetti, Maria Teresa; Sukkar, Samir; Poggi, Claudio

    2007-01-01

    Side effects of chemo-radiotherapy reduce the quality and also the survivability of patients. The consequent fatigue and infections, related to myelodepression, act to reduce the dose-intensity of the protocol. Late side effects of chemo-radiotherapy include secondary tumours, acute myeloid leukemias and cardiotoxicity. Side effects of chemotherapy are related to oxidative stress produced by the treatment. Oxidative stress also reduces the efficacy of the treatment. Antioxidative treatment with natural (dietetic) or chemical agents has been reported to reduce the toxicity of chemo-radiotherapy and improve the efficacy of treatment. We here report our experience with SEQEX, an electromedical device that generates Extremely Low Frequency ElectroMagnetic Fields (ELF-EMF) to produce endogenic cyclotronic ionic resonance, to reduce myelotoxicity consequent to ABVD protocol in patients with Hodgkin's lymphoma.

  13. Electromagnetic field energy density in homogeneous negative index materials.

    PubMed

    Shivanand; Webb, Kevin J

    2012-05-01

    An exact separation of both electric and magnetic energies into stored and lost energies is shown to be possible in the special case when the wave impedance is independent of frequency. A general expression for the electromagnetic energy density in such a dispersive medium having a negative refractive index is shown to be accurate in comparison with numerical results. Using an example metamaterial response that provides a negative refractive index, it is shown that negative time-averaged stored energy can occur. The physical meaning of this negative energy is explained as the energy temporarily borrowed by the field from the material. This observation for negative index materials is of interest when approaching properties for a perfect lens. In the broader context, the observation of negative stored energy is of consequence in the study of dispersive materials. PMID:22712096

  14. Electromagnetic pulse (EMP), Part I: Effects on field medical equipment

    SciTech Connect

    Vandre, R.H.; Klebers, J.; Tesche, F.M.; Blanchard, J.P. )

    1993-04-01

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation has the potential to cover an area as large as the continental United States with damaging levels of EMP radiation. In this study, two of seven items of medical equipment were damaged by an EMP simulator. Computer circuit analysis of 17 different items showed that 11 of the 17 items would be damaged by current surges on the power cords, while two would be damaged by current surges on external leads. This research showed that a field commander can expect approximately 65% of his electronic medical equipment to be damaged by a single nuclear detonation as far as 2,200 km away.

  15. Effects of electromagnetic fields on osteoporosis: A systematic literature review.

    PubMed

    Wang, Rong; Wu, Hua; Yang, Yong; Song, Mingyu

    2016-01-01

    Electromagnetic fields (EMFs) as a safe, effective and noninvasive treatment have been researched and used for many years in orthopedics, and the common use clinically is to promote fracture healing. The effects of EMFs on osteoporosis have not been well concerned. The balance between osteoblast and osteoclast activity as well as the balance between osteogenic differentiation and adipogenic differentiation of bone marrow mesenchymal stem cells plays an important role in the process of osteoporosis. A number of recent reports suggest that EMFs have a positive impact on the balances. In this review, we discuss the recent advances of EMFs in the treatment of osteoporosis from basic research to clinical study and introduce the possible mechanism. In addition, we presented future perspectives of application of EMFs for osteoporosis. PMID:27356174

  16. Evaluation of three-dimensional anisotropic head model for mapping realistic electromagnetic fields of brain tissues

    NASA Astrophysics Data System (ADS)

    Jeong, Woo Chul; Wi, Hun; Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2015-08-01

    Electromagnetic fields provide fundamental data for the imaging of electrical tissue properties, such as conductivity and permittivity, in recent magnetic resonance (MR)-based tissue property mapping. The induced voltage, current density, and magnetic flux density caused by externally injected current are critical factors for determining the image quality of electrical tissue conductivity. As a useful tool to identify bio-electromagnetic phenomena, precise approaches are required to understand the exact responses inside the human body subject to an injected currents. In this study, we provide the numerical simulation results of electromagnetic field mapping of brain tissues using a MR-based conductivity imaging method. First, we implemented a realistic three-dimensional human anisotropic head model using high-resolution anatomical and diffusion tensor MR images. The voltage, current density, and magnetic flux density of brain tissues were imaged by injecting 1 mA of current through pairs of electrodes on the surface of our head model. The current density map of anisotropic brain tissues was calculated from the measured magnetic flux density based on the linear relationship between the water diffusion tensor and the electrical conductivity tensor. Comparing the current density to the previous isotropic model, the anisotropic model clearly showed the differences between the brain tissues. This originates from the enhanced signals by the inherent conductivity contrast as well as the actual tissue condition resulting from the injected currents.

  17. Radiation pressure and the linear momentum of the electromagnetic field.

    PubMed

    Mansuripur, Masud

    2004-11-01

    We derive the force of the electromagnetic radiation on material objects by a direct application of the Lorentz law of classical electrodynamics. The derivation is straightforward in the case of solid metals and solid dielectrics, where the mass density and the optical constants of the media are assumed to remain unchanged under internal and external pressures, and where material flow and deformation can be ignored. For metallic mirrors, we separate the contribution to the radiation pressure of the electrical charge density from that of the current density of the conduction electrons. In the case of dielectric media, we examine the forces experienced by bound charges and currents, and determine the contribution of each to the radiation pressure. These analyses reveal the existence of a lateral radiation pressure inside the dielectric media, one that is exerted at and around the edges of a finite-diameter light beam. The lateral pressure turns out to be compressive for s-polarized light and expansive for p-polarized light. Along the way, we derive an expression for the momentum density of the light field inside dielectric media, one that has equal contributions from the traditional Minkowski and Abraham forms. This new expression for the momentum density, which contains both electromagnetic and mechanical terms, is used to explain the behavior of light pulses and individual photons upon entering and exiting a dielectric slab. In all the cases considered, the net forces and torques experienced by material bodies are consistent with the relevant conservation laws. Our method of calculating the radiation pressure can be used in conjunction with numerical simulations to yield the distribution of fields and forces in diverse systems of practical interest.

  18. Near-field thermal radiation between homogeneous dual uniaxial electromagnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Chang, Jui-Yung; Basu, Soumyadipta; Yang, Yue; Wang, Liping

    2016-06-01

    Recently, near-field thermal radiation has attracted much attention in several fields since it can exceed the Planck blackbody limit through the coupling of evanescent waves. In this work, near-field radiative heat transfer between two semi-infinite dual uniaxial electromagnetic metamaterials with two different material property sets is theoretically analyzed. The near-field radiative heat transfer is calculated using fluctuational electrodynamics incorporated with anisotropic wave optics. The underlying mechanisms, namely, magnetic hyperbolic mode, magnetic surface polariton, electrical hyperbolic mode, and electrical surface polariton, between two homogeneous dual uniaxial electromagnetic metamaterials are investigated by examining the transmission coefficient and the spectral heat flux. The effect of vacuum gap distance is also studied, which shows that the enhancement at smaller vacuum gap is mainly due to hyperbolic mode and surface plasmon polariton modes. In addition, the results show that the contribution of s-polarized waves is significant and should not be excluded due to the strong magnetic response regardless of vacuum gap distances. The fundamental understanding and insights obtained here will facilitate the finding and application of novel materials for near-field thermal radiation.

  19. Electromagnetic field and cylindrical compact objects in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem ul Haq

    2016-05-01

    In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.

  20. Effects of microwave and radio frequency electromagnetic fields on lichens.

    PubMed

    Urech, M; Eicher, B; Siegenthaler, J

    1996-01-01

    The effects of electromagnetic fields on lichens were investigated. Field experiments of long duration (1-3 years) were combined with laboratory experiments and theoretical considerations. Samples of the lichen species Parmelia tiliacea and Hypogymnia physodes were exposed to microwaves (2.45 GHz; 0.2, 5, and 50 mW/cm2; and control). Both species showed a substantially reduced growth rate at 50 mW/cm2. A differentiation between thermal and nonthermal effects was not possible. Temperature measurements on lichens exposed to microwaves (2.45 GHz, 50 mW/cm2) showed a substantial increase in the surface temperature and an accelerated drying process. The thermal effect of microwave on lichens was verified. The exposure of lichens of both species was repeated near a short-wave broadcast transmitter (9.5 MHz, amplitude modulated; maximum field strength 235 V/m, 332 mA/m). No visible effects on the exposed lichens were detected. At this frequency, no thermal effects were expected, and the experimental results support this hypothesis. Theoretical estimates based on climatic data and literature showed that the growth reductions in the initial experiments could very likely have been caused by drying of the lichens from the heating with microwaves. The results of the other experiments support the hypothesis that the response of the lichens exposed to microwaves was mainly due to thermal effects and that there is a low probability of nonthermal effects.

  1. Do the standard expressions for the electromagnetic field momentum need any modifications?

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-10-01

    We investigate here the question raised in the literature about the correct expression for the electromagnetic field momentum, especially when static or stationary fields are involved. For this, we examine a couple of simple but intriguing cases. First, we consider a system configuration in which electromagnetic field momentum is present even though the system is stationary. We trace the electromagnetic momentum to be present in the form of a continuous transport of electromagnetic energy from one part of the system to another, without causing any net change in the energy of the system. In a second case, we show that the electromagnetic momentum is zero irrespective of whether the charged system is static or in motion, even though the electromagnetic energy is present throughout. We demonstrate that the conventional formulation of electromagnetic field momentum describes the systems consistently without any real contradictions. Here, we also make exposition of a curiosity where electromagnetic energy decreases when the charged system gains velocity. Then we discuss the more general question that has been raised: Are the conventional formulas for energy-momentum of electromagnetic fields valid for all cases? Specifically, in the case of so-called "bound fields," do we need to change to some modified definitions? We show that in all cases it is only the conventional formulas that lead to results consistent with the rest of physics, including the special theory of relativity, and that any proposed modifications are thus superfluous.

  2. The non-ionizing electromagnetic field: Derivation of valid biological exposure metrics from Maxwell's equations of electromagnetism

    NASA Astrophysics Data System (ADS)

    Lundquist, Marjorie

    2003-03-01

    Standards for protecting health from exposure to non-ionizing electromagnetic radiation treat the power density (magnitude of Poynting vector) as the biological exposure metric. For a static electric or magnetic field, the presumed metric is field strength. Scientifically valid expressions for such exposure metrics have been derived theoretically [1]. Three regimes exist for which different expressions are obtained: high frequencies (where electric and magnetic fields are tightly coupled), low frequencies (where these fields are separable), and static fields (where time derivatives are zero). Unexpected results are obtained: * There are two exposure metrics: one for thermal, another for athermal effects. * In general, these two metrics are different. Only for a plane wave is the same metric (power density) valid for both effects. * Exposure metrics used today for static fields are invalid! These findings also apply in the ionizing portion of the electromagnetic spectrum. [1] Wireless Phones and Health II: State of the Science. G. Carlo, ed. NY: Kluwer Academic Publishers, 2000; Chapter 4.

  3. Modeling of interactions of electromagnetic fields with human bodies

    NASA Astrophysics Data System (ADS)

    Caputa, Krzysztof

    Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere

  4. [Medical and biologic research of electromagnetic fields in radiofrequencies range. Results and prospects].

    PubMed

    Kaliada, T V; Vishnevskiĭ, A M; Gorodetskiĭ, B N; Plekhanov, V P; Kuznetsov, A V

    2014-01-01

    The authors present research findings on the problem of technology-related electromagnetic fields as an occupational risk factor of workers health disturbances, and on the issue of prevention measures development against this adverse physical factor effects. Prospects for further research development in the field of electromagnetic safety are discussed.

  5. Electromagnetic field generation by ATP-induced reverse electron transfer.

    PubMed

    Steele, Richard H

    2003-03-01

    This paper describes a mechanism to explain low-level light emission in biology. A biological analog of the electrical circuitry, modeled on the parallel plate capacitor, traversed by a helical structure, required to generate electromagnetic radiation in the optical spectral range, is described. The charge carrier required for the emissions is determined to be an accelerating electron driven by an ATP-induced reverse electron transfer. The radial velocity component, the emission trajectory, of the moving charges traversing helical protein structures in a cyclotron-type mechanism is proposed to be imposed by the ferromagnetic field components of the iron in the iron-sulfur proteins. The redox systems NADH, riboflavin, and chlorophyll were examined with their long-wavelength absorption maxima determining the energetic parameters for the calculations. Potentials calculated from the axial velocity components for the riboflavin and NADH systems were found to equal the standard redox potentials of these systems as measured electrochemically and enzymatically. The mechanics for the three systems determined the magnetic moments, the angular momenta, and the orbital magnetic fluxes to be adiabatic invariant parameters. The De Broglie dual wave-particle equation, the fundamental equation of wave mechanics, and the key idea of quantum mechanics, establishes the wavelengths for accelerating electrons which, divided into a given radial velocity, gives its respective emission frequency. Electrons propelled through helical structures, traversed by biologically available electric and magnetic fields, make accessible to the internal environment the optical spectral frequency range that the solar spectrum provides to the external environment.

  6. Error sources affecting thermocouple thermometry in RF electromagnetic fields.

    PubMed

    Chakraborty, D P; Brezovich, I A

    1982-03-01

    Thermocouple thermometry errors in radiofrequency (typically 13, 56 MHZ) electromagnetic fields such as are encountered in hyperthermia are described. RF currents capacitatively or inductively coupled into the thermocouple-detector circuit produce errors which are a combination of interference, i.e., 'pick-up' error, and genuine rf induced temperature changes at the junction of the thermocouple. The former can be eliminated by adequate filtering and shielding; the latter is due to (a) junction current heating in which the generally unequal resistances of the thermocouple wires cause a net current flow from the higher to the lower resistance wire across the junction, (b) heating in the surrounding resistive material (tissue in hyperthermia), and (c) eddy current heating of the thermocouple wires in the oscillating magnetic field. Low frequency theories are used to estimate these errors under given operating conditions and relevant experiments demonstrating these effects and precautions necessary to minimize the errors are described. It is shown that at 13.56 MHz and voltage levels below 100 V rms these errors do not exceed 0.1 degrees C if the precautions are observed and thermocouples with adequate insulation (e.g., Bailey IT-18) are used. Results of this study are being currently used in our clinical work with good success.

  7. Electromagnetically induced transparency resonances inverted in magnetic field

    SciTech Connect

    Sargsyan, A.; Sarkisyan, D. E-mail: david@ipr.sci.am; Pashayan-Leroy, Y.; Leroy, C.; Cartaleva, S.; Wilson-Gordon, A. D.; Auzinsh, M.

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  8. Rapid magnetic microfluidic mixer utilizing AC electromagnetic field.

    PubMed

    Wen, Chih-Yung; Yeh, Cheng-Peng; Tsai, Chien-Hsiung; Fu, Lung-Ming

    2009-12-01

    This paper presents a novel simple micromixer based on stable water suspensions of magnetic nanoparticles (i.e. ferrofluids). The micromixer chip is built using standard microfabrication and simple soft lithography, and the design can be incorporated as a subsystem into any chemical microreactor or a miniaturized biological sensor. An electromagnet driven by an AC power source is used to induce transient interactive flows between a ferrofluid and Rhodamine B. The alternative magnetic field causes the ferrofluid to expand significantly and uniformly toward Rhodamine B, associated with a great number of extremely fine fingering structures on the interface in the upstream and downstream regions of the microchannel. These pronounced fingering patterns, which have not been observed by other active mixing methods utilizing only magnetic force, increase the mixing interfacial length dramatically. Along with the dominant diffusion effects occurring around the circumferential regions of the fine finger structures, the mixing efficiency increases significantly. The miscible fingering instabilities are observed and applied in the microfluidics for the first time. This work is carried with a view to developing functionalized ferrofluids that can be used as sensitive pathogen detectors and the present experimental results demonstrate that the proposed micromixer has excellent mixing capabilities. The mixing efficiency can be as high as 95% within 2.0 s and a distance of 3.0 mm from the inlet of the mixing channel, when the applied peak magnetic field is higher than 29.2 Oe and frequency ranges from 45 to 300 Hz. PMID:19921677

  9. Study finds no cancer link to electromagnetic fields

    SciTech Connect

    Sahl, J.; Kelsh, M.; Greenland, S.

    1993-05-01

    The Southern California Edison Company reports a study of their personnel which looks for an association between exposure to electromagnetic fields (EMF) and deaths due to cancer (emphasis on leukemia, brain cancer and lymphoma). A total of 36,221 employees who had been employed by the company for at least one year were included in the study. The results appear to weaken the argument that EMF is the cause of cancer in the company work environment. The study is said to be an improvement over previous studies in that all personnel from a well-defined work environment were included, complete work histories were included, actual measurements of magnetic fields were performed, and state-of-the-art methods of analysis were used. The relevance of these results to the non-Edison work environment or community exposures is uncertain and to childhood cancers is still more uncertain. The company plans to update these data and perform additional analyses as part of its policy to study and evaluate the occupational implications of EMF.

  10. Equations of motion for a free-electron laser with an electromagnetic pump field and an axial electrostatic field

    NASA Technical Reports Server (NTRS)

    Hiddleston, H. R.; Segall, S. B.

    1981-01-01

    The equations of motion for a free-electron laser (FEL) with an electromagnetic pump field and a static axial electric field are derived using a Hamiltonian formalism. Equations governing the energy transfer between the electron beam and each of the electromagnetic fields are given, and the phase shift for each of the electromagnetic fields is derived from a linearized Maxwell wave equation. The relation between the static axial electric field and the resonant phase is given. Laser gain and the fraction of the electron energy converted to photon energy are determined using a simplified resonant particle model. These results are compared to those of a more exact particle simulation code.

  11. Influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction

    SciTech Connect

    Forsberg, M.; Brodin, G.; Papadopoulos, D.

    2010-07-15

    The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the QED effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.

  12. Electromagnetic fields and cancer: the cost of doing nothing.

    PubMed

    Carpenter, David O

    2010-01-01

    Everyone is exposed to electromagnetic fields (EMFs) from electricity (extremely low frequency, ELF), communication frequencies, and wireless devices (radiofrequency, RF). Concern of health hazards from EMFs has increased as the use of cell phones and other wireless devices has grown in all segments of society, especially among children. While there has been strong evidence for an association between leukemia and residential or occupational exposure to ELF EMFs for many years, the standards in existence are not sufficiently stringent to protect from an increased risk of cancer. For RF EMFs, standards are set at levels designed to avoid tissue heating, in spite of convincing evidence of adverse biological effects at intensities too low to cause significant heating. Recent studies demonstrate elevations in rates of brain cancer and acoustic neuroma only on the side of the head where individuals used their cell phone. Individuals who begin exposure at younger ages are more vulnerable. These data indicate that the existing standards for radiofrequency exposure are not adequate. While there are many unanswered questions, the cost of doing nothing will result in an increasing number of people, many of them young, developing cancer. PMID:20429163

  13. Pentoxifylline and electromagnetic field improved bone fracture healing in rats

    PubMed Central

    Atalay, Yusuf; Gunes, Nedim; Guner, Mehmet Dervis; Akpolat, Veysi; Celik, Mustafa Salih; Guner, Rezzan

    2015-01-01

    Background The aim of this study was to evaluate the effects of a phosphodiesterase inhibitor pentoxifylline (PTX), electromagnetic fields (EMFs), and a mixture of both materials on bone fracture healing in a rat model. Materials and methods Eighty male Wistar rats were randomly divided into four groups: Group A, femur fracture model with no treatment; Group B, femur fracture model treated with PTX 50 mg/kg/day intraperitoneal injection; Group C, femur fracture model treated with EMF 1.5±0.2 Mt/50 Hz/6 hours/day; and Group D, femur fracture model treated with PTX 50 mg/kg/day intraperitoneal injection and EMF 1.5±0.2 Mt/50 Hz/6 hours/day. Results Bone fracture healing was significantly better in Group B and Group C compared to Group A (P<0.05), but Group D did not show better bone fracture healing than Group A (P>0.05). Conclusion It can be concluded that both a specific EMF and PTX had a positive effect on bone fracture healing but when used in combination, may not be beneficial. PMID:26388687

  14. Effect of cyclophosphamide and electromagnetic fields on mouse bone marrow

    SciTech Connect

    Cadossi, R.; Zucchini, P.; Emilia, G.; Torelli, G. )

    1990-02-26

    The authors have previously shown that the exposure to low frequency pulsing electromagnetic fields (PEMF) of mice X-ray irradiated resulted in an increased damage to the bone marrow. The series of experiments here reported were designed to investigate the effect of PEMF exposure after intraperitoneum injection of 200mg/kg of cyclophosphamide (CY). Control mice were CY injected only; experimental mice were CY injected and then exposed to PEMF. Exposure to PEMF (24 hours/day) increased the rate of decline of white blood cells in peripheral blood. Spleen weight was statistically higher among control mice than among mice exposed to PEMF at day 6, 8 and 10 after CY injection. Spleen autoradiography proved to be higher among PEMF exposed mice than among controls at day 8 and 9 after CY injection. The grafting efficiency of the bone marrow obtained from control mice was higher than the grafting efficiency of the bone marrow recovered from mice exposed to PEMF. All these data indicate that the exposure to PEMF increases the cytotoxic effect of CY.

  15. Effects of Electromagnetic Fields on Automated Blood Cell Measurements.

    PubMed

    Vagdatli, Eleni; Konstandinidou, Vasiliki; Adrianakis, Nikolaos; Tsikopoulos, Ioannis; Tsikopoulos, Alexios; Mitsopoulou, Kyriaki

    2014-08-01

    The aim of this study is to investigate whether the electromagnetic fields associated with mobile phones and/or laptops interfere with blood cell counts of hematology analyzers. Random blood samples were analyzed on an Aperture Impedance hematology analyzer. The analysis was performed in four ways: (A) without the presence of any mobile phone or portable computer in use, (B) with mobile phones in use (B1: one mobile, B4: four mobiles), (C) with portable computers (laptops) in use (C1: one laptop, C3: three laptops), and (D) with four mobile phones and three laptops in use simultaneously. The results obtained demonstrated a statistically significant decrease in neutrophil, erythrocyte, and platelet count and an increase in lymphocyte count, mean corpuscular volume, and red blood cell distribution width, notably in the B4 group. Despite this statistical significance, in clinical practice, only the red blood cell reduction could be taken into account, as the mean difference between the A and B4 group was 60,000 cells/µL. In group D, the analyzer gave odd results after 11 measurements and finally stopped working. The combined and multiple use of mobile phones and computers affects the function of hematology analyzers, leading to false results. Consequently, the use of such electronic devices must be avoided.

  16. [Curative effects of pulsed electromagnetic fields on postmenopausal osteoporosis].

    PubMed

    Liu, Huifang; Liu, Ying; Yang, Lin; Wang, Chunyan; Wu, Yuanchao; He, Chengqi

    2014-02-01

    We investigated the effects and optimal treatment frequency of pulsed electromagnetic fields (PEMFs) on postmenopausal osteoporosis (PMO). A comparison was performed with the cyclical alendronate and a course of PEMFs in the treatment for postmenopausal osteoporosis on bone mineral density (BMD), pain intensity and balance function. There was no significant difference between the two groups on mean percentage changes from baseline of BMD within 24 weeks after random treatments (P > or = 0.05). However, at the ends of 48 weeks and 72 weeks, the BMD of the PEMFs group were significantly lower than that of the alendronate group (P < 0.05). No significant difference was detected between the two groups with regard to treatment effects on Visual Analogue Scale score, the Timed Up & Go Test and Berg Balance Scale score. Compared with cyclical alendronate, a course of PEMFs was as effective as alendronate in treating PMO for at least 24 weeks. So its optimal treatment frequency for PMO may be one course per six months.

  17. Effects of pulsed electromagnetic field frequencies on the osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Luo, Fei; Hou, Tianyong; Zhang, Zehua; Xie, Zhao; Wu, Xuehui; Xu, Jianzhong

    2012-04-01

    The purpose of this study was to evaluate the effect of different frequencies of pulsed electromagnetic fields on the osteogenic differentiation of human mesenchymal stem cells. Third-generation human mesenchymal stem cells were irradiated with different frequencies of pulsed electromagnetic fields, including 5, 25, 50, 75, 100, and 150 Hz, with a field intensity of 1.1 mT, for 30 minutes per day for 21 days. Changes in human mesenchymal stem cell morphology were observed using phase contrast microscopy. Alkaline phosphatase activity and osteocalcin expression were also determined to evaluate human mesenchymal stem cell osteogenic differentiation.Different effects were observed on human mesenchymal stem cell osteoblast induction following exposure to different pulsed electromagnetic field frequencies. Levels of human mesenchymal stem cell differentiation increased when the pulsed electromagnetic field frequency was increased from 5 hz to 50 hz, but the effect was weaker when the pulsed electromagnetic field frequency was increased from 50 Hz to 150 hz. The most significant effect on human mesenchymal stem cell differentiation was observed at of 50 hz.The results of the current study show that pulsed electromagnetic field frequency is an important factor with regard to the induction of human mesenchymal stem cell differentiation. Furthermore, a pulsed electromagnetic field frequency of 50 Hz was the most effective at inducing human mesenchymal stem cell osteoblast differentiation in vitro.

  18. Large-area electromagnetic enhancement by a resonant excitation of surface waves on a metallic surface with periodic subwavelength patterns.

    PubMed

    Zhang, Xin; Liu, Haitao; Zhong, Ying

    2013-10-01

    We theoretically investigate the electromagnetic enhancement on a metallic surface patterned with periodic subwavelength structures. Fully-vectorial calculations show a large-area electromagnetic enhancement (LAEE) on the surface, which strongly contrasts with the previously reported "hot spots" that occur in specific tiny regions and which relieves the rigorous requirement of the nano-scale location of sample molecules. The LAEE allows for designing more practicable substrates for many enhanced-spectra applications. By building up microscopic models, the LAEE is shown due to a resonant excitation of surface waves that include both the surface plasmon polariton (SPP) and a quasi-cylindrical wave (QCW). The surface waves propagate on the substrate over a long distance and thus greatly enlarge the area of electromagnetic enhancement compared to the nano-sized hot spots caused by localized modes. Gain medium is introduced to further strengthen the large-area surface-wave resonance, with which an enhancement factor (EF) of electric-field intensity up to a few thousands is achieved.

  19. Electromagnetic fields and the blood-brain barrier.

    PubMed

    Stam, Rianne

    2010-10-01

    The mammalian blood-brain barrier (BBB) consists of endothelial cells, linked by tight junctions, and the adjoining pericytes and extracellular matrix. It helps maintain a highly stable extracellular environment necessary for accurate synaptic transmission and protects nervous tissue from injury. An increase in its normally low permeability for hydrophilic and charged molecules could potentially be detrimental. Methods to assess the permeability of the BBB include histological staining for marker molecules in brain sections and measurement of the concentration of marker molecules in blood and brain tissue. Their advantages and disadvantages are discussed. Exposure to levels of radiofrequency electromagnetic fields (EMF) that increase brain temperature by more than 1°C can reversibly increase the permeability of the BBB for macromolecules. The balance of experimental evidence does not support an effect of 'non-thermal' radiofrequency fields with microwave and mobile phone frequencies on BBB permeability. Evidence for an effect of the EMF generated by magnetic resonance imaging on permeability is conflicting and conclusions are hampered by potential confounders and simultaneous exposure to different types and frequencies of EMF. The literature on effects of low frequency EMF, which do not cause tissue heating, is sparse and does not yet permit any conclusions on permeability changes. Studies on the potential effect of EMF exposure on permeability of the BBB in humans are virtually absent. Future permeability studies should focus on low frequency effects and effects in humans. Care should be taken to avoid the methodological limitations of earlier studies and to determine the pathophysiological relevance of any changes found.

  20. Exposure to electromagnetic fields from laptop use of "laptop" computers.

    PubMed

    Bellieni, C V; Pinto, I; Bogi, A; Zoppetti, N; Andreuccetti, D; Buonocore, G

    2012-01-01

    Portable computers are often used at tight contact with the body and therefore are called "laptop." The authors measured electromagnetic fields (EMFs) laptop computers produce and estimated the induced currents in the body, to assess the safety of laptop computers. The authors evaluated 5 commonly used laptop of different brands. They measured EMF exposure produced and, using validated computerized models, the authors exploited the data of one of the laptop computers (LTCs) to estimate the magnetic flux exposure of the user and of the fetus in the womb, when the laptop is used at close contact with the woman's womb. In the LTCs analyzed, EMF values (range 1.8-6 μT) are within International Commission on Non-Ionizing Radiation (NIR) Protection (ICNIRP) guidelines, but are considerably higher than the values recommended by 2 recent guidelines for computer monitors magnetic field emissions, MPR II (Swedish Board for Technical Accreditation) and TCO (Swedish Confederation of Professional Employees), and those considered risky for tumor development. When close to the body, the laptop induces currents that are within 34.2% to 49.8% ICNIRP recommendations, but not negligible, to the adult's body and to the fetus (in pregnant women). On the contrary, the power supply induces strong intracorporal electric current densities in the fetus and in the adult subject, which are respectively 182-263% and 71-483% higher than ICNIRP 98 basic restriction recommended to prevent adverse health effects. Laptop is paradoxically an improper site for the use of a LTC, which consequently should be renamed to not induce customers towards an improper use.

