Science.gov

Sample records for electromagnetic fluctuation induced

  1. Coherent control of quantum fluctuations using cavity electromagnetically induced transparency.

    PubMed

    Souza, J A; Figueroa, E; Chibani, H; Villas-Boas, C J; Rempe, G

    2013-09-13

    We study the all-optical control of the quantum fluctuations of a light beam via a combination of single-atom cavity quantum electrodynamics (CQED) and electromagnetically induced transparency (EIT). Specifically, the EIT control field is used to tune the CQED transition frequencies in and out of resonance with the probe light. In this way, photon blockade and antiblockade effects are employed to produce sub-Poissonian and super-Poissonian light fields, respectively. The achievable quantum control paves the way towards the realization of a prototype of a novel quantum transistor which amplifies or attenuates the relative intensity noise of a light beam. Its feasibility is demonstrated by calculations using realistic parameters from recent experiments.

  2. Electromagnetic fluctuation-induced interactions in randomly charged slabs

    NASA Astrophysics Data System (ADS)

    Rezvani, Vahid; Sarabadani, Jalal; Naji, Ali; Podgornik, Rudolf

    2012-09-01

    Randomly charged net-neutral dielectric slabs are shown to interact across a featureless dielectric continuum with long-range electrostatic forces that scale with the statistical variance of their quenched random charge distribution and inversely with the distance between their bounding surfaces. By accounting for the whole spectrum of electromagnetic field fluctuations, we show that this long-range disorder-generated interaction extends well into the retarded regime where higher order (non-zero) Matsubara frequencies contribute significantly. This occurs even for highly clean samples with only a trace amount of charge disorder and shows that disorder effects can be important down to the nanoscale. As a result, the previously predicted non-monotonic behavior for the total force between dissimilar slabs as a function of their separation distance is substantially modified by higher order contributions, and in almost all cases of interest, we find that the equilibrium inter-surface separation is shifted to substantially larger values compared to predictions based solely on the zero-frequency component. This suggests that the ensuing non-monotonic interaction is more easily amenable to experimental detection. The presence of charge disorder in the intervening dielectric medium between the two slabs is shown to lead to an additional force that can be repulsive or attractive depending on the system parameters and can, for instance, wash out the non-monotonic behavior of the total force when the intervening slab contains a sufficiently large amount of disorder charges.

  3. Correlation between intensity fluctuations induced by scattering of a partially coherent, electromagnetic wave from a quasi-homogeneous medium

    NASA Astrophysics Data System (ADS)

    Li, Jia; Chang, Liping; Chen, Feinan

    2016-12-01

    Based on the first-order Born approximation, the correlation between intensity fluctuations is derived for a partially coherent, electromagnetic plane wave scattering from a spatially quasi-homogeneous medium. Young's pinholes are utilized to control the degree of coherence of the incident field. For the electromagnetic scattering case, it is shown that the CIF of the scattered field strongly depends on the degree of polarization of the incident wave, Young's pinhole parameter, effective radius and correlation length of the medium. The influences of these parameters on the CIF distributions are revealed by numerical calculations.

  4. Theory of electromagnetic fluctuations for magnetized multi-species plasmas

    SciTech Connect

    Navarro, Roberto E. Muñoz, Víctor; Araneda, Jaime; Moya, Pablo S.; Viñas, Adolfo F.; Valdivia, Juan A.

    2014-09-15

    Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

  5. Boundary effects of electromagnetic vacuum fluctuations on charged particles

    SciTech Connect

    Hsiang, J.-T.; Wu, T.-H.; Leet, D.-S.

    2008-10-10

    The nature of electromagnetic vacuum fluctuations in the presence of the boundary is investigated from their effects on the dynamics of charged particles. These effects may be observable via the velocity fluctuations of the charge particles near the conducting plate, where the effects of vacuum fluctuations are found to be anisotrpoic. The corresponding stochastic equation of motion for the charged particle is also derived under the semiclassical approximation.

  6. Electromagnetic fluctuations and normal modes of a drifting relativistic plasma

    SciTech Connect

    Ruyer, C.; Gremillet, L.; Bénisti, D.; Bonnaud, G.

    2013-11-15

    We present an exact calculation of the power spectrum of the electromagnetic fluctuations in a relativistic equilibrium plasma described by Maxwell-Jüttner distribution functions. We consider the cases of wave vectors parallel or normal to the plasma mean velocity. The relative contributions of the subluminal and supraluminal fluctuations are evaluated. Analytical expressions of the spatial fluctuation spectra are derived in each case. These theoretical results are compared to particle-in-cell simulations, showing a good reproduction of the subluminal fluctuation spectra.

  7. Characterization of electromagnetic fluctuations in a HiPIMS plasma

    NASA Astrophysics Data System (ADS)

    Spagnolo, S.; Zuin, M.; Cavazzana, R.; Martines, E.; Patelli, A.; Spolaore, M.; Colasuonno, M.

    2016-12-01

    A high power impulse magnetron sputtering (HiPIMS) plasma has been characterized by means of Langmuir probes measuring floating potential, electron temperature and density. Moreover, magnetic sensors have been employed in the analysis of the magnetic fluctuations. A low frequency electro-magnetic structure has been detected to propogate in the HiPIMS plasma at a velocity of about 5 km s-1 in the direction of the \\mathbf{E}× \\mathbf{B} drift. It has been characterized in terms of time and space periodicities for different plasma conditions. It exhibits common features with the so-called rotating spokes, observed in various HiPIMS plasmas. The increasing relevance of the electromagnetic nature of the fluctuating structure at high power levels is highlighted.

  8. The fluctuation induced Hall effect

    SciTech Connect

    Shen, W.; Prager, S.C.

    1993-02-01

    The fluctuation induced Hall term, {le}{approximately}{ovr J} {times} {approximately}{ovr B}{ge}, has been measured in the MST reversed field pinch. The term is of interest as a possible source of current self-generation (dynamo). It is found to be non-negligible, but small in that it can account for less than 25% of the dynamo driven current.

  9. The fluctuation induced Hall effect

    SciTech Connect

    Shen, W.; Prager, S.C.

    1993-02-01

    The fluctuation induced Hall term, [le][approximately][ovr J] [times] [approximately][ovr B][ge], has been measured in the MST reversed field pinch. The term is of interest as a possible source of current self-generation (dynamo). It is found to be non-negligible, but small in that it can account for less than 25% of the dynamo driven current.

  10. Quasilinear theory of general electromagnetic fluctuations in unmagnetized plasmas

    SciTech Connect

    Schlickeiser, R. E-mail: yoonp@umd.edu; Yoon, P. H. E-mail: yoonp@umd.edu

    2014-09-15

    The general quasilinear Fokker-Planck kinetic equation for the plasma particle distribution functions in unmagnetized plasmas is derived, making no restrictions on the frequency of the electromagnetic fluctuations. The derived kinetic particle equation complements our earlier study of the general fluctuation's kinetic equation. For collective plasma eigenmodes and gyrotropic particle distribution functions, the two coupled kinetic equations describe the self-consistent dynamical evolution of the plasma. The limit of weakly damped collective modes correctly reproduces the well-known textbook kinetic particle equation with longitudinal Langmuir and ion-acoustic fluctuations, demonstrating, in particular, the resonant nature of parallel momentum diffusion of particles. In the limit of aperiodic modes, the Fokker-Planck equation contains the nonresonant diffusion of particles in momentum and the parallel and perpendicular momentum drag coefficients. As an application these drag and diffusion coefficients are calculated for extragalactic cosmic ray particles propagating in the unmagnetized intergalactic medium. Whereas for all cosmic rays, the perpendicular momentum diffusion in intergalactic aperiodic fluctuations is negligibly small; cosmic ray protons with energies below 10{sup 5 }GeV are affected by the plasma drag.

  11. Noise filtering via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Jeong, Taek; Bae, In-Ho; Moon, Han Seb

    2017-01-01

    We report on the intensity-noise reduction of pseudo-thermal light via electromagnetically induced transparency (EIT) in the Λ-type system of the 5S1/2-5P1/2 transition in 87Rb. Noise filtering of the pseudo-thermal probe light was achieved via an EIT filter and measured according to the degree of intensity noise of the pseudo-thermal probe light. Reductions in the intensity and spectral noise of the pseudo-thermal probe light with the EIT filter were observed using the direct intensity fluctuation and heterodyne detection technique, respectively. Comparison of the intensity noise of the pseudo-thermal probe light before and after passing through the EIT filter revealed a significant reduction in the intensity noise.

  12. Features of electromagnetic radiation time-and-frequency fluctuation intensity distributions from human brain structures.

    PubMed

    Kublanov, V S; Gasilov, V L; Kazakov, Y E

    2000-01-01

    Time-and-frequency fluctuation intensity distributions' analysis is made of the electromagnetic radiation obtained from deep human brain structures. The role of monitoring the distribution changes due to various cerebral circulation disorders is explained.

  13. Constraints on Stable Equilibria with Fluctuation-Induced (Casimir) Forces

    SciTech Connect

    Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten

    2010-08-13

    We examine whether fluctuation-induced forces can lead to stable levitation. First, we analyze a collection of classical objects at finite temperature that contain fixed and mobile charges and show that any arrangement in space is unstable to small perturbations in position. This extends Earnshaw's theorem for electrostatics by including thermal fluctuations of internal charges. Quantum fluctuations of the electromagnetic field are responsible for Casimir or van der Waals interactions. Neglecting permeabilities, we find that any equilibrium position of items subject to such forces is also unstable if the permittivities of all objects are higher or lower than that of the enveloping medium, the former being the generic case for ordinary materials in vacuum.

  14. Broadband cavity electromagnetically induced transparency

    SciTech Connect

    Wei Xiaogang; Wang Yanhua; Zhang Jiepeng; Zhu Yifu

    2011-10-15

    Cavity electromagnetically induced transparency (EIT) is created in a three-level atomic system confined in a cavity and coupled to a free-space control laser and is manifested as a narrow transmission peak of a probe laser coupled into the cavity mode and tuned to the two-photon Raman resonance with the control laser. Cavity EIT can be observed with a control laser detuned from the atomic transition frequency in a range limited by the vacuum Rabi splitting of two cavity-atom normal modes. This leads to the broadband cavity EIT obtained in the coupled-cavity-atom system with a free-space, broadband control laser. We report an experimental observation of broadband cavity EIT in cold Rb atoms with a frequency-modulated control laser and discuss its application in multichannel and multifrequency light memory.

  15. MESA: a new configuration for measuring electromagnetic field fluctuations.

    PubMed

    Harte, T M; Black, D L; Hollinshead, M T

    1999-11-01

    This paper describes how the multi-energy sensor array has been refitted to meet the needs of measuring geomagnetic and other types of electromagnetic phenomena in an environment. This portable laptop computer system was designed to measure the interaction of multiple frequencies with the psychological and physiological processes that underlie human exposure to electromagnetic fields across the spectra. New sensors and analytical software have been implemented in the new configuration.

  16. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  17. Electromagnetically induced classical and quantum Lau effect

    NASA Astrophysics Data System (ADS)

    Qiu, Tianhui; Yang, Guojian; Xiong, Jun; Xu, Deqin

    2016-07-01

    We present two schemes of Lau effect for an object, an electromagnetically induced grating generated based on the electromagnetically induced effect. The Lau interference pattern is detected either directly in the way of the traditional Lau effect measurement with a classical thermal light being the imaging light, or indirectly and nonlocally in the way of two-photon coincidence measurement with a pair of entangled photons being the imaging light.

  18. Numerical simulation on level fluctuation in bloom casting mold with electromagnetic stirring

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Ni, H. W.; Li, Y.; Zhao, Z. F.

    2016-03-01

    Based on a 380mm × 280mm bloom caster mold, the level fluctuation of steel-slag interface in the mold was simulated by the VOF model of commercial software Fluent. The effects of current intensity and frequency of EMS (electromagnetic stirring) on the level fluctuation in the mold were studied. The results show that whether or not with EMS, the maximum level fluctuation site of the mold occurs in the vicinity of the submerged entry nozzle. Compared with casting without EMS, molten steel flows horizontally rotatably under the action of the electromagnetic force by electromagnetic stirring, so the impact depth of molten steel decreases, then the level fluctuation slightly reduces, and the maximum level fluctuation value in the wide direction and the narrow direction of the mold, reduce from 4.24mm and 4.14mm to 4.04mm and 3.73mm respectively. With increasing intensity and frequency of current, the mold level fluctuation rises and the distribution uniformity of the level fluctuating amplitude worsens. The maximum level fluctuation enlarges by 0.18mm with raising the current intensity from 450A to 550A, but it enlarges by 0.79mm with 600A current intensity. The maximum level fluctuation enlarges by 0.15mm with raising the current frequency from 1.5Hz to 2.0Hz, but it quickly enlarges by 0.78mm with 2.5Hz current frequency. When the current strength and frequency are not more than 550A and 2.0Hz, level fluctuations are 4.00mm or less, which can meet requirements for controlling the bloom surface quality.

  19. Electromagnetic fluctuations for anisotropic media and the generalized Kirchhoff's law

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Kwok, R.

    1993-01-01

    In this paper the polarimetric emission parameters for anisotropic media are derived using the generalized Kirchhoff's law for media with a uniform temperature and the fluctuation-dissipation theory for media with a temperature profile. Both finite-size objects and half-space media are considered. When the object has a uniform temperature across its body, the Kirchhoff's law, based on the condition of energy conservation in thermal equilibrium is generalized to obtain the emission parameters of an anisotropic medium, which can be interpreted as the absorptivity or the absorption cross section of the complementary object with a permittivity that is the transpose of the original object. When the medium has a nonuniform temperature distribution, the fluctuation-dissipation theory is applied for deriving the covariances between vector components of the thermal currents and, consequently, the covariances of the polarizations of electric fields radiated by the thermal currents. To verify the formulas derived from the fluctuation-dissipation theory, we let the temperature of the object be a constant and show that the results reduce to those obtained from the generalized Kirchhoff's law.

  20. Spontaneous electromagnetic fluctuations in unmagnetized plasmas I: General theory and nonrelativistic limit

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.; Yoon, P. H.

    2012-02-01

    Using the system of the Klimontovich and Maxwell equations, general expressions for the electromagnetic fluctuation spectra (electric and magnetic field, charge and current densities) from uncorrelated plasma particles are derived, which are covariantly correct within the theory of special relativity. The general expressions hold for arbitrary momentum dependences of the plasma particle distribution functions and for collective and non-collective fluctuations. In this first paper of a series, the results are illustrated for the important special case of nonrelativistic isotropic Maxwellian particle distribution functions providing in particular the thermal fluctuations of weakly amplified modes and aperiodic modes.

  1. Statistical fluctuations in chains of chaotic electromagnetic enclosures

    NASA Astrophysics Data System (ADS)

    Gradoni, Gabriele; Antonsen, Thomas; Anlage, Steven; Ott, Edward

    2013-03-01

    Today, the statistical analysis of complex electromagnetic cavities constitutes a very active field of research in applied electromagnetics and statistical physics. The Random Coupling Model (RCM) provides a framework for predicting the statistics of scattering of radiation in complicated enclosures. RCM makes use of results from random matrix theory (RMT) to model the mode spectrum of irregular cavities. Here, we show how to use the RCM to study the scenario of two (or more) three-dimensional cavities interconnected by apertures. We imagine exciting the first cavity of the so formed chain with a small antenna, and receiving a signal in the last cavity with a similar antenna. Recently, we derived the probability distribution of the power flowing through the cavity chain. A closed form solution of the trans-impedance between the two ports is derived, and its statistics discussed. Variations of cavity losses and aperture geometry are discussed within our statistical framework, for which distribution functions are generated by the Monte Carlo method. In the high-loss limit we are able to identify self- and cavity-cavity interaction terms. The extreme case of an irregular aperture connecting to an irregular cavity is also proposed and investigated. Work supported by AFOSR and ONR

  2. Electromagnetically induced absorption via incoherent collisions

    SciTech Connect

    Yang Xihua; Sheng Jiteng; Xiao Min

    2011-10-15

    We conduct theoretical studies on electromagnetically induced absorption via incoherent collisions in an inhomogeneously broadened ladder-type three-level system with the density-matrix approach. The effects of the collision-induced coherence decay rates as well as the probe laser field intensity on the probe field absorption are examined. It is shown that with the increase of the collisional decay rates in a moderate range, a narrow dip due to electromagnetically induced transparency superimposed on the Doppler-broadened absorption background can be turned into a narrow peak under the conditions that the probe field intensity is not very weak as compared to the pump field, which results from the enhancement of constructive interference and suppression of destructive interference between one-photon and multiphoton transition pathways. The physical origin of the collision-assisted electromagnetically induced absorption is analyzed with a power-series solution of the density-matrix equations.

  3. Electromagnetic fluctuations generated in the boundary layer of laboratory-created ionospheric depletions

    SciTech Connect

    Liu, Yu; Lei, Jiuhou; Cao, Jinxiang; Xu, Liang

    2016-01-15

    Ionospheric depletions, produced by release of attachment chemicals into the ionosphere, were widely investigated and taken as a potential technique for the artificial modification of space weather. In this work, we reported the experimental evidence of spontaneously generated electromagnetic fluctuations in the boundary layer of laboratory-created ionospheric depletions. These depletions were produced by releasing attachment chemicals into the ambient plasmas. Electron density gradients and sheared flows arose in the boundary layer between the ambient and the negative ions plasmas. These generated electromagnetic fluctuations with fundamental frequency f{sub 0} = 70 kHz lie in the lower hybrid frequency range, and the mode propagates with angles smaller than 90° (0.3π–0.4π) relative to the magnetic field. Our results revealed that these observed structures were most likely due to electromagnetic components of the electron-ion hybrid instability. This research demonstrates that electromagnetic fluctuations also can be excited during active release experiments, which should be considered as an essential ingredient in the boundary layer processes of ionospheric depletions.

  4. Effect of the electromagnetic environment on current fluctuations in driven tunnel junctions

    NASA Astrophysics Data System (ADS)

    Frey, Moritz; Grabert, Hermann

    2016-07-01

    We examine current fluctuations in tunnel junctions driven by a superposition of a constant and a sinusoidal voltage source. In standard setups, the external voltage is applied to the tunneling element via an impedance providing an electromagnetic environment of the junction. The modes of this environment are excited by the time-dependent voltage and are the source of Johnson-Nyquist noise. We determine the autocorrelation function of the current flowing in the leads of the junction in the weak tunneling limit up to terms of second order in the tunneling Hamiltonian. The driven modes of the electromagnetic environment are treated exactly by means of a unitary transformation introduced recently. Particular emphasis is placed on the spectral function of the current fluctuations. The spectrum is found to comprise three contributions: a term arising from the Johnson-Nyquist noise of the environmental impedance, a part due to the shot noise of the tunneling element, and a third contribution which comes from the cross correlation between fluctuations caused by the electromagnetic environment and fluctuations of the tunneling current. All three parts of the spectral function occur already for devices under dc bias. The spectral function of ac driven tunneling elements can be determined from the result for a dc bias by means of a photoassisted tunneling relation of the Tien-Gordon type. Specific results are given for an Ohmic environment and for a junction driven through a resonator.

  5. Electromagnetic fluctuations in magnetized plasmas. I. The rigorous relativistic kinetic theory

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.; Yoon, P. H.

    2015-07-01

    Using the system of the Klimontovich and Maxwell equations, the general linear fluctuation theory for magnetized plasmas is developed. General expressions for the electromagnetic fluctuation spectra (electric and magnetic fields) from uncorrelated plasma particles in plasmas with a uniform magnetic field are derived, which are covariantly correct within the theory of special relativity. The general fluctuation spectra hold for plasmas of arbitrary composition, arbitrary momentum dependences of the plasma particle distribution functions, and arbitrary orientations of the wave vector with respect to the uniform magnetic field. Moreover, no restrictions on the values of the real and the imaginary parts of the frequency are made. The derived fluctuation spectra apply to both non-collective fluctuations and collective plasma eigenmodes in magnetized plasmas. In the latter case, kinetic equations for the components of fluctuating electric and magnetic fields in magnetized plasmas are derived that include the effect of spontaneous emission and absorption. In the limiting case of an unmagnetized plasmas, the general fluctuation spectra correctly reduce to the unmagnetized fluctuation spectra derived before.

  6. Electromagnetic fluctuations in magnetized plasmas. I. The rigorous relativistic kinetic theory

    SciTech Connect

    Schlickeiser, R. E-mail: yoonp@umd.edu; Yoon, P. H. E-mail: yoonp@umd.edu

    2015-07-15

    Using the system of the Klimontovich and Maxwell equations, the general linear fluctuation theory for magnetized plasmas is developed. General expressions for the electromagnetic fluctuation spectra (electric and magnetic fields) from uncorrelated plasma particles in plasmas with a uniform magnetic field are derived, which are covariantly correct within the theory of special relativity. The general fluctuation spectra hold for plasmas of arbitrary composition, arbitrary momentum dependences of the plasma particle distribution functions, and arbitrary orientations of the wave vector with respect to the uniform magnetic field. Moreover, no restrictions on the values of the real and the imaginary parts of the frequency are made. The derived fluctuation spectra apply to both non-collective fluctuations and collective plasma eigenmodes in magnetized plasmas. In the latter case, kinetic equations for the components of fluctuating electric and magnetic fields in magnetized plasmas are derived that include the effect of spontaneous emission and absorption. In the limiting case of an unmagnetized plasmas, the general fluctuation spectra correctly reduce to the unmagnetized fluctuation spectra derived before.

  7. Control of the intensity fluctuations of random electromagnetic beams on propagation in weak atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Korotkova, O.

    2006-02-01

    The intensity fluctuations of random electromagnetic beams propagating in the atmosphere are studied. For such beams it is shown that when the atmospheric fluctuations are weak then the scintillation index (the normalized variance of intensity fluctuations) of the beam at any distance from the source depends not only on the state of coherence but also on the degree of polarization of the beam in the source plane. In particular, we found that for initially unpolarized beams the scintillation index generally takes on smaller values than that for completely polarized beams. The presented analysis might be useful in the applications (e.g. communications, laser radars) where atmospheric effects can be mitigated by adjusting the coherence properties and the polarization properties of the source.

  8. Research Studies on Electromagnetically Induced Transparency

    DTIC Science & Technology

    2010-01-20

    ns and linewidths smaller than the natural linewidth of target atoms . We have demonstrated the use of telecommunication light modulators to modulate...induced transparency, photon interactions with atoms , nonclassical states of the electromagnetic field, including entangled photon states, quantum...either the amplitude or phase of the anti-stokes photon. The technique therefore provides the technology for studying the response of atoms to shaped

  9. Electromagnetically induced transparency and quantum heat engines

    NASA Astrophysics Data System (ADS)

    Harris, S. E.

    2016-11-01

    We describe how electromagnetically induced transparency may be used to construct a nontraditional near-ideal quantum heat engine as constrained by the second law. The engine is pumped by a thermal reservoir that may be either hotter or colder than that of an exhaust reservoir, and also by a monochromatic laser. As output, it produces a bright narrow emission at line center of an otherwise absorbing transition.

  10. Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field

    SciTech Connect

    Liu, Xiaobao; Tian, Zehua; Wang, Jieci; Jing, Jiliang

    2016-03-15

    In the framework of open quantum systems, we study the dynamics of a static polarizable two-level atom interacting with a bath of fluctuating vacuum electromagnetic field and explore under which conditions the coherence of the open quantum system is unaffected by the environment. For both a single-qubit and two-qubit systems, we find that the quantum coherence cannot be protected from noise when the atom interacts with a non-boundary electromagnetic field. However, with the presence of a boundary, the dynamical conditions for the insusceptible of quantum coherence are fulfilled only when the atom is close to the boundary and is transversely polarizable. Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction. -- Highlights: •We study the dynamics of a two-level atom interacting with a bath of fluctuating vacuum electromagnetic field. •For both a single and two-qubit systems, the quantum coherence cannot be protected from noise without a boundary. •The insusceptible of the quantum coherence can be fulfilled only when the atom is close to the boundary and is transversely polarizable. •Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction.

  11. Correlation between intensity fluctuations of electromagnetic waves scattered from a spatially quasi-homogeneous, anisotropic medium.

    PubMed

    Li, Jia; Chen, Feinan; Chang, Liping

    2016-10-17

    Within the validity of the first-order Born approximation, expressions are derived for the correlation between intensity fluctuations (CIF) of an electromagnetic plane wave scattered from a spatially quasi-homogeneous (QH), anisotropic medium. Upon establishing the correlation matrix of the scattering potential of the medium, we show that the CIF is the summation of Fourier transforms of the strengths and normalized correlation coefficients (NCCs) of the scattering potential matrix. Numerical results reveal that the CIF is susceptible to the effective width and correlation length of the medium, and degree of polarization of the incident electromagnetic wave. Our study not only extends the current knowledge of the CIF of a scattered field but also provides an important reference to the study of high-order intensity correlations of light scattered from a spatially anisotropic medium.

  12. Conservative fluctuational-electromagnetic interaction of a conducting nanoparticle with a smooth surface of condensed medium

    NASA Astrophysics Data System (ADS)

    Dedkov, G. V.; Kyasov, A. A.

    2007-05-01

    General expressions for a conservative force of the fluctuational-electromagnetic interaction between a neutral spherical conducting nanoparticle and a smooth surface of condensed medium are obtained for the first time with allowance for both electric and magnetic components. The results of calculations performed for a copper particle interacting with a copper surface show that the contribution of the magnetic components is predominating for all distances from the surface exceeding the particle radius R. The contribution due to the near-surface modes, which is proportional to the temperature and inversely proportional to the cube of the distance, is predominating at distances above ˜10 R.

  13. Enhancement of residual stress by electromagnetic fluctuations: A quasi-linear study

    NASA Astrophysics Data System (ADS)

    Kaang, Helen H.; Jhang, Hogun; Singh, R.; Kim, Juhyung; Kim, S. S.

    2016-05-01

    A study is conducted on the impact of electromagnetic (EM) fluctuations on residual Reynolds stress in the context of the quasi-linear theory. We employ a fluid formulation describing EM ion temperature gradient turbulence. Analyses show that finite plasma β (=plasma thermal energy/magnetic energy) significantly increases the residual stress, potentially leading to the strong enhancement of flow generation in high β plasmas. We identify that this strong increase of residual stress originates from the reinforcement of radial ⟨ k ∥ ⟩ (=spectrally averaged parallel wavenumber) asymmetry due to the deformation of eigenfunctions near a rational surface.

  14. Weak localization—an experimental tool to investigate electromagnetic vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Mareš, J. J.; Krištofik, J.; Hubík, P.; Špička, V.

    2005-10-01

    In the present paper we demonstrate that some important experimentally observed features of so-called weak localization, a quantum-mechanical effect par excellence which is rather difficult to treat directly by application of formalism of quantum electrodynamics, may be alternatively on a quite elementary level treated quasi-classically using the concept of zero-point electromagnetic fluctuations as introduced in stochastic electrodynamics. Such an approach was applied to an analysis of original experimental data obtained on InP-based semiconductor structures with δ-layers, i.e. self-consistent two-dimensional system which is known to enable investigation of the WL effect at appreciably high temperatures.

  15. On the Transport and Radiative Properties of Plasmas with Small-Scale Electromagnetic Fluctuations

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.

    Plasmas with sub-Larmor-scale ("small-scale") electromagnetic fluctuations are a feature of a wide variety of high-energy-density environments, and are essential to the description of many astrophysical/laboratory plasma phenomena. Radiation from particles, whether they be relativistic or non-relativistic, moving through small-scale electromagnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The radiation, carrying information on the statistical properties of the turbulence, is also intimately related to the particle diffusive transport. We investigate, both theoretically and numerically, the transport of non-relativistic and transrelativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic turbulence---both with and without a mean field component---and its relation to the spectra of radiation simultaneously produced by these particles. Furthermore, the transport of particles through small-scale electromagnetic turbulence---under certain conditions---resembles the random transport of particles---via Coulomb collisions---in collisional plasmas. The pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasi-collisionality", may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, novel, diagnostic tool for the exploration and characterization of small-scale electromagnetic turbulence. Lastly, we speculate upon the manner in which quasi-collisions may affect inertial confinement fusion (ICF), and other laser-plasma experiments. Finally, we show that mildly relativistic jitter radiation, from laser-produced plasmas, may offer insight into the underlying electromagnetic turbulence. Here we investigate the

  16. Solar wind thermally induced magnetic fluctuations.

    PubMed

    Navarro, R E; Moya, P S; Muñoz, V; Araneda, J A; F-Viñas, A; Valdivia, J A

    2014-06-20

    A kinetic description of Alfvén-cyclotron magnetic fluctuations for anisotropic electron-proton quasistable plasmas is studied. An analytical treatment, based on the fluctuation-dissipation theorem, consistently shows that spontaneous fluctuations in plasmas with stable distributions significantly contribute to the observed magnetic fluctuations in the solar wind, as seen, for example, in [S. D. Bale et al., Phys. Rev. Lett. 103, 211101 (2009)], even far below from the instability thresholds. Furthermore, these results, which do not require any adjustable parameters or wave excitations, are consistent with the results provided by hybrid simulations. It is expected that this analysis contributes to our understanding of the nature of magnetic fluctuations in the solar wind.

  17. Electromagnetically induced grating with maximal atomic coherence

    SciTech Connect

    Carvalho, Silvania A.; Araujo, Luis E. E. de

    2011-10-15

    We describe theoretically an atomic diffraction grating that combines an electromagnetically induced grating with a coherence grating in a double-{Lambda} atomic system. With the atom in a condition of maximal coherence between its lower levels, the combined gratings simultaneously diffract both the incident probe beam as well as the signal beam generated through four-wave mixing. A special feature of the atomic grating is that it will diffract any beam resonantly tuned to any excited state of the atom accessible by a dipole transition from its ground state.

  18. Electromagnetically induced transparency with noisy lasers

    SciTech Connect

    Xiao Yanhong; Wang Tun; Baryakhtar, Maria; Jiang Liang; Lukin, Mikhail D.; Van Camp, Mackenzie; Crescimanno, Michael; Hohensee, Michael; Walsworth, Ronald L.; Phillips, David F.; Yelin, Susanne F.

    2009-10-15

    We demonstrate and characterize two coherent phenomena that can mitigate the effects of laser phase noise for electromagnetically induced transparency (EIT): a laser-power-broadening-resistant resonance in the transmitted intensity cross correlation between EIT optical fields, and a resonant suppression of the conversion of laser phase noise to intensity noise when one-photon noise dominates over two-photon-detuning noise. Our experimental observations are in good agreement with both an intuitive physical picture and numerical calculations. The results have wide-ranging applications to spectroscopy, atomic clocks, and magnetometers.

  19. Spontaneous electromagnetic fluctuations in unmagnetized plasmas. IV. Relativistic form factors of aperiodic Lorentzian modes

    SciTech Connect

    Felten, T.; Schlickeiser, R.

    2013-08-15

    Closed analytical expressions for the electromagnetic fluctuation spectra in unmagnetized plasmas are derived using fully relativistic dispersion functions and form factors for the important class of isotropic form-invariant Lorentzian plasma particle distribution functions. Such distribution functions occur frequently in cosmic plasmas due to the presence of suprathermal charged particles and energetic cosmic ray particles. The results are illustrated for the important special case of aperiodic fluctuations. The collective, transverse, damped aperiodic mode, discovered before in nonrelativistic Maxwellian particle distributions, also exists in Lorentzian electron-proton particle distributions, now with the damping rate γ∝−k{sup 3} for all wavenumber values, resulting from the presence of relativistic particles in the tail of the Lorentzian distribution. For longitudinal electric field, fluctuations no damped or growing aperiodic collective mode exists in Lorentzian plasmas. The existence of a damped, collective, transverse, aperiodic mode is not in conflict with earlier general instability studies excluding the existence of growing aperiodic collective modes in isotropic plasmas.

  20. Structural fluctuation of proteins induced by thermodynamic perturbation

    SciTech Connect

    Hirata, Fumio; Akasaka, Kazuyuki

    2015-01-28

    A theory to describe structural fluctuations of protein induced by thermodynamic perturbations, pressure, temperature, and denaturant, is proposed. The theory is formulated based on the three methods in the statistical mechanics: the generalized Langevin theory, the linear response theory, and the three dimensional interaction site model (3D-RISM) theory. The theory clarifies how the change in thermodynamic conditions, or a macroscopic perturbation, induces the conformational fluctuation, which is a microscopic property. The theoretical results are applied, on the conceptual basis, to explain the experimental finding by Akasaka et al., concerning the NMR experiment which states that the conformational change induced by pressure corresponds to structural fluctuations occurring in the ambient condition. A method to evaluate the structural fluctuation induced by pressure is also suggested by means of the 3D-RISM and the site-site Kirkwood-Buff theories.

  1. QED vacuum fluctuations and induced electric dipole moment of the neutron

    SciTech Connect

    Dominguez, C. A.; Falomir, H.; Ipinza, M.; Loewe, M.; Kohler, S.; Rojas, J. C.

    2009-08-01

    Quantum fluctuations in the QED vacuum generate nonlinear effects, such as peculiar induced electromagnetic fields. In particular, we show here that an electrically neutral particle, possessing a magnetic dipole moment, develops an induced electric dipole-type moment with unusual angular dependence, when immersed in a quasistatic, constant external electric field. The calculation of this effect is done in the framework of the Euler-Heisenberg effective QED Lagrangian, corresponding to the weak field asymptotic expansion of the effective action to one-loop order. It is argued that the neutron might be a good candidate to probe this signal of nonlinearity in QED.

  2. Laser-Based Faraday-Effect Measurement of Magnetic Fluctuations and Fluctuation-Induced Transport

    NASA Astrophysics Data System (ADS)

    Lin, L.; Brower, D. L.; Ding, W. X.; Sarff, J. S.

    2013-10-01

    A multichord far-infrared laser-based Faraday-effect polarimetry diagnostic has been well developed on MST. Combined polarimetry-interferometry capability permits simultaneous measurement of internal structure of density and magnetic field with fast time response (~ 4 μs) and low phase noise (< 0 .01°) . With this diagnostic, the impact on toroidal current profile from a tangentially injected neutral beam is directly measured, allowing evaluation of non-inductive current drive. In addition, 0 .05° Faraday-effect fluctuations associated with global tearing modes are resolved with an uncertainty below 0 .01° . For physics investigations, these Faraday-effect fluctuations are complicated by contributions from both density and magnetic fluctuations. In our analysis, the local density fluctuations are obtained by inverting the line-integrated interferometry data after resolving the mode helicity through correlation techniques. The local magnetic fluctuations are then reconstructed using a parameterized fit of the polarimetry data, accounting for both the density and magnetic contributions. For the same mode, density and radial magnetic fluctuations exhibit very different spatial structure. In this process, their relative phase is also determined, thereby allowing the determination of magnetic-fluctuation-induced transport. Work supported by US DoE.

  3. Electromagnetic pulse-induced current measurement device

    NASA Astrophysics Data System (ADS)

    Gandhi, Om P.; Chen, Jin Y.

    1991-08-01

    To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.

  4. Transient birefringence effects in electromagnetically induced transparency

    SciTech Connect

    Parshkov, O M

    2015-11-30

    We report the results of numerical modelling of transient birefringence that arises as a result of electromagnetically induced transparency on degenerate quantum transitions between the states with J = 0, 1 and 2 in the presence of the Doppler broadening of spectral lines. It is shown that in the case of a linearly polarised control field, the effect of transient birefringence leads to a decay of the input circularly polarised probe pulse into separate linearly polarised pulses inside a medium. In the case of a circularly polarised control field, the effect of transient birefringence manifests itself in a decay of the input linearly polarised probe pulse into separate circularly polarised pulses. It is shown that the distance that a probe pulse has to pass in a medium before decaying into subpulses is considerably greater in the first case than in the second. The influence of the input probe pulse power and duration on the process of spatial separation into individual pulses inside a medium is studied. A qualitative analysis of the obtained results is presented. (nonlinear optical phenomena)

  5. Robustness of networks against fluctuation-induced cascading failures.

    PubMed

    Heide, Dominik; Schäfer, Mirko; Greiner, Martin

    2008-05-01

    Fluctuating fluxes on a complex network lead to load fluctuations at the vertices, which may cause them to become overloaded and to induce a cascading failure. A characterization of the one-point load fluctuations is presented, revealing their dependence on the nature of the flux fluctuations and on the underlying network structure. Based on these findings, an alternate robustness layout of the network is proposed. Taking load correlations between the vertices into account, an analytical prediction of the probability for the network to remain fully efficient is confirmed by simulations. Compared to previously proposed mean-flux layouts, the alternate layout comes with significantly less investment costs in the high-confidence limit.

  6. Quasicollisional magneto-optic effects in collisionless plasmas with sub-Larmor-scale electromagnetic fluctuations

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.; Ford, Alexander L.; Medvedev, Mikhail V.

    2015-11-01

    High-amplitude, chaotic or turbulent electromagnetic fluctuations are ubiquitous in high-energy-density laboratory and astrophysical plasmas, where they can be excited by various kinetic-streaming and/or anisotropy-driven instabilities, such as the Weibel instability. These fields typically exist on "sub-Larmor scales"—scales smaller than the electron Larmor radius. Electrons moving through such magnetic fields undergo small-angle stochastic deflections of their pitch angles, thus establishing diffusive transport on long time scales. We show that this behavior, under certain conditions, is equivalent to Coulomb collisions in collisional plasmas. The magnetic pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasicollisionality," may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, radiative diagnostic tool for the exploration and characterization of small-scale magnetic turbulence, as well as affect inertial confinement fusion and other laser-plasma experiments.

  7. Electromagnetically induced transparency with amplification in superconducting circuits.

    PubMed

    Joo, Jaewoo; Bourassa, Jérôme; Blais, Alexandre; Sanders, Barry C

    2010-08-13

    We show that controlling relative phases of electromagnetic fields driving an atom with a Δ-configuration energy-level structure enables optical susceptibility to be engineered in novel ways. In particular, relative-phase control can yield electromagnetically induced transparency but with the benefit that the transparency window is sandwiched between an absorption and an amplification band rather than between two absorption bands in typical electromagnetically induced transparency. We show that this new phenomenon is achievable for a microwave field interacting with a fluxonium superconducting circuit.

  8. Laser frequency locking based on Rydberg electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Yuechun, Jiao; Jingkui, Li; Limei, Wang; Hao, Zhang; Linjie, Zhang; Jianming, Zhao; Suotang, Jia

    2016-05-01

    We present a laser frequency locking to Rydberg transition with electromagnetically induced transparency (EIT) spectra in a room-temperature cesium vapor cell. Cesium levels 6S1/2, 6P3/2, and the nD5/2 state, compose a cascade three-level system, where a coupling laser drives Rydberg transition, and probe laser detects the EIT signal. The error signal, obtained by demodulating the EIT signal, is used to lock the coupling laser frequency to Rydberg transition. The laser frequency fluctuation, ˜0.7 MHz, is obtained after locking on, with the minimum Allan variance to be 8.9 × 10-11. This kind of locking method can be used to stabilize the laser frequency to the excited transition. Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grants Nos. 11274209, 61475090, 61378039, and 61378013), and the Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2014-009).

  9. Electromagnetically induced transparency in modulated laser fields

    NASA Astrophysics Data System (ADS)

    Jiao, Yuechun; Yang, Zhiwei; Zhang, Hao; Zhang, Linjie; Raithel, Georg; Zhao, Jianming; Jia, Suotang

    2017-02-01

    We study electromagnetically induced transparency (EIT) in a room-temperature cesium vapor cell using wavelength-modulated probe laser light. In the utilized cascade level scheme, the probe laser drives the lower transition 6S {}1/2(F = 4) → 6P {}3/2 (F’ = 5), while the coupling laser drives the Rydberg transition 6P {}3/2 → 57S {}1/2. The probe laser has a fixed average frequency and is modulated at a frequency of a few kHz, with a variable modulation amplitude in the range of tens of MHz. The probe transmission is measured as a function of the detuning of the coupling laser from the Rydberg resonance. The first-harmonic demodulated EIT signal has two peaks that are, in the case of large modulation amplitude, separated by the peak-to-peak modulation amplitude of the probe laser times a scaling factor {λ }{{p}}/{λ }{{c}}, where {λ }{{p}} and {λ }{{c}} are the probe- and coupling-laser wavelengths. The scaling factor is due to Doppler shifts in the EIT geometry. Second-harmonic demodulated EIT signals, obtained with small modulation amplitudes, yield spectral lines that are much narrower than corresponding lines in the modulation-free EIT spectra. The resultant spectroscopic resolution enhancement is conducive to improved measurements of radio-frequency (RF) fields based on Rydberg-atom EIT, an approach in which the response of Rydberg atoms to RF fields is exploited to characterize RF fields. Here, we employ wavelength modulation spectroscopy to reduce the uncertainty of atom-based frequency and field measurement of an RF field in the VHF radio band.

  10. Electromagnetic field induced biological effects in humans.

    PubMed

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  11. Fluctuation-Induced Particle Transport and Density Relaxation in a Stochastic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Brower, David L.

    2009-11-01

    Particle transport and density relaxation associated with electromagnetic fluctuations is an unresolved problem of long standing in plasma physics and magnetic fusion research. In toroidal fusion plasmas, magnetic field fluctuations can arise spontaneously from global MHD instabilities, e.g., tearing fluctuations associated with sawtooth oscillations. Resonant magnetic perturbations (RMP) have also been externally imposed to mitigate the effect of edge localized modes (ELMs) by locally enhancing edge transport in Tokamaks. Understanding stochastic-field-driven transport processes is thus not only of basic science interest but possibly critical to ELM control in ITER. We report on the first direct measurement of magnetic fluctuation-induced particle transport in the core of a high-temperature plasma, the MST reversed field pinch. Measurements focus on the sawtooth crash, when the stochastic field resulting from tearing reconnection is strongest, and are accomplished using newly developed, laser-based, differential interferometry and Faraday rotation techniques. The measured electron particle flux, resulting from the correlated product of electron density (δn) and radial magnetic fluctuations (δbr), accounts for density profile relaxation during these magnetic reconnection events. Surprisingly, the electron diffusion is 30 times larger than estimates of ambipolarity-constrained transport in a stochastic magnetic field. A significant ion flux associated with parallel ion flow velocity fluctuations (δvi,//) correlated with δbr appears responsible for transport larger than predictions from the quasi-linear test particle model. These results indicate the need for improved understanding of particle transport in a stochastic magnetic field. Work performed in collaboration with W.X. Ding, W.F. Bergerson, T.F. Yates, UCLA; D.J. Den Hartog, G. Fiksel, S.C. Prager, J.S. Sarff and the MST Group, University of Wisconsin-Madison.

  12. Giant Amplification of Noise in Fluctuation-Induced Pattern Formation

    NASA Astrophysics Data System (ADS)

    Biancalani, Tommaso; Jafarpour, Farshid; Goldenfeld, Nigel

    2017-01-01

    The amplitude of fluctuation-induced patterns might be expected to be proportional to the strength of the driving noise, suggesting that such patterns would be difficult to observe in nature. Here, we show that a large class of spatially extended dynamical systems driven by intrinsic noise can exhibit giant amplification, yielding patterns whose amplitude is comparable to that of deterministic Turing instabilities. The giant amplification results from the interplay between noise and nonorthogonal eigenvectors of the linear stability matrix, yielding transients that grow with time, and which, when driven by the ever-present intrinsic noise, lead to persistent large amplitude patterns. This mechanism shows that fluctuation-induced Turing patterns are observable, and are not strongly limited by the amplitude of demographic stochasticity nor by the value of the diffusion coefficients.

  13. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  14. Structure Formation in the Universe from Texture Induced Fluctuations

    NASA Astrophysics Data System (ADS)

    Durrer, Ruth; Zhou, Zhi-Hong

    1995-03-01

    We discuss structure formation with topological defects. First we present a partially new, local, and gauge invariant system of perturbation equations to treat microwave background and dark matter fluctuations induced by topological defects or any other type of seeds. We show that this system is well suited for numerical analysis of structure formation by applying it to the texture scenario. Our numerical results cover a larger dynamical range than previous investigations and are complementary to them since we use substantially different methods.

  15. OH* imager response to turbulence-induced temperature fluctuations

    NASA Astrophysics Data System (ADS)

    Gardner, Chester S.; Vargas, Fabio A.

    2016-12-01

    The layer of the excited state hydroxyl radical (OH*) is formed in the mesopause region by the reaction of ozone (O3) and atomic hydrogen (H). We derive the theoretical expressions for the OH* brightness and rotational temperature (T*) responses to high-frequency atmospheric temperature perturbations. The theory is used to calculate the 1-D and 2-D horizontal wave number spectra of the OH* and T* image fluctuations induced by atmospheric turbulence. By applying the theory to images of a breaking gravity wave packet, acquired by the Utah State University Advanced Mesospheric Temperature Mapper, we show that existing infrared OH* imager technology can observe the evolution of gravity wave breakdown and characterize the resulting turbulent eddies in the source region and in the inertial subrange of the turbulence spectrum. For the example presented here, the RMS OH* brightness fluctuations induced by the gravity wave packet was 2.90% and by the associated turbulence was 1.07%. Unfortunately, the T* fluctuations induced by turbulence are usually too small to be observed in the OH* rotational temperature maps.

  16. Dust Induced Electro-Magnetic Noise (DIEMN).

    DTIC Science & Technology

    1984-11-05

    NAME 01 ;-NDNG SPONSORNG 8b OFFICF SYMBOL 9 PROC-REMENV NSTRUMEN" DEN F’CA- O* NL\\’ BEP DRGAN’ZA’ION (If appicable) DNA 001-83-C-0117 Bc ADDPESS(C,ty...electrostatic measurements were made by two groups (Naval Research Laboratory and New Mexico Institute of Mining and Technology) and electromagnetic...electrostatic field measurements taken at DIRECT COURSE by both the Naval Research Laboratory 4 and the New Mexico Institute of Mining and Technology

  17. Decoherence induced by a fluctuating Aharonov-Casher phase

    SciTech Connect

    Lombardo, Fernando C.; Mazzitelli, Francisco D.; Villar, Paula I.

    2005-10-15

    Dipole interference is studied when atomic systems are coupled to classical electromagnetic fields. The interaction between the dipoles and the classical fields induces a time-varying Aharonov-Casher phase. Averaging over the phase generates a suppression of fringe visibility in the interference pattern. We show that, for suitable experimental conditions, the loss of contrast for dipoles can be observable and almost as large as the corresponding one for coherent electrons. We analyze different trajectories in order to show the dependence of the decoherence factor with the velocity of the particles.

  18. Thermoelectricity in polymer composites due to fluctuation-induced tunneling.

    PubMed

    Stedman, T; Wei, K; Nolas, G S; Woods, L M

    2015-11-07

    Transport in heavily-doped polymer composites, characterized by localized charge regions, is examined in light of the recent interest in polymers for thermoelectric applications. The developed fundamental transport theory describes carrier tunneling between charged localizations by taking into account thermally induced fluctuations of the applied potential. A range of characteristic behaviors corresponding to experimental data are described. Deviations from the Wiedemann-Franz law are also identified. This novel theory enables the determination of factors dominating the transport in polymers and a comparison to tunneling without thermal fluctuations is also provided. The obtained asymptotic expressions for the conductivity, Seebeck coefficient, and carrier thermal conductivity are particularly useful for elucidating possible routes for thermoelectric transport control and optimization.

  19. Geometry-induced fluctuations of olfactory searches in bounded domains

    NASA Astrophysics Data System (ADS)

    Rodríguez, Juan Duque; Gómez-Ullate, David; Mejía-Monasterio, Carlos

    2014-04-01

    In olfactory search an immobile target emits chemical molecules at constant rate. The molecules are transported by the medium, which is assumed to be turbulent. Considering a searcher able to detect such chemical signals and whose motion follows the infotaxis strategy, we study the statistics of the first-passage time to the target when the searcher moves on a finite two-dimensional lattice of different geometries. Far from the target, where the concentration of chemicals is low, the direction of the searcher's first movement is determined by the geometry of the domain and the topology of the lattice, inducing strong fluctuations on the average search time with respect to the initial position of the searcher. The domain is partitioned in well-defined regions characterized by the direction of the first movement. If the search starts over the interface between two different regions, large fluctuations in the search time are observed.

  20. Eustatic sea level fluctuations induced by polar wander

    NASA Technical Reports Server (NTRS)

    Sabadini, Roberto; Doglioni, Carlo; Yuen, David A.

    1990-01-01

    It is shown here that polar wander of a viscoelastic, stratified earth can induce global sea level fluctuations comparable to the short-term component in eustatic sea-level curves. The sign of these fluctuations, which are very sensitive to the rheological stratification, depends on the geographical location of the observation point; rises and falls in sea level can thus be coeval in different parts of the world. This finding is a distinct contrast to the main assumption underlying the reconstruction of eustatic curves, namely that global sea-level events produce the same depositional sequence everywhere. It is proposed that polar wander should be added to the list of geophysical mechanisms that can control the third-order cycles in sea level.

  1. Geometry-induced fluctuations of olfactory searches in bounded domains.

    PubMed

    Rodríguez, Juan Duque; Gómez-Ullate, David; Mejía-Monasterio, Carlos

    2014-04-01

    In olfactory search an immobile target emits chemical molecules at constant rate. The molecules are transported by the medium, which is assumed to be turbulent. Considering a searcher able to detect such chemical signals and whose motion follows the infotaxis strategy, we study the statistics of the first-passage time to the target when the searcher moves on a finite two-dimensional lattice of different geometries. Far from the target, where the concentration of chemicals is low, the direction of the searcher's first movement is determined by the geometry of the domain and the topology of the lattice, inducing strong fluctuations on the average search time with respect to the initial position of the searcher. The domain is partitioned in well-defined regions characterized by the direction of the first movement. If the search starts over the interface between two different regions, large fluctuations in the search time are observed.

  2. Explosive spread F caused by lightning-induced electromagnetic effects

    NASA Technical Reports Server (NTRS)

    Liao, C. P.; Freidberg, J. P.; Lee, M. C.

    1989-01-01

    Lightning-produced electromagnetic effects may produce significant modifications in the ionospheric plasmas. An outstanding phenomenon investigated in this paper is the so-called explosive spread F, whose close link with lightning has been identified (Woodman and Kudeki, 1984). Parametric instability excited by the lightning-induced whistler waves is proposed as a potential source mechanism causing the explosive spread F.

  3. Controllable motion of optical vortex arrays using electromagnetically induced transparency.

    PubMed

    Shwa, David; Shtranvasser, Evgeny; Shalibo, Yoni; Katz, Nadav

    2012-10-22

    We demonstrate control of the collective motion of an optical vortex array using an electromagnetically induced transparency media. Scanning the frequency detuning between the pump and probe fields changes the susceptibility of the media, producing a unique effective diffraction of the vortex array for each detuning. We measure several experimental configurations and compare them to numerical simulations.

  4. The role of higher-order modes on the electromagnetic whistler-cyclotron wave fluctuations of thermal and non-thermal plasmas

    SciTech Connect

    Viñas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jaime A.

    2014-01-15

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the β{sub e} increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron–proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  5. The Role of Higher-Order Modes on the Electromagnetic Whistler-Cyclotron Wave Fluctuations of Thermal and Non-Thermal Plasmas

    NASA Technical Reports Server (NTRS)

    Vinas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jamie A.

    2014-01-01

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the beta(sub e) increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron-proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  6. Materials for damping the PTC-induced thermal fluctuations of the cold-head

    NASA Astrophysics Data System (ADS)

    Catarino, I.; Martins, D.; Sudiwala, R.

    2015-12-01

    The cold head on mechanical Pulse Tube Cryocoolers (PTCs) is subject to substantially less mechanical vibration and electromagnetic interference compared to that typically found in Gifford MacMahon coolers. However, thermal fluctuations at the PTC frequency are still present at the cold-head, typically at a level of 200 mK peak-to-peak at 1.4 Hz for a Cryomech Model PT405 cooler running at 4 K. It is highly desirable to damp out these fluctuations if PTCs are to be used successfully for running systems sensitive to such thermal fluctuations, for example, bolometeric detectors. We report here the characterization over the temperature range 2.5 K to 6 K of two materials, GOS (Gd2O2S) and GAP (GdAlO3), for use as low-pass thermal filters. These materials have antiferromagnetic transitions at around 4 K giving rise to an enhanced heat capacity and have a high thermal conductance. These are two highly desirable properties for thermal dampers in this application. Those materials were fired as ceramic discs to be tested as thermal dumpers. Thermal filter assemblies with discs of diameter 75 mm and thickness 2.5 mm and 1.6 mm (GOS and GAP, respectively) mounted in a PTC show thermal attenuation levels of x0.12 (GOS) and x0.11 (GAP) at 0.01Hz with a clean-side temperature of 4 K; the PTC induced fluctuations at 1.48 Hz are damped completely to within the noise limits (0.2 mK) of the thermometers. Experimentally determined thermal conductance and heat capacity data are reported. For this system, with a PTC cold-head (dirty-side) temperature of 3.3 K, a clean-side power dissipation of up to 30 mW is realized before its temperature rises above 4.2 K.

  7. Cosmological implications of modified gravity induced by quantum metric fluctuations

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Harko, Tiberiu; Liang, Shi-Dong

    2016-08-01

    We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a non-minimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For each considered model we obtain the gravitational field equations, and the generalized Friedmann equations for the case of a flat homogeneous and isotropic geometry. In some of these models the divergence of the matter energy-momentum tensor is non-zero, indicating a process of matter creation, which corresponds to an irreversible energy flow from the gravitational field to the matter fluid, and which is direct consequence of the non-minimal curvature-matter coupling. The cosmological evolution equations of these modified gravity models induced by the quantum fluctuations of the metric are investigated in detail by using both analytical and numerical methods, and it is shown that a large variety of cosmological models can be constructed, which, depending on the numerical values of the model parameters, can exhibit both accelerating and decelerating behaviors.

  8. An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Fan, Yuancheng; Qiao, Tong; Zhang, Fuli; Fu, Quanhong; Dong, Jiajia; Kong, Botao; Li, Hongqiang

    2017-01-01

    Electromagnetically induced transparency (EIT) is a promising technology for the enhancement of light-matter interactions, and recent demonstrations of the EIT analogue realized in artificial micro-structured medium have remarkably reduced the extreme requirement for experimental observation of EIT spectrum. In this paper, we propose to electrically control the EIT-like spectrum in a metamaterial as an electromagnetic modulator. A diode acting as a tunable resistor is loaded in the gap of paired wires to inductively tune the magnetic resonance, which induces remarkable modulation on the EIT-like spectrum through the metamaterial sample. The experimental measurements confirmed that the prediction of electromagnetic modulation in three narrow bands on the EIT-like spectrum, and a modulation contrast of up to 31 dB was achieved on the transmission through the metamaterial. Our results may facilitate the study on active/dynamical technology in translational metamaterials, which connect extraordinary manipulations on the flow of light in metamaterials, e.g., the exotic EIT, and practical applications in industry.

  9. An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency

    PubMed Central

    Fan, Yuancheng; Qiao, Tong; Zhang, Fuli; Fu, Quanhong; Dong, Jiajia; Kong, Botao; Li, Hongqiang

    2017-01-01

    Electromagnetically induced transparency (EIT) is a promising technology for the enhancement of light-matter interactions, and recent demonstrations of the EIT analogue realized in artificial micro-structured medium have remarkably reduced the extreme requirement for experimental observation of EIT spectrum. In this paper, we propose to electrically control the EIT-like spectrum in a metamaterial as an electromagnetic modulator. A diode acting as a tunable resistor is loaded in the gap of paired wires to inductively tune the magnetic resonance, which induces remarkable modulation on the EIT-like spectrum through the metamaterial sample. The experimental measurements confirmed that the prediction of electromagnetic modulation in three narrow bands on the EIT-like spectrum, and a modulation contrast of up to 31 dB was achieved on the transmission through the metamaterial. Our results may facilitate the study on active/dynamical technology in translational metamaterials, which connect extraordinary manipulations on the flow of light in metamaterials, e.g., the exotic EIT, and practical applications in industry. PMID:28091539

  10. An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency.

    PubMed

    Fan, Yuancheng; Qiao, Tong; Zhang, Fuli; Fu, Quanhong; Dong, Jiajia; Kong, Botao; Li, Hongqiang

    2017-01-16

    Electromagnetically induced transparency (EIT) is a promising technology for the enhancement of light-matter interactions, and recent demonstrations of the EIT analogue realized in artificial micro-structured medium have remarkably reduced the extreme requirement for experimental observation of EIT spectrum. In this paper, we propose to electrically control the EIT-like spectrum in a metamaterial as an electromagnetic modulator. A diode acting as a tunable resistor is loaded in the gap of paired wires to inductively tune the magnetic resonance, which induces remarkable modulation on the EIT-like spectrum through the metamaterial sample. The experimental measurements confirmed that the prediction of electromagnetic modulation in three narrow bands on the EIT-like spectrum, and a modulation contrast of up to 31 dB was achieved on the transmission through the metamaterial. Our results may facilitate the study on active/dynamical technology in translational metamaterials, which connect extraordinary manipulations on the flow of light in metamaterials, e.g., the exotic EIT, and practical applications in industry.

  11. Electrostatic and electromagnetic fluctuations detected inside magnetic flux ropes during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Wang, Rongsheng; Lu, Quanming; Nakamura, Rumi; Huang, Can; Li, Xing; Wu, Mingyu; Du, Aimin; Gao, Xinliang; Wang, Shui

    2016-10-01

    A series of magnetic flux ropes embedded in the ion diffusion region of a magnetotail magnetic reconnection event were investigated in this paper. Waves near the lower hybrid frequency were measured within each of the flux ropes and can be associated with the enhancements of energetic electrons in some of the flux ropes. The waves in the largest flux ropes were further explored in more detail. The electrostatic lower hybrid frequency range waves are detected at the edge, while electromagnetic lower hybrid frequency range waves are observed at the center of the flux rope. The electromagnetic waves are right-hand polarized and propagated nearly perpendicular to magnetic field lines, with a wavelength of ion-electron hybrid scale. The observations are analogous to simulations in which the electrostatic lower hybrid waves are confined to the edge of current sheet but can directly penetrate into the current sheet center in the form of the electromagnetic mode. The observations indicate that the electromagnetic lower hybrid frequency range waves can be excited inside magnetic flux ropes.

  12. Optical quantum memory based on electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Ma, Lijun; Slattery, Oliver; Tang, Xiao

    2017-04-01

    Electromagnetically induced transparency (EIT) is a promising approach to implement quantum memory in quantum communication and quantum computing applications. In this paper, following a brief overview of the main approaches to quantum memory, we provide details of the physical principle and theory of quantum memory based specifically on EIT. We discuss the key technologies for implementing quantum memory based on EIT and review important milestones, from the first experimental demonstration to current applications in quantum information systems.

  13. Ultrashort Laser Pulse Induced Electromagnetic Stress on Biological Macromolecular Systems.

    DTIC Science & Technology

    1979-11-01

    ULTRASHORT LASER PULSE INDUCED ~~~~~ ELECTROMAGNET IC STRESS ON BIOLOGICAL MACROMOLECULAR SYSTEMS Adam P. Bruckner , Ph.D. ( i~iiCJ. Michael ...AFSC, Brooks Air Force Base, Texas. Dr. John Taboada (RZL) was the Laboratory Project Scientjst..in...Charge When U.S. Goverrijie~t drawings...available to the general public , including foreignnations. Thi s technical report has been reviewed and is approved for publ i-cation. OHN TABOADA , Ph.D

  14. Coherent population trapping (CPT) versus electromagnetically induced transparency (EIT)

    NASA Astrophysics Data System (ADS)

    Khan, Sumanta; Kumar, Molahalli Panidhara; Bharti, Vineet; Natarajan, Vasant

    2017-02-01

    We discuss the differences between two well-studied and related phenomena - coherent population trapping (CPT) and electromagnetically induced transparency (EIT). Many differences between the two - such as the effect of power in the beams, detuning of the beams from resonance, and the use of vapor cells filled with buffer gas - are demonstrated experimentally. The experiments are done using magnetic sublevels of the 1 → 1 transition in the D2 line of 87Rb.

