Sample records for electromagnetic force model

  1. Study on magnetic force of electromagnetic levitation circular knitting machine

    NASA Astrophysics Data System (ADS)

    Wu, X. G.; Zhang, C.; Xu, X. S.; Zhang, J. G.; Yan, N.; Zhang, G. Z.

    2018-06-01

    The structure of the driving coil and the electromagnetic force of the test prototype of electromagnetic-levitation (EL) circular knitting machine are studied. In this paper, the driving coil’s structure and working principle of the EL circular knitting machine are firstly introduced, then the mathematical modelling analysis of the driving electromagnetic force is carried out, and through the Ansoft Maxwell finite element simulation software the coil’s magnetic induction intensity and the needle’s electromagnetic force is simulated, finally an experimental platform is built to measure the coil’s magnetic induction intensity and the needle’s electromagnetic force. The results show that the theoretical analysis, the simulation analysis and the results of the test are very close, which proves the correctness of the proposed model.

  2. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    NASA Astrophysics Data System (ADS)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  3. Research on key factors and their interaction effects of electromagnetic force of high-speed solenoid valve.

    PubMed

    Liu, Peng; Fan, Liyun; Hayat, Qaisar; Xu, De; Ma, Xiuzhen; Song, Enzhe

    2014-01-01

    Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined.

  4. Research on Key Factors and Their Interaction Effects of Electromagnetic Force of High-Speed Solenoid Valve

    PubMed Central

    Fan, Liyun; Xu, De; Ma, Xiuzhen; Song, Enzhe

    2014-01-01

    Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined. PMID:25243217

  5. Modeling and characterization of an electromagnetic system for the estimation of Frequency Response Function of spindle

    NASA Astrophysics Data System (ADS)

    Tlalolini, David; Ritou, Mathieu; Rabréau, Clément; Le Loch, Sébastien; Furet, Benoit

    2018-05-01

    The paper presents an electromagnetic system that has been developed to measure the quasi-static and dynamic behavior of machine-tool spindle, at different spindle speeds. This system consists in four Pulse Width Modulation amplifiers and four electromagnets to produce magnetic forces of ± 190 N for the static mode and ± 80 N for the dynamic mode up to 5 kHz. In order to measure the Frequency Response Function (FRF) of spindle, the applied force is required, which is a key issue. A dynamic force model is proposed in order to obtain the load from the measured current in the amplifiers. The model depends on the exciting frequency and on the magnetic characteristics of the system. The predicted force at high speed is validated with a specific experiment and the performance limits of the experimental device are investigated. The FRF obtained with the electromagnetic system is compared to a classical tap test measurement.

  6. Particle Physics Primer: Explaining the Standard Model of Matter.

    ERIC Educational Resources Information Center

    Vondracek, Mark

    2002-01-01

    Describes the Standard Model, a basic model of the universe that describes electromagnetic force, weak nuclear force radioactivity, and the strong nuclear force responsible for holding particles within the nucleus together. (YDS)

  7. Sliding mode control of electromagnetic tethered satellite formation

    NASA Astrophysics Data System (ADS)

    Hallaj, Mohammad Amin Alandi; Assadian, Nima

    2016-08-01

    This paper investigates the control of tethered satellite formation actuated by electromagnetic dipoles and reaction wheels using the robust sliding mode control technique. Generating electromagnetic forces and moments by electric current coils provides an attractive control actuation alternative for tethered satellite system due to the advantages of no propellant consumption and no obligatory rotational motion. Based on a dumbbell model of tethered satellite in which the flexibility and mass of the tether is neglected, the equations of motion in Cartesian coordinate are derived. In this model, the J2 perturbation is taken into account. The far-field and mid-field models of electromagnetic forces and moments of two satellites on each other and the effect of the Earth's magnetic field are presented. A robust sliding mode controller is designed for precise trajectory tracking purposes and to deal with the electromagnetic force and moment uncertainties and external disturbances due to the Earth's gravitational and magnetic fields inaccuracy. Numerical simulation results are presented to validate the effectiveness of the developed controller and its superiority over the linear controller.

  8. Numerical simulation of hull curved plate forming by electromagnetic force assisted line heating

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Wang, Shun; Liu, Yujun; Li, Rui; Liu, xiao

    2017-11-01

    Line heating is a common method in shipyards for forming of hull curved plate. The aluminum alloy plate is widely used in shipbuilding. To solve the problem of thick aluminum alloy plate forming with complex curved surface, a new technology named electromagnetic force assisted line heating(EFALH) was proposed in this paper. The FEM model of EFALH was established and the effect of electromagnetic force assisted forming was verified by self development equipment. Firstly, the solving idea of numerical simulation for EFALH was illustrated. Then, the coupled numerical simulation model of multi physical fields were established. Lastly, the reliability of the numerical simulation model was verified by comparing the experimental data. This paper lays a foundation for solving the forming problems of thick aluminum alloy curved plate in shipbuilding.

  9. Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling

    PubMed Central

    Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro

    2016-01-01

    This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator. PMID:26978370

  10. Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling.

    PubMed

    Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro

    2016-03-11

    This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator.

  11. Performance of Flow and Heat Transfer in a Hot-Dip Round Coreless Galvanizing Bath

    NASA Astrophysics Data System (ADS)

    Yue, Qiang; Zhang, Chengbo; Xu, Yong; Zhou, Li; Kong, Hui; Wang, Jia

    2017-04-01

    Flow field in a coreless hot-dip galvanizing pot was investigated through a water modeling experiment. The corresponding velocity vector was measured using an acoustic Doppler velocimeter. The flow field of molten zinc in the bath was also analyzed. Steel strip velocities from 1.7 to 2.7 m/s were adopted to determine the effect of steel strip velocity on the molten zinc flow in the bath. A large vortex filled the space at the right side of the sink roll, under linear speed from 1.0 to 2.7 m/s and width from 1.0 to 1.3 m of the steel strip, because of the effects of wall and shear stress. The results of the water modeling experiment were compared with those of numerical simulations. In the simulation, Maxwell equations were solved using finite element method to obtain magnetic flux density, electromagnetic force, and Joule heating. The Joule heating rate reached the maximum and minimum values near the side wall and at the core of the bath, respectively, because of the effect of skin and proximity. In an industrial-sized model, the molten zinc flow and temperature fields driven by electromagnetic force and Joule heating in the inductor of a coreless galvanizing bath were numerically simulated. The results indicated that the direction of electromagnetic force concentrated at the center of the galvanizing pot horizontal planes and exerted a pinch effect on molten zinc. Consequently, molten zinc in the pot was stirred by electromagnetic force. Under molten zinc flow and electromagnetic force stirring, the temperature of the molten zinc became homogeneous throughout the bath. This study provides a basis for optimizing electromagnetic fields in coreless induction pot and fine-tuning the design of steel strip parameters.

  12. The Electromagnetic Force between Two Moving Charges

    ERIC Educational Resources Information Center

    Minkin, Leonid; Shapovalov, Alexander S.

    2018-01-01

    A simple model of parallel motion of two point charges and the subsequent analysis of the electromagnetic field transformation invariant quantity are considered. It is shown that ignoring the coupling of electric and magnetic fields, as is done in some introductory physics books, can lead to miscalculations of the force between moving charges.…

  13. Quantitative modeling of forces in electromagnetic tweezers

    NASA Astrophysics Data System (ADS)

    Bijamov, Alex; Shubitidze, Fridon; Oliver, Piercen M.; Vezenov, Dmitri V.

    2010-11-01

    This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that require parallel readout of biopolymer stretching or biomolecular binding. The magnetic tweezers exert forces on the surface-immobilized macromolecule by pulling a magnetic bead attached to the free end of the molecule in the direction of the field gradient. In a typical force spectroscopy experiment, the pulling forces can range between subpiconewton to tens of piconewtons. In order to effectively provide such forces, an understanding of the source of the magnetic field is required as the first step in the design of force spectroscopy systems. In this study, we use a numerical technique, the method of auxiliary sources, to investigate the influence of electromagnet geometry and material parameters of the magnetic core on the magnetic forces pulling the target beads in the area of interest. The close proximity of the area of interest to the magnet body results in deviations from intuitive relations between magnet size and pulling force, as well as in the force decay with distance. We discuss the benefits and drawbacks of various geometric modifications affecting the magnitude and spatial distribution of forces achievable with an electromagnet.