  1. In vitro low frequency electromagnetic field effect on fast axonal transport.

    PubMed

    Zborowski, M; Atkinson, M; Lewandowski, J J; Jacobs, G; Mitchell, D; Breuer, A C; Nosé, Y

    1988-01-01

    The objective of this study was to evaluate the effects of a low frequency electromagnetic field on fast axonal transport for future neuroprosthetic applications. Changes in speeds and densities of retrograde fast organelle transport in rat sciatic nerve preparations were measured in vitro upon exposure to 15 and 50 Hz pulsed magnetic fields with peak intensities of 4.4 and 8.8 mT. Maximum current density of the induced eddy current was calculated to be about 40 microA/cm2. Video enhanced differential interference contrast microscopy was used to record axons supporting active organelle transport. Strong effects were observed in myelinated axons (cessation of transport in up to 10 min). Such effects may eventually be used as part of a neuroprosthesis to noninvasively modify or couple to various parts of the nervous system.

  2. Influence of different types of electromagnetic fields on skin reparatory processes in experimental animals.

    PubMed

    Matic, Milan; Lazetic, Bogosav; Poljacki, Mirjana; Djuran, Verica; Matic, Aleksandra; Gajinov, Zorica

    2009-05-01

    Wound healing is a very complex process, some phases of which have only recently been explained. Magnetic and electromagnetic fields can modulate this process in a non-thermal way. The aim of this research was to compare the influence of constant and pulsed electromagnetic fields and low-level laser therapy (LLLT) on wound healing in experimental animals. The experiment was conducted on 120 laboratory rats divided into four groups of 30 animals each (constant electromagnetic field, pulsed electromagnetic field, LLLT and control group). It lasted for 21 days. Under the influence of the constant electromagnetic field the healing of the skin defect was accelerated in comparison with the control group. The difference was statistically significant in all the weeks of the experiment at the P < 0.01 level. Accelerated healing was also observed under the influence of the pulsed electromagnetic field (P < 0.05). In the group of animals exposed to LLLT, the healing of the skin defect was faster than in the control group. The statistical significance was at the P < 0.05 level. Different types of electromagnetic fields have a promoting effect on the wound healing process.

  3. Optical field enhancement by strong plasmon interaction in graphene nanostructures.

    PubMed

    Thongrattanasiri, Sukosin; García de Abajo, F Javier

    2013-05-01

    The ability of plasmons to enhance the electromagnetic field intensity in the gap between metallic nanoparticles derives from their strong optical confinement relative to the light wavelength. The spatial extension of plasmons in doped graphene has recently been shown to be boldly reduced with respect to conventional plasmonic metals. Here, we show that graphene nanostructures are capable of capitalizing such strong confinement to yield unprecedented levels of field enhancement, well beyond what is found in noble metals of similar dimensions (~ tens of nanometers). We perform realistic, quantum-mechanical calculations of the optical response of graphene dimers formed by nanodisks and nanotriangles, showing a strong sensitivity of the level of enhancement to the type of carbon edges near the gap region, with armchair edges favoring stronger interactions than zigzag edges. Our quantum-mechanical description automatically incorporates nonlocal effects that are absent in classical electromagnetic theory, leading to over an order of magnitude higher enhancement in armchair structures. The classical limit is recovered for large structures. We predict giant levels of light concentration for dimers ~200 nm, leading to infrared-absorption enhancement factors ~10(8). This extreme light enhancement and confinement in nanostructured graphene has great potential for optical sensing and nonlinear devices.

  4. Tailoring the interplay between electromagnetic fields and nanomaterials toward applications in life sciences: a review

    NASA Astrophysics Data System (ADS)

    del Pino, Pablo

    2014-10-01

    Continuous advances in the field of bionanotechnology, particularly in the areas of synthesis and functionalization of colloidal inorganic nanoparticles with novel physicochemical properties, allow the development of innovative and/or enhanced approaches for medical solutions. Many of the present and future applications of bionanotechnology rely on the ability of nanoparticles to efficiently interact with electromagnetic (EM) fields and subsequently to produce a response via scattering or absorption of the interacting field. The cross-sections of nanoparticles are typically orders of magnitude larger than organic molecules, which provide the means for manipulating EM fields and, thereby, enable applications in therapy (e.g., photothermal therapy, hyperthermia, drug release, etc.), sensing (e.g., surface plasmon resonance, surface-enhanced Raman, energy transfer, etc.), and imaging (e.g., magnetic resonance, optoacoustic, photothermal, etc.). Herein, an overview of the most relevant parameters and promising applications of EM-active nanoparticles for applications in life science are discussed with a view toward tailoring the interaction of nanoparticles with EM fields.

  5. Vector-based plane-wave spectrum method for the propagation of cylindrical electromagnetic fields.

    PubMed

    Shi, S; Prather, D W

    1999-11-01

    We present a vector-based plane-wave spectrum (VPWS) method for efficient propagation of cylindrical electromagnetic fields. In comparison with electromagnetic propagation integrals, the VPWS method significantly reduces time of propagation. Numerical results that illustrate the utility of this method are presented.

  6. On the uncertainty estimation of electromagnetic field measurements using field sensors: a general approach.

    PubMed

    Stratakis, D; Miaoudakis, A; Katsidis, C; Zacharopoulos, V; Xenos, T

    2009-02-01

    One of the most common and popular practices on measuring the non-ionising electric and/or magnetic field strength employs field meters and the appropriate electric and/or magnetic field strength sensors. These measurements have to meet several requirements proposed by specific guidelines or standards. On the other hand, performing non-ionising exposure assessment using real measurement data can be a very difficult task due to instrumentation limits and uncertainties. In addition, each measuring technique, practice and recommendation has its own drawbacks. In this paper, a methodology for estimating the overall uncertainty for such measurements, including uncertainty estimation of spatial average values of electric or magnetic field strengths, is proposed. Estimating and reporting measurement uncertainty are of great importance, especially when the measured values are very close to the established limits of human exposure to non-ionising electromagnetic fields.

  7. Exact solution to the Landau-Lifshitz equation in a constant electromagnetic field

    NASA Astrophysics Data System (ADS)

    Yaremko, Yurij

    2013-09-01

    We are interested in the motion of a classical charge acted upon an external constant electromagnetic field where the back reaction of the particle's own field is taken into account. The Landau-Lifshitz approximation to the Lorentz-Abraham-Dirac equation is solved exactly and in closed form. It is shown that the ultrarelativistic limit of the Landau-Lifshitz equation for a radiating charge is the equation for eigenvalues and eigenvectors of the external electromagnetic field tensor.

  8. Idiopathic environmental intolerance attributed to electromagnetic fields: a content analysis of British newspaper reports.

    PubMed

    Eldridge-Thomas, Buffy; Rubin, G James

    2013-01-01

    Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged

  9. Idiopathic Environmental Intolerance Attributed to Electromagnetic Fields: A Content Analysis of British Newspaper Reports

    PubMed Central

    Eldridge-Thomas, Buffy; Rubin, G James

    2013-01-01

    Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged

  10. Impact of Low Frequency Electromagnetic Field Exposure on the Candida Albicans

    NASA Astrophysics Data System (ADS)

    Malíková, Ivona; Janoušek, Ladislav; Fantova, Vladyslava; Jíra, Jaroslav; Kříha, Vítĕzslav

    2015-03-01

    Effect of low frequency electromagnetic field on growth of selected microorganism is studied in the article. The diploid fungus that grows both as yeast and filamentous cell was chosen for this research. The theory of ion parametric resonance was taken as the base for studying the influence of electromagnetic field on biological structures. We tested the hypothesis, whether it is possible to observe the change in growth properties of Candida albicans with an AC electromagnetic field tuned to resonance with calcium ions cyclotron frequency.

  11. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    NASA Astrophysics Data System (ADS)

    Cadena, M. S. Reyes; Chapul, L. Sánchez; Pérez, Javiér; García, M. N. Jiménez; López, M. A. Jiménez; Espíndola, M. E. Sánchez; Perez, R. Paniagua; Hernández, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodríguez

    2008-08-01

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-β) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.

  12. More on the covariant retarded Green's function for the electromagnetic field in de Sitter spacetime

    SciTech Connect

    Higuchi, Atsushi; Lee, Yen Cheong; Nicholas, Jack R.

    2009-11-15

    In a recent paper 2 it was shown in examples that the covariant retarded Green's functions in certain gauges for electromagnetism and linearized gravity can be used to reproduce field configurations correctly in spite of the spacelike nature of past infinity in de Sitter spacetime. In this paper we extend the work of Ref. 2 concerning the electromagnetic field and show that the covariant retarded Green's function with an arbitrary value of the gauge parameter reproduces the electromagnetic field from two opposite charges at antipodal points of de Sitter spacetime.

  13. Effect of electromagnetic field on the polymerization of microtubules extracted from rat brain.

    PubMed

    Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-zarchi

    2012-09-01

    Microtubules (MTs) are ubiquitous eukaryotic proteinaceous filaments showing a hollow cylindrical structure. MTs are composed of α-β-tubulin heterodimers arranged in linear protofilaments. MTs have a significant electric dipolar moment along their axes, which makes them capable of being aligned parallel to the applied electromagnetic field direction. Tubulin heterodimers were purified from rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules adsorbed under and without electromagnetic fields with 500 Hz frequency. Our results demonstrate the effect of electromagnetic field with 500 Hz frequency to increase the polymerization of MTs. Some relevant patents are also outlined in this article.

  14. Electromagnetic field quantization in an anisotropic magnetodielectric medium with spatial temporal dispersion

    NASA Astrophysics Data System (ADS)

    Amooshahi, M.; Kheirandish, F.

    2008-07-01

    By modeling a linear, anisotropic and inhomogeneous magnetodielectric medium with two independent sets of harmonic oscillators, the electromagnetic field is quantized in such a medium. The electric and magnetic polarizations of the medium are expressed as linear combinations of the ladder operators of the harmonic oscillators modeling the magnetodielectric medium. Maxwell and the constitutive equations of the medium are obtained as the Heisenberg equations of the total system. The electric and magnetic susceptibility tensors of the medium are obtained in terms of the tensors coupling the medium with the electromagnetic field. The explicit forms of the electromagnetic field operators are obtained for a translationally invariant medium.

  15. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    SciTech Connect

    Cadena, M. S. Reyes; Chapul, L. Sanchez; Perez, Javier; Garcia, M. N. Jimenez; Lopez, M. A. Jimenez; Espindola, M. E. Sanchez; Perez, R. Paniagua; Hernandez, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodriguez

    2008-08-11

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-{beta}) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.

  16. Exposure to 50Hz-sinusoidal electromagnetic field induces DNA damage-independent autophagy.

    PubMed

    Shen, Yunyun; Xia, Ruohong; Jiang, Hengjun; Chen, Yanfeng; Hong, Ling; Yu, Yunxian; Xu, Zhengping; Zeng, Qunli

    2016-08-01

    As electromagnetic field (EMF) is commonly encountered within our daily lives, the biological effects of EMF are of great concern. Autophagy is a key process for maintaining cellular homeostasis, and it can also reveal cellular responses to environmental stimuli. In this study, we aim to investigate the biological effects of a 50Hz-sinusoidal electromagnetic field on autophagy and we identified its mechanism of action in Chinese Hamster Lung (CHL) cells. CHL cells were exposed to a 50Hz sinusoidal EMF at 0.4mT for 30min or 24h. In this study, we found that a 0.4mT EMF resulted in: (i) an increase in LC3-II expression and increased autophagosome formation; (ii) no significant difference in the incidence of γH2AX foci between the sham and exposure groups; (iii) reorganized actin filaments and increased pseudopodial extensions without promoting cell migration; and (iv) enhanced cell apoptosis when autophagy was blocked by Bafilomycin A1. These results implied that DNA damage was not directly involved in the autophagy induced by a 0.4mT 50Hz EMF. In addition, an EMF induced autophagy balanced the cellular homeostasis to protect the cells from severe adverse biological consequences.

  17. Exposure to 50Hz-sinusoidal electromagnetic field induces DNA damage-independent autophagy.

    PubMed

    Shen, Yunyun; Xia, Ruohong; Jiang, Hengjun; Chen, Yanfeng; Hong, Ling; Yu, Yunxian; Xu, Zhengping; Zeng, Qunli

    2016-08-01

    As electromagnetic field (EMF) is commonly encountered within our daily lives, the biological effects of EMF are of great concern. Autophagy is a key process for maintaining cellular homeostasis, and it can also reveal cellular responses to environmental stimuli. In this study, we aim to investigate the biological effects of a 50Hz-sinusoidal electromagnetic field on autophagy and we identified its mechanism of action in Chinese Hamster Lung (CHL) cells. CHL cells were exposed to a 50Hz sinusoidal EMF at 0.4mT for 30min or 24h. In this study, we found that a 0.4mT EMF resulted in: (i) an increase in LC3-II expression and increased autophagosome formation; (ii) no significant difference in the incidence of γH2AX foci between the sham and exposure groups; (iii) reorganized actin filaments and increased pseudopodial extensions without promoting cell migration; and (iv) enhanced cell apoptosis when autophagy was blocked by Bafilomycin A1. These results implied that DNA damage was not directly involved in the autophagy induced by a 0.4mT 50Hz EMF. In addition, an EMF induced autophagy balanced the cellular homeostasis to protect the cells from severe adverse biological consequences. PMID:27177844

  18. Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.

    NASA Astrophysics Data System (ADS)

    Bozeman, Steven Paul

    The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in

  19. Induction of tamoxifen resistance in breast cancer cells by ELF electromagnetic fields.

    PubMed

    Girgert, Rainer; Schimming, Hartmut; Körner, Wolfgang; Gründker, Carsten; Hanf, Volker

    2005-11-01

    The incidence of breast cancer in western societies has been rising ever since the Second World War. Besides the exposure to a multitude of new chemical compounds, electromagnetic field exposure has been linked to breast cancer through a radiation-mediated anti-melatonin pathway. We investigated, whether low-frequency electromagnetic field exposure interferes with the anti-estrogenic activity of tamoxifen. Two different clones of the breast cancer cell line MCF-7 were exposed to highly homogeneous 50Hz electromagnetic fields and IC(50) values were calculated from dose-response curves of tamoxifen at various field intensities. An intensity-dependent shift of tamoxifen dose-response curves to higher concentrations with a maximal response at 1.2muT was observed. Hypothetically, electromagnetic field exposure could contribute to tamoxifen resistance observed in breast cancer after long-term treatment.

  20. Induction of tamoxifen resistance in breast cancer cells by ELF electromagnetic fields

    SciTech Connect

    Girgert, Rainer . E-mail: rainer.girgert@med.uni-goettingen.de; Schimming, Hartmut; Koerner, Wolfgang; Gruendker, Carsten; Hanf, Volker

    2005-11-04

    The incidence of breast cancer in western societies has been rising ever since the Second World War. Besides the exposure to a multitude of new chemical compounds, electromagnetic field exposure has been linked to breast cancer through a radiation-mediated anti-melatonin pathway. We investigated, whether low-frequency electromagnetic field exposure interferes with the anti-estrogenic activity of tamoxifen. Two different clones of the breast cancer cell line MCF-7 were exposed to highly homogeneous 50 Hz electromagnetic fields and IC{sub 50} values were calculated from dose-response curves of tamoxifen at various field intensities. An intensity-dependent shift of tamoxifen dose-response curves to higher concentrations with a maximal response at 1.2 {mu}T was observed. Hypothetically, electromagnetic field exposure could contribute to tamoxifen resistance observed in breast cancer after long-term treatment.

  1. The effects of exposure to electromagnetic field on rat myocardium.

    PubMed

    Kiray, Amac; Tayefi, Hamid; Kiray, Muge; Bagriyanik, Husnu Alper; Pekcetin, Cetin; Ergur, Bekir Ugur; Ozogul, Candan

    2013-06-01

    Exposure to electromagnetic fields (EMFs) causes increased adverse effects on biological systems. The aim of this study was to investigate the effects of EMF on heart tissue by biochemical and histomorphological evaluations in EMF-exposed adult rats. In this study, 28 male Wistar rats weighing 200-250 g were used. The rats were divided into two groups: sham group (n = 14) and EMF group (n = 14). Rats in sham group were exposed to same conditions as the EMF group except the exposure to EMF. Rats in EMF group were exposed to a 50-Hz EMF of 3 mT for 4 h/day and 7 days/week for 2 months. After 2 months of exposure, rats were killed; the hearts were excised and evaluated. Determination of oxidative stress parameters was performed spectrophotometrically. To detect apoptotic cells, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining and caspase-3 immunohistochemistry were performed. In EMF-exposed group, levels of lipid peroxidation significantly increased and activities of superoxide dismutase and glutathione peroxidase decreased compared with sham group. The number of TUNEL-positive cells and caspase-3 immunoreactivity increased in EMF-exposed rats compared with sham. Under electron microscopy, there were mitochondrial degeneration, reduction in myofibrils, dilated sarcoplasmic reticulum and perinuclear vacuolization in EMF-exposed rats. In conclusion, the results show that the exposure to EMF causes oxidative stress, apoptosis and morphologic damage in myocardium of adult rats. The results of our study indicate that EMF-related changes in rat myocardium could be the result of increased oxidative stress. Further studies are needed to demonstrate whether the exposure to EMF can induce adverse effects on myocardium.

  2. Vacuum properties of QCD in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Werbos, Elizabeth

    The non-trivial vacuum properties of Quantum Chromodynamics can be affected by a constant external magnetic field. The chiral condensate and the magnetization of the vacuum are the two properties studied in this work. The chiral condensate, which is the order parameter for chiral symmetry breaking--one of the most important properties of QCD--is an optimal quantity to study at intermediate field strengths. Using both models and chiral perturbation theory, it can be shown that an electric field suppresses the chiral condensate whereas a magnetic field enhances it. Higher-order calculations in chiPT may have a substantial effect on the magnitude of the shift in the chiral condensate, but their exact effect is unknown due to the uncertainty in the parameters of the theory. The second parameter, the magnetization, is used at fields large enough for perturbative calculations to be valid; at these scales, there is large explicit chiral symmetry breaking and the chiral condensate cannot be used. The first-order magnetization shows a correction of the form B logB; the calculation to next order in perturbation theory shows a correction small enough that non-perturbative corrections dominate.

  3. Implementation of general background electromagnetic fields on a periodic hypercubic lattice

    NASA Astrophysics Data System (ADS)

    Davoudi, Zohreh; Detmold, William

    2015-10-01

    Nonuniform background electromagnetic fields, once implemented in lattice quantum chromodynamics calculations of hadronic systems, provide a means to constrain a large class of electromagnetic properties of hadrons and nuclei, from their higher electromagnetic moments and charge radii to their electromagnetic form factors. We show how nonuniform fields can be constructed on a periodic hypercubic lattice under certain conditions and determine the precise form of the background U (1 ) gauge links that must be imposed on the quantum chromodynamics gauge-field configurations to maintain periodicity. Once supplemented by a set of quantization conditions on the background-field parameters, this construction guarantees that no nonuniformity occurs in the hadronic correlation functions across the boundary of the lattice. The special cases of uniform electric and magnetic fields, a nonuniform electric field that varies linearly in one spatial coordinate (relevant to the determination of quadruple moment and charge radii), nonuniform electric and magnetic fields with given temporal and spatial dependences (relevant to the determination of nucleon spin polarizabilities) and plane-wave electromagnetic fields (relevant to the determination of electromagnetic form factors) are discussed explicitly.

  4. Enhanced nonlinear interaction of powerful electromagnetic waves with ionospheric plasma near the second electron gyroharmonic

    SciTech Connect

    Istomin, Ya. N.; Leyser, T. B.

    2013-05-15

    Plasma experiments in which a powerful electromagnetic pump wave is transmitted into the ionosphere from the ground give access to a rich range of phenomena, including gyroharmonic effects when the pump frequency is near an harmonic of the ionospheric electron gyrofrequency. For pump frequencies close to the second gyroharmonic, experiments show a strong enhancement, as observed in radar scatter from pump-induced geomagnetic field-aligned density striations and optical emissions. This is in contrast to the case at the third harmonic and higher at which most of the effects are instead suppressed. We show theoretically that electrostatic oscillations can be localized in density inhomogeneities associated with small scale striations. The localized field is a mixture of the electron Bernstein and upper hybrid modes when the pump frequency is near the second gyroharmonic. The coupling of the modes is enabled by a symmetry feature of the linear electron Bernstein and upper hybrid dispersion properties that occur only near the second gyroharmonic. Electron acceleration inside the density inhomogeneities by localized azimuthal electrostatic oscillations is more efficient near the second gyroharmonic than at higher frequencies, consistent with the observed enhancements.

  5. Effect of radio frequency waves of electromagnetic field on the tubulin.

    PubMed

    Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi

    2013-09-01

    Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject.

  6. Modeling microwave electromagnetic field absorption in muscle tissues

    NASA Astrophysics Data System (ADS)

    Felbacq, D.; Clerjon, S.; Damez, J. L.; Zolla, F.

    2002-07-01

    Absorption of electromagnetic energy in human tissues is an important issue with respect to the safety of low-level exposure. Simulation is a way to a better understanding of electromagnetic dosimetry. This letter presents a comparison between results obtained from a numerical simulation and experimental data of absorbed energy by a muscle. Simulation was done using a bidimensional double-scale homogenization scheme leading to the effective permittivity tensor. Experimental measurements were performed at 10 GHz on bovine muscle, 30 hours after slaughter, thanks to the open-ended rectangular waveguide method. Results show a good agreement between measurements and simulated data.

  7. Risks perception of electromagnetic fields in Taiwan: the influence of psychopathology and the degree of sensitivity to electromagnetic fields.

    PubMed

    Tseng, Mei-Chih Meg; Lin, Yi-Ping; Hu, Fu-Chang; Cheng, Tsun-Jen

    2013-11-01

    Little is known about the perceived health risks of electromagnetic fields (EMFs) and factors associated with risk perception in non-Western countries. Psychological conditions and risk perception have been postulated as factors that facilitate the attribution of health complaints to environmental factors. This study investigated people's perceived risks of EMFs and other environmental sources, as well as the relationships between risk perception, psychopathology, and the degree of self-reported sensitivity to EMFs. A total of 1,251 adults selected from a nationwide telephone interviewing system database responded to a telephone survey about the relationships between environmental sources and human health. The interview included questions assessing participants' psychiatric conditions and the presence and degree of sensitivity to EMFs. One hundred and seventy participants were self-identified as having sensitivity to EMFs, and 141 met the criteria for psychiatric conditions without EMF sensitivity. More than half of the survey respondents considered power lines and mobile phone base stations to affect people's health to a big extent. Higher sensitivity to EMFs, psychopathology, being female, being married, more years of education, and having a catastrophic illness had positive associations with perceived risks of EMF-related environmental sources as well as for all environmental sources combined. We observed no moderating effect of psychopathology on the association between degree of sensitivity to EMF and risk perception. Thus, psychopathology had influence on general people's risk perception without having influence on the relationship between people's degree of sensitivity to EMF and risk perception. The plausible explanations are discussed in the text.

  8. Design and Fabrication of Helmholtz Coils to Study the Effects of Pulsed Electromagnetic Fields on the Healing Process in Periodontitis: Preliminary Animal Results

    PubMed Central

    Haghnegahdar, A; Khosrovpanah, H; Andisheh-Tadbir, A; Mortazavi, Gh; Saeedi Moghadam, M; Mortazavi, SMJ; Zamani, A; Haghani, M; Shojaei Fard, M; Parsaei, H; Koohi, O

    2014-01-01

    Background: Effects of electromagnetic fields on healing have been investigated for centuries. Substantial data indicate that exposure to electromagnetic field can lead to enhanced healing in both soft and hard tissues. Helmholtz coils are devices that generate pulsed electromagnetic fields (PEMF). Objective: In this work, a pair of Helmholtz coils for enhancing the healing process in periodontitis was designed and fabricated. Method: An identical pair of square Helmholtz coils generated the 50 Hz magnetic field.  This device was made up of two parallel coaxial circular coils (100 turns in each loop, wound in series) which were separated from each other by a distance equal to the radius of one coil (12.5 cm). The windings of our Helmholtz coil was made of standard 0.95mm wire to provide the maximum possible current. The coil was powered by a function generator.  Results: The Helmholtz Coils generated a uniform magnetic field between its coils. The magnetic field strength at the center of the space between two coils was 97.6 μT. Preliminary biological studies performed on rats show that exposure of laboratory animals to pulsed electromagnetic fields enhanced the healing of periodontitis. Conclusion: Exposure to PEMFs can lead to stimulatory physiological effects on cells and tissues such as enhanced healing of periodontitis. PMID:25505775

  9. Calculation of electromagnetic fields in the near-field region of a moving scattering object

    NASA Astrophysics Data System (ADS)

    Vogel, M. H.

    1990-07-01

    The problem of scattering of electromagnetic fields by perfectly conducting, moving objects is solved with the Lorentz transformation and the plane wave formulation. Apart from the physical optics approximation, the solution is exact. The result is subsequently applied to the special case of monostatic reflection by an object that moves slowly with respect to the velocity of light. The result can be used to predict the time dependent reflection from an aircraft that passes the antenna of a proximity fuze, and the optimum fuze algorithm can be selected.

  10. Coupling of translational and rotational motion in chiral liquids in electromagnetic and circularly polarised electric fields.

    PubMed

    English, Niall J; Kusalik, Peter G; Woods, Sarah A

    2012-03-01

    Non-equilibrium molecular dynamics simulations of R and S enantiomers of 1,1-chlorofluoroethane, both for pure liquids and racemic mixtures, have been performed at 298 K in the absence and presence of both electromagnetic (e/m) and circularly polarised electric (CP) fields of varying frequency (100-2200 GHz) and intensity (0.025-0.2 V Å(-1) (rms)). Significant non-thermal field effects were noted in the coupling of rotational and translational motion; for instance, in microwave and far-infrared (MW/IR) e/m fields, marked increases in rotational and translational diffusion vis-à-vis the zero-field case took place at 0.025-0.1 V Å(-1) (rms), with a reduction in translational diffusion vis-à-vis the zero-field case above 0.1 V Å(-1) (rms) above 100 GHz. This was due to enhanced direct coupling of rotational motion with the more intense e/m field at the ideal intrinsic rotational coupling frequency (approximately 700 GHz) leading to such rapidly oscillating rotational motion that extent of translational motion was effectively reduced. In the case of CP fields, rotational and translational diffusion was also enhanced for all intensities, particularly at approximately 700 GHz. For both MW/IR and CP fields, non-linear field effects were evident above around 0.1 V Å(-1) (rms) intensity, in terms of enhancements in translational and rotational motion. Simulation of 90-10 mol. % liquid mixtures of a Lennard-Jones solvent with R and S enantiomer-solutes in MW/IR and CP fields led to more limited promotion of rotational and translational diffusion, due primarily to increased frictional effects. For both e/m and CP fields, examination of the laboratory- and inertial-frame auto- and cross-correlation functions of velocity and angular velocity demonstrated the development of explicit coupling with the external fields at the applied frequencies, especially so in the more intense fields where nonlinear effects come into play. For racemic mixtures, elements of the laboratory

  11. High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields

    NASA Astrophysics Data System (ADS)

    He, Yang; Sun, Yajuan; Zhang, Ruili; Wang, Yulei; Liu, Jian; Qin, Hong

    2016-09-01

    We construct high order symmetric volume-preserving methods for the relativistic dynamics of a charged particle by the splitting technique with processing. By expanding the phase space to include the time t, we give a more general construction of volume-preserving methods that can be applied to systems with time-dependent electromagnetic fields. The newly derived methods provide numerical solutions with good accuracy and conservative properties over long time of simulation. Furthermore, because of the use of an accuracy-enhancing processing technique, the explicit methods obtain high-order accuracy and are more efficient than the methods derived from standard compositions. The results are verified by the numerical experiments. Linear stability analysis of the methods shows that the high order processed method allows larger time step size in numerical integrations.

  12. Piezoelectricity and prostate cancer: proposed interaction between electromagnetic field and prostatic crystalloids.

    PubMed

    Ghabili, Kamyar; Shoja, Mohammadali M; Agutter, Paul S

    2008-06-01

    There is evidence that electromagnetic fields (EMF) play some part in the pathogenesis of prostate cancer, but the pathogenic mechanism remains unknown. The normal prostate gland and both benign and malignant prostate lesions contain abundant calcium/phosphorus crystalloids with various morphologies, which seem to be heterogeneously and diffusely distributed within the gland. We hypothesize that an environmental EMF may result in simultaneous, multidirectional and diffuse compression or expansion of these crystalloids (a piezoelectric effect). This would result in a slight mechanical distortion of the prostate, potentially altering cell behavior and enhancing the expression of specific genes, particularly those involved in suppressing apoptosis. A mathematical model of the cell mechanical effect is presented, and the hypothesis is related to current clinical evidence and to potential validation by critical laboratory tests.