  15. Electromagnetically Induced Guiding of Counter-propagating Lasers in Plasmas

    SciTech Connect

    First Author = G. Shvets; A. Pukhov

    1998-05-01

    The interaction of counter-propagating laser pulses in a plasma is considered. When the frequencies of the two lasers are close, nonlinear modification of the refraction index results in the mutual focusing of the two beams. A short (of order the plasma period) laser pulse can also be nonlinearly focused by a long counter-propagating beam which extends over the entire guiding length. This phenomenon of electromagnetically induced guiding can be utilized in laser-driven plasma accelerators.

  16. Velocity Measurement by Scattering from Index of Refraction Fluctuations Induced in Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Lading, Lars; Saffman, Mark; Edwards, Robert

    1996-01-01

    Induced phase screen scattering is defined as scatter light from a weak index of refraction fluctuations induced by turbulence. The basic assumptions and requirements for induced phase screen scattering, including scale requirements, are presented.

  17. Anomalous paramagnetic behavior: the role of zero-point electromagnetic fluctuations

    NASA Astrophysics Data System (ADS)

    França, H. M.; Santos, R. B. B.

    1998-02-01

    The interaction of a microscopic magnetic dipole and the inductor of a RLC circuit without batteries, is described using the approach of stochastic electrodynamics. The purpose of this study is to clarify the effects of the current fluctuations on the paramagnetic behaviour of a sample of magnetic material which is close to a thin solenoid. A suppression is predicted in the average magnetization, even in the case in which the circuit temperature is arbitrarily close to the absolute zero.

  18. The Formalism for Energy Changing Rate of an Accelerated Atom Coupled with Electromagnetic Vacuum Fluctuations

    NASA Astrophysics Data System (ADS)

    Zhang, Anwei

    2016-09-01

    The structure of the rate of variation of the atomic energy for an arbitrary stationary motion of the atom in interaction with a quantum electromagnetic field is investigated. Our main purpose is to rewrite the formalism in Zhu et al. (Phys Rev D 73:107501, 2006) and to deduce the general expressions of the Einstein A coefficients of an atom on an arbitrary stationary trajectory. The total rate of change of the energy and Einstein coefficients of the atom near a plate with finite temperature or acceleration are also investigated.

  19. Planar designs for electromagnetically induced transparency in metamaterials.

    PubMed

    Tassin, Philippe; Zhang, Lei; Koschny, Thomas; Economou, E N; Soukoulis, C M

    2009-03-30

    We present a planar design of a metamaterial exhibiting electromagnetically induced transparency that is amenable to experimental verification in the microwave frequency band. The design is based on the coupling of a split-ring resonator with a cut-wire in the same plane. We investigate the sensitivity of the parameters of the transmission window on the coupling strength and on the circuit elements of the individual resonators, and we interpret the results in terms of two linearly coupled Lorentzian resonators. Our metamaterial designs combine low losses with the extremely small group velocity associated with the resonant response in the transmission window, rendering them suitable for slow light applications at room temperature.

  20. Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial

    SciTech Connect

    Zhang, Fuli He, Xuan; Zhao, Qian; Lan, Chuwen; Zhou, Ji; Zhang, Weihong Qiu, Kepeng

    2014-03-31

    In this manuscript, we experimentally demonstrate magnetically coupled electromagnetically induced transparency (EIT) analogy effect inside dielectric metamaterial. In contrast to previous studies employed different metallic topological microstructures to introduce dissipation loss change, barium strontium titanate, and calcium titanate (CaTiO{sub 3}) are chosen as the bright and dark EIT resonators, respectively, due to their different intrinsic dielectric loss. Under incident magnetic field excitation, dielectric metamaterial exhibits an EIT-type transparency window around 8.9 GHz, which is accompanied by abrupt change of transmission phase. Numerical calculations show good agreement with experiment spectra and reveal remarkably increased group index, indicating potential application in slow light.

  1. Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial.

    PubMed

    Zhang, Fuli; Zhao, Qian; Zhou, Ji; Wang, Shengxiang

    2013-08-26

    In this manuscript, we demonstrate numerically classical analogy of electromagnetically induced transparency (EIT) with a windmill type metamaterial consisting of two dumbbell dielectric resonator. With proper external excitation, dielectric resonators serve as EIT bright and dark elements via electric and magnetic Mie resonances, respectively. Rigorous numerical analyses reveal that dielectric metamaterial exhibits sharp transparency peak characterized by large group index due to the destructive interference between EIT bright and dark resonators. Furthermore, such EIT transmission behavior keeps stable property with respect to polarization and incidence angles.

  2. Fluctuations-induced coexistence in public goods dynamics

    NASA Astrophysics Data System (ADS)

    Behar, H.; Brenner, N.; Ariel, G.; Louzoun, Y.

    2016-10-01

    Cooperative interactions between individuals in a population and their stability properties are central to population dynamics and evolution. We introduce a generic class of nonlinear dynamical systems describing such interactions between producers and non-producers of a rapidly equilibrating common resource extracted from a finite environment. In the deterministic mean field approximation, fast-growing non-producers drive the entire population to extinction. However, the presence of arbitrarily small perturbations destabilizes this fixed point into a stochastic attractor where both phenotypes can survive. Phase space arguments and moment closure are used to characterize the attractor and show that its properties are not determined by the noise amplitude or boundary conditions, but rather it is stabilized by the stochastic nonlinear dynamics. Spatial Monte Carlo simulations with demographic fluctuations and diffusion illustrate a similar effect, supporting the validity of the two-dimensional stochastic differential equation as an approximation. The functional distribution of the noise emerges as the main factor determining the dynamical outcome. Noise resulting from diffusion between different regions, or additive noise, induce coexistence while multiplicative or local demographic noise do not alter the outcome of deterministic dynamics. The results are discussed in a general context of the effect of noise on phase space structure.

  3. Spin jam induced by quantum fluctuations in a frustrated magnet

    PubMed Central

    Yang, Junjie; Samarakoon, Anjana; Dissanayake, Sachith; Ueda, Hiroaki; Klich, Israel; Iida, Kazuki; Pajerowski, Daniel; Butch, Nicholas P.; Huang, Q.; Copley, John R. D.; Lee, Seung-Hun

    2015-01-01

    Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused on understanding randomness and defects as the driving mechanism. The same paradigm has also been applied to explain glassy states found in dense frustrated systems. Recently, however, it has been theoretically suggested that different mechanisms, such as quantum fluctuations and topological features, may induce glassy states in defect-free spin systems, far from the conventional dilute limit. Here we report experimental evidence for existence of a glassy state, which we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which is insensitive to a low concentration of defects. We have studied the effect of impurities on SrCr9pGa12-9pO19 [SCGO(p)], a highly frustrated magnet, in which the magnetic Cr3+ (s = 3/2) ions form a quasi-2D triangular system of bipyramids. Our experimental data show that as the nonmagnetic Ga3+ impurity concentration is changed, there are two distinct phases of glassiness: an exotic glassy state, which we call a spin jam, for the high magnetic concentration region (p>0.8) and a cluster spin glass for lower magnetic concentration (p<0.8). This observation indicates that a spin jam is a unique vantage point from which the class of glassy states of dense frustrated magnets can be understood. PMID:26324917

  4. Spin jam induced by quantum fluctuations in a frustrated magnet.

    PubMed

    Yang, Junjie; Samarakoon, Anjana; Dissanayake, Sachith; Ueda, Hiroaki; Klich, Israel; Iida, Kazuki; Pajerowski, Daniel; Butch, Nicholas P; Huang, Q; Copley, John R D; Lee, Seung-Hun

    2015-09-15

    Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused on understanding randomness and defects as the driving mechanism. The same paradigm has also been applied to explain glassy states found in dense frustrated systems. Recently, however, it has been theoretically suggested that different mechanisms, such as quantum fluctuations and topological features, may induce glassy states in defect-free spin systems, far from the conventional dilute limit. Here we report experimental evidence for existence of a glassy state, which we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which is insensitive to a low concentration of defects. We have studied the effect of impurities on SrCr9pGa12-9pO19 [SCGO(p)], a highly frustrated magnet, in which the magnetic Cr(3+) (s = 3/2) ions form a quasi-2D triangular system of bipyramids. Our experimental data show that as the nonmagnetic Ga(3+) impurity concentration is changed, there are two distinct phases of glassiness: an exotic glassy state, which we call a spin jam, for the high magnetic concentration region (p > 0.8) and a cluster spin glass for lower magnetic concentration (p < 0.8). This observation indicates that a spin jam is a unique vantage point from which the class of glassy states of dense frustrated magnets can be understood.

  5. Multifield measurement of magnetic fluctuation-induced particle flux in a high-temperature toroidal plasma

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.

    2016-12-01

    Magnetic fluctuation-induced particle transport is explored in the high-temperature, high-beta interior of the Madison symmetric torus (MST) reversed-field pinch by performing a multifield measurement of the correlated product of magnetic and density fluctuations associated with global resistive tearing modes. Local density fluctuations are obtained by inverting the line-integrated interferometry data after resolving the mode helicity through correlation techniques. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of Faraday-effect polarimetry measurements. Reconstructed 2D images of density and current density perturbations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved. The convective magnetic fluctuation-induced particle flux profile is measured for both standard and high-performance plasmas in MST with tokamak-like confinement, showing large reduction in the flux during improved confinement.

  6. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang

    2017-04-01

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication.

  7. Classical analog of electromagnetically induced absorption in plasmonics.

    PubMed

    Taubert, Richard; Hentschel, Mario; Kästel, Jürgen; Giessen, Harald

    2012-03-14

    The ability to manipulate the phase shift between two resonantly coupled plasmonic oscillators in a controlled fashion has been unavailable up to now. Here we present a strategy to overcome this limitation by employing the benefits of near-field coupling on the one hand and retardation effects due to far-field coupling on the other hand. We theoretically and experimentally demonstrate that in the intermediate regime the coupling of a broad dipolar to a narrow dark quadrupolar plasmon resonance is possible while simultaneously allowing for a retardation-induced phase shift. This leads to constructive interference and enhanced absorption. The observed phenomenon can thus be termed a classical analog of electromagnetically induced absorption.

  8. Correlation between intensity fluctuations of light generated by scattering of Young’s diffractive electromagnetic waves by a quasi-homogeneous, anisotropic medium

    NASA Astrophysics Data System (ADS)

    Li, Jia; Chen, Feinan

    2016-11-01

    Based on the first-order Born approximation, formulas are derived for the correlation between intensity fluctuations (CIF) of light generated by a Young’s diffractive electromagnetic wave scattered by a spatially quasi-homogeneous (QH), anisotropic medium. It is shown that the CIF of the scattered field can be written as the summation of the Fourier transforms of the strengths and normalized correlation coefficients (NCCs) of the scattering potentials. The differences between our results and those obtained in the previous literature are discussed. Our results might be important in investigating the high-order intensity correlation of an electromagnetic wave scattered from a 3D anisotropic object.

  9. Spectroscopic observation of fluctuation-induced dynamo in the edge of the reversed-field pinch.

    PubMed

    Fontana, P W; Den Hartog, D J; Fiksel, G; Prager, S C

    2000-07-17

    The fluctuation-induced dynamo has been investigated by direct measurement of v and b in the edge of a reversed-field pinch and is found to be significant in balancing Ohm's law. The velocity fluctuations producing the dynamo emf have poloidal mode number m = 0, consistent with MHD calculations and in contrast with the core m = 1 dynamo. The velocity fluctuations exhibit the parity relative to their resonant surface predicted by linear MHD theory.

  10. Developments of the theory of spin fluctuations and spin fluctuation-induced superconductivity

    PubMed Central

    Moriya, Tôru

    2006-01-01

    Theory of spin fluctuations as developed in the past 30 years have played important roles in the theory of magnetism in metals, particularly in elucidating the properties around the magnetic instability or quantum critical points. Recently the theory has been extended to deal with the spin fluctuaion-mediated superconductivity with anisotropic order parameters in strongly correlated electron systems. These theoretical developments are briefly reviewed and the high temperature superconductivity of cuprates and organic and heavy electron superconductors are discussed in the light of these theories. PMID:25792765

  11. Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy.

    PubMed

    Li, Zida; Mak, Sze Yi; Sauret, Alban; Shum, Ho Cheung

    2014-02-21

    We report a new method to display the minute fluctuations induced by syringe pumps on microfluidic flows by using a liquid-liquid system with an ultralow interfacial tension. We demonstrate that the stepper motor inside the pump is a source of fluctuations in microfluidic flows by comparing the frequencies of the ripples observed at the interface to that of the pulsation of the stepper motor. We also quantify the fluctuations induced at different flow rates, using syringes of different diameters, and using different syringe pumps with different advancing distances per step. Our work provides a way to predict the frequency of the fluctuation that the driving syringe pump induces on a microfluidic system and suggests that syringe pumps can be a source of fluctuations in microfluidic flows, thus contributing to the polydispersity of the resulting droplets.

  12. Electromagnetic field-induced stimulation of Bruton's tyrosine kinase.

    PubMed

    Kristupaitis, D; Dibirdik, I; Vassilev, A; Mahajan, S; Kurosaki, T; Chu, A; Tuel-Ahlgren, L; Tuong, D; Pond, D; Luben, R; Uckun, F M

    1998-05-15

    Here we present evidence that exposure of DT40 lymphoma B-cells to low energy electromagnetic fields (EMF) results in activation of phospholipase C-gamma 2 (PLC-gamma2), leading to increased inositol phospholipid turnover. PLC-gamma2 activation in EMF-stimulated cells is mediated by stimulation of the Bruton's tyrosine kinase (BTK), a member of the Src-related TEC family of protein tyrosine kinases, which acts downstream of LYN kinase and upstream of PLC-gamma2. B-cells rendered BTK-deficient by targeted disruption of the btk gene did not show enhanced PLC-gamma2 activation in response to EMF exposure. Introduction of the wild-type (but not a kinase domain mutant) human btk gene into BTK-deficient B-cells restored their EMF responsiveness. Thus, BTK exerts a pivotal and mandatory function in initiation of EMF-induced signaling cascades in B-cells.

  13. Electromagnetically induced transparency in paraffin-coated vapor cells

    SciTech Connect

    Klein, M.; Hohensee, M.; Walsworth, R. L.; Phillips, D. F.

    2011-01-15

    Antirelaxation coatings in atomic vapor cells allow ground-state coherent spin states to survive many collisions with the cell walls. This reduction in the ground-state decoherence rate gives rise to ultranarrow-bandwidth features in electromagnetically induced transparency (EIT) spectra, which can form the basis of, for example, long-time scale slow and stored light, sensitive magnetometers, and precise frequency standards. Here we study, both experimentally and theoretically, how Zeeman EIT contrast and width in paraffin-coated rubidium vapor cells are determined by cell and laser-beam geometry, laser intensity, and atomic density. Using a picture of Ramsey pulse sequences, where atoms alternately spend ''bright'' and ''dark'' time intervals inside and outside the laser beam, we explain the behavior of EIT features in coated cells, highlighting their unique characteristics and potential applications.

  14. Electromagnetically induced transparency in paraffin-coated vapor cells

    NASA Astrophysics Data System (ADS)

    Klein, M.; Hohensee, M.; Phillips, D. F.; Walsworth, R. L.

    2011-01-01

    Antirelaxation coatings in atomic vapor cells allow ground-state coherent spin states to survive many collisions with the cell walls. This reduction in the ground-state decoherence rate gives rise to ultranarrow-bandwidth features in electromagnetically induced transparency (EIT) spectra, which can form the basis of, for example, long-time scale slow and stored light, sensitive magnetometers, and precise frequency standards. Here we study, both experimentally and theoretically, how Zeeman EIT contrast and width in paraffin-coated rubidium vapor cells are determined by cell and laser-beam geometry, laser intensity, and atomic density. Using a picture of Ramsey pulse sequences, where atoms alternately spend “bright” and “dark” time intervals inside and outside the laser beam, we explain the behavior of EIT features in coated cells, highlighting their unique characteristics and potential applications.

  15. FDTD modeling of induced polarization phenomena in transient electromagnetics

    NASA Astrophysics Data System (ADS)

    Commer, Michael; Petrov, Petr V.; Newman, Gregory A.

    2017-01-01

    The finite-difference time-domain scheme is augmented in order to treat the modeling of transient electromagnetic signals containing induced polarization effects from three-dimensional distributions of polarizable media. Compared to the non-dispersive problem, the discrete dispersive Maxwell system contains costly convolution operators. Key components to our solution for highly digitized model meshes are Debye decomposition and composite memory variables. We revert to the popular Cole-Cole model of dispersion to describe the frequency-dependent behaviour of electrical conductivity. Its inversely Laplace-transformed Debye decomposition results in a series of time convolutions between electric field and exponential decay functions, with the latter reflecting each Debye constituents' individual relaxation time. These function types in the discrete-time convolution allow for their substitution by memory variables, annihilating the otherwise prohibitive computing demands. Numerical examples demonstrate the efficiency and practicality of our algorithm.

  16. Manipulation of electromagnetically induced transparency by planar metamaterial

    NASA Astrophysics Data System (ADS)

    Yang, Helin; Hu, Sen; Liu, Dan; Lin, Hai; Xiao, Boxun; Chen, Jiao

    2016-02-01

    The transmission characteristics of a planar metamaterial, composed of a metal ring and a regular trigonometry-star-rod (TSR), have been numerically and experimentally investigated in this paper. By rotating the TSR with different angles, this structure will appear to be symmetric or asymmetric toward the incident waves and then finely controls the coupling between the ring and the TSR. Thus, the transmission spectrum of our proposed structure can exhibit an electromagnetically induced transparency (EIT)-like spectral response in microwave region. Owing to the C3 rotational symmetry of the structure, an on-to-off active modulation of the EIT-like transparency window can be realized, and it may serve as the base for a microwave optical switching. Equivalent electric dipole moments couplings are employed to explain the transmission properties. In all, our work provides a way to obtain EIT-like effect, and it may achieve potential applications in filters, sensing and some other microwave devices.

  17. All-dielectric metasurface analogue of electromagnetically induced transparency.

    PubMed

    Yang, Yuanmu; Kravchenko, Ivan I; Briggs, Dayrl P; Valentine, Jason

    2014-12-16

    Metasurface analogues of electromagnetically induced transparency (EIT) have been a focus of the nanophotonics field in recent years, due to their ability to produce high-quality factor (Q-factor) resonances. Such resonances are expected to be useful for applications such as low-loss slow-light devices and highly sensitive optical sensors. However, ohmic losses limit the achievable Q-factors in conventional plasmonic EIT metasurfaces to values <~10, significantly hampering device performance. Here we experimentally demonstrate a classical analogue of EIT using all-dielectric silicon-based metasurfaces. Due to extremely low absorption loss and coherent interaction of neighbouring meta-atoms, a Q-factor of 483 is observed, leading to a refractive index sensor with a figure-of-merit of 103. Furthermore, we show that the dielectric metasurfaces can be engineered to confine the optical field in either the silicon resonator or the environment, allowing one to tailor light-matter interaction at the nanoscale.

  18. Polarization spectra of Zeeman sublevels in Rydberg electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Bao, Shanxia; Zhang, Hao; Zhou, Jian; Zhang, Linjie; Zhao, Jianming; Xiao, Liantuan; Jia, Suotang

    2016-10-01

    The polarization spectra of electromagnetically induced transparency (EIT) for Zeeman sublevels in a cascade system with Rydberg state are demonstrated. The magnitude dependence of Rydberg-EIT on the polarizations of probe and coupling laser fields is studied, and shown mainly due to the strengths of relative dipole matrix elements between degenerate Zeeman sublevels. We further investigate the polarization spectra of Rydberg-EIT in the optimal polarization combinations of left-handed and right-handed circularly polarized fields when an external magnetic field is applied. The existence of nondegenerate Zeeman sublevels in an external magnetic field results in the splitting of Rydberg-EIT. The theoretical calculations are very consistent with the experimental spectra.

  19. Role of dressed-state interference in electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Khan, Sumanta; Bharti, Vineet; Natarajan, Vasant

    2016-12-01

    Electromagnetically induced transparency (EIT) in three-level systems uses a strong control laser on one transition to modify the absorption of a weak probe laser on a second transition. The control laser creates dressed states whose decay pathways show interference. We study the role of dressed-state interference in causing EIT in the three types of three-level systems-lambda (Λ), ladder (Ξ), and vee (V). In order to get realistic values for the linewidths of the energy levels involved, we consider appropriate hyperfine levels of 87Rb. For such realistic systems, we find that dressed-state interference causes probe absorption-given by the imaginary part of the susceptibility-to go to zero in a Λ system, but plays a negligible role in Ξ and V systems.

  20. Multiplexed image storage by electromagnetically induced transparency in a solid

    NASA Astrophysics Data System (ADS)

    Heinze, G.; Rentzsch, N.; Halfmann, T.

    2012-11-01

    We report on frequency- and angle-multiplexed image storage by electromagnetically induced transparency (EIT) in a Pr3+:Y2SiO5 crystal. Frequency multiplexing by EIT relies on simultaneous storage of light pulses in atomic coherences, driven in different frequency ensembles of the inhomogeneously broadened solid medium. Angular multiplexing by EIT relies on phase matching of the driving laser beams, which permits simultaneous storage of light pulses propagating under different angles into the crystal. We apply the multiplexing techniques to increase the storage capacity of the EIT-driven optical memory, in particular to implement multiplexed storage of larger two-dimensional amounts of data (images). We demonstrate selective storage and readout of images by frequency-multiplexed EIT and angular-multiplexed EIT, as well as the potential to combine both multiplexing approaches towards further enhanced storage capacities.

  1. Phase measurement of fast light pulse in electromagnetically induced absorption.

    PubMed

    Lee, Yoon-Seok; Lee, Hee Jung; Moon, Han Seb

    2013-09-23

    We report the phase measurement of a fast light pulse in electromagnetically induced absorption (EIA) of the 5S₁/₂ (F = 2)-5P₃/₂ (F' = 3) transition of ⁸⁷Rb atoms. Using a beat-note interferometer method, a stable measurement without phase dithering of the phase of the probe pulse before and after it has passed through the EIA medium was achieved. Comparing the phases of the light pulse in air and that of the fast light pulse though the EIA medium, the phase of the fast light pulse at EIA resonance was not shifted and maintained to be the same as that of the free-space light pulse. The classical fidelity of the fast light pulse according to the advancement of the group velocity by adjusting the atomic density was estimated to be more than 97%.

  2. Effective cosmological constant induced by stochastic fluctuations of Newton's constant

    NASA Astrophysics Data System (ADS)

    de Cesare, Marco; Lizzi, Fedele; Sakellariadou, Mairi

    2016-09-01

    We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.

  3. Noise induced calcium oscillations in a cell exposed to electromagnetic fields.

    PubMed

    Zhang, Yuhong; Zhao, Yongli; Chen, Yafei; Yuan, Changqing; Zhan, Yong

    2015-01-01

    The effects of noise on the calcium oscillations in a cell exposed to electromagnetic fields are described by a dynamic model. Noise is a very important factor to be considered in the dynamic research on the calcium oscillations in a cell exposed to electromagnetic fields. Some meaningful results have been obtained here based on the discussion. The results show that the pattern of intracellular calcium oscillations exposure to electromagnetic fields can be influenced by noise. Furthermore, the intracellular calcium oscillations exposure to electromagnetic fields can also be induced by noise. And the work has also studied the relationships between the voltage sensitive calcium channel's open probability and electromagnetic field. The result can provide new insights into constructive roles and potential applications of selecting appropriate electromagnetic field frequency during the research of biological effect of electromagnetic field.

  4. Fluctuation-induced pair density wave in itinerant ferromagnets

    NASA Astrophysics Data System (ADS)

    Conduit, G. J.; Pedder, C. J.; Green, A. G.

    2013-03-01

    Magnetic fluctuations near to quantum criticality can have profound effects. They lead to characteristic scaling at high temperature which may ultimately give way to a reconstruction of the phase diagram and the formation of new phases at low temperatures. The ferromagnet UGe2 is unstable to p-wave superconducting order—an effect presaged by the superfluidity in 3He—whereas in CeFePO fluctuations drive the formation of spiral magnetic order. Here we develop a general quantum order-by-disorder description of these systems that encompasses both of these instabilities within a unified framework. This allows us to demonstrate that in fact these instabilities intertwine to form a pair density wave.

  5. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials

    PubMed Central

    Ivić, Z.; Lazarides, N.; Tsironis, G. P.

    2016-01-01

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing. PMID:27403780

  6. Calibration of Atmospherically Induced Delay Fluctuations Due to Water Vapor

    NASA Technical Reports Server (NTRS)

    Resch, George; Jacobs, Christopher; Keihm, Steve; Lanyi, Gabor; Naudet, Charles; Riley, Abraham; Rosenberger, Hans; Tanner, Alan

    2000-01-01

    We have completed a new generation of water vapor radiometers (WVR), the A- series, in order to support radio science experiments with the Cassini spacecraft. These new instruments sense three frequencies in the vicinity of the 22 GHz emission line of atmospheric water vapor within a 1 degree beamwidth from a clear aperture antenna that is co-pointed with the radio telescope down to 10 degree elevation. The radiometer electronics features almost an order of magnitude improvement in temperature stability compared with earlier WVR designs. For many radio science experiments, the error budget is likely to be dominated by path delay fluctuations due to variable atmospheric water vapor along the line-of-sight to the spacecraft. In order to demonstrate the performance of these new WVRs we are attempting to calibrate the delay fluctuations as seen by a radio interferometer operating over a 21 km baseline with a WVR near each antenna. The characteristics of these new WVRs will be described and the results of our preliminary analysis will be presented indicating an accuracy of 0.2 to 0.5 mm in tracking path delay fluctuations over time scales of 10 to 10,000 seconds.

  7. Fluctuation-induced forces between rings threaded around a polymer chain under tension.

    PubMed

    Gilles, F M; Llubaroff, R; Pastorino, C

    2016-09-01

    We characterize the fluctuation properties of a polymer chain under external tension and the fluctuation-induced forces between two ring molecules threaded around the chain. The problem is relevant in the context of fluctuation-induced forces in soft-matter systems, features of liquid interfaces, and to describe the properties of polyrotaxanes and slide-ring materials. We perform molecular-dynamics simulations of the Kremer-Grest bead-spring model for the polymer and a simple ring-molecule model in the canonical ensemble. We study transverse fluctuations of the stretched chain as a function of chain stretching and in the presence of ring-shaped threaded molecules. The fluctuation spectra of the chains are analyzed in equilibrium at constant temperature, and the differences in the presence of two-ring molecules are compared. For the rings located at fixed distances, we find an attractive fluctuation-induced force between the rings, proportional to the temperature and decaying with the ring distance. We characterize this force as a function of ring distance, chain stretching, and ring radius, and we measure the differences between the free chain spectrum and the fluctuations of the chain constrained by the rings. We also compare the dependence and range of the force found in the simulations with theoretical models coming from different fields.

  8. Prediction of fluctuating pressure environments associated with plume-induced separated flow fields

    NASA Technical Reports Server (NTRS)

    Plotkin, K. J.

    1973-01-01

    The separated flow environment induced by underexpanded rocket plumes during boost phase of rocket vehicles has been investigated. A simple semi-empirical model for predicting the extent of separation was developed. This model offers considerable computational economy as compared to other schemes reported in the literature, and has been shown to be in good agreement with limited flight data. The unsteady pressure field in plume-induced separated regions was investigated. It was found that fluctuations differed from those for a rigid flare only at low frequencies. The major difference between plume-induced separation and flare-induced separation was shown to be an increase in shock oscillation distance for the plume case. The prediction schemes were applied to PRR shuttle launch configuration. It was found that fluctuating pressures from plume-induced separation are not as severe as for other fluctuating environments at the critical flight condition of maximum dynamic pressure.

  9. Characterization of syringe-pump-driven induced pressure fluctuations in elastic microchannels.

    PubMed

    Zeng, Wen; Jacobi, Ian; Beck, David J; Li, Songjing; Stone, Howard A

    2015-02-21

    We study pressure and flow-rate fluctuations in microchannels, where the flow rate is supplied by a syringe pump. We demonstrate that the pressure fluctuations are induced by the flow-rate fluctuations coming from mechanical oscillations of the pump motor. Also, we provide a mathematical model of the effect of the frequency of the pump on the normalized amplitude of pressure fluctuations and introduce a dimensionless parameter incorporating pump frequency, channel geometry and mechanical properties that can be used to predict the performance of different microfluidic device configurations. The normalized amplitude of pressure fluctuations decreases as the frequency of the pump increases and the elasticity of the channel material decreases. The mathematical model is verified experimentally over a range of typical operating conditions and possible applications are discussed.

  10. Quantifying Airborne Induced Polarization effects in helicopter time domain electromagnetics

    NASA Astrophysics Data System (ADS)

    Macnae, James

    2016-12-01

    This paper derives the Airborne Induced Polarization (AIP) response of an airborne electromagnetic (AEM) system to a horizontal, thin sheet conductor. A vertical component double-dipole approximates helicopter systems with towed concentric horizontal transmitter and receiver loops in frequency- or time-domain. In time domain, the AIP effect typically shows up as late-time negative data with amplitude 4 to 5 orders of magnitude smaller than the early-time peak of the positive AEM responses. Because of limited bandwidth from the short sample time after the decay of inductive responses, accurate extraction of intrinsic AIP parameters other than a minimum chargeability is almost impossible. Modelling further suggests that AIP effects in double-dipole AEM systems can only be reliably detected from polarizable material in the top few tens of metres. A titanium mineral exploration case history from the Lac Brûlé area, Quebec, Canada illustrates strong spatial coherence of AIP minimum chargeability estimates and their independence from other effects such as conductivity and magnetic susceptibility.

  11. Electromagnetically induced transparency resonances inverted in magnetic field

    SciTech Connect

    Sargsyan, A.; Sarkisyan, D. E-mail: david@ipr.sci.am; Pashayan-Leroy, Y.; Leroy, C.; Cartaleva, S.; Wilson-Gordon, A. D.; Auzinsh, M.

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  12. Handedness Dependent Electromagnetically Induced Transparency in Hybrid Chiral Metamaterials

    NASA Astrophysics Data System (ADS)

    Kang, Lei; Hao Jiang, Zhi; Yue, Taiwei; Werner, Douglas H.

    2015-07-01

    We provide the first experimental demonstration of the handedness dependent electromagnetically induced transparency (EIT) in chiral metamaterials during the interaction with circularly polarized waves. The observed chiral-sensitive EIT phenomena arise from the coherent excitation of a non-radiative mode in the component split ring resonators (SRRs) produced by the corresponding Born-Kuhn type (radiative) resonators that are responsible for the pronounced chirality. The coherent coupling, which is dominated by the bonding and antibonding resonances of the Born-Kuhn type resonators, leads to an extremely steep dispersion for a circularly polarized wave of predefined handedness. Accordingly, retrieved effective medium parameters from simulated results further reveal a difference of 80 in the group indices for left- and right-handed circularly polarized waves at frequencies within the EIT window, which can potentially result in handedness-sensitive pulse delays. These chiral metamaterials which enable a handedness dependent EIT effect may provide more degrees of freedom for designing circular polarization based communication devices.

  13. Ultrawide-band electromagnetic pulses induced hypotension in rats.

    PubMed

    Lu, S T; Mathur, S P; Akyel, Y; Lee, J C

    The ultrawide-band (UWB) electromagnetic pulses are used as a new modality in radar technology. Biological effects of extremely high peak E-field, fast rise time, ultrashort pulse width, and ultrawide band have not been investigated heretofore due to the lack of animal exposure facilities. A new biological effects database is needed to establish personnel protection guidelines for these new type of radiofrequency radiation. Functional indices of the cardiovascular system (heart rate, systolic, mean, and diastolic pressures) were selected to represent biological end points that may be susceptible to the UWB radiation. A noninvasive tail-cuff photoelectric sensor sphygmomanometer was used. Male Wistar-Kyoto rats were subjected to sham exposure, 0.5-kHz (93 kV/m, 180 ps rise time, 1.00 ns pulse width, whole-body averaged specific absorption rate, SAR = 70 mW/kg) or a 1-kHz (85 kV/m, 200 ps rise time, 1.03 ns pulse width, SAR = 121 mW/kg) UWB fields in a tapered parallel plate GTEM cell for 6 min. Cardiovascular functions were evaluated from 45 min to 4 weeks after exposures. Significant decrease in arterial blood pressures (hypotension) was found. In contrast, heart rate was not altered by these exposures. The UWB radiation-induced hypotension was a robust, consistent, and persistent effect.

  14. Ultrawide-band electromagnetic pulses induced hypotension in rats.

    PubMed

    Lu, S T; Mathur, S P; Akyel, Y; Lee, J C

    1999-09-01

    The ultrawide-band (UWB) electromagnetic pulses are used as a new modality in radar technology. Biological effects of extremely high peak E-field, fast rise time, ultrashort pulse width, and ultrawide band have not been investigated heretofore due to the lack of animal exposure facilities. A new biological effects database is needed to establish personnel protection guidelines for these new type of radiofrequency radiation. Functional indices of the cardiovascular system (heart rate, systolic, mean, and diastolic pressures) were selected to represent biological end points that may be susceptible to the UWB radiation. A noninvasive tail-cuff photoelectric sensor sphygmomanometer was used. Male Wistar-Kyoto rats were subjected to sham exposure, 0.5-kHz (93 kV/m, 180 ps rise time, 1.00 ns pulse width, whole-body averaged specific absorption rate, SAR = 70 mW/kg) or a 1-kHz (85 kV/m, 200 ps rise time, 1.03 ns pulse width, SAR = 121 mW/kg) UWB fields in a tapered parallel plate GTEM cell for 6 min. Cardiovascular functions were evaluated from 45 min to 4 weeks after exposures. Significant decrease in arterial blood pressures (hypotension) was found. In contrast, heart rate was not altered by these exposures. The UWB radiation-induced hypotension was a robust, consistent, and persistent effect.

  15. Effects of thermal motion on electromagnetically induced absorption

    SciTech Connect

    Tilchin, E.; Wilson-Gordon, A. D.; Firstenberg, O.

    2011-05-15

    We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to transfer of coherence via spontaneous emission from the excited state to the ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and the wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusionlike equations for the atomic coherences and populations, we construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the EIA peak is obtained for beams of finite width.

  16. Enhanced nonlinear susceptibility via double-double electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Alotaibi, Hessa M. M.; Sanders, Barry C.

    2016-11-01

    We investigate the nonlinear optical susceptibility of an alkali-metal atom with tripod electronic configuration responsible for generating cross-phase modulation and self-phase modulation under the condition of double-double electromagnetically induced transparency. Our investigation demonstrates an enhancement in the nonlinear optical susceptibility of an alkali-metal atom by a factor of 1000 in the region of the second transparency window. This enhancement is in comparison with the atom's susceptibility in the first transparency window for the same parameters under the same conditions. Nonlinear-absorption enhancement arises by canceling Raman-gain generation, which arises when the probe and signal fields have equal intensities. At the center of the second transparency window, we obtain the condition required to attain a nonvanishing nonlinear optical susceptibility. In the bare-state picture, the coupling field must be off resonant from a bare-to-bare-state transition, while working in the semiclassical dressed picture required the signal field to be tuned off resonantly with a bare-to-dressed-state transition. The relation that governs the values of coupling- and signal-field detuning are also obtained. Our scheme exhibits the fact that the second transparency window has advantages over the first transparency window with respect to obtaining an enhanced Kerr effect, and our calculation includes simulation of both low-temperature and Doppler-broadened regimes.

  17. Spectroscopic Observation of Fluctuation-Induced Dynamo in the Edge of the Reversed-Field Pinch

    SciTech Connect

    Fontana, P. W.; Den Hartog, D. J.; Fiksel, G.; Prager, S. C.

    2000-07-17

    The fluctuation-induced dynamo has been investigated by direct measurement of v(tilde sign) and b(tilde sign) in the edge of a reversed-field pinch and is found to be significant in balancing Ohm's law. The velocity fluctuations producing the dynamo emf have poloidal mode number m=0 , consistent with MHD calculations and in contrast with the core m=1 dynamo. The velocity fluctuations exhibit the parity relative to their resonant surface predicted by linear MHD theory. (c) 2000 The American Physical Society.

  18. Transconductance fluctuations as a probe for interaction-induced quantum Hall states in graphene.

    PubMed

    Lee, Dong Su; Skákalová, Viera; Weitz, R Thomas; von Klitzing, Klaus; Smet, Jurgen H

    2012-08-03

    Transport measurements normally provide a macroscopic, averaged view of the sample so that disorder prevents the observation of fragile interaction-induced states. Here, we demonstrate that transconductance fluctuations in a graphene field effect transistor reflect charge localization phenomena on the nanometer scale due to the formation of a dot network which forms near incompressible quantum states. These fluctuations give access to fragile broken symmetry and fractional quantum Hall states even though these states remain hidden in conventional magnetotransport quantities.

  19. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    NASA Astrophysics Data System (ADS)

    Tatara, Gen; Nakabayashi, Noriyuki

    2014-05-01

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  20. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    SciTech Connect

    Tatara, Gen; Nakabayashi, Noriyuki

    2014-05-07

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  1. Density Fluctuation Induced Kinetic Dynamo and Tearing Mode Nonlinear Saturation in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Ding, Weixing; Lin, Liang; Duff, J. R.; Brower, D. L.; Sarff, J. S.

    2014-10-01

    In the MST reversed field pinch (RFP), the evolution of core tearing mode nonlinear evolution is partially determined by the electron current density profile along with nonlinear interactions among multiple tearing modes. Density fluctuations driven by intrinsic magnetic perturbations are usually large, approximately 1%, in RFP plasmas. These density fluctuations can modify the current density profile via the kinetic dynamo effect, defined as the correlated product of parallel electron pressure and radial magnetic field fluctuations, which alters the temporal dynamics of tearing modes in MST. A component of the kinetic dynamo originating from the correlated product of density and radial magnetic fluctuations has been measured using a high-speed, low phase noise polarimetry-interferometry diagnostic. Between sawtooth crashes it is found that the measured kinetic dynamo has finite amplitude that generates an anti-dynamo in the plasma core, which would tend to flatten the current density profile. These measurements suggest that density fluctuations passively driven by magnetic fluctuations can actively alter tearing modes via fluctuation-induced current transport. Work supported by US DOE and NSF.

  2. Puerarin may protect against Schwann cell damage induced by glucose fluctuation.

    PubMed

    Xue, Bing; Wang, Lin; Zhang, Zhe; Wang, Rui; Xia, Xin-Xin; Han, Ping-Ping; Cao, Li-Jun; Liu, Yong-Hui; Sun, Lian-Qing

    2017-02-08

    Puerarin is one of the major active ingredients in Gegen, a traditional Chinese herb that has been reported to have a wide variety of beneficial pharmacology functions. Previous studies have implicated that the damaging effects of hyperglycemia resulting from oxidative stress and glucose fluctuation may be more dangerous than constant high glucose in the development of diabetes-related complications. The present study focuses on the effects of puerarin on glucose fluctuation-induced oxidative stress-induced Schwann cell (SC) apoptosis in vitro. Primarily cultured SCs were exposed to different conditions and the effect of puerarin on cell viability was determined by MTT assays. Intracellular reactive oxygen species (ROS) generation and mitochondrial transmembrane potential were detected by flow cytometry analysis. Apoptosis was confirmed by the Annexin V-FITC/PI and TUNEL method. Quantitative real-time reverse transcriptase polymerase chain reaction was performed to analyze the expression levels of bax and bcl-2. Western blot was performed to analyze the expression levels of some important transcription factors and proteins. The results showed that incubating SCs with intermittent high glucose for 48 h decreased cell viability and increased the number of apoptotic cells whereas treating with puerarin protected SCs against glucose fluctuation-induced cell damage. Further study demonstrated that puerarin suppressed activation of apoptosis-related proteins including PARP and caspase-3, downregulation of bcl-2, and upregulation of intracellular distribution of bax from cytosol to mitochondria, which was induced by glucose fluctuation. Moreover, puerarin inhibited the elevation of intracellular ROS and mitochondrial depolarization induced by glucose fluctuation. These results suggest that puerarin may protect SCs against glucose fluctuation-induced cell injury through inhibiting apoptosis as well as oxidative stress.

  3. Parameter Fluctuation-Induced Pattern Transition in the Complex Ginzburg-Landau Equation

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Ja, Ya; Tang, Jun; Chen, Yong

    Parameter fluctuation, which is often induced by the noise, temperature, deformation of the media etc., plays an important role in changing the dynamics of the system. In this paper, the problem of parameter fluctuation-induced pattern transition in the Complex Ginzburg-Landau equation (CGLE) is investigated. At first, the perpendicular-gradient initial values are used to generate spiral wave and spiral turbulence under appropriate parameters. At second, the parameter is perturbed with the periodical and/or random signal to simulate the parameter fluctuation, respectively. Then a class of linear error feedback is used to induce transition of the spiral wave and spiral turbulence. It is found that target waves can be induced by the complete feedback forcing, while the local feedback forcing seldom induce a target wave. In the case of spiral turbulence, spiral wave is generated and the spiral turbulence is removed by the new appeared spiral wave as the linear error feedback began to work on the whole media. Finally, the common negative feedback is also used to control the parameter-fluctuated CGLE, and the results are compared with the linear error feedback control, it is found that the whole system become homogeneous when the negative feedback is imposed on the whole media, and the local negative feedback can induce new target wave to remove the spiral wave while it is in vain to generate new target or spiral wave to overcome and eliminate the spiral turbulence.

  4. Fluctuating Pressure Environments and Hydrodynamic Radial Force Mitigation for a Two Blade Unshrouded Inducer

    NASA Technical Reports Server (NTRS)

    Mulder, Andrew; Skelley, Stephen

    2011-01-01

    Fluctuating pressure data from water flow testing of an unshrouded two blade inducer revealed a cavitation induced oscillation with the potential to induce a radial load on the turbopump shaft in addition to other more traditionally analyzed radial loads. Subsequent water flow testing of the inducer with a rotating force measurement system confirmed that the cavitation induced oscillation did impart a radial load to the inducer. After quantifying the load in a baseline configuration, two inducer shroud treatments were selected and tested to reduce the cavitation induced load. The first treatment was to increase the tip clearance, and the second was to introduce a circumferential groove near the inducer leading edge. Increasing the clearance resulted in a small load decrease along with some steady performance degradation. The groove greatly reduced the hydrodynamic load with little to no steady performance loss. The groove did however generate some new, relatively high frequency, spatially complex oscillations to the environment.

  5. Fluctuating Pressure Environments and Hydrodynamic Radial Force Mitigation for a Two Blade Unshrouded Inducer

    NASA Technical Reports Server (NTRS)

    Mulder, Andrew; Skelley, Stephen

    2011-01-01

    Fluctuating pressure data from water flow testing of an unshrouded two blade inducer revealed a cavitation induced oscillation with the potential to induce a radial load on the turbopump shaft in addition to other more traditionally analyzed radial loads. Subsequent water flow testing of the inducer with a rotating force measurement system confirmed that the cavitation induced oscillation did impart a radial load to the inducer. After quantifying the load in a baseline configuration, two inducer shroud treatments were selected and tested to reduce the cavitation induced load. The first treatment was to increase the tip clearance, and the second was to introduce a circumferential groove near the inducer leading edge. Increasing the clearance resulted in a small decrease in radial load along with some steady performance degradation. The groove greatly reduced the hydrodynamic load with little to no steady performance loss. The groove did however generate some new, relatively high frequency, spatially complex oscillations to the flow environment.

  6. Electrostatic potential fluctuation induced by charge discreteness in a nanoscale trench

    SciTech Connect

    Lee, Taesang; Kim, S. S.; Jho, Y. S.; Park, Gunyoung; Chang, C. S.

    2007-10-15

    A simplified two-dimensional Monte Carlo simulation is performed to estimate the charging potential fluctuations caused by strong binary Coulomb interactions between discrete charged particles in nanometer scale trenches. It is found that the discrete charge effect can be an important part of the nanoscale trench research, inducing scattering of ion trajectories in a nanoscale trench by a fluctuating electric field. The effect can enhance the ion deposition on the side walls and disperse the material contact energy of the incident ions, among others.

  7. Photo-induced conductance fluctuations in mesoscopic Ge/Si systems with quantum dots

    SciTech Connect

    Stepina, N. P.; Dvurechenskii, A. V.; Nikiforov, A. I.; Moers, J.; Gruetzmacher, D.

    2014-08-20

    We study the evolution of electron transport in strongly localized mesoscopic system with quantum dots under small photon flux. Exploring devices with narrow transport channels lead to the observation of giant fluctuations of the photoconductance, which is attributed to the strong dependence of hopping current on the filling of dots by holes. In our experiments, single-photon mode operation is indicated by the linear dependence of the frequency of photo-induced fluctuations on the light intensity and the step-like response of conductance on the pulse excitation. The effect of the light wavelength, measurement temperature, size of the conductive channel on the device efficiency are considered.

  8. Shock induced ignition and DDT in the presence of mechanically driven fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, Wentian; McDonald, James G.; Radulescu, Matei I.

    2015-11-01

    The present study addresses the problem of shock induced ignition and transition to detonation in the presence of mechanical and thermal fluctuations. These departures from a homogeneous medium are of significant importance in practical situations, where such fluctuations may promote hot-spot ignition and favor the flame transition to detonation. The problem is studied in 1D, where a piston-induced shock ignites the gas. The fluctuations in the shock-compressed medium are controlled by allowing the piston's speed to oscillate around a mean, with controllable frequency and amplitude. A Lagrangian numerical formulation is used, which allows to treat exactly the transient boundary condition at the piston head. The hydrodynamic solver is coupled with the reactive dynamics of the gas using Cantera. The code was verified by comparison with steady state ZND solutions and previous shock induced ignition results in homogeneous media. Results obtained for different fuels illustrate the strong relation of the DDT amplification length to mechanical fluctuations in systems with a high effective activation energy and fast rate of energy deposition, consistent with experiments performed on fast flame acceleration in the presence of strong mechanical perturbations. Financial support from NSERC and Shell, with A. Pekalski and M. Levin as technical monitors, are greatly acknowledged.

  9. Causal signal transmission by quantum fields. VI: The Lorentz condition and Maxwell's equations for fluctuations of the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Plimak, L. I.; Stenholm, S.

    2013-11-01

    The general structure of electromagnetic interactions in the so-called response representation of quantum electrodynamics (QED) is analysed. A formal solution to the general quantum problem of the electromagnetic field interacting with matter is found. Independently, a formal solution to the corresponding problem in classical stochastic electrodynamics (CSED) is constructed. CSED and QED differ only in the replacement of stochastic averages of c-number fields and currents by time-normal averages of the corresponding Heisenberg operators. All relations of QED connecting quantum field to quantum current lack Planck's constant, and thus coincide with their counterparts in CSED. In Feynman's terms, one encounters complete disentanglement of the potential and current operators in response picture.

  10. Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment

    NASA Astrophysics Data System (ADS)

    Li, Dongxi; Xu, Wei; Guo, Yongfeng; Xu, Yong

    2011-01-01

    We investigate a stochastic model of tumor growth derived from the catalytic Michaelis-Menten reaction with positional and environmental fluctuations under subthreshold periodic treatment. Firstly, the influences of environmental fluctuations on the treatable stage are analyzed numerically. Applying the standard theory of stochastic resonance derived from the two-state approach, we derive the signal-to-noise ratio (SNR) analytically, which is used to measure the stochastic resonance phenomenon. It is found that the weak environmental fluctuations could induce the extinction of tumor cells in the subthreshold periodic treatment. The positional stability is better in favor of the treatment of the tumor cells. Besides, the appropriate and feasible treatment intensity and the treatment cycle should be highlighted considered in the treatment of tumor cells.

  11. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    PubMed Central

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-01-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034

  12. Three-pathway electromagnetically induced transparency in coupled-cavity optomechanical system.

    PubMed

    Lei, Fu-Chuan; Gao, Ming; Du, Chunguang; Jing, Qing-Li; Long, Gui-Lu

    2015-05-04

    Recently Qu and Agarwal [Phys. Rev. A 22, 031802 (2013)] found a three-pathway electromagnetically induced absorption (TEIA) phenomenon within a mechanically coupled two-cavity system, where there exist a sharp EIA dip in the broad electromagnetically induced transparency peak in the transmission spectrum. In this work, we study the response of a probe light in a pair of directly coupled microcavities with one mechanical mode. We find that in addition to the sharp TEIA dip within a broad EIT window as found by Qu and Agarwal, three-pathway electromagnetically induced transparency (TEIT) within the broad EIT window could also exist under certain conditions. We give explicit physical explanations and detailed calculations. Our results provide a method for controlling transition between TEIA and TEIT in coupled optomechanical systems, and reveal the multiple pathways interference is versatile for controlling light.

  13. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    NASA Astrophysics Data System (ADS)

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-02-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties.

  14. Fluctuation-induced transport of two coupled particles: Effect of the interparticle interaction

    NASA Astrophysics Data System (ADS)

    Makhnovskii, Yurii A.; Rozenbaum, Viktor M.; Sheu, Sheh-Yi; Yang, Dah-Yen; Trakhtenberg, Leonid I.; Lin, Sheng Hsien

    2014-06-01

    We consider a system of two coupled particles fluctuating between two states, with different interparticle interaction potentials and particle friction coefficients. An external action drives the interstate transitions that induces reciprocating motion along the internal coordinate x (the interparticle distance). The system moves unidirectionally due to rectification of the internal motion by asymmetric friction fluctuations and thus operates as a dimeric motor that converts input energy into net movement. We focus on how the law of interaction between the particles affects the dimer transport and, in particular, the role of thermal noise in the motion inducing mechanism. It is argued that if the interaction potential behaves at large distances as xα, depending on the value of the exponent α, the thermal noise plays a constructive (α > 2), neutral (α = 2), or destructive (α < 2) role. In the case of α = 1, corresponding piecewise linear potential profiles, an exact solution is obtained and discussed in detail.

  15. Growth inhibition of Staphylococcus aureus induced by low-frequency electric and electromagnetic fields.

    PubMed

    Obermeier, Andreas; Matl, Florian Dominik; Friess, Wolfgang; Stemberger, Axel

    2009-05-01

    Magnetic field therapy is an established technique in the treatment of pseudarthrosis. In cases of osteomylitis, palliation is also observed. This study focuses on the impact of different electric and electromagnetic fields on the growth of Staphylococcus aureus by in vitro technologies. Cultures of Staphylococcus aureus in fluid and gel-like medium were exposed to a low-frequency electromagnetic field, an electromagnetic field combined with an additional electric field, a sinusoidal electric field and a static electric field. In gel-like medium no significant difference between colony-forming units of exposed samples and non-exposed references was detected. In contrast, Staphylococcus aureus concentrations in fluid medium could clearly be reduced under the influence of the four different applied fields within 24 h of experiment. The strongest effects were observed for the direct current electric field which could decrease CFU/ml of 37%, and the low-frequency electromagnetic field with additional induced electric alternating field with a decrease of Staphylococci concentration by 36%. The effects of the electromagnetic treatment on Staphylococci within fluid medium are significantly higher than in gel-like medium. The application of low-frequency electromagnetic fields corroborates clinical situations of bone infections during magnetic field therapy.

  16. Memory effect in the upper bound of the heat flux induced by quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Koide, T.

    2016-10-01

    Thermodynamic behaviors in a quantum Brownian motion coupled to a classical heat bath is studied. We then define a heat operator by generalizing the stochastic energetics and show the energy balance (first law) and the upper bound of the expectation value of the heat operator (second law). We further find that this upper bound depends on the memory effect induced by quantum fluctuations and hence the maximum extractable work can be qualitatively modified in quantum thermodynamics.

  17. Memory effect in the upper bound of the heat flux induced by quantum fluctuations.

    PubMed

    Koide, T

    2016-10-01

    Thermodynamic behaviors in a quantum Brownian motion coupled to a classical heat bath is studied. We then define a heat operator by generalizing the stochastic energetics and show the energy balance (first law) and the upper bound of the expectation value of the heat operator (second law). We further find that this upper bound depends on the memory effect induced by quantum fluctuations and hence the maximum extractable work can be qualitatively modified in quantum thermodynamics.

  18. Experimental distinction of Autler-Townes splitting from electromagnetically induced transparency using coupled mechanical oscillators system

    PubMed Central

    Liu, Jingliang; Yang, Hujiang; Wang, Chuan; Xu, Kun; Xiao, Jinghua

    2016-01-01

    Here we experimentally demonstrated the electromagnetically induced transparency (EIT) and Autler-Townes splitting (ATS) effects in mechanical coupled pendulums. The analogue of EIT and ATS has been studied in mechanical systems and the intrinsic physics between these two phenomena are also been discussed. Exploiting the Akaike Information Criterion, we discern the ATS effect from EIT effect in our experimental results. PMID:26751738

  19. Blade Section Design of Marine Propellers with Minimum Cavitation Induced Pressure Fluctuations

    NASA Astrophysics Data System (ADS)

    Zeng, Zhibo; Kuiper, Gert

    2015-12-01

    To minimize cavitation induced pressure fluctuations by marine propellers with minimum efficiency loss, the paper presents a new design and optimization method using a blade section design method. The sheet cavity volume variation on a two-dimensional blade section in quasi-steady condition has been simplified to a relation with only a limited number of non-dimensional parameters. This results in a fast prediction method of the cavity volume of a blade section passing a wake peak, using a pre-calculated database. This makes optimization feasible. The optimization method was applied to the propeller of a container ship. Extensive tests in a towing tank and a cavitation channel validated the reduction of pressure fluctuations: 33% reduction in the first blade frequency amplitude and 18% reduction in the second blade frequency amplitude, with the same open water efficiency.

  20. Stochastic transport in the presence of spatial disorder: Fluctuation-induced corrections to homogenization

    NASA Astrophysics Data System (ADS)

    Russell, Matthew J.; Jensen, Oliver E.; Galla, Tobias

    2016-10-01

    Motivated by uncertainty quantification in natural transport systems, we investigate an individual-based transport process involving particles undergoing a random walk along a line of point sinks whose strengths are themselves independent random variables. We assume particles are removed from the system via first-order kinetics. We analyze the system using a hierarchy of approaches when the sinks are sparsely distributed, including a stochastic homogenization approximation that yields explicit predictions for the extrinsic disorder in the stationary state due to sink strength fluctuations. The extrinsic noise induces long-range spatial correlations in the particle concentration, unlike fluctuations due to the intrinsic noise alone. Additionally, the mean concentration profile, averaged over both intrinsic and extrinsic noise, is elevated compared with the corresponding profile from a uniform sink distribution, showing that the classical homogenization approximation can be a biased estimator of the true mean.

  1. Fluctuation-induced shear flow and energy transfer in plasma interchange turbulence

    SciTech Connect

    Li, B.; Sun, C. K.; Wang, X. Y.; Zhou, A.; Wang, X. G.; Ernst, D. R.

    2015-11-15

    Fluctuation-induced E × B shear flow and energy transfer for plasma interchange turbulence are examined in a flux-driven system with both closed and open magnetic field lines. The nonlinear evolution of interchange turbulence shows the presence of two confinement regimes characterized by low and high E × B flow shear. In the first regime, the large-scale turbulent convection is dominant and the mean E × B shear flow is at a relatively low level. By increasing the heat flux above a certain threshold, the increased turbulent intensity gives rise to the transfer of energy from fluctuations to mean E × B flows. As a result, a transition to the second regime occurs, in which a strong mean E × B shear flow is generated.

  2. Gravity effects on Soret-induced non-equilibrium fluctuations in ternary mixtures.

    PubMed

    Martínez Pancorbo, Pablo; Ortiz de Zárate, José M; Bataller, Henri; Croccolo, Fabrizio

    2017-02-01

    We discuss the gravity effects on the dynamics of composition fluctuations in a ternary mixture around the non-equilibrium quiescent state induced by thermodiffusion when subjected to a stationary temperature gradient. We found that the autocorrelation matrix of concentration fluctuations can be expressed as the sum of two exponentially decaying concentration modes. Without accounting for confinement, we obtained exact analytical expressions for the two decay rates which, as a consequence of gravity, display a wave-number-dependent mixing. The stability of the quiescent solution is also examined, as a function of the two solutal Rayleigh numbers used to express the decay rates. After having discussed the dynamics of the two concentration modes, we calculate the corresponding amplitudes. Consequences for optical experiments are discussed.

  3. Continuum resonance induced electromagnetic torque by a rotating plasma response to static resonant magnetic perturbation field

    SciTech Connect

    Liu Yueqiang; Connor, J. W.; Cowley, S. C.; Ham, C. J.; Hastie, R. J.; Hender, T. C.

    2012-10-15

    A numerical study is carried out, based on a simple toroidal tokamak equilibrium, to demonstrate the radial re-distribution of the electromagnetic torque density, as a result of a rotating resistive plasma (linear) response to a static resonant magnetic perturbation field. The computed electromagnetic torque peaks at several radial locations even in the presence of a single rational surface, due to resonances between the rotating response, in the plasma frame, and both Alfven and sound continuum waves. These peaks tend to merge together to form a rather global torque distribution, when the plasma resistivity is large. The continuum resonance induced net electromagnetic torque remains finite even in the limit of an ideal plasma.

  4. Infrared Fiber Radiometer For Thermometry In Electromagnetic Induced Therapeutic Healing

    NASA Astrophysics Data System (ADS)

    Katzir, A.; Bowman, F.; Asfour, Y.; Zur, A.; Valeri, C. R.

    1988-06-01

    Hypothermia is a condition which results from prolonged exposure to a cold environment. Rapid and efficient heating is needed to rewarm the patient from 32-35°C to normal body temperature. Hyperthermia in cancer treatment involves heating malignant tumors to 42.5-43.0°C for an extended period (e.g. 30 min.) in an attempt to obtain remission. Microwave or radio frequency heating is often used for rewarming in hypothermia or for temperature elevation in hyperthermia treatment. One severe problem with such heating is the accurate measurement and control of temperature in the presence of a strong electro-magnetic field. For this purpose we have developed a fiberoptic radiometer system which is based on a non-metallic, infrared fiber probe, which can operate either in contact or in non-contact modes. In preliminary investigations the radiometer worked well in a strong microwave or radiofrequency field, with an accuracy of ±0.5°C.

  5. Causal signal transmission by quantum fields. VI: The Lorentz condition and Maxwell’s equations for fluctuations of the electromagnetic field

    SciTech Connect

    Plimak, L.I.; Stenholm, S.

    2013-11-15

    The general structure of electromagnetic interactions in the so-called response representation of quantum electrodynamics (QED) is analysed. A formal solution to the general quantum problem of the electromagnetic field interacting with matter is found. Independently, a formal solution to the corresponding problem in classical stochastic electrodynamics (CSED) is constructed. CSED and QED differ only in the replacement of stochastic averages of c-number fields and currents by time-normal averages of the corresponding Heisenberg operators. All relations of QED connecting quantum field to quantum current lack Planck’s constant, and thus coincide with their counterparts in CSED. In Feynman’s terms, one encounters complete disentanglement of the potential and current operators in response picture. Based on this parallelism between QED and CSED, it is natural to expect validity of the Lorentz condition and Maxwell’s equations for the time-normal averages of the potential and current. Things however turn out to be more complicated. Maxwell’s equations under the time-normal ordering can only be demonstrated subject to cancellation of the so-called Schwinger terms by gauge-invariant regularisations. We presume this pattern to be general, formulating this as “commutativity conjecture”. Consistency of the latter with the Heisenberg uncertainty principle is discussed. -- Highlights: •The general structure of interaction in quantum electrodynamics (QED) is analysed. •A detailed parallelism between QED and classical stochastic electrodynamics is shown. •Validity of Maxwell’s equations for fluctuations of the field is discussed. •This validity turns out to be in essence a renormalisation postulate.

  6. Tunable electromagnetically induced transparency in hybrid graphene/all-dielectric metamaterial

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Dong, Liang; Guo, Jing; Meng, Fan-Yi; Wu, Qun

    2017-03-01

    We proposed a hybrid graphene/dielectric structure to achieve tunable electromagnetically induced transparency (EIT) effect. Unit cell of hybrid structure consists of a graphene strip as bright element and a dielectric split ring resonator (DSRR) as quasi-dark element. The destructive inference between dipolar plasmon resonance induced by graphene strip and Mie resonance induced by DSRR leads to famous EIT effect. By altering physical sizes of two resonant elements and their couplings, EIT resonance can be effectively controlled. In particular, EIT window and effective group index can be dynamically dominated by varying graphene strip's Fermi level. This active manipulation is also confirmed using "two-particle" model. More interestingly, EIT resonance can be also effectively modulated through controlling incident angles for electromagnetic (EM) waves. These results would have promising applications in areas of tunable slow light devices and new filters.