  14. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    NASA Astrophysics Data System (ADS)

    Xu, Da; Liu, Xuesong; Fang, Kun; Fang, Hongyuan

    2010-06-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  15. Modeling and analysis of a magnetically levitated synchronous permanent magnet planar motor

    NASA Astrophysics Data System (ADS)

    Kou, Baoquan; Zhang, Lu; Li, Liyi; Zhang, Hailin

    2012-04-01

    In this paper, a new magnetically levitated synchronous permanent magnet planar motor (MLSPMPM) driven by composite-current is proposed, of which the mover is made of a copper coil array and the stator are magnets and magnetic conductor. The coil pitch τt and permanent magnet pole pitch τp satisfy the following relationship 3nτt = (3n ± 1)τp. Firstly, an analytical model of the planar motor is established, flux density distribution of the two-dimensional magnet array is obtained by solving the equations of the scalar magnetic potential. Secondly, the expressions of the electromagnetic forces induced by magnetic field and composite current are derived. To verify the analytical model and the electromagnetic forces, finite element method (FEM) is used for calculating the flux density and electromagnetic forces of the MLSPMPM. And the results from FEM are in good agreement with the results from the analytical equations. This indicates that the analytical model is reasonable.

  16. An investigation into electromagnetic force models: differences in global and local effects demonstrated by selected problems

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Rickert, Wilhelm; Müller, Wolfgang H.

    2018-03-01

    This study investigates the implications of various electromagnetic force models in macroscopic situations. There is an ongoing academic discussion which model is "correct," i.e., generally applicable. Often, gedankenexperiments with light waves or photons are used in order to motivate certain models. In this work, three problems with bodies at the macroscopic scale are used for computing theoretical model-dependent predictions. Two aspects are considered, total forces between bodies and local deformations. By comparing with experimental data, insight is gained regarding the applicability of the models. First, the total force between two cylindrical magnets is computed. Then a spherical magnetostriction problem is considered to show different deformation predictions. As a third example focusing on local deformations, a droplet of silicone oil in castor oil is considered, placed in a homogeneous electric field. By using experimental data, some conclusions are drawn and further work is motivated.

  17. Rapid Charged Geosynchronous Debris Perturbation Modeling of Electrodynamic Disturbances

    NASA Astrophysics Data System (ADS)

    Hughes, Joseph; Schaub, Hanspeter

    2018-06-01

    Charged space objects experience small perturbative torques and forces from their interaction with Earth's magnetic field. These small perturbations can change the orbits of lightweight, uncontrolled debris objects dramatically even over short periods. This paper investigates the effects of the isolated Lorentz force, the effects of including or neglecting this and other electromagnetic perturbations in a full propagation, and then analyzes for which objects electromagnetic effects have the most impact. It is found that electromagnetic forces have a negligible impact on their own. However, if the center of charge is not collocated with the center of mass, electromagnetic torques are produced which do impact the attitude, and thus the position by affecting the direction and magnitude of the solar radiation pressure force. The objects for which electrostatic torques have the most influence are charged above the kilovolt level, have a difference between their center of mass and center of charge, have highly attitude-dependent cross-sectional area, and are not spinning stably about an axis of maximum inertia. Fully coupled numerical simulation illustrate the impact of electromagnetic disturbances through the solar radiation pressure coupling.

  18. Rapid Charged Geosynchronous Debris Perturbation Modeling of Electrodynamic Disturbances

    NASA Astrophysics Data System (ADS)

    Hughes, Joseph; Schaub, Hanspeter

    2018-04-01

    Charged space objects experience small perturbative torques and forces from their interaction with Earth's magnetic field. These small perturbations can change the orbits of lightweight, uncontrolled debris objects dramatically even over short periods. This paper investigates the effects of the isolated Lorentz force, the effects of including or neglecting this and other electromagnetic perturbations in a full propagation, and then analyzes for which objects electromagnetic effects have the most impact. It is found that electromagnetic forces have a negligible impact on their own. However, if the center of charge is not collocated with the center of mass, electromagnetic torques are produced which do impact the attitude, and thus the position by affecting the direction and magnitude of the solar radiation pressure force. The objects for which electrostatic torques have the most influence are charged above the kilovolt level, have a difference between their center of mass and center of charge, have highly attitude-dependent cross-sectional area, and are not spinning stably about an axis of maximum inertia. Fully coupled numerical simulation illustrate the impact of electromagnetic disturbances through the solar radiation pressure coupling.

  19. Dynamics of Permanent-Magnet Biased Active Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Fukata, Satoru; Yutani, Kazuyuki

    1996-01-01

    Active magnetic radial bearings are constructed with a combination of permanent magnets to provide bias forces and electromagnets to generate control forces for the reduction of cost and the operating energy consumption. Ring-shaped permanent magnets with axial magnetization are attached to a shaft and share their magnet stators with the electromagnets. The magnet cores are made of solid iron for simplicity. A simplified magnetic circuit of the combined magnet system is analyzed with linear circuit theory by approximating the characteristics of permanent magnets with a linear relation. A linearized dynamical model of the control force is presented with the first-order approximation of the effects of eddy currents. Frequency responses of the rotor motion to disturbance inputs and the motion for impulsive forces are tested in the non-rotating state. The frequency responses are compared with numerical results. The decay of rotor speed due to magnetic braking is examined. The experimental results and the presented linearized model are similar to those of the all-electromagnetic design.

  20. Search for the standard model Higgs boson in $$l\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dikai

    2013-01-01

    Humans have always attempted to understand the mystery of Nature, and more recently physicists have established theories to describe the observed phenomena. The most recent theory is a gauge quantum field theory framework, called Standard Model (SM), which proposes a model comprised of elementary matter particles and interaction particles which are fundamental force carriers in the most unified way. The Standard Model contains the internal symmetries of the unitary product group SU(3) c ⓍSU(2) L Ⓧ U(1) Y , describes the electromagnetic, weak and strong interactions; the model also describes how quarks interact with each other through all of thesemore » three interactions, how leptons interact with each other through electromagnetic and weak forces, and how force carriers mediate the fundamental interactions.« less

  1. Electromagnet Weight Reduction in a Magnetic Levitation System for Contactless Delivery Applications

    PubMed Central

    Hong, Do-Kwan; Woo, Byung-Chul; Koo, Dae-Hyun; Lee, Ki-Chang

    2010-01-01

    This paper presents an optimum design of a lightweight vehicle levitation electromagnet, which also provides a passive guide force in a magnetic levitation system for contactless delivery applications. The split alignment of C-shaped electromagnets about C-shaped rails has a bad effect on the lateral deviation force, therefore, no-split positioning of electromagnets is better for lateral performance. This is verified by simulations and experiments. This paper presents a statistically optimized design with a high number of the design variables to reduce the weight of the electromagnet under the constraint of normal force using response surface methodology (RSM) and the kriging interpolation method. 2D and 3D magnetostatic analysis of the electromagnet are performed using ANSYS. The most effective design variables are extracted by a Pareto chart. The most desirable set is determined and the influence of each design variable on the objective function can be obtained. The generalized reduced gradient (GRG) algorithm is adopted in the kriging model. This paper’s procedure is validated by a comparison between experimental and calculation results, which shows that the predicted performance of the electromagnet designed by RSM is in good agreement with the simulation results. PMID:22163572

  2. The turbulent recirculating flow field in a coreless induction furnace. A comparison of theoretical predictions with measurements

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation for the electromagnetic force field and the fluid flow field in a coreless induction furnace is presented. The fluid flow field was represented by writing the axisymmetric turbulent Navier-Stokes equation, containing the electromagnetic body force term. The electromagnetic body force field was calculated by using a technique of mutual inductances. The kappa-epsilon model was employed for evaluating the turbulent viscosity and the resultant differential equations were solved numerically. Theoretically predicted velocity fields are in reasonably good agreement with the experimental measurements reported by Hunt and Moore; furthermore, the agreement regarding the turbulent intensities are essentially quantitative. These results indicate that the kappa-epsilon model provides a good engineering representation of the turbulent recirculating flows occurring in induction furnaces. At this stage it is not clear whether the discrepancies between measurements and the predictions, which were not very great in any case, are attributable either to the model or to the measurement techniques employed.

  3. Numerical analysis of multicomponent responses of surface-hole transient electromagnetic method

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Xin; Hu, Xiang-Yun; Pan, He-Ping; Zhou, Feng

    2017-03-01

    We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver-Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.

  4. Dimensionless Analysis and Mathematical Modeling of Electromagnetic Levitation (EML) of Metals

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Shi, Zhe; Li, Donghui; Yang, Yindong; Zhang, Guifang; McLean, Alexander; Chattopadhyay, Kinnor

    2016-02-01

    Electromagnetic levitation (EML), a contactless metal melting method, can be used to produce ultra-pure metals and alloys. In the EML process, the levitation force exerted on the droplet is of paramount importance and is affected by many parameters. In this paper, the relationship between levitation force and parameters affecting the levitation process were investigated by dimensionless analysis. The general formula developed by dimensionless analysis was tested and evaluated by numerical modeling. This technique can be employed to design levitation systems for a variety of materials.