  13. Regulation of osteogenic differentiation of human adipose-derived stem cells by controlling electromagnetic field conditions

    PubMed Central

    Kang, Kyung Shin; Hong, Jung Min; Kang, Jo A; Rhie, Jong-Won; Jeong, Young Hun; Cho, Dong-Woo

    2013-01-01

    Many studies have reported that an electromagnetic field can promote osteogenic differentiation of mesenchymal stem cells. However, experimental results have differed depending on the experimental and environmental conditions. Optimization of electromagnetic field conditions in a single, identified system can compensate for these differences. Here we demonstrated that specific electromagnetic field conditions (that is, frequency and magnetic flux density) significantly regulate osteogenic differentiation of adipose-derived stem cells (ASCs) in vitro. Before inducing osteogenic differentiation, we determined ASC stemness and confirmed that the electromagnetic field was uniform at the solenoid coil center. Then, we selected positive (30/45 Hz, 1 mT) and negative (7.5 Hz, 1 mT) osteogenic differentiation conditions by quantifying alkaline phosphate (ALP) mRNA expression. Osteogenic marker (for example, runt-related transcription factor 2) expression was higher in the 30/45 Hz condition and lower in the 7.5 Hz condition as compared with the nonstimulated group. Both positive and negative regulation of ALP activity and mineralized nodule formation supported these responses. Our data indicate that the effects of the electromagnetic fields on osteogenic differentiation differ depending on the electromagnetic field conditions. This study provides a framework for future work on controlling stem cell differentiation. PMID:23306704

  14. Regulation of osteogenic differentiation of human adipose-derived stem cells by controlling electromagnetic field conditions.

    PubMed

    Kang, Kyung Shin; Hong, Jung Min; Kang, Jo A; Rhie, Jong-Won; Jeong, Young Hun; Cho, Dong-Woo

    2013-01-18

    Many studies have reported that an electromagnetic field can promote osteogenic differentiation of mesenchymal stem cells. However, experimental results have differed depending on the experimental and environmental conditions. Optimization of electromagnetic field conditions in a single, identified system can compensate for these differences. Here we demonstrated that specific electromagnetic field conditions (that is, frequency and magnetic flux density) significantly regulate osteogenic differentiation of adipose-derived stem cells (ASCs) in vitro. Before inducing osteogenic differentiation, we determined ASC stemness and confirmed that the electromagnetic field was uniform at the solenoid coil center. Then, we selected positive (30/45 Hz, 1 mT) and negative (7.5 Hz, 1 mT) osteogenic differentiation conditions by quantifying alkaline phosphate (ALP) mRNA expression. Osteogenic marker (for example, runt-related transcription factor 2) expression was higher in the 30/45 Hz condition and lower in the 7.5 Hz condition as compared with the nonstimulated group. Both positive and negative regulation of ALP activity and mineralized nodule formation supported these responses. Our data indicate that the effects of the electromagnetic fields on osteogenic differentiation differ depending on the electromagnetic field conditions. This study provides a framework for future work on controlling stem cell differentiation.

  15. Amyotrophic lateral sclerosis and occupational exposure to electromagnetic fields

    SciTech Connect

    Davanipour, Z.; Sobel, E.; Bowman, J.D.; Qian, Z.; Will, A.D.

    1997-03-01

    In an hypothesis-generating case-control study of amyotrophic lateral sclerosis, lifetime occupational histories were obtained. The patients (n = 28) were clinic based. The occupational exposure of interest in this report is electromagnetic fields (EMFs). This is the first and so far the only exposure analyzed in this study. Occupational exposure up to 2 years prior to estimated disease symptom onset was used for construction of exposure indices for cases. Controls (n = 32) were blood and nonblood relatives of cases. Occupational exposure for controls was through the same age as exposure for the corresponding cases. Twenty (71%) cases and 28 (88%) controls had at least 20 years of work experience covering the exposure period. The occupational history and task data were used to classify blindly each occupation for each subject as having high, medium/high, medium, medium/low, or low EMF exposure, based primarily on data from an earlier and unrelated study designed to obtain occupational EMF exposure information on workers in ``electrical`` and ``nonelectrical`` jobs. By using the length of time each subject spent in each occupation through the exposure period, two indices of exposure were constructed: total occupational exposure (E{sub 1}) and average occupational exposure (E{sub 2}). For cases and controls with at least 20 years of work experience, the odds ratio (OR) for exposure at the 75th percentile of the E{sub 1} case exposure data relative to minimum exposure was 7.5 (P < 0.02; 95% CI, 1.4--38.1) and the corresponding OR for E{sub 2} was 5.5 (P < 0.02; 95% CI, 1.3--22.5). For all cases and controls, the ORs were 2.5 (P < 0.1; 95% CI, 0.9--8.1) for E{sub 1} and 2.3 (P = 0.12; 95% CI, 0.8--6.6) for E{sub 2}. This study should be considered an hypothesis-generating study. Larger studies, using incident cases and improved exposure assessment, should be undertaken.

  16. Theory of the time reversal cavity for electromagnetic fields.

    PubMed

    Carminati, R; Pierrat, R; de Rosny, J; Fink, M

    2007-11-01

    We derive a general expression of the electric dyadic Green function in a time-reversal cavity, based on vector diffraction theory in the frequency domain. Our theory gives a rigorous framework to time-reversal experiments using electromagnetic waves and suggests a methodology to design structures generating subwavelength focusing after time reversal.

  17. Interaction of molecules with electromagnetic fields. II. The multipole operators and dynamics of molecules with moving nuclei in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Yang, Kuo-Ho Tom; Hirschfelder, Joseph O.; Johnson, Bruce R.

    1981-09-01

    This paper presents a thorough unified treatment of the electric and magnetic multipole operators and the dynamics of a moving molecular system of electrons and nuclei in the presence of an arbitrary (semiclassical) electromagnetic field. The multipole operators are expressed in terms of rjc, the position of each of the particles j relative to the center of mass rc, the velocities ?jc and ?c, and the spins sj. Two levels of precision of the multipole operators and dynamics are considered: The ''nonrelativistic'' approximation including all terms which vary as 1/c (where c is the velocity of light) suffices for most practical applications. The multipole moments are determined by the Lorentz force on the molecule. Also, the multipole operators are related to the electric and magnetic polarization operators Popc and Mopc, respectively, as well as to the effective charge and effective current on the molecule. The Lagrangian is then determined by rearranging the ''Newtonian'' equations of motion into the Lagrangian form. In both the Hamiltonian and the Lagrangian, terms involving Popc and Mopc couple the external fields to the molecular dynamics. The Hamiltonian is also derived in the ''quantum mechanical fashion'' by making a Power-Zienau-Woolley type transformation of the usual ''minimal coupling'' Hamiltonian. The new coordinates are rc and a set of (N-1) linearly independent combinations of the rjc. In the determination of the electric and magnetic properties of molecules, there are significant advantages in considering moving nuclei and center of mass coordinates rather than assuming clamped nuclei. In order to explain a few very sensitive types of experimental properties, it is necessary to use the semirelativistic approximation which is accurate through all of the α4mc2 or 1/c2 terms and includes all of the fine-structural effects with the exception of the Lamb shift. The electric and magnetic multipole moments were derived in terms of the Kracjik and Foldy

  18. Coupling Mechanism of Electromagnetic Field and Thermal Stress on Drosophila melanogaster

    PubMed Central

    Yang, Chuan-Jun; Lian, Hui-Yong; Yu, Hui; Huang, Xiao-Mei; Cai, Peng

    2016-01-01

    Temperature is an important factor in research on the biological effects of extremely low-frequency electromagnetic field (ELF-EMF), but interactions between ELF-EMF and temperature remain unknown. The effects of ELF-EMF (50 Hz, 3 mT) on the lifespan, locomotion, heat shock response (HSR), and oxidative stress (OS) of Canton-Special (CS) and mutant w1118 flies were investigated at 25°C and 35°C (thermal stress). Results showed that thermal stress accelerated the death rates of CS and w1118 flies, shortened their lifespan, and influenced their locomotion rhythm and activity. The upregulated expression levels of heat shock protein (HSP) 22, HSP26, and HSP70 indicated that HSR was enhanced. Thermal stress-induced OS response increased malondialdehyde content, enhanced superoxide dismutase activity, and decreased reactive oxygen species level. The effects of thermal stress on the death rates, lifespan, locomotion, and HSP gene expression of flies, especially w1118 line, were also enhanced by ELF-EMF. In conclusion, thermal stress weakened the physiological function and promoted the HSR and OS of flies. ELF-EMF aggravated damages and enhanced thermal stress-induced HSP and OS response. Therefore, thermal stress and ELF-EMF elicited a synergistic effect. PMID:27611438

  19. Coupling Mechanism of Electromagnetic Field and Thermal Stress on Drosophila melanogaster.

    PubMed

    Zhang, Zi-Yan; Zhang, Jing; Yang, Chuan-Jun; Lian, Hui-Yong; Yu, Hui; Huang, Xiao-Mei; Cai, Peng

    2016-01-01

    Temperature is an important factor in research on the biological effects of extremely low-frequency electromagnetic field (ELF-EMF), but interactions between ELF-EMF and temperature remain unknown. The effects of ELF-EMF (50 Hz, 3 mT) on the lifespan, locomotion, heat shock response (HSR), and oxidative stress (OS) of Canton-Special (CS) and mutant w1118 flies were investigated at 25°C and 35°C (thermal stress). Results showed that thermal stress accelerated the death rates of CS and w1118 flies, shortened their lifespan, and influenced their locomotion rhythm and activity. The upregulated expression levels of heat shock protein (HSP) 22, HSP26, and HSP70 indicated that HSR was enhanced. Thermal stress-induced OS response increased malondialdehyde content, enhanced superoxide dismutase activity, and decreased reactive oxygen species level. The effects of thermal stress on the death rates, lifespan, locomotion, and HSP gene expression of flies, especially w1118 line, were also enhanced by ELF-EMF. In conclusion, thermal stress weakened the physiological function and promoted the HSR and OS of flies. ELF-EMF aggravated damages and enhanced thermal stress-induced HSP and OS response. Therefore, thermal stress and ELF-EMF elicited a synergistic effect. PMID:27611438

  20. Effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency based nonlinear frequency conversion in quantum ring

    NASA Astrophysics Data System (ADS)

    Gumber, Sukirti; Gambhir, Monica; Jha, Pradip Kumar; Mohan, Man

    2016-10-01

    We study the combined effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency in quantum ring. The high flexibility in size and shape of ring makes it possible to fabricate a nearly perfect two-dimensional quantum structure. We also explore the dependence of frequency conversion, measured in terms of third order nonlinear susceptibility χ(3) , on coupling field, hydrostatic pressure and magnetic field. Although, a dip in χ(3) is observed with the introduction of strong coupling field, it renders the ring structure transparent to generated wave thus effectively enhancing the output of nonlinear frequency conversion process. At a fixed coupling strength, the output can be further enhanced by increasing the magnetic field while it shows an inverse relationship with pressure. These parameters, being externally controlled, provide an easy handle to control the output of quantum ring which can be used as frequency converter in communication networks.

  1. Finite Element Method Simulations of the Near-Field Enhancement at the Vicinity of Fractal Rough Metallic Surfaces

    SciTech Connect

    Micic, Miodrag; Klymyshyn, Nicholas A.; Lu, H PETER.

    2004-03-04

    Near-field optical enhancement at metal surfaces and methods such as surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), fluorescent quenching and enhancement, and various near-field scanning microscopies (NSOM) all depend on a metals surface properties, mainly on its morphology and SPR resonant frequency. We report on simulations of the influence of different surface morphologies on electromagnetic field enhancements at the rough surfaces of noble metals and also evaluate the optimal conditions for the generation of a surface-enhanced Raman signal of absorbed species on a metallic substrate. All simulations were performed with a classical electrodynamics approach using the full set of Maxwells equations, which were solved with the three-dimensional finite element method (FEM). Two different classes of surfaces where modeled using fractals, representing diffusion limited aggregation growth dendritic structures, such as one on the surface of electrodes, and second one representing the sponge-like structure used to model surfaces of particles with high porosity, such as metal coated catalyst supports. The simulations depict the high inhomogeneity of an enhanced electromagnetic field as both a field enhancement and field attenuation near the surface. While the diffusion limited aggregation dendritical fractals enhanced the near-field electromagnetic field, the sponge fractals significantly reduced the local electromagnetic field intensity. Moreover, the fractal orders of the fractal objects did not significantly alter the total enhancement, and the distribution of a near-field enhancement was essentially invariant to the changes in the angle of an incoming laser beam.

  2. Electromagnetic field expressions in the wavenumber domain from both the horizontal and vertical electric dipoles

    NASA Astrophysics Data System (ADS)

    Li, Yuguo; Li, Gang

    2016-08-01

    In this paper, we present wavenumber domain (WD) electromagnetic field expressions at any depth in a layered conductivity earth due to both the horizontal and vertical electric dipoles, which can be buried anywhere within the layered earth. In modeling controlled-source electromagnetic (CSEM) responses for a 2D conductivity structure with a 3D source, it is very common to separate electromagnetic fields into a primary field and a secondary field to avoid the source singularity. This secondary field scheme requires WD background fields at any depth for a layered conductivity structure. To obtain primary electromagnetic fields in the WD, one can calculate quasi-analytical primary fields in the space domain (SD) and then transform them into the WD. However, this SD method is not a very efficient method of calculation. With the use of Schelkunoff potentials, we derive the quasi-analytic expressions for the electromagnetic fields in the WD, i.e. the WD method. Numerical tests indicate that the WD method can give results with the same accuracy as the SD method, and furthermore, the WD method is much faster than the SD method.

  3. [Constant low-frequency electrical and electromagnetic fields (biological action and hygienic evaluation)].

    PubMed

    Davydov, B I; Karpov, V N

    1982-01-01

    The literature data are used to analyze the hygienic situation when man is exposed to constant electrical and low frequency electromagnetic radiations. The spectral characteristics and intensities of electrical fields near and on the surface of the Earth generated by natural sources of electromagnetic radiations (electrical quasi-static fields, atmospheric electricity, thunderstorm charges, electromagnetic radiation emitted by the sun and galaxies) are given. They can be employed to determine man's adaptive capabilities to the frequencies described during acute and chronic irradiation. The mechanisms of biological effects of the exposures are discussed. The methods for calculating the safety levels based on the USSR radiation safety standards and the "competing frequencies" procedure proposed can be applied to the design of electrotechnical devices and evaluation of integral hazard of constant electrical and electromagnetic fields of low frequencies.

  4. Static electric and electromagnetic low-frequency fields (biological effects and hygienic assessment)

    SciTech Connect

    Davydov, B.I.; Karpov, V.N.

    1982-11-01

    The literature data are used to analyze the hygienic situation when man is exposed to constant electrical and low frequency electromagnetic radiations. The spectral characteristics and intensities of electrical fields near and on the surface of the earth generated by natural sources of electromagnetic radiations (electrical quasi-static fields, atmospheric electricity, thunderstorm charges, electromagnetic radiation emitted by the Sun and galaxies) are given. They can be employed to determine man's adaptive capabilities to the frequencies described during acute and chronic irradiation. The mechanisms of biological effects of the exposures are discussed. The methods for calculating the safety levels based on the USSR radiation safety standards and the competing frequencies procedure proposed can be applied to the design of electrotechnical devices and evaluation of integral hazard of constant electrical and electromagnetic fields of low frequencies.

  5. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana

    PubMed Central

    Pazur, Alexander; Rassadina, Valentina

    2009-01-01

    Background Weak magnetic and electromagnetic fields can influence physiological processes in animals, plants and microorganisms, but the underlying way of perception is poorly understood. The ion cyclotron resonance is one of the discussed mechanisms, predicting biological effects for definite frequencies and intensities of electromagnetic fields possibly by affecting the physiological availability of small ions. Above all an influence on Calcium, which is crucial for many life processes, is in the focus of interest. We show that in Arabidopsis thaliana, changes in Ca2+-concentrations can be induced by combinations of magnetic and electromagnetic fields that match Ca2+-ion cyclotron resonance conditions. Results An aequorin expressing Arabidopsis thaliana mutant (Col0-1 Aeq Cy+) was subjected to a magnetic field around 65 microtesla (0.65 Gauss) and an electromagnetic field with the corresponding Ca2+ cyclotron frequency of 50 Hz. The resulting changes in free Ca2+ were monitored by aequorin bioluminescence, using a high sensitive photomultiplier unit. The experiments were referenced by the additional use of wild type plants. Transient increases of cytosolic Ca2+ were observed both after switching the electromagnetic field on and off, with the latter effect decreasing with increasing duration of the electromagnetic impact. Compared with this the uninfluenced long-term loss of bioluminescence activity without any exogenic impact was negligible. The magnetic field effect rapidly decreased if ion cyclotron resonance conditions were mismatched by varying the magnetic fieldstrength, also a dependence on the amplitude of the electromagnetic component was seen. Conclusion Considering the various functions of Ca2+ as a second messenger in plants, this mechanism may be relevant for perception of these combined fields. The applicability of recently hypothesized mechanisms for the ion cyclotron resonance effect in biological systems is discussed considering it's operating at

  6. Exposure to an extremely low-frequency electromagnetic field only slightly modifies the proteome of Chromobacterium violaceumATCC 12472

    PubMed Central

    Baraúna, Rafael A.; Santos, Agenor V.; Graças, Diego A.; Santos, Daniel M.; Ghilardi, Rubens; Pimenta, Adriano M. C.; Carepo, Marta S. P.; Schneider, Maria P.C.; Silva, Artur

    2015-01-01

    Several studies of the physiological responses of different organisms exposed to extremely low-frequency electromagnetic fields (ELF-EMF) have been described. In this work, we report the minimal effects of in situ exposure to ELF-EMF on the global protein expression of Chromobacterium violaceum using a gel-based proteomic approach. The protein expression profile was only slightly altered, with five differentially expressed proteins detected in the exposed cultures; two of these proteins (DNA-binding stress protein, Dps, and alcohol dehydrogenase) were identified by MS/MS. The enhanced expression of Dps possibly helped to prevent physical damage to DNA. Although small, the changes in protein expression observed here were probably beneficial in helping the bacteria to adapt to the stress generated by the electromagnetic field. PMID:26273227

  7. Exposure of biological preparations to radiofrequency electromagnetic fields under low gravity

    NASA Astrophysics Data System (ADS)

    Jacquot, Jean Francois; le Bail, Jean-Luc; Bardet, Michel; Tabony, James

    2010-11-01

    There is interest as to whether the electromagnetic fields used in mobile radiotelephony might affect biological processes. Other weak fields such as gravity intervene in a number of physical and biological processes. Under appropriate in vitro conditions, the macroscopic self-organization of microtubules, a major cellular component, is triggered by gravity. We wished to investigate whether self-organization might also be affected by radiotelephone electromagnetic fields. Detecting a possible effect requires removing the obscuring effects triggered by gravity. A simple manner of doing this is by rotating the sample about the horizontal. However, if the external field does not also rotate with the sample, its possible effect might also be averaged down by rotation. Here, we describe an apparatus in which both the sample and an applied radiofrequency electromagnetic field (1.8 GHz) are stationary with respect to one another while undergoing horizontal rotation. The electromagnetic field profile within the apparatus has been measured and the apparatus tested by reproducing the in vitro behavior of microtubule preparations under conditions of weightlessness. Specific adsorption rates of electromagnetic energy within a sample are measured from the initial temperature rise the incident field causes. The apparatus can be readily adapted to expose samples to various other external fields and factors under conditions of weightlessness.

  8. Exposure of biological preparations to radiofrequency electromagnetic fields under low gravity.

    PubMed

    Jacquot, Jean Francois; le Bail, Jean-Luc; Bardet, Michel; Tabony, James

    2010-11-01

    There is interest as to whether the electromagnetic fields used in mobile radiotelephony might affect biological processes. Other weak fields such as gravity intervene in a number of physical and biological processes. Under appropriate in vitro conditions, the macroscopic self-organization of microtubules, a major cellular component, is triggered by gravity. We wished to investigate whether self-organization might also be affected by radiotelephone electromagnetic fields. Detecting a possible effect requires removing the obscuring effects triggered by gravity. A simple manner of doing this is by rotating the sample about the horizontal. However, if the external field does not also rotate with the sample, its possible effect might also be averaged down by rotation. Here, we describe an apparatus in which both the sample and an applied radiofrequency electromagnetic field (1.8 GHz) are stationary with respect to one another while undergoing horizontal rotation. The electromagnetic field profile within the apparatus has been measured and the apparatus tested by reproducing the in vitro behavior of microtubule preparations under conditions of weightlessness. Specific adsorption rates of electromagnetic energy within a sample are measured from the initial temperature rise the incident field causes. The apparatus can be readily adapted to expose samples to various other external fields and factors under conditions of weightlessness.

  9. Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge

    PubMed Central

    Żak, Arkadiusz

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557

  10. Influence of electric, magnetic, and electromagnetic fields on the circadian system: current stage of knowledge.

    PubMed

    Lewczuk, Bogdan; Redlarski, Grzegorz; Zak, Arkadiusz; Ziółkowska, Natalia; Przybylska-Gornowicz, Barbara; Krawczuk, Marek

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms-two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields.

  11. Electromagnetic Imaging of CO2 Sequestration at an Enhanced-Oil-Recovery Site

    SciTech Connect

    Kirkendall, B; Roberts, J

    2004-02-17

    The two year LDRD-ER-089 project Electromagnetic Imaging of CO{sub 2} Sequestration at an Enhanced-Oil-Recovery Site used a dual track approach to imaging and interpreting the effectiveness and migration of CO2 injection at an enhanced oil recovery site. Both field data and laboratory data were used together to aid in the interpretation and understanding of CO{sub 2} flow in a heavily fracture enhanced oil recovery site. In particular, project highlights include; {lg_bullet} The development of a low-noise digital field system to measure the EM induction response to CO{sub 2} in a variety of field conditions. Central to this system is a low-noise induction receiver antenna that can measure the low-energy response of the CO{sub 2}. This system has consistently measured a shallow pseudo-miscible CO{sub 2} flood at source frequencies between 2.0 kHz and 10 kHz. In addition, the existing and added oil and brine in the formation have also been characterized. {lg_bullet} Comparisons of cross-well images with induction logs acquired before drilling suggest the EM induction resolution for CO2 imaging is equivalent with applications to waterflood imaging completed at LLNL. {lg_bullet} The development and use of laboratory equipment to conduct fluid and gas time-lapsed injection studies of core samples using fluids acquired in the field. Measurements of the resistivity during this injection process and the ability to make instantaneous measurements of the frequency response provide a unique dataset for interpretation. {lg_bullet} The development of an optimum finite difference grid spacing that allows for stable inversions at different frequencies. {lg_bullet} The use of time-lapse field images to show the change of electrical conductivity in the field scales to the laboratory results. Using this result, we can approximate an interpretation of field images based on the rate-of-change of the laboratory results. {lg_bullet} The application of Q-domain processing is not

  12. Radiation enhanced efficiency of combined electromagnetic hyperthermia and chemotherapy of lung carcinoma using cisplatin functionalized magnetic nanoparticles.

    PubMed

    Babincová, M; Kontrisova, K; Durdík, S; Bergemann, C; Sourivong, P

    2014-02-01

    The effect of trimodality treatment consisting of hyperthermia, cisplatin and radiation was investigated in two non-small lung carcinoma cell lines with different sensitivities to cisplatin. Hyperthermia treatment was performed using heat released via Neél and Brown relaxation of magnetic nanoparticles in an alternating magnetic field. Radiation with dose 1.5 Gy was performed after 15 min electromagnetic hyperthermia and cisplatin treatment. Electromagnetic hyperthermia enhanced cisplatin-induced radiosensitization in both the cisplatin-sensitive H460 (viability 11.2 +/- 1.8 %) and cisplatin-resistant A549 (viability 14.5 +/- 2.3 %) lung carcinoma cell line. Proposed nanotechnology based trimodality cancer treatment may have therefore important clinical applications.

  13. Electromagnetic Near Field Measurements of Two Critical Assemblies

    SciTech Connect

    Goettee, Jeffrey David

    2015-11-03

    The reactors employed, Godiva IV and WSMR Fast Burst Reactor, are described first. Then the point reactor kinetics model, electromagnetic potential, and the measurement of kinetics quantities are successively discussed. In summary, reactor power produces measurable electric energy. The electric signal mimics power curve for prompt burst operations - features in logarithmic derivatives match. The electric signature should be dependent on the power and not the derivative; therefore, steady-state modes should be measurable.

  14. Electromagnetic fields and anomalous transports in heavy-ion collisions—a pedagogical review

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Guang

    2016-07-01

    The hot and dense matter generated in heavy-ion collisions may contain domains which are not invariant under P and CP transformations. Moreover, heavy-ion collisions can generate extremely strong magnetic fields as well as electric fields. The interplay between the electromagnetic field and triangle anomaly leads to a number of macroscopic quantum phenomena in these P- and CP-odd domains known as anomalous transports. The purpose of this article is to give a pedagogical review of various properties of the electromagnetic fields, the anomalous transport phenomena, and their experimental signatures in heavy-ion collisions.

  15. Simple and effective monitoring of the electromagnetic field in the smart cities arena

    NASA Astrophysics Data System (ADS)

    Ares-Pena, Francisco J.; Franceschetti, Giorgio; Iodice, Antonio; Salas-Sánchez, Aarón A.

    2016-08-01

    A simple and economical method for monitoring the electromagnetic field intensity in built-up areas is presented. The method is based on the measurement of the field level over a limited number of points at street level in the city and their transmission to an operative control center, where the field values all over the city are correctly interpolated in real time. Citizens might obtain these values at their sites, via Internet, or by connecting with a dedicated call center. Numerical evaluations of the electromagnetic field intensity via the new developed model and confirming experimental results are finally presented.

  16. Electromagnetic fields and anomalous transports in heavy-ion collisions-a pedagogical review.

    PubMed

    Huang, Xu-Guang

    2016-07-01

    The hot and dense matter generated in heavy-ion collisions may contain domains which are not invariant under P and CP transformations. Moreover, heavy-ion collisions can generate extremely strong magnetic fields as well as electric fields. The interplay between the electromagnetic field and triangle anomaly leads to a number of macroscopic quantum phenomena in these P- and CP-odd domains known as anomalous transports. The purpose of this article is to give a pedagogical review of various properties of the electromagnetic fields, the anomalous transport phenomena, and their experimental signatures in heavy-ion collisions.

  17. Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media

    SciTech Connect

    Tong Zhisong; Korotkova, Olga

    2010-09-15

    The theory of scattering of scalar stochastic fields from deterministic and random media is generalized to the electromagnetic domain under the first-order Born approximation. The analysis allows for determining the changes in spectrum, coherence, and polarization of electromagnetic fields produced on their propagation from the source to the scattering volume, interaction with the scatterer, and propagation from the scatterer to the far field. An example of scattering of a field produced by a {delta}-correlated partially polarized source and scattered from a {delta}-correlated medium is provided.

  18. Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro.

    PubMed

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment.Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm(2) to 2 mW/cm(2), representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction.

  19. Terahertz Electromagnetic Fields (0.106 THz) Do Not Induce Manifest Genomic Damage In Vitro

    PubMed Central

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment. Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm2 to 2 mW/cm2, representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction. PMID:23029508

  20. Electromagnetic and thermal analysis for lipid bilayer membranes exposed to RF fields.

    PubMed

    Eibert, T F; Alaydrus, M; Wilczewski, F; Hansen, V W

    1999-08-01

    Experiments with pulsed radio frequency fields have shown influence on the low-frequency behavior of lipid bilayer membranes. In this paper, we present an electromagnetic and thermal analysis of the used exposure device to clarify whether the observed effects have a thermal cause and to determine the fields at the lipid bilayer. In order to model the very thin lipid bilayer (about 5 nm) accurately, the electromagnetic analysis is broken into several steps employing the finite difference time domain technique and a finite element/boundary element hybrid approach. Based on the obtained power loss due to the electromagnetic fields, the temperature change is calculated using the finite element method for the solution of the heat conduction equation. Both, the electromagnetic and the thermal analysis are performed for a variety of material parameters of the exposure device. The electromagnetic analysis shows that the exposure device is capable of producing voltages on the order of 1 mV across the lipid bilayer. The combined electromagnetic and thermal calculations reveal that the temperature oscillations due to the pulsed radio frequency fields are too small to directly influence the low-frequency behavior of the lipid bilayer.