  7. Geometry-induced modification of fluctuation spectrum in quasi-two-dimensional condensates

    NASA Astrophysics Data System (ADS)

    Roy, Arko; Angom, D.

    2016-08-01

    We report the structural transformation of the low-lying spectral modes, especially the Kohn mode, from radial to circular topology as harmonic confining potential is modified to a toroidal one, and this corresponds to a transition from simply to multiply connected geometry. For this we employ the Hartree-Fock-Bogoliubov theory to examine the evolution of low energy quasiparticles. We, then, use the Hartree-Fock-Bogoliubov theory with the Popov approximation to demonstrate the two striking features of quantum and thermal fluctuations. At T = 0, the non-condensate density due to interaction induced quantum fluctuations increases with the transformation from pancake to toroidal geometry. The other feature is, there is a marked change in the density profile of the non-condensate density at finite temperatures with the modification of trapping potential. In particular, the condensate and non-condensate density distributions have overlapping maxima in the toroidal condensate, which is in stark contrast to the case of pancake geometry. The genesis of this difference lies in the nature of the thermal fluctuations.

  8. Electron fluctuation induced resonance broadening in nano electromechanical systems: the origin of shear force in vacuum.

    PubMed

    Siria, A; Barois, T; Vilella, K; Perisanu, S; Ayari, A; Guillot, D; Purcell, S T; Poncharal, P

    2012-07-11

    This article presents a study of the poorly understood "shear-force" used in an important class of near-field instruments that use mechanical resonance feedback detection. In the case of a metallic probe near a metallic surface in vacuum, we show that in the 10-60 nm range there is no such a thing as a shear-force in the sense of the nonconservative friction force. Fluctuations of the oscillator resonance frequency, likely induced by local charge variations, could account for the reported effects in the literature without introducing a dissipative force.

  9. Nanometer-scale elongation rate fluctuations in the Myriophyllum aquaticum (Parrot feather) stem were altered by radio-frequency electromagnetic radiation.

    PubMed

    Senavirathna, Mudalige Don Hiranya Jayasanka; Asaeda, Takashi; Thilakarathne, Bodhipaksha Lalith Sanjaya; Kadono, Hirofumi

    2014-01-01

    The emission of radio-frequency electromagnetic radiation (EMR) by various wireless communication base stations has increased in recent years. While there is wide concern about the effects of EMR on humans and animals, the influence of EMR on plants is not well understood. In this study, we investigated the effect of EMR on the growth dynamics of Myriophyllum aquaticum (Parrot feather) by measuring the nanometric elongation rate fluctuation (NERF) using a statistical interferometry technique. Plants were exposed to 2 GHz EMR at a maximum of 1.42 Wm(-2) for 1 h. After continuous exposure to EMR, M. aquaticum plants exhibited a statistically significant 51 ± 16% reduction in NERF standard deviation. Temperature observations revealed that EMR exposure did not cause dielectric heating of the plants. Therefore, the reduced NERF was due to a non-thermal effect caused by EMR exposure. The alteration in NERF continued for at least 2.5 h after EMR exposure and no significant recovery was found in post-EMR NERF during the experimental period.

  10. Nanometer-scale elongation rate fluctuations in the Myriophyllum aquaticum (Parrot feather) stem were altered by radio-frequency electromagnetic radiation

    PubMed Central

    Senavirathna, Mudalige Don Hiranya Jayasanka; Asaeda, Takashi; Thilakarathne, Bodhipaksha Lalith Sanjaya; Kadono, Hirofumi

    2014-01-01

    The emission of radio-frequency electromagnetic radiation (EMR) by various wireless communication base stations has increased in recent years. While there is wide concern about the effects of EMR on humans and animals, the influence of EMR on plants is not well understood. In this study, we investigated the effect of EMR on the growth dynamics of Myriophyllum aquaticum (Parrot feather) by measuring the nanometric elongation rate fluctuation (NERF) using a statistical interferometry technique. Plants were exposed to 2 GHz EMR at a maximum of 1.42 Wm−2 for 1 h. After continuous exposure to EMR, M. aquaticum plants exhibited a statistically significant 51 ± 16% reduction in NERF standard deviation. Temperature observations revealed that EMR exposure did not cause dielectric heating of the plants. Therefore, the reduced NERF was due to a non-thermal effect caused by EMR exposure. The alteration in NERF continued for at least 2.5 h after EMR exposure and no significant recovery was found in post-EMR NERF during the experimental period. PMID:24670369

  11. Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response

    SciTech Connect

    Li, Hai-ming; Liu, Shao-bin Liu, Si-yuan; Ding, Guo-wen; Yang, Hua; Yu, Zhi-yang; Zhang, Hai-feng; Wang, Shen-yun

    2015-02-23

    In this paper, a low-loss and high transmission analogy of electromagnetically induced transparency based on electric toroidal dipolar response is numerically and experimentally demonstrated. It is obtained by the excitation of the low-loss electric toroidal dipolar response, which confines the magnetic field inside a dielectric substrate with toroidal geometry. The metamaterial electromagnetically induced transparency (EIT) structure is composed of the cut wire and asymmetric split-ring resonators. The transmission level is as high as 0.88, and the radiation loss is greatly suppressed, which can be proved by the surface currents distributions, the magnetic field distributions, and the imaginary parts of the effective permeability and permittivity. It offers an effective way to produce low-loss and high transmission metamaterial EIT.

  12. Hanle electromagnetically induced transparency and absorption resonances with a Laguerre Gaussian beam

    SciTech Connect

    Anupriya, J.; Ram, Nibedita; Pattabiraman, M.

    2010-04-15

    We describe a computational and experimental study on Hanle electromagnetically induced transparency and absorption resonance line shapes with a Laguerre Gaussian (LG) beam. It is seen that the LG beam profile brings about a significant narrowing in the line shape of the Hanle resonance and ground-state Zeeman coherence in comparison to a Gaussian beam. This narrowing is attributed to the azimuthal mode index of the LG field.

  13. Electromagnetically induced left handedness in optically excited four-level atomic media.

    PubMed

    Thommen, Quentin; Mandel, Paul

    2006-02-10

    We show that left-handed properties can be electromagnetically induced in a general four-level atomic medium for a finite spectral range. We use an electric (magnetic) atomic transition as an electric (magnetic) resonator to modify the permittivity (permeability), both at the same frequency. The implementation of the four-level model is carried out in atomic hydrogen and neon. In each case the existence of left-handed properties is predicted inside an experimentally reachable domain of parameters.

  14. Numerical simulation of adiabatons in electromagnetically induced transparency under quasi-resonance conditions

    SciTech Connect

    Parshkov, O M; Govorenko, E R

    2014-02-28

    The evolution of adiabatons in electromagnetically induced transparency in the Λ scheme of degenerate quantum transitions J = 0 → J = 1 → J = 2 with Doppler broadening of spectral lines has been numerically simulated taking into account the effect of resonance detunings. It is shown that, in the case of linearly polarised fields, an increase in the probe-field resonance detuning (under exact-resonance conditions for the control radiation) leads to a transformation of electromagnetically induced transparency into electromagnetically induced absorption at certain stages. When the control-field resonance detuning is varied, the transparency of the medium for the probe (exactly resonant) radiation monotonically decreases with increasing detuning because of the rising role of single-photon absorption. In the case of circularly polarised control radiation and linearly polarised input probe field, a probe pulse propagating in the medium splits into two pulses with oppositely directed circular polarisations. An increase in the probe pulse resonance detuning (under exact-resonance conditions for the control radiation) leads primarily to an increase in the absorption by the medium of the probe pulse, the direction of circular polarisation for which coincides with the circular-polarisation direction for the control radiation. (nonlinear optical phenomena)

  15. Fluctuation-induced forces in nematics with a foreign anisotropy in the bulk

    NASA Astrophysics Data System (ADS)

    Karimi Pour Haddadan, Fahimeh

    2017-02-01

    Within a linear coupling between orientational order of nematic liquid crystal and anisotropic mesoscopic particles immeresed in the nematic, the pseudo-Casimir effect is investigated. A quenched disorder in the alignment of the particles, which is on average in the direction of the nematic director, induces an inter-substrate force as this composite is confined by two flat parallel surfaces a distance d apart. The disorder-induced force decays as -d -1 in the weak coupling regime. The force magnitude increases with the variance of the disorder and decreases on increasing the correlation length of the disorder. If the disorder is considered to be annealed, the disorder effects are not decoupled from the thermal effects and thus the form of the nematic fluctuation-induced force does not alter. The force is affected by the disorder only through a re-normalization of the mean particles’ pinning strength. The trend for this modified thermal-induced force with respect to the variance and the correlation length of the disorder remains as in the quenched case, where the pseudo-Casimir force was decomposed into two distinct thermal- and disorder-induced components.

  16. Wave-Induced Fluctuations in Underwater Light Field: Analysis of Data from RaDyO Experiments

    DTIC Science & Technology

    2011-09-30

    special instrument, an Underwater Porcupine Radiometer System, which provides a capability to measure wave-induced fluctuations in downward irradiance...fluctuations with the Porcupine system at various depths within the near-surface ocean, typically at depths from about 0.5 or 1 m to 10 m under sunny...conditions. Typical 10-min time-series obtained with the Porcupine system using the sampling frequency of 1 kHz includes 600,000 data points for each of

  17. Electromagnetically induced transparency in an asymmetric double quantum well under non-resonant, intense laser fields

    NASA Astrophysics Data System (ADS)

    Niculescu, E. C.

    2017-02-01

    Electromagnetically induced transparency in an asymmetric double quantum well subjected to a non-resonant, intense laser field is theoretically investigated. We found that the energy levels configuration could be switched between a Λ-type and a ladder-type scheme by varying the non-resonant radiation intensity. This effect is due to the laser-induced electron tunneling between the wells and it allows a substantial flexibility in the manipulation of the optical properties. The dependence of the susceptibilities on the control field Rabi frequency, intensity of the nonresonant laser, and the control field detuning for both configurations are discussed and compared.

  18. Electromagnetically induced transparency in rubidium vapor prepared by a comb of short optical pulses

    SciTech Connect

    Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Ye, C.Y.; Welch, George R.; Kocharovskaya, Olga; Scully, Marlan O.

    2005-06-15

    It was shown by Kocharovskaya and Khanin [Sov. Phys. JETP 63, 945 (1986)] that a comb of optical pulses can induce a ground-state atomic coherence and change the optical response of an atomic medium. In our experiment, we studied the propagation of a comb of optical pulses produced by a mode-locked diode laser in rubidium atomic vapor. Electromagnetically induced transparency (EIT) was observed when the pulse repetition rate is a subharmonic of the hyperfine splitting of the ground state. The width of the EIT resonance is determined by the relaxation rate of the ground-state coherence. Possible applications to magnetometery, atomic clocks, and frequency chains are discussed.

  19. Plasmonic analog of electromagnetically-induced transparency of asymmetrical slots waveguide

    NASA Astrophysics Data System (ADS)

    Sun, Lin; Wang, Jicheng; Hu, Zheng-Da; Wang, Xiaosai; Chen, Jing

    2016-02-01

    In this paper, electromagnetically-induced transparency (EIT) phenomena have been investigated numerically in the plasmonic waveguides composed of unsymmetrical slot shaped metal-insulator-metal (MIM) structures. By the transmission line theory and Fabry-Perot model, the formation and evolution mechanisms of plasmon-induced transparency were exactly analyzed. The analysis showed that the peak of EIT-like transmission could be changed easily according to certain rules by adjusting the geometrical parameters of the slot structures, including the coupling distances and slot depths. We can find a new method to design nanoscale optical switch, devices in optical storage and optical computing.

  20. Phase Jumps in an Electro-magnetically Induced Transparency System

    NASA Astrophysics Data System (ADS)

    Narducci, F. A.; Noble, J.; Welch, G. R.; Davis, J. P.

    2010-03-01

    We have taken a closer look at the dynamics of an EIT system when the relative phase of the two lasers is abruptly changed. The absorption of the probe field rapidly increases to a value that can exceed even the ordinary two-level absorption, then slowly decays back down to the induced transparency level. This system has been previously studied by some of us theoretically [1] and experimentally [2,3]. We show that the timescale for the rapid rise is set by the inverse bandwidth of the medium in the absence of the pump field and is therefore dramatically different for a room temperature cell as for a laser cooled sample. We also show that, surprisingly, the slow decay is not dependent on the ground state coherence time, but rather, the interplay between the Rabi frequencies and the excited state spontaneous emission rate. This suggests that, theoretically, the rise time can be made arbitrarily fast, while, simultaneously, the decay time can be made arbitrarily small or even zero. We draw a comparison with experiments performed in a warm cell and in experiments being conducted in a cold sample of atoms. [1] T. Abi-salloum, J.P. Davis, C. Lehman, E. Elliott, F.A. Narducci, J. Mod. Opt, 54, 2459-2471, (2007). [2] V.A. Sautenkov, H. Li, Y.V. Rostovtsev, G.R. Welch, J.P. Davis, F.A. Narducci, M. O. Scully, J. Mod. Opt, 55, 3093-3099, (2008). [3] V.A. Sautenkov, H. Li, Y.V. Rostovtsev, G.R. Welch, J.P. Davis, F.A. Narducci, M.O. Scully, J. Mod. Opt, 56, 975-979, (2009).

  1. Electromagnetic coupling in frequency domain induced polarisation data

    NASA Astrophysics Data System (ADS)

    Routh, Partha Sarathi

    2000-11-01

    Frequency domain induced polarization (IP) surveys are commonly carried out to provide information about the chargeability structure of the earth. The goals might be as diverse as trying to delineate a mineralized and/or alteration zone for mineral exploration, or to find a region of contaminants for an environmental problem. Unfortunately, the measured responses can have contributions from inductive and galvanic effects of the ground. The inductive components are called EM coupling effects. They are considered to be ``noise'' and much of this thesis is devoted towards either removing these effects, or reformulating the inverse problem so that inductive effects are part of the ``signal''. If the forward modeling is based on galvanic responses only, then the inductive responses must first be removed from the data. The motivation for attacking the problem in this manner is that it is easier to solve D.C. resistivity equation than the full Maxwell's equation. The separation of the inductive response from the total response is derived by expressing the total electric field as a product of an IP response function, and an electric field which depends on EM coupling response. This enables me to generate formulae to obtain IP amplitude (PFE) and phase response from the raw data. The data can then be inverted, using a galvanic forward modeling. I illustrate this with 1D and 3D synthetic examples. To handle field data sets, I have developed an approximate method for estimating the EM coupling effects based upon the assumption that the earth is locally 1D. The 1D conductivity is obtained from a 2D inversion of the low frequency DC resistivity data. Application of this method to a field data set has shown encouraging results. I also examine the EM coupling problem in terms of complex conductivity. I show that if the forward modeling is carried out with full Maxwell's equation, then there is no need to remove EM coupling. I illustrate this with 1D synthetic example. In summary

  2. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems

    NASA Astrophysics Data System (ADS)

    Pan, Liang; Huang, Yingzhou; Yang, Yanna; Xiong, Wen; Chen, Guo; Su, Xun; Wei, Hua; Wang, Shuxia; Wen, Weijia

    2015-11-01

    For the novel interpretation of Raman spectrum from molecule at metal surface, the plasmon driven surface catalysis (PDSC) reactions have become an interesting topic in the research field of surface enhanced Raman scattering (SERS). In this work, the selective PDSC reactions of p,p’-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) or 4-nitrobenzenethiol (4NBT) were demonstrated in the Ag nanowires dimer-Au film systems. The different SERS spectra collected at individual part and adjacent part of the same nanowire-film system pointed out the importance of the electromagnetic field redistribution induced by image charge on film in this selective surface catalysis, which was confirmed by the simulated electromagnetic simulated electro- magnetic field distributions. Our result indicated this electromagnetic field redistribution induced selective surface catalysis was largely affected by the polarization and wavelength of incident light but slightly by the difference in diameters between two nanowires. Our work provides a further understanding of PDSC reaction in metal nanostructure and could be a deep support for the researches on surface catalysis and surface analysis.

  3. Nonreciprocal Transverse Photonic Spin and Magnetization-Induced Electromagnetic Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Levy, Miguel; Karki, Dolendra

    2017-01-01

    We present a formulation of electromagnetic spin-orbit coupling in magneto-optic media, and propose an alternative source of spin-orbit coupling to non-paraxial optics vortices. Our treatment puts forth a formulation of nonreciprocal transverse-spin angular-momentum-density shifts for evanescent waves in magneto-optic waveguide media. It shows that magnetization-induced electromagnetic spin-orbit coupling is possible, and that it leads to unequal spin to orbital angular momentum conversion in magneto-optic media evanescent waves in opposite propagation-directions. Generation of free-space helicoidal beams based on this conversion is shown to be spin-helicity- and magnetization-dependent. We show that transverse-spin to orbital angular momentum coupling into magneto-optic waveguide media engenders spin-helicity-dependent unidirectional propagation. This unidirectional effect produces different orbital angular momenta in opposite directions upon excitation-spin-helicity reversals.

  4. Nonreciprocal Transverse Photonic Spin and Magnetization-Induced Electromagnetic Spin-Orbit Coupling

    PubMed Central

    Levy, Miguel; Karki, Dolendra

    2017-01-01

    We present a formulation of electromagnetic spin-orbit coupling in magneto-optic media, and propose an alternative source of spin-orbit coupling to non-paraxial optics vortices. Our treatment puts forth a formulation of nonreciprocal transverse-spin angular-momentum-density shifts for evanescent waves in magneto-optic waveguide media. It shows that magnetization-induced electromagnetic spin-orbit coupling is possible, and that it leads to unequal spin to orbital angular momentum conversion in magneto-optic media evanescent waves in opposite propagation-directions. Generation of free-space helicoidal beams based on this conversion is shown to be spin-helicity- and magnetization-dependent. We show that transverse-spin to orbital angular momentum coupling into magneto-optic waveguide media engenders spin-helicity-dependent unidirectional propagation. This unidirectional effect produces different orbital angular momenta in opposite directions upon excitation-spin-helicity reversals. PMID:28059120

  5. Nonreciprocal Transverse Photonic Spin and Magnetization-Induced Electromagnetic Spin-Orbit Coupling.

    PubMed

    Levy, Miguel; Karki, Dolendra

    2017-01-06

    We present a formulation of electromagnetic spin-orbit coupling in magneto-optic media, and propose an alternative source of spin-orbit coupling to non-paraxial optics vortices. Our treatment puts forth a formulation of nonreciprocal transverse-spin angular-momentum-density shifts for evanescent waves in magneto-optic waveguide media. It shows that magnetization-induced electromagnetic spin-orbit coupling is possible, and that it leads to unequal spin to orbital angular momentum conversion in magneto-optic media evanescent waves in opposite propagation-directions. Generation of free-space helicoidal beams based on this conversion is shown to be spin-helicity- and magnetization-dependent. We show that transverse-spin to orbital angular momentum coupling into magneto-optic waveguide media engenders spin-helicity-dependent unidirectional propagation. This unidirectional effect produces different orbital angular momenta in opposite directions upon excitation-spin-helicity reversals.

  6. Statistics of fluctuation induced transport in the scrape-off layer of Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Kube, Ralph; Garcia, Odd Erik; Theodorsen, Audun; Labombard, Brian; Terry, James

    2016-10-01

    The fluctuation induced transport in the scrape-off layer of Alcator C-Mod is investigated in an ohmically heated lower single-null discharge using Mirror Langmuir Probes. The probes are connected to a horizontal scanning probe which dwells at the outboard mid plane limiter radius and to electrodes in the outer divertor baffle. At the limiter radius the electron density, electron temperature and plasma potential are correlated with linear correlation coefficients r of approximately r=0.8. The bursts show a steep rise and a decay on a time scales of approximately 5 and 10 microseconds respectively. Amplitudes of bursts in the density, temperature, and plasma potential time series are correlated with r approximately 0.7-0.8. Conditionally averaged bursts in the radial particle and heat flux time series are less coherent and less reproducible, their amplitudes are correlated to the amplitude of bursts in the density time series with r=0.4. Statistics of the fluctuating plasma parameters at the outer divertor baffle are qualitatively similar to those at outboard midplane. Histograms, as well as statistics for level crossings and excess times spent above a given threshold for the time series compare favorably to a stochastic model for time series of scrape-off layer plasmas.

  7. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes

    NASA Astrophysics Data System (ADS)

    Cai, Kaicong; Du, Fenfen; Liu, Jia; Su, Tingting

    2015-02-01

    The solvation effect on the three dimensional structure and the vibrational feature of alanine dipeptide (ALAD) was evaluated by applying the implicit solvents from polarizable continuum solvent model (PCM) through ab initio calculations, by using molecular dynamic (MD) simulations with explicit solvents, and by combining these two approaches. The implicit solvent induced potential energy fluctuations of ALAD in CHCl3, DMSO and H2O are revealed by means of ab initio calculations, and a global view of conformational and solvation environmental dependence of amide I frequencies is achieved. The results from MD simulations with explicit solvents show that ALAD trends to form PPII, αL, αR, and C5 in water, PPII and C5 in DMSO, and C5 in CHCl3, ordered by population, and the demonstration of the solvated structure, the solute-solvent interaction and hydrogen bonding is therefore enhanced. Representative ALAD-solvent clusters were sampled from MD trajectories and undergone ab initio calculations. The explicit solvents reveal the hydrogen bonding between ALAD and solvents, and the correlation between amide I frequencies and the Cdbnd O bond length is built. The implicit solvents applied to the ALAD-solvent clusters further compensate the solvation effect from the bulk, and thus enlarge the degree of structural distortion and the amide I frequency red shift. The combination of explicit solvent in the first hydration shell and implicit solvent in the bulk is helpful for our understanding about the conformational fluctuation of solvated polypeptides through vibrational probes.

  8. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes.

    PubMed

    Cai, Kaicong; Du, Fenfen; Liu, Jia; Su, Tingting

    2015-02-25

    The solvation effect on the three dimensional structure and the vibrational feature of alanine dipeptide (ALAD) was evaluated by applying the implicit solvents from polarizable continuum solvent model (PCM) through ab initio calculations, by using molecular dynamic (MD) simulations with explicit solvents, and by combining these two approaches. The implicit solvent induced potential energy fluctuations of ALAD in CHCl3, DMSO and H2O are revealed by means of ab initio calculations, and a global view of conformational and solvation environmental dependence of amide I frequencies is achieved. The results from MD simulations with explicit solvents show that ALAD trends to form PPII, αL, αR, and C5 in water, PPII and C5 in DMSO, and C5 in CHCl3, ordered by population, and the demonstration of the solvated structure, the solute-solvent interaction and hydrogen bonding is therefore enhanced. Representative ALAD-solvent clusters were sampled from MD trajectories and undergone ab initio calculations. The explicit solvents reveal the hydrogen bonding between ALAD and solvents, and the correlation between amide I frequencies and the CO bond length is built. The implicit solvents applied to the ALAD-solvent clusters further compensate the solvation effect from the bulk, and thus enlarge the degree of structural distortion and the amide I frequency red shift. The combination of explicit solvent in the first hydration shell and implicit solvent in the bulk is helpful for our understanding about the conformational fluctuation of solvated polypeptides through vibrational probes.

  9. Quantum decoherence of a single ion qubit induced by photon-number fluctuations

    NASA Astrophysics Data System (ADS)

    Lee, Moonjoo; Friebe, Konstantin; Ong, Florian R.; Fioretto, Dario A.; Schüppert, Klemens; Blatt, Rainer; Northup, Tracy E.

    2016-09-01

    Quantum measurement is based on the interaction between a quantum object and a meter entangled with the object. While information about the object is being extracted by the interaction, the quantum fluctuations of the object are imprinted onto the meter as a form of decoherence. Here, we study the nondestructive reconstruction of the photon number in an optical cavity, harnessing the quantum decoherence. We consider a single 40Ca+ ion that is dispersively coupled to a high-finesse cavity. While the cavity is populated with weak coherent states, Ramsey spectroscopy is performed on the qubit transition to identify the shift and the broadening of the atomic energy levels. The shift is due to the ac Stark effect induced by cavity photons, and the broadening is attributed to the photon-number fluctuations of the cavity field. We show theoretically that photon-number distributions of the intracavity fields can be reconstructed in a basis of up to eleven Fock states with the maximum likelihood method. Furthermore, we show that the photon number of each polarization component can also be reconstructed, taking advantage of the rich energy-level structure of the ion. In combination with currently available mirror-coating technology, quantum non-demolition (QND) measurement of cavity photons will make it possible to create and manipulate nonclassical cavity-field states in the optical domain.

  10. Fluctuation analysis of nonselective cation currents induced by AIF complex in guinea-pig chromaffin cells.

    PubMed

    Inoue, M; Imanaga, I

    1996-11-11

    Properties of aluminium fluoride (AIF) complex-activated nonselective cation (NS) channels in guinea-pig chromaffin cells were investigated using the patch clamp technique. As the membrane potential was hyperpolarized from the holding potential of -55 mV, the AIF-induced nonselective cation current (INS) diminished progressively. With hyperpolarizations to -100 mV or more negative potentials, the AIF.INS almost instantaneously disappeared. The apparent unit conductance of AIF INS was estimated to be 3 pS by fluctuation analysis. The open state probability of AIF-activated NS channels became large with a decrease in concentration of free Mg2+ ions inside the cell and was less than 0.5 at 12 microM Mg2+. It is concluded that NS channels in the chromaffin cell apparently differ from those in smooth muscle cells.

  11. Quantum dots in InAs nanowires induced by surface potential fluctuations.

    PubMed

    Weis, Karl; Wirths, Stephan; Winden, Andreas; Sladek, Kamil; Hardtdegen, Hilde; Lüth, Hans; Grützmacher, Detlev; Schäpers, Thomas

    2014-04-04

    Back-gated InAs nanowire field-effect transistors are studied focusing on the formation of intrinsic quantum dots, i.e. dots not intentionally defined by electrodes. Such dots have been studied before, but the suggested explanations for their origin leave some open questions, which are addressed here. Stability diagrams of samples with different doping levels are recorded at electron temperatures below 200 mK, allowing us to estimate the number and size of the dots as well as the type of connection, i.e. in series or in parallel. We discuss several potential physical origins of the dots and conclude that they are most probably induced by potential fluctuations at the nanowire surface. Additionally, we show that via gate voltage and doping, the samples can be tuned to different regimes of Coulomb blockade.

  12. Glassiness and exotic entropy scaling induced by quantum fluctuations in a disorder-free frustrated magnet.

    PubMed

    Klich, I; Lee, S-H; Iida, K

    2014-04-01

    When spins are arranged in a lattice of triangular motif, the phenomenon of frustration leads to numerous energetically equivalent ground states, and results in exotic states such as spin liquid and spin ice. Here we report an alternative situation: a system, classically a liquid, freezes in the clean limit into a glassy state induced by quantum fluctuations. We call such glassy state a spin jam. The case in point is a frustrated magnet, where spins are arranged in a triangular network of bipyramids. Quantum corrections break the classical degeneracy into a set of aperiodic spin configurations forming local minima in a rugged energy landscape. This is established by mapping the problem into tiling with hexagonal tiles. The number of tessellations scales with the boundary length rather than its volume, showing the absence of local zero-energy modes. Low-temperature thermodynamics is discussed to compare it with other glassy materials.

  13. Quantum Mechanical Enhancement of the Random Dopant Induced Threshold Voltage Fluctuations and Lowering in Sub 0.1 Micron MOSFETs

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, Subhash

    1999-01-01

    A detailed study of the influence of quantum effects in the inversion layer on the random dopant induced threshold voltage fluctuations and lowering in sub 0.1 micron MOSFETs has been performed. This has been achieved using a full 3D implementation of the density gradient (DG) formalism incorporated in our previously published 3D 'atomistic' simulation approach. This results in a consistent, fully 3D, quantum mechanical picture which implies not only the vertical inversion layer quantisation but also the lateral confinement effects manifested by current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical fluctuations, is an increase in both threshold voltage fluctuations and lowering.

  14. Rayleigh-Taylor-Induced Electromagnetic Fields in Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Manuel, Mario J.-E.

    Spontaneous electromagnetic fields can be important to the dynamic evolution of a plasma by directing heat flow as well as providing additional pressures on the conducting fluids through the Lorentz force. Electromagnetic fields are predicted to affect fluid behavior during the core-collapse of supernovae through generation of fields due to hydrodynamic instabilities. In the coronae of stars, self-generated magnetic fields lead to filamentary structure in the hot plasma. Recent experiments by Gregori et al. investigated sources of protogalactic magnetic fields generated by laser-produced shock waves. In inertial confinement fusion experiments, self-generated electromagnetic fields can also play a role and have recently become of great interest to the community. Present day laser facilities provide a unique opportunity to study spontaneous field-generation in these extreme environments under controlled conditions. Instability-induced electromagnetic fields were investigated using a novel monoenergetic-proton radiography system. Fusion protons generated by an 'exploding-pusher' implosion were used to probe laser-irradiated plastic foils with various preimposed surface perturbations. Imaging protons are sensitive to electromagnetic fields and density modulations in the plasma through the Lorentz force and Coulomb collisions, respectively. Corresponding x-ray radiographs of these targets provided mass density distributions and Coulomb effects on protons were assessed using a Monte Carlo code written using the Geant4 framework. Proton fluence distributions were recorded on CR-39 detectors and Fourier analyzed to infer path-integrated field strengths. Rayleigh-Taylor (RT) growth of preimposed surface perturbations generated magnetic fields by the RT-induced Biermann battery and were measured for the first time. Good data were obtained during linear growth and when compared to ideal calculations, demonstrated that field diffusion near the source played an important role

  15. Amplified light storage with high fidelity based on electromagnetically induced transparency in rubidium atomic vapor

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Wang, Gang; Tang, Guoyu; Xue, Yan

    2016-06-01

    By using slow and stored light based on electromagnetically induced transparency (EIT), we theoretically realize the storage of optical pulses with enhanced efficiency and high fidelity in ensembles of warm atoms in 85Rb vapor cells. The enhancement of storage efficiency is achieved by introducing a pump field beyond three-level configuration to form a N-type scheme, which simultaneously inhibits the undesirable four-wave mixing effect while preserves its fidelity. It is shown that the typical storage efficiency can be improved from 29% to 53% with the application of pump field. Furthermore, we demonstrate that this efficiency decreases with storage time and increases over unity with optical depth.

  16. A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions

    NASA Astrophysics Data System (ADS)

    Hou, Dong; Wu, Jiutao; Zhang, Shuangyou; Ren, Quansheng; Zhang, Zhigang; Zhao, Jianye

    2014-03-01

    We demonstrate an approach to create a stable erbium-fiber-based frequency comb at communication band by directly locking the combs to two rubidium atomic transitions resonances (electromagnetically induced transparency absorption and two-photon absorption), respectively. This approach directly transfers the precision and stability of the atomic transitions to the comb. With its distinguishing feature of compactness by removing the conventional octave-spanning spectrum and f-to-2f beating facilities and the ability to directly control the comb's frequency at the atomic transition frequency, this stable optical comb can be widely used in optical communication, frequency standard, and optical spectroscopy and microscopy.

  17. Observation of Doppler-free electromagnetically induced transparency in atoms selected optically with specific velocity

    SciTech Connect

    Yu, Hoon; Kim, Kwan Su; Kim, Jung Dong; Lee, Hyun Kyung; Kim, Jung Bog

    2011-11-15

    We observed an electromagnetically induced transparency signal in a four-level system with optically selected rubidium atoms at specific velocities in a room-temperature vaporized cell. Since the atoms behave like cold atoms in the selected atomic view, the observed signals coincide with a trapped atomic system. According to this result, we can observe Doppler-free signals, which correspond from 1.2 to 1.0 K in a Doppler-broadened medium. And the selected atoms have velocity components of {+-}(131 {+-} 3) MHz per wave number. Our experimental results can provide insight for research in cold media.

  18. Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency

    SciTech Connect

    Genes, Claudiu; Ritsch, Helmut; Drewsen, Michael; Dantan, Aurelien

    2011-11-15

    We investigate a hybrid optomechanical system composed of a micromechanical oscillator as a movable membrane and an atomic three-level ensemble within an optical cavity. We show that a suitably tailored cavity field response via electromagnetically induced transparency (EIT) in the atomic medium allows for strong coupling of the membrane's mechanical oscillations to the collective atomic ground-state spin. This facilitates ground-state cooling of the membrane motion, quantum state mapping, and robust atom-membrane entanglement even for cavity widths larger than the mechanical resonance frequency.

  19. Tunable terahertz electromagnetically induced transparency based on a complementary graphene metamaterial

    NASA Astrophysics Data System (ADS)

    Zhang, Huiyun; Zhang, Xiaoqiuyan; Cao, Yanyan; Zeng, Beibei; Zhou, Mingdong; Zhang, Yuping

    2017-01-01

    We proposed a dynamically tunable electromagnetically induced transparency (EIT) in the terahertz region based on a complementary graphene metamaterials within two asymmetric slot structures. A transparency peak is enabled through the coupling between the asymmetric slot-structure elements when their symmetry is broken. The width of transparency window can be controlled by varying the asymmetry degree. Moreover, by varying the Fermi energy of graphene, the transmission peak can be dynamically tuned, realizing a blue-shift without re-optimizing or re-fabricating the nanostructure. Therefore, the work opens up opportunities for the development of tunable compact elements such as slow light devices, sensors and switches.

  20. Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators.

    PubMed

    Wang, Ting; Zhang, Yusheng; Hong, Zhi; Han, Zhanghua

    2014-09-08

    We propose the use of radiative and subradiant resonators coupled to a metal-insulator-metal waveguide to represent the three-level energy diagram in conventional atomic systems and demonstrate a new realization of on-chip plasmonic analogue of electromagnetically-induced transparency (EIT) in integrated plasmonics. The radiative resonator is achieved with the help of aperture-coupling while evanescent coupling is relied for the subradiant resonator. Numerical simulation results demonstrate well-pronounced intermediate transmission peak through the bus waveguide and also show that the EIT effect can be easily controlled by the relative position of the two Fabry-Perot resonators.

  1. Large group delay in a microwave metamaterial analogue of electromagnetically induced transparency

    SciTech Connect

    Zhang, Lei; Tassin, Philippe; Koschny, Thomas; Kurter, Cihan; Anlage, Steven M.; Soukoulis, C. M.

    2010-12-13

    We report on our experimental work concerning a planar metamaterial exhibiting classical electromagnetically induced transparency (EIT). Using a structure with two mirrored split-ring resonators as the dark element and a cut wire as the radiative element, we demonstrate that an EIT-like resonance can be achieved without breaking the symmetry of the structure. The mirror symmetry of the metamaterial's structural element results in a selection rule inhibiting magnetic dipole radiation for the dark element, and the increased quality factor leads to low absorption (<10%) and large group index (of the order of 30).

  2. Theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Shu-qing; Feng, Zhong-ying; Liu, Xiao-fei; Gao, Jin-yue

    2016-12-01

    To obtain the weak signal light detection from the high background noise, we present a theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency. In a three-level Λ -type atomic system in the rubidium D1 line, the bandwidth of the EIT atomic filter is narrowed to ~6.5 \\text{MHz} . And the single peak transmission of the filter can be up to 86% . Moreover, the transmission wavelength can be tuned by changing the coupling light frequency. This theoretical scheme can also be applied to other alkali atomic systems.

  3. A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions

    SciTech Connect

    Hou, Dong; Wu, Jiutao; Zhang, Shuangyou; Ren, Quansheng; Zhang, Zhigang; Zhao, Jianye

    2014-03-17

    We demonstrate an approach to create a stable erbium-fiber-based frequency comb at communication band by directly locking the combs to two rubidium atomic transitions resonances (electromagnetically induced transparency absorption and two-photon absorption), respectively. This approach directly transfers the precision and stability of the atomic transitions to the comb. With its distinguishing feature of compactness by removing the conventional octave-spanning spectrum and f-to-2f beating facilities and the ability to directly control the comb's frequency at the atomic transition frequency, this stable optical comb can be widely used in optical communication, frequency standard, and optical spectroscopy and microscopy.

  4. Theoretical study on electromagnetically induced transparency in molecular aggregate models using quantum Liouville equation method

    SciTech Connect

    Minami, Takuya; Nakano, Masayoshi

    2015-01-22

    Electromagnetically induced transparency (EIT), which is known as an efficient control method of optical absorption property, is investigated using the polarizability spectra and population dynamics obtained by solving the quantum Liouville equation. In order to clarify the intermolecular interaction effect on EIT, we examine several molecular aggregate models composed of three-state monomers with the dipole-dipole coupling. On the basis of the present results, we discuss the applicability of EIT in molecular aggregate systems to a new type of optical switch.

  5. Optical switching of cross intensity correlation in cavity electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Rao, Shi; Hu, Xiangming; Xu, Jun; Li, Lingchao

    2017-03-01

    We present optical switching of cross intensity correlation in the context of cavity electromagnetically induced transparency configuration. For symmetrical parameters, the cross intensity correlation switches from negative to positive as the atom–pump detunings change symmetrically from one case to the other. In terms of the dressed atomic states and the Bogoliubov modes we analyze the atom–photon interaction mechanism for the switching behavior, and present a numerical verification. As a by-product, we show noise squeezing of the sum or difference intensity in a limited region of parameters.

  6. High-sensitivity optical Faraday magnetometry with intracavity electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaolin; Sun, Hui; Fan, Shuangli; Guo, Hong

    2016-12-01

    We suggest a multiatom cavity quantum electrodynamics system for the detection of a weak magnetic field, based on Faraday rotation with intracavity electromagnetically induced transparency. Our study demonstrates that the collective coupling between the cavity modes and the atomic ensemble can be used to improve the sensitivity. With single-probe photon input, the sensitivity is inversely proportional to the number of atoms, and a sensitivity of 2.45 nT Hz-1/2 could be attained. With multiphoton measurement, our numerical calculations show that the magnetic field sensitivity can be improved to 105.6 aT Hz-1/2 with realistic experimental conditions.

  7. Fracture induced electromagnetic emissions: extending laboratory findings by observations at the geophysical scale

    NASA Astrophysics Data System (ADS)

    Potirakis, Stelios M.; Contoyiannis, Yiannis; Kopanas, John; Kalimeris, Anastasios; Antonopoulos, George; Peratzakis, Athanasios; Eftaxias, Konstantinos; Nomicos, Constantinos

    2014-05-01

    Under natural conditions, it is practically impossible to install an experimental network on the geophysical scale using the same instrumentations as in laboratory experiments for understanding, through the states of stress and strain and their time variation, the laws that govern the friction during the last stages of EQ generation, or to monitor (much less to control) the principal characteristics of a fracture process. Fracture-induced electromagnetic emissions (EME) in a wide range of frequency bands are sensitive to the micro-structural chances. Thus, their study constitutes a nondestructive method for the monitoring of the evolution of damage process at the laboratory scale. It has been suggested that fracture induced MHz-kHz electromagnetic (EM) emissions, which emerge from a few days up to a few hours before the main seismic shock occurrence permit a real time monitoring of the damage process during the last stages of earthquake preparation, as it happens at the laboratory scale. Since the EME are produced both in the case of the laboratory scale fracture and the EQ preparation process (geophysical scale fracture) they should present similar characteristics in these two scales. Therefore, both the laboratory experimenting scientists and the experimental scientists studying the pre-earthquake EME could benefit from each- other's results. Importantly, it is noted that when studying the fracture process by means of laboratory experiments, the fault growth process normally occurs violently in a fraction of a second. However, a major difference between the laboratory and natural processes is the order-of-magnitude differences in scale (in space and time), allowing the possibility of experimental observation at the geophysical scale for a range of physical processes which are not observable at the laboratory scale. Therefore, the study of fracture-induced EME is expected to reveal more information, especially for the last stages of the fracture process, when it

  8. Large and tunable negative refractive index via electromagnetically induced chirality in a semiconductor quantum well nanostructure

    NASA Astrophysics Data System (ADS)

    Zhao, Sh.-C.; Zhang, Sh.-Y.; Xu, Y.-Y.

    2014-11-01

    Large and tunable negative refractive index (NRI) via electromagnetically induced chirality is demonstrated in a semiconductor quantum wells (SQWs) nanostructure by using the reported experimental parameters in J.F. Dynes et al., Phys. Rev. Lett. 94, 157403 (2005). It is found: the large and controllable NRI with alterable frequency regions is obtained when the coupling laser field and the relative phase are modulated, which will increase the flexibility and possibility of implementing NRI in the SQWs nanostructure. The scheme rooted in the experimental results may lead a new avenue to NRI material in solid-state nanostructure.

  9. Electromagnetically induced transparency in the four-level system driven by bichromatic microwave field

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Sun, Ke-jia; Zhang, Su-heng; Feng, Xiao-min

    2014-11-01

    We present a theoretical study on the nonlinear behaviors of the electromagnetically induced transparency resonance subject to two microwave driving fields in a four-level atom system. The probe absorption spectrum is obtained by solving numerically the relevant equations of density matrix. It is shown that there are two pairs of the EIT windows in the probe absorption spectrum. The two pairs of EIT windows have symmetry with respect to the resonance frequency of the probe field, and the separation is equal to the Rabi frequency of the resonant microwave driving field. But in each pair, the splitting of two EIT windows is dominated to the strength of detuning microwave driving field.

  10. Electromagnetically induced transparency in a cascade-type quantum well subband system under intense picosecond excitation

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Eichenberg, B.; Firsov, D. A.; Vorobjev, L. E.; Ustinov, V. M.; Seilmeier, A.

    2016-01-01

    The coherent light-matter interaction in a 4-level cascade-type subband system of an asymmetric GaAs/AlGaAs quantum well structure is studied in pump-probe transmission experiments with picosecond (ps) time resolution. Coupling two excited subbands by an intense mid-infrared laser pulse at low sample temperatures is found to result in a substantially increased transparency of the fundamental e1-e2 transition. We find a reduction of the absorption coefficient by ~80%, which is one of the most pronounced electromagnetically induced transparency in solid state systems observed so far.

  11. Electromagnetically Induced Grating via Coherently Driven Four-Level Atoms in a N-Type Configuration

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Li, Jia-Yu; Liu, Ming

    2015-03-01

    We propose a scheme to generate an electromagnetically induced grating via coherently driven four-level atoms in a N-type configuration in the presence of a standing signal field, a coupling field and a probe field. We show that a nearly ideal phase grating can be realized by adjusting the frequency detuning of signal field, the interaction length of atomic medium, and the ratio of the intensity between the signal field and the coupling field. The first-order diffraction efficiency of the grating is about 29.9 %, which is close to that of an ideal sinusoidal phase grating.

  12. Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures

    NASA Astrophysics Data System (ADS)

    Lee, Sun-Goo; Kim, Seong-Han; Kim, Kap-Joong; Kee, Chul-Sik

    2017-03-01

    We present two photonic systems that make it possible to realize polarization-independent electromagnetically induced transparency based on guided-mode resonances. Each system is composed of two planar dielectric waveguides and a two-dimensional photonic crystal. Using finite-difference time-domain simulations, we demonstrate that by coupling the two guided-mode resonances with low- and high-quality factors, a narrow transparency window is generated inside a broad background transmission dip produced by the guided-mode resonances. We also show that the time delay that occurs when light beams pass through the proposed systems can be controlled by adjusting the distance between the two waveguides.

  13. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J. J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J. P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J. P.; Schüssler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, T.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-05-01

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  14. Theory of spin-fluctuation induced superconductivity in iron-based superconductors

    SciTech Connect

    Zhang, Junhua

    2011-01-01

    In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum

  15. Earthquake-induced water-level fluctuations at Yucca Mountain, Nevada, June 1992

    SciTech Connect

    O`Brien, G.M.

    1993-07-01

    This report presents earthquake-induced water-level and fluid-pressure data for wells in the Yucca Mountain area, Nevada, during June 1992. Three earthquakes occurred which caused significant water-level and fluid-pressure responses in wells. Wells USW H-5 and USW H-6 are continuously monitored to detect short-term responses caused by earthquakes. Two wells, monitored hourly, had significant, longer-term responses in water level following the earthquakes. On June 28, 1992, a 7.5-magnitude earthquake occurred near Landers, California causing an estimated maximum water-level change of 90 centimeters in well USW H-5. Three hours later a 6.6-magnitude earthquake occurred near Big Bear Lake, California; the maximum water-level fluctuation was 20 centimeters in well USW H-5. A 5.6-magnitude earthquake occurred at Little Skull Mountain, Nevada, on June 29, approximately 23 kilometers from Yucca Mountain. The maximum estimated short-term water-level fluctuation from the Little Skull Mountain earthquake was 40 centimeters in well USW H-5. The water level in well UE-25p {number_sign}1, monitored hourly, decreased approximately 50 centimeters over 3 days following the Little Skull Mountain earthquake. The water level in UE-25p {number_sign}1 returned to pre-earthquake levels in approximately 6 months. The water level in the lower interval of well USW H-3 increased 28 centimeters following the Little Skull Mountain earthquake. The Landers and Little Skull Mountain earthquakes caused responses in 17 intervals of 14 hourly monitored wells, however, most responses were small and of short duration. For several days following the major earthquakes, many smaller magnitude aftershocks occurred causing measurable responses in the continuously monitored wells.

  16. Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance

    SciTech Connect

    Li, Hai-ming; Liu, Shao-bin Liu, Si-yuan; Zhang, Hai-feng; Bian, Bo-rui; Kong, Xiang-kun; Wang, Shen-yun

    2015-03-16

    In this paper, we numerically and experimentally demonstrate electromagnetically induced transparency (EIT)-like spectral response with magnetic resonance near field coupling to electric resonance. Six split-ring resonators and a cut wire are chosen as the bright and dark resonator, respectively. An EIT-like transmission peak located between two dips can be observed with incident magnetic field excitation. A large delay bandwidth product (0.39) is obtained, which has potential application in quantum optics and communications. The experimental results are in good agreement with simulated results.

  17. Depletion-induced forces and crowding in polymer-nanoparticle mixtures: Role of polymer shape fluctuations and penetrability.

    PubMed

    Lim, Wei Kang; Denton, Alan R

    2016-01-14

    Depletion forces and macromolecular crowding govern the structure and function of biopolymers in biological cells and the properties of polymer nanocomposite materials. To isolate and analyze the influence of polymer shape fluctuations and penetrability on depletion-induced interactions and crowding by nanoparticles, we model polymers as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor of an ideal random walk. Within this model, we apply Monte Carlo simulation methods to compute the depletion-induced potential of mean force between hard nanospheres and crowding-induced shape distributions of polymers in the protein limit, in which polymer coils can be easily penetrated by smaller nanospheres. By comparing depletion potentials from simulations of ellipsoidal and spherical polymer models with predictions of polymer field theory and free-volume theory, we show that polymer depletion-induced interactions and crowding depend sensitively on polymer shapes and penetrability, with important implications for bulk thermodynamic phase behavior.

  18. Exposure to 50Hz-sinusoidal electromagnetic field induces DNA damage-independent autophagy.

    PubMed

    Shen, Yunyun; Xia, Ruohong; Jiang, Hengjun; Chen, Yanfeng; Hong, Ling; Yu, Yunxian; Xu, Zhengping; Zeng, Qunli

    2016-08-01

    As electromagnetic field (EMF) is commonly encountered within our daily lives, the biological effects of EMF are of great concern. Autophagy is a key process for maintaining cellular homeostasis, and it can also reveal cellular responses to environmental stimuli. In this study, we aim to investigate the biological effects of a 50Hz-sinusoidal electromagnetic field on autophagy and we identified its mechanism of action in Chinese Hamster Lung (CHL) cells. CHL cells were exposed to a 50Hz sinusoidal EMF at 0.4mT for 30min or 24h. In this study, we found that a 0.4mT EMF resulted in: (i) an increase in LC3-II expression and increased autophagosome formation; (ii) no significant difference in the incidence of γH2AX foci between the sham and exposure groups; (iii) reorganized actin filaments and increased pseudopodial extensions without promoting cell migration; and (iv) enhanced cell apoptosis when autophagy was blocked by Bafilomycin A1. These results implied that DNA damage was not directly involved in the autophagy induced by a 0.4mT 50Hz EMF. In addition, an EMF induced autophagy balanced the cellular homeostasis to protect the cells from severe adverse biological consequences.

  19. Realization of electromagnetically induced phase grating and Kerr nonlinearity in a graphene ensemble under Raman excitation

    NASA Astrophysics Data System (ADS)

    Naseri, Tayebeh; Moradi, Ronak

    2017-01-01

    Some optical properties including the linear and nonlinear susceptibility and electromagnetically induced phase grating (EIG) in graphene under Raman excitation is studied. A single-layer graphene nanostructure driven by coherent and incoherent fields is investigated theoretically. It is revealed that by adjusting the amplitude of control and incoherent fields, the linear and nonlinear absorption as well as Kerr nonlinearity of the medium can be optimized. It is realized that the enhanced Kerr nonlinearity can occur with zero linear absorption and nonlinear amplification. Furthermore, it should be noted that EIG in graphene is studied for the first time. The results indicate that the diffraction efficiency of the phase grating is dramatically enhanced by controlling the amplitude of coherent and incoherent fields, and an efficient electromagnetically induced phase grating can be obtained. A novel result shows a considerable improvement of the intensity of higher-order diffractions and switching between different orders of grating via incoherent pumping field. Therefore, this model can be used in real experiments for the development of new types of nanoelectronic devices used for the realization of all-optical switching processes.

  20. Risk of electromagnetic interference induced by dental equipment on cardiac implantable electrical devices.

    PubMed

    Miranda-Rius, Jaume; Lahor-Soler, Eduard; Brunet-Llobet, Lluís; Sabaté de la Cruz, Xavier

    2016-12-01

    Patients with cardiac implantable electrical devices should take special precautions when exposed to electromagnetic fields. Proximity to equipment used in clinical dentistry may cause interference. This study evaluated in vitro the risks associated with different types/makes of cardiac devices and types of dental equipment. Six electronic dental tools were tested on three implantable cardioverter defibrillators and three pacemakers made by different manufacturers. Overall, the risk of interference with the pacemakers was 37% lower than with the implantable cardioverter defibrillators. Regarding the types/makes of cardiac devices analysed, that from Boston Scientific had a five-fold greater risk of interference than did that from Biotronik [prevalence ratio (PR) = 5.58]; there was no difference between that from Biotronik and that from Medtronic. Among the dental equipment, the electric pulp tester had the greatest risk of inducing interference and therefore this device was used as the benchmark. The electronic apex locator (PR = 0.29), Periotest M (PR = 0.47), and the ultrasonic dental scaler (PR = 0.59) were less likely to induce interference than the electric pulp tester. The risk was lowest with the electronic apex locator. Pacemakers presented a lower risk of light to moderate interference (PR = 0.63). However, the risk of severe electromagnetic interference was 3.5 times higher with pacemakers than with implantable cardioverter defibrillators (PR = 3.47).

  1. Derivation of Aero-Induced Fluctuating Pressure Environments for Ares I-X

    NASA Technical Reports Server (NTRS)

    Yang, Michael Y.; Wilby, John F.

    2008-01-01

    A description is given of the external aero-inducted fluctuating pressure model which was fit and anchored to wind tunnel data from the past 40 years. This model is based upon the assumption that the flow around a vehicle can be divided into discrete flow zones with independent fluctuating pressure properties. The model is then used to derive fluctuating pressure environments during ascent for the Ares I-X test vehicle. A sensitivity study of the structural response to the spatial correlation of the fluctuating pressures is also performed.

  2. Optical Analog to Electromagnetically Induced Transparency in Cascaded Ring-Resonator Systems

    PubMed Central

    Wang, Yonghua; Zheng, Hua; Xue, Chenyang; Zhang, Wendong

    2016-01-01

    The analogue of electromagnetically induced transparency in optical methods has shown great potential in slow light and sensing applications. Here, we experimentally demonstrated a coupled resonator induced transparency system with three cascaded ring coupled resonators in a silicon chip. The structure was modeled by using the transfer matrix method. Influences of various parameters including coupling ratio of couplers, waveguide loss and additional loss of couplers on transmission characteristic and group index have been investigated theoretically and numerically in detail. The transmission character of the system was measured by the vertical grating coupling method. The enhanced quality factor reached 1.22 × 105. In addition, we further test the temperature performance of the device. The results provide a new method for the manipulation of light in highly integrated optical circuits and sensing applications. PMID:27463720

  3. Image information transfer via electromagnetically induced transparency-based slow light

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Xiao; Sun, Jia-Xiang; Sun, Yuan-Hang; Li, Ai-Jun; Chen, Yi; Zhang, Xiao-Jun; Kang, Zhi-Hui; Wang, Lei; Wang, Hai-Hua; Gao, Jin-Yue

    2015-07-01

    In this work, we experimentally demonstrate an image information transfer between two channels by using slow light based on electromagnetically induced transparency (EIT) in a solid. The probe optical image is slowed due to steep dispersion induced by EIT. By applying an additional control field to an EIT-driven medium, the slowed image is transferred into two information channels. Image intensities between two information channels can be controlled by adjusting the intensities of the control fields. The similarity of output images is further analyzed. This image information transfer allows for manipulating images in a controlled fashion, and will be important in further information processing. Project supported by the National Basic Research Program of China (Grant No. 2011CB921603), the National Natural Science Foundation of China (Grant Nos. 11374126, 11347137, 11204103, 11404336, and 11204029), and the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103202).

  4. Field models and numerical dosimetry inside an extremely-low-frequency electromagnetic bioreactor: the theoretical link between the electromagnetically induced mechanical forces and the biological mechanisms of the cell tensegrity.

    PubMed

    Mognaschi, Maria Evelina; Di Barba, Paolo; Magenes, Giovanni; Lenzi, Andrea; Naro, Fabio; Fassina, Lorenzo

    2014-01-01

    We have implemented field models and performed a detailed numerical dosimetry inside our extremely-low-frequency electromagnetic bioreactor which has been successfully used in in vitro Biotechnology and Tissue Engineering researches. The numerical dosimetry permitted to map the magnetic induction field (maximum module equal to about 3.3 mT) and to discuss its biological effects in terms of induced electric currents and induced mechanical forces (compression and traction). So, in the frame of the tensegrity-mechanotransduction theory of Ingber, the study of these electromagnetically induced mechanical forces could be, in our opinion, a powerful tool to understand some effects of the electromagnetic stimulation whose mechanisms remain still elusive.

  5. Asymmetrical, agonist-induced fluctuations in local extracellular [Ca2+] in intact polarized epithelia

    PubMed Central

    Caroppo, Rosa; Gerbino, Andrea; Debellis, Lucantonio; Kifor, Olga; Soybel, David I.; Brown, Edward M.; Hofer, Aldebaran M.; Curci, Silvana

    2001-01-01

    We recently proposed that extracellular Ca2+ ions participate in a novel form of intercellular communication involving the extracellular Ca2+-sensing receptor (CaR). Here, using Ca2+-selective microelectrodes, we directly measured the profile of agonist-induced [Ca2+]ext changes in restricted domains near the basolateral or luminal membranes of polarized gastric acid-secreting cells. The Ca2+-mobilizing agonist carbachol elicited a transient, La3+-sensitive decrease in basolateral [Ca2+] (average ≈250 µM, but as large as 530 µM). Conversely, carbachol evoked an HgCl2-sensitive increase in [Ca2+] (average ≈400 µM, but as large as 520 µM) in the lumen of single gastric glands. Both responses were significantly reduced by pre-treatment with sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) pump inhibitors or with the intracellular Ca2+ chelator BAPTA-AM. Immunofluores cence experiments demonstrated an asymmetric localization of plasma membrane Ca2+ ATPase (PMCA), which appeared to be partially co-localized with CaR and the gastric H+/K+-ATPase in the apical membrane of the acid-secreting cells. Our data indicate that agonist stimulation results in local fluctuations in [Ca2+]ext that would be sufficient to modulate the activity of the CaR on neighboring cells. PMID:11707403

  6. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain

    PubMed Central

    Chekhovich, E.A.; Hopkinson, M.; Skolnick, M.S.; Tartakovskii, A.I.

    2015-01-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear–nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2–4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639

  7. Spatiotemporal patterns of water table fluctuations and evapotranspiration induced by riparian vegetation in a semiarid area

    NASA Astrophysics Data System (ADS)

    Yue, Weifeng; Wang, Tiejun; Franz, Trenton E.; Chen, Xunhong

    2016-03-01

    Groundwater evapotranspiration (ETg) links various ecohydrological processes and is an important component in regional water budgets. In this study, an extensive monitoring network was established in a semiarid riparian area to investigate various controls on the spatiotemporal pattern of water table fluctuations (WTFs) and ETg induced by riparian vegetation. Along a vegetation gradient (˜1200 m), diurnal WTFs were observed during a growing season in areas covered by woody species (Populus sect. Aigeiros and Juniperus virginiana) and wet slough vegetation (Panicum virgatum and Bromus inermis) with deeper root systems; whereas, no diurnal WTFs were found in the middle section with shallower-rooted grasses (Poa pratensis and Carex sp.). The occurrence of diurnal WTFs was related to temperature-controlled plant phenology at seasonal scales and to radiation at subdaily scales. Daily ETg in the mid-growing season was calculated using the White method. The results revealed that depth to water table (DTWT) was the dominant control on ETg, followed by potential evapotranspiration (ETp). By combining the effects of DTWT and ETp, it was found that at shallower depths, ETg was more responsive to changes in ETp, due to the closer linkage of land surface processes with shallower groundwater. Finally, exponential relationships between ETg/ETp and DTWT were obtained at the study site, although those relationships varied considerably across the sites. This study demonstrates the complex interactions of WTFs and ETg with surrounding environmental variables and provides further insight into modeling ETg over different time scales and riparian vegetation.

  8. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain.

    PubMed

    Chekhovich, E A; Hopkinson, M; Skolnick, M S; Tartakovskii, A I

    2015-02-23

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2-4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging.

  9. Investigation of dual electromagnetically induced grating based on spatial modulation in quantum well nanostructures via biexciton coherence

    NASA Astrophysics Data System (ADS)

    Naseri, Tayebeh

    2017-04-01

    A new scheme for obtaining an electromagnetically induced grating (EIG) via biexciton coherence in quantum well nanostructures is developed. It is theoretically shown that exciton spin relaxation and biexciton binding energy have important roles in producing efficient dual electromagnetically induced phase grating. In this structure, due to biexciton coherence, the higher order diffraction intensities of the grating can be observed. Furthermore, it is shown that the efficiency of different orders in the grating patterns could be controlled by biexciton energy renormalization (ESR) and relative phase between the applied laser fields.

  10. Effect of electromagnetically induced transparency on the spectrum of defect modes in a one-dimensional photonic crystal

    SciTech Connect

    Arkhipkin, Vasilii G; Myslivets, S A

    2009-02-28

    We studied the transmission spectrum of a one-dimensional photonic crystal containing a defect layer in which electromagnetically induced transparency is possible. The analysis is performed taking into account the spatial inhomogeneity of interacting fields in the photonic crystal. It is found that the transmission spectrum of such a photonic crystal depends on the spatial overlap of defect modes excited by probe and control radiations. It is shown that electromagnetically induced transparency can result in a considerable narrowing of the defect mode spectrum. (nonlinear optical phenomena)

  11. SNW 2000 Proceedings. Oxide Thickness Variation Induced Threshold Voltage Fluctuations in Decanano MOSFETs: a 3D Density Gradient Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Kaya, S.; Davies, J. H.; Saini, S.

    2000-01-01

    We use the density gradient (DG) simulation approach to study, in 3D, the effect of local oxide thickness fluctuations on the threshold voltage of decanano MOSFETs in a statistical manner. A description of the reconstruction procedure for the random 2D surfaces representing the 'atomistic' Si-SiO2 interface variations is presented. The procedure is based on power spectrum synthesis in the Fourier domain and can include either Gaussian or exponential spectra. The simulations show that threshold voltage variations induced by oxide thickness fluctuation become significant when the gate length of the devices become comparable to the correlation length of the fluctuations. The extent of quantum corrections in the simulations with respect to the classical case and the dependence of threshold variations on the oxide thickness are examined.

  12. A field investigation of phreatophyte-induced fluctuations in the water table

    USGS Publications Warehouse

    Butler, J.J.; Kluitenberg, G.J.; Whittemore, D.O.; Loheide, S.P.; Jin, W.; Billinger, M.A.; Zhan, X.