  5. Spacetimes dressed with stealth electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Smolić, Ivica

    2018-04-01

    Stealth field configurations by definition have a vanishing energy-momentum tensor, and thus do not contribute to the gravitational field equations. While only trivial fields can be stealth in Maxwell's electrodynamics, nontrivial stealth fields appear in some nonlinear models of electromagnetism. We find the necessary and sufficient conditions for the electromagnetic fields to be stealth and analyze which models admit such configurations. Furthermore, we present some concrete exact solutions, featuring a class of black holes dressed with the stealth electromagnetic hair, closely related to force-free solutions. Stealth hair does not alter the generalized Smarr formula, but may contribute to the Komar charges.

  6. TPX: Contractor preliminary design review. Volume 3, Design and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-30

    Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presentedmore » as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors.« less

  7. The electromagnetic force between two moving charges

    NASA Astrophysics Data System (ADS)

    Minkin, Leonid; Shapovalov, Alexander S.

    2018-05-01

    A simple model of parallel motion of two point charges and the subsequent analysis of the electromagnetic field transformation invariant quantity are considered. It is shown that ignoring the coupling of electric and magnetic fields, as is done in some introductory physics books, can lead to miscalculations of the force between moving charges. Conceptual and computational aspects of these issues are discussed, and implications to the design of electron beam devices are considered.

  8. ELECTROMAGNETICALLY INDUCED DISTORTION OF A FIBRIN MATRIX WITH EMBEDDED MICROPARTICLES

    PubMed Central

    SCOGIN, TYLER; YESUDASAN, SUMITH; WALKER, MITCHELL L. R.

    2018-01-01

    Blood clots occur in the human body when they are required to prevent bleeding. In pathological states such as diabetes and sickle cell disease, blood clots can also form undesirably due to hypercoagulable plasma conditions. With the continued effort in developing fibrin therapies for potential life-saving solutions, more mechanical modeling is needed to understand the properties of fibrin structures with inclusions. In this study, a fibrin matrix embedded with magnetic micro particles (MMPs) was subjected to a magnetic field to determine the magnitude of the required force to create plastic deformation within the fibrin clot. Using finite element (FE) analysis, we estimated the magnetic force from an electromagnet at a sample space located approximately 3 cm away from the coil center. This electromagnetic force coupled with gravity was applied on a fibrin mechanical system with MMPs to calculate the stresses and displacements. Using appropriate coil parameters, it was determined that application of a magnetic field of 730 A/m on the fibrin surface was necessary to achieve an electromagnetic force of 36 nN (to engender plastic deformation). PMID:29628543

  9. Formation of Twisted Elephant Trunks in the Rosette Nebula

    NASA Astrophysics Data System (ADS)

    Carlqvist, P.; Gahm, G. F.; Kristen, H.

    New observations show that dark elephant trunks in the Rosette nebula are often built up by thin filaments. In several of the trunks the filaments seem to form a twisted pattern. This pattern is hard to reconcile with current theory. We propose a new model for the formation of twisted elephant trunks in which electromagnetic forces play an important role. The model considers the behaviour of a twisted magnetic filament in a molecular cloud, where a cluster of hot stars has been recently born. As a result of stellar winds, and radiation pressure, electromagnetic forces, and inertia forces part of the filament can develop into a double helix pointing towards the stars. The double helix represents the twisted elephant trunk. A simple analogy experiment visualizes and supports the trunk model.

  10. Tethered satellite system control using electromagnetic forces and reaction wheels

    NASA Astrophysics Data System (ADS)

    Alandi Hallaj, Mohammad Amin; Assadian, Nima

    2015-12-01

    In this paper a novel non-rotating space tethered configuration is introduced which its relative positions controlled using electromagnetic forces. The attitude dynamics is controlled by three reaction wheels in the body axes. The nonlinear coupled orbital dynamics of a dumbbell tethered satellite formation flight are derived through a constrained Lagrangian approach. These equations are presented in the leader satellite orbital frame. The tether is assumed to be mass-less and straight, and the J2 perturbation is included to the analysis. The forces and the moments of the electromagnetic coils are modeled based on the far-filed model of the magnetic dipoles. A guidance scheme for generating the desired positions as a function of time in Cartesian form is presented. The satellite tethered formation with variable length is controlled utilizing a linear controller. This approach is applied to a specified scenario and it is shown that the nonlinear guidance method and the linear controller can control the nonlinear system of the tethered formation and the results are compared with optimal control approach.

  11. Harmonic Fluxes and Electromagnetic Forces of Concentric Winding Brushless Permanent Magnet Motor

    NASA Astrophysics Data System (ADS)

    Ishibashi, Fuminori; Takemasa, Ryo; Matsushita, Makoto; Nishizawa, Takashi; Noda, Shinichi

    Brushless permanent magnet motors have been widely used in home applications and industrial fields. These days, high efficiency and low noise motors are demanded from the view point of environment. Electromagnetic noise and iron loss of the motor are produced by the harmonic fluxes and electromagnetic forces. However, order and space pattern of these have not been discussed in detail. In this paper, fluxes, electromagnetic forces and magneto-motive forces of brushless permanent magnet motors with concentric winding were analyzed analytically, experimentally and numerically. Time harmonic fluxes and time electromagnetic forces in the air gap were measured by search coils on the inner surface of the stator teeth and analyzed by FEM. Space pattern of time harmonic fluxes and time electromagnetic forces were worked out with experiments and FEM. Magneto motive forces due to concentric winding were analyzed with equations and checked by FEM.

  12. Covariant electromagnetic field lines

    NASA Astrophysics Data System (ADS)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  13. A novel model of interaction between high frequency electromagnetic non-ionizing fields and microtubules viewed as coupled two-degrees of freedom harmonic oscillators.

    PubMed

    Caligiuri, Luigi Maxmilian

    2015-01-01

    The question regarding the potential biological and adverse health effects of non-ionizing electromagnetic fields on living organisms is of primary importance in biophysics and medicine. Despite the several experimental evidences showing such occurrence in a wide frequency range from extremely low frequency to microwaves, a definitive theoretical model able to explain a possible mechanism of interaction between electromagnetic fields and living matter, especially in the case of weak and very weak intensities, is still missing. In this paper it has been suggested a possible mechanism of interaction involving the resonant absorption of electromagnetic radiation by microtubules. To this aim these have been modeled as non-dissipative forced harmonic oscillators characterized by two coupled "macroscopic" degrees of freedom, respectively describing longitudinal and transversal vibrations induced by the electromagnetic field. We have shown that the proposed model, although at a preliminary stage, is able to explain the ability of even weak electromagnetic radiating electromagnetic fields to transfer high quantities of energy to living systems by means of a resonant mechanism, so capable to easily damage microtubules structure.

  14. The connection characteristics of flux pinned docking interface

    NASA Astrophysics Data System (ADS)

    Zhang, Mingliang; Han, Yanjun; Guo, Xing; Zhao, Cunbao; Deng, Feiyue

    2017-03-01

    This paper presents the mechanism and potential advantages of flux pinned docking interface mainly composed of a high temperature superconductor and an electromagnet. In order to readily assess the connection characteristics of flux pinned docking interface, the force between a high temperature superconductor and an electromagnet needs to be investigated. Based on the magnetic dipole method and the Ampere law method, the force between two current coils can be compared, which shows that the Ampere law method has the higher calculated accuracy. Based on the improved frozen image model and the Ampere law method, the force between high temperature superconductor bulk and permanent magnet can be calculated, which is validated experimentally. Moreover, the force between high temperature superconductor and electromagnet applied to flux pinned docking interface is able to be predicted and analyzed. The connection stiffness between high temperature superconductor and permanent magnet can be calculated based on the improved frozen image model and Hooke's law. The relationship between the connection stiffness and field cooling height is analyzed. Furthermore, the connection stiffness of the flux pinned docking interface is predicted and optimized, and its effective working range is defined and analyzed in case of some different parameters.

  15. Design of permanent magnet eddy current brake for a small scaled electromagnetic launch model

    NASA Astrophysics Data System (ADS)

    Zhou, Shigui; Yu, Haitao; Hu, Minqiang; Huang, Lei

    2012-04-01

    A variable pole-pitch double-sided permanent magnet (PM) linear eddy current brake (LECB) is proposed for a small scaled electromagnetic launch model. A two-dimensional (2D) analytical steady state model is presented for the double-sided PM-LECB, and the expression for the braking force is derived. Based on the analytical model, the material and eddy current skin effect of the conducting plate are analyzed. Moreover, a variable pole-pitch double-sided PM-LECB is proposed for the effective braking of the moving plate. In addition, the braking force is predicted by finite element (FE) analysis, and the simulated results are in good agreement with the analytical model. Finally, a prototype is presented to test the braking profile for validation of the proposed design.