  1. Localized electromagnetic and weak gravitational fields in the source-free space.

    PubMed

    Borzdov, G N

    2001-03-01

    Localized electromagnetic and weak gravitational time-harmonic fields in the source-free space are treated using expansions in plane waves. The presented solutions describe fields having a very small (about several wavelengths) and clearly defined core region with maximum intensity of field oscillations. In a given Lorentz frame L, a set of the obtained exact time-harmonic solutions of the free-space homogeneous Maxwell equations consists of three subsets (storms, whirls, and tornados), for which time average energy flux is identically zero at all points, azimuthal and spiral, respectively. In any other Lorentz frame L', they will be observed as a kind of electromagnetic missile moving without dispersing at speed Velectromagnetic storms, whirls, tornados, and weak gravitational fields with similar properties are also presented. The properties of these fields are illustrated in graphic form. PMID:11308787

  2. Determining Green's Functions for Coupled Elastic Waves and Electromagnetic Fields in a Homogeneous Porous Medium

    NASA Astrophysics Data System (ADS)

    Slob, E. C.; Grobbe, N.

    2014-12-01

    The theory of coupled elastic waves and electromagnetic fields in porous media exists for two decades. Several modeling codes have been developed and some field work has been carried out with mixed success. Modeling the so-called electroseismic and seismo-electromagnetic wavefields is tricky because of the strong elastic fields generated by mechanical sources and strong electromagnetic fields generated by electromagnetic sources, while the coupled fields have relatively small amplitudes. A second difficulty is the fact that the elastic field is essentially a wavefield, while the electromagnetic field is a diffusive field. The slow P-wave is usually also a diffusive field depending on the frequency bandwidth of the data. On the other hand, for porous soils and rocks, laboratory measurements have been carried out to experimentally validate the current theoretical model and to some extent this has been successful. To be able to understand measured data it is crucially important that we have good control on the accuracy of modeled data. Today we don't have this control, which makes it hard to judge the quality of the modeled data and trust the experimental validation of the theory. It is therefore important that exact solutions are found to validate modeling codes in simple configurations. These modeling codes can then numerically validate the theory by matching the results obtained in laboratory or field experiments. The simplest configuration is the homogeneous space and we show exact solutions for the governing equations for point sources and point receivers. These Green's functions are obtained for any type of point source and any type of receiver. We reduce the coupled equations to two scalar equations for the electric field and the particle velocity vectors. Solutions for longitudinal and transverse waves are obtained separately and these are combined to obtain the Green's functions for the electric field and the particle velocity, from which the solutions for

  3. Electromagnetic enhancement of ordered silver nanorod arrays evaluated by discrete dipole approximation

    PubMed Central

    Wei, Guoke; Wang, Jinliang

    2015-01-01

    Summary The enhancement factor (EF) of surface-enhanced Raman scattering (SERS) from two-dimensional (2D) hexagonal silver nanorod (AgNR) arrays were investigated in terms of electromagnetic (EM) mechanism by using the discrete dipole approximation (DDA) method. The dependence of EF on several parameters, i.e., structure, length, excitation wavelength, incident angle and polarization, and gap size has been investigated. “Hotspots” were found distributed in the gaps between adjacent nanorods. Simulations of AgNR arrays of different lengths revealed that increasing the rod length from 374 to 937 nm (aspect ratio from 2.0 to 5.0) generated more “hotspots” but not necessarily increased EF under both 514 and 532 nm excitation. A narrow lateral gap (in the incident plane) was found to result in strong EF, while the dependence of EF on the diagonal gap (out of the incident plane) showed an oscillating behavior. The EF of the array was highly dependent on the angle and polarization of the incident light. The structure of AgNR and the excitation wavelength were also found to affect the EF. The EF of random arrays was stronger than that of an ordered one with the same average gap of 21 nm, which could be explained by the exponential dependence of EF on the lateral gap size. Our results also suggested that absorption rather than extinction or scattering could be a good indicator of EM enhancement. It is expected that the understanding of the dependence of local field enhancement on the structure of the nanoarrays and incident excitations will shine light on the optimal design of efficient SERS substrates and improved performance. PMID:25821708

  4. Detection of buried targets using a new enhanced very early time electromagnetic (VETEM) prototype system

    USGS Publications Warehouse

    Cui, T.J.; Chew, W.C.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.

    2001-01-01

    In this paper, numerical simulations of a new enhanced very early time electromagnetic (VETEM) prototype system are presented, where a horizontal transmitting loop and two horizontal receiving loops are used to detect buried targets, in which three loops share the same axis and the transmitter is located at the center of receivers. In the new VETEM system, the difference of signals from two receivers is taken to eliminate strong direct-signals from the transmitter and background clutter and furthermore to obtain a better SNR for buried targets. Because strong coupling exists between the transmitter and receivers, accurate analysis of the three-loop antenna system is required, for which a loop-tree basis function method has been utilized to overcome the low-frequency breakdown problem. In the analysis of scattering problem from buried targets, a conjugate gradient (CG) method with fast Fourier transform (FFT) is applied to solve the electric field integral equation. However, the convergence of such CG-FFT algorithm is extremely slow at very low frequencies. In order to increase the convergence rate, a frequency-hopping approach has been used. Finally, the primary, coupling, reflected, and scattered magnetic fields are evaluated at receiving loops to calculate the output electric current. Numerous simulation results are given to interpret the new VETEM system. Comparing with other single-transmitter-receiver systems, the new VETEM has better SNR and ability to reduce the clutter.

  5. [Immunotropic effects of electromagnetic fields in the range of radio- and microwave frequencies].

    PubMed

    Dabrowski, M P; Stankiewicz, W; Sobiczewska, E; Szmigielski, S

    2001-11-01

    On the grounds of reviewed literature and the results of own experiments, the authors present current views on the possible immunotropic influence of low energy electromagnetic fields, in the range of radio- and microwave frequencies. They conclude, that a more systematic and multidisciplinary investigations should be undertaken, comprising the wide spectrum of immune homeostatic tasks, including defensive, immunoregulatory and pro-regenerative capabilities of immune system exposed to rapid environmental spread of different electromagnetic emitters.

  6. Carboxyl multiwalled carbon nanotubes modified polypyrrole (PPy) aerogel for enhanced electromagnetic absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Xie, Aming; Wu, Fan; Jiang, Wanchun; Wang, Mingyang; Dong, Wei

    2016-05-01

    Polypyrrole (PPy) aerogel is a low-cost and lightweight material with high-performance electromagnetic absorption (EA). However, it does not always meet the requirements of practical applications. In this study, we used trace amounts of carboxyl multiwalled carbon nanotubes to regulate the dielectric property of PPy aerogel, thus enhancing the EA performance. Furthermore, the reason for enhanced EA performance can be elaborated by an electron blocking mechanism.

  7. [Influence of Low-Frequency Electromagnetic Field on DNA Molecules in Water Solutions].

    PubMed

    Tekutskaya, E E; Barishev, M G; Ilchenko, G P

    2015-01-01

    It is shown that the amplicons of hepatitis virus DNA (hepatitis B virus, hepatitis C virus) are capable of inducing radiation after an exposure to electromagnetic fields in the frequency range from 3 to 30 Hz and the field strength, 24-40 A/m, registered by means of a chemiluminescence method. The most effect of the electromagnetic field on water solutions of the amplicons of hepatitis virus DNA occurs at the frequency of 9 Hz, the change in the hydration shell of DNA amplicons is observed. It is suggested that the change in the hydration shell of DNA amplicons exposed to the low-frequency electromagnetic field leads to restoration of hydrogen bonding, stitchings formation and DNA repair as a whole. PMID:26841502

  8. Theoretical study of electromagnetic electron cyclotron waves in the presence of AC field in Uranian magnetosphere

    NASA Astrophysics Data System (ADS)

    Pandey, R. S.; Kaur, Rajbir

    2015-10-01

    Electromagnetic electron cyclotron (EMEC) waves with temperature anisotropy in the magnetosphere of Uranus have been studied in present work. EMEC waves are investigated using method of characteristic solution by kinetic approach, in presence of AC field. In 1986, Voyager 2 encounter with Uranus revealed that magnetosphere of Uranus exhibit non-Maxwellian high-energy tail distribution. So, the dispersion relation, real frequency and growth rate are evaluated using Lorentzian Kappa distribution function. Effect of temperature anisotropy, AC frequency and number density of particles is found. The study is also extended to oblique propagation of EMEC waves in presence and absence of AC field. Through comprehensive mathematical analysis it is found that when EMEC wave propagates parallel to intrinsic magnetic field of Uranus, its growth is more enhanced than in case of oblique propagation. Results are also discussed in context to magnetosphere of Earth and also gives theoretical explanation to existence of high energetic particles observed by Voyager 2 in the magnetosphere of Uranus. The results can present a further insight into the nature of electron-cyclotron instability condition for the whistler mode waves in the outer radiation belts of Uranus or other space plasmas.

  9. Electromagnetic field and the chiral magnetic effect in the quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Tuchin, Kirill

    2015-06-01

    Time evolution of an electromagnetic field created in heavy-ion collisions strongly depends on the electromagnetic response of the quark-gluon plasma, which can be described by the Ohmic and chiral conductivities. The latter is intimately related to the chiral magnetic effect. I argue that a solution to the classical Maxwell equations at finite chiral conductivity is unstable due to the soft modes k <σχ that grow exponentially with time. In the kinematical region relevant for the relativistic heavy-ion collisions, I derive analytical expressions for the magnetic field of a point charge. I show that finite chiral conductivity causes oscillations of magnetic field at early times.

  10. Bubble shape and electromagnetic field in the nonlinear regime for laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Li, X. F.; Yu, Q.; Gu, Y. J.; Huang, S.; Kong, Q.; Kawata, S.

    2015-08-01

    The electromagnetic field in the electron "bubble" regime for ultra-intense laser wakefield acceleration was solved using the d'Alembert equations. Ignoring the residual electrons, we assume an ellipsoidal bubble forms under ideal conditions, with bubble velocity equal to the speed of light in vacuum. The general solution for bubble shape and electromagnetic field were obtained. The results were confirmed in 2.5D PIC (particle-in-cell) simulations. Moreover, slopes for the longitudinal electric field of larger than 0.5 were found in these simulations. With spherical bubbles, this slope is always smaller than or equal to 0.5. This behavior validates the ellipsoid assumption.

  11. The nonextensive parameter for nonequilibrium electron gas in an electromagnetic field

    SciTech Connect

    Yu, Haining; Du, Jiulin

    2014-11-15

    The nonextensive parameter for nonequilibrium electron gas of the plasma in an electromagnetic field is studied. We exactly obtained an expression of the q-parameter based on Boltzmann kinetic theories for plasmas, where Coulombian interactions and Lorentz forces play dominant roles. We show that the q-parameter different from unity is related by an equation to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the gas. The effect of the magnetic field on the q-parameter depends on the overall bulk velocity. Thus the q-parameter for the electron gas in an electromagnetic field represents the nonequilibrium nature or nonisothermal configurations of the plasma with electromagnetic interactions. - Highlights: • An expression of the q-parameter is obtained for nonequilibrium plasma with electromagnetic interactions. • The q-parameter is related to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the plasma. • The q-parameter represents the nonequilibrium nature of the complex plasma with electromagnetic interactions.

  12. Influence of extremely low frequency electromagnetic fields on growth performance, innate immune response, biochemical parameters and disease resistance in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Nofouzi, Katayoon; Sheikhzadeh, Najmeh; Mohamad-Zadeh Jassur, Davood; Ashrafi-Helan, Javad

    2015-06-01

    The effects of extremely low frequency electromagnetic fields on rainbow trout growth performance, innate immunity and biochemical parameters were studied. Rainbow trout (17-18 g) were exposed to electromagnetic fields (15 Hz) at 0.01, 0.1, 0.5, 5 and 50 µT, for 1 h daily over period of 60 days. Growth performance of fish improved in different treatment groups, especially at 0.1, 0.5, 5 and 50 µT. Immunological parameters, specifically hemagglutinating titer, total antiprotease and α1-antiprotease levels in treatment groups, were also enhanced. Total protein and globulin contents in the serum of fish exposed to 0.1, 0.5, 5 and 50 µT were significantly higher than those in the control group. No significant differences were found in serum enzyme activities, namely aspartate aminotransferase and alanine aminotransferase of fish in all treatment groups. Conversely, alkaline phosphatase level decreased in fish exposed to 0.01 and 50 µT electromagnetic fields. Meanwhile, electromagnetic induction at 0.1, 0.5, 5 and 50 µT enhanced fish protection against Yersinia ruckeri. These results indicated that these specific electromagnetic fields had possible effects on growth performance, nonspecific immunity and disease resistance of rainbow trout.

  13. Electroweak phase transition nucleation with the MSSM and electromagnetic field creation

    SciTech Connect

    Henley, Ernest M.; Johnson, Mikkel B.; Kisslinger, Leonard S.

    2010-04-15

    Using EW-MSSM field theory, so the electroweak phase transition (EWPT) is first order, we derive the equations of motion (e.o.m.) for the gauge fields. With an isospin ansatz we derive e.o.m. for the electrically charged W fields uncoupled from all other fields. These and the lepton currents serve as the current for the Maxwell-like e.o.m. for the electromagnetic field. The electromagnetic field arising during EWPT bubble nucleation without leptons is found. We then calculate the electron current contribution, which is seen to be quite large. This provides the basis for determining the magnetic field created by EWPT bubble collisions, which could seed galactic and extragalactic magnetic fields.

  14. Exact Electromagnetic Fields Produced by a Finite Wire with Constant Current

    ERIC Educational Resources Information Center

    Jimenez, J. L.; Campos, I.; Aquino, N.

    2008-01-01

    We solve exactly the problem of calculating the electromagnetic fields produced by a finite wire with a constant current, by using two methods: retarded potentials and Jefimenko's formalism. One result in this particular case is that the usual Biot-Savart law of magnetostatics gives the correct magnetic field of the problem. We also show…

  15. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, Arthur J.; Morin, Brian G.

    1998-01-01

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors.

  16. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, A.J.; Morin, B.G.

    1998-10-13

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors. 21 figs.

  17. Lossy chaotic electromagnetic reverberation chambers: Universal statistical behavior of the vectorial field.

    PubMed

    Gros, J-B; Kuhl, U; Legrand, O; Mortessagne, F

    2016-03-01

    The effective Hamiltonian formalism is extended to vectorial electromagnetic waves in order to describe statistical properties of the field in reverberation chambers. The latter are commonly used in electromagnetic compatibility tests. As a first step, the distribution of wave intensities in chaotic systems with varying opening in the weak coupling limit for scalar quantum waves is derived by means of random matrix theory. In this limit the only parameters are the modal overlap and the number of open channels. Using the extended effective Hamiltonian, we describe the intensity statistics of the vectorial electromagnetic eigenmodes of lossy reverberation chambers. Finally, the typical quantity of interest in such chambers, namely, the distribution of the electromagnetic response, is discussed. By determining the distribution of the phase rigidity, describing the coupling to the environment, using random matrix numerical data, we find good agreement between the theoretical prediction and numerical calculations of the response. PMID:27078293

  18. Matter coupling to strong electromagnetic fields in two-level quantum systems with broken inversion symmetry.

    PubMed

    Kibis, O V; Slepyan, G Ya; Maksimenko, S A; Hoffmann, A

    2009-01-16

    We demonstrate theoretically the parametric oscillator behavior of a two-level quantum system with broken inversion symmetry exposed to a strong electromagnetic field. A multitude of resonance frequencies and additional harmonics in the scattered light spectrum as well as an altered Rabi frequency are predicted to be inherent to such systems. In particular, dipole radiation at the Rabi frequency appears to be possible. Since the Rabi frequency is controlled by the strength of the coupling electromagnetic field, the effect can serve for the frequency-tuned parametric amplification and generation of electromagnetic waves. Manifestation of the effect is discussed for III-nitride quantum dots with strong built-in electric field breaking the inversion symmetry. Terahertz emission from arrays of such quantum dots is shown to be experimentally observable. PMID:19257272

  19. Growth stimulation of biological cells and tissue by electromagnetic fields and uses thereof

    NASA Technical Reports Server (NTRS)

    Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)

    2004-01-01

    The present invention provides systems for growing two or three dimensional mammalian cells within a culture medium facilitated by an electromagnetic field, and preferably, a time varying electromagnetic field. The cells and culture medium are contained within a fixed or rotating culture vessel, and the electromagnetic field is emitted from at least one electrode. In one embodiment, the electrode is spaced from the vessel. The invention further provides methods to promote neural tissue regeneration by means of culturing the neural cells in the claimed system. In one embodiment, neuronal cells are grown within longitudinally extending tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time varying electrical current is conducted, the conductive channels being positioned within a culture medium.

  20. [Improvement of light-cured indirect inlays durability by means of electromagnetic field].

    PubMed

    Nidzel'skiĭ, M Ia; Korotetskaia-Zinkevich, V L

    2014-01-01

    The main strength characteristics of light-cured resins used for replacement of dental hard tissues defects are destructive stress by compression, microhardness, resistance to abrasion, impact and water absorption. The study focuses on some strength features of composite materials for inlays processed by electromagnetic field. Four sample series of light cured resin (Charisma, Heraus Kulzer, Germany) were used to assess strength features changes in various curing methods: 10 control samples were polymerized by conventional light-curing device, while 30 were additionally processed by electromagnetic field of various intensity (60, 80 and 100 Oe, 10 samples for each group). The obtained results confirm the positive effects of electromagnetic field on strength features of light-cured resins which improves the quality of inlays.

  1. Matter coupling to strong electromagnetic fields in two-level quantum systems with broken inversion symmetry.

    PubMed

    Kibis, O V; Slepyan, G Ya; Maksimenko, S A; Hoffmann, A

    2009-01-16

    We demonstrate theoretically the parametric oscillator behavior of a two-level quantum system with broken inversion symmetry exposed to a strong electromagnetic field. A multitude of resonance frequencies and additional harmonics in the scattered light spectrum as well as an altered Rabi frequency are predicted to be inherent to such systems. In particular, dipole radiation at the Rabi frequency appears to be possible. Since the Rabi frequency is controlled by the strength of the coupling electromagnetic field, the effect can serve for the frequency-tuned parametric amplification and generation of electromagnetic waves. Manifestation of the effect is discussed for III-nitride quantum dots with strong built-in electric field breaking the inversion symmetry. Terahertz emission from arrays of such quantum dots is shown to be experimentally observable.

  2. Separation of particles, suspended in a conducting liquid, with the help of an alternating electromagnetic field

    SciTech Connect

    Korovin, V.M.

    1986-01-01

    The author studies MHD flow at low Reynolds numbers past a spherical particle with conductivity ..cap alpha../sub 1/ greater than or equal to0, moving in a viscous fluid at rest with conductivity ..cap alpha../sub 2/ not = ..cap alpha../sub 1/, filling the interior space of a long solenoid fed by an alternating current. It is shown that aside from the electromagnetic force calculated from the analog of Archimedes' principle, and from the Lorentz force arising from the interaction of eddy currents flowing in th particle with the magnetic field, the particle is also subjected to an electromagnetic propulsive force. A formula relating the local characteristics of the electromagnetic field with the velocity of the particle put into motion by the field but neglecting inertial effects is obtained.

  3. The effect of electromagnetic fields emitted by mobile phones on human sleep.

    PubMed

    Loughran, Sarah P; Wood, Andrew W; Barton, Julie M; Croft, Rodney J; Thompson, Bruce; Stough, Con

    2005-11-28

    Previous research has suggested that exposure to radiofrequency electromagnetic fields increases electroencephalogram spectral power in non-rapid eye movement sleep. Other sleep parameters have also been affected following exposure. We examined whether aspects of sleep architecture show sensitivity to electromagnetic fields emitted by digital mobile phone handsets. Fifty participants were exposed to electromagnetic fields for 30 min prior to sleep. Results showed a decrease in rapid eye movement sleep latency and increased electroencephalogram spectral power in the 11.5-12.25 Hz frequency range during the initial part of sleep following exposure. These results are evidence that mobile phone exposure prior to sleep may promote rapid eye movement sleep and modify the sleep electroencephalogram in the first non-rapid eye movement sleep period. PMID:16272890

  4. Pulsed electromagnetic fields (PEMF) promote early wound healing and myofibroblast proliferation in diabetic rats.

    PubMed

    Cheing, Gladys Lai-Ying; Li, Xiaohui; Huang, Lin; Kwan, Rachel Lai-Chu; Cheung, Kwok-Kuen

    2014-04-01

    Reduced collagen deposition possibly leads to slow recovery of tensile strength in the healing process of diabetic cutaneous wounds. Myofibroblasts are transiently present during wound healing and play a key role in wound closure and collagen synthesis. Pulsed electromagnetic fields (PEMF) have been shown to enhance the tensile strength of diabetic wounds. In this study, we examined the effect of PEMF on wound closure and the presence of myofibroblasts in Sprague-Dawley rats after diabetic induction using streptozotocin. A full-thickness square-shaped dermal wound (2 cm × 2 cm) was excised aseptically on the shaved dorsum. The rats were randomly divided into PEMF-treated (5 mT, 25 Hz, 1 h daily) and control groups. The results indicated that there were no significant differences between the groups in blood glucose level and body weight. However, PEMF treatment significantly enhanced wound closure (days 10 and 14 post-wounding) and re-epithelialization (day 10 post-wounding), although these improvements were no longer observed at later stages of the wound healing process. Using immunohistochemistry against α-smooth muscle actin (α-SMA), we demonstrated that significantly more myofibroblasts were detected on days 7 and 10 post-wounding in the PEMF group when compared to the control group. We hypothesized that PEMF would increase the myofibroblast population, contributing to wound closure during diabetic wound healing.

  5. Pulsed-Electromagnetic-Field-Assisted Reduced Graphene Oxide Substrates for Multidifferentiation of Human Mesenchymal Stem Cells.

    PubMed

    Lim, Ki-Taek; Seonwoo, Hoon; Choi, Kyung Soon; Jin, Hexiu; Jang, Kyung-Je; Kim, Jangho; Kim, Jin-Woo; Kim, Soo Young; Choung, Pill-Hoon; Chung, Jong Hoon

    2016-08-01

    Electromagnetic fields (EMFs) can modulate cell proliferation, DNA replication, wound healing, cytokine expression, and the differentiation of mesenchymal stem cells (MSCs). Graphene, a 2D crystal of sp(2) -hybridized carbon atoms, has entered the spotlight in cell and tissue engineering research. However, a combination of graphene and EMFs has never been applied in tissue engineering. This study combines reduced graphene oxide (RGO) and pulsed EMFs (PEMFs) on the osteogenesis and neurogenesis of MSCs. First, the chemical properties of RGO are measured. After evaluation, the RGO is adsorbed onto glass, and its morphological and electrical properties are investigated. Next, an in vitro study is conducted using human alveolar bone marrow stem cells (hABMSCs). Their cell viability, cell adhesion, and extracellular matrix (ECM) formation are increased by RGO and PEMFs. The combination of RGO and PEMFs enhances osteogenic differentiation. Together, RGO and PEMFs enhance the neurogenic and adipogenic differentiation of hABMSCs. Moreover, in a DNA microarray analysis, the combination of RGO and PEMFs synergically increases ECM formation, membrane proteins, and metabolism. The combination of RGO and PEMFs is expected to be an efficient platform for stem cell and tissue engineering. PMID:27332788

  6. Pulsed-Electromagnetic-Field-Assisted Reduced Graphene Oxide Substrates for Multidifferentiation of Human Mesenchymal Stem Cells.

    PubMed

    Lim, Ki-Taek; Seonwoo, Hoon; Choi, Kyung Soon; Jin, Hexiu; Jang, Kyung-Je; Kim, Jangho; Kim, Jin-Woo; Kim, Soo Young; Choung, Pill-Hoon; Chung, Jong Hoon

    2016-08-01

    Electromagnetic fields (EMFs) can modulate cell proliferation, DNA replication, wound healing, cytokine expression, and the differentiation of mesenchymal stem cells (MSCs). Graphene, a 2D crystal of sp(2) -hybridized carbon atoms, has entered the spotlight in cell and tissue engineering research. However, a combination of graphene and EMFs has never been applied in tissue engineering. This study combines reduced graphene oxide (RGO) and pulsed EMFs (PEMFs) on the osteogenesis and neurogenesis of MSCs. First, the chemical properties of RGO are measured. After evaluation, the RGO is adsorbed onto glass, and its morphological and electrical properties are investigated. Next, an in vitro study is conducted using human alveolar bone marrow stem cells (hABMSCs). Their cell viability, cell adhesion, and extracellular matrix (ECM) formation are increased by RGO and PEMFs. The combination of RGO and PEMFs enhances osteogenic differentiation. Together, RGO and PEMFs enhance the neurogenic and adipogenic differentiation of hABMSCs. Moreover, in a DNA microarray analysis, the combination of RGO and PEMFs synergically increases ECM formation, membrane proteins, and metabolism. The combination of RGO and PEMFs is expected to be an efficient platform for stem cell and tissue engineering.

  7. Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer's disease mice.

    PubMed

    Arendash, Gary W; Sanchez-Ramos, Juan; Mori, Takashi; Mamcarz, Malgorzata; Lin, Xiaoyang; Runfeldt, Melissa; Wang, Li; Zhang, Guixin; Sava, Vasyl; Tan, Jun; Cao, Chuanhai

    2010-01-01

    Despite numerous studies, there is no definitive evidence that high-frequency electromagnetic field (EMF) exposure is a risk to human health. To the contrary, this report presents the first evidence that long-term EMF exposure directly associated with cell phone use (918 MHz; 0.25 w/kg) provides cognitive benefits. Both cognitive-protective and cognitive-enhancing effects of EMF exposure were discovered for both normal mice and transgenic mice destined to develop Alzheimer's-like cognitive impairment. The cognitive interference task utilized in this study was designed from, and measure-for-measure analogous to, a human cognitive interference task. In Alzheimer's disease mice, long-term EMF exposure reduced brain amyloid-beta (Abeta) deposition through Abeta anti-aggregation actions and increased brain temperature during exposure periods. Several inter-related mechanisms of EMF action are proposed, including increased Abeta clearance from the brains of Alzheimer's disease mice, increased neuronal activity, and increased cerebral blood flow. Although caution should be taken in extrapolating these mouse studies to humans, we conclude that EMF exposure may represent a non-invasive, non-pharmacologic therapeutic against Alzheimer's disease and an effective memory-enhancing approach in general.

  8. Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions

    DOE PAGES

    Tuchin, Kirill

    2013-01-01

    I reviewmore » the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~ m π 2 at RHIC and ~ 10 m π 2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J / ψ dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.« less

  9. Localization from near-source quasi-static electromagnetic fields

    SciTech Connect

    Mosher, J.C.

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.

  10. A study on the discrete image method for calculation of transient electromagnetic fields in geological media

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Xin; Pan, He-Ping; Luo, Miao

    2015-12-01

    We conducted a study on the numerical calculation and response analysis of a transient electromagnetic field generated by a ground source in geological media. One solution method, the traditional discrete image method, involves complex operation, and its digital filtering algorithm requires a large number of calculations. To solve these problems, we proposed an improved discrete image method, where the following are realized: the real number of the electromagnetic field solution based on the Gaver-Stehfest algorithm for approximate inversion, the exponential approximation of the objective kernel function using the Prony method, the transient electromagnetic field according to discrete image theory, and closed-form solution of the approximate coefficients. To verify the method, we tentatively calculated the transient electromagnetic field in a homogeneous model and compared it with the results obtained from the Hankel transform digital filtering method. The results show that the method has considerable accuracy and good applicability. We then used this method to calculate the transient electromagnetic field generated by a ground magnetic dipole source in a typical geoelectric model and analyzed the horizontal component response of the induced magnetic field obtained from the "ground excitation-stratum measurement" method. We reached the conclusion that the horizontal component response of a transient field is related to the geoelectric structure, observation time, spatial location, and others. The horizontal component response of the induced magnetic field reflects the eddy current field distribution and its vertical gradient variation. During the detection of abnormal objects, positions with a zero or comparatively large offset were selected for the drillhole measurements or a comparatively long observation delay was adopted to reduce the influence of the ambient field on the survey results. The discrete image method and forward calculation results in this paper

  11. Numerical modeling of an enhanced very early time electromagnetic (VETEM) prototype system

    USGS Publications Warehouse

    Cui, T.J.; Chew, W.C.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.; Abraham, J.D.