    2007-01-01

    Hydrographs from shallow wells in vegetated riparian zones frequently display a distinctive pattern of diurnal water table fluctuations produced by variations in plant water use. A multisite investigation assessed the major controls on these fluctuations and the ecohydrologic insights that can be gleaned from them. Spatial and temporal variations in the amplitude of the fluctuations are primarily a function of variations in (1) the meteorological drivers of plant water use, (2) vegetation density, type, and vitality, and (3) the specific yield of sediments in the vicinity of the water table. Past hydrologic conditions experienced by the riparian zone vegetation, either in previous years or earlier within the same growing season, are also an important control. Diurnal water table fluctuations can be considered a diagnostic indicator of groundwater consumption by phreatophytes at most sites, so the information embedded within these fluctuations should be more widely exploited in ecohydrologic studies. Copyright 2007 by the American Geophysical Union.

  13. Disinfection of wastewater effluents with the Fenton-like process induced by electromagnetic fields.

    PubMed

    Rodríguez-Chueca, J; Mediano, A; Ormad, M P; Mosteo, R; Ovelleiro, J L

    2014-09-01

    This research work is focused on the application and assessment of effectiveness of the Fenton-like processes induced by radiofrequency for the inactivation of faecal bacteria (Escherichia coli and Enterococcus sp.) present in treated urban wastewater effluents. Fenton processes were carried out at near neutral pH (pH 5) with different iron sources, such as iron salts (ferric chloride, 5, 50 and 100 mg/L Fe(3+)), magnetite (1 g/L) and clay (80 g/L), hydrogen peroxide (25 mg/L) and in absence and presence of radiofrequency. Two different electromagnetic field intensities (1.57 and 3.68 kA/m) were used in Fenton processes induced by radiofrequency. Different agents used in the Fenton processes induced by electromagnetic fields (iron source, hydrogen peroxide and RF) were analyzed individually and in combination under the same experimental conditions. First assays of ferromagnetic material/H2O2/radiofrequency processes achieved promising results in terms of bacterial inactivation. For instance, Fe(3+)/H2O2/Radiofrequency achieved a maximum level of E. coli inactivation of 3.55 log after 10 min of treatment. These results are higher than those obtained in absence of radiofrequency. The thermal activation of iron atoms allows the Fenton reaction to intensify, increasing the final yield of the treatment. On the other hand, different behavior was observed in the inactivation of E. coli and Enterococcus sp. due to the structural differences between Gram-negative and Gram-positive bacteria.

  14. A mathematical model of extremely low frequency ocean induced electromagnetic noise

    NASA Astrophysics Data System (ADS)

    Dautta, Manik; Faruque, Rumana Binte; Islam, Rakibul

    2016-07-01

    Magnetic Anomaly Detection (MAD) system uses the principle that ferromagnetic objects disturb the magnetic lines of force of the earth. These lines of force are able to pass through both water and air in similar manners. A MAD system, usually mounted on an aerial vehicle, is thus often employed to confirm the detection and accomplish localization of large ferromagnetic objects submerged in a sea-water environment. However, the total magnetic signal encountered by a MAD system includes contributions from a myriad of low to Extremely Low Frequency (ELF) sources. The goal of the MAD system is to detect small anomaly signals in the midst of these low-frequency interfering signals. Both the Range of Detection (Rd) and the Probability of Detection (Pd) are limited by the ratio of anomaly signal strength to the interfering magnetic noise. In this paper, we report a generic mathematical model to estimate the signal-to-noise ratio or SNR. Since time-variant electro-magnetic signals are affected by conduction losses due to sea-water conductivity and the presence of air-water interface, we employ the general formulation of dipole induced electromagnetic field propagation in stratified media [1]. As a first step we employ a volumetric distribution of isolated elementary magnetic dipoles, each having its own dipole strength and orientation, to estimate the magnetic noise observed by a MAD system. Numerical results are presented for a few realizations out of an ensemble of possible realizations of elementary dipole source distributions.

  15. Underground Measurements of Electromagnetic Radiation Related to Stress-induced Fractures in the Odenwald Mountains (Germany)

    NASA Astrophysics Data System (ADS)

    Lichtenberger, Marco

    2006-08-01

    The regional stress field at Wald-Michelbach (Odenwald Mountains, Germany) induces a secondary stress field around the space of the local railway tunnel. Resulting maximum shear stresses produce microfractures, which emit electromagnetic radiation (EMR). From EMR measured along the cross section and the long axis of the tunnel, the regional stress field is determined by a correlation of detected impulses per time with stresses calculated from the orientation of the tunnel, its diameter, and topographic load. The major horizontal principal stress has an azimuth of 103°. At times, strongly alternating EMR values are observed, which indicate electromagnetic disturbances of unknown origin. Such disturbances are identified by repeated measurements and are not evaluated. The repeated measurements, which are not disturbed, differ with median 112 impulses per 100 ms. This difference corresponds to 0.037 MPa and indicates a good reproducibility of the results. Regional stress magnitudes and the WNW-ESE orientation of the major horizontal principal stress indicate a minor N S directed tensional force at the western shoulder of the Upper Rhine Graben.

  16. Nonmonotoic fluctuation-induced interactions between dielectric slabs carrying charge disorder

    NASA Astrophysics Data System (ADS)

    Sarabadani, Jalal; Naji, Ali; Dean, David S.; Horgan, Ron R.; Podgornik, Rudolf

    2010-11-01

    We investigate the effect of monopolar charge disorder on the classical fluctuation-induced interactions between randomly charged net-neutral dielectric slabs and discuss various generalizations of recent results [A. Naji et al., Phys. Rev. Lett. 104, 060601 (2010)] to highly inhomogeneous dielectric systems with and without statistical disorder correlations. We shall focus on the specific case of two generally dissimilar plane-parallel slabs, which interact across vacuum or an arbitrary intervening dielectric medium. Monopolar charge disorder is considered to be present on the bounding surfaces and/or in the bulk of the slabs, may be in general quenched or annealed and may possess a finite lateral correlation length reflecting possible "patchiness" of the random charge distribution. In the case of quenched disorder, the bulk disorder is shown to give rise to an additive long-range contribution to the total force, which decays as the inverse distance between the slabs and may be attractive or repulsive depending on the dielectric constants of the slabs. By contrast, the force induced by annealed disorder in general combines with the underlying van der Waals forces in a nonadditive fashion, and the net force decays as an inverse cube law at large separations. We show, however, that in the case of two dissimilar slabs, the net effect due to the interplay between the disorder-induced and the pure van der Waals interactions can lead to a variety of unusual nonmonotonic interaction profiles between the dielectric slabs. In particular, when the intervening medium has a larger dielectric constant than the two slabs, we find that the net interaction can become repulsive and exhibit a potential barrier, while the underlying van der Waals force is attractive. On the contrary, when the intervening medium has a dielectric constant between that of the two slabs, the net interaction can become attractive and exhibit a free energy minimum, while the pure van der Waals force is

  17. Attosecond Electro-Magnetic Forces Acting on Metal Nanospheres Induced By Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Lagos, M. J.; Batson, P. E.; Reyes-Coronado, A.; Echenique, P. M.; Aizpurua, J.

    2014-03-01

    Swift electron scattering near nanoscale materials provides information about light-matter behavior, including induced forces. We calculate time-dependent electromagnetic forces acting on 1-1.5 nm metal nanospheres induced by passing swift electrons, finding both impulse-like and oscillatory response forces. Initially, impulse-like forces are generated by a competition between attractive electric forces and repulsive magnetic forces, lasting a few attoseconds (5-10 as). Oscillatory, plasmonic response forces take place later in time, last a few femtoseconds (1- 5 fs), and apparently rely on photon emission by decay of the electron-induced surface plasmons. A comparison of the strength of these two forces suggests that the impulse-like behavior dominates the process, and can transfer significant linear momentum to the sphere. Our results advance understanding of the physics behind the observation of both attractive and repulsive behavior of gold nano-particles induced by electron beams in aberration-corrected electron microscopy. Work supported under DOE, Award # DE-SC0005132, Basque Gov. project ETORTEK inano, Spanish Ministerio de Ciencia e Innovacion, No. FIS2010-19609-C02-01.

  18. Fluctuations induced transition of localization of granular objects caused by degrees of crowding

    NASA Astrophysics Data System (ADS)

    Oda, Soutaro; Kubo, Yoshitsugu; Shew, Chwen-Yang; Yoshikawa, Kenichi

    2016-12-01

    Fluctuations are ubiquitous in both microscopic and macroscopic systems, and an investigation of confined particles under fluctuations is relevant to how living cells on the earth maintain their lives. Inspired by biological cells, we conduct the experiment through a very simple fluctuating system containing one or several large spherical granular particles and multiple smaller ones confined on a cylindrical dish under vertical vibration. We find a universal behavior that large particles preferentially locate in cavity interior due to the fact that large particles are depleted from the cavity wall by small spheres under vertical vibration in the actual experiment. This universal behavior can be understood from the standpoint of entropy.

  19. Field-induced quantum fluctuations in the heavy fermion superconductor CeCu(2)Ge(2).

    PubMed

    Singh, D K; Thamizhavel, A; Lynn, J W; Dhar, S; Rodriguez-Rivera, J; Herman, T

    2011-01-01

    Quantum-mechanical fluctuations in strongly correlated electron systems cause unconventional phenomena such as non-Fermi liquid behavior, and arguably high temperature superconductivity. Here we report the discovery of a field-tuned quantum critical phenomenon in stoichiometric CeCu(2)Ge(2), a spin density wave ordered heavy fermion metal that exhibits unconventional superconductivity under ≃10 GPa of applied pressure. Our finding of the associated quantum critical spin fluctuations of the antiferromagnetic spin density wave order, dominating the local fluctuations due to single-site Kondo effect, provide new information about the underlying mechanism that can be important in understanding superconductivity in this novel compound.

  20. Influence of Doppler effect on the phenomenon of electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Tao, Qiyong; Zhang, Guiyin; Zheng, Haiming

    2016-11-01

    Electromagnetically induced transparency (EIT) is a significant nonlinear optical phenomenon. Based on the theory of density matrix equation, we presented the influence of Doppler effect on EIT. A cascade type three-level system and Na atomic vapor is adopted during the course. The results showed that EIT is determined by Rabi frequency of the couple and probing field. It is independent of temperature usually. But when we take Doppler effect into account, it is found that the full transparency appeared at the condition of ΩP=0.01GHz, ΩC=1GHz will vary with temperature. An obvious transparent window can be observed only when the temperature is less than 50K. With the increase of temperature, EIT phenomenon disappeared quickly. At room temperature, we can see that the double peaks of Aulter-Townes will instead of the EIT transparent window as Rabi frequency of the couple field is larger than 1.5GHz.

  1. Two-photon dichroic atomic vapor laser lock using electromagnetically induced transparency and absorption

    SciTech Connect

    Becerra, F. E.; Willis, R. T.; Rolston, S. L.; Orozco, L. A.

    2009-07-15

    We demonstrate a technique to lock the frequency of a laser to a transition between two excited states in Rb vapor using a two-photon process in the presence of a weak magnetic field. We use a ladder configuration from specific hyperfine sublevels of the 5S{sub 1/2}, 5P{sub 3/2}, and 5D{sub 5/2} levels. This atomic configuration can show electromagnetically induced transparency and absorption processes. The error signal comes from the difference in the transparency or absorption felt by the two orthogonal polarizations of the probe beam. A simplified model is in good quantitative agreement with the observed signals for the experimental parameters. We have used this technique to lock the frequency of the laser up to 1.5 GHz off atomic resonance.

  2. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system

    PubMed Central

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-01-01

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices. PMID:27941895

  3. Large Fizeau's light-dragging effect in a moving electromagnetically induced transparent medium

    NASA Astrophysics Data System (ADS)

    Kuan, Pei-Chen; Huang, Chang; Chan, Wei Sheng; Kosen, Sandoko; Lan, Shau-Yu

    2016-10-01

    As one of the most influential experiments on the development of modern macroscopic theory from Newtonian mechanics to Einstein's special theory of relativity, the phenomenon of light dragging in a moving medium has been discussed and observed extensively in different types of systems. To have a significant dragging effect, the long duration of light travelling in the medium is preferred. Here we demonstrate a light-dragging experiment in an electromagnetically induced transparent cold atomic ensemble and enhance the dragging effect by at least three orders of magnitude compared with the previous experiments. With a large enhancement of the dragging effect, we realize an atom-based velocimeter that has a sensitivity two orders of magnitude higher than the velocity width of the atomic medium used. Such a demonstration could pave the way for motional sensing using the collective state of atoms in a room temperature vapour cell or solid state material.

  4. Analog electromagnetically induced transparency for circularly polarized wave using three-dimensional chiral metamaterials.

    PubMed

    Lin, Hai; Yang, Dong; Han, Song; Liu, Yangjie; Yang, Helin

    2016-12-26

    In this paper, we theoretically and experimentally demonstrate a three-dimensional metamaterial that can motivate electromagnetic induced transparency (EIT) by using circular polarized wave as stimulations. The unit cell consists of a pair of metallic strips printed on both sides of the printed circuit board (PCB), where a conductive cylinder junction is used to connect the metal strips by drilling a hole inside the substrate. When a right circularly polarized wave is incident, destructive interference is excited between meta-atoms of the 3D structure, the transmission spectrum demonstrates a sharp transparency window. A coupled oscillator model and an electrical equivalent circuit model are applied to quantitatively and qualitatively analyze the coupling mechanism in the EIT-like metamaterial. Analysis in detail shows the EIT window's amplitude and frequency are modulated by changing the degree of symmetry breaking. The proposed metamaterial may achieve potential applications in developing chiral slow light devices.

  5. Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators

    NASA Astrophysics Data System (ADS)

    Ortuño, Rubén; Cortijo, Mario; Martínez, Alejandro

    2017-02-01

    The fundamental electric dipolar resonance of metallic nanostrips placed on top of a dielectric waveguide can be excited via evanescent wave coupling, thus giving rise to broad dips in the transmission spectrum of the waveguide. Here we show via numerical simulations that narrower and steeper Fano-like resonances can be obtained by asymmetrically coupling in the near field a larger nanostrip—supporting an electric quadrupole in the frequency regime of interest—to the original, shorter nanostrip. Under certain conditions, the spectral response corresponding to the electromagnetically induced transparency phenomenon is observed. We suggest that this hybrid plasmonic-photonic approach could be especially relevant for sensing or all-optical switching applications in a photonic integrated platform such as silicon photonics.

  6. Analog electromagnetically induced transparency for circularly polarized wave using three-dimensional chiral metamaterials

    NASA Astrophysics Data System (ADS)

    Lin, Hai; Yang, Dong; Han, Song; Liu, Yangjie; Yang, Helin

    2016-12-01

    In this paper, we theoretically and experimentally demonstrate a three dimensional metamaterial that can motivate electromagnetic induced transparency (EIT) by using circular polarized wave as stimulations. The unit cell consists of a pair of metallic strips printed on both sides of the printed circuit board (PCB), where a conductive cylinder junction is used to connect the metal strips by drilling a hole inside the substrate. When a right circularly polarized wave is incident, destructive interference is excited between meta-atoms of the 3D structure, the transmission spectrum demonstrates a sharp transparency window. A coupled oscillator model and an electrical equivalent circuit model are applied to quantitatively and qualitatively analyze the coupling mechanism in the EIT-like metamaterial. Analysis in detail shows the EIT window's amplitude and frequency are modulated by changing the degree of symmetry breaking. The proposed metamaterial may achieve potential applications in developing chiral slow light devices.

  7. Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Liao, Zhen; Liu, Shuo; Ma, Hui Feng; Li, Chun; Jin, Biaobing; Cui, Tie Jun

    2016-06-01

    We numerically and experimentally demonstrate a plasmonic metamaterial whose unit cell is composed of an ultrathin metallic disk and four ultrathin metallic spiral arms at terahertz frequencies, which supports both spoof electric and magnetic localized surface plasmon (LSP) resonances. We show that the resonant wavelength is much larger than the size of the unit particle, and further find that the resonant wavelength is very sensitive to the particle’s geometrical dimensions and arrangements. It is clearly illustrated that the magnetic LSP resonance exhibits strong dependence to the incidence angle of terahertz wave, which enables the design of metamaterials to achieve an electromagnetically induced transparency effect in the terahertz frequencies. This work opens up the possibility to apply for the surface plasmons in functional devices in the terahertz band.

  8. Optical control of light propagation in photonic crystal based on electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Dan, Wang; Jin-Ze, Wu; Jun-Xiang, Zhang

    2016-06-01

    A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency (EIT). The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a three-level atomic system coupled by standing wave. We show an accurate theoretical simulation via transfer-matrix theory, automatically accounting for multilayer reflections, thus fully demonstrate the existence of photonic crystal structure in atomic vapor. Project supported by the National Natural Science Foundation of China (Grant No. 11574188) and the Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064).

  9. Subluminal and superluminal terahertz radiation in metamaterials with electromagnetically induced transparency.

    PubMed

    Bai, Zhengyang; Hang, Chao; Huang, Guoxiang

    2013-07-29

    We propose a scheme to design a new type of optical metamaterial that can mimic the functionality of four-state atomic systems of N-type energy-level configuration with electromagnetically induced transparency (EIT). We show that in such metamaterial a transition from a single EIT to a double EIT of terahertz radiation may be easily achieved by actively tuning the intensity of the infrared pump field or passively tuning the geometrical parameters of resonator structures. In addition, the group velocity of the terahertz radiation can be varied from subluminal to superluminal by changing the pump field intensity. The scheme suggested here may be used to construct chip-scale slow and fast light devices and to realize rapidly responded switching of terahertz radiation at room temperature.

  10. Large Fizeau's light-dragging effect in a moving electromagnetically induced transparent medium

    PubMed Central

    Kuan, Pei-Chen; Huang, Chang; Chan, Wei Sheng; Kosen, Sandoko; Lan, Shau-Yu

    2016-01-01

    As one of the most influential experiments on the development of modern macroscopic theory from Newtonian mechanics to Einstein's special theory of relativity, the phenomenon of light dragging in a moving medium has been discussed and observed extensively in different types of systems. To have a significant dragging effect, the long duration of light travelling in the medium is preferred. Here we demonstrate a light-dragging experiment in an electromagnetically induced transparent cold atomic ensemble and enhance the dragging effect by at least three orders of magnitude compared with the previous experiments. With a large enhancement of the dragging effect, we realize an atom-based velocimeter that has a sensitivity two orders of magnitude higher than the velocity width of the atomic medium used. Such a demonstration could pave the way for motional sensing using the collective state of atoms in a room temperature vapour cell or solid state material. PMID:27694938

  11. Coherent pump-probe spectroscopy in sodium vapor: From electromagnetically induced transparency to parametric amplification

    SciTech Connect

    Takahashi, Ken-ichi; Hayashi, Nobuhito; Kido, Hiroaki; Sugimura, Shota; Hombo, Naoya; Mitsunaga, Masaharu

    2011-06-15

    We have theoretically and experimentally investigated coherent pump-probe spectra for the 3S{sub 1/2}-3P{sub 1/2} D1 transition of sodium atomic vapor. Probe transmission spectra in the presence of a coupling beam exhibit dramatic changes depending on experimental conditions. In the weak-excitation, low-atomic-density limit, the spectra are mainly characterized by electromagnetically induced transparency (EIT) and saturated absorption, but for the strong-excitation, high-density case, parametric amplification (PA) is dominant, featuring high probe gain and Stokes-wave generation. We have developed a theory that can explain these two seemingly totally different phenomena (EIT and PA) within the same theoretical framework by manipulating a few experimentally controllable parameters, and have successfully reproduced the observed spectra. Other than the main spectral features, many other interesting physical processes have been predicted and observed.

  12. Large Fizeau's light-dragging effect in a moving electromagnetically induced transparent medium.

    PubMed

    Kuan, Pei-Chen; Huang, Chang; Chan, Wei Sheng; Kosen, Sandoko; Lan, Shau-Yu

    2016-10-03

    As one of the most influential experiments on the development of modern macroscopic theory from Newtonian mechanics to Einstein's special theory of relativity, the phenomenon of light dragging in a moving medium has been discussed and observed extensively in different types of systems. To have a significant dragging effect, the long duration of light travelling in the medium is preferred. Here we demonstrate a light-dragging experiment in an electromagnetically induced transparent cold atomic ensemble and enhance the dragging effect by at least three orders of magnitude compared with the previous experiments. With a large enhancement of the dragging effect, we realize an atom-based velocimeter that has a sensitivity two orders of magnitude higher than the velocity width of the atomic medium used. Such a demonstration could pave the way for motional sensing using the collective state of atoms in a room temperature vapour cell or solid state material.

  13. Tuning all-Optical Analog to Electromagnetically Induced Transparency in nanobeam cavities using nanoelectromechanical system

    PubMed Central

    Shi, Peng; Zhou, Guangya; deng, Jie; Tian, Feng; Chau, Fook Siong

    2015-01-01

    We report the observations of all-optical electromagnetically induced transparency in nanostructures using waveguide side-coupled with photonic crystal nanobeam cavities, which has measured linewidths much narrower than individual resonances. The quality factor of transparency resonance can be 30 times larger than those of measured individual resonances. When the gap between cavity and waveguide is reduced to 10 nm, the bandwidth of destructive interference region can reach 10 nm while the width of transparency resonance is 0.3 nm. Subsequently, a comb-drive actuator is introduced to tune the line shape of the transparency resonance. The width of the peak is reduced to 15 pm and the resulting quality factor exceeds 105. PMID:26415907

  14. Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma

    NASA Astrophysics Data System (ADS)

    Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.

    2015-12-01

    We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10-6 times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth’s plasma environment.

  15. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system

    NASA Astrophysics Data System (ADS)

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-01

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  16. Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma

    PubMed Central

    Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.

    2015-01-01

    We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10−6 times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth’s plasma environment. PMID:26647962

  17. Goos-Hänchen shift in a standing-wave-coupled electromagnetically-induced-transparency medium

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Jun; Wang, Hai-Hua; Liang, Zhi-Peng; Xu, Yan; Fan, Cun-Bo; Liu, Cheng-Zhi; Gao, Jin-Yue

    2015-03-01

    The Goos-Hänchen shift of the system composed by two cavity walls and an intracavity atomic sample is presented. The atomic sample is treated as a four-level double-Λ system, driven by the two counterpropagating coupling fields. The probe field experiences the discontinuous refractive index variation and is reflected. Moreover, under the phase-matching condition, the four-wave mixing effect based on electromagnetically induced transparency can cause effective reflection. The Goos-Hänchen shifts appear in both situations and are carefully investigated in this article. We refer to the first one with the incident and reflected light having identical wavelength as the linear Goos-Hänchen shift, and the second one with the reflection wavelength determined by the phase-matching condition as the nonlinear Goos-Hänchen shift. The differences between the two kinds of shifts, such as the incident angle range, conditions for the shift peaks, and controllability, are discussed.

  18. Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies.

    PubMed

    Liao, Zhen; Liu, Shuo; Ma, Hui Feng; Li, Chun; Jin, Biaobing; Cui, Tie Jun

    2016-06-09

    We numerically and experimentally demonstrate a plasmonic metamaterial whose unit cell is composed of an ultrathin metallic disk and four ultrathin metallic spiral arms at terahertz frequencies, which supports both spoof electric and magnetic localized surface plasmon (LSP) resonances. We show that the resonant wavelength is much larger than the size of the unit particle, and further find that the resonant wavelength is very sensitive to the particle's geometrical dimensions and arrangements. It is clearly illustrated that the magnetic LSP resonance exhibits strong dependence to the incidence angle of terahertz wave, which enables the design of metamaterials to achieve an electromagnetically induced transparency effect in the terahertz frequencies. This work opens up the possibility to apply for the surface plasmons in functional devices in the terahertz band.

  19. Comparison of theories for gravity wave induced fluctuations in airglow emissions

    NASA Technical Reports Server (NTRS)

    Walterscheid, R. L.; Schubert, G.; Hickey, M. P.

    1994-01-01

    A comparison is undertaken of theories for the gravity wave induced fluctuations in the intensity of airglow emissions and the associated temperature of the source region. The comparison is made in terms of Krassovsky's ratio eta(sub E) for a vertically extended emission region (eta(sub E) is the ratio of the vertically integrated normalized intensity perturbation to the vertically integrated intensity-weighted temperature perturbation). It is shown that the formulas for eta(sub E) in the works by Tarasick and Hines (1990) and Schubert et al. (1991) are in agreement for the case of an inviscid atmosphere. The calculation of eta(sub E) using the theory of Tarasick and Hines (1990) requires determination of their function chi; we show that chi is simply related to the 'single-level' Krassovsky's ratio eta of Schubert et al. (1991). The general relationship between chi and eta is applied to a simple chemical-dynamical model of the O2 atmospheric airglow and the altitude dependence of these quantities is evaluated for nonsteady state chemistry. Though the Tarasick and Hines (1990) formula for eta(sub E) does not explicitly depend on the scale heights of the minor constituents involved in airglow chemistry, eta(sub E) implicitly depends upon these scale heights through its dependences on chemical production and loss contained in chi. We demonstrate this dependence of eta(sub E) for the OH nightglow on atomic oxygen scale height by direct numerical evaluation of eta(sub E) in this case the dependence originates in the chemical production of perturbed ozone.

  20. An electromagnetic induced transparency-like scheme for wireless power transfer using dielectric resonators

    NASA Astrophysics Data System (ADS)

    Elnaggar, Sameh Y.

    2017-02-01

    Similar to the hybridization of three atoms, three coupled resonators interact to form bonding, anti-bonding, and non-bonding modes. The non-bonding mode enables an electromagnetic induced transparency like transfer of energy. Here, the non-bonding mode, resulting from the strong electric coupling of two dielectric resonators and an enclosure, is exploited to show that it is feasible to transfer power over a distance comparable to the operating wavelength. In this scheme, the enclosure acts as a mediator. The strong coupling permits the excitation of the non-bonding mode with high purity. This approach is different from resonant inductive coupling, which works in the sub-wavelength regime. Optimal loads and the corresponding maximum efficiency are determined using two independent methods: Coupled Mode Theory and Circuit modelling. It is shown that, unlike resonant inductive coupling, the figure of merit depends on the enclosure quality and not on the load, which emphasizes the role of the enclosure as a mediator. Briefly after the input excitation is turned on, the energy in the receiver builds up via all coupled and spurious modes. As time elapses, all modes except the non-bonding cease to sustain. Due to the strong coupling between the dielectrics and the enclosure, such systems have unique properties such as high and uniform efficiency over large distances and minimal fringing fields. These properties suggest that electromagnetic induced transparency like schemes that rely on the use of dielectric resonators can be used to power autonomous systems inside an enclosure or find applications when exposure to the fields needs to be minimal. Finite Element computations are used to verify the theoretical predictions by determining the transfer efficiency, field profile, and coupling coefficients for two different systems. It is shown that the three resonators must be present for efficient power transfer; if one or more are removed, the transfer efficiency reduces

  1. Electromagnetically induced absorption in detuned stub waveguides: a simple analytical and experimental model

    NASA Astrophysics Data System (ADS)

    Mouadili, A.; El Boudouti, E. H.; Soltani, A.; Talbi, A.; Djafari-Rouhani, B.; Akjouj, A.; Haddadi, K.

    2014-12-01

    We give an analytical and experimental demonstration of a classical analogue of the electromagnetic induced absorption (EIA) in a simple photonic device consisting of two stubs of lengths d1 and d2 grafted at the same site along a waveguide. By detuning the lengths of the two stubs (i.e. δ = d2 - d1) we show that: (i) the amplitudes of the electromagnetic waves in the two stubs can be written following the two resonators model where each stub plays the role of a radiative resonator with low Q factor. The destructive interference between the waves in the two stubs may give rise to a sharp resonance peak with high Q factor in the transmission as well as in the absorption. (ii) The transmission coefficient around the resonance induced by the stubs can be written following a Fano-like form. In particular, we give an explicit expression of the position, width and Fano parameter of the resonances as a function of δ. (iii) By taking into account the loss in the waveguides, we show that at the transmission resonance, the transmission (reflection) increases (decreases) as a function of δ. Whereas the absorption goes through a maximum around 0.5 for a threshold value δth which depends on the attenuation in the system and then falls to zero. (iv) We give a comparison between the phase of the determinant of the scattering matrix, the so-called Friedel phase and the phase of the transmission amplitude. (v) The effect of the boundary conditions at the end of the resonators on the EIA resonance is also discussed. The analytical results are obtained by means of the Green's function method, whereas the experiments are carried out using coaxial cables in the radio-frequency regime. These results should have important consequences for designing integrated devices such as narrow-frequency optical or microwave filters and high-speed switches.

  2. Electromagnetically induced absorption in detuned stub waveguides: a simple analytical and experimental model.

    PubMed

    Mouadili, A; Boudouti, E H El; Soltani, A; Talbi, A; Djafari-Rouhani, B; Akjouj, A; Haddadi, K

    2014-12-17

    We give an analytical and experimental demonstration of a classical analogue of the electromagnetic induced absorption (EIA) in a simple photonic device consisting of two stubs of lengths d1 and d2 grafted at the same site along a waveguide. By detuning the lengths of the two stubs (i.e. δ = d(2) - d(1)) we show that: (i) the amplitudes of the electromagnetic waves in the two stubs can be written following the two resonators model where each stub plays the role of a radiative resonator with low Q factor. The destructive interference between the waves in the two stubs may give rise to a sharp resonance peak with high Q factor in the transmission as well as in the absorption. (ii) The transmission coefficient around the resonance induced by the stubs can be written following a Fano-like form. In particular, we give an explicit expression of the position, width and Fano parameter of the resonances as a function of δ. (iii) By taking into account the loss in the waveguides, we show that at the transmission resonance, the transmission (reflection) increases (decreases) as a function of δ. Whereas the absorption goes through a maximum around 0.5 for a threshold value δth which depends on the attenuation in the system and then falls to zero. (iv) We give a comparison between the phase of the determinant of the scattering matrix, the so-called Friedel phase and the phase of the transmission amplitude. (v) The effect of the boundary conditions at the end of the resonators on the EIA resonance is also discussed. The analytical results are obtained by means of the Green's function method, whereas the experiments are carried out using coaxial cables in the radio-frequency regime. These results should have important consequences for designing integrated devices such as narrow-frequency optical or microwave filters and high-speed switches.

  3. Measurement of energetic-particle-driven core magnetic fluctuations and induced fast-ion transport

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.; Koliner, J. J.; Eilerman, S.; Reusch, J. A.; Anderson, J. K.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Liu, D.

    2013-03-01

    Internal fluctuations arising from energetic-particle-driven instabilities, including both density and radial magnetic field, are measured in a reversed-field-pinch plasma. The fluctuations peak near the core where fast ions reside and shift outward along the major radius as the instability transits from the n = 5 to n = 4 mode. During this transition, strong nonlinear three-wave interaction among multiple modes accompanied by enhanced fast-ion transport is observed.

  4. Interferometric fiber-optic gyroscope performance owing to temperature-induced index fluctuations in the fiber: effect on bias modulation

    NASA Astrophysics Data System (ADS)

    Knudsen, Sverre; Bløtekjær, Kjell

    1995-06-01

    An analysis of the noise floor owing to temperature-induced index fluctuations in the fiber of a dynamically biased interferometric fiber-optic gyroscope is presented. A comparison with shot noise indicates that, for a harmonic bias modulation, thermal noise in the fiber dominates for fiber lengths longer than \\similar 1 - 2km when practical source power levels are considered. The noise can be reduced or eliminated by the proper choice of modulation frequency or waveform.

  5. Optical measurements of fluctuating temperatures in a supersonic turbulent flow using one- and two-photon, laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1984-01-01

    A laser-induced fluorescence technique has been developed that provides a practical means of nonintrusively measuring the instantaneous temperatures in low-temperature turbulent flows. The capabilities of the method are reviewed, and its application to a simple, two-dimensional, turbulent boundary-layer flow at Mach 2 is reported. Measurements of the average temperature distribution through the boundary layer and the magnitudes of temperature fluctuations about their average values are presented.

  6. Optical measurements of fluctuating temperatures in a supersonic turbulent flow using one- and two-photon, laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1984-01-01

    A laser-induced fluorescence technique was developed that provides a practical means of nonintrusively measuring the instantaneous temperatures in low-temperature turbulent flows. The capabilities of the method are reviewed, and its application to a simple, two-dimensional, turbulent boundary-layer flow at Mach 2 is reported. Measurements of the average temperature distribution through the boundary layer and the magnitudes of temperature fluctuations about their average values are presented.

  7. Quantum phase gate based on electromagnetically induced transparency in optical cavities

    NASA Astrophysics Data System (ADS)

    Borges, Halyne S.; Villas-Bôas, Celso J.

    2016-11-01

    We theoretically investigate the implementation of a quantum controlled-phase gate in a system constituted by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a controlled-phase gate between two single photons. To this end, first one needs to store a (control) photon in the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system. Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of quantum controlled-phase gates using the recent technologies. In particular, we have found a lower bound for the cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The induced shift on the phase of a photonic qubit and the controlled-phase gate between single photons, combined with optical devices, enable one to perform universal quantum computation.

  8. Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells.

    PubMed

    Duan, Weixia; Liu, Chuan; Zhang, Lei; He, Mindi; Xu, Shangcheng; Chen, Chunhai; Pi, Huifeng; Gao, Peng; Zhang, Yanwen; Zhong, Min; Yu, Zhengping; Zhou, Zhou

    2015-03-01

    Extremely low-frequency electromagnetic fields (ELF-EMF) and radiofrequency electromagnetic fields (RF-EMF) have been considered to be possibly carcinogenic to humans. However, their genotoxic effects remain controversial. To make experiments controllable and results comparable, we standardized exposure conditions and explored the potential genotoxicity of 50 Hz ELF-EMF and 1800 MHz RF-EMF. A mouse spermatocyte-derived GC-2 cell line was intermittently (5 min on and 10 min off) exposed to 50 Hz ELF-EMF at an intensity of 1, 2 or 3 mT or to RF-EMF in GSM-Talk mode at the specific absorption rates (SAR) of 1, 2 or 4 W/kg. After exposure for 24 h, we found that neither ELF-EMF nor RF-EMF affected cell viability using Cell Counting Kit-8. Through the use of an alkaline comet assay and immunofluorescence against γ-H2AX foci, we found that ELF-EMF exposure resulted in a significant increase of DNA strand breaks at 3 mT, whereas RF-EMF exposure had insufficient energy to induce such effects. Using a formamidopyrimidine DNA glycosylase (FPG)-modified alkaline comet assay, we observed that RF-EMF exposure significantly induced oxidative DNA base damage at a SAR value of 4 W/kg, whereas ELF-EMF exposure did not. Our results suggest that both ELF-EMF and RF-EMF under the same experimental conditions may produce genotoxicity at relative high intensities, but they create different patterns of DNA damage. Therefore, the potential mechanisms underlying the genotoxicity of different frequency electromagnetic fields may be different.

  9. Synchronization behaviors of coupled neurons under electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Fuqiang; Wang, Chunni

    2017-01-01

    Based on an improved neuronal model, in which the effect of magnetic flux is considered during the fluctuation and change of ion concentration in cells, the transition of synchronization is investigated by imposing external electromagnetic radiation on the coupled neurons, and networks, respectively. It is found that the synchronization degree depends on the coupling intensity and the intensity of external electromagnetic radiation. Indeed, appropriate intensity of electromagnetic radiation could be effective to realize intermittent synchronization, while stronger intensity of electromagnetic radiation can induce disorder of coupled neurons and network. Neurons show rhythm synchronization in the electrical activities by increasing the coupling intensity under electromagnetic radiation, and spatial patterns can be formed in the network under smaller factor of synchronization.

  10. Analysis of Numerical Simulation Database for Pressure Fluctuations Induced by High-Speed Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.

    2014-01-01

    Direct numerical simulations (DNS) of Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub T) approximately 460 are conducted at two wall temperatures (Tw/Tr = 0.25, 0.76) to investigate the generated pressure fluctuations and their dependence on wall temperature. Simulations indicate that the influence of wall temperature on pressure fluctuations is largely limited to the near-wall region, with the characteristics of wall-pressure fluctuations showing a strong temperature dependence. Wall temperature has little influence on the propagation speed of the freestream pressure signal. The freestream radiation intensity compares well between wall-temperature cases when normalized by the local wall shear; the propagation speed of the freestream pressure signal and the orientation of the radiation wave front show little dependence on the wall temperature.

  11. Stochastic Faraday rotation induced by the electric current fluctuations in nanosystems

    NASA Astrophysics Data System (ADS)

    Smirnov, D. S.; Glazov, M. M.

    2017-01-01

    We demonstrate theoretically that in gyrotropic semiconductors and semiconductor nanosystems the Brownian motion of electrons results in temporal fluctuations of the polarization plane of light passing through or reflected from the structure, i.e., in stochastic Faraday or Kerr rotation effects. The theory of the effects is developed for a number of prominent gyrotropic systems such as bulk tellurium, ensembles of chiral carbon nanotubes, and GaAs-based quantum wells of different crystallographic orientations. We show that the power spectrum of these fluctuations in thermal equilibrium is proportional to the a c conductivity of the system. We evaluate contributions resulting from the fluctuations of the electric current, as well as of spin, valley polarization, and the spin current to the noise of the Faraday/Kerr rotation. Hence all-optical measurements of the Faraday and Kerr rotation noise provide an access to the transport properties of the semiconductor systems.

  12. Geographic variation in the flood-induced fluctuating temperature requirement for germination in Setaria parviflora seeds.

    PubMed

    Mollard, F P O; Insausti, P

    2011-07-01

    Our aim was to search for specific seed germinative strategies related to flooding escape in Setaria parviflora, a common species across the Americas. For this purpose, we investigated induction after floods, in relation to fluctuating temperature requirements for germination in seeds from mountain, floodplain and successional grasslands. A laboratory experiment was conducted in which seeds were imbibed or immersed in water at 5°C. Seeds were also buried in flood-prone and upland grasslands and exhumed during the flooding season. Additionally, seeds were buried in flooded or drained grassland mesocosms. Germination of exhumed seeds was assayed at 25°C or at 20°C/30°C in the dark or in the presence of red light pulses. After submergence or soil flooding, a high fraction (>32%) of seeds from the floodplain required fluctuating temperatures to germinate. In contrast, seeds from the mountains showed maximum differences in germination between fluctuating and constant temperature treatment only after imbibition (35%) or in non-flooded soil conditions (40%). The fluctuating temperature requirement was not clearly related to the foregoing conditions in the successional grassland seeds. Maximum germination could also be attained with red light pulses to seeds from mountain and successional grasslands. Results show that the fluctuating temperature requirement might help floodplain seeds to germinate after floods, indicating a unique feature of the dormancy of S. parviflora seeds from floodplains, which suggests an adaptive advantage aimed at postponing emergence during inundation periods. In contrast, the fluctuating temperature required for germination among seeds from mountain and successional grasslands show its importance for gap detection.

  13. Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations

    NASA Astrophysics Data System (ADS)

    de Visser, P. J.; Baselmans, J. J. A.; Yates, S. J. C.; Diener, P.; Endo, A.; Klapwijk, T. M.

    2012-04-01

    We have measured the number of quasiparticles and their lifetime in aluminium superconducting microwave resonators. The number of excess quasiparticles below 160 mK decreases from 72 to 17 μm-3 with a 6 dB decrease of the microwave power. The quasiparticle lifetime increases accordingly from 1.4 to 3.5 ms. These properties of the superconductor were measured through the spectrum of correlated fluctuations in the quasiparticle system and condensate of the superconductor, which show up in the resonator amplitude and phase, respectively. Because uncorrelated noise sources vanish, fluctuations in the superconductor can be studied with a sensitivity close to the vacuum noise.

  14. 18 GHz electromagnetic field induces permeability of Gram-positive cocci

    PubMed Central

    Nguyen, The Hong Phong; Shamis, Yury; Croft, Rodney J.; Wood, Andrew; McIntosh, Robert L.; Crawford, Russell J.; Ivanova, Elena P.

    2015-01-01

    The effect of electromagnetic field (EMF) exposures at the microwave (MW) frequency of 18 GHz, on four cocci, Planococcus maritimus KMM 3738, Staphylococcus aureus CIP 65.8T, S. aureus ATCC 25923 and S. epidermidis ATCC 14990T, was investigated. We demonstrate that exposing the bacteria to an EMF induced permeability in the bacterial membranes of all strains studied, as confirmed directly by transmission electron microscopy (TEM), and indirectly via the propidium iodide assay and the uptake of silica nanospheres. The cells remained permeable for at least nine minutes after EMF exposure. It was shown that all strains internalized 23.5 nm nanospheres, whereas the internalization of the 46.3 nm nanospheres differed amongst the bacterial strains (S. epidermidis ATCC 14990T~ 0%; Staphylococcus aureus CIP 65.8T S. aureus ATCC 25923, ~40%; Planococcus maritimus KMM 3738, ~80%). Cell viability experiments indicated that up to 84% of the cells exposed to the EMF remained viable. The morphology of the bacterial cells was not altered, as inferred from the scanning electron micrographs, however traces of leaked cytosolic fluids from the EMF exposed cells could be detected. EMF-induced permeabilization may represent an innovative, alternative cell permeability technique for applications in biomedical engineering, cell drug delivery and gene therapy. PMID:26077933

  15. Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators.

    PubMed

    Liu, Yuxiang; Davanço, Marcelo; Aksyuk, Vladimir; Srinivasan, Kartik

    2013-05-31

    We demonstrate optomechanically mediated electromagnetically induced transparency and wavelength conversion in silicon nitride (Si3N4) microdisk resonators. Fabricated devices support whispering gallery optical modes with a quality factor (Q) of 10(6), and radial breathing mechanical modes with a Q=10(4) and a resonance frequency of 625 MHz, so that the system is in the resolved sideband regime. Placing a strong optical control field on the red (blue) detuned sideband of the optical mode produces coherent interference with a resonant probe beam, inducing a transparency (absorption) window for the probe. This is observed for multiple optical modes of the device, all of which couple to the same mechanical mode, and which can be widely separated in wavelength due to the large band gap of Si3N4. These properties are exploited to demonstrate frequency up-conversion and down-conversion of optical signals between the 1300 and 980 nm bands with a frequency span of 69.4 THz.

  16. Femoral perfusion after pulsed electromagnetic field stimulation in a steroid-induced osteonecrosis model.

    PubMed

    Ikegami, Akira; Ueshima, Keiichiro; Saito, Masazumi; Ikoma, Kazuya; Fujioka, Mikihiro; Hayashi, Shigeki; Ishida, Masashi; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2015-07-01

    This study was designed to evaluate femoral perfusion after pulsed electromagnetic field (PEMF) stimulation in a steroid-induced osteonecrosis rabbit model by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Steroid-induced osteonecrosis was produced by single intramuscular injection of methylprednisolone in 15 rabbits. Eight rabbits underwent PEMF stimulation (PEMF group) and seven did not (control group). DCE-MRI was performed before PEMF stimulation, immediately before steroid administration, and 1, 5, 10, and 14 days after steroid administration. Regions of interest were set in the bilateral proximal femora. Enhancement ratio (ER), initial slope (IS), and area under the curve (AUC) were analyzed. ER, IS, and AUC in the control group significantly decreased after steroid administration compared with before administration (P<0.05). In PEMF group, IS significantly decreased; however, ER and AUC showed no significant differences after steroid administration compared with before. ER and IS in PEMF group were higher than in control group until 10th day, and AUC was higher until 5th day after steroid administration (P<0.05). PEMF stimulation restrains the decrease in blood flow after steroid administration.

  17. Electromagnetic millimeter wave induced hypoalgesia: frequency dependence and involvement of endogenous opioids.

    PubMed

    Radzievsky, A A; Gordiienko, O V; Alekseev, S; Szabo, I; Cowan, A; Ziskin, M C

    2008-05-01

    Millimeter wave treatment (MMWT) is based on the systemic biological effects that develop following local skin exposure to low power electromagnetic waves in the millimeter range. In the present set of experiments, the hypoalgesic effect of this treatment was analyzed in mice. The murine nose area was exposed to MMW of "therapeutic" frequencies: 42.25, 53.57, and 61.22 GHz. MMWT-induced hypoalgesia was shown to be frequency dependent in two experimental models: (1) the cold water tail-flick test (chronic non-neuropathic pain), and (2) the wire surface test (chronic neuropathic pain following unilateral constriction injury to the sciatic nerve). Maximum hypoalgesic effect was obtained when the frequency was 61.22 GHz. Other exposure parameters were: incident power density = 13.3 mW/cm(2), duration of each exposure = 15 min. Involvement of delta and kappa endogenous opioids in the MMWT-induced hypoalgesia was demonstrated using selective blockers of delta- and kappa-opioid receptors and the direct ELISA measurement of endogenous opioids in CNS tissue. Possible mechanisms of the effect and the perspectives of the clinical application of MMWT are discussed.

  18. Analysis of the Radiated Field in an Electromagnetic Reverberation Chamber as an Upset-Inducing Stimulus for Digital Systems

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2012-01-01

    Preliminary data analysis for a physical fault injection experiment of a digital system exposed to High Intensity Radiated Fields (HIRF) in an electromagnetic reverberation chamber suggests a direct causal relation between the time profile of the field strength amplitude in the chamber and the severity of observed effects at the outputs of the radiated system. This report presents an analysis of the field strength modulation induced by the movement of the field stirrers in the reverberation chamber. The analysis is framed as a characterization of the discrete features of the field strength waveform responsible for the faults experienced by a radiated digital system. The results presented here will serve as a basis to refine the approach for a detailed analysis of HIRF-induced upsets observed during the radiation experiment. This work offers a novel perspective into the use of an electromagnetic reverberation chamber to generate upset-inducing stimuli for the study of fault effects in digital systems.

  19. Fluctuating plasma phosphorus level by changes in dietary phosphorus intake induces endothelial dysfunction.

    PubMed

    Watari, Eriko; Taketani, Yutaka; Kitamura, Tomoyo; Tanaka, Terumi; Ohminami, Hirokazu; Abuduli, Maerjianghan; Harada, Nagakatsu; Yamanaka-Okumura, Hisami; Yamamoto, Hironori; Takeda, Eiji

    2015-01-01

    High serum phosphorus (P) impairs endothelial function by increasing oxidative stress and decreasing nitric oxide production. Serum P levels fluctuate due to circadian rhythms or dietary P intake in healthy people and due to dialysis in end-stage chronic kidney disease patients. Here we examined whether fluctuating plasma P caused by changes in dietary P intake may be involved in endothelial dysfunction, resulting in increased cardiovascular risk. Rats were fed a diet containing 0.6% P for 16 days (control group), or a diet alternating between 0.02% P and 1.2% P (LH group) or between 1.2% P and 0.02% P (HL group) every 2 days; the total amount of P intake among the groups during the feeding period was similar. In the LH and HL groups, endothelial-dependent vasodilation significantly decreased plasma 8-(OH)dG level significantly increased, and the expression of inflammatory factors such as MCP-1 increased in the endothelium as compared with the control group. These data indicate that repetitive fluctuations of plasma P caused by varying dietary P intake can impair endothelial function via increased oxidative stress and inflammatory response. Taken together, these results suggest that habitual fluctuation of dietary P intake might be a cause of cardiovascular disease through endothelial dysfunction, especially in chronic kidney disease patients.

  20. Three-dimensional simulation of the electromagnetic fields induced by the 2011 Tohoku tsunami

    NASA Astrophysics Data System (ADS)

    Zhang, Luolei; Utada, Hisashi; Shimizu, Hisayoshi; Baba, Kiyoshi; Maeda, Takuto

    2014-01-01

    The motion of seawater induces electromotive force of significant intensity due to Faraday's law, and the resulting electromagnetic (EM) field can be recorded by instruments installed on land or on the ocean bottom. However, few studies have successfully made a quantitative interpretation to obtain geophysical information from observations of tsunami-induced EM signals by an exact and accurate application of Maxwell equations. We built a scheme for three-dimensional numerical simulation to calculate EM fields due to ocean tidal flow and tested the system's accuracy by using the source currents in the ocean as expected from a Tohoku tsunami simulation. Here we show examples of a comparison of data from one land observatory in the Tohoku district, one island observatory in the Izu-Bonin arc, and one seafloor station in the northwest Pacific Ocean. The water motion that generates source current in the sea consists of both the primary poloidal and toroidal magnetic modes. Our numerical simulation shows that the field of the primary toroidal magnetic mode can be effective for seafloor observations but only when the seafloor is highly conductive. We examined how the conductivity of the shallower part of the seabed, composed of sediments, can be constrained by the tsunami-induced EM field observations, which is difficult in case of using ordinary seafloor magnetotelluric signals. We also defined the motional impedance just as the case of ordinary magnetotellurics and showed that both modeled and observed impedances approximately indicate the phase velocity of the long wave as predicted by a simple theory.

  1. Respiratory-Induced Prostate Motion Using Wavelet Decomposition of the Real-Time Electromagnetic Tracking Signal

    SciTech Connect

    Lin, Yuting; Liu, Tian; Yang, Xiaofeng; Wang, Yuenan; Khan, Mohammad K.

    2013-10-01

    Purpose: The objective of this work is to characterize and quantify the impact of respiratory-induced prostate motion. Methods and Materials: Real-time intrafraction motion is observed with the Calypso 4-dimensional nonradioactive electromagnetic tracking system (Calypso Medical Technologies, Inc. Seattle, Washington). We report the results from a total of 1024 fractions from 31 prostate cancer patients. Wavelet transform was used to decompose the signal to extract and isolate the respiratory-induced prostate motion from the total prostate displacement. Results: Our results show that the average respiratory motion larger than 0.5 mm can be observed in 68% of the fractions. Fewer than 1% of the patients showed average respiratory motion of less than 0.2 mm, whereas 99% of the patients showed average respiratory-induced motion ranging between 0.2 and 2 mm. The maximum respiratory range of motion of 3 mm or greater was seen in only 25% of the fractions. In addition, about 2% patients showed anxiety, indicated by a breathing frequency above 24 times per minute. Conclusions: Prostate motion is influenced by respiration in most fractions. Real-time intrafraction data are sensitive enough to measure the impact of respiration by use of wavelet decomposition methods. Although the average respiratory amplitude observed in this study is small, this technique provides a tool that can be useful if one moves to smaller treatment margins (≤5 mm). This also opens ups the possibility of being able to develop patient specific margins, knowing that prostate motion is not unpredictable.

  2. Piston slap induced pressure fluctuation in the water coolant passage of an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Ohta, Kazuhide; Wang, Xiaoyu; Saeki, Atsushi

    2016-02-01

    Liner cavitation is caused by water pressure fluctuation in the water coolant passage (WCP). When the negative pressure falls below the saturated vapor pressure, the impulsive pressure following the implosion of cavitation bubbles causes cavitation erosion of the wet cylinder liner surface. The present work establishes a numerical model for structural-acoustic coupling between the crankcase and the acoustic field in the WCP considering their dynamic characteristics. The coupling effect is evaluated through mutual interaction terms that are calculated from the mode shapes of the acoustic field and of the crankcase vibration on the boundary. Water pressure fluctuations in the WCP under the action of piston slap forces are predicted and the contributions of the uncoupled mode shapes of the crankcase and the acoustic field to the pressure waveform are analyzed. The influence of sound speed variations on the water pressure response is discussed, as well as the pressure on the thrust sides of the four cylinders.

  3. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    DOE PAGES

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; ...

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less

  4. Fluctuation-induced conductivity of superconductors above the transition temperature - Regularization of the Maki diagram.

    NASA Technical Reports Server (NTRS)

    Keller, J.; Korenman, V.

    1972-01-01

    The Maki contribution to the conductivity above the superconducting transition temperature is regularized within the framework of the BCS theory. This is achieved through the renormalization of the impurity-scattering vertex by inclusion of the effects of pair fluctuations. The conductivity is evaluated for a thin film. It depends only on the reduced temperature and the normal resistance per square. Fair agreement is found with Al films over a wide temperature range. Agreement is not found with experiments on Bi, Pb, and Ga films, which apparently contain a strong additional pair-breaking effect. The temperature range in which interactions among fluctuations become important in the Maki conductivity is generally larger than that given by the Ginzburg criterion.

  5. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    SciTech Connect

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It is found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.

  6. Structure-fluctuation-induced abnormal thermoelectric properties in semiconductor copper selenide

    SciTech Connect

    Liu, Huili; Shi, Xun; Kirkham, Melanie J; Wang, Hsin; Li, Qiang; Uher, Ctirad; Zhang, Wenqing; Chen, Lidong

    2013-01-01

    Thermoelectric effects and related technologies have attracted a great interest due to the world-wide energy harvesting. Thermoelectricity has usually been considered in the context of stable material phases. Here we report that the fluctuation of structures during the second-order phase transition in Cu2Se semiconductor breaks the conventional trends of thermoelectric transports in normal phases, leading to a critically phase-transition-enhanced thermoelectric figure of merit zT above unity at 400K, a three times larger value than for the normal phases. Dynamic structural transformations introduce intensive fluctuations and extreme complexity, which enhance the carrier entropy and thus the thermopower, and strongly scatter carriers and phonons as well to make their transports behave critically.

  7. Computational Investigation of Block Copolymer Surfactants for Stabilizing Fluctuation-Induced Polymeric Microemulsions

    NASA Astrophysics Data System (ADS)

    Delaney, Kris; Fredrickson, Glenn

    2013-03-01

    High molecular weight diblock copolymers introduced into a blend of immiscible homopolymers can act as a surfactant to suppress macroscopic two-fluid phase separation. With variation of block copolymer composition, the crossover between low-temperature ordering into microphase or macrophase separated states is marked by a mean-field isotropic Lifshitz multi-critical point. Strong fluctuations close to the Lifshitz point are observed to suppress the low-temperature ordering; a microemulsion state emerges, with large, co-continuous domains of segregated fluid lacking any long-range order. We study this phenomenon with fully fluctuating field-theoretic simulations based on complex Langevin sampling, and we attempt to design new block polymer surfactants that can produce the microemulsion state with a wider composition tolerance.

  8. Homotopy Perturbation Method-Based Analytical Solution for Tide-Induced Groundwater Fluctuations.

    PubMed

    Munusamy, Selva Balaji; Dhar, Anirban

    2016-05-01

    The groundwater variations in unconfined aquifers are governed by the nonlinear Boussinesq's equation. Analytical solution for groundwater fluctuations in coastal aquifers under tidal forcing can be solved using perturbation methods. However, the perturbation parameters should be properly selected and predefined for traditional perturbation methods. In this study, a new dimensional, higher-order analytical solution for groundwater fluctuations is proposed by using the homotopy perturbation method with a virtual perturbation parameter. Parameter-expansion method is used to remove the secular terms generated during the solution process. The solution does not require any predefined perturbation parameter and valid for higher values of amplitude parameter A/D, where A is the amplitude of the tide and D is the aquifer thickness.

  9. Optomechanical electromagnetically induced transparency in inverted atomic configurations: a comparative view

    NASA Astrophysics Data System (ADS)

    Asghari Nejad, A.; Askari, H. R.; Baghshahi, H. R.

    2017-03-01

    We study electromagnetically induced transparency (EIT), which is affected by cavity optomechanics in different atomic configurations (V and Λ ). The cavity mode is depicted as a probe field, and a classical driving field is applied to the atomic medium as the control laser in each system. Interaction between the cavity mode, atomic media and the oscillating mirror of the cavity can change the susceptibility of the atomic ensemble. Equations of motion demonstrate a system of nonlinear equations for each system. Nonlinearity of equations is a result of interaction between the cavity mode and atomic transitions. The equations are solved via a perturbation method. The results show two different aspects of atom-assisted optomechanics in V-type system: a common transparency window and an amplifying process in a transparency window that does not occur in the Λ configuration, notable as a considerable difference between the proposed systems. It is shown that classical field detuning leads to different changes in the susceptibility of both systems; other values of cavity detuning, except in the resonant case, can guarantee the occurrence of EIT in the system. For the initial value of the cavity field, a negative region appears in absorption spectrum of the V-type atomic ensemble. Meanwhile, the Λ configuration does not show a such process. According to our results, in the appearance of the transparency window, the position of movable mirror changes significantly.

  10. Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial

    NASA Astrophysics Data System (ADS)

    Ding, Guo-Wen; Liu, Shao-Bin; Zhang, Hai-Feng; Kong, Xiang-Kun; Li, Hai-Ming; Li, Bing-Xiang; Liu, Si-Yuan; Li, Hai

    2015-11-01

    A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is numerically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect coupling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators. Project supported by the National Natural Science Foundation of China (Grant No. 61307052), the Youth Funding for Science & Technology Innovation in Nanjing University of Aeronautics and Astronautics, China (Grant No. NS2014039), the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20123218110017), the Innovation Program for Graduate Education of Jiangsu Province, China (Grant Nos. KYLX_0272, CXZZ13_0166, and CXLX13_155), the Open Research Program in National State Key Laboratory of Millimeter Waves of China (Grant No. K201609), and the Fundamental Research Funds for the Central Universities of China (Grant No. kfjj20150407).

  11. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    PubMed Central

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-01-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444

  12. Electromagnetically induced transparency of a plasmonic metamaterial light absorber based on multilayered metallic nanoparticle sheets

    PubMed Central

    Okamoto, Koichi; Tanaka, Daisuke; Degawa, Ryo; Li, Xinheng; Wang, Pangpang; Ryuzaki, Sou; Tamada, Kaoru

    2016-01-01

    In this study, we observed the peak splitting of absorption spectra for two-dimensional sheets of silver nanoparticles due to the electromagnetically induced transparency (EIT) effect. This unique optical phenomenon was observed for the multilayered nanosheets up to 20 layers on a metal substrate, while this phenomenon was not observed on a transparent substrate. The wavelength and intensities of the split peaks depend on the number of layers, and the experimental results were well reproduced by the calculation of the Transfer-Matrix method by employing the effective medium approximation. The Ag nanosheets used in this study can act as a plasmonic metamaterial light absorber, which has a such large oscillator strength. This phenomenon is a fundamental optical property of a thin film on a metal substrate but has never been observed because native materials do not have a large oscillator strength. This new type of EIT effect using a plasmonic metamaterial light absorber presents the potential for the development of future optic and photonic technologies. PMID:27824071

  13. Nonreciprocity of a six-wave mixing light droplet by a moving electromagnetically induced grating

    NASA Astrophysics Data System (ADS)

    Zhang, Yiqi; Wu, Zhenkun; Zheng, Huaibin; Wang, Zhiguo; Zhang, Yunzhe; Tian, Hao; Zhang, Yanpeng

    2014-04-01

    For the first time, we investigate the nonreciprocal generation of six-wave mixing (SWM) in an inverted-Y type four-level system with spatially uniform distribution of atoms. The nonreciprocity results from a moving electromagnetically induced grating (EIG) which is formed by two coupling beams with different frequencies. We demonstrate that the nonreciprocity can be controlled by the frequencies of the coupling fields and the powers of the dressing beams. As the distribution of atoms is uniform, the atomic density cannot affect the nonreciprocity, but it will affect the formation of the photonic band gap structure of the moving EIG. This research can be used to make optical diodes or optical isolators, because the moving EIG, the speed of which is related to the frequency difference of the two coupling beams, can break time-reversal symmetry. We also demonstrate that the nonreciprocal SWM can form a nonreciprocal light droplet when it propagates in atomic vapors with third- and fifth-order nonlinear susceptibilities.

  14. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating.

    PubMed

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-09

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  15. Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics

    NASA Astrophysics Data System (ADS)

    Yasir, Kashif Ammar; Liu, Wu-Ming

    2016-03-01

    Cavity-optomechanics, a tool to manipulate mechanical effects of light to couple optical field with other physical objects, is the subject of increasing investigations, especially with regards to electromagnetically induced transparency (EIT). EIT, a result of Fano interference among different atomic transition levels, has acquired a significant importance in many areas of physics, such as atomic physics and quantum optics. However, controllability of such multi-dimensional systems has remained a crucial issue. In this report, we investigate the controllability of EIT and Fano resonances in hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC), trapped inside high-finesse Fabry-Pérot cavity with one vibrational mirror, driven by a single mode optical field and a transverse pump field. The transverse field is used to control the phenomenon of EIT. It is detected that the strength of transverse field is not only efficiently amplifying or attenuating out-going optical mode but also providing an opportunity to enhance the strength of Fano-interactions which leads to the amplification of EIT-window. To observe these phenomena in laboratory, we suggest a certain set of experimental parameters. The results provide a route for tunable manipulation of optical phenomena, like EIT, which could be a significant step in quantum engineering.