  16. Numerical simulation for the magnetic force distribution in electromagnetic forming of small size flat sheet

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowei; Wang, Wenping; Wan, Min

    2013-12-01

    It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.

  17. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons

    PubMed Central

    Smith, Ray T.; Jjunju, Fred P. M.; Young, Iain S.; Taylor, Stephen

    2016-01-01

    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting’s theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond. PMID:27493580

  18. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons.

    PubMed

    Smith, Ray T; Jjunju, Fred P M; Young, Iain S; Taylor, Stephen; Maher, Simon

    2016-07-01

    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting's theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond.

  19. Enrichment of magnetic particles using temperature and magnetic field gradients induced by benchtop fabricated micro-electromagnets.

    PubMed

    Hosseini, A; Philpott, D N; Soleymani, L

    2017-11-21

    The active transport of analytes inside biosensing systems is important for reducing the response time and enhancing the limit-of-detection of these systems. Due to the ease of functionalization with bio-recognition agents and manipulation with magnetic fields, magnetic particles are widely used for active and directed transport of biological analytes. On-chip active electromagnets are ideally suited for manipulating magnetic particles in an automated and miniaturized fashion inside biosensing systems. Unfortunately, the magnetic force exerted by these devices decays rapidly as we move away from the device edges, and increasing the generated force to the levels necessary for particle manipulation requires a parallel increase in the applied current and the resultant Joule heating. In this paper, we designed a study to understand the combined role of thermal and magnetic forces on the movement of magnetic particles in order to extend the interaction distance of on-chip magnetic devices beyond the device edges. For this purpose, we used a rapid prototyping method to create an active/passive on-chip electromagnet with a micro/nano-structured active layer and a patterned ferromagnetic passive layer. We demonstrated that the measured terminal velocities of particles positioned near the electromagnet edge (∼5.5 μm) closely reflect the values obtained by multi-physics modelling. Interestingly, we observed a two orders of magnitude deviation between the experimental and modelling results for the terminal velocities of particles far from the electromagnet edge (∼55.5 μm). Heat modelling of the system using experimentally-measured thermal gradients indicates that this discrepancy is related to the enhanced fluid movement caused by thermal forces. This study enables the rational design of thermo-magnetic systems for thermally driving and magnetically capturing particles that are positioned at distances tens to hundreds of microns away from the edges of on-chip magnetic devices.

  20. Active magnetic bearings used as exciters for rolling element bearing outer race defect diagnosis.

    PubMed

    Xu, Yuanping; Di, Long; Zhou, Jin; Jin, Chaowu; Guo, Qintao

    2016-03-01

    The active health monitoring of rotordynamic systems in the presence of bearing outer race defect is considered in this paper. The shaft is assumed to be supported by conventional mechanical bearings and an active magnetic bearing (AMB) is used in the mid of the shaft location as an exciter to apply electromagnetic force to the system. We investigate a nonlinear bearing-pedestal system model with the outer race defect under the electromagnetic force. The nonlinear differential equations are integrated using the fourth-order Runge-Kutta algorithm. The simulation and experimental results show that the characteristic signal of outer race incipient defect is significantly amplified under the electromagnetic force through the AMBs, which is helpful to improve the diagnosis accuracy of rolling element bearing׳s incipient outer race defect. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Electricity and Magnetism

    NASA Astrophysics Data System (ADS)

    Glazebrook, R. T.

    2016-10-01

    1. Electrostatics: fundamental facts; 2. Electricity as a measurable quantity; 3. Measurement of electric force and potential; 4. Condensers; 5. Electrical machines; 6. Measurement of potential and electric force; 7. Magnetic attraction and repulsion; 8. Laws of magnetic force; 9. Experiments with magnets; 10. Magnetic calculations; 11. Magnetic measurements; 12. Terrestrial magnetism; 13. The electric current; 14. Relation between electromagnetic force and current; 15. Measurement of current; 16. Measurement of resistance and electromotive force; 17. Measurement of quantity of electricity, condensers; 18. Thermal activity of a current; 19. The voltaic cell (theory); 20. Electromagnetism; 21. Magnetisation of iron; 22. Electromagnetic instruments; 23. Electromagnetic induction; 24. Applications of electromagnetic induction; 25. Telegraphy and telephony; 26. Electric waves; 27. Transference of electricity through gases: corpuscles and electrons; Answers to examples; Index.

  2. Research on Electromagnetic Force Distribution and Vibration Performance of A Novel 10/4 Switched Reluctance Motor

    NASA Astrophysics Data System (ADS)

    Fu, Ziyu; Wang, Xinyu; Cao, Cheng; Liu, Meng; Wang, Kangxi

    2017-06-01

    Radial electromagnetic force is one of the main reasons causing the vibration and noise of the switched reluctance motor. Based on this, the novel structure of 10/4 pole switched reluctance motor is proposed, which increases the air gap flux and electromagnetic torque by increasing the number of stator poles. In addition, the excitation current of the stator winding is reduced by early turn-off angle. Through the finite element modelling analysis, the results show the superiority of the new type of switched reluctance motor. In the end, the vibration characteristics of the conventional motor and the new motor are compared and analysed, and the effect of the structure of this new type of switched reluctance motor is verified.

  3. Gauge Bosons--The Ties That Bind.

    ERIC Educational Resources Information Center

    Hill, Christopher T.

    1982-01-01

    Discusses four basic forces/interactions in nature (strong force, weak force, electromagnetic force and gravity), associated with elementary particles. Focuses on "gauge bosons" (for example, photons), thought to account for strong, weak, and electromagnetic forces. (Author/JN)

  4. Simplified Relativistic Force Transformation Equation.

    ERIC Educational Resources Information Center

    Stewart, Benjamin U.

    1979-01-01

    A simplified relativistic force transformation equation is derived and then used to obtain the equation for the electromagnetic forces on a charged particle, calculate the electromagnetic fields due to a point charge with constant velocity, transform electromagnetic fields in general, derive the Biot-Savart law, and relate it to Coulomb's law.…

  5. Limits on new forces coexisting with electromagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kloor, H.; Fischbach, E.; Talmadge, C.

    1994-02-15

    We consider the limits arising from different electromagnetic systems on the existence of a possible new electromagnetic analogue of the fifth force. Although such a force may have no intrinsic connection to electromagnetism (or gravity), its effects could be manifested through various anomalies in electromagnetic systems, for appropriate values of the coupling strength and range. Our work generalizes that of Bartlett and Loegl (who considered the case of a massive vector field coexisting with massless electrodynamics) to encompass a broad class of phenomenological interactions mediated by both scalar and vector exchanges. By combining data from both gravitational and electromagnetic systems,more » one can eventually set limits on a new force whose range [lambda] extends from the subatomic scale ([lambda][approx]10[sup [minus]15] m) to the astrophysical scale ([lambda][approx]10[sup 12] m).« less

  6. An investigation into force-moment calibration techniques applicable to a magnetic suspension and balance system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Eskins, Jonathan

    1988-01-01

    The problem of determining the forces and moments acting on a wind tunnel model suspended in a Magnetic Suspension and Balance System is addressed. Two calibration methods were investigated for three types of model cores, i.e., Alnico, Samarium-Cobalt, and a superconducting solenoid. Both methods involve calibrating the currents in the electromagnetic array against known forces and moments. The first is a static calibration method using calibration weights and a system of pulleys. The other method, dynamic calibration, involves oscillating the model and using its inertia to provide calibration forces and moments. Static calibration data, found to produce the most reliable results, is presented for three degrees of freedom at 0, 15, and -10 deg angle of attack. Theoretical calculations are hampered by the inability to represent iron-cored electromagnets. Dynamic calibrations, despite being quicker and easier to perform, are not as accurate as static calibrations. Data for dynamic calibrations at 0 and 15 deg is compared with the relevant static data acquired. Distortion of oscillation traces is cited as a major source of error in dynamic calibrations.

  7. A Linear Electromagnetic Piston Pump

    NASA Astrophysics Data System (ADS)

    Hogan, Paul H.

    Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.

  8. Casimir effect for perfect electromagnetic conductors (PEMCs): a sum rule for attractive/repulsive forces

    NASA Astrophysics Data System (ADS)

    Rode, Stefan; Bennett, Robert; Yoshi Buhmann, Stefan

    2018-04-01

    We discuss the Casimir effect for boundary conditions involving perfect electromagnetic conductors, which interpolate between perfect electric conductors and perfect magnetic conductors. Based on the corresponding reciprocal Green’s tensor we construct the Green’s tensor for two perfectly reflecting plates with magnetoelectric coupling (non-reciprocal media) within the framework of macroscopic quantum electrodynamics. We calculate the Casimir force between two arbitrary perfect electromagnetic conductor plates, resulting in a universal analytic expression that connects the attractive Casimir force with the repulsive Boyer force. We relate the results to a duality symmetry of electromagnetism.