    2000-01-01

    In this paper, two numerical models are presented to simulate an enhanced very early time electromagnetic (VETEM) prototype system, which is used for buried-object detection and environmental problems. Usually, the VETEM system contains a transmitting loop antenna and a receiving loop antenna, which run on a lossy ground to detect buried objects. In the first numerical model, the loop antennas are accurately analyzed using the Method of Moments (MoM) for wire antennas above or buried in lossy ground. Then, Conjugate Gradient (CG) methods, with the use of the fast Fourier transform (FFT) or MoM, are applied to investigate the scattering from buried objects. Reflected and scattered magnetic fields are evaluated at the receiving loop to calculate the output electric current. However, the working frequency for the VETEM system is usually low and, hence, two magnetic dipoles are used to replace the transmitter and receiver in the second numerical model. Comparing these two models, the second one is simple, but only valid for low frequency or small loops, while the first modeling is more general. In this paper, all computations are performed in the frequency domain, and the FFT is used to obtain the time-domain responses. Numerical examples show that simulation results from these two models fit very well when the frequency ranges from 10 kHz to 10 MHz, and both results are close to the measured data.

  12. Influence of electromagnetic field intensity on the metastable zone width of CaCO3 crystallization in circulating water

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Liang, Yandong; Chen, Si

    2016-09-01

    In this study, changes in the metastable zone width of CaCO3 crystallization was determined through conductivity titration by altering electromagnetic field parameters applied to the circulating water system. The critical conductivity value and metastable zone curves of CaCO3 crystallization were determined under different solution concentrations and electromagnetic field intensities. Experimental results indicate that the effect of the electromagnetic field intensity on the critical conductivity value intensifies with the increase of solution concentration. Moreover, the metastable zone width of CaCO3 crystallization increases with the increase of electromagnetic field intensity within 200 Gs, thereby prolonging the induction period of nucleation.

  13. [Patient exposure to electromagnetic fields in magnetic resonance scanners: a review].

    PubMed

    Guibelalde del Castillo, E

    2013-12-01

    The use of non-ionizing electromagnetic fields in the low frequency end of the electromagnetic spectrum and static fields, radiofrequencies (RF), and microwaves is fundamental both in modern communication systems and in diagnostic medical imaging techniques like magnetic resonance imaging (MRI). The proliferation of these applications in recent decades has led to intense activity in developing regulations to guarantee their safety and to the establishment of guidelines and legal recommendations for the public, workers, and patients. In April 2012 it was foreseen that the European Parliament and Council would approve and publish a directive on the minimum health and safety requirements regarding the exposure of workers to the risks arising from electromagnetic fields, which would modify Directive 2004/40/EC. New studies related to the exposure to electromagnetic radiation and its impact on health published in recent years have led to a new postponement, and it is now foreseen that the directive will come into effect in October 2013. One of the most noteworthy aspects of the new version of the directive is the exclusion of the limits of occupational exposure to electromagnetic fields in the clinical use of MRI. In exchange for this exception, physicians and experts in protection against non-ionizing radiation are asked to make additional efforts to train workers exposed to non-ionizing radiation and to establish mechanisms to guarantee the correct application of non-ionizing electromagnetic fields in patients, along similar lines to the principles of justification and optimization established for ionizing radiation. On the basis of the most recently published studies, this article reviews some safety-related aspects to take into account when examining patients with MRI with high magnetic fields.

  14. Nanoparticle Interactions with Low-Frequency Electromagnetic Fields for Ablation Therapy

    NASA Astrophysics Data System (ADS)

    Jensen, Scott; Doyle, Timothy

    2009-10-01

    The in vivo ablation of malignant tumors can be significantly enhanced with nanoparticles (NPs) that absorb energy from electromagnetic (EM) waves and subsequently heat targeted regions in the body. Low-frequency EM fields can penetrate much deeper than near-infrared and visible light. Ohmic heating has primarily been the sole mechanism considered for the coupling of the EM fields to the NPs, but few quantitative analyses have been published to predict NP heating rates. To address this issue, this study identified and modeled four excitation mechanisms for the remote heating of NPs by low-frequency EM waves. These mechanisms included (1) ohmic heating of conductive NPs, (2) translational vibrations of charged NPs, (3) rotational vibrations of piezoelectric NPs, and (4) acoustic wave generation by piezoelectric NPs. Preliminary results showed that for a constant NP volume, the heating rate is independent of NP size for ohmic heating. Additionally, ohmic heating produced the lowest heating rates of the four mechanisms. These results point to possible new NP technologies to optimize heating rates and tumor ablation in patients.

  15. Electromagnetic and gravitational responses of two-dimensional noninteracting electrons in a background magnetic field

    NASA Astrophysics Data System (ADS)

    Abanov, Alexander G.; Gromov, Andrey

    2014-07-01

    We compute electromagnetic, gravitational, and mixed linear response functions of two-dimensional free fermions in an external quantizing magnetic field at an integer filling factor. The results are presented in the form of the effective action and as an expansion of currents and stresses in wave vectors and frequencies of the probing electromagnetic and metric fields. In addition to the well-studied U (1) Chern-Simons and Wen-Zee terms we find a gravitational Chern-Simons term that controls the correction to the Hall viscosity due to the background curvature. We relate the coefficient in front of the term with the chiral central charge.

  16. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    PubMed

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar. PMID:19864331

  17. Effects of Electromagnetic Fields in Spinal Muscular Atrophy: A Case Report

    NASA Astrophysics Data System (ADS)

    Cañedo, L.; Martínez-Mata, J.; Serrano-Luna, G.

    2004-09-01

    Spinal Muscular Atrophy Type I is a disease that rapidly progress to death in early infancy. A case report of a child with Werdnig-Hoffmann disease Type I that recovered at three years of age after two years exposure to electromagnetic fields (ELF) is presented. The child is now eleven years old and with the exception of slightly abnormal gait, the muscle mass of tights and gluteus, high, weight and his everyday activities correspond to those of a normal child his age. Hypothetical explanations for the effects of the electromagnetic fields are discussed.

  18. Association between electromagnetic field exposure and abortion in pregnant women living in Tehran

    PubMed Central

    Abad, Masoumeh; Malekafzali, Hossein; Simbar, Masoumeh; Seyed Mosaavi, Hassan; Merghati Khoei, Effat

    2016-01-01

    Background: Health-related quality of life is affected by electromagnetic field exposure in each person everyday life. However, this is extremely controversial issue. Objective: Investigation of the associations between electromagnetic field exposure and miscarriage among women of Tehran. Materials and Methods: In this longitudinal study, 462 pregnant women with gestational age <12 wks from seven main regions of Tehran city in Iran with similar social and cultural status were participated. Women were interviewed face-to face to collect data. Reproductive information was collected using medical file recorded in those hospitals the subjects had delivery. The measuring device measured electromagnetic waves, Narda safety test solutions with valid calibration date at the entrance door of their houses. Results: A significant likelihood of miscarriage in women who exposed to significant level of electromagnetic wave. However, this association was not confirmed by Wald test. Conclusion: This study may not provide strong or consistent evidence that electromagnetic field exposure is associated or cause miscarriage. This issue may be due to small sample size in this study. PMID:27326421

  19. Skyrmions coupled to the electromagnetic field via the gauged Wess-Zumino term

    SciTech Connect

    Ohtani, Munehisa; Ohta, Koichi

    2004-11-01

    In soliton models expressed in terms of the nonlinear chiral field, the electric current has an anomalous gauge-field contribution as the baryon current does. We study the spin polarized Skyrmions coupled with the electromagnetic field via the gauged Wess-Zumino term and calculate configurations of the Skyrmion and the gauge field with boundary conditions to ensure the physical charge number for baryons. Although the electromagnetic field via the gauged Wess-Zumino term affects physical quantities in small amounts, we find that the magnetic field forms a dipole structure owing to a circular electric current around the spin-quantization axis of the soliton. This is understood on an analogy with the Meissner effect in the super conductor. The electric-charge distributions turn out to have characteristic structures depending on the total charge, which suggests the intrinsic deformation of baryons due to orbital motions of the constituents.

  20. Experimental investigation of impulsive magnetic reconnection induced by large amplitude electromagnetic fluctuations in the presence of a guide field

    NASA Astrophysics Data System (ADS)

    Kuwahata, Akihiro; Inomoto, Michiaki; Yanai, Ryoma; Ono, Yasushi

    2015-11-01

    Impulsive enhancement of magnetic reconnection is one of the potential candidates to invoke various explosive events observed in nature and laboratory plasmas. In TS-3 laboratory experiment with a guide field of Bguide /Brec = 1-2.5, impulsive growth of the reconnection electric field was observed just behind the onset of large-amplitude electromagnetic fluctuations (f = 1.5-2 fci and the amplitude was 0.1Brec). It was found that both the fluctuation amplitude and the enhanced reconnection electric field during the fluctuation period showed positive correlation with the guide field. The normalized reconnection rate of about 0.03 before the onset of fluctuations was reasonably comparable with the classical reconnection rate of Sweet-Parker model. However, the reconnection rate rose up to 0.11 after the fluctuations onset, suggesting that the transition from slow steady reconnection to fast impulsive reconnection took place. Since the fluctuation amplitude was so large that the nonlinear terms of the induced electric field was not negligible. The electric field enhancement due to the nonlinear contribution from the observed fluctuation was 650 V/m, which showed good agreement with the experimentally observed electric field increment of about 800 V/m.

  1. First Measurements of the Unique Influence of Spin on the Energy Loss of Ultrarelativistic Electrons in Strong Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Kirsebom, K.; Mikkelsen, U.; Uggerhøj, E.; Elsener, K.; Ballestrero, S.; Sona, P.; Vilakazi, Z. Z.

    2001-07-01

    Although some authors have claimed that the effect is not detectable, we show experimentally for the first time that as the quantum parameter χ grows beyond 1, an increasingly large part of the hard radiation emitted arises from the spin of the electron. Results for the energy loss of electrons in the energy range 35-243 GeV incident on a W single crystal are presented. Close to the axial direction the strong electromagnetic fields induce a radiative energy loss which is significantly enhanced compared to incidence on an amorphous target. In such continuously strong fields, the radiation process is highly nonperturbative for ultrarelativistic particles and a full quantum description is needed. The remarkable effect of spin flips and the energy loss is connected to the presence of a field comparable in magnitude to the Schwinger critical field, E0 = m2c3/eħ, in the rest frame of the emitting electron.

  2. First measurements of the unique influence of spin on the energy loss of ultrarelativistic electrons in strong electromagnetic fields.

    PubMed

    Kirsebom, K; Mikkelsen, U; Uggerhøj, E; Elsener, K; Ballestrero, S; Sona, P; Vilakazi, Z Z

    2001-07-30

    Although some authors have claimed that the effect is not detectable, we show experimentally for the first time that as the quantum parameter chi grows beyond 1, an increasingly large part of the hard radiation emitted arises from the spin of the electron. Results for the energy loss of electrons in the energy range 35-243 GeV incident on a W single crystal are presented. Close to the axial direction the strong electromagnetic fields induce a radiative energy loss which is significantly enhanced compared to incidence on an amorphous target. In such continuously strong fields, the radiation process is highly nonperturbative for ultrarelativistic particles and a full quantum description is needed. The remarkable effect of spin flips and the energy loss is connected to the presence of a field comparable in magnitude to the Schwinger critical field, E0 = m(2)c(3)/ePlanck's over 2pi, in the rest frame of the emitting electron.

  3. DiPerna-Lions Flow for Relativistic Particles in an Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Jabin, P.-E.; Masmoudi, N.

    2015-09-01

    We show the existence and uniqueness of a DiPerna-Lions flow for relativistic particles subject to a Lorentz force in an electromagnetic field. The electric and magnetic fields solve the linear Maxwell system in the vacuum but for singular initial conditions which are only in the physical energy space. As the corresponding force field is only in L 2, we have to perform a careful analysis of the cancellations over a trajectory.

  4. Possible action mechanism of the electromagnetic fields in the liver cancer development: A mathematical proposal

    SciTech Connect

    Jiménez-García, Mónica Noemí; Godina-Nava, Juan José

    2012-02-08

    Currently it is known that electromagnetic field exposure can induce biological changes, although the precise effects and action mechanism of the interaction between the electromagnetic field and biological systems are not well understood. In this work we propose a possible action mechanism, concerning the effect that the extremely low frequency electromagnetic field exposure has on the early stage of liver cancer development. The model is developed studying the phenomena called oxidative stress that it appears after it is applied a carcinogenic agent used to induce hepatic cancer chemically in an experimental animal model. This physical-chemical process involves the movement of magnetic field dependent free charged particles, called free radicals. We will consider the use of the radical pairs theory as a framework, in which we will describe the spin density operator evolution by implementing the stochastic Liouville equation with hyperfine interaction. This describes how the selectivity of the interaction between spin states of the free radicals with the applied electromagnetic field, influences the development of pre-neoplastic lesions in the liver. AIP Publishing is retracting this article due to the substantial use of content in the Results and Conclusions section without proper citation of a previously published paper in Chemical Physics Letters 361 (2012) 219-225. This article is retracted from the scientific record with effect from 15 October 2015.

  5. Microfabricated sensors for the measurement of electromagnetic fields in biological tissues

    NASA Astrophysics Data System (ADS)

    Monberg, James; Henning, Albert K.

    1995-09-01

    Public awareness of the risks of exposure to electromagnetic radiation has grown over the past ten yeras. The effects of power lines on human and animal health have drawn particular attention. Some longitudinal studies of cancer rates near power lines show a significant correlation, while others show a null result. The studies have suffered from inadequate sensors for the measurement of electromagnetic radiation in vivo. In this work, we describe the design, construction, and testing of electrically passive, microfabricated single-pole antennas and coils. These sensors will be used in vivo to study the effects of electromagnetic radiation on animals. Our testing to date has been limited to in vitro studies of the magnetic field probes. Magnetic field pickup coils were fabricated with up to 100 turns, over a length of up to 1000 micrometers . Measurements were carried out with the sensors in air, and in water of various saline concentrations. Magnetic fields were applied using a Helmholtz coil. Both dc and ac fields were applied. The results indicate that small-area measurements of electromagnetic fields in vitro can be made successfully, provided adequate shielding and amplification are used.

  6. Extremely low frequency electromagnetic field measurements at the Hylaty station and methodology of signal analysis

    NASA Astrophysics Data System (ADS)

    Kulak, Andrzej; Kubisz, Jerzy; Klucjasz, Slawomir; Michalec, Adam; Mlynarczyk, Janusz; Nieckarz, Zenon; Ostrowski, Michal; Zieba, Stanislaw

    2014-06-01

    We present the Hylaty geophysical station, a high-sensitivity and low-noise facility for extremely low frequency (ELF, 0.03-300 Hz) electromagnetic field measurements, which enables a variety of geophysical and climatological research related to atmospheric, ionospheric, magnetospheric, and space weather physics. The first systematic observations of ELF electromagnetic fields at the Jagiellonian University were undertaken in 1994. At the beginning the measurements were carried out sporadically, during expeditions to sparsely populated areas of the Bieszczady Mountains in the southeast of Poland. In 2004, an automatic Hylaty ELF station was built there, in a very low electromagnetic noise environment, which enabled continuous recording of the magnetic field components of the ELF electromagnetic field in the frequency range below 60 Hz. In 2013, after 8 years of successful operation, the station was upgraded by extending its frequency range up to 300 Hz. In this paper we show the station's technical setup, and how it has changed over the years. We discuss the design of ELF equipment, including antennas, receivers, the time control circuit, and power supply, as well as antenna and receiver calibration. We also discuss the methodology we developed for observations of the Schumann resonance and wideband observations of ELF field pulses. We provide examples of various kinds of signals recorded at the station.

  7. Biological Effects of Electromagnetic Fields on Cellular Growth

    NASA Astrophysics Data System (ADS)

    Eftekhari, Beheshte; Wilson, James; Masood, Samina

    2012-10-01

    The interaction of organisms with environmental magnetic fields at the cellular level is well documented, yet not fully understood. We review the existing experimental results to understand the physics behind the effects of ambient magnetic fields on the growth, metabolism, and proliferation of in vitro cell cultures. Emphasis is placed on identifying the underlying physical principles responsible for alterations to cell structure and behavior.

  8. Electromagnetic field of fractal distribution of charged particles

    SciTech Connect

    Tarasov, Vasily E.

    2005-08-15

    Electric and magnetic fields of fractal distribution of charged particles are considered. The fractional integrals are used to describe fractal distribution. The fractional integrals are considered as approximations of integrals on fractals. Using the fractional generalization of integral Maxwell equation, the simple examples of the fields of homogeneous fractal distribution are considered. The electric dipole and quadrupole moments for fractal distribution are derived.

  9. Electromagnetic induction in New Zealand: analogue model and field results

    NASA Astrophysics Data System (ADS)

    Chen, J.; Dosso, H. W.; Ingham, M.

    The behaviour of electric and magnetic variations over North Island (New Zealand) is studied with the aid of a laboratory analogue model. The source field frequencies used in the analogue modelling simulate naturally occurring geomagnetic variations of 5-120 min periods. In-phase and quadrature magnetic and electric fields for a selection of traverses for the modelled region of North Island are presented. Since North Island is of a relatively narrow cross-section, the field responses, even for inland locations, are expected to show strongly the effects of the surrounding ocean. The irregular coastlines, as well as the strait between North and South Islands, lead to coastal and inland field anomalies due to induced currents being deflected and channelled to produce localized current densities. The comparison of model results with field station measurements obtained earlier individually by Ingham and by Midha for sites in the northeastern, central, and southern (near Cook Strait) regions of North Island demonstrates the large role the ocean has in the observed field responses. Differences in the model and field results at some sites are expected and should reflect the effects of the local geology and the conductive substructure related to the complex tectonics of the region not simulated in the model.

  10. Guiding and collimating fast electron beam by the quasi-static electromagnetic field array

    SciTech Connect

    Wang, J.; Zhao, Z. Q.; He, W. H.; Dong, K. G.; Wu, Y. C.; Zhu, B.; Zhang, T. K.; Zhang, B.; Zhang, Z. M.; Gu, Y. Q.; Cao, L. H.

    2014-10-15

    A guidance and collimation scheme for fast electron beam in a traverse periodic quasi-static electromagnetic field array is proposed with the semi-analytic method and the particle-in-cell simulation. The sheath electric fields on the surfaces of nanowires and the magnetic fields around the nanowires form a traverse periodic quasi-static electromagnetic field array. Therefore, most of the fast electrons are confined at the nanowire surfaces and transport forward. More importantly, due to the divergent property of the beams, the magnitudes of the generated fields decrease with the target depth. The lateral momenta of the electrons convert into the forward momenta through Lorenz force, and they cannot recover their initial values. Therefore, the fast electrons can be guided and collimated efficiently in the gaps between the nanowires. In our particle-in-cell simulations, the observed guiding efficiency exceeds 80% compared with the reference target.

  11. Controlling electromagnetic fields at boundaries of arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Teo, Jonathon Yi Han; Wong, Liang Jie; Molardi, Carlo; Genevet, Patrice

    2016-08-01

    Rapid developments in the emerging field of stretchable and conformable photonics necessitate analytical expressions for boundary conditions at metasurfaces of arbitrary geometries. Here, we introduce the concept of conformal boundary optics: a design theory that determines the optical response for designer input and output fields at such interfaces. Given any object, we can realize coatings to achieve exotic effects like optical illusions and anomalous diffraction behavior. This approach is relevant to a broad range of applications from conventional refractive optics to the design of the next-generation of wearable optical components. This concept can be generalized to other fields of research where designer interfaces with nontrivial geometries are encountered.

  12. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances

    NASA Astrophysics Data System (ADS)

    Guddala, Sriram; Narayana Rao, D.; Ramakrishna, S. Anantha

    2016-06-01

    A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminum layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than C60 on metamaterials with off-resonant absorption bands peaking at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance-matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by numerical simulations.

  13. Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz-6 GHz).

    PubMed

    Gajšek, Peter; Ravazzani, Paolo; Wiart, Joe; Grellier, James; Samaras, Theodoros; Thuróczy, György

    2015-01-01

    Average levels of exposure to radiofrequency (RF) electromagnetic fields (EMFs) of the general public in Europe are difficult to summarize, as exposure levels have been reported differently in those studies in which they have been measured, and a large proportion of reported measurements were very low, sometimes falling below detection limits of the equipment used. The goal of this paper is to present an overview of the scientific literature on RF EMF exposure in Europe and to characterize exposure within the European population. A comparative analysis of the results of spot or long-term RF EMF measurements in the EU indicated that mean electric field strengths were between 0.08 V/m and 1.8 V/m. The overwhelming majority of measured mean electric field strengths were <1 V/m. It is estimated that <1% were above 6 V/m and <0.1% were above 20 V/m. No exposure levels exceeding European Council recommendations were identified in these surveys. Most population exposures from signals of radio and television broadcast towers were observed to be weak because these transmitters are usually far away from exposed individuals and are spatially sparsely distributed. On the other hand, the contribution made to RF exposure from wireless telecommunications technology is continuously increasing and its contribution was above 60% of the total exposure. According to the European exposure assessment studies identified, three population exposure categories (intermittent variable partial body exposure, intermittent variable low-level whole-body (WB) exposure and continuous low-level WB exposure) were recognized by the authors as informative for possible future risk assessment.

  14. Strings: A possible alternative explanation for the Unification of Gravitation Field and Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Rivera, Susana

    Throughout the last century, since the last decades of the XIX century, until present day, there had been many attempts to achieve the unification of the Forces of Nature. First unification was done by James Clerk Maxwell, with his Electromagnetic Theory. Then Max Plank developed his Quantum Theory. In 1905, Albert Einstein gave birth to the Special Relativity Theory, and in 1916 he came out with his General Relativity Theory. He noticed that there was an evident parallelism between the Gravitational Force, and the Electromagnetic Force. So, he tried to unify these forces of Nature. But Quantum Theory interposed on his way. On the 1940’s it had been developed the Quantum Electrodynamics (QED), and with it, the unified field theory had an arise interest. On the 60’s and 70’s there was developed the Quantum Chromodynamics (QCD). Along with these theories came the discovery of the strong interaction force and weak interaction force. And though there had been many attempts to unify all these forces of the nature, it could only be achieved the Unification of strong interaction, weak interaction and Electromagnetic Force. On the late 80”s and throughout the last two decades, theories such as “super-string theory”, “or the “M-theory”, among others, groups of Scientists, had been doing grand efforts and finally they came out with the unification of the forces of nature, being the only limitation the use of more than 11 dimensions. Using an ingenious mathematical tool known as the super symmetries, based on the Kaluza - Klein work, they achieve this goal. The strings of these theories are in the rank of 10-33 m. Which make them undetectable. There are many other string theories. The GEUFT theory is based on the existence of concentrated energy lines, which vibrates, expands and contracts, submitting and absorbing energy, matter and antimatter, and which yields a determined geometry, that gives as a result the formation of stars, galaxies, nebulae, clusters

  15. A Set of Computer Projects for an Electromagnetic Fields Class.

    ERIC Educational Resources Information Center

    Gleeson, Ronald F.

    1989-01-01

    Presented are three computer projects: vector analysis, electric field intensities at various distances, and the Biot-Savart law. Programing suggestions and project results are provided. One month is suggested for each project. (MVL)

  16. Induction heating and operator exposure to electromagnetic fields.

    PubMed

    Stuchly, M A; Lecuyer, D W

    1985-11-01

    Alternating magnetic fields are used in industry for induction heating of metals and semiconductors. Relatively high power, typically of a few to a few hundred of kW is used, and a frequency of operation ranges from 60 Hz to a few tens of MHz. A survey of the magnetic field strengths to which the operators are exposed has shown that these exposures are, in many instances, high compared with recommended exposure limits.

  17. On the electrodynamics of moving permanent dipoles in external electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2014-09-01

    The classical theory of electrodynamics is built upon Maxwell's equations and the concepts of electromagnetic field, force, energy and momentum, which are intimately tied together by Poynting's theorem and the Lorentz force law. Whereas Maxwell's macroscopic equations relate the electric and magnetic fields to their material sources (i.e., charge, current, polarization and magnetization), Poynting's theorem governs the flow of electromagnetic energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. The close association of momentum with energy thus demands that the Poynting theorem and the Lorentz law remain consistent with each other, while, at the same time, ensuring compliance with the conservation laws of energy, linear momentum, and angular momentum. This paper shows how a consistent application of the aforementioned laws of electrodynamics to moving permanent dipoles (both electric and magnetic) brings into play the rest-mass of the dipoles. The rest mass must vary in response to external electromagnetic fields if the overall energy of the system is to be conserved. The physical basis for the inferred variations of the rest-mass appears to be an interference between the internal fields of the dipoles and the externally applied fields. We use two different formulations of the classical theory in which energy and momentum relate differently to the fields, yet we find identical behavior for the restmass in both formulations.

  18. Effect of non-ionizing electromagnetic field on the alteration of ovarian follicles in rats

    PubMed Central

    Ahmadi, Seyed Shahin; Khaki, Amir Afshin; Ainehchi, Nava; Alihemmati, Alireza; Khatooni, Azam Asghari; Khaki, Arash; Asghari, Ali

    2016-01-01

    Introduction In recent years, there has been an increase in the attention paid to safety effects, environmental and society’s health, extremely low frequency electromagnetic fields (ELF-EMF), and radio frequency electromagnetic fields (RF-EMF). The aim of this research was to determine the effect of EMF on the alteration of ovarian follicles. Methods In this experimental study at Tabriz Medical University in 2015, we did EMF exposures and assessed the alteration of rats’ ovarian follicles. Thirty three-month old rats were selected randomly from laboratory animals, and, after their ages and weights were determined, they were divided randomly into three groups. The control group consisted of 10 rats without any treatment, and they were kept in normal conditions. The second group of rats was influenced by a magnetic field of 50 Hz for eight weeks (three weeks intrauterine and five weeks ectopic). The third group of rats was influenced by a magnetic field of 50 Hz for 13 weeks (three weeks intrauterine and ten weeks ectopic). Samples were fixed in 10% buffered formaldehyde and cleared with Xylol and embedded in paraffin. After sectioning and staining, samples were studied by optic microscopy. Finally, SPSS version 17, were used for data analysis. Results EMF radiation increased the harmful effects on the formation of ovarian follicles and oocytes implantation. Studies on the effects of electromagnetic fields on ovarian follicles have shown that the nuclei of the oocytes become smaller and change shape. There were significant, harmful changes in the groups affected by electromagnetic waves. Atresia of ovarian follicles was significantly significant in both study groups compared to the control group (p < 0.05). Conclusion Exposure to electromagnetic fields during embryonic development can cause morphological changes in oocytes and affect the differentiation of oocytes and folliculogenesis, resulting in decreased ovarian reserve leading to infertility or reduced

  19. [Effect of electromagnetic field of extremely low frequency on ATPase activity of actomyosin].

    PubMed

    Tseĭslier, Iu V; Sheliuk, O V; Martyniuk, V S; Nuryshchenko, N Ie

    2012-01-01

    The Mg2+/Ca2+ and K(+)-ATPase actomyosin activity of rabbit skeletal muscle was evaluated by the Fiske-Subbarow method during a five-hour exposition of protein solutions in electromagnetic field of extremely low frequency of 8 Hz and 25 microT induction. The results of the study of the ATPase activity of actomyosin upon electromagnetic exposure have shown statistically significant changes that are characterized by a rather complex time dynamics. After 1, 2 and 4 hours of exposure of protein solutions the effect of ELF EMF exposure inhibits the ATPase activity compared to control samples, which are not exposed to the magnetic field. By the third and fifth hours of exposure to the electromagnetic field, there is a significant increase in the ATPase activity of actomyosin. It should be noted that a similar pattern of change in enzyme activity was universal, both for the environment by Mg2+ and Ca2+, and in the absence of these ions in the buffer. This can evidence for Ca(2+)-independent ways of the infuence of electromagnetic field (EMP) on biologic objects. In our opinion, the above effects are explained by EMP influence on the dynamic properties of actomyosin solutions, which are based on the processes of spontaneous dynamic formation of structure.