  16. Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor.

    PubMed

    Wu, Dong; Liu, Yumin; Yu, Li; Yu, Zhongyuan; Chen, Lei; Li, Ruifang; Ma, Rui; Liu, Chang; Zhang, Jinqiannan; Ye, Han

    2017-03-23

    In this work, using finite-difference time-domain method, we propose and numerically demonstrate a novel way to achieve electromagnetically induced transparency (EIT) phenomenon in the reflection spectrum by stacking two different types of coupling effect among different elements of the designed metamaterial. Compared with the conventional EIT-like analogues coming from only one type of coupling effect between bright and dark meta-atoms on the same plane, to our knowledge the novel approach is the first to realize the optically active and precise control of the wavelength position of EIT-like phenomenon using optical metamaterials. An on-to-off dynamic control of the EIT-like phenomenon also can be achieved by changing the refractive index of the dielectric substrate via adjusting an optical pump pulse. Furthermore, in near infrared region, the metamaterial structure can be operated as an ultra-high resolution refractive index sensor with an ultra-high figure of merit (FOM) reaching 3200, which remarkably improve the FOM value of plasmonic refractive index sensors. The novel approach realizing EIT-like spectral shape with easy adjustment to the working wavelengths will open up new avenues for future research and practical application of active plasmonic switch, ultra-high resolution sensors and active slow-light devices.

  17. Electromagnetically induced transparency of a plasmonic metamaterial light absorber based on multilayered metallic nanoparticle sheets.

    PubMed

    Okamoto, Koichi; Tanaka, Daisuke; Degawa, Ryo; Li, Xinheng; Wang, Pangpang; Ryuzaki, Sou; Tamada, Kaoru

    2016-11-08

    In this study, we observed the peak splitting of absorption spectra for two-dimensional sheets of silver nanoparticles due to the electromagnetically induced transparency (EIT) effect. This unique optical phenomenon was observed for the multilayered nanosheets up to 20 layers on a metal substrate, while this phenomenon was not observed on a transparent substrate. The wavelength and intensities of the split peaks depend on the number of layers, and the experimental results were well reproduced by the calculation of the Transfer-Matrix method by employing the effective medium approximation. The Ag nanosheets used in this study can act as a plasmonic metamaterial light absorber, which has a such large oscillator strength. This phenomenon is a fundamental optical property of a thin film on a metal substrate but has never been observed because native materials do not have a large oscillator strength. This new type of EIT effect using a plasmonic metamaterial light absorber presents the potential for the development of future optic and photonic technologies.

  18. Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics

    PubMed Central

    Yasir, Kashif Ammar; Liu, Wu-Ming

    2016-01-01

    Cavity-optomechanics, a tool to manipulate mechanical effects of light to couple optical field with other physical objects, is the subject of increasing investigations, especially with regards to electromagnetically induced transparency (EIT). EIT, a result of Fano interference among different atomic transition levels, has acquired a significant importance in many areas of physics, such as atomic physics and quantum optics. However, controllability of such multi-dimensional systems has remained a crucial issue. In this report, we investigate the controllability of EIT and Fano resonances in hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC), trapped inside high-finesse Fabry-Pérot cavity with one vibrational mirror, driven by a single mode optical field and a transverse pump field. The transverse field is used to control the phenomenon of EIT. It is detected that the strength of transverse field is not only efficiently amplifying or attenuating out-going optical mode but also providing an opportunity to enhance the strength of Fano-interactions which leads to the amplification of EIT-window. To observe these phenomena in laboratory, we suggest a certain set of experimental parameters. The results provide a route for tunable manipulation of optical phenomena, like EIT, which could be a significant step in quantum engineering. PMID:26955789

  19. A Method to Remove Electromagnetic Coupling from Induced Polarization Data for an ``Exponential'' Earth Model

    NASA Astrophysics Data System (ADS)

    Çağlar, İ.

    The electromagnetic (EM) coupling effect in induced polarization (IP) data is an important problem. In many works it has been computed only considering homogeneous or layered earth models with discretely uniform conductivity. In this study, an algorithm has been developed to compute the EM coupling effect in IP data measured on the earth, whose conductivity varies (increases or decreases) exponentially with depth. The EM coupling effects for Percent Frequency Effect (PFE) and phase data are computed for a dipole-dipole array with different separations, however the method can be applied to any electrode array. The results obtained for the cases of increasing and decreasing conductivity as a function of depth indicate that the EM coupling effect strongly depends on the subsurface resistivity and the dipole length. Here an ``exponential'' earth model is considered to remove EM coupling from the IP data in frequency and phase domain. For this purpose, first, the region of pseudo-section is divided into segments, and within each segment a typical average apparent resistivity (ρa) curve is constructed. An exponential conductivity model is fitted to average ρa data. The conductivity model is then used to compute EM responses. Next the data are corrected for the EM coupling contribution. This decoupling process is applied to field data from a galenite-pyrite mineralization area at the Dolluk site, in western Turkey. The results from the decoupling method developed here are compared with other techniques.

  20. Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor

    NASA Astrophysics Data System (ADS)

    Wu, Dong; Liu, Yumin; Yu, Li; Yu, Zhongyuan; Chen, Lei; Li, Ruifang; Ma, Rui; Liu, Chang; Zhang, Jinqiannan; Ye, Han

    2017-03-01

    In this work, using finite-difference time-domain method, we propose and numerically demonstrate a novel way to achieve electromagnetically induced transparency (EIT) phenomenon in the reflection spectrum by stacking two different types of coupling effect among different elements of the designed metamaterial. Compared with the conventional EIT-like analogues coming from only one type of coupling effect between bright and dark meta-atoms on the same plane, to our knowledge the novel approach is the first to realize the optically active and precise control of the wavelength position of EIT-like phenomenon using optical metamaterials. An on-to-off dynamic control of the EIT-like phenomenon also can be achieved by changing the refractive index of the dielectric substrate via adjusting an optical pump pulse. Furthermore, in near infrared region, the metamaterial structure can be operated as an ultra-high resolution refractive index sensor with an ultra-high figure of merit (FOM) reaching 3200, which remarkably improve the FOM value of plasmonic refractive index sensors. The novel approach realizing EIT-like spectral shape with easy adjustment to the working wavelengths will open up new avenues for future research and practical application of active plasmonic switch, ultra-high resolution sensors and active slow-light devices.

  1. Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor

    PubMed Central

    Wu, Dong; Liu, Yumin; Yu, Li; Yu, Zhongyuan; Chen, Lei; Li, Ruifang; Ma, Rui; Liu, Chang; Zhang, Jinqiannan; Ye, Han

    2017-01-01

    In this work, using finite-difference time-domain method, we propose and numerically demonstrate a novel way to achieve electromagnetically induced transparency (EIT) phenomenon in the reflection spectrum by stacking two different types of coupling effect among different elements of the designed metamaterial. Compared with the conventional EIT-like analogues coming from only one type of coupling effect between bright and dark meta-atoms on the same plane, to our knowledge the novel approach is the first to realize the optically active and precise control of the wavelength position of EIT-like phenomenon using optical metamaterials. An on-to-off dynamic control of the EIT-like phenomenon also can be achieved by changing the refractive index of the dielectric substrate via adjusting an optical pump pulse. Furthermore, in near infrared region, the metamaterial structure can be operated as an ultra-high resolution refractive index sensor with an ultra-high figure of merit (FOM) reaching 3200, which remarkably improve the FOM value of plasmonic refractive index sensors. The novel approach realizing EIT-like spectral shape with easy adjustment to the working wavelengths will open up new avenues for future research and practical application of active plasmonic switch, ultra-high resolution sensors and active slow-light devices. PMID:28332629

  2. Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms

    NASA Astrophysics Data System (ADS)

    Wu, Jinghui; Liu, Yang; Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2013-01-01

    We performed an experiment to observe the storage of an input probe field and an idler field generated through an off-axis four-wave mixing (FWM) process via a double-Λ configuration in a cold atomic ensemble. We analyzed the underlying physics in detail and found that the retrieved idler field came from two parts if there was no single-photon detuning for the pump pulse: Part 1 was from the collective atomic spin (the input probe field, the coupling field, and the pump field combined to generate the idler field through FWM; then the idler was stored through electromagnetically induced transparency). Part 2 was from the generated new FWM process during the retrieval process (the retrieved probe field, the coupling field, and the pump field combined to generate a new FWM signal). If there was single-photon detuning for the pump pulse, then the retrieved idler was mainly from part 2. The retrieved two fields exhibited damped oscillations with the same oscillatory period when a homogeneous external magnetic field was applied, which was caused by the Larmor spin precession. We also experimentally realized the storage and retrieval of an image of light using FWM, in which an image was added into the input signal. After the storage, the retrieved idler beams and input signal carried the same image. This image storage technique holds promise for applications in image processing, remote sensing, and quantum communication.

  3. Microplasma generation by slow microwave in an electromagnetically induced transparency-like metasurface

    NASA Astrophysics Data System (ADS)

    Tamayama, Yasuhiro; Sakai, Osamu

    2017-02-01

    Microplasma generation using microwaves in an electromagnetically induced transparency (EIT)-like metasurface composed of two types of radiatively coupled cut-wire resonators with slightly different resonance frequencies is investigated. A microplasma is generated in either of the gaps of the cut-wire resonators as a result of strong enhancement of the local electric field associated with resonance and slow microwave effects. The threshold microwave power for plasma ignition is found to reach a minimum at the EIT-like transmission peak frequency, where the group index is maximized. A pump-probe measurement of the metasurface reveals that the transmission properties can be significantly varied by varying the properties of the generated microplasma near the EIT-like transmission peak frequency and the resonance frequency. The electron density of the microplasma is roughly estimated to be of order 1 × 10 10 cm - 3 for a pump power of 15.8 W by comparing the measured transmission spectrum for the probe wave with the numerically calculated spectrum. In the calculation, we assumed that the plasma is uniformly generated in the resonator gap, that the electron temperature is 2 eV, and that the elastic scattering cross section is 20 × 10 - 16 cm 2 .

  4. Slowing the probe field in the second window of double-double electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Alotaibi, Hessa M. M.; Sanders, Barry C.

    2015-04-01

    For Doppler-broadened media operating under double-double electromagnetically induced transparency (EIT) conditions, we devise a scheme to control and reduce the probe-field group velocity at the center of the second transparency window. We derive numerical and approximate analytical solutions for the width of EIT windows and for the group velocities of the probe field at the two distinct transparency windows, and we show that the group velocities of the probe field can be lowered by judiciously choosing the physical parameters of the system. Our modeling enables us to identify three signal-field strength regimes (with a signal-field strength always higher than the probe-field strength), quantified by the Rabi frequency, for slowing the probe field. These three regimes correspond to a weak signal field, with the probe-field group velocity and transparency-window width both smaller for the second window compared to the first window, a medium-strength signal field, with a probe-field group velocity smaller in the second window than in the first window but with larger transparency-window width for the second window, and the strong signal field, with both group velocity and transparency-window width larger for the second window. Our scheme exploits the fact that the second transparency window is sensitive to a temperature-controlled signal-field nonlinearity, whereas the first transparency window is insensitive to this nonlinearity.

  5. Density matrix reconstruction of three-level atoms via Rydberg electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Gavryusev, V.; Signoles, A.; Ferreira-Cao, M.; Zürn, G.; Hofmann, C. S.; Günter, G.; Schempp, H.; Robert-de-Saint-Vincent, M.; Whitlock, S.; Weidemüller, M.

    2016-08-01

    We present combined measurements of the spatially resolved optical spectrum and the total excited-atom number in an ultracold gas of three-level atoms under electromagnetically induced transparency conditions involving high-lying Rydberg states. The observed optical transmission of a weak probe laser at the center of the coupling region exhibits a double peaked spectrum as a function of detuning, while the Rydberg atom number shows a comparatively narrow single resonance. By imaging the transmitted light onto a charge-coupled-device camera, we record hundreds of spectra in parallel, which are used to map out the spatial profile of Rabi frequencies of the coupling laser. Using all the information available we can reconstruct the full one-body density matrix of the three-level system, which provides the optical susceptibility and the Rydberg density as a function of spatial position. These results help elucidate the connection between three-level interference phenomena, including the interplay of matter and light degrees of freedom and will facilitate new studies of many-body effects in optically driven Rydberg gases.

  6. Calculation of the electromagnetic fields induced in the head of an operator of a cordless telephone

    NASA Astrophysics Data System (ADS)

    Martens, L.; de Moerloose, J.; de Zutter, D.; de Poorter, J.; de Wagter, C.

    1995-01-01

    This paper shows the capability of the finite difference time domain (FDTD) method to predict the interaction between the human body and the electromagnetic field generated by a cordless telephone. Both the influence of the human head on the performance of the cordless telephone and the energy deposited in the human head have been determined. The interaction has been evaluated for a simple dipole model and for an accurate "box" model of the telephone. The FDTD method is a versatile method for refining the antenna model. The results show that the use of the accurate box model in combination with a realistic model of the head derived from a nuclear magnetic resonance image is a prerequisite for accurate determination of the near fields induced in the head. The total amount of power absorbed in the head has been compared to the radiated power. From our calculations we found that about 15% of the antenna input power at 900 MHz is absorbed in the head.

  7. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms

    SciTech Connect

    Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.

    2015-09-14

    We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.

  8. Dressed-state electromagnetically induced transparency for light storage in uniform-phase spin waves

    NASA Astrophysics Data System (ADS)

    Šibalić, N.; Kondo, J. M.; Adams, C. S.; Weatherill, K. J.

    2016-09-01

    We present, experimentally and theoretically, a scheme for dressed-state electromagnetically induced transparency (EIT) in a three-step cascade system in which a four-level system is mapped into an effective three-level system. Theoretical analysis reveals that the scheme provides coherent-state control via adiabatic following and a generalized protocol for light storage in uniform phase spin-waves that are insensitive to motional dephasing. The three-step driving enables a number of other features, including spatial selectivity of the excitation region within the atomic medium, and kick-free and Doppler-free excitation that produces narrow resonances in thermal vapor. As a proof of concept, we present an experimental demonstration of the generalized EIT scheme using the 6 S1 /2→6 P3 /2→7 S1 /2→8 P1 /2 excitation path in thermal cesium vapor. This technique could be applied to cold and thermal ensembles to enable longer storage times for Rydberg polaritons.

  9. Electromagnetically induced transparency of a plasmonic metamaterial light absorber based on multilayered metallic nanoparticle sheets

    NASA Astrophysics Data System (ADS)

    Okamoto, Koichi; Tanaka, Daisuke; Degawa, Ryo; Li, Xinheng; Wang, Pangpang; Ryuzaki, Sou; Tamada, Kaoru

    2016-11-01

    In this study, we observed the peak splitting of absorption spectra for two-dimensional sheets of silver nanoparticles due to the electromagnetically induced transparency (EIT) effect. This unique optical phenomenon was observed for the multilayered nanosheets up to 20 layers on a metal substrate, while this phenomenon was not observed on a transparent substrate. The wavelength and intensities of the split peaks depend on the number of layers, and the experimental results were well reproduced by the calculation of the Transfer-Matrix method by employing the effective medium approximation. The Ag nanosheets used in this study can act as a plasmonic metamaterial light absorber, which has a such large oscillator strength. This phenomenon is a fundamental optical property of a thin film on a metal substrate but has never been observed because native materials do not have a large oscillator strength. This new type of EIT effect using a plasmonic metamaterial light absorber presents the potential for the development of future optic and photonic technologies.

  10. Possible weakly first-order superconducting transition induced by magnetic excitations in the YBCO system: A fluctuation conductivity study

    NASA Astrophysics Data System (ADS)

    Hneda, Marlon Luiz; da Silva Berchon, Luciano; Pureur, Paulo; das Neves Vieira, Valdemar; Jaeckel, Sandra Teixeira; Dias, Fábio Teixeira; Menegotto Costa, Rosângela

    2017-04-01

    Fluctuation conductivity is experimentally studied in the genuine critical region near the superconducting transition of YBa2Cu3O7 - δ, YBa2Cu2.985Fe0.015O7 - δ and Y0.95Ca0.05Ba2Cu3O7 - δ single crystal samples. Two fluctuation regimes where the electrical conductivity diverges as a power-law of the reduced temperature were systematically observed. In the first regime, farther from the critical temperature Tc, the transition behaves as predicted by the thermodynamics of the three dimensional-XY (3D-XY) universality class characteristic of a second-order phase transition. In the asymptotic regime closer to Tc a power-law regime characterized by a much smaller exponent is observed. The smallest value ever reported for the fluctuation conductivity exponent in the high-Tc superconductors is obtained for the Fe- and Ca-doped systems. We suggest that the regime beyond 3D-XY is a crossover towards a weakly first-order transition induced by internal magnetic excitations.

  11. Linear and nonlinear coupling of electromagnetic and electrostatic fluctuations with one dimensional trapping of electrons using product bi (r,q) distribution

    NASA Astrophysics Data System (ADS)

    Aziz, Tahir; Masood, W.; Qureshi, M. N. S.; Shah, H. A.; Yoon, P. H.

    2016-06-01

    In the present paper, we have investigated the ramifications of adiabatic trapping of electrons using a bi product ( r , q ) distribution function on obliquely propagating Alfven waves in a low β plasma. In this regard, we have analyzed the linear and nonlinear dispersion characteristics of finite amplitude coupled kinetic Alfven-acoustic solitary waves using the two-potential theory and employing Sagdeev potential approach. We have deliberated upon the results of the present inquest and highlighted its importance by citing works that have reported the simultaneous presence of electromagnetic pulses and flat-topped distribution of electrons.

  12. Three-dimensional forward calculation of the electromagnetic fields induced by tsunamis

    NASA Astrophysics Data System (ADS)

    Utada, H.; Zhang, L.; Shimizu, H.; Baba, K.; Maeda, T.

    2012-12-01

    The motion of seawater induces electromotive force of significant intensity (Sanford, 1971) due to Faraday's law, and resulting electromagnetic (EM) field can be recorded by instruments installed on land or at ocean bottom (Tyler, 2005; Toh et al. 2011). However, only a few studies were successfully simulating Tsunami induced EM fields by an exact and accurate application of Maxwell equations that is essential for a quantitative interpretation to get geophysical information from observations of tsunami-related EM signals. There are a number of observations of such EM fields that were caused by the devastating Tohoku tsunami of 2011 not only on land observatories but also at some seafloor sites (e.g. Utada et al., 2011; Ichihara et al., 2012). Here we present a 3-D modeling scheme to simulate these observed fields. We apply a 3-D EM induction code in Cartesian coordinate system with the heterogeneous source term, which is based on the modified iterative dissipative method (MIDM) (Zhang et al. 2012), and several underground electrical conductivity structures were assumed in the calculations. The source current distribution is predicted by the flow data calculated by a tsunami simulation (Maeda and Furumura, 2011) which solves Navier-Stokes equations in 3-D Cartesian coordinates. In our previous study (Utada et al., 2011), we estimated tsunami-induced fields by applying Biot-Savart law to the same set of flow data and obtained qualitative agreement between observations on land and model results. However quantitatively, we noticed that the present result generally gives smaller amplitude than the result of Biot-Savart calculation. This can be ascribed to the EM induction effect in the sea. We also tried some underground structures, but the effect of the underground structure is negligible compared with that of the induction in the sea. Meanwhile, we found that the effect of the source current by the vertical motion, which was ignored in the previous study, can be

  13. Nonlinear optical effects manifested by electromagnetic induced transparency in cold atoms

    NASA Astrophysics Data System (ADS)

    Zhang, Jiepeng

    2008-10-01

    This dissertation reports experimental studies of nonlinear optical effects manifested by electromagnetically induced transparency (EIT) in cold Rb atoms. The cold Rb atoms are confined in a magneto-optic trap (MOT) obtained with the standard laser cooling and trapping technique. Because of the near zero Doppler shift and a high phase density, the cold Rb sample is well suited for studies of atomic coherence and interference and related applications, and the experiments can be compared quantitatively with theoretical calculations. It is shown that with EIT induced in the multi-level Rb system by laser fields, the linear absorption is suppressed and the nonlinear susceptibility is enhanced, which enables studies of nonlinear optics in the cold atoms with slow photons and at low light intensities. Three independent experiments are described and the experimental results are presented. First, an experimental method that can produce simultaneously co-propagating slow and fast light pulses is discussed and the experimental demonstration is reported. Second, it is shown that in a three-level Rb system coupled by multi-color laser fields, the multi-channel two-photon Raman transitions can be manipulated by the relative phase and frequency of a control laser field. Third, a scheme for all-optical switching near single photon levels is developed. The scheme is based on the phase-dependent multi-photon interference in a coherently coupled four-level system. The phase dependent multi-photon interference is observed and switching of a single light pulse by a control pulse containing ˜20 photons is demonstrated. These experimental studies reveal new phenomena manifested by quantum coherence and interference in cold atoms, contribute to the advancement of fundamental quantum optics and nonlinear optics at ultra-low light intensities, and may lead to the development of new techniques to control quantum states of atoms and photons, which will be useful for applications in quantum

  14. Flow-induced agitations create a granular fluid: effective viscosity and fluctuations.

    PubMed

    Nichol, Kiri; van Hecke, Martin

    2012-06-01

    We fluidize a granular medium with localized stirring in a split-bottom shear cell. We probe the mechanical response of quiescent regions far from the main flow by observing the vertical motion of cylindrical probes rising, sinking, and floating in the grains. First, we find that the probe motion suggests that the granular material behaves in a liquid-like manner: high-density probes sink and low-density probes float at the depth given by Archimedes' law. Second, we observe that the drag force on moving probes scales linearly with their velocity, which allows us to define an effective viscosity for the system. This effective viscosity is inversely proportional to the rotation rate of the disk which drives the split bottom flow. Moreover, the apparent viscosity depends on radius and mass of the probe: despite the linear dependence of the drag forces on sinking speed of the probe, the granular medium is not simply Newtonian, but exhibits a more complex rheology. The decrease of viscosity with filling height of the cell, combined with the poor correlation between local strain rate and viscosity, suggests that the fluid-like character of the material is set by agitations generated in the stirred region: the relation between applied stress and observed strain rate in one location depends on the strain rate in another location. We probe the nature of the granular fluctuations that we believe mediates these nonlocal interactions by characterizing the small and random up and down motion that the probe experiences. These Gaussian fluctuations exhibit a mix of diffusive and subdiffusive behavior at short times and saturate at a value of roughly 1/10th of a grain diameter longer times, consistent with the picture of a random walker in a potential well. The product of crossover time and effective viscosity is constant, evidencing a direct link between fluctuations and viscosity.

  15. Spatial mobility fluctuation induced giant linear magnetoresistance in multilayered graphene foam

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Qiang; He, Xin; Ren, Wencai; Cheng, Hui-Ming; Zhang, Xi-xiang

    2016-07-01

    Giant, positive, and near-temperature-independent linear magnetoresistance (LMR), as large as 340%, was observed in graphene foam with a three-dimensional flexible network. Careful analysis of the magnetoresistance revealed that Shubnikov-de Haas (SdH) oscillations occurred at low temperatures and decayed with increasing temperature. The average classical mobility ranged from 300 (2 K) to 150 (300 K) c m2V-1s-1 , which is much smaller than that required by the observed SdH oscillations. To understand the mechanism behind the observation, we performed the same measurements on the microsized graphene sheets that constitute the graphene foam. Much more pronounced SdH oscillations superimposed on the LMR background were observed in these microscaled samples, which correspond to a quantum mobility as high as 26 ,500 c m2V-1s-1 . Moreover, the spatial mobility fluctuated significantly from 64 ,200 c m2V-1s-1 to 1370 c m2V-1s-1 , accompanied by a variation of magnetoresistance from near 20,000% to less than 20%. The presence of SdH oscillations actually excludes the possibility that the observed LMR originated from the extreme quantum limit, because this would demand all electrons to be in the first Landau level. Instead, we ascribe the large LMR to the second case of the classical Parish and Littlewood model, in which spatial mobility fluctuation dominates electrical transport. This is an experimental confirmation of the Parish and Littlewood model by measuring the local mobility randomly (by measuring the microsized graphene sheets) and finding the spatial mobility fluctuation.

  16. Exercise-induced metabolic fluctuations influence AMPK, p38-MAPK and CaMKII phosphorylation in human skeletal muscle

    PubMed Central

    Combes, Adrien; Dekerle, Jeanne; Webborn, Nick; Watt, Peter; Bougault, Valérie; Daussin, Frédéric N

    2015-01-01

    During transition from rest to exercise, metabolic reaction rates increase substantially to sustain intracellular ATP use. These metabolic demands activate several kinases that initiate signal transduction pathways which modulate transcriptional regulation of mitochondrial biogenesis. The purpose of this study was to determine whether metabolic fluctuations per se affect the signaling cascades known to regulate peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). On two separate occasions, nine men performed a continuous (30-min) and an intermittent exercise (30 × 1-min intervals separated by 1-min of recovery) at 70% of . Skeletal muscle biopsies from the vastus lateralis were taken at rest and at +0 h and +3 h after each exercise. Metabolic fluctuations that correspond to exercise-induced variation in metabolic rates were determined by analysis of VO2 responses. During intermittent exercise metabolic fluctuations were 2.8-fold higher despite identical total work done to continuous exercise (317 ± 41 vs. 312 ± 56 kJ after intermittent and continuous exercise, respectively). Increased phosphorylation of AMP-activated protein kinase (AMPK) (˜2.9-fold, P < 0.01), calcium/calmodulin-dependent protein kinase II (CaMKII) (˜2.7-fold, P < 0.01) and p38-mitogen-activated protein kinase (MAPK) (˜4.2-fold, P < 0.01) occurred immediately in both exercises and to a greater extent after the intermittent exercise (condition x time interaction, P < 0.05). A single bout of intermittent exercise induces a greater activation of these signaling pathways regulating PGC-1α when compared to a single bout of continuous exercise of matched work and intensity. Chronic adaptations to exercise on mitochondria biogenesis are yet to be investigated. PMID:26359238

  17. Berry-phase-induced heat pumping and its impact on the fluctuation theorem.

    PubMed

    Ren, Jie; Hänggi, Peter; Li, Baowen

    2010-04-30

    Applying adiabatic, cyclic two-parameter modulations we investigate quantum heat transfer across an anharmonic molecular junction contacted with two heat baths. We demonstrate that the pumped heat typically exhibits a Berry-phase effect in providing an additional geometric contribution to heat flux. Remarkably, a robust fractional quantized geometric phonon response is identified as well. The presence of this geometric phase contribution in turn causes a breakdown of the fluctuation theorem of the Gallavotti-Cohen type for quantum heat transfer. This can be restored only if (i) the geometric phase contribution vanishes and if (ii) the cyclic protocol preserves the detailed balance symmetry.

  18. Berry-Phase-Induced Heat Pumping and Its Impact on the Fluctuation Theorem

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Hänggi, Peter; Li, Baowen

    2010-04-01

    Applying adiabatic, cyclic two-parameter modulations we investigate quantum heat transfer across an anharmonic molecular junction contacted with two heat baths. We demonstrate that the pumped heat typically exhibits a Berry-phase effect in providing an additional geometric contribution to heat flux. Remarkably, a robust fractional quantized geometric phonon response is identified as well. The presence of this geometric phase contribution in turn causes a breakdown of the fluctuation theorem of the Gallavotti-Cohen type for quantum heat transfer. This can be restored only if (i) the geometric phase contribution vanishes and if (ii) the cyclic protocol preserves the detailed balance symmetry.

  19. Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Massey, G. A.; Lemon, C. J.

    1984-01-01

    A tunable line-narrowed ArF laser can selectively excite several rotation al lines of the Schumann-Runge band system of O2 in air. The resulting ultraviolet fluorescence can be monitored at 90 deg to the laser beam axis, permitting space and time resolved observation of density and temperature fluctuations in turbulence. Experiments and calculations show that + or - 1 K, + or - 1 percent density, 1 cu mm spatial, and 1 microsecond temporal resolution can be achieved simultaneously under some conditions.

  20. Conductance fluctuations and disorder induced ν =0 quantum Hall plateau in topological insulator nanowires

    NASA Astrophysics Data System (ADS)

    Xypakis, Emmanouil; Bardarson, Jens H.

    2017-01-01

    Clean topological insulators exposed to a magnetic field develop Landau levels accompanied by a nonzero Hall conductivity for the infinite slab geometry. In this work we consider the case of disordered topological insulator nanowires and find, in contrast, that a zero Hall plateau emerges within a broad energy window close to the Dirac point. We numerically calculate the conductance and its distribution for a statistical ensemble of disordered nanowires, and use the conductance fluctuations to study the dependence of the insulating phase on system parameters, such as the nanowire length, disorder strength, and the magnetic field.

  1. Numerical study on the partitioning of the molecular polarizability into fluctuating charge and induced atomic dipole contributions

    SciTech Connect

    Mei, Ye; Simmonett, Andrew C.; Pickard, IV, Frank C.; DiStasio, Jr., Robert A.; Brooks, Bernard R.; Shao, Yihan

    2015-05-06

    In order to carry out a detailed analysis of the molecular static polarizability, which is the response of the molecule to a uniform external electric field, the molecular polarizability was computed in this study using the finite-difference method for 21 small molecules, using density functional theory. Within nine charge population schemes (Lowdin, Mulliken, Becke, Hirshfeld, CM5, Hirshfeld-I, NPA, CHELPG, MK-ESP) in common use, the charge fluctuation contribution is found to dominate the molecular polarizability, with its ratio ranging from 59.9% with the Hirshfeld or CM5 scheme to 96.2% with the Mulliken scheme. The Hirshfeld-I scheme is also used to compute the other contribution to the molecular polarizability coming from the induced atomic dipoles, and the atomic polarizabilities in eight small molecules and water pentamer are found to be highly anisotropic for most atoms. In conclusion, the overall results suggest that (a) more emphasis probably should be placed on the charge fluctuation terms in future polarizable force field development and (b) an anisotropic polarizability might be more suitable than an isotropic one in polarizable force fields based entirely or partially on the induced atomic dipoles.

  2. Numerical Study on the Partitioning of the Molecular Polarizability into Fluctuating Charge and Induced Atomic Dipole Contributions

    PubMed Central

    Mei, Ye; Simmonett, Andrew C.; Pickard, Frank C.; DiStasio, Robert A.; Brooks, Bernard R.; Shao, Yihan

    2015-01-01

    In order to carry out a detailed analysis of the molecular static polarizability, which is the response of the molecule to a uniform external electric field, the molecular polarizability was computed using the finite-difference method for 21 small molecules, using density functional theory. Within nine charge population schemes (Löwdin, Mulliken, Becke, Hirshfeld, CM5, Hirshfeld-I, NPA, CHELPG, MK-ESP) in common use, the charge fluctuation contribution is found to dominate the molecular polarizability, with its ratio ranging from 59.9% with the Hirshfeld or CM5 scheme to 96.2% with the Mulliken scheme. The Hirshfeld-I scheme is also used to compute the other contribution to the molecular polarizability coming from the induced atomic dipoles, and the atomic polarizabilities in 8 small molecules and water pentamer are found to be highly anisotropic for most atoms. Overall, the results suggest that (a) more emphasis probably should be placed on the charge fluctuation terms in future polarizable force field development; (b) an anisotropic polarizability might be more suitable than an isotropic one in polarizable force fields based entirely or partially on the induced atomic dipoles. PMID:25945749

  3. Numerical study on the partitioning of the molecular polarizability into fluctuating charge and induced atomic dipole contributions

    DOE PAGES

    Mei, Ye; Simmonett, Andrew C.; Pickard, IV, Frank C.; ...

    2015-05-06

    In order to carry out a detailed analysis of the molecular static polarizability, which is the response of the molecule to a uniform external electric field, the molecular polarizability was computed in this study using the finite-difference method for 21 small molecules, using density functional theory. Within nine charge population schemes (Lowdin, Mulliken, Becke, Hirshfeld, CM5, Hirshfeld-I, NPA, CHELPG, MK-ESP) in common use, the charge fluctuation contribution is found to dominate the molecular polarizability, with its ratio ranging from 59.9% with the Hirshfeld or CM5 scheme to 96.2% with the Mulliken scheme. The Hirshfeld-I scheme is also used to computemore » the other contribution to the molecular polarizability coming from the induced atomic dipoles, and the atomic polarizabilities in eight small molecules and water pentamer are found to be highly anisotropic for most atoms. In conclusion, the overall results suggest that (a) more emphasis probably should be placed on the charge fluctuation terms in future polarizable force field development and (b) an anisotropic polarizability might be more suitable than an isotropic one in polarizable force fields based entirely or partially on the induced atomic dipoles.« less

  4. Directivity of a Sparse Array in the Presence of Atmospheric-Induced Phase Fluctuations for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Acosta, Robert J.

    2010-01-01

    Widely distributed (sparse) ground-based arrays have been utilized for decades in the radio science community for imaging celestial objects, but have only recently become an option for deep space communications applications with the advent of the proposed Next Generation Deep Space Network (DSN) array. But whereas in astronomical imaging, observations (receive-mode only) are made on the order of minutes to hours and atmospheric-induced aberrations can be mostly corrected for in post-processing, communications applications require transmit capabilities and real-time corrections over time scales as short as fractions of a second. This presents an unavoidable problem with the use of sparse arrays for deep space communications at Ka-band which has yet to be successfully resolved, particularly for uplink arraying. In this paper, an analysis of the performance of a sparse antenna array, in terms of its directivity, is performed to derive a closed form solution to the expected array loss in the presence of atmospheric-induced phase fluctuations. The theoretical derivation for array directivity degradation is validated with interferometric measurements for a two-element array taken at Goldstone, California. With the validity of the model established, an arbitrary 27-element array geometry is defined at Goldstone, California, to ascertain its performance in the presence of phase fluctuations. It is concluded that a combination of compact array geometry and atmospheric compensation is necessary to ensure high levels of availability.

  5. Recent fracture induced electromagnetic field measurements revealing an Earth system in second order phase transition before the occurrence of significant earthquakes

    NASA Astrophysics Data System (ADS)

    Potirakis, Stelios M.; Contoyiannis, Yiannis; Kopanas, John; Antonopoulos, George; Nomicos, Constantinos; Eftaxias, Konstantinos

    2015-04-01

    A crucial feature observed in the study of fracture induced electromagnetic emissions (EMEs) is the asynchronous appearance of MHz and kHz AE-EM precursors: the MHz EMEs precede the kHz ones: the strong avalanche-like kHz emissions are launched in the tail of pre-fracture emissions. Herein, we focus on the systematically observed precursory MHz EME. We show that both, the MHz EMEs recorded prior to recent significant earthquakes that occurred in Greece and the associated seismic activities came to critical condition a few days before the main shock occurrence. The analyses were performed my means of two independent statistical method, namely, the method of critical fluctuation and the natural time method, both revealing critical features. This results indicates the existence of a strong connection of the MHz EME with the corresponding earthquake preparation process. Accumulated laboratory, theoretical and numerical evidence supports the hypothesis that the MHz EME is emitted during the fracture of process of heterogeneous medium surrounding the family of strong entities (asperities) distributed along the fault sustaining the system. The kHz EME is attributed to the family of asperities themselves.

  6. Lightning induced inappropriate ICD shock: an unusual case of electromagnetic interference.

    PubMed

    Anderson, Daniel R; Gillberg, Jeffrey M; Torrey, Jeffrey W; Koneru, Jayanthi N

    2012-06-01

    An unusual case of electromagnetic interference is presented. As a result of a lightning shock to a Shower House, our patient received two shocks. An elucidation of the different mechanisms for the two shocks is presented.

  7. Pulsed electromagnetic fields stimulation prevents steroid-induced osteonecrosis in rats

    PubMed Central

    2011-01-01

    Background Pulsed electromagnetic fields (PEMF) stimulation has been used successfully to treat nonunion fractures and femoral head osteonecrosis, but relatively little is known about its effects on preventing steroid-induced osteonecrosis. The purpose of the study was to investigate the effects of PEMF stimulation on the prevention of steroid-induced osteonecrosis in rats and explore the underlying mechanisms. Methods Seventy-two male adult Wistar rats were divided into three groups and treated as follows. (1) PEMF stimulation group (PEMF group, n = 24): intravenously injected with lipopolysaccharide (LPS, 10 μg/kg) on day 0 and intramuscularly injected with methylprednisolone acetate (MPSL, 20 mg/kg) on days 1, 2 and 3, then subjected to PEMF stimulation 4 h per day for 1 to 8 weeks. (2) Methylprednisolone-treated group (MPSL group, n = 24): injected the same dose of LPS and MPSL as the PEMF group but without exposure to PEMF. (3) Control group (PS group, n = 24): injected 0.9% saline in the same mode at the same time points. The incidence of osteonecrosis, serum lipid levels and the mRNA and protein expression of transforming growth factor β1 (TGF-β1) in the proximal femur were measured 1, 2, 4 and 8 weeks after the last MPSL (or saline) injection. Results The incidence of osteonecrosis in the PEMF group (29%) was significantly lower than that observed in the MPSL group (75%), while no osteonecrosis was observed in the PS group. The serum lipid levels were significantly lower in the PEMF and PS groups than in the MPSL group. Compared with the MPSL and PS groups, the mRNA expression of TGF-β1 increased, reaching a peak 1 week after PEMF treatment, and remained high for 4 weeks, then declined at 8 weeks, whereas the protein expression of TGF-β1 increased, reaching a peak at 2 weeks after PEMF treatment, and remained high for 8 weeks. Conclusions PEMF stimulation can prevent steroid-induced osteonecrosis in rats, and the underlying mechanisms involve decreased

  8. Combined effects of flow-induced shear stress and electromagnetic field on neural differentiation of mesenchymal stem cells.

    PubMed

    Mascotte-Cruz, Juan Uriel; Ríos, Amelia; Escalante, Bruno

    2016-01-01

    Differentiation of bone marrow-derived mesenchymal stem cells (MSCs) into neural phenotype has been induced by either flow-induced shear stress (FSS) or electromagnetic fields (EMF). However, procedures are still expensive and time consuming. In the present work, induction for 1 h with the combination of both forces showed the presence of the neural precursor nestin as early as 9 h in culture after treatment and this result lasted for the following 6 d. In conclusion, the use of a combination of FSS and EMF for a short-time renders in neurite-like cells, although further investigation is required to analyze cell functionality.

  9. Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity

    PubMed Central

    Yamamoto, Eiji; Akimoto, Takuma; Kalli, Antreas C.; Yasuoka, Kenji; Sansom, Mark S. P.

    2017-01-01

    Pleckstrin homology (PH) domains are membrane-binding lipid recognition proteins that interact with phosphatidylinositol phosphate (PIP) molecules in eukaryotic cell membranes. Diffusion of PH domains plays a critical role in biological reactions on membrane surfaces. Although diffusivity can be estimated by long-time measurements, it lacks information on the short-time diffusive nature. We reveal two diffusive properties of a PH domain bound to the surface of a PIP-containing membrane using molecular dynamics simulations. One is fractional Brownian motion, attributed to the motion of the lipids with which the PH domain interacts. The other is temporally fluctuating diffusivity; that is, the short-time diffusivity of the bound protein changes substantially with time. Moreover, the diffusivity for short-time measurements is intrinsically different from that for long-time measurements. This fluctuating diffusivity results from dynamic changes in interactions between the PH domain and PIP molecules. Our results provide evidence that the complexity of protein-lipid interactions plays a crucial role in the diffusion of proteins on biological membrane surfaces. Changes in the diffusivity of PH domains and related membrane-bound proteins may in turn contribute to the formation/dissolution of protein complexes in membranes. PMID:28116358

  10. BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage

    PubMed Central

    Artati, Anna; Adamski, Jerzy

    2016-01-01

    Each year more than 450,000 Germans are expected to be diagnosed with cancer subsequently receiving standard multimodal therapies including surgery, chemotherapy and radiotherapy. On top, molecular-targeted agents are increasingly administered. Owing to intrinsic and acquired resistance to these therapeutic approaches, both the better molecular understanding of tumor biology and the consideration of alternative and complementary therapeutic support are warranted and open up broader and novel possibilities for therapy personalization. Particularly the latter is underpinned by the increasing utilization of non-invasive complementary and alternative medicine by the population. One investigated approach is the application of low-dose electromagnetic fields (EMF) to modulate cellular processes. A particular system is the BEMER therapy as a Physical Vascular Therapy for which a normalization of the microcirculation has been demonstrated by a low-frequency, pulsed EMF pattern. Open remains whether this EMF pattern impacts on cancer cell survival upon treatment with radiotherapy, chemotherapy and the molecular-targeted agent Cetuximab inhibiting the epidermal growth factor receptor. Using more physiological, three-dimensional, matrix-based cell culture models and cancer cell lines originating from lung, head and neck, colorectal and pancreas, we show significant changes in distinct intermediates of the glycolysis and tricarboxylic acid cycle pathways and enhanced cancer cell radiosensitization associated with increased DNA double strand break numbers and higher levels of reactive oxygen species upon BEMER treatment relative to controls. Intriguingly, exposure of cells to the BEMER EMF pattern failed to result in sensitization to chemotherapy and Cetuximab. Further studies are necessary to better understand the mechanisms underlying the cellular alterations induced by the BEMER EMF pattern and to clarify the application areas for human disease. PMID:27959944

  11. BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage.

    PubMed

    Storch, Katja; Dickreuter, Ellen; Artati, Anna; Adamski, Jerzy; Cordes, Nils

    2016-01-01

    Each year more than 450,000 Germans are expected to be diagnosed with cancer subsequently receiving standard multimodal therapies including surgery, chemotherapy and radiotherapy. On top, molecular-targeted agents are increasingly administered. Owing to intrinsic and acquired resistance to these therapeutic approaches, both the better molecular understanding of tumor biology and the consideration of alternative and complementary therapeutic support are warranted and open up broader and novel possibilities for therapy personalization. Particularly the latter is underpinned by the increasing utilization of non-invasive complementary and alternative medicine by the population. One investigated approach is the application of low-dose electromagnetic fields (EMF) to modulate cellular processes. A particular system is the BEMER therapy as a Physical Vascular Therapy for which a normalization of the microcirculation has been demonstrated by a low-frequency, pulsed EMF pattern. Open remains whether this EMF pattern impacts on cancer cell survival upon treatment with radiotherapy, chemotherapy and the molecular-targeted agent Cetuximab inhibiting the epidermal growth factor receptor. Using more physiological, three-dimensional, matrix-based cell culture models and cancer cell lines originating from lung, head and neck, colorectal and pancreas, we show significant changes in distinct intermediates of the glycolysis and tricarboxylic acid cycle pathways and enhanced cancer cell radiosensitization associated with increased DNA double strand break numbers and higher levels of reactive oxygen species upon BEMER treatment relative to controls. Intriguingly, exposure of cells to the BEMER EMF pattern failed to result in sensitization to chemotherapy and Cetuximab. Further studies are necessary to better understand the mechanisms underlying the cellular alterations induced by the BEMER EMF pattern and to clarify the application areas for human disease.

  12. Electromagnetic coupling in frequency-domain induced polarization data: a method for removal

    NASA Astrophysics Data System (ADS)

    Routh, Partha S.; Oldenburg, Douglas W.

    2001-04-01

    Electromagnetic (EM) coupling is generally considered to be noise in induced polarization (IP) data and interpretation is difficult when its contribution is large compared to the IP signal. The effect is exacerbated by conductive environments and large-array survey geometries designed to explore deeper targets. In this paper we present a methodology to remove EM coupling from frequency-domain IP data. We first investigate the effect of EM coupling on the IP data and derive the necessary equations to represent the IP effect for both amplitude and phase responses of the signal. The separation of the inductive response from the total response in the low-frequency regime is derived using the electric field due to a horizontal electric dipole and it is assumed that at low frequencies the interaction of EM effects and IP effects is negligible. The total electric field is then expressed as a product of a scalar function, which is due to IP effects, and an electric field, which depends on the EM coupling response. It is this representation that enables us to obtain the IP response from EM-coupling-contaminated data. To compute the EM coupling response we recognize that conductivity information is necessary. We illustrate this with a synthetic example. The removal method developed in this work for the phase and the per cent frequency effect (PFE) data are applicable to 1-D, 2-D and 3-D structures. The practical utility of the method is illustrated on a 2-D field example that is typical of mineral exploration problems.

  13. The radioprotective effects of Moringa oleifera against mobile phone electromagnetic radiation-induced infertility in rats.

    PubMed

    Bin-Meferij, Mashael Mohammed; El-Kott, Attalla Farag

    2015-01-01

    The present study has investigated the effects of mobile phone electromagnetic radiation (EMR) on fertility in rats. The purpose of this study was to explore the capability of polyphenolic-rich Moringa oleifera leaf extract in protecting rat testis against EMR-induced impairments based on evaluation of sperm count, viability, motility, sperm cell morphology, anti-oxidants (SOD & CAT), oxidative stress marker, testis tissue histopathology and PCNA immunohistochemistry. The sample consisted of sixty male Wistar rats which were divided into four equal groups. The first group (the control) received only standard diet while the second group was supplemented daily and for eight weeks with 200 mg/kg aqueous extract of Moringa leaves. The third group was exposed to 900 MHz fields for one hour a day and for (7) days a week. As for the fourth group, it was exposed to mobile phone radiation and received the Moringa extract. The results showed that the EMR treated group exhibited a significantly decrease sperm parameters. Furthermore, concurrent exposure to EMR and treated with MOE significantly enhanced the sperm parameters. However, histological results in EMR group showed irregular seminiferous tubules, few spermatogonia, giant multinucleated cells, degenerated spermatozoa and the number of Leydig cells was significantly reduced. PCNA labeling indices were significant in EMR group versus the control group. Also, EMR affects spermatogenesis and causes to apoptosis due to the heat and other stress-related EMR in testis tissue. This study concludes that chronic exposure to EMR marked testicular injury which can be prevented by Moringa oleifera leaf extract.

  14. The radioprotective effects of Moringa oleifera against mobile phone electromagnetic radiation-induced infertility in rats

    PubMed Central

    Bin-Meferij, Mashael Mohammed; El-kott, Attalla Farag

    2015-01-01

    The present study has investigated the effects of mobile phone electromagnetic radiation (EMR) on fertility in rats. The purpose of this study was to explore the capability of polyphenolic-rich Moringa oleifera leaf extract in protecting rat testis against EMR-induced impairments based on evaluation of sperm count, viability, motility, sperm cell morphology, anti-oxidants (SOD & CAT), oxidative stress marker, testis tissue histopathology and PCNA immunohistochemistry. The sample consisted of sixty male Wistar rats which were divided into four equal groups. The first group (the control) received only standard diet while the second group was supplemented daily and for eight weeks with 200 mg/kg aqueous extract of Moringa leaves. The third group was exposed to 900 MHz fields for one hour a day and for (7) days a week. As for the fourth group, it was exposed to mobile phone radiation and received the Moringa extract. The results showed that the EMR treated group exhibited a significantly decrease sperm parameters. Furthermore, concurrent exposure to EMR and treated with MOE significantly enhanced the sperm parameters. However, histological results in EMR group showed irregular seminiferous tubules, few spermatogonia, giant multinucleated cells, degenerated spermatozoa and the number of Leydig cells was significantly reduced. PCNA labeling indices were significant in EMR group versus the control group. Also, EMR affects spermatogenesis and causes to apoptosis due to the heat and other stress-related EMR in testis tissue. This study concludes that chronic exposure to EMR marked testicular injury which can be prevented by Moringa oleifera leaf extract. PMID:26550159

  15. Increase in the Random Dopant Induced Threshold Fluctuations and Lowering in Sub 100 nm MOSFETs Due to Quantum Effects: A 3-D Density-Gradient Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, S.

    2000-01-01

    In this paper we present a detailed simulation study of the influence of quantum mechanical effects in the inversion layer on random dopant induced threshold voltage fluctuations and lowering in sub 100 nm MOSFETs. The simulations have been performed using a 3-D implementation of the density gradient (DG) formalism incorporated in our established 3-D atomistic simulation approach. This results in a self-consistent 3-D quantum mechanical picture, which implies not only the vertical inversion layer quantisation but also the lateral confinement effects related to current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical dopant fluctuations, is an increase in both threshold voltage fluctuations and lowering. At the same time, the random dopant induced threshold voltage lowering partially compensates for the quantum mechanical threshold voltage shift in aggressively scaled MOSFETs with ultrathin gate oxides.

  16. Electromagnetic noise inhibits radiofrequency radiation-induced DNA damage and reactive oxygen species increase in human lens epithelial cells

    PubMed Central

    Wu, Wei; Wang, KaiJun; Ni, Shuang; Ye, PanPan; Yu, YiBo; Ye, Juan; Sun, LiXia

    2008-01-01

    Purpose The goal of this study was to investigate whether superposing of electromagnetic noise could block or attenuate DNA damage and intracellular reactive oxygen species (ROS) increase of cultured human lens epithelial cells (HLECs) induced by acute exposure to 1.8 GHz radiofrequency field (RF) of the Global System for Mobile Communications (GSM). Methods An sXc-1800 RF exposure system was used to produce a GSM signal at 1.8 GHz (217 Hz amplitude-modulated) with the specific absorption rate (SAR) of 1, 2, 3, and 4 W/kg. After 2 h of intermittent exposure, the ROS level was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). DNA damage to HLECs was examined by alkaline comet assay and the phosphorylated form of histone variant H2AX (γH2AX) foci formation assay. Results After exposure to 1.8 GHz RF for 2 h, HLECs exhibited significant intracellular ROS increase in the 2, 3, and 4 W/kg groups. RF radiation at the SAR of 3 W/kg and 4 W/kg could induce significant DNA damage, examined by alkaline comet assay, which was used to detect mainly single strand breaks (SSBs), while no statistical difference in double strand breaks (DSBs), evaluated by γH2AX foci, was found between RF exposure (SAR: 3 and 4 W/kg) and sham exposure groups. When RF was superposed with 2 μT electromagnetic noise could block RF-induced ROS increase and DNA damage. Conclusions DNA damage induced by 1.8 GHz radiofrequency field for 2 h, which was mainly SSBs, may be associated with the increased ROS production. Electromagnetic noise could block RF-induced ROS formation and DNA damage. PMID:18509546

  17. Analysis of the damage threshold of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Xi, Xiao-Wen; Chai, Chang-Chun; Liu, Yang; Yang, Yin-Tang; Fan, Qing-Yang; Shi, Chun-Lei

    2016-08-01

    An electromagnetic pulse (EMP)-induced damage model based on the internal damage mechanism of the GaAs pseudomorphic high electron mobility transistor (PHEMT) is established in this paper. With this model, the relationships among the damage power, damage energy, pulse width and signal amplitude are investigated. Simulation results show that the pulse width index from the damage power formula obtained here is higher than that from the empirical formula due to the hotspot transferring in the damage process of the device. It is observed that the damage energy is not a constant, which decreases with the signal amplitude increasing, and then changes little when the signal amplitude reaches up to a certain level. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  18. Doping-Induced Universal Conductance Fluctuations in GaN Nanowires.

    PubMed

    Elm, Matthias T; Uredat, Patrick; Binder, Jan; Ostheim, Lars; Schäfer, Markus; Hille, Pascal; Müßener, Jan; Schörmann, Jörg; Eickhoff, Martin; Klar, Peter J

    2015-12-09

    The transport properties of Ge-doped single GaN nanowires are investigated, which exhibit a weak localization effect as well as universal conductance fluctuations at low temperatures. By analyzing these quantum interference effects, the electron phase coherence length was determined. Its temperature dependence indicates that in the case of highly doped nanowires electron-electron scattering is the dominant dephasing mechanism, while for the slightly doped nanowires dephasing originates from Nyquist-scattering. The change of the dominant scattering mechanism is attributed to a modification of the carrier confinement caused by the Ge-doping. The results demonstrate that the phase coherence length can be tuned by the donor concentration making Ge-doped GaN nanowires an ideal model system for studying the influence of impurities on quantum-interference effects in mesoscopic and nanoscale systems.

  19. Cholesterol-induced suppression of membrane elastic fluctuations at the atomistic level.

    PubMed

    Molugu, Trivikram R; Brown, Michael F

    2016-09-01

    Applications of solid-state NMR spectroscopy for investigating the influences of lipid-cholesterol interactions on membrane fluctuations are reviewed in this paper. Emphasis is placed on understanding the energy landscapes and fluctuations at an emergent atomistic level. Solid-state (2)H NMR spectroscopy directly measures residual quadrupolar couplings (RQCs) due to individual C-(2)H labeled segments of the lipid molecules. Moreover, residual dipolar couplings (RDCs) of (13)C-(1)H bonds are obtained in separated local-field NMR spectroscopy. The distributions of RQC or RDC values give nearly complete profiles of the order parameters as a function of acyl segment position. Measured equilibrium properties of glycerophospholipids and sphingolipids including their binary and tertiary mixtures with cholesterol show unequal mixing associated with liquid-ordered domains. The entropic loss upon addition of cholesterol to sphingolipids is less than for glycerophospholipids and may drive the formation of lipid rafts. In addition relaxation time measurements enable one to study the molecular dynamics over a wide time-scale range. For (2)H NMR the experimental spin-lattice (R1Z) relaxation rates follow a theoretical square-law dependence on segmental order parameters (SCD) due to collective slow dynamics over mesoscopic length scales. The functional dependence for the liquid-crystalline lipid membranes is indicative of viscoelastic properties as they emerge from atomistic-level interactions. A striking decrease in square-law slope upon addition of cholesterol denotes stiffening relative to the pure lipid bilayers that is diminished in the case of lanosterol. Measured equilibrium properties and relaxation rates infer opposite influences of cholesterol and detergents on collective dynamics and elasticity at an atomistic scale that potentially affects lipid raft formation in cellular membranes.

  20. X-ray polarization fluctuations induced by cloud eclipses in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Marin, F.; Dovčiak, M.

    2015-01-01

    Context. A fraction of active galactic nuclei (AGN) show dramatic X-ray spectral changes on the day-to-week time scales associated with variation in the line of sight of the cold absorber. Aims: We intend to model the polarization fluctuations arising from an obscuration event, thereby offering a method of determining whether flux variations are due to occultation or extreme intrinsic emission variability. Methods: Undertaking 1-100 keV polarimetric simulations with the Monte Carlo code Stokes, we simulated the journey of a variety of cold gas clouds in front of an extended primary source. We varied the hydrogen column density nH and size of the absorber, as well as the initial polarization state of the emitting source, to cover a wide range of scenarios. Results: Simulations indicate that different results are expected according to the initial polarization of the extended continuum source. For unpolarized primary fluxes, large (~50°) variations of the polarization position angle ψ are expected before and after an occultation event, which is associated with very low residual polarization degrees (P ≪ 1%). In the case of an emitting disk with intrinsic, position-independent polarization, and for a given range of parameters, X-ray eclipses significantly alter the observed polarization spectra, with most of the variations seen in ψ. Finally, non-uniformly polarized emitting regions produce very distinctive polarization variations due to the successive covering and uncovering of different portions of the disk. Plotted against time, variations in P and ψ form detectable P Cygni type profiles that are distinctive signatures of non-axisymmetric emission. Conclusions: We find that X-ray polarimetry is particularly adapted to probing X-ray eclipses due to Compton-thin and Compton-thick gas clouds. Polarization measurements would distinguish between intrinsic intensity fluctuations and external eclipsing events, constrain the geometry of the covering medium, and test

  1. Cholesterol-Induced Suppression of Membrane Elastic Fluctuations at the Atomistic Level

    PubMed Central

    Molugu, Trivikram R.

    2017-01-01

    Applications of solid-state NMR spectroscopy for investigating the influences of lipid-cholesterol interactions on membrane fluctuations are reviewed in this paper. Emphasis is placed on understanding the energy landscapes and fluctuations at an emergent atomistic level. Solid-state 2H NMR spectroscopy directly measures residual quadrupolar couplings (RQCs) due to individual C–2H labeled segments of the lipid molecules. Moreover, residual dipolar couplings (RDCs) of 13C–1H bonds are obtained in separated local-field NMR spectroscopy. The distributions of RQC or RDC values give nearly complete profiles of the order parameters as a function of acyl segment position. Measured equilibrium properties of glycerophospholipids and sphingolipids including their binary and tertiary mixtures with cholesterol show unequal mixing associated with liquid-ordered domains. The entropic loss upon addition of cholesterol to sphingolipids is less than for glycerophospholipids and may drive the formation of lipid rafts. In addition relaxation time measurements enable one to study the molecular dynamics over a wide time-scale range. For 2H NMR the experimental spin-lattice (R1Z) relaxation rates follow a theoretical square-law dependence on segmental order parameters (SCD) due to collective slow dynamics over mesoscopic length scales. The functional dependence for the liquid-crystalline lipid membranes is indicative of viscoelastic properties as they emerge from atomistic-level interactions. A striking decrease in square-law slope upon addition of cholesterol denotes stiffening relative to the pure lipid bilayers that is diminished in the case of lanosterol. Measured equilibrium properties and relaxation rates infer opposite influences of cholesterol and detergents on collective dynamics and elasticity at an atomistic scale that potentially affects lipid raft formation in cellular membranes. PMID:27154600

  2. Plasma Density and Electro-Magnetic Field Perturbations Hf-Induced in the Outer Ionosphere: Review of Experimental Results

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir; Rauch, Jean-Louis; Parrot, Michel; Rapoport, Victor; Shorokhova, Elena

    In the report we consider features of plasma density and electro-magnetic field perturbations induced in the Earth’s outer ionosphere by modification of F _{2} region by O-mode powerful HF radio waves radiated by the SURA heating facility. Experiments presented were carried out in 2005 - 2010. Plasma density perturbations were detected at altitudes of about of 700 km by instruments onboard the French DEMETER satellite when it intersected the disturbed magnetic flux tube. The formation of artificial HF-induced plasma density ducts in the outer ionosphere is a central discovery, which was made during the SURA-DEMETER experiments [1,2]. Analysis of experimental data available makes it possible to formulate ducts features and point out the conditions under which the formation of such ducts takes place. 1. Under night conditions ducts are characterized by the increased plasma density in the range from 20% to 80% relatively to its background value. As this takes place, the excess in the plasma ion component is due to O (+) ions dominating at altitudes of about 700 km, whereas the densities of lower mass H (+) and He ({+) } ions typically decrease by a percentage amount that is much more the relative increase in the density of O (+) ions. The duct formation was never observed under daytime conditions. According to [3] the HF-induced ducts were observed by ionosphere pumping in morning and evening hours but in these cases their intensity was no more than a few percentages. 2. The size of the ducts along the satellite orbits is of about 80 - 100 km. It is a reason why such ducts can be observed only if the minimal distance between the satellite and the center of the heated flux tube is less than 50 km. 3. The formation of ducts is observed only if the effective radiated power is more than 40 MW. For the SURA facility, to heat the ionosphere at higher efficiency due to the “magnetic-zenith effect”, the HF beam is often inclined by 12 - 16(°) southward. 4. The pump

  3. Suppression of insolation heating induced by electromagnetic scatteringdue to fine spheres

    NASA Astrophysics Data System (ADS)

    Horie, J.; Mikada, H.; Goto, T.; Takekawa, J.; Manaka, Y.; Taniguchi, K.; Ashida, Y.

    2013-12-01

    The 2011 off the Pacific coast of Tohoku Earthquake, i.e., the greatest earthquake in the Japanese history, and the successive disaster at the Fukushima Daiichi Nuclear Power Plant have caused a fatal electric power shortage problem in summer in 2011. It is of key importance to reduce electricity demand and to save the energy. About one third of the total electricity demand at the peak consumption in summer is for the air-conditioning in the household and office sectors in Japan. It is, therefore, necessary to think deliberately of the reduction of electric power demand for air-conditioning. In fact, the temperature of materials rises when they are exposed to the sunlight (insolation heating) in particular in summer and the air-conditioning would become necessary for restoring the comfort in insolated housings. The energy for the air-conditioning is spent to pump out the heat changed in the materials of the insolated housings and would be proportional to the temperature to lower down. It is, therefore, clear that the reduction of the energy for the air-conditioning would strongly depend on relaxation of temperature rise or the insulation of insolated materials. Insolation heating could be suppressed when the materials are coated with paint admixed with fine silica spheres (insulating paint). By coating buildings' walls and roofs with such paint, the temperature of interior rooms could be kept lower without air-conditioning. These insulation effects are well known and have been utilized in the past, but have hardly been analyzed theoretically yet. Theoretical analysis would greatly enhance the effects of the suppression of insolation heating. In preceding studies, Ohkawa et al.(2009; 2011) and Mikada et al.(2011) focused on the electromagnetic wave scattering induced by fine spheres and developed the analytical method using superposition of scattered waves from each sphere (the first Born approximation), and indicated that the size of the spheres is one of the

  4. Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro.