  9. Vibration and shape control of hinged light structures using electromagnetic forces

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuji; Miyachi, Shigenobu; Sasaki, Toshiyuki

    2003-08-01

    This paper describes a new electromagnetic device for vibration control of a light-weighted deployable/retractable structure which consists of many small units connected with mechanical hinges. A typical example of such a structure is a solar cell paddle of an artificial satellite which is composed of many thin flexible blankets connected in series. Vibration and shape control of the paddle is not easy, because control force and energy do not transmit well between the blankets which are discretely connected by hinges with each other. The new device consists of a permanent magnet glued along an edge of a blanket and an electric current-conducting coil glued along an adjoining edge of another adjacent blanket. Conduction of the electric current in a magnetic field from the magnet generates an electromagnetic force on the coil. By changing the current in the coil, therefore, we may control the vibration and shape of the blankets. To confirm the effectiveness of the new device, constructing a simple paddle model consisting eight hinge- panels, we have carried out a model experiment of vibration and shape control of the paddle. In addition, a numerical simulation of vibration control of the hinge structure is performed to compare with measured data.

  10. Dependence of the Radiation Pressure on the Background Refractive Index

    NASA Astrophysics Data System (ADS)

    Webb, Kevin J.

    2013-07-01

    The 1978 experiments by Jones and Leslie showing that the radiation pressure on a mirror depends on the background medium refractive index have yet to be adequately explained using a force model and have provided a leading challenge to the Abraham form of the electromagnetic momentum. Those experimental results are predicted for the first time using a force representation that incorporates the Abraham momentum by utilizing the power calibration method employed in the Jones and Leslie experiments. With an extension of the same procedure, the polarization and angle independence of the experimental data are also explained by this model. Prospects are good for this general form of the electromagnetic force density to be effective in predicting other experiments with macroscopic materials. Furthermore, the rigorous representation of material dispersion makes the representation important for metamaterials that operate in the vicinity of homogenized material resonances.

  11. Numerical modelling of electromagnetic loads on fusion device structures

    NASA Astrophysics Data System (ADS)

    Bettini, Paolo; Furno Palumbo, Maurizio; Specogna, Ruben

    2014-03-01

    In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine.

  12. Electrons in strong electromagnetic fields: spin effects and radiation reaction (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Wen, Meng; Keitel, Christoph H.

    2017-05-01

    Various different classical models of electrons including their spin degree of freedom are commonly applied to describe the coupled dynamics of relativistic electron motion and spin precession in strong electromagnetic fields. The spin dynamics is usually governed by the Thomas-Bargmann-Michel-Telegdi equation [1, 2] in these models, while the electron's orbital motion follows the (modified) Lorentz force and a spin-dependent Stern-Gerlach force. Various classical models can lead to different or even contradicting predictions how the spin degree of freedom modifies the electron's orbital motion when the electron moves in strong electromagnetic fields. This discrepancy is rooted in the model-specific energy dependency of the spin induced relativistic Stern-Gerlach force acting on the electron. The Frenkel model [3, 4] and the classical Foldy-Wouthuysen model 5 are compared exemplarily against each other and against the quantum mechanical Dirac equation in order to identify parameter regimes where these classical models make different predictions [6, 7]. Our theoretical results allow for experimental tests of these models. In the setup of the longitudinal Stern-Gerlach effect, the Frenkel model and classical Foldy-Wouthuysen model lead in the relativistic limit to qualitatively different spin effects on the electron trajectory. Furthermore, it is demonstrated that in tightly focused beams in the near infrared the effect of the Stern-Gerlach force of the Frenkel model becomes sufficiently large to be potentially detectable in an experiment. Among the classical spin models, the Frenkel model is certainly prominent for its long history and its wide application. Our results, however, suggest that the classical Foldy-Wouthuysen model is superior as it is qualitatively in better agreement with the quantum mechanical Dirac equation. In ultra strong laser setups at parameter regimes where effects of the Stern-Gerlach force become relevant also radiation reaction effects are expected to set in. We incorporate radiation reaction classically via the Landau-Lifshitz equation and demonstrate that although radiation reaction effects can have a significant effect on the electron trajectory, the Frenkel model and the classical Foldy-Wouthuysen model remain distinguishable also if radiation reaction effects are taken into account. Our calculations are also suitable to verify the Landau-Lifshitz equation for the radiation reaction of electrons and other spin one-half particles. 1. Thomas, L. H., "I. The kinematics of an electron with an axis," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 3(13), 1-22 (1927). 2. Bargmann, V., Michel, L., and Telegdi, V. L., "Precession of the polarization of particles moving in a homogeneous electromagnetic field," Phys. Rev. Lett. 2(10), 435-436 (1959). 3. Frenkel, J., "Die Elektrodynamik des rotierenden Elektrons," Z. Phys. 37(4-5), 243-262 (1926). 4. Frenkel, J., "Spinning electrons," Nature (London) 117(2949), 653-654 (1926). 5. Silenko, A. J., "Foldy-Wouthyusen transformation and semiclassical limit for relativistic particles in strong external fields," Phys. Rev. A 77(1), 012116 (2008). 6. Wen, M., Bauke, H., and Keitel, C. H., "Identifying the Stern-Gerlach force of classical electron dynamics," Sci. Rep. 6, 31624 (2016). 7. Wen, M., Keitel, C. H., and Bauke, H., "Spin one-half particles in strong electromagnetic fields: spin effects and radiation reaction," arXiv:1610.08951 (2016).

  13. Design considerations of electromagnetic force in a direct drive permanent magnet brushless motor

    NASA Astrophysics Data System (ADS)

    Chen, H. S.; Tsai, M. C.

    2008-04-01

    In this paper, a numerical study of electromagnetic force associated with the width of stator teeth, width of rotor back iron, and slot opening for a ten-pole nine-slot direct drive permanent magnet brushless motor is presented. The study calculates the amplitude of the electromagnetic force on the rotating rotor by using the finite-element method. The results show that the amplitude of electromagnetic force, which may cause the noise and vibration of motors, changes with the variation of these above mentioned three factors. The relationship between the considerations of output torque and the minimization of noise and vibration is also established in this paper.

  14. Nonlinear oscillation of a rigid body over high- Tc superconductors supported by electro-magnetic forces

    NASA Astrophysics Data System (ADS)

    Sugiura, T.; Ogawa, S.; Ura, H.

    2005-10-01

    Characteristics of high- Tc superconducting levitation systems are no contact support and stable levitation without control. They can be applied to supporting mechanisms in machines, such as linear-drives and magnetically levitated trains. But small damping due to noncontact support and nonlinearity in the magnetic force can easily cause complicated phenomena of nonlinear dynamics. This research deals with nonlinear oscillation of a rigid bar supported at its both ends by electro-magnetic forces between superconductors and permanent magnets as a simple modeling of the above application. Deriving the equation of motion, we discussed an effect of nonlinearity in the magnetic force on dynamics of the levitated body: occurrence of combination resonance in the asymmetrical system. Numerical analyses and experiments were also carried out, and their results confirmed the above theoretical prediction.

  15. Revisiting the Balazs thought experiment in the case of a left-handed material: electromagnetic-pulse-induced displacement of a dispersive, dissipative negative-index slab.