  20. Biological Effects of Weak Electromagnetic Field on Healthy and Infected Lime (Citrus aurantifolia) Trees with Phytoplasma

    PubMed Central

    Abdollahi, Fatemeh; Niknam, Vahid; Ghanati, Faezeh; Masroor, Faribors; Noorbakhsh, Seyyed Nasr

    2012-01-01

    Exposure to electromagnetic fields (EMF) has become an issue of concern for a great many people and is an active area of research. Phytoplasmas, also known as mycoplasma-like organisms, are wall-less prokaryotes that are pathogens of many plant species throughout the world. Effects of electromagnetic fields on the changes of lipid peroxidation, content of H2O2, proline, protein, and carbohydrates were investigated in leaves of two-year-old trees of lime (Citrus aurantifolia) infected by the Candidatus Phytoplasma aurantifoliae. The healthy and infected plants were discontinuously exposed to a 10 KHz quadratic EMF with maximum power of 9 W for 5 days, each 5 h, at 25°C. Fresh and dry weight of leaves, content of MDA, proline, and protein increased in both healthy and infected plants under electromagnetic fields, compared with those of the control plants. Electromagnetic fields decreased hydrogen peroxide and carbohydrates content in both healthy and infected plants compared to those of the controls. PMID:22649313

  1. Meta-gated channel for the discrete control of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Wang, Hui; Shi, Ayuan; Zhang, Aofang; Wang, Jing; Gao, Dongxing; Lei, Zhenya; Hu, Bowei

    2016-08-01

    We demonstrate the meta-gate controlled wave propagation through multiple metallic plates with properly devised sub-wavelength defect apertures. Different from using gradient refractive-index meta-materials or phase-discontinuity meta-surfaces to produce the discrepancy between the incident angle and the refractive angle, our technique redirects electromagnetic fields by setting-up discrete transmission gateways between adjacent meta-gates and creates the perfect channels for the wave propagation. Electromagnetic fields can be assigned in the response of the driving frequency of meta-gates with extraordinary transmissions and propagate simply relying on their pre-set locations as illustrated by the meta-gate guided electromagnetic fields travelling in the paths of the Silk-Road and the contour line of Xi'an city where the Silk-Road starts. The meta-gate concept, offering the feasibility of the discrete control of electromagnetic fields with gating routes, may pave an alternative way for precisely transmitting of signals and efficiently sharing of resource in the communication.

  2. Possible Mechanism of Action of the Electromagnetic Fields of Ultralow Frequency on G-protein

    NASA Astrophysics Data System (ADS)

    Nava, J. J. Godina; Segura, M. A. Rodríguez; García, M. N. Jiménez; Cadena, M. S. Reyes

    2008-08-01

    Based in several clinical achievements and mathematical simulation of the immune sytem, previously studied, permit us to establish that a possible Mechanism of Action of ultralow frequency Electromagnetic Fields (ELF) is on G-protein as it has been proposed in specialized literature.

  3. The Role of Angular Momentum in the Construction of Electromagnetic Multipolar Fields

    ERIC Educational Resources Information Center

    Tischler, Nora; Zambrana-Puyalto, Xavier; Molina-Terriza, Gabriel

    2012-01-01

    Multipolar solutions of Maxwell's equations are used in many practical applications and are essential for the understanding of light-matter interactions at the fundamental level. Unlike the set of plane wave solutions of electromagnetic fields, the multipolar solutions do not share a standard derivation or notation. As a result, expressions…

  4. ALTERATIONS IN CALCIUM ION ACTIVITY BY ELF AND RF ELECTROMAGNETIC FIELDS

    EPA Science Inventory



    Alterations in calcium ion activity by ELF and RF electromagnetic fields

    Introduction

    Calcium ions play many important roles in biological systems. For example, calcium ion activity can be used as an indicator of second-messenger signal-transduction processe...

  5. Possible Mechanism of Action of the Electromagnetic Fields of Ultralow Frequency on G-protein

    SciTech Connect

    Nava, J. J. Godina; Segura, M. A. Rodriguez; Garcia, M. N. Jimenez; Cadena, M. S. Reyes

    2008-08-11

    Based in several clinical achievements and mathematical simulation of the immune sytem, previously studied, permit us to establish that a possible Mechanism of Action of ultralow frequency Electromagnetic Fields (ELF) is on G-protein as it has been proposed in specialized literature.

  6. Quaternionic Analysis and Formulation of Generalized Electromagnetic fields in Chiral Media

    NASA Astrophysics Data System (ADS)

    Bisht, P. S.; Singh, Jivan; Negi, O. P. S.

    2007-10-01

    The time dependent Dirac-Maxwell's Equations in presence of electric and magnetic sources are written in chiral media and the solutions for the classical problem are obtained in unique simple and consistent manner. The quaternion reformulation of generalized electromagnetic fields in chiral media has also been developed in compact, simple and consistent manner.

  7. Apparent Paradoxes in Classical Electrodynamics: A Fluid Medium in an Electromagnetic Field

    ERIC Educational Resources Information Center

    Kholmetskii, A. L.; Yarman, T.

    2008-01-01

    In this paper we analyse a number of teaching paradoxes of classical electrodynamics, dealing with the relativistic transformation of energy and momentum for a fluid medium in an external electromagnetic field. In particular, we consider a moving parallel plate charged capacitor, where the electric attraction of its plates is balanced by the…

  8. Electrical Engineers' Perceptions on Education--Electromagnetic Field Theory and Its Connection to Working Life

    ERIC Educational Resources Information Center

    Keltikangas, K.; Wallen, H.

    2010-01-01

    This paper investigates electrical engineers' perceptions on their education in Finland, with particular emphasis on the basic electromagnetic field theory courses and their applicability in working life, using two online surveys (n = 99 and n = 120). The answers show a reasonably good satisfaction with the electrical engineering studies in…

  9. Rayleigh-Taylor-Induced Electromagnetic Fields in Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Manuel, Mario J.-E.

    Spontaneous electromagnetic fields can be important to the dynamic evolution of a plasma by directing heat flow as well as providing additional pressures on the conducting fluids through the Lorentz force. Electromagnetic fields are predicted to affect fluid behavior during the core-collapse of supernovae through generation of fields due to hydrodynamic instabilities. In the coronae of stars, self-generated magnetic fields lead to filamentary structure in the hot plasma. Recent experiments by Gregori et al. investigated sources of protogalactic magnetic fields generated by laser-produced shock waves. In inertial confinement fusion experiments, self-generated electromagnetic fields can also play a role and have recently become of great interest to the community. Present day laser facilities provide a unique opportunity to study spontaneous field-generation in these extreme environments under controlled conditions. Instability-induced electromagnetic fields were investigated using a novel monoenergetic-proton radiography system. Fusion protons generated by an 'exploding-pusher' implosion were used to probe laser-irradiated plastic foils with various preimposed surface perturbations. Imaging protons are sensitive to electromagnetic fields and density modulations in the plasma through the Lorentz force and Coulomb collisions, respectively. Corresponding x-ray radiographs of these targets provided mass density distributions and Coulomb effects on protons were assessed using a Monte Carlo code written using the Geant4 framework. Proton fluence distributions were recorded on CR-39 detectors and Fourier analyzed to infer path-integrated field strengths. Rayleigh-Taylor (RT) growth of preimposed surface perturbations generated magnetic fields by the RT-induced Biermann battery and were measured for the first time. Good data were obtained during linear growth and when compared to ideal calculations, demonstrated that field diffusion near the source played an important role

  10. Short-term evaluation of electromagnetic field pretreatment of adipose-derived stem cells to improve bone healing.

    PubMed

    Kang, Kyung Shin; Hong, Jung Min; Seol, Young-Joon; Rhie, Jong-Won; Jeong, Young Hun; Cho, Dong-Woo

    2015-10-01

    An electromagnetic field is an effective stimulation tool because it promotes bone defect healing, albeit in an unknown way. Although electromagnetic fields are used for treatment after surgery, many patients prefer cell-based tissue regeneration procedures that do not require daily treatments. This study addressed the effects of an electromagnetic field on adipose-derived stem cells (ASCs) to investigate the feasibility of pretreatment to accelerate bone regeneration. After identifying a uniform electromagnetic field inside a solenoid coil, we observed that a 45 Hz electromagnetic field induced osteogenic marker expression via bone morphogenetic protein, transforming growth factor β, and Wnt signalling pathways based on microarray analyses. This electromagnetic field increased osteogenic gene expression, alkaline phosphate activity and nodule formation in vitro within 2 weeks, indicating that this pretreatment may provide osteogenic potential to ASCs on three-dimensional (3D) ceramic scaffolds. This pretreatment effect of an electromagnetic field resulted in significantly better bone regeneration in a mouse calvarial defect model over 4 weeks compared to that in the untreated group. This short-term evaluation showed that the electromagnetic field pretreatment may be a future therapeutic option for bone defect treatment.

  11. Gene transcription and electromagnetic fields. Final progress report

    SciTech Connect

    Henderson, A.S.

    1992-12-31

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  12. Digital enhancement of flow field images

    NASA Technical Reports Server (NTRS)

    Kudlinski, Robert A.; Park, Stephen K.

    1988-01-01

    Most photographs of experimentally generated fluid flow fields have inherently poor photographic quality, specifically low contrast. Thus, there is a need to establish a process for quickly and accurately enhancing these photographs to provide improved versions for physical interpretation, analysis, and publication. A sequence of digital image processing techniques which have been demonstrated to effectively enhance such photographs is described.

  13. Measurements and computations of electromagnetic fields in electric power substations

    SciTech Connect

    Daily, W.K. ); Dawalibi, F. )

    1994-01-01

    The magnetic fields generated by a typical distribution substation were measured and calculated based on a computer model which takes into account currents in the grounding systems, distribution feeder neutrals, overhead ground wires and induced currents in equipment structures and ground grid loops. Both measured and computer results indicate that magnetic fields are significantly influenced by ground currents, as well as induced currents in structures and ground system loops. All currents in the network modeled were computed, based on the measured currents impressed at the boundary points (ends of the conductor network). The agreement between the measured and computer values is good. Small differences were observed and are attributed mainly to uncertainties in the geometry of the network model and phase angles of some of the currents in the neutral conductors which were not measured in the field. Further measurements, including more accurate geometrical information and phase angles, are planned.

  14. Electromagnetic Near Field Measurements of Two Critical Assemblies

    NASA Astrophysics Data System (ADS)

    Goettee, Jeffrey; Goorley, Tim; Mayo, Douglas; Myers, William; Goda, Joetta; Sage, Frank

    2015-04-01

    Preliminary measurements of the fast metal nuclear reactors at the National Criticality Experiments Research Center (NCERC) and at White Sands Missile Range (WSMR) within the past year characterize the very near field environment of these critical assemblies. Both reactors are fast, highly enriched uranium metal reactors and can be operated in a burst mode above prompt supercritical. Initial measurements of the electric and the magnetic fields within the reactor cell are consistent between the two facilities, and begin to describe the dependance on distance and polarization as might be assumed from initial Monte Carlo modelling of these facilities. The amplitude and time variation of the electric and magnetic fields are consistent with burst time scales. The polarization is consistent with the geometry of the source and with Compton scattering from fission gammas as the dominant ionization mechanism. An overview of the two fast neutron sources and the excursion dynamics, the experimental details, and summary of the modelling calculations will be provided as background.

  15. Electromagnetic fields radiated from electrostatic discharges: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Wilson, Perry F.; Ondrejka, Arthur R.; Ma, Mark T.; Ladbury, John M.

    1988-02-01

    The fields radiated by electrostatic discharges (ESD) are studied both theoretically and experimentally. The ESD spark is modeled theoretically as an electrically short, time dependent, linear dipole situated above an infinite ground plane. Experimentally, sparks of varying voltages are generated by a commercially available simulator and used to excite a number of targets including: (1) the extended inner conductor of a coaxial cable mounted in a ground plane, (2) direct discharges to a ground plane, (3) indirect radiation from a large metal plate, (4) a metal chair over a a ground plane, and (5) a metal trash can. Results show that relatively low-voltage sparks (2 to 4 kV) excite the strongest radiated fields. This suggests that the spark fields can pose a significant interference threat to electronic equipment into the gigahertz range.

  16. Why arguments based on photon energy may be highly misleading for power line frequency electromagnetic fields.

    PubMed

    Vistnes, A I; Gjötterud, K

    2001-04-01

    When evaluating possible mechanisms by which low frequency electromagnetic fields may have a biological effect, arguments based on photon energy have often been used in a misleading way. For visible light the concept of photons has proved to be very useful in explaining experimental findings. However, the concept of photons cannot be used without major modifications in describing phenomena related to near field problems at power frequency (50 or 60 Hz) electric and magnetic fields. For this regime, the photon description is very complex. A very high number of highly coherent photons must be used in a quantum electrodynamic description of low frequency electromagnetic field phenomena. Thus, one-photon interaction descriptions must be replaced by multiple-photon interaction formalism. However, at low frequencies, a classical electromagnetic field description is far more useful than quantum electrodynamics. There is in principle no difference in how much energy an electron can pick up from a low frequency electric field as compared to from a high frequency photon. Thus, the total gain in energy is not limited to the energy carried by a single photon, which is E = hv, where h is Planck's constant and (v) is the frequency of the radiation. However, the time scale of the primary event in a mechanism of action is very different for ionizing radiation compared to power line frequency fields. The advice is to consider the time scale given by the inverse of the frequency of the fields, rather than photon energy, when one use physics as a guidance in evaluating possible mechanisms for biological effects from low frequency electromagnetic fields.

  17. The Energy Metabolism in Caenorhabditis elegans under The Extremely Low-Frequency Electromagnetic Field Exposure

    NASA Astrophysics Data System (ADS)

    Shi, Zhenhua; Yu, Hui; Sun, Yongyan; Yang, Chuanjun; Lian, Huiyong; Cai, Peng

    2015-02-01

    A literal mountain of documentation generated in the past five decades showing unmistakable health hazards associated with extremely low-frequency electromagnetic fields (ELF-EMFs) exposure. However, the relation between energy mechanism and ELF-EMF exposure is poorly understood. In this study, Caenorhabditis elegans was exposed to 50 Hz ELF-EMF at intensities of 0.5, 1, 2, and 3 mT, respectively. Their metabolite variations were analyzed by GC-TOF/MS-based metabolomics. Although minimal metabolic variations and no regular pattern were observed, the contents of energy metabolism-related metabolites such as pyruvic acid, fumaric acid, and L-malic acid were elevated in all the treatments. The expressions of nineteen related genes that encode glycolytic enzymes were analyzed by using quantitative real-time PCR. Only genes encoding GAPDH were significantly upregulated (P < 0.01), and this result was further confirmed by western blot analysis. The enzyme activity of GAPDH was increased (P < 0.01), whereas the total intracellular ATP level was decreased. While no significant difference in lifespan, hatching rate and reproduction, worms exposed to ELF-EMF exhibited less food consumption compared with that of the control (P < 0.01). In conclusion, C. elegans exposed to ELF-EMF have enhanced energy metabolism and restricted dietary, which might contribute to the resistance against exogenous ELF-EMF stress.

  18. Effects of electromagnetic fields on the metabolism of lubricin of rat chondrocytes.

    PubMed

    Wang, Wei; Li, Wenkai; Song, Mingyu; Wei, Sheng; Liu, Chaoxu; Yang, Yong; Wu, Hua

    2016-01-01

    Electromagnetic fields (EMFs) can improve pain, stiffness and physical function in osteoarthritis (OA) patients and have been proposed for the treatment of OA. However, the precise mechanisms involved in this process are still not fully understood. In the present study, we investigated the effects of exposure for different durations with 75 Hz, 2.3 mT sinusoidal EMFs (SEMFs) on the metabolism of lubricin of rat chondrocytes cultured in vitro. Our results showed that SEMFs exposure promoted lubricin synthesis in a time-dependent manner, and the expression of transforming growth factor (TGF)-β1 was also enhanced after SEMFs treatment. The up-regulation effect of the expression of lubricin under SEMF was partly reduced by SB431542, an inhibitor of TGF-RI kinase. The Smad pathway was also investigated in our study. Smad2 synthesis was higher in EMF-exposed condition than in controls, whereas no effects were observed on inhibitory Smads (Smad6 and Smad7) production. Altogether, these data suggest that SEMF exposure can promote lubricin synthesis of rat chondrocytes in a time-dependent manner and that the TGF-β/Smads signaling pathway plays a partial role.

  19. Therapeutic effects of whole-body devices applying pulsed electromagnetic fields (PEMF): a systematic literature review.

    PubMed

    Hug, Kerstin; Röösli, Martin

    2012-02-01

    Pulsed electromagnetic fields (PEMF) delivered by whole-body mats are promoted in many countries for a wide range of therapeutic applications and for enhanced well-being. However, neither the therapeutic efficacy nor the potential health hazards caused by these mats have been systematically evaluated. We conducted a systematic review of trials investigating the therapeutic effects of low-frequency PEMF devices. We were interested in all health outcomes addressed so far in randomized, sham-controlled, double-blind trials. In total, 11 trials were identified. They were focused on osteoarthritis of the knee (3 trials) or the cervical spine (1), fibromyalgia (1), pain perception (2), skin ulcer healing (1), multiple sclerosis-related fatigue (2), or heart rate variability and well-being (1). The sample sizes of the trials ranged from 12 to 71 individuals. The observation period lasted 12 weeks at maximum, and the applied magnetic flux densities ranged from 3.4 to 200 µT. In some trials sporadic positive effects on health were observed. However, independent confirmation of such singular findings was lacking. We conclude that the scientific evidence for therapeutic effects of whole-body PEMF devices is insufficient. Acute adverse effects have not been reported. However, adverse effects occurring after long-term application have not been studied so far. In summary, the therapeutic use of low-frequency whole-body PEMF devices cannot be recommended without more scientific evidence from high-quality, double-blind trials.

  20. The Energy Metabolism in Caenorhabditis elegans under The Extremely Low-Frequency Electromagnetic Field Exposure.

    PubMed

    Shi, Zhenhua; Yu, Hui; Sun, Yongyan; Yang, Chuanjun; Lian, Huiyong; Cai, Peng

    2015-02-16

    A literal mountain of documentation generated in the past five decades showing unmistakable health hazards associated with extremely low-frequency electromagnetic fields (ELF-EMFs) exposure. However, the relation between energy mechanism and ELF-EMF exposure is poorly understood. In this study, Caenorhabditis elegans was exposed to 50 Hz ELF-EMF at intensities of 0.5, 1, 2, and 3 mT, respectively. Their metabolite variations were analyzed by GC-TOF/MS-based metabolomics. Although minimal metabolic variations and no regular pattern were observed, the contents of energy metabolism-related metabolites such as pyruvic acid, fumaric acid, and L-malic acid were elevated in all the treatments. The expressions of nineteen related genes that encode glycolytic enzymes were analyzed by using quantitative real-time PCR. Only genes encoding GAPDH were significantly upregulated (P < 0.01), and this result was further confirmed by western blot analysis. The enzyme activity of GAPDH was increased (P < 0.01), whereas the total intracellular ATP level was decreased. While no significant difference in lifespan, hatching rate and reproduction, worms exposed to ELF-EMF exhibited less food consumption compared with that of the control (P < 0.01). In conclusion, C. elegans exposed to ELF-EMF have enhanced energy metabolism and restricted dietary, which might contribute to the resistance against exogenous ELF-EMF stress.

  1. Effects of sinusoidal electromagnetic field on structure and function of different kinds of cell lines.

    PubMed

    Sul, Ah Ram; Park, Si-Nae; Suh, Hwal

    2006-12-31

    This study investigated that whether a 2 mT, 60 Hz, sinusoidal electromagnetic field (EMF) alters the structure and function of cells. This research compared the effects of EMF on four kinds of cell lines: hFOB 1.19 (fetal osteoblast), T/G HA-VSMC (aortic vascular smooth muscle cell), RPMI 7666 (B lymphoblast), and HCN-2 (cortical neuronal cell). Over 14 days, cells were exposed to EMF for 1, 3, or 6 hours per day (hrs/d). The results pointed to a cell type-specific reaction to EMF exposure. In addition, the cellular responses were dependent on duration of EMF exposure. In the present study, cell proliferation was the trait most sensitive to EMF. EMF treatment promoted growth of hFOB 1.19 and HCN-2 compared with control cells at 7 and 14 days of incubation. When the exposure time was 3 hrs/d, EMF enhanced the proliferation of RPMI 7666 but inhibited that of T/G HA- VSMC. On the other hand, the effects of EMF on cell cycle distribution, cell differentiation, and actin distribution were unclear. Furthermore, we hardly found any correlation between EMF exposure and gap junctional intercellular communication in hFOB 1.19. This study revealed that EMF might serve as a potential tool for manipulating cell proliferation.

  2. Electromagnetic field interactions with the human body: Observed effects and theories

    NASA Technical Reports Server (NTRS)

    Raines, J. K.

    1981-01-01

    The effects of nonionizing electromagnetic (EM) field interactions with the human body were reported and human related studies were collected. Nonionizing EM fields are linked to cancer in humans in three different ways: cause, means of detection, and effective treatment. Bad and benign effects are expected from nonionizing EM fields and much more knowledge is necessary to properly categorize and qualify EM field characteristics. It is concluded that knowledge of the boundary between categories, largely dependent on field intensity, is vital to proper future use of EM radiation for any purpose and the protection of the individual from hazard.

  3. Effects of low-intensity pulsed electromagnetic fields on the early development of sea urchins

    SciTech Connect

    Falugi, C.; Grattarola, M.; Prestipino, G.

    1987-06-01

    The effects of weak electromagnetic signals on the early development of the sea urchin Paracentrotus lividus have been studied. The duration and repetition of the pulses were similar to those used for bone healing in clinical practice. A sequence of pulses, applied for a time ranging from 2 to 4 h, accelerates the cleavages of sea urchin embryo cells. This effect can be quantitatively assessed by determining the time shifts induced by the applied electromagnetic field on the completion of the first and second cleavages in a population of fertilized eggs. The exposed embryos were allowed to develop up to the pluteus stage, showing no abnormalities.

  4. On the energy transfer between the electromagnetic field and nanomachines for biological applications.

    PubMed

    Bellizzi, G; Bucci, O M; Capozzoli, A

    2008-07-01

    The article presents a simple expression of the power transferred from the electromagnetic field (EMF) to a biological nanomachine (NM) embedded in a background medium (BM). The expression is useful to analyse the interaction mechanism and test the hypothesis on its nature. Furthermore, it should represent a helpful tool to design remotely controlled NMs for bio-medical applications and the relative electromagnetic control apparatuses. Finally, to show its practical usefulness, we used it to discuss the hypothesis on the energy transfer mechanism proposed in the literature to explain intriguing experimental phenomena referring to the remotely controlled dehybridization of DNA molecules attached to gold nanocrystals.

  5. Investigation of Electromagnetic Field Threat to Fuel Tank Wiring of a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Beck, Fred B.; Deshpande, Manohar D.; Cockrell, C. R.

    2000-01-01

    National Transportation Safety Board investigators have questioned whether an electrical discharge in the Fuel Quantity Indication System (FQIS) may have initiated the TWA-800 center wing tank explosion. Because the FQIS was designed to be incapable of producing such a discharge on its own, attention has been directed to mechanisms of outside electromagnetic influence. To support the investigation, the NASA Langley Research Center was tasked to study the potential for radiated electromagnetic fields from external radio frequency (RF) transmitters and passenger carried portable electronic devices (PEDs) to excite the FQIS enough to cause arcing, sparking or excessive heating within the fuel tank.

  6. Probing the spectral density of the surface electromagnetic fields through scattering of waveguide photons

    PubMed Central

    Chen, Guang-Yin

    2016-01-01

    The spectral density of the metal-surface electromagnetic fields will be strongly modified in the presence of a closely-spaced quantum emitter. In this work, we propose a feasible way to probe the changes of the spectral density through the scattering of the waveguide photon incident on the quantum emitter. The variances of the lineshape in the transmission spectra indicate the coherent interaction between the emitter and the pseudomode resulting from all the surface electromagnetic modes. We further investigate the quantum coherence between the emitter and the pseudomode of the metal-dielectric interface. PMID:26860197

  7. Effects of electromagnetic fields produced by high voltage transmission lines

    NASA Astrophysics Data System (ADS)

    Young, T.

    1984-06-01

    The potential impacts of higher transmission line voltages on people, animals, and plants were determined. The differences among various studies are reviewed. Although there are some obvious dangers posed by transmission line operation, construction, and maintenance, most of these concerns are addressed by safety measures taken by utility companies. The indirect effects of power transission is reported. Three major categories of field effects are covered: (1) corona effects due to the electric field at the conductor's surface; (2) indirect coupling effects, arising from induced currents in nearby conducting objects; and (3) direct coupling effects, caused by induced currents in organisms.

  8. The cavity electromagnetic field within the polarizable continuum model of solvation

    NASA Astrophysics Data System (ADS)

    Pipolo, Silvio; Corni, Stefano; Cammi, Roberto

    2014-04-01

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles.

  9. The cavity electromagnetic field within the polarizable continuum model of solvation.

    PubMed

    Pipolo, Silvio; Corni, Stefano; Cammi, Roberto

    2014-04-28

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles. PMID:24784260

  10. The cavity electromagnetic field within the polarizable continuum model of solvation

    SciTech Connect

    Pipolo, Silvio; Corni, Stefano; Cammi, Roberto

    2014-04-28

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles.

  11. Conservation laws and symmetry transformations of the electromagnetic field with sources

    NASA Astrophysics Data System (ADS)

    Nienhuis, Gerard

    2016-02-01

    In classical electrodynamics, the universal conservation laws of energy, momentum, and angular momentum are expressed by well-known continuity equations for the densities of these quantities. In the presence of charges and currents source terms must be added. These terms describe the exchange of energy and (linear or angular) momentum between field and matter. Recently, other conserved quantities of the electromagnetic field have been introduced and discussed. Examples are the pseudoscalars chirality and helicity, which are related to the handedness of the field. Even though these quantities have no obvious definition for matter, their conservation laws can still be presented in the form of continuity equations with source terms added. We show that these terms shed light on the interaction of chiral light with matter. A different role of conserved quantities is that they generate symmetry transformations of the system. The spatial transformations translation and rotation of the radiation field are generated by differential operators acting on mode functions. These operators are identical in form to the operators for the momentum and angular momentum of a quantum particle with spin 1. Also, for the total helicity and spin angular momentum of the field such operators on mode functions can be identified. A quite different picture arises in a quantum description of the electromagnetic field. The operator nature of the conserved quantities then arises from the commutation rules of photon creation and annihilation operators. We analyze the relation between these two pictures of symmetry transformations of the electromagnetic field.

  12. Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass

    SciTech Connect

    Dorofeev, O.F.; Lobanov, A.E.

    2005-06-01

    Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'.

  13. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Rowland, H. L.

    1993-01-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  14. Weak electromagnetic field admitting integrability in Kerr-NUT-(A)dS spacetimes

    NASA Astrophysics Data System (ADS)

    Kolář, Ivan; Krtouš, Pavel

    2015-06-01

    We investigate properties of higher-dimensional generally rotating black-hole spacetimes, so-called Kerr-NUT-(anti)-de Sitter spacetimes, as well as a family of related spaces which share the same explicit and hidden symmetries. In these spaces, we study a particle motion in the presence of a weak electromagnetic field and compare it with its operator analogies. First, we find general commutativity conditions for classical observables and for their operator counterparts, then we investigate a fulfillment of these conditions in the Kerr-NUT-(anti)-de Sitter and related spaces. We find the most general form of the weak electromagnetic field compatible with the complete integrability of the particle motion and the comutativity of the field operators. For such a field we solve the charged Hamilton-Jacobi and Klein-Gordon equations by separation of variables.

  15. Calcium displacement caused by electromagnetic fields. Final report, 1 November 1982-31 August 1989

    SciTech Connect

    Bond, J.D.; Jordan, C.A.

    1989-08-31

    This research effort was to determine theoretically a physical basis for the interaction of low-intensity externally applied electromagnetic fields with biological tissue. The primary aim of the investigation was to establish a molecular basis for the class of interactions commonly referred to as nonthermal effects of electromagnetic fields with biological systems. In particular, the biological structure of interest was the plasma membrane since it had been either directly or indirectly implicated in numerous experimental studies. It was demonstrated how a membrane undergoing a phase transition could qualitatively account for the release and/or uptake of divalent calcium ions. A characterization of changes in the structure of the membrane/electrolyte interface due to field induced changes in enzymatic activity was demonstrated. The role of critical phenomena was shown analytically to be able to account for the unique sensitivity of biomembranes to weak external field perturbations, and describe alterations in the passive transport of sodium ions in rabbit erythrocytes.

  16. The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach

    ERIC Educational Resources Information Center

    Likar, A.; Razpet, N.