    PubMed

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment.Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm(2) to 2 mW/cm(2), representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction.

  5. Terahertz Electromagnetic Fields (0.106 THz) Do Not Induce Manifest Genomic Damage In Vitro

    PubMed Central

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment. Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm2 to 2 mW/cm2, representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction. PMID:23029508

  6. Potential protection of green tea polyphenols against 1800 MHz electromagnetic radiation-induced injury on rat cortical neurons.

    PubMed

    Liu, Mei-Li; Wen, Jian-Qiang; Fan, Yu-Bo

    2011-10-01

    Radiofrequency electromagnetic fields (EMF) are harmful to public health, but the certain anti-irradiation mechanism is not clear yet. The present study was performed to investigate the possible protective effects of green tea polyphenols against electromagnetic radiation-induced injury in the cultured rat cortical neurons. In this study, green tea polyphenols were used in the cultured cortical neurons exposed to 1800 MHz EMFs by the mobile phone. We found that the mobile phone irradiation for 24 h induced marked neuronal cell death in the MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-tetrazolium bromide) and TUNEL (TdT mediated biotin-dUTP nicked-end labeling) assay, and protective effects of green tea polyphenols on the injured cortical neurons were demonstrated by testing the content of Bcl-2 Assaciated X protein (Bax) in the immunoprecipitation assay and Western blot assay. In our study results, the mobile phone irradiation-induced increases in the content of active Bax were inhibited significantly by green tea polyphenols, while the contents of total Bax had no marked changes after the treatment of green tea polyphenols. Our results suggested a neuroprotective effect of green tea polyphenols against the mobile phone irradiation-induced injury on the cultured rat cortical neurons.

  7. Seismic wave attenuation and dispersion due to wave-induced fluid flow in rocks with strong permeability fluctuations.

    PubMed

    Germán Rubino, J; Monachesi, Leonardo B; Müller, Tobias M; Guarracino, Luis; Holliger, Klaus

    2013-12-01

    Oscillatory fluid movements in heterogeneous porous rocks induced by seismic waves cause dissipation of wave field energy. The resulting seismic signature depends not only on the rock compressibility distribution, but also on a statistically averaged permeability. This so-called equivalent seismic permeability does not, however, coincide with the respective equivalent flow permeability. While this issue has been analyzed for one-dimensional (1D) media, the corresponding two-dimensional (2D) and three-dimensional (3D) cases remain unexplored. In this work, this topic is analyzed for 2D random medium realizations having strong permeability fluctuations. With this objective, oscillatory compressibility simulations based on the quasi-static poroelasticity equations are performed. Numerical analysis shows that strong permeability fluctuations diminish the magnitude of attenuation and velocity dispersion due to fluid flow, while the frequency range where these effects are significant gets broader. By comparing the acoustic responses obtained using different permeability averages, it is also shown that at very low frequencies the equivalent seismic permeability is similar to the equivalent flow permeability, while for very high frequencies this parameter approaches the arithmetic average of the permeability field. These seemingly generic findings have potentially important implications with regard to the estimation of equivalent flow permeability from seismic data.

  8. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na(+) currents through intracellular Ca(2+) release.

    PubMed

    Liu, Dong-Dong; Ren, Zhen; Yang, Guang; Zhao, Qian-Ru; Mei, Yan-Ai

    2014-06-01

    Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa ) densities by 62.5%. MT (5 μM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca(2+) level, but it significantly elevated the intracellular Ca(2+) level evoked by the high K(+) stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca(2+) influx-induced Ca(2+) release.

  9. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na+ currents through intracellular Ca2+ release

    PubMed Central

    Liu, Dong-Dong; Ren, Zhen; Yang, Guang; Zhao, Qian-Ru; Mei, Yan-Ai

    2014-01-01

    Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa) densities by 62.5%. MT (5 μM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca2+ level, but it significantly elevated the intracellular Ca2+ level evoked by the high K+ stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca2+ influx-induced Ca2+ release. PMID:24548607

  10. Cholesterol-induced variations in the volume and enthalpy fluctuations of lipid bilayers.

    PubMed Central

    Halstenberg, S; Heimburg, T; Hianik, T; Kaatze, U; Krivanek, R

    1998-01-01

    The sound velocity and density of suspensions of large unilamellar liposomes from dimyristoylphosphatidylcholine with admixed cholesterol have been measured as a function of temperature around the chain melting temperature of the phospholipid. The cholesterol-to-phospholipid molar ratio xc has been varied over a wide range (0 fluctuations within the samples. A theoretical relation between the compressibility and the excess heat capacity of the bilayer system has been derived. Comparison of the compressibilities (and sound velocity numbers) with heat capacity traces display the close correlation between these quantities for bilayer systems. This correlation appears to be very useful as it allows some of the mechanical properties of membrane systems to be calculated from the specific heat capacity data and vice versa. PMID:9649386

  11. Manganese oxidation induced by water table fluctuations in a sand column.

    PubMed

    Farnsworth, Claire E; Voegelin, Andreas; Hering, Janet G

    2012-01-03

    On-off cycles of production wells, especially in bank filtration settings, cause oscillations in the local water table, which can deliver significant amounts of dissolved oxygen (DO) to the shallow groundwater. The potential for DO introduced in this manner to oxidize manganese(II) (Mn(II)), mediated by the obligate aerobe Pseudomonas putida GB-1, was tested in a column of quartz sand fed with anoxic influent solution and subject to 1.3 m water table changes every 30-50 h. After a period of filter ripening, 100 μM Mn was rapidly removed during periods of low water table and high dissolved oxygen concentrations. The accumulation of Mn in the column was confirmed by XRF analysis of the sand at the conclusion of the study, and both measured net oxidation rates and XAS analysis suggest microbial oxidation as the dominant process. The addition of Zn, which inhibited GB-1 Mn oxidation but not its growth, interrupted the Mn removal process, but Mn oxidation recovered within one water table fluctuation. Thus transient DO conditions could support microbially mediated Mn oxidation, and this process could be more relevant in shallow groundwater than previously thought.

  12. Carrier-Number-Fluctuation Induced Ultralow 1/f Noise Level in Top-Gated Graphene Field Effect Transistor.

    PubMed

    Peng, Songang; Jin, Zhi; Zhang, Dayong; Shi, Jingyuan; Mao, Dacheng; Wang, Shaoqing; Yu, Guanghui

    2017-03-01

    A top-gated graphene FET with an ultralow 1/f noise level of 1.8 × 10(-12) μm(2)Hz(1-) (f = 10 Hz) has been fabricated. The noise has the least value at Dirac point, it then increases fast when the current deviates from that at Dirac point, the noise slightly decreases at large current. The phenomenon can be understood by the carrier-number-fluctuation induced low frequency noise, which caused by the trapping-detrapping processes of the carriers. Further analysis suggests that the effect trap density depends on the location of Fermi level in graphene channel. The study has provided guidance for suppressing the 1/f noise in graphene-based applications.

  13. Synchronization transitions induced by the fluctuation of adaptive coupling strength in delayed Newman-Watts neuronal networks.

    PubMed

    Wang, Qi; Gong, Yubing; Wu, Yanan

    2015-11-01

    Introducing adaptive coupling in delayed neuronal networks and regulating the dissipative parameter (DP) of adaptive coupling by noise, we study the effect of fluctuations of the changing rate of adaptive coupling on the synchronization of the neuronal networks. It is found that time delay can induce synchronization transitions for intermediate DP values, and the synchronization transitions become strongest when DP is optimal. As the intensity of DP noise is varied, the neurons can also exhibit synchronization transitions, and the phenomenon is delay-dependent and is enhanced for certain time delays. Moreover, the synchronization transitions change with the change of DP and become strongest when DP is optimal. These results show that randomly changing adaptive coupling can considerably change the synchronization of the neuronal networks, and hence could play a crucial role in the information processing and transmission in neural systems.

  14. Influence of Plasma Pressure Fluctuation on RF Wave Propagation

    NASA Astrophysics Data System (ADS)

    Liu, Zhiwei; Bao, Weimin; Li, Xiaoping; Liu, Donglin; Zhou, Hui

    2016-02-01

    Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. supported by the National Basic Research Program of China (No. 2014CB340205) and National Natural Science Foundation of China (No. 61301173)

  15. Endogenous insulin fluctuations during glucose-induced paralysis in patients with familial periodic hypokalemia.

    PubMed

    Johnsen, T

    1977-11-01

    Endogenous insulin production in patients with familial periodic hypokalemia has not previously been studied during induced attacks. The serum insulin, serum potassium, and blood glucose concentrations were measured in six patients with familial periodic hypokalemia during six attacks of paralysis induced by long-lasting glucose stimulation. The same parameters were measured in four normal subjects under the same conditions. There was no difference in insulin response or in blood glucose between the two groups. Basal insulin levels showed no difference. There was no correlation between the occurrence of the attack and the serum insulin level in the patients. All the patients responded by severe paralysis and hypokalemia.

  16. Two-dimensional electromagnetically induced cross-grating in a four-level N-type atomic system

    NASA Astrophysics Data System (ADS)

    Wu, Jianchun; Ai, Baoquan

    2015-06-01

    We propose a scheme for a two-dimensional (2D) electromagnetically induced cross-grating (EICG) in a four-level N-type atomic system. By employing standing-wave fields interacting with the atomic system, the absorption and dispersion of the probe field will change with the spatial periodical modulation. The first-order diffraction intensity sensitively depends on the parameters (the probe detuning, and the amplitude and detuning of the standing-wave fields), and can reach its maximum on varying the system parameters. The present studies may be instructive to design new devices in all-optical switching and optical imaging.

  17. Colossal Kerr nonlinearity based on electromagnetically induced transparency in a five-level double-ladder atomic system.

    PubMed

    Hamedi, H R; Gharamaleki, Ali Hamrah; Sahrai, Mostafa

    2016-08-01

    The paper is aimed at modeling the enhanced Kerr nonlinearity in a five-level double-ladder-type atomic system based on electromagnetically induced transparency (EIT) by using the semi-classical density matrix method. We present an analytical model to explain the origin of Kerr nonlinearity enhancement. The scheme also results in a several orders of magnitude increase in the Kerr nonlinearity in comparison with the well-known four- and three-level atomic systems. In addition to the steady-state case, the time-dependent Kerr nonlinearity and the switching feature of EIT-based colossal Kerr nonlinearity is investigated for the proposed system.

  18. Graphene based silicon-air grating structure to realize electromagnetically-induced-transparency and slow light effect

    NASA Astrophysics Data System (ADS)

    Wei, Buzheng; Liu, Huaiqing; Ren, Guobin; Yang, Yuguang; Ye, Shen; Pei, Li; Jian, Shuisheng

    2017-01-01

    A broad band tunable graphene based silicon-air grating structure is proposed. Electromagnetically-induced-transparency (EIT) window can be successfully tuned by virtually setting the desired Fermi energy levels on graphene sheets. Carrier mobility plays an important role in modulating the resonant depth. Furthermore, by changing the grating periods, light can be trapped at corresponding resonant positions where slow down factor is relatively larger than in the previous works. This structure can be used as a highly tunable optoelectronic device such as optical filter, broad-band modulator, plasmonic switches and buffers.

  19. Chemotherapy Drug Induced Discoordination of Mitochondrial Life Cycle Detected by Cardiolipin Fluctuation

    PubMed Central

    Chao, Yu-Jen; Chan, Jui-Fen; Hsu, Yuan-Hao Howard

    2016-01-01

    Chemotherapy drugs have been prescribed for the systemic treatment of cancer. We selected three chemotherapy drugs, including methotrexate, mitomycine C and vincristine to inhibit the proliferation of HT1080 human fibrosarcoma cells in S, G2 and M phases of the cell cycle respectively. These chemotherapy drugs showed significant toxicity and growth inhibition to the cancer cells measured by MTT assay. After treated with a 50% inhibitory dosage for 48 hours, these cancer cells showed significant accumulation of cardiolipin (CL), which was a reverse trend of the nutritional deficiency induced arrest at G1 phase. The quantity of each CL species was further semi-quantitated by HPLC-ion trap mass spectrometer. Methotraxate treatment caused unique increases of acyl chain length on CL, which were the opposite of the serum starvation, mitomycine C and vincristine treatments. Although mitomycine C and vincristine have different mechanisms to induce cell cycle arrest, these two drugs displayed similar effects on decreasing chain length of CL. Continuation of CL synthesis during cell cycle arrest indicated the chemotherapy drugs resulting in the discoordination of the mitochondrial life cycle from the cell cycle and thus caused the accumulation of CL. These finding reveals that the pre-remodeling nascent CL accumulates during the methotraxate induced arrest; however, the post-remodeling mature CL accumulates during the mitomycine C and vincristine induced arrest after the synthesis phase. PMID:27627658

  20. Cold induces micro- and nano-scale reorganization of lipid raft markers at mounds of T-cell membrane fluctuations.

    PubMed

    Chen, Yong; Qin, Jie; Cai, Jiye; Chen, Zheng W

    2009-01-01

    Whether and how cold causes changes in cell-membrane or lipid rafts remain poorly characterized. Using the NSOM/QD and confocal imaging systems, we found that cold caused microscale redistribution of lipid raft markers, GM1 for lipid and CD59 for protein, from the peripheral part of microdomains to the central part on Jurkat T cells, and that cold also induced the nanoscale size-enlargement (1/3- to 2/3-fold) of the nanoclusters of lipid raft markers and even the colocalization of GM1 and CD59 nanoclusters. These findings indicate cold-induced lateral rearrangement/coalescence of raft-related membrane heterogeneity. The cold-induced re-distribution of lipid raft markers under a nearly-natural condition provide clues for their alternations, and help to propose a model in which raft lipids associate themselves or interact with protein components to generate functional membrane heterogeneity in response to stimulus. The data also underscore the possible cold-induced artifacts in early-described cold-related experiments and the detergent-resistance-based analyses of lipid rafts at 4 degrees C, and provide a biophysical explanation for recently-reported cold-induced activation of signaling pathways in T cells. Importantly, our fluorescence-topographic NSOM imaging demonstrated that GM1/CD59 raft markers distributed and re-distributed at mounds but not depressions of T-cell membrane fluctuations. Such mound-top distribution of lipid raft markers or lipid rafts provides spatial advantage for lipid rafts or contact molecules interacting readily with neighboring cells or free molecules.

  1. Wave-induced mass transport affects daily Escherichia coli fluctuations in nearshore water

    USGS Publications Warehouse

    Ge, Zhongfu; Whitman, Richard L.; Nevers, Meredith B.; Phanikumar, Mantha S.

    2012-01-01

    Characterization of diel variability of fecal indicator bacteria concentration in nearshore waters is of particular importance for development of water sampling standards and protection of public health. Significant nighttime increase in Escherichia coli (E. coli) concentration in beach water, previously observed at marine sites, has also been identified in summer 2000 from fixed locations in waist- and knee-deep waters at Chicago 63rd Street Beach, an embayed, tideless, freshwater beach with low currents at night (approximately 0.015 m s–1). A theoretical model using wave-induced mass transport velocity for advection was developed to assess the contribution of surface waves to the observed nighttime E. coli replenishment in the nearshore water. Using average wave conditions for the summer season of year 2000, the model predicted an amount of E. coli transported from water of intermediate depth, where sediment resuspension occurred intermittently, that would be sufficient to have elevated E. coli concentration in the surf and swash zones as observed. The nighttime replenishment of E. coli in the surf and swash zones revealed here is an important phase in the cycle of diel variations of E. coli concentration in nearshore water. According to previous findings in Ge et al. (Environ. Sci. Technol. 2010, 44, 6731–6737), enhanced current circulation in the embayment during the day tends to displace and deposit material offshore, which partially sets up the system by the early evening for a new period of nighttime onshore movement. This wave-induced mass transport effect, although facilitating a significant base supply of material shoreward, can be perturbed or significantly influenced by high currents (orders of magnitude larger than a typical wave-induced mass transport velocity), current-induced turbulence, and tidal forcing.

  2. Wave-induced mass transport affects daily Escherichia coli fluctuations in nearshore water.

    PubMed

    Ge, Zhongfu; Whitman, Richard L; Nevers, Meredith B; Phanikumar, Mantha S

    2012-02-21

    Characterization of diel variability of fecal indicator bacteria concentration in nearshore waters is of particular importance for development of water sampling standards and protection of public health. Significant nighttime increase in Escherichia coli (E. coli) concentration in beach water, previously observed at marine sites, has also been identified in summer 2000 from fixed locations in waist- and knee-deep waters at Chicago 63rd Street Beach, an embayed, tideless, freshwater beach with low currents at night (approximately 0.015 m s(-1)). A theoretical model using wave-induced mass transport velocity for advection was developed to assess the contribution of surface waves to the observed nighttime E. coli replenishment in the nearshore water. Using average wave conditions for the summer season of year 2000, the model predicted an amount of E. coli transported from water of intermediate depth, where sediment resuspension occurred intermittently, that would be sufficient to have elevated E. coli concentration in the surf and swash zones as observed. The nighttime replenishment of E. coli in the surf and swash zones revealed here is an important phase in the cycle of diel variations of E. coli concentration in nearshore water. According to previous findings in Ge et al. (Environ. Sci. Technol. 2010, 44, 6731-6737), enhanced current circulation in the embayment during the day tends to displace and deposit material offshore, which partially sets up the system by the early evening for a new period of nighttime onshore movement. This wave-induced mass transport effect, although facilitating a significant base supply of material shoreward, can be perturbed or significantly influenced by high currents (orders of magnitude larger than a typical wave-induced mass transport velocity), current-induced turbulence, and tidal forcing.

  3. Magnetic field induced enlargement of the regime of critical fluctuations in the classical superconductor V3Si from high-resolution specific heat experiments

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Liu, Y.; Toyota, N.; Lortz, R.

    2015-02-01

    We present high-resolution specific heat data from a high-purity single crystal of the classical superconductor V3Si, which reveal tiny lambda-shape anomalies at the superconducting transition superimposed onto the BCS specific heat jump in magnetic fields of 2 T and higher. The appearance of these anomalies is accompanied by a magnetic-field-induced broadening of the superconducting transition. We demonstrate, using scaling relations predicted by the fluctuation models of the 3d-XY and the 3d-lowest-Landau-level (3d-LLL) universality class that the effect of critical fluctuations becomes experimentally observable due to of a magnetic field-induced enlargement of the regime of critical fluctuations. The scaling indicates that a reduction of the effective dimensionality due to the confinement of quasiparticles into low Landau levels is responsible for this effect.

  4. APPLICATIONS OF LASERS AND OTHER TOPICS IN LASER PHYSICS AND TECHNOLOGY: Influence of atmospheric fluctuations of the induced temperature on the characteristics of laser radiation

    NASA Astrophysics Data System (ADS)

    Banakh, Viktor A.; Smalikho, I. N.

    1987-10-01

    The expression for the function representing the second-order mutual coherence of a laser beam propagating in a turbulent atmosphere under thermal self-interaction conditions is derived in the aberration-free approximation. An analysis is made of the width of a beam, its wind refraction, and the radius of coherence as a function of the initial coherence of the radiation, of conditions of diffraction on the transmitting aperture, and of fluctuations of the wind velocity. It is shown that on increase in the power the coherence radius of cw laser radiation first increases because of thermal defocusing and then decreases due to the appearance (because of fluctuations of the wind velocity) of induced temperature inhomogeneities in air in the beam localization region. The conditions under which fluctuations of the induced temperature have a significant influence on the coherence of the radiation are determined.

  5. Effects of mixing-induced irradiance fluctuations on nitrogen uptake in size-fractionated coastal phytoplankton communities

    NASA Astrophysics Data System (ADS)

    Maguer, Jean-François; L'Helguen, Stéphane; Waeles, Matthieu

    2015-03-01

    In coastal waters subjected to strong tidal forcing, phytoplankton populations are exposed to highly variable light regimes. To grow under such fluctuating light environments, phytoplankton adjust their physiological properties. Here, we investigated nitrogen (N) uptake patterns in the western English Channel to determine whether phytoplankton modify their physiological processes involved in N uptake in response to changing irradiance conditions induced by spring-neap tidal cycles. Nitrate (NO3-) and ammonium (NH4+) uptake kinetics as a function of irradiance (VN-E curves) were assessed using 15N tracer techniques on two size fractions (<10 and >10 μm) of phytoplankton collected at 50% and 1% of surface irradiance during two spring-neap tidal cycles. Overall, the results showed that both small and large phytoplankton, whatever their vertical position in the water column, increased their maximum uptake capacity and their light utilization efficiency for the two N substrates following the decrease in vertical mixing intensity. Moreover, the improvement of irradiance conditions at neap tides was of greater benefit for the larger cells than for the smaller ones and was more favorable for NO3- uptake than for NH4+ uptake. These findings show that the light regime fluctuation resulting from the relaxation of tidal mixing during spring-neap tidal cycle leads to profound physiological adjustments of N uptake processes in phytoplankton communities. They suggest that the changes in NO3- uptake by large phytoplankton associated with the fortnightly spring-neap tidal cycle can account for most of the deviation in background productivity in the western English Channel which is based on NH4+ and is dominated by small cells. The dynamic light regime inherent to macrotidal coastal ecosystems could therefore determine, to a large extent, the importance of new vs. regenerated production as well as the size structure of the phytoplankton community.

  6. Two-dimensional electromagnetically induced grating via gain and phase modulation in a two-level system

    NASA Astrophysics Data System (ADS)

    Cheng, Guang-Ling; Cong, Lu; Chen, Ai-Xi

    2016-04-01

    A scheme for two-dimensional (2D) electromagnetically induced grating via spatial gain and phase modulation is presented in a two-level atomic system. Based on the interactions of two orthogonal standing-wave fields, the atom could diffract the weak probe beam into high-order directions and a 2D diffraction grating is generated. It is shown that the diffraction efficiency of the grating can be efficiently manipulated by controlling the Rabi frequencies of control fields, the detunings of the control and probe fields, and interaction length. Different from 2D cross-grating via electromagnetically induced transparency in a four-level atomic system, the present scheme results from the spatial modulation of gain and phase in a simple two-level system, which could lead to 2D gain-phase grating with larger diffraction intensities in the diffraction directions. The studies we present may have potential applications in developing photon devices for optical-switching, optical imaging and quantum information processing.

  7. Evolution of laser induced electromagnetic postsolitons in multi-species plasma

    SciTech Connect

    Liu, Yue Gu, Yanjun; Weber, Stefan; Korn, Georg; Klimo, Ondřej; Esirkepov, Timur Zh.; Bulanov, Sergei V.

    2015-11-15

    The evolution of an s-polarized relativistic electromagnetic soliton created in multi-species plasma by an intense short laser pulse is investigated using two-dimensional particle-in-cell simulations. The multi-component plasma consists of electrons and high-Z ions with a small addition of protons. By comparison, the evolution of postsoliton is very different from that in hydrogen plasma. A halo-like structure is found in spatial patterns of both electromagnetic fields and electron densities. The process of energy depletion is much slower due to the smaller charge-to-mass ratio of ions, which implies a better way of detecting postsolitons in simulations and experiments. In addition, it is found that the Coulomb explosion of high-Z ions in the postsoliton stage facilitates low-Z ion acceleration, and the maximum energy of low-Z ions increases with the component ratio of high-Z to low-Z ions.

  8. Evolution of laser induced electromagnetic postsolitons in multi-species plasma

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Klimo, Ondřej; Esirkepov, Timur Zh.; Bulanov, Sergei V.; Gu, Yanjun; Weber, Stefan; Korn, Georg

    2015-11-01

    The evolution of an s-polarized relativistic electromagnetic soliton created in multi-species plasma by an intense short laser pulse is investigated using two-dimensional particle-in-cell simulations. The multi-component plasma consists of electrons and high-Z ions with a small addition of protons. By comparison, the evolution of postsoliton is very different from that in hydrogen plasma. A halo-like structure is found in spatial patterns of both electromagnetic fields and electron densities. The process of energy depletion is much slower due to the smaller charge-to-mass ratio of ions, which implies a better way of detecting postsolitons in simulations and experiments. In addition, it is found that the Coulomb explosion of high-Z ions in the postsoliton stage facilitates low-Z ion acceleration, and the maximum energy of low-Z ions increases with the component ratio of high-Z to low-Z ions.

  9. Stimulated electromagnetic terahertz emissions (SEE) from laser-induced plasma filaments

    NASA Astrophysics Data System (ADS)

    Isham, Brett; Kunhardt, Erich

    2016-07-01

    Advances in terawatt laser technology have made it possible to ionize the troposphere in long (centimeters to kilometers), narrow (less than 1 mm), wire-like plasma filaments. These filaments emit high-power stimulated electromagnetic emissions (SEE) at terahertz (submillimeter) frequencies, a frontier in the electromagnetic spectrum lying between the microwave and far infrared bands. Using an accepted model for the plasma oscillations in the filament and a thin-wire approximation, we have calculated the current density and the resulting pattern of terahertz radiation emitted by the filament. The conical shape and opening angle of the calculated radiation pattern match those of recent measurements. Future work could include measurements of both the radiation pattern and of the frequency spectrum, for comparison with detailed calculations of filament plasma processes. Potential applications include high-resolution imaging and remote spectroscopic identification of chemical substances.

  10. Zinc prevention of electromagnetically induced damage to rat testicle and kidney tissues.

    PubMed

    Ozturk, Ahmet; Baltaci, Abdülkerim Kasim; Mogulkoc, Rasim; Oztekin, Esma

    2003-01-01

    The aim of this study was to investigate the extent of lipid peroxidation when zinc is administered to rats periodically exposed to a 50-Hz electromagnetic field for 5 min at a time over a period of 6 mo. Twenty-four Sprague-Dawley adult male rats were subdivided in groups of eight animals each. Group 1 served as untreated controls, group 2 was exposed to an electromagnetic field but received no additional treatment, and group 3 was exposed to electromagnetic radiation and treated with 3-mg/kg daily intraperitoneal injections of zinc sulfate. The erythrocyte glutathione activity (GSH) and the plasma, testicle, and kidney tissue levels of zinc (Zn) and of malondialdehyde (MDA) were measured in all of the animals. The plasma and testicle MDA levels in group 2 were higher than those in groups 1 and 3, with group 3 values significantly higher than those in group 1 (p<0.001). The kidney MDA levels in group 2 were higher than in groups 1 and 3 (p<0.001). The erythrocyte GSH level was lower in group 2 than in groups 1 and 3, with group 1 significantly lower than group 3 (p<0.001). In testicle and kidney tissues, the GSH levels in group 1 were lower than for groups 2 and 3, with group 2 significantly lower than group 3 (p<0.001) The plasma zinc levels were highest in group 3, followed by group 1 and group 2, which showed the lowest value (p<0.001). These results indicate that testicle and kidney tissue damage caused by periodic exposure to an electromagnetic field are ameliorated or prevented by zinc supplementation.

  11. Testicular apoptosis and histopathological changes induced by a 2.45 GHz electromagnetic field.

    PubMed

    Saygin, M; Caliskan, S; Karahan, N; Koyu, A; Gumral, N; Uguz, Ac

    2011-06-01

    There is a growing public concern about the potential human health hazard caused by exposure to electromagnetic radiation (EMR). The objective of this study is to investigate the effects of 2450 mhz electromagnetic field on apoptosis and histopathological changes on rat testis tissue. Twelve-week-old male Wistar Albino rats were used in this study. Eighteen rats equally divided into three different groups which were named group I, II and III. Cage control (group I), sham control (group II) and 2.45 GHz EMR (group III) groups were formed. Group III were exposed to 2.45 GHz EMR, at 3.21 W/kg specific absorption rate for 60 minutes/ day for 28 days. There was no difference among the groups for the diameter of the seminiferous tubules, pyknotic, karyolectic and karyotic cells. However, the number of Leydig cells of testis tissue of the rats in group III was significantly reduced comparing with the group I (p < 0.05). Estimation of spermatogenesis using the Johnsen testicular biopsy score revealed that the difference between groups is statistically significant. The level of TNF-α, Caspase-3 and Bcl-2 were compared, and no significant difference was found between the groups. When Bax apoptosis genes and Caspase-8 apoptosis enzyme were compared, there were significant differences between the groups (p < 0.05). Electromagnetic field affects spermatogenesis and causes to apoptosis due to the heat and other stress-related events in testis tissue.

  12. The 4-Dimensional Plant: Effects of Wind-Induced Canopy Movement on Light Fluctuations and Photosynthesis

    PubMed Central

    Burgess, Alexandra J.; Retkute, Renata; Preston, Simon P.; Jensen, Oliver E.; Pound, Michael P.; Pridmore, Tony P.; Murchie, Erik H.

    2016-01-01

    Physical perturbation of a plant canopy brought about by wind is a ubiquitous phenomenon and yet its biological importance has often been overlooked. This is partly due to the complexity of the issue at hand: wind-induced movement (or mechanical excitation) is a stochastic process which is difficult to measure and quantify; plant motion is dependent upon canopy architectural features which, until recently, were difficult to accurately represent and model in 3-dimensions; light patterning throughout a canopy is difficult to compute at high-resolutions, especially when confounded by other environmental variables. Recent studies have reinforced the expectation that canopy architecture is a strong determinant of productivity and yield; however, links between the architectural properties of the plant and its mechanical properties, particularly its response to wind, are relatively unknown. As a result, biologically relevant data relating canopy architecture, light- dynamics, and short-scale photosynthetic responses in the canopy setting are scarce. Here, we hypothesize that wind-induced movement will have large consequences for the photosynthetic productivity of our crops due to its influence on light patterning. To address this issue, in this study we combined high resolution 3D reconstructions of a plant canopy with a simple representation of canopy perturbation as a result of wind using solid body rotation in order to explore the potential effects on light patterning, interception, and photosynthetic productivity. We looked at two different scenarios: firstly a constant distortion where a rice canopy was subject to a permanent distortion throughout the whole day; and secondly, a dynamic distortion, where the canopy was distorted in incremental steps between two extremes at set time points in the day. We find that mechanical canopy excitation substantially alters light dynamics; light distribution and modeled canopy carbon gain. We then discuss methods required for

  13. The 4-Dimensional Plant: Effects of Wind-Induced Canopy Movement on Light Fluctuations and Photosynthesis.

    PubMed

    Burgess, Alexandra J; Retkute, Renata; Preston, Simon P; Jensen, Oliver E; Pound, Michael P; Pridmore, Tony P; Murchie, Erik H

    2016-01-01

    Physical perturbation of a plant canopy brought about by wind is a ubiquitous phenomenon and yet its biological importance has often been overlooked. This is partly due to the complexity of the issue at hand: wind-induced movement (or mechanical excitation) is a stochastic process which is difficult to measure and quantify; plant motion is dependent upon canopy architectural features which, until recently, were difficult to accurately represent and model in 3-dimensions; light patterning throughout a canopy is difficult to compute at high-resolutions, especially when confounded by other environmental variables. Recent studies have reinforced the expectation that canopy architecture is a strong determinant of productivity and yield; however, links between the architectural properties of the plant and its mechanical properties, particularly its response to wind, are relatively unknown. As a result, biologically relevant data relating canopy architecture, light- dynamics, and short-scale photosynthetic responses in the canopy setting are scarce. Here, we hypothesize that wind-induced movement will have large consequences for the photosynthetic productivity of our crops due to its influence on light patterning. To address this issue, in this study we combined high resolution 3D reconstructions of a plant canopy with a simple representation of canopy perturbation as a result of wind using solid body rotation in order to explore the potential effects on light patterning, interception, and photosynthetic productivity. We looked at two different scenarios: firstly a constant distortion where a rice canopy was subject to a permanent distortion throughout the whole day; and secondly, a dynamic distortion, where the canopy was distorted in incremental steps between two extremes at set time points in the day. We find that mechanical canopy excitation substantially alters light dynamics; light distribution and modeled canopy carbon gain. We then discuss methods required for

  14. Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency.

    PubMed

    Dong, Zheng-Gao; Liu, Hui; Xu, Ming-Xiang; Li, Tao; Wang, Shu-Ming; Cao, Jing-Xiao; Zhu, Shi-Ning; Zhang, X

    2010-10-11

    An otherwise dark magnetic dipole resonance in a split-ring resonator can be excited electrically with a Fano-type profile once the symmetric environment for this resonator is broken with respect to the polarized electric-field direction of incident waves. When this asymmetrically induced narrow resonance coincides with a broad dipolar resonance at an identical frequency regime, the metamaterial analogue of electromagnetically-induced transparency (EIT) window can be formed. We demonstrate that this environmental-asymmetry condition can be introduced dielectrically as well as plasmonically, either resonantly or nonresonantly, which indicates the plasmon coupling between different resonant modes is not responsible for the dark mode excitation. Thus, this result should contribute to the physical understanding on dark-mode excitation pathway for EIT-like phenomenon in plasmonic metamaterials.

  15. Self-Induced Transparency and Electromagnetic Pulse Compression in a Plasma or an Electron Beam under Cyclotron Resonance Conditions

    SciTech Connect

    Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.

    2010-12-30

    Based on analogy to the well-known process of the self-induced transparency of an optical pulse propagating through a passive two-level medium we describe similar effects for a microwave pulse interacting with a cold plasma or rectilinear electron beam under cyclotron resonance condition. It is shown that with increasing amplitude and duration of an incident pulse the linear cyclotron absorption is replaced by the self-induced transparency when the pulse propagates without damping. In fact, the initial pulse decomposes to one or several solitons with amplitude and duration defined by its velocity. In a certain parameter range, the single soliton formation is accompanied by significant compression of the initial electromagnetic pulse. We suggest using the effect of self-compression for producing multigigawatt picosecond microwave pulses.

  16. Earth-tide-induced fluctuations in the salinity of an inland river, New South Wales, Australia: a short-term study.

    PubMed

    Jasonsmith, J F; Macdonald, B C T; White, I

    2017-04-01

    Wybong Creek discharges salts into the agriculturally and industrially important Hunter River in New South Wales, Australia. Abrupt increases in salinity occur periodically in the mid-Wybong Creek catchment. In order to understand the processes which cause these abrupt increases, changes in surface and groundwater were investigated. It is shown that salinity increases can be attributed to highly discrete groundwater discharge directly into the river from below. Hourly electrical conductivity data measured in the river showed regular, diurnal electrical conductivity fluctuations of up to 350 μS cm(-1). These fluctuations could not be attributed to barometric pressure, temperature, or evapotranspiration. Instead, a similar periodicity in surface water electrical conductivity and groundwater height in nearby groundwater wells was found. Fluctuations were of similar periodicity to the orthotides which cause fluctuations in surface water height and are induced by Earth tides. The geology in the mid-catchment area indicates conditions are optimal for Earth tides to impact groundwater. The reporting of orthotidal changes in water chemistry in this article is believed to be the first of its kind in the scientific literature, with the large fluctuations noted having important implications for water monitoring and management in the catchment. Further research investigating Earth-tide-induced phases of groundwater heights will better constrain the relationships between surface water chemistry and groundwater height.

  17. Nonlinear electromagnetic gyrokinetic simulations of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Jenko, F.; Dorland, W.

    2001-12-01

    One of the central physics issues currently targeted by nonlinear gyrokinetic simulations is the role of finite-β effects. The latter change the MHD equilibrium, introduce new dynamical space and time scales, alter and enlarge the zoo of electrostatic microinstabilities and saturation mechanisms, and lead to turbulent transport along fluctuating magnetic field lines. It is shown that the electromagnetic effects on primarily electrostatic microinstabilities are generally weakly or moderately stabilizing. However, the saturation of these modes and hence the determination of the transport level in the quasi-stationary turbulent state can be dominated by nonlinear electromagnetic effects and yield surprising results. Despite this, the induced transport is generally electrostatic in nature well below the ideal ballooning limit.

  18. Revisiting detrended fluctuation analysis

    PubMed Central

    Bryce, R. M.; Sprague, K. B.

    2012-01-01

    Half a century ago Hurst introduced Rescaled Range (R/S) Analysis to study fluctuations in time series. Thousands of works have investigated or applied the original methodology and similar techniques, with Detrended Fluctuation Analysis becoming preferred due to its purported ability to mitigate nonstationaries. We show Detrended Fluctuation Analysis introduces artifacts for nonlinear trends, in contrast to common expectation, and demonstrate that the empirically observed curvature induced is a serious finite-size effect which will always be present. Explicit detrending followed by measurement of the diffusional spread of a signals' associated random walk is preferable, a surprising conclusion given that Detrended Fluctuation Analysis was crafted specifically to replace this approach. The implications are simple yet sweeping: there is no compelling reason to apply Detrended Fluctuation Analysis as it 1) introduces uncontrolled bias; 2) is computationally more expensive than the unbiased estimator; and 3) cannot provide generic or useful protection against nonstationaries. PMID:22419991

  19. Fluctuations of electrical and mechanical properties of diamond induced by interstitial hydrogen

    NASA Astrophysics Data System (ADS)

    Zhuang, Chun-Qiang; Liu, Lei

    2015-01-01

    While experimental evidence demonstrates that the presence of hydrogen (H) impurities in diamond films plays a significant role in determining their physical properties, the small radius of the H atom makes detecting such impurities quite a challenging task. In the present work, first-principles calculations were employed to provide an insight into the effects of the interstitial hydrogen on the electrical and mechanical properties of diamond crystals at the atomic level. The migrated pathways of the interstitial hydrogen are dictated by energetic considerations. Some new electronic states are formed near the Fermi level. The interstitial hydrogen markedly narrows the bandgap of the diamond and weakens the diamond crystal. The obvious decrement of the critical strain clearly implies the presence of an H-induced embrittlement effect. Project supported by the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality, China (Grant No. IDHT20140504), the National Natural Science Foundation of China (Grant No. 51402009), and the Foundation for Young Scholars of Beijing University of Technology, China.

  20. Synergistic Modification Induced Specific Recognition between Histone and TRIM24 via Fluctuation Correlation Network Analysis

    PubMed Central

    Zhang, Jinmai; Luo, Huajie; Liu, Hao; Ye, Wei; Luo, Ray; Chen, Hai-Feng

    2016-01-01

    Histone modification plays a key role in gene regulation and gene expression. TRIM24 as a histone reader can recognize histone modification. However the specific recognition mechanism between TRIM24 and histone modification is unsolved. Here, systems biology method of dynamics correlation network based on molecular dynamics simulation was used to answer the question. Our network analysis shows that the dynamics correlation network of H3K23ac is distinctly different from that of wild type and other modifications. A hypothesis of “synergistic modification induced recognition” is then proposed to link histone modification and TRIM24 binding. These observations were further confirmed from community analysis of networks with mutation and network perturbation. Finally, a possible recognition pathway is also identified based on the shortest path search for H3K23ac. Significant difference of recognition pathway was found among different systems due to methylation and acetylation modifications. The analysis presented here and other studies show that the dynamic network-based analysis might be a useful general strategy to study the biology of protein post-translational modification and associated recognition. PMID:27079666

  1. Synergistic Modification Induced Specific Recognition between Histone and TRIM24 via Fluctuation Correlation Network Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Jinmai; Luo, Huajie; Liu, Hao; Ye, Wei; Luo, Ray; Chen, Hai-Feng

    2016-04-01

    Histone modification plays a key role in gene regulation and gene expression. TRIM24 as a histone reader can recognize histone modification. However the specific recognition mechanism between TRIM24 and histone modification is unsolved. Here, systems biology method of dynamics correlation network based on molecular dynamics simulation was used to answer the question. Our network analysis shows that the dynamics correlation network of H3K23ac is distinctly different from that of wild type and other modifications. A hypothesis of “synergistic modification induced recognition” is then proposed to link histone modification and TRIM24 binding. These observations were further confirmed from community analysis of networks with mutation and network perturbation. Finally, a possible recognition pathway is also identified based on the shortest path search for H3K23ac. Significant difference of recognition pathway was found among different systems due to methylation and acetylation modifications. The analysis presented here and other studies show that the dynamic network-based analysis might be a useful general strategy to study the biology of protein post-translational modification and associated recognition.

  2. Protein Denaturants at Aqueous–Hydrophobic Interfaces: Self-Consistent Correlation between Induced Interfacial Fluctuations and Denaturant Stability at the Interface

    PubMed Central

    2015-01-01

    The notion of direct interaction between denaturing cosolvent and protein residues has been proposed in dialogue relevant to molecular mechanisms of protein denaturation. Here we consider the correlation between free energetic stability and induced fluctuations of an aqueous–hydrophobic interface between a model hydrophobically associating protein, HFBII, and two common protein denaturants, guanidinium cation (Gdm+) and urea. We compute potentials of mean force along an order parameter that brings the solute molecule close to the known hydrophobic region of the protein. We assess potentials of mean force for different relative orientations between the protein and denaturant molecule. We find that in both cases of guanidinium cation and urea relative orientations of the denaturant molecule that are parallel to the local protein–water interface exhibit greater stability compared to edge-on or perpendicular orientations. This behavior has been observed for guanidinium/methylguanidinium cations at the liquid–vapor interface of water, and thus the present results further corroborate earlier findings. Further analysis of the induced fluctuations of the aqueous–hydrophobic interface upon approach of the denaturant molecule indicates that the parallel orientation, displaying a greater stability at the interface, also induces larger fluctuations of the interface compared to the perpendicular orientations. The correlation of interfacial stability and induced interface fluctuation is a recurring theme for interface-stable solutes at hydrophobic interfaces. Moreover, observed correlations between interface stability and induced fluctuations recapitulate connections to local hydration structure and patterns around solutes as evidenced by experiment (Cooper et al., J. Phys. Chem. A2014, 118, 5657.) and high-level ab initio/DFT calculations (Baer et al., Faraday Discuss2013, 160, 89). PMID:25536388

  3. Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures

    PubMed Central

    Raitsimring, A.; Dalaloyan, A.; Collauto, A.; Feintuch, A.; Meade, T.; Goldfarb, D.

    2015-01-01

    Distance measurements using double electron–electron resonance (DEER) and Gd3+ chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95 GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd3+ chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd3+-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation. PMID:25442776

  4. Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Raitsimring, A.; Dalaloyan, A.; Collauto, A.; Feintuch, A.; Meade, T.; Goldfarb, D.

    2014-11-01

    Distance measurements using double electron-electron resonance (DEER) and Gd3+ chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95 GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd3+ chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd3+-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation.

  5. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory EMSP Project No. 73836

    SciTech Connect

    Morgan, F. Dale

    2003-06-01

    This report summarizes the research work completed on the project between December 2001 and September 2002. (1) A model of all Spectral IP capacitive couplings revealed that potential bearing electrodes should be carefully chosen to obviate some of the capacitive coupling problems. This need becomes more important for borehole sampling. Thus, work had been done to design a porous pot electrode hat has all the desired characteristics (low input impedance = 100{Omega}, low noise = 1 {micro}V/{radical} z, low temperature sensitivity = 10{micro}V/{sup o}C) and that can be implanted in a borehole for up to two ears. Further constructional/fabrication details will be given in the final report. The attached pictures are rom a sample of the prototype electrode. Four strings, each consisting of 14 electrodes (7 potential electrodes alternated with 7 metallic-copper current electrodes, each electrode 6ft apart), were constructed and are to be employed into the four boreholes. (They were eventually deployed in Dec. 2002 and measurements acquired in March 2003). (2) The MIT's Earth Resources Laboratory (ERL) performed Spectral Induced Polarization SIP and Time Domain Induced Polarization (TDIP) measurements at the A-14 Outfall during the summer of Y01 as a participant in a DOE-sponsored exercise to assess the state-of-the-art in cross-borehole IP technology for delineating subsurface contaminants. To demonstrate the utility of SIP to map DNAPL contaminants, we inverted cross-borehole SIP data, taken within a very narrow frequency bandwidth of 1/32 o 9/32 Hz. The narrow bandwidth was selected after carefully studying when effects of emc, electrode polarization, etc. begin to set in. The upper frequency is limited by electromagnetic couplings (emc) and strong capacitive behavior observed for the electrodes and the low-frequency limit is set by the time to take measurements. Because below 9/32 Hz, the IP response seems to be greater than emc in all our measurements, the data was

  6. Influence of the Polysilicon Gate on the Random Dopant Induced Threshold Voltage Fluctuations in Sub 100 nm MOSFETS with Thin Gate Oxides

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Saini, S.

    2000-01-01

    In this paper for the first time we study the influence of the polysilicon gate on the random dopant induced threshold voltage fluctuations in sub 100 nm MOSFETs with tunnelling gate oxides. This is done by using an efficient 3D 'atomistic' simulation technique described elsewhere. Devices with uniform channel doping and with low doped epitaxial channels have been investigated. The simulations reveale that the polysilicon gate is responsible for a substantial fraction of the threshold voltage fluctuations in both devices when the gate oxide is scaled to tunnelling thickness in the range of 1 - 2 nm.

  7. Effect of disorder on temporal fluctuations in drying-induced cracking.

    PubMed

    Villalobos, Gabriel; Kun, Ferenc; Muñoz, José D

    2011-10-01

    We investigate by means of computer simulations the effect of structural disorder on the statistics of cracking for a thin layer of material under uniform and isotropic drying. For this purpose, the layer is discretized into a triangular lattice of springs with a slightly randomized arrangement. The drying process is captured by reducing the natural length of all springs by the same factor, and the amount of quenched disorder is controlled by varying the width ξ of the distribution of the random breaking thresholds for the springs. Once a spring breaks, the redistribution of the load may trigger an avalanche of breaks, not necessarily as part of the same crack. Our computer simulations revealed that the system exhibits a phase transition with the amount of disorder as control parameter: at low disorders, the breaking process is dominated by a macroscopic crack at the beginning, and the size distribution of the subsequent breaking avalanches shows an exponential form. At high disorders, the fracturing proceeds in small-sized avalanches with an exponential distribution, generating a large number of microcracks, which eventually merge and break the layer. Between both phases, a sharp transition occurs at a critical amount of disorder ξ(c)=0.40±0.01, where the avalanche size distribution becomes a power law with exponent τ=2.6±0.08, in agreement with the mean-field value τ=5/2 of the fiber bundle model. Moreover, good quality data collapses from the finite-size scaling analysis show that the average value of the largest burst ⟨Δ(max)⟩ can be identified as the order parameter, with β/ν=1.4 and 1/ν≃1.0, and that the average ratio ⟨m(2)/m(1)⟩ of the second m(2) and first moments m(1) of the avalanche size distribution shows similar behavior to the susceptibility of a continuous transition, with γ/ν=1, 1/ν≃0.9. These results suggest that the disorder-induced transition of the breakup of thin layers is analogous to a continuous phase transition.

  8. Low-frequency, motionally induced electromagnetic fields in the ocean. 1. Theory

    NASA Astrophysics Data System (ADS)

    Chave, Alan D.; Luther, Douglas S.

    1990-05-01

    The theory of electromagnetic induction by motional sources in the ocean is examined from a first principles point of view. The electromagnetic field is expanded mathematically in poloidal and toroidal magnetic modes based on the Helmholtz decomposition. After deriving a set of Green functions for the modes in an unbounded ocean of constant depth and conductivity underlain by an arbitrary one-dimensional conducting earth, a set of exact integral equations are obtained which describe the induction process in an ocean of vertically varying conductivity. Approximate solutions are constructed for the low-frequency (subinertial) limit where the horizontal length scale of the flow is large compared to the water depth, the effect of self induction is weak, and the vertical velocity is negligible, explicitly yielding complex relationships between the vertically-integrated, conductivity-weighted horizontal water velocity and the horizontal electric and three component magnetic fields and accounting for interactions with the conductive earth. After introducing geophysically reasonable models for the conductivity structures of the ocean and earth, these reduce to a spatially smoothed proportionality between the electromagnetic field components and the vertically-integrated, conductivity-weighted horizontal water velocity. An upper bound of a few times the water depth for the lateral averaging scale of the horizontal electric field is derived, and its constant of proportionality is shown to be nearly 1 for most of the deep ocean based on geophysical arguments. The magnetic field is shown to have a similar form but is a relatively weak, larger-scale average of the velocity field. Because vertical variations in the conductivity of seawater largely reflect its thermal structure and are weak beneath the thermocline, the horizontal electric field is a spatially filtered version of the true water velocity which strongly attenuates the influence of baroclinicity and accentuates the

  9. Pre-seismic electromagnetic anomalies induced by intermediate-depth earthquakes (Vrancea zone-Romania)

    NASA Astrophysics Data System (ADS)

    Stanica, Dumitru; Dragos Stanica, Armand

    2014-05-01

    Recent studies show that before the earthquake initiation, the high stress level which reached within the seismogenic volume may generate dehydration of rocks and fluids migration along surrounding faulting systems and could be reflected by electrical conductivity changes. In this paper, we investigate these changes of conductivity using ULF electromagnetic data recorded at the Geodynamic Observatory Provita de Sus, located on the Carpathian electrical conductivity anomaly (CECA), at about 100km distance of Vrancea epicentral zone. Using ground-based monitoring system (GMS 06 and MAG03 DAM electromagnetic and geomagnetic equipments, respectively), possible anomalous variations of the electromagnetic normalized functions (ENF) have been analyzed in correlation with earthquakes with Mw > 3.7 triggered in 2013 year at the intermediate depth interval 70-160km, in seismic active Vrancea zone. Thus, the daily mean distributions of the both functions Bzn = Bz/Bperp (where: Bz is vertical component of the geomagnetic field; Bperp is geomagnetic component perpendicular to the strike orientation) and Rn = Rpar/Rz (where: Rpar is resistivity parallel to strike; Rz is vertical resistivity), together with their standard deviation (SD) are performed by using the FFT band-pass filter analysis in the frequency range (0.001Hz to 0.016Hz). After analyzing the anomalous intervals of the Bzn* and Ron* values obtained by using a standardized random variable equation, we may conclude that: (i) a pre-seismic anomalous value of maximum related to the both ENF may reflect an impending earthquake; (ii) a superimposed effect of some earthquakes occurred at short time-intervals is also reflected by the anomalous maximum value; (iii) pre-seismic lead time is between 1 to 32 days before the impending earthquake.

  10. Modeling and Simulation of Upset-Inducing Disturbances for Digital Systems in an Electromagnetic Reverberation Chamber

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2014-01-01

    This report describes a modeling and simulation approach for disturbance patterns representative of the environment experienced by a digital system in an electromagnetic reverberation chamber. The disturbance is modeled by a multi-variate statistical distribution based on empirical observations. Extended versions of the Rejection Samping and Inverse Transform Sampling techniques are developed to generate multi-variate random samples of the disturbance. The results show that Inverse Transform Sampling returns samples with higher fidelity relative to the empirical distribution. This work is part of an ongoing effort to develop a resilience assessment methodology for complex safety-critical distributed systems.

  11. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    NASA Astrophysics Data System (ADS)

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-06-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.

  12. Induced mitogenic activity in AML-12 mouse hepatocytes exposed to low-dose ultra-wideband electromagnetic radiation.

    PubMed

    Dorsey, W C; Ford, B D; Roane, L; Haynie, D T; Tchounwou, P B

    2005-04-01

    Ultra-wideband (UWB) technology has increased with the use of various civilian and military applications. In the present study, we hypothesized that low-dose UWB electromagnetic radiation (UWBR) could elicit a mitogenic effect in AML-12 mouse hepatocytes, in vitro. To test this hypothesis, we exposed AML-12 mouse hepatocytes, to UWBR in a specially constructed gigahertz transverse electromagnetic mode (GTEM) cell. Cells were exposed to UWBR for 2 h at a temperature of 23 degrees C, a pulse width of 10 ns, a repetition rate of 1 kHz, and field strength of 5-20 kV/m. UWB pulses were triggered by an external pulse generator for UWBR exposure but were not triggered for the sham exposure. We performed an MTT Assay to assess cell viability for UWBR-treated and sham-exposed hepatocytes. Data from viability studies indicated a time-related increase in hepatocytes at time intervals from 8-24 h post exposure. UWBR exerted a statistically significant (p < 0.05) dose-dependent response in cell viability in both serum-treated and serum free medium (SFM) -treated hepatocytes. Western blot analysis of hepatocyte lysates demonstrated that cyclin A protein was induced in hepatocytes, suggesting that increased MTT activity after UWBR exposure was due to cell proliferation. This study indicates that UWBR has a mitogenic effect on AML-12 mouse hepatocytes and implicates a possible role for UWBR in hepatocarcinoma.

  13. Functional brain measurements within the prefrontal area on pseudo-"blindsight" induced by extremely low frequency electromagnetic stimulations

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hidenori; Ueno, Shoogo

    2015-05-01

    For evaluating the effects of phosphene as pseudo-blindsight closely, we used functional near-infrared spectroscopy to investigate whether or not the phosphene appearance itself substantially affects the hemodynamic responses of the prefrontal area. Seven healthy volunteers ranging in age from 22 to 72 participated in the visual stimulation experiments. First, we examined the influences of electromagnetic stimulations at around the threshold (10 mT) for a blindsight-like phosphene on the responses. According to the results of the aged volunteers, we found the possibility that the delay in the phosphene perception might be caused by aging beyond a certain age. In the results of our measurements using the stimulation of 50 mT, no significant difference in the perception delay for all the volunteers could be detected. When the field strength was decreased from 50 mT to the threshold in steps of 10 mT, the results obtained at the threshold are equivalent to that obtained at 50 mT. Our data strongly support the hypothesis that pseudo-blindsight induced by electromagnetic stimulation of above 50 mT is able to excite all the volunteers' retinal photoreceptor cells provisionally. Hence the continuous stimulations for a long period of time might gradually activate synaptic plasticity on the neural network of the retina.

  14. A new theoretical model for transmembrane potential and ion currents induced in a spherical cell under low frequency electromagnetic field.

    PubMed

    Zheng, Yu; Gao, Yang; Chen, Ruijuan; Wang, Huiquan; Dong, Lei; Dou, Junrong

    2016-10-01

    Time-varying electromagnetic fields (EMF) can induce some physiological effects in neuronal tissues, which have been explored in many applications such as transcranial magnetic stimulation. Although transmembrane potentials and induced currents have already been the subjects of many theoretical studies, most previous works about this topic are mainly completed by utilizing Maxwell's equations, often by solving a Laplace equation. In previous studies, cells were often considered to be three-compartment models with different electroconductivities in different regions (three compartments are often intracellular regions, membrane, and extracellular regions). However, models like that did not take dynamic ion channels into consideration. Therefore, one cannot obtain concrete ionic current changes such as potassium current change or sodium current change by these models. The aim of the present work is to present a new and more detailed model for calculating transmembrane potentials and ionic currents induced by time-varying EMF. Equations used in the present paper originate from Nernst-Plank equations, which are ionic current-related equations. The main work is to calculate ionic current changes induced by EMF exposure, and then transmembrane potential changes are calculated with Hodgkin-Huxley model. Bioelectromagnetics. 37:481-492, 2016. © 2016 Wiley Periodicals, Inc.

  15. Neuroprotective effects of lotus seedpod procyanidins on extremely low frequency electromagnetic field-induced neurotoxicity in primary cultured hippocampal neurons.

    PubMed

    Yin, Chunchun; Luo, Xiaoping; Duan, Yuqing; Duan, Wenyi; Zhang, Haihui; He, Yuanqing; Sun, Guibo; Sun, Xiaobo

    2016-08-01

    The present study investigated the protective effects of lotus seedpod procyanidins (LSPCs) on extremely low frequency electromagnetic field (ELF-EMF)-induced neurotoxicity in primary cultured rat hippocampal neurons and the underlying molecular mechanism. The results of MTT, morphological observation, superoxide dismutase (SOD) and malondialdehyde (MDA) assays showed that compared with control, incubating neurons under ELF-EMF exposure significantly decreased cell viability and increased the number of apoptotic cells, whereas LSPCs evidently protected the hippocampal neurons against ELF-EMF-induced cell damage. Moreover, a certain concentration of LSPCs inhibited the elevation of intracellular reactive oxygen species (ROS) and Ca(2+) level, as well as prevented the disruption of mitochondrial membrane potential induced by ELF-EMF exposure. In addition, supplementation with LSPCs could alleviate DNA damage, block cell cycle arrest at S phase, and inhibit apoptosis and necrosis of hippocampal neurons under ELF-EMF exposure. Further study demonstrated that LSPCs up-regulated the activations of Bcl-2, Bcl-xl proteins and suppressed the expressions of Bad, Bax proteins caused by ELF-EMF exposure. In conclusion, these findings revealed that LSPCs protected against ELF-EMF-induced neurotoxicity through inhibiting oxidative stress and mitochondrial apoptotic pathway.

  16. The response of short-scale density fluctuations to the activity of beta-induced Alfvén eigenmodes during strong tearing modes on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Cao, G. M.; Li, Y. D.; Li, Q.; Sun, P. J.; Wu, G. J.; Hu, L. Q.; the EAST Team

    2015-08-01

    Beta-induced Alfvén eigenmodes (BAEs) during strong tearing modes (TMs) have been frequently observed in fast-electron plasmas of EAST tokamak. The dynamics of the short-scale ({k}\\perp {ρ }s~{1.5-4.3}) density fluctuations during the activity of BAEs with strong TMs has been preliminarily investigated by a tangential CO2 laser collective scattering system. The results suggest the active, but different, response of short-scale density fluctuations to the TMs and BAEs. In the low-frequency (0-10 kHz) part of density fluctuations, there are harmonic oscillations totally corresponding to those of TMs. In the medium-high frequency (10-250 kHz) part of density fluctuations, with the appearance of the BAEs, the medium-high frequency density fluctuations begin to be dominated by several quasi-coherent (QC) modes, and the frequencies of the QC modes seem to be related to the changes of both TMs and BAEs. These results would shed some light on the understanding of the multi-scale interaction physics.

  17. Transfer and computation of optical topological charges via light pulse buffer memory in an electromagnetically-induced-transparency solid

    NASA Astrophysics Data System (ADS)

    Zhai, Zhaohui; Li, Zhixiang; Xu, Jingjun; Zhang, Guoquan

    2013-09-01

    We verified that optical topological charges are conserved in a two-step light-pulse storage and retrieval process based on the electromagnetically-induced-transparency (EIT) effect in a Pr3+:Y2SiO5 crystal. Based on this conservation law, one could transfer topological charges from the interacting beams, which may not be overlapped in space and time domains, to the targeted output signal beam, and algebraic operations such as summation and subtraction of topological charges carried by the interacting beams were demonstrated via the EIT-assisted two-step light-pulse storage-retrieval process. The results may be useful for classical and quantum information processing based on optical topological charge buffer memory in EIT media.

  18. Zero to π Continuously Controllable Cross Phase Modulation in Doppler Broadened N-Type Electromagnetically Induced Transparency Medium

    PubMed Central

    Li, R. B.; Zhu, C. J.; Deng, L.; Hagley, E. W.

    2016-01-01

    We demonstrate an observation of zero to π continuously controllable cross-phase-modulation based on N-type electromagnetically induced transparency scheme in a room-temperature 87Rb vapor. We theoretically and experimentally show that the signal field acquires a π phase shift compared with the reference light in the presence of the phase-control field. Using the method of the optical Mach-Zehnder interferometer, we demonstrate that a zero to π continuously controllable phase gate can be built by modulating the phase-control field. In addition, our theoretical calculation agrees well with the experimental observation, and the results presented in this work hold the potential applications for the orthogonal polarization/vector gate in the quantum information processing. PMID:27453675

  19. FIFTH SEMINAR IN MEMORY OF D.N. KLYSHKO: Light scattering under conditions of nonstationary electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Larionov, N. V.; Sokolov, I. M.

    2007-12-01

    The propagation of probe radiation pulses in ultracold atomic ensembles is studied theoretically under conditions of electromagnetically induced transparency. The pulse 'stopping' process is considered which takes place upon nonadiabatic switching off and subsequent switching on the control field. We analysed the formation of an inverted recovered probe radiation pulse, i.e. the pulse propagating in the direction opposite to the propagation direction before the pulse stopping. Based on this analysis, a scheme is proposed for lidar probing atomic or molecular clouds in which the probe pulse penetrates into a cloud over the specified depth, while information on the cloud state is obtained from the parameters of the inverted pulse. Calculations are performed for an ensemble of 87Rb atoms.