    PubMed

    Chau, Kenneth J; Lezec, Henri J

    2012-04-23

    We propose a set of postulates to describe the mechanical interaction between a plane-wave electromagnetic pulse and a dispersive, dissipative slab having a refractive index of arbitrary sign. The postulates include the Abraham electromagnetic momentum density, a generalized Lorentz force law, and a model for absorption-driven mass transfer from the pulse to the medium. These opto-mechanical mechanisms are incorporated into a one-dimensional finite-difference time-domain algorithm that solves Maxwell's equations and calculates the instantaneous force densities exerted by the pulse onto the slab, the momentum-per-unit-area of the pulse and slab, and the trajectories of the slab and system center-of-mass. We show that the postulates are consistent with conservation of global energy, momentum, and center-of-mass velocity at all times, even for cases in which the refractive index of the slab is negative or zero. Consistency between the set of postulates and well-established conservation laws reinforces the Abraham momentum density as the one true electromagnetic momentum density and enables, for the first time, identification of the correct form of the electromagnetic mass density distribution and development of an explicit model for mass transfer due to absorption, for the most general case of a ponderable medium that is both dispersive and dissipative. © 2012 Optical Society of America

  16. Study of a Single-Power Two-Circuit ESR Process with Current-Carrying Mold: Mathematical Simulation of the Process and Experimental Verification

    NASA Astrophysics Data System (ADS)

    Dong, Yanwu; Hou, Zhiwen; Jiang, Zhouhua; Cao, Haibo; Feng, Qianlong; Cao, Yulong

    2018-02-01

    A novel single-power two-circuit ESR process (ESR-STCCM) with current-carrying mold has been investigated via numerical simulation and experimental research in this paper. A 2D quasi-steady-state mathematical model is developed to describe ESR-STCCM. The electromagnetic field, flow field, slag pool temperature distribution, and the shape of a molten steel pool in ESR-STCCM have been investigated by FLUENT software as well as user-defined functions (UDF). The results indicate that ESR-STCCM is different from the conventional ESR process. The maximum electromagnetic force, current density, Joule heat, and slag pool flow velocity are located in the lower part of the conductor in the ESR-STCCM process. The direction of the maximum electromagnetic force inclines upward. There are two distinct vortices in the slag pool. The larger swirl rotates counterclockwise near the conductor, with a value of 0.0263 m s-1 due to the interaction of the electromagnetic force and gravity. The maximum temperature of the slag pool is 2070 K (1797 °C) and is located in the center of the swirl with a filling ratio of 0.6 and a 20 mm electrode immersion depth. The depth of a molten steel pool is shallower, which is conducive to improving solidification quality. In addition, the filling ratio of 0.6 is conducive to controlling steel solidification quality. Some experiments have been done, and the numerical model is confirmed by experimental results.

  17. Intense electromagnetic outbursts from collapsing hypermassive neutron stars

    NASA Astrophysics Data System (ADS)

    Lehner, Luis; Palenzuela, Carlos; Liebling, Steven L.; Thompson, Christopher; Hanna, Chad

    2012-11-01

    We study the gravitational collapse of a magnetized neutron star using a novel numerical approach able to capture both the dynamics of the star and the behavior of the surrounding plasma. In this approach, a fully general relativistic magnetohydrodynamics implementation models the collapse of the star and provides appropriate boundary conditions to a force-free model which describes the stellar exterior. We validate this strategy by comparing with known results for the rotating monopole and aligned rotator solutions and then apply it to study both rotating and nonrotating stellar collapse scenarios and contrast the behavior with what is obtained when employing the electrovacuum approximation outside the star. The nonrotating electrovacuum collapse is shown to agree qualitatively with a Newtonian model of the electromagnetic field outside a collapsing star. We illustrate and discuss a fundamental difference between the force-free and electrovacuum solutions, involving the appearance of large zones of electric-dominated field in the vacuum case. This provides a clear demonstration of how dissipative singularities appear generically in the nonlinear time evolution of force-free fluids. In both the rotating and nonrotating cases, our simulations indicate that the collapse induces a strong electromagnetic transient, which leaves behind an uncharged, unmagnetized Kerr black hole. In the case of submillisecond rotation, the magnetic field experiences strong winding, and the transient carries much more energy. This result has important implications for models of gamma-ray bursts. Even when the neutron star is surrounded by an accretion torus (as in binary merger and collapsar scenarios), a magnetosphere may emerge through a dynamo process operating in a surface shear layer. When this rapidly rotating magnetar collapses to a black hole, the electromagnetic energy released can compete with the later output in a Blandford-Znajek jet. Much less electromagnetic energy is released by a massive magnetar that is (initially) gravitationally stable: its rotational energy is dissipated mainly by internal torques. A distinct plasmoid structure is seen in our nonrotating simulations, which will generate a radio transient with subluminal expansion and greater synchrotron efficiency than is expected in shock models. Closely related phenomena appear to be at work in the giant flares of Galactic magnetars.

  18. Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Fuqiang; Hayat, Tasawar; Zhou, Ping; Tang, Jun

    2017-11-01

    Continuous wave emitting from sinus node of the heart plays an important role in wave propagating among cardiac tissue, while the heart beating can be terminated when the target wave is broken into turbulent states by electromagnetic radiation. In this investigation, local periodical forcing is applied on the media to induce continuous target wave in the improved cardiac model, which the effect of electromagnetic induction is considered by using magnetic flux, then external electromagnetic radiation is imposed on the media. It is found that target wave propagation can be blocked to stand in a local area and the excitability of media is suppressed to approach quiescent but homogeneous state when electromagnetic radiation is imposed on the media. The sampled time series for membrane potentials decrease to quiescent state due to the electromagnetic radiation. It could accounts for the mechanism of abnormality in heart failure exposed to continuous electromagnetic field.

  19. Efficient Model Posing and Morphing Software

    DTIC Science & Technology

    2014-04-01

    disclosure of contents or reconstruction of this document. Air Force Research Laboratory 711th Human Performance Wing Human ...Command, Air Force Research Laboratory 711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, Radio Frequency...13. SUPPLEMENTARY NOTES 14. ABSTRACT The absorption of electromagnetic energy within human tissue depends upon anatomical posture and body

  20. Magnetodynamic stability of a fluid cylinder under the Lundquist force-free magnetic field

    NASA Astrophysics Data System (ADS)

    Radwan, Ahmed E.; Halawa, Mohamed A.

    1990-04-01

    The magnetodynamic (in)stability of a conducting fluid cylinder subject to the capillarity and electromagnetic forces has been developed. The cylinder is pervaded by a uniform magnetic field but embedded in the Lundquist force-free varying field that allows for flowing a current surrounding the fluid. A general eigenvalue relation is derived based on a study of the equilibrium and perturbed states. The stability criterion is discussed analytically in general terms. The surface tension is destabilizing for small axisymmetric mode and stable for all others. The principle of the exchange of stability is allowed for the present problem due to the non-uniform behavior of the force-free field. Each of the axial and transverse force-free fields separately exerts a stabilizing influence in the most dangerous mode but the combined contribution of them is strongly destabilizing. Whether the model is acted upon the electromagnetic force (with the Lundquist field) the stability restrictions or/and the capillarity force are identified. Several reported works can be recovered as limiting cases with appropriate simplifications.

  1. {P}{T}-symmetric interpretation of the electromagnetic self-force

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.; Gianfreda, Mariagiovanna

    2015-08-01

    In 1980 Englert examined the classic problem of the electromagnetic self-force on an oscillating charged particle. His approach, which was based on an earlier idea of Bateman, was to introduce a time-reversed (charge-conjugate) particle and to show that the two-particle system is Hamiltonian. Unfortunately, Englert’s model did not solve the problem of runaway modes, and the corresponding quantum theory had ghost states. It is shown here that Englert’s Hamiltonian is {P}{T} symmetric, and that the problems with his model arise because the {P}{T} symmetry is broken at both the classical and the quantum level. However, by allowing the charged particles to interact and by adjusting the coupling parameters to put the model into an unbroken {P}{T}-symmetric region, one eliminates the classical nonrelativistic runaway modes and obtains a corresponding nonrelativistic quantum system that is in equilibrium and ghost free.

  2. The calculation of transport phenomena in electromagnetically levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation has been developed for the electromagnetic force field, fluid flow field, and solute concentration field of levitation-melted metal specimens. The governing equations consist of the conventional transport equations combined with the appropriate expressions for the electromagnetic force field. The predictions obtained by solving the governing equations numerically on a digital computer are in good agreement with lifting force and average temperature measurements reported in the literature.

  3. Casimir forces on a bi-anisotropic absorbing magneto-dielectric slab between two parallel conducting plates

    NASA Astrophysics Data System (ADS)

    Amooshahi, Majid; Shoughi, Ali

    2018-05-01

    A fully canonical quantization of electromagnetic field in the presence of a bi-anisotropic absorbing magneto-dielectric slab is demonstrated. The electric and the magnetic polarization densities of the magneto-dielectric slab are defined in terms of the dynamical variables modeling the slab and the coupling tensors that couple the electromagnetic field to the slab. The four susceptibility tensors of the bi-anisotropic magneto-dielectric slab are expressed in terms of the coupling tensors that couple an electromagnetic field to the slab. It is shown that the four susceptibility tensors of the bi-anisotropic magneto-dielectric slab satisfy Kramers-Kronig relations. The Maxwell’s equations are exactly solved in the presence of the bi-anisotropic magneto-dielectric slab. The tangential and the normal components of the Casimir forces exerted on the bi-anisotropic magnet-dielectric slab exactly are calculated in the vacuum state and thermal state of the total system. It is shown that the tangential components of the Casimir forces vanish when the bi-anisotropic slab is converted to an isotropic slab.

  4. The Strong Nuclear Force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Scientists are aware of four fundamental forces- gravity, electromagnetism, and the strong and weak nuclear forces. Most people have at least some familiarity with gravity and electromagnetism, but not the other two. How is it that scientists are so certain that two additional forces exist? In this video, Fermilab’s Dr. Don Lincoln explains why scientists are so certain that the strong force exists.