    2009-01-01

    The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…

  17. The Earth-Moon-Sun natural laboratory for testing of gravitational and electromagnetic fields coupling

    NASA Astrophysics Data System (ADS)

    Grunskaya, Lubov; Isakevich, Valiriy; Efimov, Vladislav; Zakirov, Alexander

    Experimental investigations of electromagnetic fields in the atmosphere boundary layer are done at the distance spaced stations, situated on VSU test ground, at Main Geophysical Observa-tory(St. Petersburg), on Kamchatka pen., on Lake Baikal. The distance spaced reception of electrical and magnetic fields will allow to analyze more widely the nature of the investigated interactions. Monitoring of electromagnetic fields in the ELF range is being realized. The work is connected with search of interconnection of the electromagnetic field of the atmosphere boundary layer with the gravitational Compact Binaries wave fields. For analyzing Compact Binaries were taken with ELF of GW-radiation: J 0700+6418, J 1012+5307, J 1537+1155, J 1959+2048, J 2130+1210, J 1915+1606, J 1910+0004, J 1910+0004, J 1748-2446A.For analyz-ing the spectrum of the magnetic fields there was used the information of VSU station and the monitoring information of Japanese geomagnetic stations Kakioka and Mambetsu. The aim of such investigations is connected with displaying tide processes (the Moon tides) and gravita-tional wave influence of Compact Binaries in the electromagnetic fields.On the first stage of the investigations a correlative spectral analysis of the experimental data was being carried out. There was factually extracted the influence of the atmosphere lower layer electromagnetic field of the thermogravitational solar tides and a number of gravitational: M1, M2, N2. It was ob-tained that astrophysical sources GV-6, GV-3,GV-4, GV-8, GV-9 have the most probability of non-casual of events. The subsequent investigations are connected with search of main features accompanying such influences. They are signal modulations by diurnal and year's rotation of the Earth. Such modulations are peculiar to sources of non-terrestrial origin. We are planning an extraction of the radiation frequency change of the source because of energy loss for the radiation of GW. Such investigations turned out to be

  18. Representative electromagnetic field intensities near the Clam Lake, Wisconsin and Republic, Michigan ELF (Extremely Low Frequency) facilities

    NASA Astrophysics Data System (ADS)

    1984-01-01

    Extremely low frequency electromagnetic fields produced by ELF antennas and commercial power lines at Clam Lake, WI, and by commercial power lines at Republic, MI, have been measured at residences, businesses and forest recreational areas for the continuing assessment of the Navy's ELF Communications Program. The ELF fields from existing antennas at Clam Lake, and from power lines in both states are low. Introducing ELF antenna fields at Republic, MI in several years will not significantly change the electromagnetic environment there. The existing field intensities are interpreted and compared with independent expert, judgment, professional standards-setting and judicial and administrative law opinions regarding safe exposure of the public to ELF electromagnetic fields.

  19. Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin.

    PubMed

    Reiter, R J

    1993-04-01

    The circadian rhythm of melatonin production (high melatonin levels at night and low during the day) in the mammalian pineal gland is modified by visible portions of the electromagnetic spectrum, i.e., light, and reportedly by extremely low frequency (ELF) electromagnetic fields as well as by static magnetic field exposure. Both light and non-visible electromagnetic field exposure at night depress the conversion of serotonin (5HT) to melatonin within the pineal gland. Several reports over the last decade showed that the chronic exposure of rats to a 60 Hz electric field, over a range of field strengths, severely attenuated the nighttime rise in pineal melatonin production; however, more recent studies have not confirmed this initial observation. Sinusoidal magnetic field exposure also has been shown to interfere with the nocturnal melatonin forming ability of the pineal gland although the number of studies using these field exposures is small. On the other hand, static magnetic fields have been repeatedly shown to perturb the circadian melatonin rhythm. The field strengths in these studies were almost always in the geomagnetic range (0.2 to 0.7 Gauss or 20 to 70 mu tesla) and most often the experimental animals were subjected either to a partial rotation or to a total inversion of the horizontal component of the geomagnetic field. These experiments showed that several parameters in the indole cascade in the pineal gland are modified by these field exposures; thus, pineal cyclic AMP levels, N-acetyltransferase (NAT) activity (the rate limiting enzyme in pineal melatonin production), hydroxyindole-O-methyltransferase (HIOMT) activity (the melatonin forming enzyme), and pineal and blood melatonin concentrations were depressed in various studies. Likewise, increases in pineal levels of 5HT and 5-hydroxyindole acetic acid (5HIAA) were also seen in these glands; these increases are consistent with a depressed melatonin synthesis. The mechanisms whereby non

  20. Continuum resonance induced electromagnetic torque by a rotating plasma response to static resonant magnetic perturbation field

    NASA Astrophysics Data System (ADS)

    Liu, Yueqiang; Connor, J. W.; Cowley, S. C.; Ham, C. J.; Hastie, R. J.; Hender, T. C.

    2012-10-01

    A numerical study is carried out, based on a simple toroidal tokamak equilibrium, to demonstrate the radial re-distribution of the electromagnetic torque density, as a result of a rotating resistive plasma (linear) response to a static resonant magnetic perturbation field. The computed electromagnetic torque peaks at several radial locations even in the presence of a single rational surface, due to resonances between the rotating response, in the plasma frame, and both Alfvén and sound continuum waves. These peaks tend to merge together to form a rather global torque distribution, when the plasma resistivity is large. The continuum resonance induced net electromagnetic torque remains finite even in the limit of an ideal plasma.

  1. Self-reported symptoms associated with exposure to electromagnetic fields: a questionnaire study.

    PubMed

    Küçer, Nermin; Pamukçu, Tuğba

    2014-01-01

    Abstract In the last years, it has been discussed frequently whether there are any harmful effects of electromagnetic fields on human health. Electromagnetic fields are generated by several natural and man-made sources. Part of the electromagnetic spectrum called Radiofrequency is used in communication systems such as mobile (cellular) phone and computer. The aim of our study was to explore different self-reported symptoms that may be associated with exposure to electromagnetic fields. This survey study was conducted, using a questionnaire, on 350 people aged +9 years in Turkey. The chi-square test was used for data analysis. Self-reported symptoms were headache, vertigo/dizziness, fatigue, forgetfulness, sleep disturbance-insomnia, tension-anxiety, joint and bone pain, lacrimation of the eyes, hearing loss and tinnitus. As a result of the survey, the study has shown that users of mobile phone and computer more often complained of headache, joint and bone pain, hearing loss, vertigo/dizziness, tension-anxiety symptoms according to time of daily usage (p < 0.05). In users of mobile phone and computer, women significantly (p < 0.05) complained more often of headache, vertigo/dizziness, fatigue, forgetfulness and tension-anxiety than men.

  2. Anomalous lepton moment in a non-Abelian gauge model in an intense electromagnetic field

    NASA Astrophysics Data System (ADS)

    Obukhov, I. A.; Peres-Fernandes, V. K.; Rodionov, V. N.; Khalilov, V. R.

    1983-01-01

    The effect of an external electromagnetic field on the magnitude of the anomalous magnetic moment (AMM) of a lepton in the Weinberg model (1967) is investigated using the method of analytic continuation, previously applied to problems in quantum electrodynamics with an external field. The behavior of the AMM is studied as a function of the value of the dynamic parameter X=poH/mHo.

  3. Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells.

    PubMed

    Duan, Weixia; Liu, Chuan; Zhang, Lei; He, Mindi; Xu, Shangcheng; Chen, Chunhai; Pi, Huifeng; Gao, Peng; Zhang, Yanwen; Zhong, Min; Yu, Zhengping; Zhou, Zhou

    2015-03-01

    Extremely low-frequency electromagnetic fields (ELF-EMF) and radiofrequency electromagnetic fields (RF-EMF) have been considered to be possibly carcinogenic to humans. However, their genotoxic effects remain controversial. To make experiments controllable and results comparable, we standardized exposure conditions and explored the potential genotoxicity of 50 Hz ELF-EMF and 1800 MHz RF-EMF. A mouse spermatocyte-derived GC-2 cell line was intermittently (5 min on and 10 min off) exposed to 50 Hz ELF-EMF at an intensity of 1, 2 or 3 mT or to RF-EMF in GSM-Talk mode at the specific absorption rates (SAR) of 1, 2 or 4 W/kg. After exposure for 24 h, we found that neither ELF-EMF nor RF-EMF affected cell viability using Cell Counting Kit-8. Through the use of an alkaline comet assay and immunofluorescence against γ-H2AX foci, we found that ELF-EMF exposure resulted in a significant increase of DNA strand breaks at 3 mT, whereas RF-EMF exposure had insufficient energy to induce such effects. Using a formamidopyrimidine DNA glycosylase (FPG)-modified alkaline comet assay, we observed that RF-EMF exposure significantly induced oxidative DNA base damage at a SAR value of 4 W/kg, whereas ELF-EMF exposure did not. Our results suggest that both ELF-EMF and RF-EMF under the same experimental conditions may produce genotoxicity at relative high intensities, but they create different patterns of DNA damage. Therefore, the potential mechanisms underlying the genotoxicity of different frequency electromagnetic fields may be different.

  4. Imaging Nanoscale Electromagnetic Near-Field Distributions Using Optical Forces.

    PubMed

    Huang, Fei; Tamma, Venkata Ananth; Mardy, Zahra; Burdett, Jonathan; Wickramasinghe, H Kumar

    2015-01-01

    We demonstrate the application of Atomic Force Microscopy (AFM) for mapping optical near-fields with nanometer resolution, limited only by the AFM probe geometry. By detecting the optical force between a gold coated AFM probe and its image dipole on a glass substrate, we profile the electric field distributions of tightly focused laser beams with different polarizations. The experimentally recorded focal force maps agree well with theoretical predictions based on a dipole-dipole interaction model. We experimentally estimate the aspect ratio of the apex of gold coated AFM probe using only optical forces. We also show that the optical force between a sharp gold coated AFM probe and a spherical gold nanoparticle of radius 15 nm, is indicative of the electric field distribution between the two interacting particles. Photo Induced Force Microscopy (PIFM) allows for background free, thermal noise limited mechanical imaging of optical phenomenon over wide range of wavelengths from Visible to RF with detection sensitivity limited only by AFM performance. PMID:26073331

  5. Effects of pulsed electromagnetic field on differentiation of HUES-17 human embryonic stem cell line.

    PubMed

    Wu, Yi-Lin; Ma, Shi-Rong; Peng, Tao; Teng, Zeng-Hui; Liang, Xiang-Yan; Guo, Guo-Zhen; Zhang, Hai-Feng; Li, Kang-Chu

    2014-08-14

    Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC) line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF) for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP), stage-specific embryonic antigen-3 (SSEA-3), SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells.

  6. Plasma enhancement of femtosecond laser-induced electromagnetic pulses at metal and dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Varma, Sanjay; Spicer, Jane; Brawley, Benjamin; Miragliotta, Joseph

    2014-05-01

    In a previous report, we have shown that the long wavelength, electromagnetic-pulsed (EMP) energy generated by ultrashort (38 fs) laser pulse ablation of a metal target is enhanced by an order of magnitude due to a preplasma generated by a different, 14-ns-long laser pulse. Here, we further investigate this EMP enhancement effect in a 2- to 16-GHz microwave region with different target materials and laser parameters. Specifically, we show a greater than two orders of magnitude enhancement to the EMP energy when the nanosecond and ultrashort laser pulses are coincident on a glass target, and greater than one order of magnitude enhancement when the pulses are coincident on a copper target.

  7. Bioreactor coupled with electromagnetic field generator: effects of extremely low frequency electromagnetic fields on ethanol production by Saccharomyces cerevisiae.

    PubMed

    Perez, Victor H; Reyes, Alfredo F; Justo, Oselys R; Alvarez, David C; Alegre, Ranulfo M

    2007-01-01

    The effect of extremely low frequency (ELF) magnetic fields on ethanol production by Saccharomyces cerevisiae using sugar cane molasses was studied during batch fermentation. The cellular suspension from the fermentor was externally recycled through a stainless steel tube inserted in two magnetic field generators, and consequently, the ethanol production was intensified. Two magnetic field generators were coupled to the bioreactor, which were operated conveniently in simple or combined ways. Therefore, the recycle velocity and intensity of the magnetic field varied in a range of 0.6-1.4 m s(-1) and 5-20 mT, respectively. However, under the best conditions with the magnetic field treatment (0.9-1.2 m s(-1) and 20 mT plus solenoid), the overall volumetric ethanol productivity was approximately 17% higher than in the control experiment. These results made it possible to verify the effectiveness of the dynamic magnetic treatment since the fermentations with magnetic treatment reached their final stage in less time, i.e., approximately 2 h earlier, when compared with the control experiment.

  8. Investigation of the structure of the electromagnetic field and related phenomena, generated by the active satellite

    NASA Technical Reports Server (NTRS)

    Alpert, Yakov L.

    1992-01-01

    A short review is given for the general frequency and angle distribution of the electric field radiated by an electric dipole E = E(sub 0)cos(omega)t, in a magnetoplasma. Detailed results of numerical calculations of (E) were made in the Very Low Frequency (VLF) and the Low Frequency (LF) bands 0.02f(sub b) is less than or equal to F is less than or equal to 0.5f(sub b) (F is approximately (4-500) kHz) in the ionosphere and magnetosphere in the altitude region Z = (800-6000) km; f(sub b) is the electron gyro-frequency of the plasmas in the discussed region f(sub b) is approximately equal to (1.1 to 0.2) MHz. The amplitudes of the electric field have large maxima in four regions: close to the direction of the Earth's magnetic field line (B(sub 0)), it is the so called Axis field (E(sub 0)) and in the Storey (E(sub St)), Reversed Storey (E(sub RevSt)), and Resonance (E(sub Res)) Cones. The maximal values of E(sub 0), E(sub Res), and E(sub RevSt) are very pronounced close to the low hybrid frequency, F approximately F(sub L). The flux of the electric field is concentrated in very narrow regions, the apex angles of the cones delta(beta) is approximately equal to (0.1 - 1) degree. The enhancement and focusing of the electric field is growing up, especially quickly at Z greater than 800 km. At Z is greater than 1000 up to 6000 km, the relative value of (E), in comparison with its value at Z = 800 km is about (10(exp 2) to 10(exp 4)) times larger. Thus, the flux of VLF and LF electromagnetic waves in the Earth magnetoplasma produces and is guided by very narrow pencil beams, similar, let us say, to laser beams.

  9. Interaction of extremely-low-frequency electromagnetic fields with living systems

    SciTech Connect

    Tenforde, T.S.

    1991-11-01

    The sources and physical properties of extremely-low-frequency (ELF) electromagnetic fields are described in this paper. Biological effects and mechanisms through which ELF fields interact with humans and other organisms are discussed, including several aspects of this subject that are presently under active laboratory investigation. Studies on the potential health effects of ELF fields present in the home and workplace are also summarized, including a critical evaluation of evidence for a possible linkage between exposure to ELF fields and cancer risk. 53 refs.

  10. Electromagnetic induction by finite wavenumber source fields in 2-D lateral heterogeneities - The transverse electric mode

    NASA Technical Reports Server (NTRS)

    Hermance, J. F.

    1984-01-01

    Electromagnetic induction in a laterally homogeneous earth is analyzed in terms of a source field with finite dimensions. Attention is focused on a time-varying two-dimensional current source directed parallel to the strike of a two-dimensional anomalous structure within the earth, i.e., the E-parallel mode. The spatially harmonic source field is expressed as discontinuities in the magnetic (or electric) field of the current in the source. The model is applied to describing the magnetic gradients across megatectonic features, and may be used to predict the magnetic fields encountered by a satellite orbiting above the ionosphere.

  11. Dynamics of ionisation and entanglement in the 'atom + quantum electromagnetic field' system

    SciTech Connect

    Sharapova, P R; Tikhonova, O V

    2012-03-31

    The dynamics of a model Rydberg atom in a strong nonclassical electromagnetic field is investigated. The field-induced transitions to the continuum involving different numbers of photons (with intermediate states in the discrete spectrum) are taken into account and the specific features of ionisation in 'squeezed' field states are considered in comparison with the case of classical light. A significant decrease in the ionisation rate is found, which is caused by the interference stabilisation of the atomic system. The entanglement of the atomic and field subsystems, the temporal dynamics of the correlations found, and the possibility of measuring them are analysed.

  12. Growth of Escherichia coli under extremely low-frequency electromagnetic fields.

    PubMed

    Justo, Oselys Rodriguez; Pérez, Victor Haber; Alvarez, David Chacon; Alegre, Ranulfo Monte

    2006-08-01

    The influence of extremely low-frequency (ELF) electromagnetic fields on Escherichia coli cultures in submerse fermentation was studied. The fermentation processes were carried out recycling the culture medium externally through a stainless steel tube inserted in a magnetic field generator (solenoid). The exposure time and electromagnetic induction were varied in a range of 1 to 12 h and 0.010 to 0.10 T, respectively, according to a Box-Wilson Central Composite Designs of face centered with five central points. Growth of E. coli could be altered (stimulated or inhibited) under magnetic fieldinduced effects. E. coli cultures exposed at 0.1 T during 6.5 h exhibited changes in its viability compared to unexposed cells, which was 100 times higher than the control. The magnetic field generator associated with the cellular suspension recycle is a new way of magnetic treatment in fermentation processes and could be appropriate to industrial scale up. PMID:16943636

  13. Electromagnetic fields radiated from a lightning return stroke - Application of an exact solution to Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Meneghini, R.

    1978-01-01

    A solution is presented for the electromagnetic fields radiated by an arbitrarily oriented current filament over a conducting ground plane in the case where the current propagates along the filament at the speed of light, and this solution is interpreted in terms of radiation from lightning return strokes. The solution is exact in the fullest sense; no mathematical approximations are made, and the governing differential equations and boundary conditions are satisfied. The solution has the additional attribute of being specified in closed form in terms of elementary functions. This solution is discussed from the point of view of deducing lightning current wave forms from measurements of the electromagnetic fields and understanding the effects of channel tortuosity on the radiated fields. In addition, it is compared with two approximate solutions, the traditional moment approximation and the Fraunhofer approximation, and a set of criteria describing their applicability are presented and interpreted.

  14. Electromagnetically superconducting phase of QCD vacuum induced by strong magnetic field

    SciTech Connect

    Chernodub, M. N.

    2011-05-23

    In this talk we discuss our recent suggestion that the QCD vacuum in a sufficiently strong magnetic field (stronger than 10{sup 16} Tesla) may undergo a spontaneous transition to an electromagnetically superconducting state. The possible superconducting state is anisotropic (the vacuum exhibits superconductivity only along the axis of the uniform magnetic field) and inhomogeneous (in the transverse directions the vacuum structure shares similarity with the Abrikosov lattice of an ordinary type-II superconductor). The electromagnetic superconductivity of the QCD vacuum is suggested to occur due to emergence of specific quark-antiquark condensates which carry quantum numbers of electrically charged rho mesons. A Lorentz-covariant generalization of the London transport equations for the magnetic-field-induced superconductivity is given.

  15. Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    SciTech Connect

    Komar, A.; Pokol, G. I.; Fueloep, T.

    2013-01-15

    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

  16. Bubble shape and electromagnetic field in the nonlinear regime for laser wakefield acceleration

    SciTech Connect

    Li, X. F.; Yu, Q.; Huang, S.; Kong, Q.; Gu, Y. J.; Kawata, S.

    2015-08-15

    The electromagnetic field in the electron “bubble” regime for ultra-intense laser wakefield acceleration was solved using the d'Alembert equations. Ignoring the residual electrons, we assume an ellipsoidal bubble forms under ideal conditions, with bubble velocity equal to the speed of light in vacuum. The general solution for bubble shape and electromagnetic field were obtained. The results were confirmed in 2.5D PIC (particle-in-cell) simulations. Moreover, slopes for the longitudinal electric field of larger than 0.5 were found in these simulations. With spherical bubbles, this slope is always smaller than or equal to 0.5. This behavior validates the ellipsoid assumption.

  17. Using the CAVE virtual-reality environment as an aid to 3-D electromagnetic field computation

    SciTech Connect

    Turner, L.R.; Levine, D.; Huang, M.; Papka, M; Kettunen, L.

    1995-08-01

    One of the major problems in three-dimensional (3-D) field computation is visualizing the resulting 3-D field distributions. A virtual-reality environment, such as the CAVE, (CAVE Automatic Virtual Environment) is helping to overcome this problem, thus making the results of computation more usable for designers and users of magnets and other electromagnetic devices. As a demonstration of the capabilities of the CAVE, the elliptical multipole wiggler (EMW), an insertion device being designed for the Advanced Photon Source (APS) now being commissioned at Argonne National Laboratory (ANL), wa made visible, along with its fields and beam orbits. Other uses of the CAVE in preprocessing and postprocessing computation for electromagnetic applications are also discussed.

  18. Electromagnetic design analysis and performance improvement of axial field permanent magnet generator for small wind turbine

    NASA Astrophysics Data System (ADS)

    Jung, Tae-Uk

    2012-04-01

    Axial field permanent magnet (AFPM) generators are widely applied for the small wind turbine. The output power of conventional AFPM generator, AFER-NS (Axial Field External Rotor-Non Slotted) generator, is limited by the large reluctance by the long air-gap flux paths. In this paper, the novel structure of AFPM generator, AFIR-S (Axial Field Inner Rotor-Slotted) generator, is suggested to improve the output characteristics. The electromagnetic design analysis and the design improvement of the suggested AFIR-S generator are studied. Firstly, the electromagnetic design analysis was done to increase the power density. Secondly, the design optimizations of the rotor pole-arc ratio and skew angle to increase the output power and to reduce the cogging torque. Finally, the output performances of AFER-NS and AFIR-S generator are compared with each other.

  19. Exposure to electromagnetic fields in households--trends from 2006 to 2012.

    PubMed

    Tomitsch, Johannes; Dechant, Engelbert

    2015-01-01

    This article is a follow-up study of extremely low-frequency electric and magnetic fields (ELF-EFs, ELF-MFs) and radiofrequency electromagnetic fields (RF-EMFs) using data collected in 2012 following earlier data sets from 2006 and 2009. Measurements were conducted in 219 bedrooms in Lower Austria. Out of these rooms 113 measurements were done in the same households in 2006, 2009 and 2012, and 106 were conducted in neighbouring buildings added in 2009 and newly recruited buildings in mainly urban areas in 2012. In revisited places the median of the ELF-EFs decreased from 23.20 V/m in 2006 to 13.90 V/m in 2012. The median of all-night measurements of ELF-MFs at 50 Hz decreased from 13.50 to 11.37 nT. The median of total RF-EMFs increased from 28.13 to 52.16 µW/m(2). Highest increases were found for universal mobile telecommunication system (UMTS) and wireless local area networks (WLAN). The analysis of all households showed higher total RF-EMFs in urban (median = 117.73 µW/m(2)) than in rural (median = 34.52 µW/m(2)) areas. Long-term evolution (LTE) in the 2600 MHz frequency range was detected at 17 locations with a maximum of 38.20 µW/m(2). Indoor RF-EMF sources resulted in decreased exposure in the frequency range of digital enhanced cordless telecommunications telephones (DECT) and increased exposure in the frequency range of WLAN. PMID:25421708

  20. The question of health effects from exposure to electromagnetic fields

    SciTech Connect

    Hendee, W.R.; Boteler, J.C.

    1994-02-01

    Possible health effects of exposure to low-intensity electric and magnetic fields (EMFs) are receiving increased attention in the scientific literature and, especially, in the public media. Laboratory research at the cellular and whole animal level has demonstrated various biological effects that may be related in some manner to the effects of EMF exposure on people. However, the exact mechanisms of this relationship are far from clear. The studies suggest that EMFs might be cancer promoters but are unlikely to be cancer initiators. At the level of human epidemiology, approximately 50 studies have examined the possible correlation of EMF exposures with adult and childhood cancers. Although the possibility of a correlation is weak, it cannot be discounted, and further research is needed. In the meantime, a practice of {open_quotes}prudent avoidance{close_quotes} of prolonged exposure to EMFs is warranted. 89 refs.

  1. Gauge-invariant expectation values of the energy of a molecule in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Mandal, Anirban; Hunt, Katharine L. C.

    2016-01-01

    In this paper, we show that the full Hamiltonian for a molecule in an electromagnetic field can be separated into a molecular Hamiltonian and a field Hamiltonian, both with gauge-invariant expectation values. The expectation value of the molecular Hamiltonian gives physically meaningful results for the energy of a molecule in a time-dependent applied field. In contrast, the usual partitioning of the full Hamiltonian into molecular and field terms introduces an arbitrary gauge-dependent potential into the molecular Hamiltonian and leaves a gauge-dependent form of the Hamiltonian for the field. With the usual partitioning of the Hamiltonian, this same problem of gauge dependence arises even in the absence of an applied field, as we show explicitly by considering a gauge transformation from zero applied field and zero external potentials to zero applied field, but non-zero external vector and scalar potentials. We resolve this problem and also remove the gauge dependence from the Hamiltonian for a molecule in a non-zero applied field and from the field Hamiltonian, by repartitioning the full Hamiltonian. It is possible to remove the gauge dependence because the interaction of the molecular charges with the gauge potential cancels identically with a gauge-dependent term in the usual form of the field Hamiltonian. We treat the electromagnetic field classically and treat the molecule quantum mechanically, but nonrelativistically. Our derivation starts from the Lagrangian for a set of charged particles and an electromagnetic field, with the particle coordinates, the vector potential, the scalar potential, and their time derivatives treated as the variables in the Lagrangian. We construct the full Hamiltonian using a Lagrange multiplier method originally suggested by Dirac, partition this Hamiltonian into a molecular term Hm and a field term Hf, and show that both Hm and Hf have gauge-independent expectation values. Any gauge may be chosen for the calculations; but

  2. Radiation pressure and the linear momentum of the electromagnetic field in magnetic media.

    PubMed

    Mansuripur, Masud

    2007-10-17

    We examine the force of the electromagnetic radiation on linear, isotropic, homogeneous media specified in terms of their permittivity epsilon and permeability mu . A formula is proposed for the electromagnetic Lorentz force on the magnetization M, which is treated here as an Amperian current loop. Using the proposed formula, we demonstrate conservation of momentum in several cases that are amenable to rigorous analysis based on the classical Maxwell equations, the Lorentz law of force, and the constitutive relations. Our analysis yields precise expressions for the density of the electromagnetic and mechanical momenta inside the media that are specified by their (epsilon,mu ) parameters. An interesting consequence of this analysis is the identification of an "intrinsic" mechanical momentum density, (1/2)E xM/c(2), analogous to the electromagnetic (or Abraham) momentum density, (1/2)E xH/c(2). (Here E and H are the magnitudes of the electric and magnetic fields, respectively, and c is the speed of light in vacuum.) This intrinsic mechanical momentum, associated with the magnetization M in the presence of an electric field E, is apparently the same "hidden" momentum that was predicted by W. Shockley and R. P. James nearly four decades ago.

  3. Effects of Electromagnetic Field on the Dynamics of Bianchi Type VI0 Universe with Anisotropic Dark Energy

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Zubair, M.

    Spatially homogeneous and anisotropic Bianchi type VI0 cosmological models with cosmological constant are investigated in the presence of anisotropic dark energy. We examine the effects of electromagnetic field on the dynamics of the universe and anisotropic behavior of dark energy. The law of variation of the mean Hubble parameter is used to find exact solutions of the Einstein field equations. We find that electromagnetic field promotes anisotropic behavior of dark energy which becomes isotropic for future evolution. It is concluded that the isotropic behavior of the universe model is seen even in the presence of electromagnetic field and anisotropic fluid.

  4. A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy.

    PubMed

    Li, Donghai; Choi, Hyunchul; Cho, Sunghoon; Jeong, Semi; Jin, Zhen; Lee, Cheong; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2015-08-01

    In this paper, we propose a new concept for a hybrid actuated microrobot for tumor-targeting therapy. For drug delivery in tumor therapy, various electromagnetic actuated microrobot systems have been studied. In addition, bacteria-based microrobot (so-called bacteriobot), which use tumor targeting and the therapeutic function of the bacteria, has also been proposed for solid tumor therapy. Compared with bacteriobot, electromagnetic actuated microrobot has larger driving force and locomotive controllability due to their position recognition and magnetic field control. However, because electromagnetic actuated microrobot does not have self-tumor targeting, they need to be controlled by an external magnetic field. In contrast, the bacteriobot uses tumor targeting and the bacteria's own motility, and can exhibit self-targeting performance at solid tumors. However, because the propulsion forces of the bacteria are too small, it is very difficult for bacteriobot to track a tumor in a vessel with a large bloodstream. Therefore, we propose a hybrid actuated microrobot combined with electromagnetic actuation in large blood vessels with a macro range and bacterial actuation in small vessels with a micro range. In addition, the proposed microrobot consists of biodegradable and biocompatible microbeads in which the drugs and magnetic particles can be encapsulated; the bacteria can be attached to the surface of the microbeads and propel the microrobot. We carried out macro-manipulation of the hybrid actuated microrobot along a desired path through electromagnetic field control and the micro-manipulation of the hybrid actuated microrobot toward a chemical attractant through the chemotaxis of the bacteria. For the validation of the hybrid actuation of the microrobot, we fabricated a hydrogel microfluidic channel that can generate a chemical gradient. Finally, we evaluated the motility performance of the hybrid actuated microrobot in the hydrogel microfluidic channel. We expect

  5. A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy.

    PubMed

    Li, Donghai; Choi, Hyunchul; Cho, Sunghoon; Jeong, Semi; Jin, Zhen; Lee, Cheong; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2015-08-01

    In this paper, we propose a new concept for a hybrid actuated microrobot for tumor-targeting therapy. For drug delivery in tumor therapy, various electromagnetic actuated microrobot systems have been studied. In addition, bacteria-based microrobot (so-called bacteriobot), which use tumor targeting and the therapeutic function of the bacteria, has also been proposed for solid tumor therapy. Compared with bacteriobot, electromagnetic actuated microrobot has larger driving force and locomotive controllability due to their position recognition and magnetic field control. However, because electromagnetic actuated microrobot does not have self-tumor targeting, they need to be controlled by an external magnetic field. In contrast, the bacteriobot uses tumor targeting and the bacteria's own motility, and can exhibit self-targeting performance at solid tumors. However, because the propulsion forces of the bacteria are too small, it is very difficult for bacteriobot to track a tumor in a vessel with a large bloodstream. Therefore, we propose a hybrid actuated microrobot combined with electromagnetic actuation in large blood vessels with a macro range and bacterial actuation in small vessels with a micro range. In addition, the proposed microrobot consists of biodegradable and biocompatible microbeads in which the drugs and magnetic particles can be encapsulated; the bacteria can be attached to the surface of the microbeads and propel the microrobot. We carried out macro-manipulation of the hybrid actuated microrobot along a desired path through electromagnetic field control and the micro-manipulation of the hybrid actuated microrobot toward a chemical attractant through the chemotaxis of the bacteria. For the validation of the hybrid actuation of the microrobot, we fabricated a hydrogel microfluidic channel that can generate a chemical gradient. Finally, we evaluated the motility performance of the hybrid actuated microrobot in the hydrogel microfluidic channel. We expect

  6. Methods for modelling electromagnetic fields Results from COMMEMI—the international project on the comparison of modelling methods for electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Zhdanov, M. S.; Varentsov, I. M.; Weaver, J. T.; Golubev, N. G.; Krylov, V. A.