  20. Efficient reflection via four-wave mixing in a Doppler-free electromagnetically-induced-transparency gas system

    SciTech Connect

    Zhou, Hai-Tao; Wang, Dan; Zhang, Jun-Xiang; Wang, Da-Wei; Zhu, Shi-Yao

    2011-11-15

    We experimentally demonstrate the high-efficiency reflection of a probe field in {Lambda}-type three-level atoms of cesium vapor driven by two counterpropagating coupling fields. More than 60% of reflection efficiency is observed at the phase-matching angle. The underlying mechanism theoretically is investigated as the four-wave mixing is enhanced by the electromagnetically-induced transparency. Both of the two Doppler-free two-photon resonances (one for the probe and co-propagating fields, the other for the reflected and the counterpropagation fields) play an important role in satisfying the phase matching in the reflection direction. The phase compensation due to the anomalous dispersion and the decrease of effective absorption length in the atomic system allow the efficient reflection to be observed in a wide range of incident angles of the probe field and detunings of the coupling field.

  1. Ultra-wide band electromagnetic radiation does not affect UV-induced recombination and mutagenesis in yeast.

    PubMed

    Pakhomova, O N; Belt, M L; Mathur, S P; Lee, J C; Akyel, Y

    1998-01-01

    Cell samples of the yeast Saccharomyces cerevisiae were exposed to 100 J/m2 of 254 nm ultraviolet (UV) radiation followed by a 30 min treatment with ultra-wide band (UWB) electromagnetic pulses. The UWB pulses (101-104 kV/m, 1.0 ns width, 165 ps rise time) were applied at the repetition rates of 0 Hz (sham), 16 Hz, or 600 Hz. The effect of exposures was evaluated from the colony-forming ability of the cells on complete and selective media and the number of aberrant colonies. The experiments established no effect of UWB exposure on the UV-induced reciprocal and non-reciprocal recombination, mutagenesis, or cell survival.

  2. Zero to π Continuously Controllable Cross Phase Modulation in Doppler Broadened N-Type Electromagnetically Induced Transparency Medium.

    PubMed

    Li, R B; Zhu, C J; Deng, L; Hagley, E W

    2015-10-01

    We demonstrate an observation of zero to π continuously controllable cross-phase-modulation based on N-type electromagnetically induced transparency scheme in a room-temperature (87)Rb vapor. We theoretically and experimentally show that the signal field acquires a π phase shift compared with the reference light in the presence of the phase-control field. Using the method of the optical Mach-Zehnder interferometer, we demonstrate that a zero to π continuously controllable phase gate can be built by modulating the phase-control field. In addition, our theoretical calculation agrees well with the experimental observation, and the results presented in this work hold the potential applications for the orthogonal polarization/vector gate in the quantum information processing.

  3. Effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency based nonlinear frequency conversion in quantum ring

    NASA Astrophysics Data System (ADS)

    Gumber, Sukirti; Gambhir, Monica; Jha, Pradip Kumar; Mohan, Man

    2016-10-01

    We study the combined effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency in quantum ring. The high flexibility in size and shape of ring makes it possible to fabricate a nearly perfect two-dimensional quantum structure. We also explore the dependence of frequency conversion, measured in terms of third order nonlinear susceptibility χ(3) , on coupling field, hydrostatic pressure and magnetic field. Although, a dip in χ(3) is observed with the introduction of strong coupling field, it renders the ring structure transparent to generated wave thus effectively enhancing the output of nonlinear frequency conversion process. At a fixed coupling strength, the output can be further enhanced by increasing the magnetic field while it shows an inverse relationship with pressure. These parameters, being externally controlled, provide an easy handle to control the output of quantum ring which can be used as frequency converter in communication networks.

  4. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms

    SciTech Connect

    Holloway, Christopher L. Gordon, Joshua A.; Schwarzkopf, Andrew; Anderson, David A.; Miller, Stephanie A.; Thaicharoen, Nithiwadee; Raithel, Georg

    2014-06-16

    We present a technique for measuring radio-frequency (RF) electric field strengths with sub-wavelength resolution. We use Rydberg states of rubidium atoms to probe the RF field. The RF field causes an energy splitting of the Rydberg states via the Autler-Townes effect, and we detect the splitting via electromagnetically induced transparency (EIT). We use this technique to measure the electric field distribution inside a glass cylinder with applied RF fields at 17.04 GHz and 104.77 GHz. We achieve a spatial resolution of ≈100 μm, limited by the widths of the laser beams utilized for the EIT spectroscopy. We numerically simulate the fields in the glass cylinder and find good agreement with the measured fields. Our results suggest that this technique could be applied to image fields on a small spatial scale over a large range of frequencies, up into the sub-terahertz regime.

  5. Effect of buffer gas on an electromagnetically induced transparency in a ladder system using thermal rubidium vapor

    SciTech Connect

    Sargsyan, Armen; Sarkisyan, David; Krohn, Ulrich; Keaveney, James; Adams, Charles

    2010-10-15

    We report on the observation of electromagnetically induced transparency in a ladder system in the presence of a buffer gas. In particular, we study the 5S{sub 1/2}-5P{sub 3/2}-5D{sub 5/2} transition in thermal rubidium vapor with a neon buffer gas at a pressure of 6 Torr. In contrast to the line-narrowing effect of buffer gas on {Lambda} systems, we show that the presence of the buffer gas leads to an additional broadening of (34{+-}5) MHz, which suggests a cross section for Rb(5D{sub 5/2})-Ne of {sigma}{sub k}{sup (D)}=(23{+-}4)x10{sup -19} m{sup 2}. However, in the limit where the coupling Rabi frequency is larger than the collisional dephasing, a strong transparency feature can still be observed.

  6. Weak-light rogue waves, breathers, and their active control in a cold atomic gas via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Liu, Junyang; Hang, Chao; Huang, Guoxiang

    2016-06-01

    We propose a scheme to demonstrate the existence of optical Peregrine rogue waves and Akhmediev and Kuznetsov-Ma breathers and realize their active control via electromagnetically induced transparency (EIT). The system we suggest is a cold, Λ -type three-level atomic gas interacting with a probe and a control laser fields and working under EIT condition. We show that, based on EIT with an incoherent optical pumping, which can be used to cancel optical absorption, (1+1)-dimensional optical Peregrine rogue waves, Akhmediev breathers, and Kuznetsov-Ma breathers can be generated with very low light power. In addition, we demonstrate that the Akhmediev and Kuznetsov-Ma breathers in (2+1)-dimensions obtained can be actively manipulated by using an external magnetic field. As a result, these breathers can display trajectory deflections and bypass obstacles during propagation.

  7. Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth

    NASA Astrophysics Data System (ADS)

    Geng, J.; Campbell, G. T.; Bernu, J.; Higginbottom, D. B.; Sparkes, B. M.; Assad, S. M.; Zhang, W. P.; Robins, N. P.; Lam, P. K.; Buchler, B. C.

    2014-11-01

    We report on the delay of optical pulses using electromagnetically induced transparency (EIT) in an ensemble of cold atoms with an optical depth exceeding 500. To identify the regimes in which four-wave mixing (4WM) impacts on EIT behaviour, we conduct the experiment in both 85Rb and 87Rb. Comparison with theory shows excellent agreement in both isotopes. In 87Rb negligible 4WM was observed and we obtained one pulse-width of delay with 50% efficiency. In 85Rb 4WM contributes to the output. In this regime we achieve a delay-bandwidth product of 3.7 at 50% efficiency, allowing temporally multimode delay, which we demonstrate by compressing two pulses into the memory medium.

  8. Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime

    NASA Astrophysics Data System (ADS)

    Whiting, Daniel J.; Keaveney, James; Adams, Charles S.; Hughes, Ifan G.

    2016-04-01

    Applying large magnetic fields to gain access to the hyperfine Paschen-Back regime can isolate three-level systems in a hot alkali metal vapors, thereby simplifying usually complex atom-light interactions. We use this method to make the first direct measurement of the |<5 P ||e r ||5 D >| matrix element in 87Rb. An analytic model with only three levels accurately models the experimental electromagnetically induced transparency spectra and extracted Rabi frequencies are used to determine the dipole matrix element. We measure |<5 P3 /2||e r ||5 D5 /2>| =(2.290 ±0 .002stat±0 .04syst) e a0 , which is in excellent agreement with the theoretical calculations of Safronova, Williams, and Clark [Phys. Rev. A 69, 022509 (2004), 10.1103/PhysRevA.69.022509].

  9. Plasma enhancement of femtosecond laser-induced electromagnetic pulses at metal and dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Varma, Sanjay; Spicer, Jane; Brawley, Benjamin; Miragliotta, Joseph

    2014-05-01

    In a previous report, we have shown that the long wavelength, electromagnetic-pulsed (EMP) energy generated by ultrashort (38 fs) laser pulse ablation of a metal target is enhanced by an order of magnitude due to a preplasma generated by a different, 14-ns-long laser pulse. Here, we further investigate this EMP enhancement effect in a 2- to 16-GHz microwave region with different target materials and laser parameters. Specifically, we show a greater than two orders of magnitude enhancement to the EMP energy when the nanosecond and ultrashort laser pulses are coincident on a glass target, and greater than one order of magnitude enhancement when the pulses are coincident on a copper target.

  10. Assessment of induced radio-frequency electromagnetic fields in various anatomical human body models

    NASA Astrophysics Data System (ADS)

    Kühn, Sven; Jennings, Wayne; Christ, Andreas; Kuster, Niels

    2009-02-01

    The reference levels for testing compliance of human exposure with radio-frequency (RF) safety limits have been derived from very simplified models of the human. In order to validate these findings for anatomical models, we investigated the absorption characteristics for various anatomies ranging from 6 year old child to large adult male by numerical modeling. We address the exposure to plane-waves incident from all major six sides of the humans with two orthogonal polarizations each. Worst-case scattered field exposure scenarios have been constructed in order to test the implemented procedures of current in situ compliance measurement standards (spatial averaging versus peak search). Our findings suggest that the reference levels of current electromagnetic (EM) safety guidelines for demonstrating compliance as well as some of the current measurement standards are not consistent with the basic restrictions and need to be revised.

  11. Pulsed electromagnetic wave exposure induces ultrastructural damage and upregulated expression of heat shock protein 70 in the rat adenohypophysis.

    PubMed

    Cheng, Kang; Ren, Dong-Qing; Yi, Jun; Zhou, Xiao-Guang; Yang, Wen-Qing; Chen, Yong-Bin; Li, Yong-Qiang; Huang, Xiao-Feng; Zeng, Gui-Ying

    2015-08-01

    The aim of the present study was to investigate the ultrastructural damage and the expression of heat shock protein 70 (HSP70) in the rat adenohypophysis following pulsed electromagnetic wave (PEMW) exposure. The rats were randomly divided into four groups: Sham PEMW exposure, 1 x 10(4) pulses of PEMW exposure, 1 x 10(5) pulses of PEMW exposure and 3 x 10(5) pulses of PEMW exposure. Whole body radiation of 1 x 10(4) pulses, 1 x 10(5) pulses and 3 x 10(5) pulses of PEMW were delivered with a field strength of 100 kV/m. The rats in each group (n=6 in each) were sacrificed 12, 24, 48 and 96 h after PEMW exposure. Transmission electron microscopy was then used to detect the ultrastructural changes and immunocytochemistry was used to examine the expression of HSP70. Cellular damage, including mitochondrial vacuolation occurred as early as 12 h after PEMW exposure.More severe cellular damages, including cell degeneration and necrosis, occurred 24 and 48 h after PEMW exposure. The PEMW-induced cellular damage increased as the number of PEMW pulses increased. In addition, the expression of HSP70 significantly increased following PEMW exposure and peaked after 12 h. These findings suggested that PEMW induced ultrastructural damages in the rat adenohypophysis and that HSP70 may have contributed to the PEMW-induced adenohypophyseal damage.

  12. Thermally induced chronic developmental stress in coho salmon: Integrating measures of mortality, early growth and fluctuating asymmetry

    USGS Publications Warehouse

    Campbell, W.B.; Emlen, J.M.; Hershberger, W.K.

    1998-01-01

    Developmental stability, or homeostasis, facilitates the production of consistent phenotypes by buffering against stress. Fluctuating asymmetry is produced by developmental instability and is manifested as small random departures from bilateral symmetry. Increased fluctuating asymmetry is thought to parallel compromised fitness, in part, because stress promotes energy dissipation. Compensatory energy expenditures within the organism are required to complete development, thus promoting instability through reductions in homeostasis. Increased heterozygosity may enhance developmental stability by reducing energy dissipation from stress through increased metabolic efficiency, possibly by providing greater flexibility in metabolic pathways. Traditionally, fluctuating asymmetry has been used as a bioindicator of chronic stress, provided that selective mortality of less fit individuals did not reduce stress-mediated increases in fluctuating asymmetry to background levels produced by natural developmental error, or create data inconsistencies such as higher asymmetry in groups exposed to lower stress. Unfortunately, absence of selective mortality and its effects, while often assumed, can be difficult to substantiate. We integrated measures of early growth, mortality, fluctuating asymmetry (mandibular pores, pectoral finrays, pelvic finrays, and gillrakers on the upper and lower arms of the first branchial arch) and directional asymmetry (branchiostegal rays) to assess chronic thermal stress (fluctuating temperatures as opposed to ambient temperatures) in developing eggs from two different coho salmon (Oncorhynchus kisutch) stocks and their reciprocal hybrids. Hybridization provided insight on the capacity of heterozygosity to reduce stress during development. Although egg losses were consistently higher in crosses exposed to fluctuating temperatures, egg mortality was predominantly a function of maternal stock of origin. Post-hatch losses were higher in crosses exposed to

  13. Near infrared biosensor based on Classical Electromagnetically Induced Reflectance (Cl-EIR) in a planar complementary metamaterial

    NASA Astrophysics Data System (ADS)

    Vafapour, Zohreh

    2017-03-01

    In the field of plasmonic metamaterials (MMs), the sub-wavelength metallic structures play a role similar to atoms in nature. Classical electromagnetically induced reflectance (Cl-EIR) is a classical phenomenon which is analogue to the EIR quantum phenomenon in atomic systems. A sensitive control of the Cl-EIR is crucial to a range of potential applications such as slowing light and biosensor. Here we report on our three-dimensional nanophotonic complementary planar metamaterial consisting of an array of three slot strips plasmonic that exhibits Cl-EIR phenomenon with magnetic and electric dipolar and quadruplar interaction between the plasmonic molecules. Simply by introducing symmetry broken of the proposed MM, the Cl-EIR can be dynamically tuned. We further demonstrate using a numerical simulation that the coupling between the plasmonic modes in one asymmetric case with changing the dielectric surrounding of the nano-structure to prove our design has a great potential for near-infrared localized surface plasmon resonance (LSPR) sensing applications. The changing of the used metal in thin-film was also proposed to explain the coupling effects between the bright and dark modes of the Cl-EIR electromagnetic spectra on sensitivity of our proposed nano-structure in plasmonic sensing. This work paves a promising approach to achieve plasmonic sensing devices. Actually, the reflection of more than 97% is observed which is very high for the EIR effect. Furthermore, the figure of merit (FOM) of 17.3 and the group index of 413 are obtained. These mentioned characteristics make the proposed metamaterial with potential to apply for ultrafast switches, bio-sensors, and slow-light devices.

  14. Oxidative changes and apoptosis induced by 1800-MHz electromagnetic radiation in NIH/3T3 cells.

    PubMed

    Hou, Qingxia; Wang, Minglian; Wu, Shuicai; Ma, Xuemei; An, Guangzhou; Liu, Huan; Xie, Fei

    2015-03-01

    To investigate the potential adverse effects of mobile phone radiation, we studied reactive oxygen species (ROS), DNA damage and apoptosis in mouse embryonic fibroblasts (NIH/3T3) after intermittent exposure (5 min on/10 min off, for various durations from 0.5 to 8 h) to an 1800-MHz GSM-talk mode electromagnetic radiation (EMR) at an average specific absorption rate of 2 W/kg. A 2',7'-dichlorofluorescin diacetate fluorescence probe was used to detect intracellular ROS levels, immunofluorescence was used to detect γH2AX foci as a marker for DNA damage, and flow cytometry was used to measure apoptosis. Our results showed a significant increase in intracellular ROS levels after EMR exposure and it reached the highest level at an exposure time of 1 h (p < 0.05) followed by a slight decrease when the exposure continued for as long as 8 h. No significant effect on the number of γH2AX was detected after EMR exposure. The percentage of late-apoptotic cells in the EMR-exposed group was significantly higher than that in the sham-exposed groups (p < 0.05). These results indicate that an 1800-MHz EMR enhances ROS formation and promotes apoptosis in NIH/3T3 cells.

  15. Ultra-high sensitive and high resolution optical coherence tomography using a laser induced electromagnetic dipole

    NASA Astrophysics Data System (ADS)

    Kuroda, Hiroto; Baba, Motoyoshi; Suzuki, Masayuki; Yoneya, Shin

    2013-09-01

    Utilizing an optical coherence tomography measurement, we have developed a technique that actively uses a dielectric response due to an induced dipole moment caused by a mode-locked pulsed laser light source. Irradiated laser light in the material induces a photo-induced electric dipole resulting in a refractive index change for its strong electric field. Using this technique, we obtained a highly sensitive fundus retina tomogram of a human eye in vivo with a resolution of 1.3 μm by single scanning for 20 ms using 8 fs mode-locked pulse laser light with a 350 nm spread spectrum.

  16. A Pulsed Electromagnetic Field Protects against Glutamate-Induced Excitotoxicity by Modulating the Endocannabinoid System in HT22 Cells

    PubMed Central

    Li, Xin; Xu, Haoxiang; Lei, Tao; Yang, Yuefan; Jing, Da; Dai, Shuhui; Luo, Peng; Xu, Qiaoling

    2017-01-01

    Glutamate-induced excitotoxicity is common in the pathogenesis of many neurological diseases. A pulsed electromagnetic field (PEMF) exerts therapeutic effects on the nervous system, but its specific mechanism associated with excitotoxicity is still unknown. We investigated the role of PEMF exposure in regulating glutamate-induced excitotoxicity through the endocannabinoid (eCB) system. PEMF exposure improved viability of HT22 cells after excitotoxicity and reduced lactate dehydrogenase release and cell death. An eCB receptor 1 (CB1R) specific inhibitor suppressed the protective effects of PEMF exposure, even though changes in CB1R expression were not observed. Elevation of N-arachidonylethanolamide (AEA) and 2-arachidonylglycerol (2-AG) following PEMF exposure indicated that the neuroprotective effects of PEMF were related to modulation of the eCB metabolic system. Furthermore, CB1R/ERK signaling was shown to be an important downstream pathway of PEMF in regulating excitotoxicity. These results suggest that PEMF exposure leads to neuroprotective effects against excitotoxicity by facilitating the eCB/CB1R/ERK signaling pathway. Therefore, PEMF may be a potential physical therapeutic technique for preventing and treating neurological diseases. PMID:28220060

  17. Neuroprotective effects of sevoflurane against electromagnetic pulse-induced brain injury through inhibition of neuronal oxidative stress and apoptosis.

    PubMed

    Deng, Bin; Xu, Hao; Zhang, Jin; Wang, Jin; Han, Li-Chun; Li, Li-Ya; Wu, Guang-Li; Hou, Yan-Ning; Guo, Guo-Zhen; Wang, Qiang; Sang, Han-Fei; Xu, Li-Xian

    2014-01-01

    Electromagnetic pulse (EMP) causes central nervous system damage and neurobehavioral disorders, and sevoflurane protects the brain from ischemic injury. We investigated the effects of sevoflurane on EMP-induced brain injury. Rats were exposed to EMP and immediately treated with sevoflurane. The protective effects of sevoflurane were assessed by Nissl staining, Fluoro-Jade C staining and electron microscopy. The neurobehavioral effects were assessed using the open-field test and the Morris water maze. Finally, primary cerebral cortical neurons were exposed to EMP and incubated with different concentration of sevoflurane. The cellular viability, lactate dehydrogenase (LDH) release, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were assayed. TUNEL staining was performed, and the expression of apoptotic markers was determined. The cerebral cortexes of EMP-exposed rats presented neuronal abnormalities. Sevoflurane alleviated these effects, as well as the learning and memory deficits caused by EMP exposure. In vitro, cell viability was reduced and LDH release was increased after EMP exposure; treatment with sevoflurane ameliorated these effects. Additionally, sevoflurane increased SOD activity, decreased MDA levels and alleviated neuronal apoptosis by regulating the expression of cleaved caspase-3, Bax and Bcl-2. These findings demonstrate that Sevoflurane conferred neuroprotective effects against EMP radiation-induced brain damage by inhibiting neuronal oxidative stress and apoptosis.

  18. Investigation and optimization of intraband electromagnetically induced transparency in strained InAs quantum dot/wetting layer structures

    NASA Astrophysics Data System (ADS)

    Parvizi, R.; Rezaei, G.

    2016-01-01

    In this work, effects of the shape and size on the optical properties and optimization of the intersubband electromagnetically induced transparency in the Infra-red region of three-dimensional strained truncated pyramid-shaped InAs/GaAs quantum dot (QD) were investigated in detail. More precisely, within the density matrix approach, the probe absorption and group velocity along with the refractive index of the medium were studied with respect to their dependence on the dephasing rates and the Rabi frequencies of the probe and coupling fields for different QD heights and wetting layer (WL) thicknesses. It is found that the slow-down factors, group index, and absorption coefficient are inversely proportional to the width of the transparency window and proportional to the depth of the transparency window. The optimized transparency window can be achieved by varying the dot height and the WL thickness such that the tall dots with thin WL thickness induce significant enhancements at a fixed resonant peak position of Rabi frequency of the coupling field. The physical reasons behind these interesting phenomena were also explained based on the polarized features of intersubband transitions.

  19. Hole-s± State Induced by Coexisting Ferro- and Antiferromagnetic and Antiferro-orbital Fluctuations in Iron Pnictides

    NASA Astrophysics Data System (ADS)

    Ishizuka, Jun; Yamada, Takemi; Yanagi, Yuki; Ōno, Yoshiaki

    2016-11-01

    The five-orbital Hubbard model for iron-based superconductors is investigated using the dynamical mean-field theory combined with the Eliashberg equation to clarify the local correlation effects on the electronic states and the superconductivity. In the specific case where the antiferromagnetic (AFM) and antiferro-orbital (AFO) fluctuations are comparably enhanced, the orbital dependence of the vertex function is significantly large, while that of the self-energy is small, in contrast to the AFM fluctuation-dominated case where the vertex function (the self-energy) shows a small (large) orbital dependence. The orbital-dependent vertex function together with the nesting between the inner and outer hole Fermi surfaces results in the enhancement of the inter-orbital ferromagnetic (FM) fluctuation in addition to the AFM and AFO fluctuations. In this case, the hole-s±-wave pairing with the sign change of the two hole Fermi surfaces is mediated by the coexisting three fluctuations as expected to be observed in the specific compound LiFeAs.

  20. Measurements of drift-wave-induced density and velocity fluctuations using high-speed passive impurity spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishizawa, Takashi; Craig, D.; den Hartog, D. J.; Nornberg, M. D.

    2016-10-01

    Passive impurity spectroscopy is used to study high frequency ( 100 kHz) electron density and ion velocity fluctuations in the edge of MST reversed field pinch plasmas. When tearing modes are suppressed, stochastic transport is greatly reduced and microturbulence is anticipated to become important. Gyrokinetic simulations predict unstable trapped electron modes (TEM) in the edge region of these improved-confinement MST plasmas. Interferometry measurements reveal electron density fluctuations with wavenumbers, propagation direction, and a density-gradient threshold in good agreement with predictions for TEMs. These density fluctuations are also observed as emission fluctuations using a recently upgraded Ion Dynamics Spectrometer (IDS II) through edge passive C +2 measurements. The particle transport associated with TEMs will be evaluated directly by correlating the IDS-measured ion velocity and density fluctuations. The measurement is localized to the C +2 emission shell in the edge of the plasma, which is determined by a coronal charge-state balance model using ADAS. We used a large-throughput spectrometer originally developed for fast CHERS measurements and PMTs for light detection to achieve high time resolution. This work is supported by the US DOE.

  1. Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain.

    PubMed

    Bediz, Cem Seref; Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim; Oztekin, Esma

    2006-02-01

    Extremely low-frequency (0-300 Hz) electromagnetic fields (EMFs) generated by power lines, wiring and home appliances are ubiquitous in our environment. All populations are now exposed to EMF, and exposure to EMF may pose health risks. Some of the adverse health effects of EMF exposure are lipid peroxidation and cell damage in various tissues. This study has investigated the effects of EMF exposure and zinc administration on lipid peroxidation in the rat brain. Twenty-four male Sprague-Dawley rats were randomly allocated to three groups; they were maintained untreated for 6 months (control, n = 8), exposed to low-frequency (50 Hz) EMF for 5 minutes every other day for 6 months (n = 8), or exposed to EMF and received zinc sulfate daily (3 mg/kg/day) intraperitoneally (n = 8). We measured plasma levels of zinc and thiobarbituric acid reactive substances (TBARS), and levels of reduced glutathione (GSH) in erythrocytes. TBARS and GSH levels were also determined in the brain tissues. TBARS levels in the plasma and brain tissues were higher in EMF-exposed rats with or without zinc supplementation, than those in controls (p < 0.001). In addition, TBARS levels were significantly lower in the zinc-supplemented rats than those in the EMF-exposed rats (p < 0.001). GSH levels were significantly decreased in the brain and erythrocytes of the EMF-exposed rats (p < 0.01), and were highest in the zinc-supplemented rats (p < 0.001). Plasma zinc was significantly lower in the EMF-exposed rats than those in controls (p < 0.001), while it was highest in the zinc-supplemented rats (p < 0.001). The present study suggests that long-term exposure to low-frequency EMF increases lipid peroxidation in the brain, which may be ameliorated by zinc supplementation.

  2. Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats.

    PubMed

    Bas, O; Odaci, E; Mollaoglu, H; Ucok, K; Kaplan, S

    2009-07-01

    Widespread use of mobile phones which are a major source of electromagnetic fields might affect living organisms. However, there has been no investigation concerning prenatal exposure to electromagnetic fields or their roles in the development of the pyramidal cells of the cornu ammonis in postnatal life. Two groups of pregnant rats, a control group and an experimental group, that were exposed to an electromagnetic field were used. For obtaining electromagnetic field offspring, the pregnant rats were exposed to 900 megahertz electromagnetic fields during the 1-19th gestation days. There were no actions performed on the control group during the same period. The offspring rats were spontaneously delivered--control group (n = 6) and electromagnetic field group (n = 6). Offspring were sacrificed for stereological analyses at the end of the 4th week. Pyramidal cell number in rat cornu ammonis was estimated using the optical fractionator technique. It was found that 900 megahertz of electromagnetic field significantly reduced the total pyramidal cell number in the cornu ammonis of the electromagnetic field group (P < 0.001). Therefore, although its exact mechanism is not clear, it is suggested that pyramidal cell loss in the cornu ammonis could be due to the 900 megahertz electromagnetic field exposure in the prenatal period.

  3. The effect of heating and cooling on the velocity fluctuations in the ISM induced by the system of stars

    NASA Astrophysics Data System (ADS)

    Deiss, B. M.; Kegel, W. H.

    1986-06-01

    Dissipative thermal effects are taken into account in the expressions for interstellar gas velocity fluctuations (due to the gravitational interaction with stars) derived by Kegel and Volk (1983), with application to the interpretation of interstellar lines, the large scale flow of the interstellar matter, and the collapse of interstellar clouds. Results indicate a decrease in the critical wavelength for gravitational instability, which value is prevented by thermal effects from becoming zero when the relative velocity approaches the velocity of sound, in contradiction with the results of Kegel and Volk, and of Niimi (1970). The velocity fluctuations in the gas derived by Kegel and Volk are shown to be reduced considerably, though velocity fluctuations many times the velocity of sound, which increase with increasing relative motion between gas and stars, are found, principally in molecular clouds.

  4. Fluctuations of fresh-saline water interface and of water table induced by sea tides in unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Levanon, Elad; Shalev, Eyal; Yechieli, Yoseph; Gvirtzman, Haim

    2016-10-01

    This study examines effects of tides on fluctuations of the fresh-saline water interface and the groundwater level in unconfined coastal aquifers using a two-dimensional numerical model. The time-lags of the simulated hydraulic heads and salinities fluctuations compared to sea level fluctuations are analyzed using cross-correlation analysis. The results show that both the fresh-saline water interface and the groundwater level are affected harmonically by sea tide fluctuations. However, significantly different time-lags are obtained between the hydraulic head in the deeper and upper parts of the aquifer, and between head and salinity in the fresh-saline water interface. The hydraulic head in the deeper part of the aquifer responses much faster to sea level fluctuations than in the upper part. Surprisingly, a similar difference is detected between the time-lag of the hydraulic head in the fresh-saline water interface and the time-lag of the salinity at the same location. Furthermore, the time-lag of the salinity in the fresh-saline water interface is similar to the time-lag of the water table. We suggest a comprehensive mechanism for tidal influence on the coastal groundwater system, in which two main processes act simultaneously. First, sea tide causes a pressure head wave which propagates into the saturated zone of the aquifer, governed by the diffusivity of the aquifer (Ks/Ss). Second, this pressure head wave is attenuated at the water table due to the unsaturated flow within the capillary fringe which occurs during groundwater level oscillations. Because the tidal forcing acts on the sea-floor boundary and the attenuation of the groundwater level due to capillary effect acts on the groundwater table, two dimensional distributions of time-lag and hydraulic head amplitude are created. The capillary effect in the unsaturated zone plays a key role not only in the water table fluctuations as shown previously, but also on the salinity fluctuations in the fresh

  5. Accommodative lag and fluctuations when optical aberrations are manipulated.

    PubMed

    Gambra, Enrique; Sawides, Lucie; Dorronsoro, Carlos; Marcos, Susana

    2009-06-09

    We evaluated the accommodative response to a stimulus moving from 0 to 6 D following a staircase function under natural, corrected, and induced optical aberrations, using an adaptive-optics (AO) electromagnetic deformable mirror. The accommodative response of the eye (through the mirror) and the change of aberrations were measured on 5 subjects using a Hartmann-Shack wavefront sensor operating at 12.8 Hz. Five conditions were tested: (1) natural aberrations, (2) AO correction of the unaccommodated state and induction (over 6-mm pupils) of (3) +1 microm and (4) -1 microm of spherical aberration and (5) -2 microm of vertical coma. Four subjects showed a better accommodative response with AO correction than with their natural aberrations. The induction of negative spherical aberration also produced a better accommodative response in the same subjects. Accommodative lag increased in all subjects when positive spherical aberration and coma were induced. Fluctuations of the accommodative response (computed during each 1-D period of steady accommodation) increased with accommodative response when high-order aberrations were induced. The largest fluctuations occurred for induced negative spherical aberration and the smallest for natural and corrected aberrations. The study demonstrates that aberrations influence accommodative lag and fluctuations of accommodation and that correcting aberrations improves rather than compromises the accommodative response.

  6. GRADFLEX: Fluctuations in Microgravity

    NASA Technical Reports Server (NTRS)

    Vailati, A.; Cerbino, R.; Mazzoni, S.; Giglio, M.; Nikolaenko, G.; Cannell, D. S.; Meyer, W. V.; Smart, A. E.

    2004-01-01

    We present the results of experimental investigations of gradient driven fluctuations induced in a liquid mixture with a concentration gradient and in a single-component fluid with a temperature gradient. We also describe the experimental apparatus being developed to carry out similar measurement under microgravity conditions.

  7. Ion-specific induced fluctuations and free energetics of aqueous protein hydrophobic interfaces: toward connecting to specific-ion behaviors at aqueous liquid-vapor interfaces.

    PubMed

    Cui, Di; Ou, Shuching; Peters, Eric; Patel, Sandeep

    2014-05-01

    We explore anion-induced interface fluctuations near protein-water interfaces using coarse-grained representations of interfaces as proposed by Willard and Chandler ( J. Phys. Chem. B 2010 , 114 , 1954 - 1958 ). We use umbrella sampling molecular dynamics to compute potentials of mean force along a reaction coordinate bridging the state where the anion is fully solvated and one where it is biased via harmonic restraints to remain at the protein-water interface. Specifically, we focus on fluctuations of an interface between water and a hydrophobic region of hydrophobin-II (HFBII), a 71 amino acid residue protein expressed by filamentous fungi and known for its ability to form hydrophobically mediated self-assemblies at interfaces such as a water/air interface. We consider the anions chloride and iodide that have been shown previously by simulations as displaying specific-ion behaviors at aqueous liquid-vapor interfaces. We find that as in the case of a pure liquid-vapor interface, at the hydrophobic protein-water interface, the larger, less charge-dense iodide anion displays a marginal interfacial stability compared with that of the smaller, more charge-dense chloride anion. Furthermore, consistent with the results at aqueous liquid-vapor interfaces, we find that iodide induces larger fluctuations of the protein-water interface than chloride.

  8. The effect of impurities on linear and nonlinear absorption coefficient and refractive index of the spherical quantum dot four-level M-model the phenomenon of electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Damiri, H.; Askari, H. R.

    2017-01-01

    In this paper, the effect of impurities on the phenomenon of electromagnetically induced transparency in a spherical quantum dot with parabolic potential is examined. It is assumed that spherical quantum dot has configuration four levels model M. First, consider the polarization Z for light; rotating wave approximation approach, rotating coordinate system, as well as the density matrix approach, we examine the phenomenon of electromagnetically induced transparency in spherical quantum dot. Finally, with regard to impurities of the disorder, we review electromagnetically induced transparency and Changes resulting from the presence of impurities.

  9. Electromagnetic Gauge Study of Laser-Induced Shock Waves in Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Peyre, P.; Fabbro, R.

    1995-12-01

    The laser-shock behaviour of three industrial aluminum alloys has been analyzed with an Electromagnetic Gauge Method (EMV) for measuring the velocity of the back free surface of thin foils submitted to plane laser irradiation. Surface pressure, shock decay in depth and Hugoniot Elastic Limits (HEL) of the materials were investigated with increasing thicknesses of foils to be shocked. First, surface peak pressures values as a function of laser power density gave a good agreement with conventional piezoelectric quartz measurements. Therefore, comparison of experimental results with computer simulations, using a 1D hydrodynamic Lagrangian finite difference code, were also in good accordance. Lastly, HEL values were compared with static and dynamic compressive tests in order to estimate the effects of a very large range of strain rates (10^{-3} s^{-1} to 10^6 s^{-1}) on the mechanical properties of the alloys. Cet article fait la synthèse d'une étude récente sur la caractérisation du comportement sous choc-laser de trois alliages d'aluminium largement utilisés dans l'industrie à travers la méthode dite de la jauge électromagnétique. Cette méthode permet de mesurer les vitesses matérielles induites en face arrière de plaques d'épaisseurs variables par un impact laser. La mise en vitesse de plaques nous a permis, premièrement, de vérifier la validité des pressions d'impact superficielles obtenues en les comparant avec des résultats antérieurs obtenus par des mesures sur capteurs quartz. Sur des plaques d'épaisseurs croissantes, nous avons caractérisé l'atténuation des ondes de choc en profondeur dans les alliages étudiés et mesuré les limites d'élasticité sous choc (pressions d'Hugoniot) des alliages. Les résultats ont été comparés avec succès à des simulations numériques grâce à un code de calcul monodimensionnel Lagrangien. Enfin, les valeurs des pressions d'Hugoniot mesurées ont permis de tracer l'évolution des contraintes d

  10. Casimir effect, quantum fluctuations and related topics

    NASA Astrophysics Data System (ADS)

    Hushwater, Velvel Shaia

    Casimir forces are the very long-range (retarded) forces between electrically neutral systems. Such forces may be thought of as arising from the quantum fluctuations of the electromagnetic field. Contrary to popular opinion such forces need not be attractive. After giving a foundation of the method of the change in the 'zero-point energy' we show how other methods to compute Casimir forces follow from it. We consider the repulsion between electric and magnetic dipoles induced by vacuum fluctuations of electromagnetic field. The calculation are made by the use of the Heisenberg picture operators and by the stochastic electrodynamics approach. We present a purely geometrical proof of the image method, and use it to discuss the Casimir interaction between an atom and a plate. We study the Casimir repulsion between a perfectly conducting and an infinitely permeable plate with the radiation pressure approach. This example illustrates how a repulsive force arises as a consequence of the redistribution of vacuum-field modes corresponding to specific boundary conditions. We show that result is independent of a cutoff function. Discussing the connection with perturbation theory, we prove the negativity of the leading order shift in the ground state. The Casimir effect supports the reality of the 'zero- point energy.' To clarify this we present a novel approach to quantum theory, based on the principle of the quantization of the ensemble-averaged action variable. This quantization leads to the probabilistic description of coordinates and momentum as random variables, which satisfy the uncertainty relation. Using such variables we show that the 'quantum momentum function' must satisfy the Riccati differential equation, which can be converted to the Schrodinger equation for the Ψ function. We derive also the form of basic operators and the rule for probabilities in quantum mechanics. We show that the approach leads to a simple interpretation of gauge invariance, and discuss

  11. Random numbers from vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Shi, Yicheng; Chng, Brenda; Kurtsiefer, Christian

    2016-07-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  12. Anisotropic spin fluctuations in Sr2RuO4 : Role of spin-orbit coupling and induced strain

    NASA Astrophysics Data System (ADS)

    Cobo, Sergio; Ahn, Felix; Eremin, Ilya; Akbari, Alireza

    2016-12-01

    We analyze the spin anisotropy of the magnetic susceptibility of Sr2RuO 4 in the presence of spin-orbit coupling and anisotropic strain using quasi-two-dimensional tight-binding parametrization fitted to the angle-resolved photoemission spectroscopy results. Similar to the previous observations we find the in-plane polarization of the low-q magnetic fluctuations and the out-of-plane polarization of the incommensurate magnetic fluctuation at the nesting wave-vector Q1=(2 /3 π ,2 /3 π ) but also nearly isotropic fluctuations near Q2=(π /6 ,π /6 ) . Furthermore, one finds that, apart from the high-symmetry direction of the tetragonal Brillouin zone, the magnetic anisotropy is maximal, i.e., χx x≠χy y≠χz z reflected in the x polarization of the intraband nesting wave-vector Q3=(π /2 ,π ) . This is a consequence of the orbital anisotropy of the t2 g orbitals in momentum space. We also study how the magnetic anisotropy evolves in the presence of the strain and find strong Ising-like ferromagnetic fluctuations near the Lifshitz transition for the x y band.

  13. Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems

    NASA Astrophysics Data System (ADS)

    Hatef, Ali; Sadeghi, Seyed M.; Singh, Mahi R.

    2012-02-01

    We study the variation of the energy absorption rate in a hybrid semiconductor quantum dot-metallic nanoparticle system doped in a photonic crystal. The quantum dot is taken as a three-level V-configuration system and is driven by two applied fields (probe and control). We consider that one of the excitonic resonance frequencies is near to the plasmonic resonance frequency of the metallic nanoparticle, and is driven by the probe field. The other excitonic resonance frequency is far from both the plasmonic resonance frequency and the photonic bandgap edge, and is driven by the control field. In the absence of the photonic crystal we found that the system supports three excitonic-induced transparencies in the energy absorption spectrum of the metallic nanoparticle. We show that the photonic crystal allows us to manipulate the frequencies of such excitonic-induced transparencies and the amplitude of the energy absorption rate.

  14. Blast-induced electromagnetic fields in the brain from bone piezoelectricity.

    PubMed

    Lee, Ka Yan Karen; Nyein, Michelle K; Moore, David F; Joannopoulos, J D; Socrate, Simona; Imholt, Timothy; Radovitzky, Raul; Johnson, Steven G

    2011-01-01

    In this paper, we show that bone piezoelectricity-a phenomenon in which bone polarizes electrically in response to an applied mechanical stress and produces a short-range electric field-may be a source of intense blast-induced electric fields in the brain, with magnitudes and timescales comparable to fields with known neurological effects. We compute the induced charge density in the skull from stress data on the skull from a finite-element full-head model simulation of a typical IED-scale blast wave incident on an unhelmeted human head as well as a human head protected by a kevlar helmet, and estimate the resulting electric fields in the brain in both cases to be on the order of 10 V/m in millisecond pulses. These fields are more than 10 times stronger than the IEEE safety guidelines for controlled environments (IEEE Standards Coordinating Committee 28, 2002) and comparable in strength and timescale to fields from repetitive Transcranial Magnetic Stimulation (rTMS) that are designed to induce neurological effects (Wagner et al., 2006a). They can be easily measured by RF antennas, and may provide the means to design a diagnostic tool that records a quantitative measure of the head's exposure to blast insult.

  15. Dimethyl sulfoxide induced structural transformations and non-monotonic concentration dependence of conformational fluctuation around active site of lysozyme.

    PubMed

    Roy, Susmita; Jana, Biman; Bagchi, Biman

    2012-03-21

    Experimental studies have observed significant changes in both structure and function of lysozyme (and other proteins) on addition of a small amount of dimethyl sulfoxide (DMSO) in aqueous solution. Our atomistic molecular dynamic simulations of lysozyme in water-DMSO reveal the following sequence of changes on increasing DMSO concentration. (i) At the initial stage (around 5% DMSO concentration) protein's conformational flexibility gets markedly suppressed. From study of radial distribution functions, we attribute this to the preferential solvation of exposed protein hydrophobic residues by the methyl groups of DMSO. (ii) In the next stage (10-15% DMSO concentration range), lysozome partially unfolds accompanied by an increase both in fluctuation and in exposed protein surface area. (iii) Between 15-20% concentration ranges, both conformational fluctuation and solvent accessible protein surface area suddenly decrease again indicating the formation of an intermediate collapse state. These results are in good agreement with near-UV circular dichroism (CD) and fluorescence studies. We explain this apparently surprising behavior in terms of a structural transformation which involves clustering among the methyl groups of DMSO. (iv) Beyond 20% concentration of DMSO, the protein starts its final sojourn towards the unfolding state with further increase in conformational fluctuation and loss in native contacts. Most importantly, analysis of contact map and fluctuation near the active site reveal that both partial unfolding and conformational fluctuations are centered mostly on the hydrophobic core of active site of lysozyme. Our results could offer a general explanation and universal picture of the anomalous behavior of protein structure-function observed in the presence of cosolvents (DMSO, ethanol, tertiary butyl alcohol, dioxane) at their low concentrations.

  16. All-dielectric metasurface analogue of electromagnetically induced transparency [High Quality Factor Fano-Resonant All-Dielectric Metamaterials

    DOE PAGES

    Yang, Yuanmu; Kravchenko, Ivan I.; Briggs, Dayrl P.; ...

    2014-12-16

    Fano-resonant plasmonic metamaterials and nanostructures have become a major focus of the nanophotonics fields over the past several years due their ability to produce high quality factor (Q-factor) resonances. The origin of such resonances is the interference between a broad and narrow resonance, ultimately allowing suppression of radiative damping. However, Fano-resonant plasmonic structures still suffer non-radiative damping due to Ohmic loss, ultimately limiting the achievable Q-factors to values less than ~10. Here, we report experimental demonstration of Fano-resonant silicon-based metamaterials that have a response that mimics the electromagnetically induced transparency (EIT) found in atomic systems. Due to extremely low absorptionmore » loss, a record-high quality factor (Q-factor) of 306 was experimentally observed. Furthermore, the unit cell of the metamaterial was designed with a feed-gap which results in strong local field enhancement in the surrounding medium resulting in strong light-matter interaction. This allows the metamaterial to serve as a refractive index sensor with a figure-of-merit (FOM) of 101, far exceeding the performance of previously demonstrated localized surface plasmon resonance sensors.« less

  17. Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules

    NASA Astrophysics Data System (ADS)

    Pitchappa, Prakash; Manjappa, Manukumara; Ho, Chong Pei; Singh, Ranjan; Singh, Navab; Lee, Chengkuo

    2016-11-01

    We report experimental results of the active switching of electromagnetically induced transparency (EIT) analogue by controlling the dark mode excitation pathways in a microelectromechanical system based tri-atomic metamolecule, operating in the terahertz spectral region. The tri-atomic metamolecule consists of two bright cut wire resonators (CWRs) on either side of the dark split ring resonators (SRRs). Each of the CWRs can independently excite the dark inductive-capacitive resonance mode of the SRRs through inductive coupling, and this allows for the dual pathways of dark mode excitation. The CWRs are made movable along the out-of-plane direction and electrically isolated to achieve selective reconfiguration. Hence, by controlling the physical position of these CWRs, the excitation pathways can be actively reconfigured. This enables the strong excitation of EIT analogue at 0.65 THz, only when one of the pathways is made accessible. Moreover, the transparency peak is completely modulated when both pathways are made either inaccessible or equally accessible. The proposed approach of realizing independent control of constituent resonators in a multi-resonator coupled system, enables the realization of efficient slow light devices and tunable high-Q resonators in terahertz spectral region.

  18. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line.

    PubMed

    Liu, Chuan; Duan, Weixia; Xu, Shangcheng; Chen, Chunhai; He, Mindi; Zhang, Lei; Yu, Zhengping; Zhou, Zhou

    2013-03-27

    Whether exposure to radiofrequency electromagnetic radiation (RF-EMR) emitted from mobile phones can induce DNA damage in male germ cells remains unclear. In this study, we conducted a 24h intermittent exposure (5 min on and 10 min off) of a mouse spermatocyte-derived GC-2 cell line to 1800 MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rates (SAR) of 1 W/kg, 2 W/kg or 4 W/kg. Subsequently, through the use of formamidopyrimidine DNA glycosylase (FPG) in a modified comet assay, we determined that the extent of DNA migration was significantly increased at a SAR of 4 W/kg. Flow cytometry analysis demonstrated that levels of the DNA adduct 8-oxoguanine (8-oxoG) were also increased at a SAR of 4 W/kg. These increases were concomitant with similar increases in the generation of reactive oxygen species (ROS); these phenomena were mitigated by co-treatment with the antioxidant α-tocopherol. However, no detectable DNA strand breakage was observed by the alkaline comet assay. Taking together, these findings may imply the novel possibility that RF-EMR with insufficient energy for the direct induction of DNA strand breaks may produce genotoxicity through oxidative DNA base damage in male germ cells.

  19. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: theoretical assessment of the induced peak temperature increase.

    PubMed

    Bakker, J F; Paulides, M M; Neufeld, E; Christ, A; Kuster, N; van Rhoon, G C

    2011-08-07

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SAR(wb)) are provided to keep the whole-body temperature increase (T(body, incr)) under 1 °C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR(10g)) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (T(incr, max)) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate T(incr, max) in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 °C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used T(incr, max) as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on T(incr, max) for specified durations of exposure.

  20. Assessment of induced SAR in children exposed to electromagnetic plane waves between 10 MHz and 5.6 GHz.

    PubMed

    Bakker, J F; Paulides, M M; Christ, A; Kuster, N; van Rhoon, G C

    2010-06-07

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SAR(wb)) and the peak 10 g spatial-averaged SAR (SAR(10g)). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SAR(wb)) and 58% (SAR(10g)) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SAR(wb) is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR(10g) values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.

  1. Mixture of Electromagnetically Induced Transparency and Autler–Townes Splitting in a Five-Level Atomic System

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yun; Wu, Shan; Li, Hai-Chao

    2017-02-01

    Discerning electromagnetically induced transparency (EIT) from Autler–Townes splitting (ATS) is a significant issue in quantum optics and has attracted wide attention in various three-level configurations. Here we present a detailed study of EIT and ATS in a five-level atomic system considered to be composed of a four-level Y-type subsystem and a three-level Λ-type subsystem. In our theoretical calculations with standard density matrix formalism and steady-state approximation, we obtain the general analytical expression of the first-order matrix element responsible for the probe-field absorption. In light of the well-known three-level EIT and ATS criteria, we numerically show an intersection of EIT with ATS for the Y-type subsystem. Furthermore, we show that an EIT dip is sandwiched between two ATS dips (i.e., multi-dip mixture of EIT and ATS) in the absorption line for the five-level system, which can be explained by the dressed-state theory and Fano interference. Supported by the National Natural Science Foundation of China under Grant Nos. 11274132, 11547208, and the Science Foundation of China Three Gorges University

  2. Realization of two-dimensional Aubry-André localization of light waves via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Li, Hui-jun; Dou, Jian-peng; Huang, Guoxiang

    2014-03-01

    We propose a scheme to construct a two-dimensional Aubry-André (AA) model and realize two-dimensional AA localization of light waves via electromagnetically induced transparency (EIT). The system we suggest is a cold, resonant atomic gas with an N-type level configuration and interacting with probe, control, assisted, and far-detuned laser fields. We show that under EIT conditions the probe-field envelope obeys a modified nonlinear Schrödinger equation with a quasiperiodic potential, which becomes a two-dimensional nonlinear AA model when the system parameters are suitably chosen. The quasiperiodic potential is obtained by the cross-phase modulation of the assisted field and the Stark shift of the far-detuned laser field. In addition, the cubic nonlinearity term appearing in the model is contributed by the self-phase modulation of the probe field. We demonstrate that the system can be used to not only realize various two-dimensional AA localizations of light waves, but also to display nonlinearity and dimensionality effects on the AA localizations.

  3. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: theoretical assessment of the induced peak temperature increase

    NASA Astrophysics Data System (ADS)

    Bakker, J. F.; Paulides, M. M.; Neufeld, E.; Christ, A.; Kuster, N.; van Rhoon, G. C.

    2011-08-01

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SARwb) are provided to keep the whole-body temperature increase (Tbody, incr) under 1 °C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR10g) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (Tincr, max) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate Tincr, max in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 °C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used Tincr, max as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on Tincr, max for specified durations of exposure.

  4. Assessment of induced SAR in children exposed to electromagnetic plane waves between 10 MHz and 5.6 GHz

    NASA Astrophysics Data System (ADS)

    Bakker, J. F.; Paulides, M. M.; Christ, A.; Kuster, N.; van Rhoon, G. C.

    2010-06-01

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SARwb) and the peak 10 g spatial-averaged SAR (SAR10g). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SARwb) and 58% (SAR10g) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SARwb is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR10g values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.

  5. Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells.

    PubMed

    Lai, H; Singh, N P

    1997-01-01

    Effects of in vivo microwave exposure on DNA strand breaks, a form of DNA damage, were investigated in rat brain cells. In previous research, we have found that acute (2 hours) exposure to pulsed (2 microseconds pulses, 500 pps) 2450-MHz radiofrequency electromagnetic radiation (RFR) (power density 2 mW/cm2, average whole body specific absorption rate 1.2 W/kg) caused an increase in DNA single- and double-strand breaks in brain cells of the rat when assayed 4 hours post exposure using a microgel electrophoresis assay. In the present study, we found that treatment of rats immediately before and after RFR exposure with either melatonin (1 mg/kg/injection, SC) or the spin-trap compound N-tert-butyl-alpha-phenylnitrone (PBN) (100 mg/kg/injection, i.p.) blocks this effects of RFR. Since both melatonin and PBN are efficient free radical scavengers it is hypothesized that free radicals are involved in RFR-induced DNA damage in the brain cells of rats. Since cumulated DNA strand breaks in brain cells can lead to neurodegenerative diseases and cancer and an excess of free radicals in cells has been suggested to be the cause of various human diseases, data from this study could have important implications for the health effects of RFR exposure.

  6. Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain.

    PubMed

    Mausset-Bonnefont, Anne-Laure; Hirbec, Hélène; Bonnefont, Xavier; Privat, Alain; Vignon, Jacques; de Sèze, René

    2004-12-01

    The worldwide proliferation of mobile phones raises the question of the effects of 900-MHz electromagnetic fields (EMF) on the brain. Using a head-only exposure device in the rat, we showed that a 15-min exposure to 900-MHz pulsed microwaves at a high brain-averaged power of 6 W/kg induced a strong glial reaction in the brain. This effect, which suggests neuronal damage, was particularly pronounced in the striatum. Moreover, we observed significant and immediate effects on the Kd and Bmax values of N-methyl-D-aspartate (NMDA) and GABA(A) receptors as well as on dopamine transporters. Decrease of the amount of NMDA receptors at the postsynaptic membrane is also reported. Although we showed that the rat general locomotor behavior was not significantly altered on the short term, our results provide the first evidence for rapid cellular and molecular alterations in the rat brain after an acute exposure to high power GSM (Global System for Mobile communication) 900-MHz microwaves.

  7. All-dielectric metasurface analogue of electromagnetically induced transparency [High Quality Factor Fano-Resonant All-Dielectric Metamaterials

    SciTech Connect

    Yang, Yuanmu; Kravchenko, Ivan I.; Briggs, Dayrl P.; Valentine, Jason

    2014-12-16

    Fano-resonant plasmonic metamaterials and nanostructures have become a major focus of the nanophotonics fields over the past several years due their ability to produce high quality factor (Q-factor) resonances. The origin of such resonances is the interference between a broad and narrow resonance, ultimately allowing suppression of radiative damping. However, Fano-resonant plasmonic structures still suffer non-radiative damping due to Ohmic loss, ultimately limiting the achievable Q-factors to values less than ~10. Here, we report experimental demonstration of Fano-resonant silicon-based metamaterials that have a response that mimics the electromagnetically induced transparency (EIT) found in atomic systems. Due to extremely low absorption loss, a record-high quality factor (Q-factor) of 306 was experimentally observed. Furthermore, the unit cell of the metamaterial was designed with a feed-gap which results in strong local field enhancement in the surrounding medium resulting in strong light-matter interaction. This allows the metamaterial to serve as a refractive index sensor with a figure-of-merit (FOM) of 101, far exceeding the performance of previously demonstrated localized surface plasmon resonance sensors.

  8. Spatial soliton pairs of the vectorial Thirring model realized in a coherent atomic system via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Li, Hui-jun; Zhang, Kun

    2017-01-01

    We propose a scheme to realize a (2+1)-dimensional vectorial Thirring model in a coherent atomic system via electromagnetically induced transparency (EIT). We show that under EIT conditions the probe field envelopes obey coupled nonlinear Schrödinger equations, which are reduced to a Thirring model when system parameters are suitably chosen. We present spatial soliton-pair solutions exhibiting many interesting features, including controllability (i.e., the soliton property of one component can be adjusted by the propagation constant of another component in which the soliton remains unchanged), diversity (i.e., many different types of soliton-pair solutions can be found, including bright-bright, dark-bright, dark-dark, darklike-dark, dark-dipole, darklike-multidark, and high-dimensional bright-bright, dark-darklike soliton pairs), and stability. Furthermore, we demonstrate that the stability of soliton pairs in the system can be strengthened by adjusting the propagation constant. Comparing with previous studies, in addition to supporting much more stable (1+1)-dimensional and (2+1)-dimensional spatial soliton-pair solutions, the present scheme needs only a single atomic species and hence is easy to realize experimentally.

  9. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    SciTech Connect

    Kuang Leman; Zhou Lan

    2003-10-01

    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level {lambda}-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states.

  10. A theoretical study of the coupling between a vortex-induced vibration cylindrical resonator and an electromagnetic energy harvester

    NASA Astrophysics Data System (ADS)

    Xu-Xu, J.; Barrero-Gil, A.; Velazquez, A.

    2015-11-01

    This paper presents a theoretical study of the coupling between a vortex-induced vibration (VIV) cylindrical resonator and its associated linear electromagnetic generator. The two-equation mathematical model is based on a dual-mass formulation in which the dominant masses are the stator and translator masses of the generator. The fluid-structure interaction implemented in the model equations follows the so-called ‘advanced forcing model’ whose closure relies on experimental data. The rationale to carry out the study is the fact that in these types of configurations there is a two-way interaction between the moving parts in such a way that their motions influence each other simultaneously, thereby affecting the energy actually harvested. It is believed that instead of mainly resorting to complementary numerical simulations, a theoretical model can shed some light on the nature of the interaction and, at the same time, provide scaling laws that can be used for practical design and optimization purposes. It has been found that the proposed configuration has a maximum hydrodynamic to mechanical to electrical conversion efficiency (based on the VIV resonator oscillation amplitude) of 8%. For a cylindrical resonator 10 cm long with a 2 cm diameter, this translates into an output power of 20 to 160 mW for water stream velocities in the range from 0.5 to 1 m s-1.

  11. Spatial transport of atomic coherence in electromagnetically induced absorption with a paraffin-coated Rb vapor cell.

    PubMed

    Lee, Yoon-Seok; Moon, Han Seb

    2014-06-30

    We report the spatial transport of spontaneously transferred atomic coherence (STAC) in electromagnetically induced absorption (EIA), which resulted from moving atoms with the STAC of the 5S(1/2) (F = 2)-5P(3/2) (F' = 3) transition of (87)Rb in a paraffin-coated vapor cell. In our experiment, two channels were spatially separate; the writing channel (WC) generated STAC in the EIA configuration, and the reading channel (RC) retrieved the optical field from the spatially transported STAC. Transported between the spatially separated positions, the fast light pulse of EIA in the WC and the delayed light pulse in the RC were observed. When the laser direction of the RC was counter-propagated in the direction of the WC, we observed direction reversal of the transported light pulse in the EIA medium. Furthermore, the delay time, the magnitude, and the width of the spatially transported light pulse were investigated with respect to the distance between the two channels.

  12. Transient development of Zeeman electromagnetically induced transparency during propagation of Raman-Ramsey pulses through Rb buffer gas cell

    NASA Astrophysics Data System (ADS)

    Nikolić, S. N.; Radonjić, M.; Lučić, N. M.; Krmpot, A. J.; Jelenković, B. M.

    2015-02-01

    We investigate, experimentally and theoretically, time development of Zeeman electromagnetically induced transparency (EIT) during propagation of two time separated polarization laser pulses, preparatory and probe, through Rb vapour. The pulses were produced by modifying laser intensity and degree of elliptical polarization. The frequency of the single laser beam is locked to the hyperfine {{F}g}=2\\to {{F}e}=1 transition of the D1 line in 87Rb. Transients in the intensity of {{σ }-} component of the transmitted light are measured or calculated at different values of the external magnetic field, during both preparatory and probe pulse. Zeeman EIT resonances at particular time instants of the pulse propagation are reconstructed by appropriate sampling of the transients. We observe how laser intensity, Ramsey sequence and the Rb cell temperature affect the time dependence of EIT line shapes, amplitudes and linewidths. We show that at early times of the probe pulse propagation, several Ramsey fringes are present in EIT resonances, while at later moments a single narrow peak prevails. Time development of EIT amplitudes are determined by the transmitted intensity of the {{σ }-} component during the pulse propagation.

  13. Tsunami-induced electromagnetic fields at the seafloor caused by earthquakes on both sides of the Kuril trench

    NASA Astrophysics Data System (ADS)

    Toh, H.; Hamano, Y.; Goto, T.

    2009-12-01

    It is generally known that electromagnetic (EM) fields can be generated by ocean currents moving through the Earth’s magnetic field. Theory of motional induction in the ocean (Longuet-Higgins, 1949; Sanford, 1971; Chave and Luther, 1991) indicates that observations of the induced EM fields by oceanic dynamo effect can reveal large scale oceanic flows, which is usually difficult by other methods. Especially, detection of tsunami propagation in off-shore areas is very important to predict accurate arrival times and tsunami heights at the sea shore. Unlike conventional tsunami sensors such as ocean bottom pressure gauges, simultaneous measurements of seafloor electric and magnetic fields are superior in detecting arrival directions and particle motions of tsunami flows by a single station, since EM measurements are essentially vector measurements. Recently, it was found, for the first time, that EM time-series from seafloor observatories in the northwest Pacific captured clear signals of the tsunami-induced EM variations. We have been operating one long-term seafloor electromagnetic station at a site called NWP in the northwest Pacific basin since August, 2001 and the other (WPB) in the west Philippine basin since June, 2006 (Toh et al., 2004; 2006). Both stations have successfully provided seafloor EM time-series for slightly less than 2000 days at NWP and more than 900 days at WPB so far. On the other hand, the three years from the end of 2004 were found seismically so active in the Pacific region that the time period covered large tsunami-generating earthquakes such as off the west coast of northern Sumatra earthquake occurred on December 26, 2004. Among the tsunami-generated earthquakes, we focused our analysis to a pair of earthquakes occurred successively on both sides of the Kuril Trench in November, 2006 and January, 2007. It turned out the seafloor EM station at NWP succeeded in capturing the tsunami-induced EM fields. The most dominant periods of the

  14. Two-dimensional Talbot self-imaging via Electromagnetically induced lattice

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Wang, Wei; Ahmed, Irfan; Wang, Hongxing; Zhang, Yiqi; Zhang, Yanpeng; Mahesar, Abdul Rasheed; Xiao, Min

    2017-02-01

    We propose a lensless optical method for imaging two-dimensional ultra-cold atoms (or molecules) in which the image can be non-locally observed by coincidence recording of entangled photon pairs. In particular, we focus on the transverse and longitudinal resolutions of images under various scanning methods. In addition, the role of the induced nonmaterial lattice on the image contrast is investigated. Our work shows a non-destructive and lensless way to image ultra-cold atoms or molecules that can be further used for two-dimensional atomic super-resolution optical testing and sub-wavelength lithography.