  5. The Strong Nuclear Force

    ScienceCinema

    Lincoln, Don

    2018-01-16

    Scientists are aware of four fundamental forces- gravity, electromagnetism, and the strong and weak nuclear forces. Most people have at least some familiarity with gravity and electromagnetism, but not the other two. How is it that scientists are so certain that two additional forces exist? In this video, Fermilab’s Dr. Don Lincoln explains why scientists are so certain that the strong force exists.

  6. Development of Device to Evoke Stretch Reflexes by Use of Electromagnetic Force for the Rehabilitation of the Hemiplegic Upper Limb after Stroke

    NASA Astrophysics Data System (ADS)

    Hayashi, Ryota; Ishimine, Tomoyasu; Kawahira, Kazumi; Yu, Yong; Tsujio, Showzow

    In this research, we focus on the method of rehabilitation with stretch reflexes for the hemiplegic upper limb in stroke patients. We propose a new device which utilizes electromagnetic force to evoke stretch reflexes. The device can exert an assisting force safely, because the electromagnetic force is non contact force. In this paper, we develop a support system applying the proposed device for the functional recovery training of the hemiplegic upper limb. The results obtained from several clinical tests with and without our support system are compared. Then we discuss the validity of our support system.

  7. International Symposium on Electromagnetic Compatibility, 25th, Arlington, VA, August 23-25, 1983, Symposium Record

    NASA Astrophysics Data System (ADS)

    Subjects related to electromagnetic compatibility (EMC) analysis are discussed, taking into account forcing terms of line equations for externally excited transmission lines, E-fields over ground, electromagnetic near fields as a function of electrical size, a program for experimental verification of EMC analysis models, random susceptability of an IC 7400 TTL NAND gate, and a comparison of IEMCAP and SEMCAP. Other topics explored are concerned with EMC measurements, spectrum management, the electromagnetic pulse (EMP), a Navy EMC program, measurement systems, filters, EMC design, electromagnetic vulnerability (EMV) assessment of weapon systems, FCC rules and regulations, shielding, and electromagnetic interference (EMI) in communication systems. Attention is also given to nonsinusoidal functions in radar and communications, transients/electrostatic discharge, open field testing, cables and connectors, interference effects of induced and conducted earth current at dc and ELF, test cells, and cable coupling.

  8. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.

    1992-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.

  9. Electromagnetic Induction E-Sensor for Underwater UXO Detection

    DTIC Science & Technology

    2011-12-01

    EMF Electromotive force FET Field Effect Transitor Hz Hertz ms millisecond nV nanoVolt QFS QUASAR Federal...processing. Statistical discrimination techniques based on model analysis, such as the Time-Domain Three Dipole (TD3D) model, can separate UXO-like objects

  10. Laser-driven deflection arrangements and methods involving charged particle beams

    DOEpatents

    Plettner, Tomas [San Ramon, CA; Byer, Robert L [Stanford, CA

    2011-08-09

    Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.

  11. An accurate real-time model of maglev planar motor based on compound Simpson numerical integration

    NASA Astrophysics Data System (ADS)

    Kou, Baoquan; Xing, Feng; Zhang, Lu; Zhou, Yiheng; Liu, Jiaqi

    2017-05-01

    To realize the high-speed and precise control of the maglev planar motor, a more accurate real-time electromagnetic model, which considers the influence of the coil corners, is proposed in this paper. Three coordinate systems for the stator, mover and corner coil are established. The coil is divided into two segments, the straight coil segment and the corner coil segment, in order to obtain a complete electromagnetic model. When only take the first harmonic of the flux density distribution of a Halbach magnet array into account, the integration method can be carried out towards the two segments according to Lorenz force law. The force and torque analysis formula of the straight coil segment can be derived directly from Newton-Leibniz formula, however, this is not applicable to the corner coil segment. Therefore, Compound Simpson numerical integration method is proposed in this paper to solve the corner segment. With the validation of simulation and experiment, the proposed model has high accuracy and can realize practical application easily.

  12. Radiation Forces and Torques without Stress (Tensors)

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  13. The Use and Management of the Electromagnetic Spectrum, Part I. President's Task Force on Communications Policy. Staff Paper Seven, Part I.

    ERIC Educational Resources Information Center

    Rostow, Eugene V.

    A staff paper to the President's Task Force on Communications Policy analyses the use of the electromagnetic spectrum for communications and suggests improvements. The evolution of spectrum use and its present federal management are described together with the problem of achieving efficient use in the areas of electromagnetic congestion. Criticism…

  14. Modulated wave formation in myocardial cells under electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Takembo, Clovis N.; Mvogo, A.; Ekobena Fouda, H. P.; Kofané, T. C.

    2018-06-01

    We exclusively analyze the onset and condition of formation of modulated waves in a diffusive FitzHugh-Nagumo model for myocardial cell excitations. The cells are connected through gap junction coupling. An additive magnetic flux variable is used to describe the effect of electromagnetic induction, while electromagnetic radiation is imposed on the magnetic flux variable as a periodic forcing. We used the discrete multiple scale expansion and obtained, from the model equations, a single differential-difference amplitude nonlinear equation. We performed the linear stability analysis of this equation and found that instability features are importantly influenced by the induced electromagnetic gain. We present the unstable and stable regions of modulational instability (MI). The resulting analytic predictions are confirmed by numerical experiments of the generic equations. The results reveal that due to MI, an initial steady state that consisted of a plane wave with low amplitude evolves into a modulated localized wave patterns, soliton-like in shape, with features of synchronization. Furthermore, the formation of periodic pulse train with breathing motion presents a disappearing pattern in the presence of electromagnetic radiation. This could provide guidance and better understanding of sudden heart failure exposed to heavily electromagnetic radiation.

  15. A note on gravitation and electromagnetism

    NASA Astrophysics Data System (ADS)

    Sidharth, B. G.; Das, Abhishek

    2018-04-01

    Sidharth had shown that gravitation can be reconciled with electromagnetic and other forces if we start from a Landau-Ginzburg phase transition. This is further remarked upon and a theory of all forces of nature is proposed.

  16. Electromagnetic Force on a Moving Dipole

    ERIC Educational Resources Information Center

    Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.

    2011-01-01

    We analyse the force acting on a moving dipole due to an external electromagnetic field and show that the expression derived in Vekstein (1997 "Eur. J. Phys." 18 113) is erroneous and suggest the correct equation for the description of this force. We also discuss the physical meaning of the relativistic transformation of current for a closed…

  17. Conceptual design of a noncontacting power transfer device for the ASPS Vernier system

    NASA Technical Reports Server (NTRS)

    Kroeger, J.; Drilling, J.; Gunderman, T.

    1984-01-01

    The conceptual of electrical power transfer across a magnetically controlled gap as discussed for several years. The design represents the culmination of the first serious attempt to design a very low force, noncontracting power transfer mechanism. The electromagnetic device advanced herein is an ironless, translatable secondary transformer in which one of the two coils is fixed to the entire magnetic core. The second coil is free to move within the core over the full range of motions required. The specific application considered for this design was the Vernier subsystem of the Annular Suspension and Pointing System (ASPS). The development of and rationale for the electromagnetics design is presented. Similar documentation is provided for the Electronics Design. The Appendices detail the results of small scale model tests, disturbance force calculations, the baseline transformer fabrication drawings, the AVS Converter Parts List, and model schematic diagrams.

  18. Synthetic electromagnetic knot in a three-dimensional skyrmion

    PubMed Central

    Lee, Wonjae; Gheorghe, Andrei H.; Tiurev, Konstantin; Ollikainen, Tuomas; Möttönen, Mikko; Hall, David S.

    2018-01-01

    Classical electromagnetism and quantum mechanics are both central to the modern understanding of the physical world and its ongoing technological development. Quantum simulations of electromagnetic forces have the potential to provide information about materials and systems that do not have conveniently solvable theoretical descriptions, such as those related to quantum Hall physics, or that have not been physically observed, such as magnetic monopoles. However, quantum simulations that simultaneously implement all of the principal features of classical electromagnetism have thus far proved elusive. We experimentally realize a simulation in which a charged quantum particle interacts with the knotted electromagnetic fields peculiar to a topological model of ball lightning. These phenomena are induced by precise spatiotemporal control of the spin field of an atomic Bose-Einstein condensate, simultaneously creating a Shankar skyrmion—a topological excitation that was theoretically predicted four decades ago but never before observed experimentally. Our results reveal the versatile capabilities of synthetic electromagnetism and provide the first experimental images of topological three-dimensional skyrmions in a quantum system. PMID:29511735

  19. Semiclassical Models for Virtual Antiparticle Pairs, the Unit of Charge e, and the QCD Coupling alpha(sub s)

    NASA Technical Reports Server (NTRS)

    Batchelor, David; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    New semiclassical models of virtual antiparticle pairs are used to compute the pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field theory (QFT) is found. The modeling method applies to both the electromagnetic and color forces. Evaluation of the action integral of potential field fluctuation for each interaction potential yields approximately Planck's constant/2 for both electromagnetic and color fluctuations, in agreement with QFT. Thus each model is a quantized semiclassical representation for such virtual antiparticle pairs, to good approximation. When the results of the new models and QFT are combined, formulae for e and alpha(sub s)(q) are derived in terms of only Planck's constant and c.