    1997-10-01

    This special issue is concerned with the present state of the art in methods of numerical modelling of geo-electromagnetic fields in inhomogeneous media. A theoretical overview is followed by specific applications of the various modelling methods and computer programs (developed throughout the world) to the geo-electric test models of the international project on the Comparison Of Modelling Methods for ElectroMagnetic Induction problems (COMMEMI). Numerous tables and diagrams provide a comparison of the results obtained by these different approaches. This material is intended for geophysicists dealing with the modelling and interpretation of geo-electromagnetic fields, for scientists involved in the testing of related software, for specialists in the field of computational geophysics, and for graduate and senior undergraduate students studying this branch of geophysics.

  7. Accuracy of electromagnetic tracking with a prototype field generator in an interventional OR setting

    SciTech Connect

    Boe, Lars Eirik; Leira, Haakon Olav; Tangen, Geir Arne; Hofstad, Erlend Fagertun; Amundsen, Tore; Langoe, Thomas

    2012-01-15

    Purpose: The authors have studied the accuracy and robustness of a prototype electromagnetic window field generator (WFG) in an interventional radiology suite with a robotic C-arm. The overall purpose is the development of guidance systems combining real-time imaging with tracking of flexible instruments for bronchoscopy, laparoscopic ultrasound, endoluminal surgery, endovascular therapy, and spinal surgery. Methods: The WFG has a torus shape, which facilitates x-ray imaging through its centre. The authors compared the performance of the WFG to that of a standard field generator (SFG) under the influence of the C-arm. Both accuracy and robustness measurements were performed with the C-arm in different positions and poses. Results: The system was deemed robust for both field generators, but the accuracy was notably influenced as the C-arm was moved into the electromagnetic field. The SFG provided a smaller root-mean-square position error but was more influenced by the C-arm than the WFG. The WFG also produced smaller maximum and variance of the error. Conclusions: Electromagnetic (EM) tracking with the new WFG during C-arm based fluoroscopy guidance seems to be a step forward, and with a correction scheme implemented it should be feasible.

  8. Calculation of the surface effect in the ferromagnetic conductor with the harmonic electromagnetic field

    NASA Astrophysics Data System (ADS)

    Nosov, G. V.; Kuleshova, E. O.; Vassilyeva, Yu Z.; Elizarov, A. I.

    2016-04-01

    The authors of the paper have obtained formulas for analytical calculation of the constants with the harmonic electromagnetic field, which characterize the surface layer (a skin layer) of the ferromagnetic conductors in case of heating and nonlinear magnetic properties, which can be used for practical calculation of the electromagnetic screens, rotors of the electrical machines and inductive heating installations. A nonlinear dependence of the magnetic induction on the magnetic tension of the ferromagnetic conductor is replaced by one or two linear sections. It is considered that the skin layer of the conductor has constant quantities of the specific conductivity and averaged temperature. Linear electrodynamics equations are solved for the conductive half-space. Parameters of the ferromagnetic conductor's surface layer are calculated: magnetic permeability, the thickness of the skin layer and its averaged temperature, exposure time of the electromagnetic field on the conductor with the established maximum temperature on the conductor's surface, pressure of the field on the conductor and its resistance, inductivity of the internal magnetic field in the conductor, the thermal energy capacity. The methods credibility is confirmed with the concurrence of the resistance and inductiviry of the ferromagnetic conductor with analogous quantities from other methods.

  9. Worldline approach for numerical computation of electromagnetic Casimir energies: Scalar field coupled to magnetodielectric media

    NASA Astrophysics Data System (ADS)

    Mackrory, Jonathan B.; Bhattacharya, Tanmoy; Steck, Daniel A.

    2016-10-01

    We present a worldline method for the calculation of Casimir energies for scalar fields coupled to magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a dielectric medium converge to the proper solutions in certain special cases, including the Casimir-Polder potential of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance of the resulting computational techniques. While these scalar methods are only exact in particular geometries, they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.

  10. Giant Electric Field Enhancement in Split Ring Resonators Featuring Nanometer-Sized Gaps

    PubMed Central

    Bagiante, S.; Enderli, F.; Fabiańska, J.; Sigg, H.; Feurer, T.

    2015-01-01

    Today's pulsed THz sources enable us to excite, probe, and coherently control the vibrational or rotational dynamics of organic and inorganic materials on ultrafast time scales. Driven by standard laser sources THz electric field strengths of up to several MVm−1 have been reported and in order to reach even higher electric field strengths the use of dedicated electric field enhancement structures has been proposed. Here, we demonstrate resonant electric field enhancement structures, which concentrate the incident electric field in sub-diffraction size volumes and show an electric field enhancement as high as ~14,000 at 50 GHz. These values have been confirmed through a combination of near-field imaging experiments and electromagnetic simulations. PMID:25623373

  11. An accurate magnetic field solution for medical electromagnetic tracking coils at close range

    NASA Astrophysics Data System (ADS)

    Schroeder, Tobias

    2015-06-01

    Electromagnetic tracking uses transmitter field models to determine position and orientation of an object. An important application of this technology is surgical navigation, where instruments are frequently tracked at short distances from the transmitter. At short distances, conventional and widely used dipole field models can lead to errors in tracked position and orientation. To increase tracking accuracy in this scenario, this work describes a novel transmitter field model and compares its performance against the dipole model. Demonstrated tracking accuracy improvements could have far-reaching benefits for medical navigation applications.

  12. Measurement of the Stochastic Electromagnetic Field Coupling into Transmission Lines in a Reverberation Chamber

    NASA Astrophysics Data System (ADS)

    Magdowski, M.; Siddiqui, S.; Vick, R.

    2012-05-01

    The coupling of stochastic electromagnetic fields to a straight and uniform transmission line was measured in a reverberation chamber. Such stochastic fields also appear in large and complex overmoded cavities like aircraft fuse- lages and satellite enclosures. The measurements were carried out with different line lengths over a large frequency range. The results are analyzed with respect to the statistical distribution of the characteristics of the coupled voltage and compared to simulated values. The simulation is based on a transmission line model and a plane wave representation of the field.

  13. Energy and momentum flow in electromagnetic fields and plasma. [solar wind-magnetospheric interaction

    NASA Technical Reports Server (NTRS)

    Parish, J. L.; Raitt, W. J.

    1983-01-01

    The energy momentum tensor for a perfect fluid in a magnetic field is used to predict the momentum density, energy density, momentum flow, and energy flow of the fluid and the electromagnetic field. It is shown that taking the momentum flow from the energy momentum tensor, rather than starting with differential magnetohydrodynamic equations, can produce more accurate results on the basis of magnetic field data. It is suggested that the use of the energy momentum tensor has the potential for application to analysis of data from the more dynamic regions of the solar system, such as the plasma boundaries of Venus, the Jovian ionosphere, and the terrestrial magnetopause.

  14. A new conserved current for electromagnetic fields in the Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Grant, Alexander; Flanagan, Eanna

    2016-03-01

    For any classical linear Lagrangian field theory, the symplectic product provides a conserved current that is bilinear on the space of solutions. Given a linear mapping from the space of solutions into itself, a ``symmetry operator'', one can therefore generate quadratic conserved currents for any linear classical field theory. We apply this procedure to the case of electromagnetism on a Kerr background, showing that this procedure generates the conserved currents given in Andersson, Bäckdahl, and Blue, as well as a new conserved current. These currents reduce to the sum of the Carter constants of the photons in the geometric optics limit, and generalize the current for scalar fields discovered by Carter.

  15. Enhancement of residual stress by electromagnetic fluctuations: A quasi-linear study

    NASA Astrophysics Data System (ADS)

    Kaang, Helen H.; Jhang, Hogun; Singh, R.; Kim, Juhyung; Kim, S. S.

    2016-05-01

    A study is conducted on the impact of electromagnetic (EM) fluctuations on residual Reynolds stress in the context of the quasi-linear theory. We employ a fluid formulation describing EM ion temperature gradient turbulence. Analyses show that finite plasma β (=plasma thermal energy/magnetic energy) significantly increases the residual stress, potentially leading to the strong enhancement of flow generation in high β plasmas. We identify that this strong increase of residual stress originates from the reinforcement of radial ⟨ k ∥ ⟩ (=spectrally averaged parallel wavenumber) asymmetry due to the deformation of eigenfunctions near a rational surface.

  16. Local geometry of electromagnetic fields and its role in molecular multipole transitions.

    PubMed

    Yang, Nan; Cohen, Adam E

    2011-05-12

    Electromagnetic fields with complex spatial variation routinely arise in Nature. We study the response of a small molecule to monochromatic fields of arbitrary three-dimensional geometry. First, we consider the allowed configurations of the fields and field gradients at a single point in space. Many configurations cannot be generated from a single plane wave, regardless of polarization, but any allowed configuration can be generated by superposition of multiple plane waves. There is no local configuration of the fields and gradients that requires near-field effects. Second, we derive a set of local electromagnetic quantities, each of which couples to a particular multipole transition. These quantities are small or zero in plane waves, but can be large in regions of certain superpositions of plane waves. Our findings provide a systematic framework for designing far-field and near-field experiments to drive multipole transitions. The proposed experiments provide information on molecular structure that is inaccessible to other spectroscopic techniques and open the possibility for new types of optical control of molecules.

  17. Influence of 400, 900, and 1900 MHz electromagnetic fields on Lemna minor growth and peroxidase activity.

    PubMed

    Tkalec, Mirta; Malarić, Kresimir; Pevalek-Kozlina, Branka

    2005-04-01

    Increased use of radio and microwave frequencies requires investigations of their effects on living organisms. Duckweed (Lemna minor L.) has been commonly used as a model plant for environmental monitoring. In the present study, duckweed growth and peroxidase activity was evaluated after exposure in a Gigahertz Transversal Electromagnetic (GTEM) cell to electric fields of frequencies 400, 900, and 1900 MHz. The growth of plants exposed for 2 h to the 23 V/m electric field of 900 MHz significantly decreased in comparison with the control, while an electric field of the same strength but at 400 MHz did not have such effect. A modulated field at 900 MHz strongly inhibited the growth, while at 400 MHz modulation did not influence the growth significantly. At both frequencies a longer exposure mostly decreased the growth and the highest electric field (390 V/m) strongly inhibited the growth. Exposure of plants to lower field strength (10 V/m) for 14 h caused significant decrease at 400 and 1900 MHz while 900 MHz did not influence the growth. Peroxidase activity in exposed plants varied, depending on the exposure characteristics. Observed changes were mostly small, except in plants exposed for 2 h to 41 V/m at 900 MHz where a significant increase (41%) was found. Our results suggest that investigated electromagnetic fields (EMFs) might influence plant growth and, to some extent, peroxidase activity. However, the effects of EMFs strongly depended on the characteristics of the field exposure. PMID:15768427

  18. Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation.

    PubMed

    Balmori, Alfonso

    2015-06-15

    The rate of scientific activity regarding the effects of anthropogenic electromagnetic radiation in the radiofrequency (RF) range on animals and plants has been small despite the fact that this topic is relevant to the fields of experimental biology, ecology and conservation due to its remarkable expansion over the past 20 years. Current evidence indicates that exposure at levels that are found in the environment (in urban areas and near base stations) may particularly alter the receptor organs to orient in the magnetic field of the earth. These results could have important implications for migratory birds and insects, especially in urban areas, but could also apply to birds and insects in natural and protected areas where there are powerful base station emitters of radiofrequencies. Therefore, more research on the effects of electromagnetic radiation in nature is needed to investigate this emerging threat.

  19. Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation.

    PubMed

    Balmori, Alfonso

    2015-06-15

    The rate of scientific activity regarding the effects of anthropogenic electromagnetic radiation in the radiofrequency (RF) range on animals and plants has been small despite the fact that this topic is relevant to the fields of experimental biology, ecology and conservation due to its remarkable expansion over the past 20 years. Current evidence indicates that exposure at levels that are found in the environment (in urban areas and near base stations) may particularly alter the receptor organs to orient in the magnetic field of the earth. These results could have important implications for migratory birds and insects, especially in urban areas, but could also apply to birds and insects in natural and protected areas where there are powerful base station emitters of radiofrequencies. Therefore, more research on the effects of electromagnetic radiation in nature is needed to investigate this emerging threat. PMID:25747364

  20. Generation of large scale field-aligned density irregularities in ionospheric heating experiments. [electromagnetic wave decay

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.

    1974-01-01

    Threshold and growth rate for stimulated Brillouin scattering are calculated for a uniform magnetoplasma. These are then compared with the threshold and growth rate of a new thermal instability in which the nonlinear Lorentz force felt by the electrons at the beat frequency of the two electromagnetic waves is replaced by a pressure force due to differential heating in the interference pattern of the pump wave and the generated electromagnetic wave. This thermal instability, which is still essentially stimulated Brillouin scattering, has a threshold which is especially low when the propagation vector of the beat wave is almost normal to the magnetic field. The threshold is then considerably lower than the threshold for normal stimulated Brillouin scattering and therefore this new instability is probably responsible for the generation of large scale field aligned irregularities and ionospheric spread F.

  1. The minimization of the extraneous electromagnetic fields of an inductive power transfer system

    NASA Astrophysics Data System (ADS)

    McLean, James; Sutton, Robert

    2013-04-01

    The efficiency of inductive wireless power transfer (IPT) systems has been extensively studied. However, the electromagnetic compatibility of such systems is at least as important as the efficiency and has received much less attention. We consider the net magnetic dipole moment of the system as a figure of merit. That is, we seek to minimize the magnitude of the net dipole moment in order to minimize both the near magnetic fields and the radiated power. A 20 kHz, 3.3 kW, IPT system, representative of typical wireless vehicular battery charging systems, is considered and it is seen that one particular value of load impedance minimizes the net dipole moment while another, distinct, value maximizes efficiency. Thus, efficiency must be traded off, at least to some extent, in order to minimize extraneous electromagnetic fields.

  2. 916 MHz electromagnetic field exposure affects rat behavior and hippocampal neuronal discharge☆

    PubMed Central

    Hao, Dongmei; Yang, Lei; Chen, Su; Tian, Yonghao; Wu, Shuicai

    2012-01-01

    Wistar rats were exposed to a 916 MHz, 10 W/m2 mobile phone electromagnetic field for 6 hours a day, 5 days a week. Average completion times in an eight-arm radial maze were longer in the exposed rats than control rats after 4–5 weeks of exposure. Error rates in the exposed rats were greater than the control rats at 6 weeks. Hippocampal neurons from the exposed rats showed irregular firing patterns during the experiment, and they exhibited decreased spiking activity 6–9 weeks compared with that after 2–5 weeks of exposure. These results indicate that 916 MHz electromagnetic fields influence learning and memory in rats during exposure, but long-term effects are not obvious. PMID:25657684

  3. Investigating the impact of electromagnetic fields on human cells: A thermodynamic perspective

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto; Ponzetto, Antonio; Deisboeck, Thomas S.

    2016-02-01

    The consequences of the interactions of electromagnetic waves, as used in conventional MRI technology, with human cells are not fully understood. To analyze these interactions, a novel thermodynamic approach is presented that is based on the relationship between electromagnetic and thermodynamic quantities. The theoretical results indicate that the waves' impact is largest at high magnetic field strengths and at low frequencies. This is the first step towards a clinically useful framework to quantitatively assess MRI impact including a potential trade-off between the desired increase in spatial resolution that higher magnetic field strengths yield for diagnostic purposes and the danger this may pose for cell membranes, and by extension, for the tissues investigated.

  4. Guidance note: risk management of workers with medical electronic devices and metallic implants in electromagnetic fields.

    PubMed

    Hocking, Bruce; Mild, Kjell Hansson

    2008-01-01

    Medical electronic devices and metallic implants are found in an increasing number of workers. Industrial applications requiring intense electromagnetic fields (EMF) are growing and the potential risk of injurious interactions arising from EMF affecting devices or implants needs to be managed. Potential interactions include electromagnetic interference, displacement, and electrostimulation or heating of adjacent tissue, depending on the device or implant and the frequency of the fields. A guidance note, which uses a risk management framework, has been developed to give generic advice in (a) risk identification--implementing procedures to identify workers with implants and to characterise EMF exposure within a workplace; (b) risk assessment--integrating the characteristics of devices, the anatomical localisation of implants, occupational hygiene data, and application of basic physics principles; and (c) risk control--advising the worker and employer regarding safety and any necessary changes to work practices, while observing privacy.

  5. Surfactant-enhanced alkaline flooding field project

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  6. Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides

    NASA Astrophysics Data System (ADS)

    Todorova, Nevena; Bentvelzen, Alan; English, Niall J.; Yarovsky, Irene

    2016-02-01

    Electromagnetic fields (EMFs) are ever-present, and so is the need to better understand their influence on human health and biological matter in general. The interaction between a molecular system and external EMF can alter the structure, and dynamical behaviour, and, hence, biological function of proteins with uncertain health consequences. This urges a detailed investigation of EMF-induced effects on basic protein biophysics. Here, we used all-atom non-equilibrium molecular dynamics simulations to understand and quantify the response mechanisms of the amyloidogenic apoC-II(60-70) peptides to non-ionising radiation by modelling their behaviour under external electromagnetic and electric fields of different strengths. Our simulations show high strength fields (>0.04 V/nm) cause structural changes in apoC-II(60-70) due to the peptide dipole alignment along the applied field direction, which disrupts the inherent β-hairpin conformation known to be the intermediate state for fibril formation. The intermediate field-strength range (0.04-0.004 V/nm) causes a significant acceleration in peptide dynamics, which leads to the increased population of structures with fibril-inhibiting characteristics, such as the separated N- and C-termini and colocation of the aromatic residues at the same peptide face. In contrast, lower field strengths (<0.004 V/nm) promote the formation of the amyloid-prone hairpin structures relative to the ambient conditions. These findings suggest that intermediate-strength electromagnetic fields could be considered for designing alternative treatments of amyloid diseases, while the very high and low field strengths could be employed for engineering well-ordered fibrillar aggregates for non-medicinal applications.

  7. Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides.

    PubMed

    Todorova, Nevena; Bentvelzen, Alan; English, Niall J; Yarovsky, Irene

    2016-02-28

    Electromagnetic fields (EMFs) are ever-present, and so is the need to better understand their influence on human health and biological matter in general. The interaction between a molecular system and external EMF can alter the structure, and dynamical behaviour, and, hence, biological function of proteins with uncertain health consequences. This urges a detailed investigation of EMF-induced effects on basic protein biophysics. Here, we used all-atom non-equilibrium molecular dynamics simulations to understand and quantify the response mechanisms of the amyloidogenic apoC-II(60-70) peptides to non-ionising radiation by modelling their behaviour under external electromagnetic and electric fields of different strengths. Our simulations show high strength fields (>0.04 V/nm) cause structural changes in apoC-II(60-70) due to the peptide dipole alignment along the applied field direction, which disrupts the inherent β-hairpin conformation known to be the intermediate state for fibril formation. The intermediate field-strength range (0.04-0.004 V/nm) causes a significant acceleration in peptide dynamics, which leads to the increased population of structures with fibril-inhibiting characteristics, such as the separated N- and C-termini and colocation of the aromatic residues at the same peptide face. In contrast, lower field strengths (<0.004 V/nm) promote the formation of the amyloid-prone hairpin structures relative to the ambient conditions. These findings suggest that intermediate-strength electromagnetic fields could be considered for designing alternative treatments of amyloid diseases, while the very high and low field strengths could be employed for engineering well-ordered fibrillar aggregates for non-medicinal applications. PMID:26931725

  8. Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides.

    PubMed

    Todorova, Nevena; Bentvelzen, Alan; English, Niall J; Yarovsky, Irene

    2016-02-28

    Electromagnetic fields (EMFs) are ever-present, and so is the need to better understand their influence on human health and biological matter in general. The interaction between a molecular system and external EMF can alter the structure, and dynamical behaviour, and, hence, biological function of proteins with uncertain health consequences. This urges a detailed investigation of EMF-induced effects on basic protein biophysics. Here, we used all-atom non-equilibrium molecular dynamics simulations to understand and quantify the response mechanisms of the amyloidogenic apoC-II(60-70) peptides to non-ionising radiation by modelling their behaviour under external electromagnetic and electric fields of different strengths. Our simulations show high strength fields (>0.04 V/nm) cause structural changes in apoC-II(60-70) due to the peptide dipole alignment along the applied field direction, which disrupts the inherent β-hairpin conformation known to be the intermediate state for fibril formation. The intermediate field-strength range (0.04-0.004 V/nm) causes a significant acceleration in peptide dynamics, which leads to the increased population of structures with fibril-inhibiting characteristics, such as the separated N- and C-termini and colocation of the aromatic residues at the same peptide face. In contrast, lower field strengths (<0.004 V/nm) promote the formation of the amyloid-prone hairpin structures relative to the ambient conditions. These findings suggest that intermediate-strength electromagnetic fields could be considered for designing alternative treatments of amyloid diseases, while the very high and low field strengths could be employed for engineering well-ordered fibrillar aggregates for non-medicinal applications.

  9. Similarity Laws for Collisionless Interaction of Superstrong Electromagnetic Fields with a Plasma

    SciTech Connect

    Ryutov, D D; Remington, B A

    2005-10-18

    Several similarity laws for the collisionless interaction of ultra-intense electromagnetic fields with a plasma of an arbitrary initial shape is presented. Both ultra-relativistic and non-relativistic cases are covered. The ion motion is included. A brief discussion of possible ways of experimental verification of scaling laws is presented. The results can be of interest for experiments and numerical simulations in the areas of particle acceleration, harmonic generation, and Coulomb explosion of clusters.

  10. Bats Avoid Radar Installations: Could Electromagnetic Fields Deter Bats from Colliding with Wind Turbines?

    PubMed Central

    Nicholls, Barry; Racey, Paul A.

    2007-01-01

    Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200–400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia. PMID:17372629

  11. Scalar and electromagnetic fields of static sources in higher dimensional Majumdar-Papapetrou spacetimes

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Zelnikov, Andrei

    2012-03-01

    We study massless scalar and electromagnetic fields from static sources in a static higher-dimensional spacetime. Exact expressions for static Green’s functions for such problems are obtained in the background of the Majumdar-Papapetrou solutions of the Einstein-Maxwell equations. Using this result, we calculate the force between two scalar or electric charges in the presence of one or several extremally charged black holes in equilibrium in the higher-dimensional spacetime.

  12. Resource Letter BELFEF-1: Biological effects of low-frequency electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Hafemeister, David

    1996-08-01

    This Resource Letter provides a guide to the literature on the interaction of extremely low-frequency electromagnetic field (ELF/EMF) interactions with biological matter, and on the possibility that such interactions could have a harmful effect on human health. Journal articles and books are cited for the following topics: ELF/EMF theoretical interactions with biological cells, organs and organisms, magnetic dipole interactions, sensing by animals, biomedical-biophysical experiments, epidemiology, and litigation-mitigation risk issues.

  13. Regulation of confining liquid for cement systems properties by means of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Gorlenko, N. P.; Laptev, B. I.; Sarkisov, Ju S.; Sidorenko, G. N.; Kulchenko, A. K.; Minakova, T. S.

    2015-01-01

    The paper studies theoretical aspects of methods for electrochemical, electromagnetic, magnetic activation of water as a confining liquid for cement systems. The ideas about processes of water structural organization are shown to be the basis for one of possible mechanisms of activating impact. Experimental data for electric conductivity, electric capacity on the example of distilled water treatment by means of magnetic field which confirm the change of water structure have been presented.

  14. Chiral condensate in a constant electromagnetic field at O(p{sup 6})

    SciTech Connect

    Werbos, Elizabeth S.

    2008-06-15

    We examine the shift in the chiral condensate due to a constant electromagnetic field at O(p{sup 6}) using SU(2) chiral perturbation theory and a realistic M{sub {pi}}=140 MeV. We find that this value differs significantly from the value calculated using M{sub {pi}}=0, while the magnitude of the two-loop correction is unclear due to the uncertainty in the experimentally determined value of the relevant L{sub 6} LEC.

  15. Bats avoid radar installations: could electromagnetic fields deter bats from colliding with wind turbines?

    PubMed

    Nicholls, Barry; Racey, Paul A

    2007-03-14

    Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200-400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia.

  16. Effects of electromagnetic field on the dynamical instability of cylindrical collapse

    SciTech Connect

    Sharif, M.; Azam, M. E-mail: azammath@gmail.com

    2012-02-01

    The objective of this paper is to discuss the dynamical instability in the context of Newtonian and post Newtonian regimes. For this purpose, we consider non-viscous heat conducting charged isotropic fluid as a collapsing matter with cylindrical symmetry. Darmois junction conditions are formulated. The perturbation scheme is applied to investigate the influence of dissipation and electromagnetic field on the dynamical instability. We conclude that the adiabatic index Γ has smaller value for such a fluid in cylindrically symmetric than isotropic sphere.

  17. Orthodontics in a quantum world III: electromagnetic field theory and oral parafunction.

    PubMed

    James, Gavin

    2008-01-01

    The study of electromagnetic field theory and bioenergy has established that there is an extensive communication system throughout the body by way of a functional matrix. This enables the body to use the mouth to assist it during the expenditure of effort elsewhere in the body. A variety of oral behaviors can be identified as contributing to this. To some extent, these behaviors indicate where an imbalance is present in the body.

  18. [The biological activity of a decameter-range electromagnetic field with a frequency of 24 MHz].

    PubMed

    Bezdol'naia, I S; Dumanskiĭ, Iu D; Smolia, A L

    1991-03-01

    A study of behavioural reactions indicates that the effect of 24 MHz frequencies of the electromagnetic field results in changes of the ratio of excitatory and inhibitory processes in the nervous system of white rats with prevalence of inhibitory processes. By the 90-th day of effect of the above factor all changes returned to the initial level. This indicates stability of the adaptative reactions of the integrative level of the nervous system to the acting factor. PMID:2042349

  19. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    SciTech Connect

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  20. Evaluation of Electromagnetic Fields in a Hospital for Safe Use of Electronic Medical Equipment.

    PubMed

    Ishida, Kai; Fujioka, Tomomi; Endo, Tetsuo; Hosokawa, Ren; Fujisaki, Tetsushi; Yoshino, Ryoji; Hirose, Minoru

    2016-03-01

    Establishment of electromagnetic compatibility is important in use of electronic medical equipment in hospitals. To evaluate the electromagnetic environment, the electric field intensity induced by electromagnetic radiation in broadcasting spectra coming from outside the hospital was measured in a new hospital building before any patients visited the hospital and 6 months after the opening of the hospital. Various incoming radio waves were detected on the upper floors, with no significant difference in measured levels before and after opening of the hospital. There were no cellphone terminal signals before the hospital opened, but these signals were strongly detected at 6 months thereafter. Cellphone base stations signals were strongly detected on the upper floors, but there were no signals at most locations in the basement and in the center of the building on the lower floors. A maximum electrical intensity of 0.28 V/m from cellphone base stations (2.1 GHz) was detected at the south end of the 2nd floor before the hospital opened. This value is lower than the EMC marginal value for general electronic medical equipment specified in IEC 60601-1-2 (3 V/m). Therefore, electromagnetic interference with electronic medical equipment is unlikely in this situation. However, cellphone terminal signals were frequently detected in non-base station signal areas. This is a concern, and understanding signal strength from cellphone base stations at a hospital is important for promotion of greater safety. PMID:26643076