  15. Two-dimensional Talbot self-imaging via Electromagnetically induced lattice

    PubMed Central

    Wen, Feng; Wang, Wei; Ahmed, Irfan; Wang, Hongxing; Zhang, Yiqi; Zhang, Yanpeng; Mahesar, Abdul Rasheed; Xiao, Min

    2017-01-01

    We propose a lensless optical method for imaging two-dimensional ultra-cold atoms (or molecules) in which the image can be non-locally observed by coincidence recording of entangled photon pairs. In particular, we focus on the transverse and longitudinal resolutions of images under various scanning methods. In addition, the role of the induced nonmaterial lattice on the image contrast is investigated. Our work shows a non-destructive and lensless way to image ultra-cold atoms or molecules that can be further used for two-dimensional atomic super-resolution optical testing and sub-wavelength lithography. PMID:28165498

  16. Two-dimensional Talbot self-imaging via Electromagnetically induced lattice.

    PubMed

    Wen, Feng; Wang, Wei; Ahmed, Irfan; Wang, Hongxing; Zhang, Yiqi; Zhang, Yanpeng; Mahesar, Abdul Rasheed; Xiao, Min

    2017-02-06

    We propose a lensless optical method for imaging two-dimensional ultra-cold atoms (or molecules) in which the image can be non-locally observed by coincidence recording of entangled photon pairs. In particular, we focus on the transverse and longitudinal resolutions of images under various scanning methods. In addition, the role of the induced nonmaterial lattice on the image contrast is investigated. Our work shows a non-destructive and lensless way to image ultra-cold atoms or molecules that can be further used for two-dimensional atomic super-resolution optical testing and sub-wavelength lithography.

  17. [The effect of electromagnetic radiation in the millimeter range on the development of disorders in the liver induced by ether anesthesia (experimental research)].

    PubMed

    Rudin, M V; Belousov, E V; Ryzhov, A I; Kozhemiakin, A M

    1999-01-01

    Rat experiments with ether anaesthesia (EA) indicate that EA induces enlargement of hepatic sinusoids, stasis and perivascular edema of the triad vessels and other changes in the liver. Right hypochondrium exposure to electromagnetic waves (4.76-5.08 mm) up to 20 days in rats given simultaneously ether anaesthesia showed that livers from the irradiated rats did not differ from control. Thus, millimetric wave radiation may prevent pathological alterations arising in white rat liver after ether anaesthesia.

  18. [Comparative study of effect of infrared, submillimeter, and millimeter electromagnetic radiation on wing somatic mutations in Drosophila melanogaster induced by gamma-irradiation].

    PubMed

    Fedorov, V I; Pogodin, A S; Dubatolova, T D; Varlamov, A V; Leont'ev, K V; Khamoian, A G

    2001-01-01

    It was shown that the number of spontaneous and gamma-radiation-induced somatic mutations in wing cells of fruit flies (third instar larvae) exposed to laser irradiation of submillimeter range (lambda = 81.5 microns) was significantly lower than in control. Laser irradiation did not affect the number of recombinations. Exposure to laser radiation in the infrared range and electromagnetic waves of the millimeter range (lambda = 3.8 mm) enhanced the effect of gamma-irradiation.

  19. Plasma parameters and electromagnetic forces induced by the magneto hydro dynamic interaction in a hypersonic argon flow experiment

    SciTech Connect

    Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.

    2012-08-01

    This work proposes an experimental analysis on the magneto hydro dynamic (MHD) interaction induced by a magnetic test body immersed into a hypersonic argon flow. The characteristic plasma parameters are measured. They are related to the voltages arising in the Hall direction and to the variation of the fluid dynamic properties induced by the interaction. The tests have been performed in a hypersonic wind tunnel at Mach 6 and Mach 15. The plasma parameters are measured in the stagnation region in front of the nozzle of the wind tunnel and in the free stream region at the nozzle exit. The test body has a conical shape with the cone axis in the gas flow direction and the cone vertex against the flow. It is placed at the nozzle exit and is equipped with three permanent magnets. In the configuration adopted, the Faraday current flows in a closed loop completely immersed into the plasma of the shock layer. The electric field and the pressure variation due to MHD interaction have been measured on the test body walls. Microwave adsorption measurements have been used for the determination of the electron number density and the electron collision frequency. Continuum recombination radiation and line radiation emissions have been detected. The electron temperature has been determined by means of the spectroscopic data by using different methods. The electron number density has been also determined by means of the Stark broadening of H{sub {alpha}} and the H{sub {beta}} lines. Optical imaging has been utilized to visualize the pattern of the electric current distribution in the shock layer around the test body. The experiments show a considerable effect of the electromagnetic forces produced by the MHD interaction acting on the plasma flow around the test body. A comparison of the experimental data with simulation results shows a good agreement.

  20. Protective effect of procyanidins extracted from the lotus seedpod on immune function injury induced by extremely low frequency electromagnetic field.

    PubMed

    Zhang, Haihui; Cheng, Yanxiang; Luo, Xiaoping; Duan, Yuqing

    2016-08-01

    This study aimed to evaluate the protective effect of Lotus seedpod procyanidins (LSPCs) from extremely low frequency electromagnetic field (ELF-EMF) exposure (50Hz, 8mT, 28 days) and their protective mechanism against radiation damage. The results showed that LSPCs increased the organ index of mice and made the damaged blood-producing function and cytokine(INF-γ, TNF-α, IL-2, IL-6 and IL-10 in spleen) levels by ELF-EMF-irradiation recovered to normal appearance. And experimental results proved that dosing LSPCs inhibit more stagnation of splenocytes in G0/G1 phase caused by ELF-EMF, thus the spleen cells from G0/G1 phase to S phase shift, restore normal cell metabolism, promote the splenocytes proliferation, reduced the apoptosis of spleen cells, effective protect the damage induced by the ELF-EMF radiation. In addition, LSPCs prevented the decline of DNA content caused by ELF-EMF. Western blot determinated the levels of apoptosis genes including Bcl-2, Bax, Bcl-cl, Caspase-3 and Caspase-9. The results revealed that a significant suppression in Bcl-2 expression and increase in Bax, Caspase-3 and Caspase-9 expression in splenic cells in ELF-EMF group. However, LSPCs restored these changes. Taking these results together, it may be summarized that LSPCs could protect hematopoietic tissues and the immune system from ELF-EMF. And it may be hypothesized that ELF-EMF-induced apoptosis in splenocytes might occur via triggers the trans-activation of Bax and activates caspases-3 and -9, which then cleaves the death substrates, leading to apoptosis in splenocytes of mice treated with ELF-EMF.

  1. Plasma parameters and electromagnetic forces induced by the magneto hydro dynamic interaction in a hypersonic argon flow experiment

    NASA Astrophysics Data System (ADS)

    Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.

    2012-08-01

    This work proposes an experimental analysis on the magneto hydro dynamic (MHD) interaction induced by a magnetic test body immersed into a hypersonic argon flow. The characteristic plasma parameters are measured. They are related to the voltages arising in the Hall direction and to the variation of the fluid dynamic properties induced by the interaction. The tests have been performed in a hypersonic wind tunnel at Mach 6 and Mach 15. The plasma parameters are measured in the stagnation region in front of the nozzle of the wind tunnel and in the free stream region at the nozzle exit. The test body has a conical shape with the cone axis in the gas flow direction and the cone vertex against the flow. It is placed at the nozzle exit and is equipped with three permanent magnets. In the configuration adopted, the Faraday current flows in a closed loop completely immersed into the plasma of the shock layer. The electric field and the pressure variation due to MHD interaction have been measured on the test body walls. Microwave adsorption measurements have been used for the determination of the electron number density and the electron collision frequency. Continuum recombination radiation and line radiation emissions have been detected. The electron temperature has been determined by means of the spectroscopic data by using different methods. The electron number density has been also determined by means of the Stark broadening of Hα and the Hβ lines. Optical imaging has been utilized to visualize the pattern of the electric current distribution in the shock layer around the test body. The experiments show a considerable effect of the electromagnetic forces produced by the MHD interaction acting on the plasma flow around the test body. A comparison of the experimental data with simulation results shows a good agreement.

  2. A non-linear induced polarization effect on transient electromagnetic soundings

    NASA Astrophysics Data System (ADS)

    Hallbauer-Zadorozhnaya, Valeriya Yu.; Santarato, Giovanni; Abu Zeid, Nasser; Bignardi, Samuel

    2016-10-01

    In a TEM survey conducted for characterizing the subsurface for geothermal purposes, a strong induced polarization effect was recorded in all collected data. Surprisingly, anomalous decay curves were obtained in part of the sites, whose shape depended on the repetition frequency of the exciting square waveform, i.e. on current pulse length. The Cole-Cole model, besides being not directly related to physical parameters of rocks, was found inappropriate to model the observed distortion, due to induced polarization, because this model is linear, i.e. it cannot fit any dependence on current pulse. This phenomenon was investigated and explained as due to the presence of membrane polarization linked to constrictivity of (fresh) water-saturated pores. An algorithm for mathematical modeling of TEM data was then developed to fit this behavior. The case history is then discussed: 1D inversion, which accommodates non-linear effects, produced models that agree quite satisfactorily with resistivity and chargeability models obtained by an electrical resistivity tomography carried out for comparison.

  3. Effects of extremely low frequency electromagnetic field (50 Hz) on pentylenetetrazol-induced seizures in mice.

    PubMed

    Fadakar, Kaveh; Saba, Valiallah; Farzampour, Shahrokh

    2013-06-01

    The electromagnetic fields (EMF) have various behavioral and biological effects on human body. There are growing concerns about the consequences of exposure to EMF. However, some studies have shown beneficial effects of these waves on human. In this paper, we study the effect of acute, sub acute and long-term exposure to 50 Hz, 0.1 mT magnetic fields (MF) on the seizure induction threshold in mice. 64 mice are used and divided into four groups. Eight mice in any group were selected to be exposed to MF for specific duration and the others were used as a control group. The duration of the applied exposures was as follows: (1) 1 day (acute), (2) 3 days (sub acute), (3) 2 weeks (sub acute), (4) 1 month (long term). The mice were exposed 2 h for a day. After exposure, the pentylentetrazol (PTZ) is injected to the mice to induce seizure and the needed dose for the seizure induction threshold is measured. In the acute exposure, the threshold to induce seizure in the exposed and sham-exposed groups was 44.25 and 46.5 mg, respectively, while the difference was not significant (p value = 0.5). In the sub acute exposure (3 days), the mean amount of drug to induce seizure was 47.38 mg in the exposed and 43.88 mg in the sham-exposed groups, however, the difference was not significant (p value = 0.3). The results were 52.38 and 46.75 mg after 2 weeks of exposure which were not significantly different either (p value = 0.2). After 1 month of exposure to MF, the threshold for the induction of seizure was significantly increased (p value < 0.05). The mean dosage to induce seizure in the exposed and control group was 54.3 and 45.75 mg, respectively. However, considering the p value, the difference in the seizure induction threshold between the exposed and sham-exposed groups after acute and sub acute exposure was not significant, analyzing the effects of acute, sub acute and long-term exposures totally indicates that increasing the exposure time increases the

  4. The Norton-Simon hypothesis and the onset of non-genetic resistance to chemotherapy induced by stochastic fluctuations

    NASA Astrophysics Data System (ADS)

    d'Onofrio, Alberto; Gandolfi, Alberto; Gattoni, Sara

    2012-12-01

    By studying a simple but realistic biophysical model of tumor growth in the presence of a constant continuous chemotherapy, we show that if an extended Norton-Simon hypothesis holds, the system may have multiple equilibria. Thus, the stochastic bounded fluctuations that affect both the tumor carrying capacity and/or the drug pharmacodynamics (and/or the drug pharmacokinetics) may cause the transition from a small equilibrium to a far larger one, not compatible with the life of the host. In particular, we mainly investigated the effects of fluctuations that involve parameters nonlinearly affecting the deterministic model. We propose to frame the above phenomena as a new and non-genetic kind of resistance to chemotherapy.

  5. Electromagnetic Meissner-Effect Launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1990-01-01

    Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.

  6. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    SciTech Connect

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-04-15

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  7. Fluctuating shells under pressure

    PubMed Central

    Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.

    2012-01-01

    Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558

  8. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  9. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems

    NASA Astrophysics Data System (ADS)

    Huo, Pengfei; Coker, David F.

    2012-03-01

    Two-dimensional photon-echo experiments indicate that excitation energy transfer between chromophores near the reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides occurs coherently with decoherence times of hundreds of femtoseconds, comparable to the energy transfer time scale in these systems. The original explanation of this observation suggested that correlated fluctuations in chromophore excitation energies, driven by large scale protein motions could result in long lived coherent energy transfer dynamics. However, no significant site energy correlation has been found in recent molecular dynamics simulations of several model light harvesting systems. Instead, there is evidence of correlated fluctuations in site energy-electronic coupling and electronic coupling-electronic coupling. The roles of these different types of correlations in excitation energy transfer dynamics are not yet thoroughly understood, though the effects of site energy correlations have been well studied. In this paper, we introduce several general models that can realistically describe the effects of various types of correlated fluctuations in chromophore properties and systematically study the behavior of these models using general methods for treating dissipative quantum dynamics in complex multi-chromophore systems. The effects of correlation between site energy and inter-site electronic couplings are explored in a two state model of excitation energy transfer between the accessory bacteriochlorophyll and bacteriopheophytin in a reaction center system and we find that these types of correlated fluctuations can enhance or suppress coherence and transfer rate simultaneously. In contrast, models for correlated fluctuations in chromophore excitation energies show enhanced coherent dynamics but necessarily show decrease in excitation energy transfer rate accompanying such coherence enhancement. Finally, for a three state model of the Fenna-Matthews-Olsen light

  10. Friction forces arising from fluctuating thermal fields

    NASA Astrophysics Data System (ADS)

    Zurita-Sánchez, Jorge R.; Greffet, Jean-Jacques; Novotny, Lukas

    2004-02-01

    We calculate the damping of a classical oscillator induced by the electromagnetic field generated by thermally fluctuating currents in the environment. The fluctuation-dissipation theorem is applied to derive the linear-velocity damping coefficient γ. It turns out that γ is the result of fourth-order correlation functions. The theory is applied to a particle oscillating parallel to a flat substrate and numerical values for γ are evaluated for particle and substrate materials made of silver and glass. We find that losses are much higher for dielectric materials than for metals because of the higher resistivity. We predict that measurements performed on metal films are strongly affected by the underlying dielectric substrate and we show that our theory reproduces existing theoretical results in the nonretarded limit. The theory provides an explanation for the observed distance-dependent damping in shear-force microscopy and it gives guidance for future experiments. Also, the theory should be of importance for the design of nanoscale mechanical systems and for understanding the trade-offs of miniaturization.

  11. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory, EMSP Project No. 73836

    SciTech Connect

    Morgan, F. Dale; Sogade, John

    2004-12-14

    This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28

  12. The CB1 cannabinoid receptor agonist reduces L-DOPA-induced motor fluctuation and ERK1/2 phosphorylation in 6-OHDA-lesioned rats.

    PubMed

    Song, Lu; Yang, Xinxin; Ma, Yaping; Wu, Na; Liu, Zhenguo

    2014-01-01

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) has been used as an effective drug for treating dopamine depletion-induced Parkinson's disease (PD). However, long-term administration of L-DOPA produces motor complications. L-DOPA has also been found to modify the two key signaling cascades, protein kinase A/dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), in striatal neurons, which are thought to play a pivotal role in forming motor complications. In the present study, we tested the possible effect of a CB1 cannabinoid receptor agonist on L-DOPA-stimulated abnormal behavioral and signaling responses in vivo. Intermittent L-DOPA administration for 3 weeks induced motor fluctuation in a rat model of PD induced by intrastriatal infusion of dopamine-depleting neurotoxin 6-hydroxydopamine (6-OHDA). A single injection of a CB1 cannabinoid receptor agonist WIN-55,212-2 had no effect on L-DOPA-induced motor fluctuation. However, chronic injections of WIN-55,212-2 significantly attenuated abnormal behavioral responses to L-DOPA in 6-OHDA-lesioned rats. Similarly, chronic injections of WIN-55,212-2 influence the L-DOPA-induced alteration of DARPP-32 and ERK1/2 phosphorylation status in striatal neurons. These data provide evidence for the active involvement of CB1 cannabinoid receptors in the regulation of L-DOPA action during PD therapy.

  13. Fluctuation-induced anisotropic magnetoconductivity in oxygen-deficient YBa 2Cu 3O 7-δthin films

    NASA Astrophysics Data System (ADS)

    Göb, W.; Lang, W.; Kula, W.; Sobolewski, Roman

    1997-04-01

    We report on measurements of both the longitudinal and transverse magnetoresistivity (MR) of oxygen-reduced YBa2Cu3O7-δ(YBCO) thin films with critical temperatures betweenTc = 55 K andTc = 89 . We find the MR solely caused by the suppression of superconducting fluctuations by a magnetic field. In fully oxygenated samples both the Aslamazov-Larkin process (AL) and another, presumably the Maki-Thompson process (MT), contribute to the MR. In oxygen-deficient samples the MT process unambiguously is absent, thus indicating an unconventional (non-s-wave) pairing symmetry in YBCO.

  14. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  15. Theoretical studies on rapid fluctuations in solar flares

    NASA Technical Reports Server (NTRS)

    Vlahos, Loukas

    1986-01-01

    Rapid fluctuations in the emission of solar bursts may have many different origins e.g., the acceleration process can have a pulsating structure, the propagation of energetic electrons and ions can be interrupted from plasma instabilities and finally the electromagnetic radiation produced by the interaction of electrostatic and electromagnetic waves may have a pulsating behavior in time. In two separate studies the conditions for rapid fluctuations in solar flare driven emission were analyzed.

  16. Forward solution of the electromagnetic field induced by tsunamis using non-uniform thin-sheet approximation

    NASA Astrophysics Data System (ADS)

    Kawashima, I.; Toh, H.; Satake, K.

    2013-12-01

    A seafloor geomagnetic observatory in the northwest Pacific detected clear electromagnetic (EM) variations associated with tsunami passage from two earthquakes that occurred along the Kuril Trench (Toh et al., 2011). Previous seismological analyses indicated that the M8.3 earthquake on 15 November 2006 was an underthrust type on the landward slope of the trench, while the M8.1 earthquake on 13 January 2007 was a normal fault type on the seaward side (Ammon et al., 2008). Here we report the simulation results on the frequency dependence of those tsunami-induced EM signals observed at the seafloor, using a three-dimensional (3-D) non-uniform thin-sheet approximation by Dawson and Weaver (1979) and McKirdy, Weaver, & Dawson (1985), which can accommodate not only the inducing non-uniform source fields caused by particle motions of conducting seawater at the time of tsunami passage but also the self-induction effect within the ocean and its conductive substrata. Horizontal particle motions were calculated by Fujii and Satake (2008) with two types of hydrodynamic approximation, viz., the Boussinesq approximation and the long-wave approximation. Because the dispersion effect of each tsunami was more remarkable in the 2007 event, the observed EM variations were expected to be more compatible with the simulated EM signals using the Boussinesq approximation than the long-wave approximation. We calculated EM variations after we confirmed that synthetic plane waves in a flat ocean produced theoretically predicted harmonic EM variations well. In both approximations, the calculated EM variations associated with the initial wave of the tsunami at the time of the 2006 event are consistent with the observed ones, but the agreement became worse for the subsequent tsunami phases. As for the 2007 event, the calculated EM variations were less consistent compared with the 2006 event irrespective to the hydrodynamic approximations used. This can be due to the current limitation of thin

  17. Polarized electromagnetic response of the moon

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.; Smith, B. F.; Colburn, D. S.; Schubert, G.; Schwartz, K.

    1974-01-01

    The strong anisotropy in Apollo 15 Lunar Surface Magnetometer (LSM) signals resulting from electromagnetic induction in the moon, forced by fluctuations of the interplanetary magnetic field, is shown to result from intense polarization of the induced field. Arguments are given to show that the anisotropy cannot be explained wholly by asymmetric lunar induction in the presence of the diamagnetic cavity, but must be related to a regional influence. The weaker Apollo 12 anisotropy may also be associated with a regional influence. The site of Apollo 15 LSM at the edge of the Imbrium Basin suggests a preliminary model for calculations based on the possibility that Imbrium and perhaps Serenitatis are sources of the regional effect. Lastly, since the very low frequency induction seems free of the anisotropy, our earlier estimate of deep conductivity remains unchanged.

  18. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation

    PubMed Central

    Wu, Juan; Ma, Jun

    2017-01-01

    As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected. PMID:28358824

  19. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation.

    PubMed

    Wu, Juan; Xu, Yong; Ma, Jun

    2017-01-01

    As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected.

  20. Fluctuations of tensile strength and hardness of c-BC₂N crystals induced by difference in atomic configuration.

    PubMed

    Zhuang, Chunqiang; Li, Xiaoqing; Zhao, Jijun; Samra, H Abu; Jiang, Xin

    2011-11-23

    At the atomistic level, the physical properties of a material are determined by its structure such as atomic arrangements. Here first-principles calculations were performed to investigate the effect of atomic configuration on the tensile strength and Vickers hardness of cubic-BC₂N (c-BC₂N) crystals. Depending on the degree of mixture between diamond and c-BN, the tensile strength of c-BC2N crystals can vary drastically from 27 to 77 GPa. The magnitude of the Vickers hardness fluctuations (~10 GPa) is also comparable to the experimental difference (~14 GPa). Thus, atomic-scale characterization of c-BC₂N crystal structures may unveil the discrepancy of the measured Vickers hardness in experiments, and uncover the obvious differences of tensile strength described in theoretical calculations.

  1. Frequency fluctuations in silicon nanoresonators

    PubMed Central

    Sansa, Marc; Sage, Eric; Bullard, Elizabeth C.; Gély, Marc; Alava, Thomas; Colinet, Eric; Naik, Akshay K.; Villanueva, Luis Guillermo; Duraffourg, Laurent; Roukes, Michael L.; Jourdan, Guillaume; Hentz, Sébastien

    2016-01-01

    Frequency stability is key to performance of nanoresonators. This stability is thought to reach a limit with the resonator’s ability to resolve thermally-induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest. However, their existence is very difficult to demonstrate experimentally. Here, through a literature review, we show that all studies of frequency stability report values several orders of magnitude larger than the limit imposed by thermomechanical noise. We studied a monocrystalline silicon nanoresonator at room temperature, and found a similar discrepancy. We propose a new method to show this was due to the presence of frequency fluctuations, of unexpected level. The fluctuations were not due to the instrumentation system, or to any other of the known sources investigated. These results challenge our current understanding of frequency fluctuations and call for a change in practices. PMID:26925826

  2. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  3. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  4. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    NASA Astrophysics Data System (ADS)

    Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito

    2015-06-01

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  5. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    SciTech Connect

    Fujihashi, Yuta; Ishizaki, Akihito; Fleming, Graham R.

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  6. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra.

    PubMed

    Fujihashi, Yuta; Fleming, Graham R; Ishizaki, Akihito

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  7. Autaptic regulation of electrical activities in neuron under electromagnetic induction

    PubMed Central

    Xu, Ying; Ying, Heping; Jia, Ya; Ma, Jun; Hayat, Tasawar

    2017-01-01

    Realistic neurons may hold complex anatomical structure, for example, autapse connection to some internuncial neurons, which this specific synapse can connect to its body via a close loop. Continuous exchanges of charged ions across the membrane can induce complex distribution fluctuation of intracellular and extracellular charged ions of cell, and a time-varying electromagnetic field is set to modulate the membrane potential of neuron. In this paper, an autapse-modulated neuron model is presented and the effect of electromagnetic induction is considered by using magnetic flux. Bifurcation analysis and sampled time series for membrane potentials are calculated to investigate the mode transition in electrical activities and the biological function of autapse connection is discussed. Furthermore, the Gaussian white noise and electromagnetic radiation are considered on the improved neuron model, it is found appropriate setting and selection for feedback gain and time delay in autapse can suppress the bursting in neuronal behaviors. It indicates the formation of autapse can enhance the self-adaption of neuron so that appropriate response to external forcing can be selected, this biological function is helpful for encoding and signal propagation of neurons. It can be useful for investigation about collective behaviors in neuronal networks exposed to electromagnetic radiation. PMID:28240314

  8. Autaptic regulation of electrical activities in neuron under electromagnetic induction.

    PubMed

    Xu, Ying; Ying, Heping; Jia, Ya; Ma, Jun; Hayat, Tasawar

    2017-02-27

    Realistic neurons may hold complex anatomical structure, for example, autapse connection to some internuncial neurons, which this specific synapse can connect to its body via a close loop. Continuous exchanges of charged ions across the membrane can induce complex distribution fluctuation of intracellular and extracellular charged ions of cell, and a time-varying electromagnetic field is set to modulate the membrane potential of neuron. In this paper, an autapse-modulated neuron model is presented and the effect of electromagnetic induction is considered by using magnetic flux. Bifurcation analysis and sampled time series for membrane potentials are calculated to investigate the mode transition in electrical activities and the biological function of autapse connection is discussed. Furthermore, the Gaussian white noise and electromagnetic radiation are considered on the improved neuron model, it is found appropriate setting and selection for feedback gain and time delay in autapse can suppress the bursting in neuronal behaviors. It indicates the formation of autapse can enhance the self-adaption of neuron so that appropriate response to external forcing can be selected, this biological function is helpful for encoding and signal propagation of neurons. It can be useful for investigation about collective behaviors in neuronal networks exposed to electromagnetic radiation.

  9. Autaptic regulation of electrical activities in neuron under electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Ying, Heping; Jia, Ya; Ma, Jun; Hayat, Tasawar

    2017-02-01

    Realistic neurons may hold complex anatomical structure, for example, autapse connection to some internuncial neurons, which this specific synapse can connect to its body via a close loop. Continuous exchanges of charged ions across the membrane can induce complex distribution fluctuation of intracellular and extracellular charged ions of cell, and a time-varying electromagnetic field is set to modulate the membrane potential of neuron. In this paper, an autapse-modulated neuron model is presented and the effect of electromagnetic induction is considered by using magnetic flux. Bifurcation analysis and sampled time series for membrane potentials are calculated to investigate the mode transition in electrical activities and the biological function of autapse connection is discussed. Furthermore, the Gaussian white noise and electromagnetic radiation are considered on the improved neuron model, it is found appropriate setting and selection for feedback gain and time delay in autapse can suppress the bursting in neuronal behaviors. It indicates the formation of autapse can enhance the self-adaption of neuron so that appropriate response to external forcing can be selected, this biological function is helpful for encoding and signal propagation of neurons. It can be useful for investigation about collective behaviors in neuronal networks exposed to electromagnetic radiation.

  10. Market applications of Resistivity, Induced Polarisation, Magnetic Resonance and Electromagnetic methods for Groundwater Investigations, Mining Exploration, Environmental and Engineering Surveys

    NASA Astrophysics Data System (ADS)

    Bernard, J.

    2012-12-01

    The Manufacturers of geophysical instruments have been facing these past decades the fast evolution of the electronics and of the computer sciences. More automatisms have been introduced into the equipment and into the processing and interpretation software which may let believe that conducting geophysical surveys requires less understanding of the method and less experience than in the past. Hence some misunderstandings in the skills that are needed to make the geophysical results well integrated among the global information which the applied geologist needs to acquire to be successful in his applications. Globally, the demand in geophysical investigation goes towards more penetration depth, requiring more powerful transmitters, and towards a better resolution, requiring more data such as in 3D analysis. Budgets aspects strongly suggest a high efficiency in the field associated to high speed data processing. The innovation is required in all aspects of geophysics to fit with the market needs, including new technological (instruments, software) and methodological (methods, procedures, arrays) developments. The structures in charge of the geophysical work can be public organisations (institutes, ministries, geological surveys,…) or can come from the private sector (large companies, sub-contractors, consultants, …), each one of them getting their own constraints in the field work and in the processing and interpretation phases. In the applications concerning Groundwater investigations, Mining Exploration, Environmental and Engineering surveys, examples of data and their interpretation presently carried out all around the world will be presented for DC Resistivity (Vertical Electrical Sounding, 2D, 3D Resistivity Imaging, Resistivity Monitoring), Induced Polarisation (Time Domain 2D, 3D arrays for mining and environmental), Magnetic Resonance Sounding (direct detection and characterisation of groundwater) and Electromagnetic (multi-component and multi

  11. Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements

    NASA Astrophysics Data System (ADS)

    Maury, Cécile; Sirven, Jean-Baptiste; Tabarant, Michel; L'Hermite, Daniel; Courouau, Jean-Louis; Gallou, Catherine; Caron, Nadège; Moutiers, Gilles; Cabuil, Valérie

    2013-04-01

    Liquid sodium is used as coolant in sodium-cooled fast nuclear reactors. Among many parameters to monitor to ensure the safe operation of the reactor, the coolant chemical purity is a relevant indicator of several undesirable situations, like corrosion of structural materials or sodium contamination, which may release different elements in the coolant. Several techniques have already been implemented to measure the sodium purity, but their response time is long and not suited for continuous monitoring. Therefore, as a complement to them, laser-induced breakdown spectroscopy (LIBS) is considered as a promising technique for real-time analysis of the coolant purity. In this paper we report on the first LIBS quantitative measurements performed in liquid sodium at 150 °C. Calibration curves were traced for lead and indium using the standard addition method. Important intensity drifts and fluctuations were observed, mostly due to pressure variations in the sodium oven. Background subtraction and/or normalization was used to compensate for those intensity fluctuations. To describe the effect of these corrections on the analytical signal noise, a simple model was proposed and its results were found to satisfactorily fit the experimental data. Using this approach, the best detection limits were obtained for the background-subtracted and normalized data, and were found to be 6 ppm for lead and 5 ppm for indium.

  12. Parameterization of Turbulent-Induced Correlated Phytoplankton and Nutrient Fluctuations in an Upwelling Sea Surface Mixed Layer and Their Effect on Mean Production

    NASA Astrophysics Data System (ADS)

    Robinson, A. R.; Goodman, L.

    2008-12-01

    Many fundamental biological dynamical processes in the sea are strongly non-linear. Thus, physical turbulence in the sea not only enhances advective transport processes by eddy diffusivity but also importantly induces turbulent fluctuations in biological state variables which can correlate in the mean and effect mean biological dynamics. Goodman and Robinson (Proc. Roy. Soc A, 2008, 484, 555-572; doi: 10.1098/rspa. 2007.0251) have formulated a theory of turbulent biological-physical interactions in terms of probability density functions (pdfs) and applied it to the simple example of nutrient (N) and seed phytoplankton (P) upwelling into a surface turbulent layer. The mean uptake is to the sum of the product of the means and the often neglected correlation fluctuations . and are positive, but is found to be negative and to significantly reduce . Here we parameterize by with a proportionality constant a function of two non-dimensional parameters: i) the ratio of the biological uptake time scale to the upwelling time, and ii) the ratio of the upwelling time scale to the turbulent diffusive time (Peclet number). An ADR (advective-diffusive-reactive) model is then formulated for the mean fields , and solved analytically for the intense turbulent limit of small Peclet number by perturbation methods. Agreement of , values in the mixed layer with the pdf theory is excellent. The ADR results provide useful insight into coupled turbulent physical-biological dynamical processes.

  13. Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.

  14. Electric field effect on the impurity-related electromagnetically induced transparency in a quantum disk under non-resonant, intense laser radiation

    NASA Astrophysics Data System (ADS)

    Niculescu, E. C.

    2017-04-01

    By considering a three-level ladder-type system under electromagnetically induced transparency, the absorption and dispersion of the probe field in a GaAs disk-like quantum dot under simultaneous action of the electric field and non-resonant, intense laser radiation are investigated. We found that some characteristics such as the width of the transmission window and group velocity can be efficiently manipulated by tuning the control field intensity, non-resonant radiation amplitude and electric field strength. Our results may be relevant for future investigations of the optical process in semiconductor quantum structures and for the technological applications in solid- state optoelectronics.

  15. Electromagnetically induced absorption and transparency in degenerate two level systems of metastable Kr atoms and measurement of Landé g-factor

    NASA Astrophysics Data System (ADS)

    Kale, Y. B.; Tiwari, V. B.; Mishra, S. R.; Singh, S.; Rawat, H. S.

    2016-12-01

    We report electromagnetically induced absorption (EIA) and transparency (EIT) resonances of sub-natural linewidth in degenerate two level systems (DTLSs) of metastable 84Kr (84Kr*) and 83Kr (83Kr*) atoms. Using the spectrally narrow EIA signals obtained corresponding to the closed hyperfine transition 4p55s[3/2]2(F=13/2) to 4p55p[5/2]3(F‧ = 15 / 2) in 83Kr* atom, we have measured the Landé g-factor (gF) for the lower hyperfine level involved in this transition by application of small values of magnetic field of few Gauss.

  16. Evolution of magnetic fluctuations through the Fe-induced paramagnetic to ferromagnetic transition in Cr2B

    NASA Astrophysics Data System (ADS)

    Arčon, D.; Schoop, L. M.; Cava, R. J.; Felser, C.

    2016-03-01

    In itinerant ferromagnets, the quenched disorder is predicted to dramatically affect the ferromagnetic to paramagnetic quantum phase transition driven by external control parameters at zero temperature. Here we report a study on Fe-doped Cr2B , which, starting from the paramagnetic parent, orders ferromagnetically for Fe-doping concentrations x larger than xc=2.5 % . In parent Cr2B , 11B nuclear magnetic resonance data reveal the presence of both ferromagnetic and antiferromagnetic fluctuations. The latter are suppressed with Fe doping, before the ferromagnetic ones finally prevail for x >xc . Indications for non-Fermi-liquid behavior, usually associated with the proximity of a quantum critical point, were found for all samples, including undoped Cr2B . The sharpness of the ferromagneticlike transition changes on moving away from xc, indicating significant changes in the nature of the magnetic transitions in the vicinity of the quantum critical point. Our data provide some constraints for understanding quantum phase transitions in itinerant ferromagnets in the limit of weak quenched disorder.

  17. Synergistic effect of fluconazole and doxycycline against Candida albicans biofilms resulting from calcium fluctuation and downregulation of fluconazole-inducible efflux pump gene overexpression.

    PubMed

    Gao, Yuan; Li, Hui; Liu, Shuyuan; Zhang, Xiang; Sun, Shujuan

    2014-07-01

    Candida albicans biofilms are intrinsically resistant to antimicrobial agents. Previous work demonstrated that the antifungal activity of fluconazole against C. albicans biofilms is notably enhanced by doxycycline. In order to explore the synergistic mechanism of fluconazole and doxycycline, we investigated the changes of efflux pump gene expression, intracellular calcium concentration and cell cycle distribution after drug intervention in this study. The expression levels of CDR1, CDR2 and MDR1 were determined by real-time PCR, and the results showed that fluconazole alone could stimulate the high expression of CDR1, CDR2 and MDR1, and the combination of doxycycline and fluconazole downregulated the gene overexpression induced by fluconazole. Intracellular calcium concentration was determined using Fluo-3/AM by observing the fluorescence with flow cytometry. A calcium fluctuation, which started 4 h and peaked 8 h after the treatment with fluconazole, was observed. The combined drugs also initiated a calcium fluctuation after 4 h treatment and showed a peak at 16 h, and the peak was higher than that stimulated by fluconazole alone. The cell cycle was measured using flow cytometry. Fluconazole alone and the combined drugs both induced a reduction in the percentages of S-phase cells and an elevation in the percentages of cells in the G2/M phase. The results of this research showed that the synergism of fluconazole and doxycycline against C. albicans biofilms is associated with blockade of the efflux pump genes CDR1, CDR2 and MDR1, and stimulation of high intracellular calcium concentration. The findings of this study are of great significance in the search for new antifungal mechanisms.

  18. Fluctuations and Stimulus-Induced Changes in Blood Flow Observed in Individual Capillaries in Layers 2 through 4 of Rat Neocortex

    NASA Astrophysics Data System (ADS)

    Kleinfeld, David; Mitra, Partha P.; Helmchen, Fritjof; Denk, Winfried

    1998-12-01

    Cortical blood flow at the level of individual capillaries and the coupling of neuronal activity to flow in capillaries are fundamental aspects of homeostasis in the normal and the diseased brain. To probe the dynamics of blood flow at this level, we used two-photon laser scanning microscopy to image the motion of red blood cells (RBCs) in individual capillaries that lie as far as 600 μ m below the pia mater of primary somatosensory cortex in rat; this depth encompassed the cortical layers with the highest density of neurons and capillaries. We observed that the flow was quite variable and exhibited temporal fluctuations around 0.1 Hz, as well as prolonged stalls and occasional reversals of direction. On average, the speed and flux (cells per unit time) of RBCs covaried linearly at low values of flux, with a linear density of ≈ 70 cells per mm, followed by a tendency for the speed to plateau at high values of flux. Thus, both the average velocity and density of RBCs are greater at high values of flux than at low values. Time-locked changes in flow, localized to the appropriate anatomical region of somatosensory cortex, were observed in response to stimulation of either multiple vibrissae or the hindlimb. Although we were able to detect stimulus-induced changes in the flux and speed of RBCs in some single trials, the amplitude of the stimulus-evoked changes in flow were largely masked by basal fluctuations. On average, the flux and the speed of RBCs increased transiently on stimulation, although the linear density of RBCs decreased slightly. These findings are consistent with a stimulus-induced decrease in capillary resistance to flow.

  19. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    USGS Publications Warehouse

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  20. Investigating the electron density of multi-MeV X-ray-induced air plasmas at low pressures based on electromagnetic resonant cavity analysis

    NASA Astrophysics Data System (ADS)

    Ribière, M.; d'Almeida, T.; Cessenat, O.; Maulois, M.; Pouzalgues, R.; Crabos, B.; Delbos, C.; Garrigues, A.; Azaïs, B.

    2016-12-01

    We investigate air plasmas generated by multi-MeV pulsed X-rays at pressures ranging from 10-5 to 10-1 mbar. The experimental approach used for these studies is based on measurements of resonant frequencies damping and shift for different electromagnetic modes within a cylindrical cavity. Time-integrated electron densities in X-ray-induced air plasmas are inferred from the damping rate of the measured magnetic fields and their corresponding frequency shifts. In the present study, electron densities ranging from 108 to 109 cm-3 at pressures ranging from 10-3 to 10-1 mbar have been measured. Experimental results were confronted to 3D Maxwell-Vlasov Particle-In-Cell simulations incorporating a radiation-induced electric conductivity model. The method used in this work enables determining microscopic and macroscopic physical quantities within low pressure air plasmas generated by pulsed X-ray.

  1. Suppression of stimulated Raman scattering by an electromagnetically-induced-transparency-like scheme and its application for super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Gong, Li; Wang, Haifeng

    2015-08-01

    We theoretically investigate a scheme in which stimulated Raman scattering (SRS) can be suppressed by coherently controlling the coupling between molecular states. In conventional SRS, two laser beams at different frequencies interact resonantly with molecular vibration to induce a gain and a loss for the two beams, respectively. In our scheme, a third beam is introduced to couple the vibrational state to another coupling state. As a result, SRS is suppressed in a way analogous to electromagnetically induced transparency. We calculated the SRS signal analytically by the density matrix approach, and investigated the feasibility of this scheme for real molecular imaging. In SRS microscopy, a donut-shaped coupling laser can be used to suppress the SRS signal from the rim part of the focal spot, leading to super-resolution. Based on our numerical studies, the lateral resolution starts to be enhanced when the coupling laser intensity exceeds 0.1 TW /c m2 at picosecond pulse duration.

  2. Exposure to 900 MHz electromagnetic field induces an unbalance between pro-apoptotic and pro-survival signals in T-lymphoblastoid leukemia CCRF-CEM cells.

    PubMed

    Marinelli, F; La Sala, D; Cicciotti, G; Cattini, L; Trimarchi, C; Putti, S; Zamparelli, A; Giuliani, L; Tomassetti, G; Cinti, Caterina

    2004-02-01

    It has been recently established that low-frequency electromagnetic field (EMFs) exposure induces biological changes and could be associated with increased incidence of cancer, while the issue remains unresolved as to whether high-frequency EMFs can have hazardous effect on health. Epidemiological studies on association between childhood cancers, particularly leukemia and brain cancer, and exposure to low- and high-frequency EMF suggested an etiological role of EMFs in inducing adverse health effects. To investigate whether exposure to high-frequency EMFs could affect in vitro cell survival, we cultured acute T-lymphoblastoid leukemia cells (CCRF-CEM) in the presence of unmodulated 900 MHz EMF, generated by a transverse electromagnetic (TEM) cell, at various exposure times. We evaluated the effects of high-frequency EMF on cell growth rate and apoptosis induction, by cell viability (MTT) test, FACS analysis and DNA ladder, and we investigated pro-apoptotic and pro-survival signaling pathways possibly involved as a function of exposure time by Western blot analysis. At short exposure times (2-12 h), unmodulated 900 MHz EMF induced DNA breaks and early activation of both p53-dependent and -independent apoptotic pathways while longer continuous exposure (24-48 h) determined silencing of pro-apoptotic signals and activation of genes involved in both intracellular (Bcl-2) and extracellular (Ras and Akt1) pro-survival signaling. Overall our results indicate that exposure to 900 MHz continuous wave, after inducing an early self-defense response triggered by DNA damage, could confer to the survivor CCRF-CEM cells a further advantage to survive and proliferate.

  3. Can the Gulf Stream induce coherent short-term fluctuations in sea level along the US East Coast? A modeling study

    NASA Astrophysics Data System (ADS)

    Ezer, Tal

    2016-02-01

    Much attention has been given in recent years to observations and models that show that variations in the transport of the Atlantic Meridional Overturning Circulation (AMOC) and in the Gulf Stream (GS) can contribute to interannual, decadal, and multi-decadal variations in coastal sea level (CSL) along the US East Coast. However, less is known about the impact of short-term (time scales of days to weeks) fluctuations in the GS and their impact on CSL anomalies. Some observations suggest that these anomalies can cause unpredictable minor tidal flooding in low-lying areas when the GS suddenly weakens. Can these short-term CSL variations be attributed to changes in the transport of the GS? An idealized numerical model of the GS has been set up to test this proposition. The regional model uses a 1/12° grid with a simplified coastline to eliminate impacts from estuaries and small-scale coastal features and thus isolate the GS impact. The GS in the model is driven by inflows/outflows, representing the Florida Current (FC), the Slope Current (SC), and the Sargasso Sea (SS) flows. Forcing the model with an oscillatory FC transport with a period of 2, 5, and 10 days produced coherent CSL variations from Florida to the Gulf of Maine with similar periods. However, when imposing variations in the transports of the SC or the SS, they induce CSL variations only north of Cape Hatteras. The suggested mechanism is that variations in GS transport produce variations in sea level gradient across the entire GS length and this large-scale signal is then transmitted into the shelf by the generation of coastal-trapped waves (CTW). In this idealized model, the CSL variations induced by variations of ˜10 Sv in the transport of the GS are found to resemble CSL variations induced by ˜5 m s-1 zonal wind fluctuations, though the mechanisms of wind-driven and GS-driven sea level are quite different. Better understanding of the relation between variations in offshore currents and CSL will help

  4. On the mechanism of seismo-electromagnetic phenomena and their possible role in the electromagnetic radiation during periods of earthquakes, foreshocks and aftershocks

    NASA Astrophysics Data System (ADS)

    Khatiashvili, N. G.; Perel'man, M. E.

    1989-10-01

    We describe generation of low- and radio-frequency electromagnetic radiation (EMR) by seismic waves of pressure applied to a neutral nonpiezoelectrical medium. The EMR is induced during the process of ionic crystal fracture and formation of a mosaic of fluctuation charges on the opposite sides of the cracks, the formation and oscillation of charged dislocations and the vibrations of very small conducting or magnetized particles in dielectrics with fluctuating charges proportional to their radius and temperature. The most interesting source of EMR emission is the process of formation and oscillation of double electric layers (DEL). The DEL can be modelled as a system of capacitors or electric dipoles. The variation of their parameters by external pressure, by changes of water content, etc., leads directly to the EMR emission. As DELs are widespread in rocks, they can make an essential contribution to the EMR. DEL oscillation induced by tectonic processes is probably the main contribution.

  5. Field Induced Phase Transition with Quadrupole Fluctuation in HoFe2Al10 with Orthorhombic Symmetry

    NASA Astrophysics Data System (ADS)

    Kamikawa, Shuhei; Ishii, Isao; Takezawa, Kohki; Sakami, Tatsuhiro; Nakagawa, Fumiya; Tanida, Hiroshi; Sera, Masafumi; Suzuki, Takashi

    2017-04-01

    To explore phase transitions in HoFe2Al10 with an orthorhombic structure, we performed ultrasonic measurements on transverse elastic moduli C55 and C66 under magnetic fields H. At zero magnetic field, C55 and C66 show an elastic softening down to 0.5 K without a clear anomaly, suggesting that no phase transition exists at zero magnetic field. However, in H along the a- and c-axes, the softening of C55 under 0.6 (0.4) T stops at TQ = 0.8 (0.75) K for H || a (c). Below TQ, C55 shows an elastic hardening. With further increasing H, we observed a remarkable softening of C55 toward TQ. C66 also shows a kink anomaly at TQ in H || a and c. From the results, we clarified the field induced phase transition for H || a and c in HoFe2Al10. The minimum point of C55 at TQ suggests that the field induced phase transition results from a quadrupolar ordering with the order parameter of quadrupole Ozx despite a singlet ground state under an orthorhombic crystal electric field in HoFe2Al10.

  6. Energy dissipation and switching delay in stress-induced switching of multiferroic nanomagnets in the presence of thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2012-07-01

    Switching the magnetization of a shape-anisotropic 2-phase multiferroic nanomagnet with voltage-generated stress is known to dissipate very little energy (<1 aJ for a switching time of ˜0.5 ns) at 0 K temperature. Here, we show by solving the stochastic Landau-Lifshitz-Gilbert equation that switching can be carried out with ˜100% probability in less than 1 ns while dissipating less than 1.5 aJ at room temperature. This makes nanomagnetic logic and memory systems, predicated on stress-induced magnetic reversal, one of the most energy-efficient computing hardware extant. We also study the dependence of energy dissipation, switching delay, and the critical stress needed to switch, on the rate at which stress on the nanomagnet is ramped up or down.

  7. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  8. 63Cu nuclear magnetic resonance study of Pr(1.85)Ce(0.15)Cu(1-x)Ni(x)O(4): Ni-induced spin density oscillation and modification of the low energy spin fluctuations.

    PubMed

    Williams, G V M; Jurkutat, M; Rybicki, D; Haase, J

    2011-02-23

    We report the results from a (63)Cu nuclear magnetic resonance (NMR) study of the electron-doped high temperature superconducting cuprate (HTSC) Pr(1.85)Ce(0.15)Cu(1-x)Ni(x)O(4). We find that Ni induces a magnetic broadening of the (63)Cu NMR spectra that can be interpreted in terms of an induced spin density oscillation about the Ni site, similar to that reported from (63)Cu NMR measurements on the hole-doped HTSCs when Zn is partially substituted for Cu. There is also an additional temperature-dependent contribution to the (63)Cu spin-lattice relaxation rate that can be interpreted in terms of an Ni-induced modification of the low energy spin fluctuations. Furthermore, the spin fluctuations are intrinsically spatially inhomogeneous and additional inhomogeneities are induced by Ni.

  9. Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1.

    PubMed

    Jiang, Da-Peng; Li, Jin-Hui; Zhang, Jie; Xu, Sheng-Long; Kuang, Fang; Lang, Hai-Yang; Wang, Ya-Feng; An, Guang-Zhou; Li, Jing; Guo, Guo-Zhen

    2016-07-01

    A progressively expanded literature has been devoted in the past years to the noxious or beneficial effects of electromagnetic field (EMF) to Alzheimer׳s disease (AD). This study concerns the relationship between electromagnetic pulse (EMP) exposure and the occurrence of AD in rats and the underlying mechanisms, focusing on the role of oxidative stress (OS). 55 healthy male Sprague Dawley (SD) rats were used and received continuous exposure for 8 months. Morris water maze (MWM) test was conducted to test the ability of cognitive and memory. The level of OS was detected by superoxide dismutase (SOD) activity and glutathione (GSH) content. We found that long-term EMP exposure induced cognitive damage in rats. The content of β-amyloid (Aβ) protein in hippocampus was increased after long-term EMP exposure. OS of hippocampal neuron was detected. Western blotting and immunohistochemistry (IHC) assay showed that the content of Aβ protein and its oligomers in EMP-exposed rats were higher than that of sham-exposed rats. The content of Beta Site App Cleaving Enzyme (BACE1) and microtubule-associated protein 1 light chain 3-II (LC3-II) in EMP-exposed rats hippocampus were also higher than that of sham-exposed rats. SOD activity and GSH content in EMP-exposed rats were lower than sham-exposed rats (p<0.05). Several mechanisms were proposed based on EMP exposure-induced OS, including increased amyloid precursor protein (APP) aberrant cleavage. Although further study is needed, the present results suggest that long-term EMP exposure is harmful to cognitive ability in rats and could induce AD-like pathological manifestation.

  10. Estimating the power-law distribution of Earth electrical conductivity from low-frequency, controlled-source electromagnetic responses

    SciTech Connect

    Beskardes, G. D.; Weiss, Chester J.; Everett, M. E.

    2016-11-30

    Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Here by quantifying the relationship between multi-scale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. Furthermore, we present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, suggesting that the spatial fluctuations may be considered as “geologic noise”.

  11. Coherent vortex model for surface pressure fluctuations induced by the wall region of a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Dhanak, Manhar R.; Dowling, Ann P.; Si, Chao

    1997-09-01

    Exact solutions of the Navier-Stokes equations describing the interaction of streamwise vortices with a rigid surface are utilized to develop a conceptual model for the surface pressure spectrum associated with the wall region of a turbulent boundary layer. The evolution of single as well as pairs of coherent streamwise vortices, which principally govern the production of turbulence in the wall region, is considered in the presence of local straining flow induced by larger, outer-layer eddies. The surface pressure signatures of the coherent vortex motion and the associated power spectrum of the pressure are examined. Based on the results of the exact solutions, the surface pressure spectrum of an ensemble of independent coherent structures is modeled using the assumption of ergodicity in the manner described by Townsend and Lundgren for homogeneous turbulence. The free parameters in the model are estimated through comparison with available results from experiments and numerical simulations. The model, especially the one involving pairs of streamwise vortices, predicts the high frequency and high spanwise wave number range of the surface pressure spectrum quite well. Further, the probability density function of surface pressure associated with the model compares well with experimental results. Interestingly, the model also suggests that the contribution of the viscous interaction to low wave number spectral elements accounts for the discrepancy between experimental observations at such wave numbers and the prediction of the Kraichnan-Phillips theorem.

  12. Interactions of protons with single open L-type calcium channels. Location of protonation site and dependence of proton-induced current fluctuations on concentration and species of permeant ion

    PubMed Central

    1989-01-01

    We further investigated the rapid fluctuations between two different conductance levels promoted by protons when monovalent ions carry current through single L-type Ca channels. We tested for voltage dependence of the proton-induced current fluctuations and for accessibility of the protonation site from both sides of the membrane patch. The results strongly suggest an extracellular location of the protonation site. We also studied the dependence of the kinetics of the fluctuations and of the two conductance levels on the concentration of permeant ion and on external ionic strength. We find that saturation curves of channel conductance vs. [K] are similar for the two conductance levels. This provides evidence that protonation does not appreciably change the surface potential near the entry of the permeation pathway. The proton-induced conduction change must therefore result from an indirect interaction between the protonation site and the ion-conducting pathway. Concentration of permeant ion and ionic strength also affect the kinetics of the current fluctuations, in a manner consistent with our previous hypothesis that channel occupancy destabilizes the low conductance channel conformation. We show that the absence of measurable fluctuations with Li and Ba as charge carriers can be explained by significantly higher affinities of these ions for permeation sites. Low concentrations of Li reduce the Na conductance and abbreviate the lifetimes of the low conductance level seen in the presence of Na. We use whole-cell recordings to extrapolate our findings to the physiological conditions of Ca channel permeation and conclude that in the presence of 1.8 mM Ca no proton-induced fluctuations occur between pH 7.5 and 6.5. Finally, we propose a possible physical interpretation of the formal model of the protonation cycle introduced in the companion paper. PMID:2553858

  13. Damage effect and mechanism of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Xiao-Wen, Xi; Chang-Chun, Chai; Gang, Zhao; Yin-Tang, Yang; Xin-Hai, Yu; Yang, Liu

    2016-04-01

    The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900), and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  14. Effects of local and core body temperature on grip force modulation during movement-induced load force fluctuations.

    PubMed

    Cheung, Stephen S; Reynolds, Luke F; Macdonald, Mark A B; Tweedie, Constance L; Urquhart, Robin L; Westwood, David A

    2008-05-01

    Impaired manual functioning often occurs when the hands are exposed to cold temperatures, but the underlying mechanism is not clearly understood. Tactile feedback is thought to provide important information during object manipulations in order to scale and regulate grip forces; however, topical anaesthetic-induced tactile sensation impairments may not realistically simulate the systemic neuromuscular impairment of the whole hand that could occur during cold temperature exposure. In two experiments, we studied the impact of (1) local hand cooling [thermoneutral finger skin temperature, cold (<8 degrees C)] and (2) core body temperature (thermoneutral core body temperature, pre-heated by 0.5 degrees C, pre-cooled by 0.5 degrees C) with cold hands on manual dexterity and the ability to control and co-ordinate grip forces during a cyclical load-lifting task. In Experiment 1 (n = 10), hand cooling significantly decreased Purdue Pegboard performance (P = 0.002), while increasing grip force by approximately 5 N during the cyclical load-lifting task compared to thermoneutral (P = 0.037). The temporal co-ordination of grip and load forces was unaffected by hand cooling. In Experiment 2 (n = 11), pegboard performance was impaired following hand cooling (P < 0.001), and to a greater extent when the body was pre-cooled (p < 0.001). However, neither grip force (P = 0.99) nor the temporal co-ordination of grasping and lifting forces (P = 0.85) were affected by core body temperature. These data support the existence of a robust centrally controlled feedforward system able to anticipate the dynamics of manual manipulations and accordingly regulate the temporal co-ordination of fingertip forces during object manipulation. This centrally controlled mechanism appears to differ from the mechanisms governing other aspects of manual dexterity.

  15. Phase shift multiplication effect of all-optical analog to electromagnetically induced transparency in two micro-cavities side coupled to a waveguide system

    SciTech Connect

    Wang, Boyun; Wang, Tao Tang, Jian; Li, Xiaoming; Dong, Chuanbo

    2014-01-14

    We propose phase shift multiplication effect of all-optical analog to electromagnetically induced transparency in two photonic crystal micro-cavities side coupled to a waveguide system through external optical pump beams. With dynamically tuning the propagation phase of the line waveguide, the phase shift of the transmission spectrum in two micro-cavities side coupled to a waveguide system is doubled along with the phase shift of the line waveguide. π-phase shift and 2π-phase shift of the transmission spectrum are obtained when the propagation phase of the line waveguide is tuned to 0.5π-phase shift and π-phase shift, respectively. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and the coupled-mode formalism. These results show a new direction to the miniaturization and the low power consumption of microstructure integration photonic devices in optical communication and quantum information processing.

  16. Electromagnetically induced absorption due to transfer of coherence and coherence population oscillation for the Fg = 3 →Fe = 4 transition in 85Rb atoms

    NASA Astrophysics Data System (ADS)

    Rehman, Hafeez Ur; Mohsin, Muhammad Qureshi; Noh, Heung-Ryoul; Kim, Jin-Tae

    2016-12-01

    Lineshapes for the electromagnetically induced absorption (EIA) of thermal 85Rb atoms in a degenerate two-level system have been investigated using matching (σ∥σ , π∥π) and orthogonal (σ ⊥ σ , π ⊥ π) polarization configurations of coupling and probe beams. EIA signals, which result from coherence population oscillation and transfer of coherence of the excited state, are obtained in detail theoretically and experimentally. The observed EIA linewidths, which are limited due to the decoherence rate between the magnetic sublevels in the ground state from transit-time relaxation, match well with the calculated ones. Decompositions of the absorption signals analyzed with respect to magnetic sublevels of the ground state show that enhanced or decreased absorption signals for each component of magnetic sublevels in the ground state depend on several factors. These factors include the decay rates and transition strengths, which determine the overall absorption spectral profile.

  17. A non-resonant, frequency up-converted electromagnetic energy harvester from human-body-induced vibration for hand-held smart system applications

    NASA Astrophysics Data System (ADS)

    Halim, Miah A.; Park, Jae Y.

    2014-03-01

    We present a non-resonant, frequency up-converted electromagnetic energy harvester that generates significant power from human-body-induced vibration, e.g., hand-shaking. Upon excitation, a freely movable non-magnetic ball within a cylinder periodically hits two magnets suspended on two helical compression springs located at either ends of the cylinder, allowing those to vibrate with higher frequencies. The device parameters have been designed based on the characteristics of human hand-shaking vibration. A prototype has been developed and tested both by vibration exciter (for non-resonance test) and by manual hand-shaking. The fabricated device generated 110 μW average power with 15.4 μW cm-3 average power density, while the energy harvester was mounted on a smart phone and was hand-shaken, indicating its ability in powering portable hand-held smart devices from low frequency (<5 Hz) vibrations.

  18. Measurement of absolute transition frequencies of {sup 87}Rb to nS and nD Rydberg states by means of electromagnetically induced transparency

    SciTech Connect

    Mack, Markus; Karlewski, Florian; Hattermann, Helge; Hoeckh, Simone; Jessen, Florian; Cano, Daniel; Fortagh, Jozsef

    2011-05-15

    We report the measurement of absolute excitation frequencies of {sup 87}Rb to nS and nD Rydberg states. The Rydberg transition frequencies are obtained by observing electromagnetically induced transparency on a rubidium vapor cell. The accuracy of the measurement of each state is < or approx. 1 MHz, which is achieved by frequency stabilizing the two diode lasers employed for the spectroscopy to a frequency comb and a frequency comb calibrated wavelength meter, respectively. Based on the spectroscopic data we determine the quantum defects of {sup 87}Rb, and compare it with previous measurements on {sup 85}Rb. We determine the ionization frequency from the 5S{sub 1/2}(F=1) ground state of {sup 87}Rb to 1010.029 164 6(3)THz, providing the binding energy of the ground state with an accuracy improved by two orders of magnitude.

  19. A stochastic model and Monte Carlo algorithm for fluctuation-induced H2 formation on the surface of interstellar dust grains

    NASA Astrophysics Data System (ADS)

    Sabelfeld, K. K.

    2015-09-01

    A stochastic algorithm for simulation of fluctuation-induced kinetics of H2 formation on grain surfaces is suggested as a generalization of the technique developed in our recent studies [1] where this method was developed to describe the annihilation of spatially separate electrons and holes in a disordered semiconductor. The stochastic model is based on the spatially inhomogeneous, nonlinear integro-differential Smoluchowski equations with random source term. In this paper we derive the general system of Smoluchowski type equations for the formation of H2 from two hydrogen atoms on the surface of interstellar dust grains with physisorption and chemisorption sites. We focus in this study on the spatial distribution, and numerically investigate the segregation in the case of a source with a continuous generation in time and randomly distributed in space. The stochastic particle method presented is based on a probabilistic interpretation of the underlying process as a stochastic Markov process of interacting particle system in discrete but randomly progressed time instances. The segregation is analyzed through the correlation analysis of the vector random field of concentrations which appears to be isotropic in space and stationary in time.

  20. Electromagnetic Reciprocity.

    SciTech Connect

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a