  20. Study of intracranial pressure in human brain during transcranial magnetic stimulation.

    PubMed

    Honrath, Marc; Sabouni, Abas

    2015-01-01

    This paper presents the results of cranial force in human brain due to electromagnetic pulse during transcranial magnetic stimulation. To model the force in a realistic brain, we used three dimensional magnetic resonance image of the 26 years old female subject. Simulation results show that during TMS procedure, there is a small force generated within the cranial tissue layers along with a torque value in different layers of brain tissues. The force depends on the magnitude of the magnetic field generated by the TMS coil.

  1. Permanent magnet flux-biased magnetic actuator with flux feedback

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  2. Intrasystem Analysis Program (IAP) code summaries

    NASA Astrophysics Data System (ADS)

    Dobmeier, J. J.; Drozd, A. L. S.; Surace, J. A.

    1983-05-01

    This report contains detailed descriptions and capabilities of the codes that comprise the Intrasystem Analysis Program. The four codes are: Intrasystem Electromagnetic Compatibility Analysis Program (IEMCAP), General Electromagnetic Model for the Analysis of Complex Systems (GEMACS), Nonlinear Circuit Analysis Program (NCAP), and Wire Coupling Prediction Models (WIRE). IEMCAP is used for computer-aided evaluation of electromagnetic compatibility (ECM) at all stages of an Air Force system's life cycle, applicable to aircraft, space/missile, and ground-based systems. GEMACS utilizes a Method of Moments (MOM) formalism with the Electric Field Integral Equation (EFIE) for the solution of electromagnetic radiation and scattering problems. The code employs both full matrix decomposition and Banded Matrix Iteration solution techniques and is expressly designed for large problems. NCAP is a circuit analysis code which uses the Volterra approach to solve for the transfer functions and node voltage of weakly nonlinear circuits. The Wire Programs deal with the Application of Multiconductor Transmission Line Theory to the Prediction of Cable Coupling for specific classes of problems.

  3. Conference Proceedings on Applied Computational Electromagnetics (3rd) Held in Monterey, California on 24-26 March 1987

    DTIC Science & Technology

    1987-03-01

    the VLSI Implementation of the Electromagnetic Field of an Arbitrary Current Source" B.A. Hoyt, A.J. Terzuoli, A.V. Lair ., Air Force Institute of...method is that cavities of arbitrary three dimensional shapes and nonuniform lossy materials can be analyzed. THEORY OF VECTOR POTENTIAL FINITE...elements used to model the cavity. The method includes the effects of nonuniform lossy materials and can analyze cavities of a wide variety of two- and

  4. Toward the Kelvin’s Formula Paradox

    DTIC Science & Technology

    2016-09-01

    at rest no matter what its constitutive equation will be. 15. SUBJECT TERMS thermodynamics , electromagnetism, ponderomotive forces, Kelvin’s...a novel, mostly thermodynamic , analysis of the electromagnetic forces, acting in polarizable materials. When fulfilling those V&V studies of

  5. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  6. Radiative Energy Loss by Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    Interactions between galactic cosmic rays and matter are a primary focus of the NASA radiation problem. The electromagnetic forces involved are for the most part well documented. Building on previous research, this study investigated the relative importance of the weak forces that occur when a cosmic ray impinges on different types of materials. For the familiar electromagnetic case, it is known that energy lost in the form of radiation is more significant than that lost via contact collisions the rate at which the energy is lost is also well understood. Similar results were derived for the weak force case. It was found that radiation is also the dominant mode of energy loss in weak force interactions and that weak force effects are indeed relatively weak compared to electromagnetic effects.

  7. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    NASA Astrophysics Data System (ADS)

    Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.

    2011-11-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN2).

  8. Electromagnetic miniactuators using thin magnetic layers

    NASA Astrophysics Data System (ADS)

    Kube, H.; Zoeppig, V.; Hermann, R.; Hoffmann, A.; Kallenbach, E.

    2000-06-01

    This paper presents two examples of miniactuators based on the electromagnetic and electrodynamic force generation principle respectively. They use modern high-energy polymer-bonded permanent magnetic layers basing on NdFeB. The first example is a linear drive with an integrated magnetic bearing. It generates electrodynamic forces to lift and move a lightweight platen. The position of the platen is measured and controlled. The second example is a miniature pneumatic valve with a fully integrated polarized electromagnetic actuator. The valve consumes power only when the armature position is changed. The holding force is generated without consumption of power.

  9. A composite model for a class of electric-discharge shock tubes

    NASA Technical Reports Server (NTRS)

    Elkins, R. T.; Baganoff, D.

    1973-01-01

    A gasdynamic model is presented and analyzed for a class of shock tubes that utilize both Joule heating and electromagnetic forces to produce high-speed shock waves. The model consists of several stages of acceleration in which acceleration to sonic conditions is achieved principally through heating, and further acceleration of the supersonic flow is obtained principally through use of electromagnetic forces. The utility of the model results from the fact that it predicts a quasi-steady flow process, mathematical analysis is straightforward, and it is even possible to remove one or more component stages and still have the model related to a possible shock-tube flow. Initial experiments have been performed where the electrical discharge configuration and current level were such that Joule heating was the dominant form of energy addition present. These experiments indicate that the predictions of the model dealing with heat addition correspond quite closely to reality. The experimental data together with the theory show that heat addition to the flowing driver gas after diaphragm rupture (approach used in the model) is much more effective in producing high-speed shock waves than heating the gas in the driver before diaphragm rupture, as in the case of the arc-driven shock tube.

  10. Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions).

    PubMed

    Bulanov, Sergei V; Esirkepov, Timur Zh; Kando, Masaki; Koga, James K; Bulanov, Stepan S

    2011-11-01

    When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.

  11. Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki

    2011-11-15

    When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to themore » nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.« less

  12. Angular momentum and torque described with the complex octonion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Zi-Hua, E-mail: xmuwzh@xmu.edu.cn

    2014-08-15

    The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It motivates the paper to introduce the quaternion space into the field theory, describing the physical feature of electromagnetic and gravitational fields. The spaces of electromagnetic field andmore » of gravitational field can be chosen as the quaternion spaces, while the coordinate component of quaternion space is able to be the complex number. The quaternion space of electromagnetic field is independent of that of gravitational field. These two quaternion spaces may compose one octonion space. Contrarily, one octonion space can be separated into two subspaces, the quaternion space and S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, angular momentum, torque, and force etc in the gravitational field. In the S-quaternion space, it is capable of deducing the field potential, field strength, field source, current continuity equation, and electric (or magnetic) dipolar moment etc in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features, including the torque, force, and mass continuity equation etc. The S-quaternion space is proper to depict the electromagnetic features, including the dipolar moment and current continuity equation etc. In case the field strength is weak enough, the force and the continuity equation etc can be respectively reduced to that in the classical field theory.« less

  13. Design and testing of a controlled electromagnetic spinal cord impactor for use in large animal models of acute traumatic spinal cord injury.

    PubMed

    Petteys, Rory J; Spitz, Steven M; Syed, Hasan; Rice, R Andrew; Sarabia-Estrada, Rachel; Goodwin, C Rory; Sciubba, Daniel M; Freedman, Brett A

    2017-09-01

    Spinal cord injury (SCI) causes debilitating neurological dysfunction and has been observed in warfighters injured in IED blasts. Clinical benefit of SCI treatment remains elusive and better large animal models are needed to assess treatment options. Here, we describe a controlled electromagnetic spinal cord impactor for use in large animal models of SCI. A custom spinal cord impactor and platform were fabricated for large animals (e.g., pig, sheep, dog, etc.). Impacts were generated by a voice coil actuator; force and displacement were measured with a load cell and potentiometer respectively. Labview (National Instruments, Austin, TX) software was used to control the impact cycle and import force and displacement data. Software finite impulse response (FIR) filtering was employed for all input data. Silicon tubing was used a surrogate for spinal cord in order to test the device; repeated impacts were performed at 15, 25, and 40 Newtons. Repeated impacts demonstrated predictable results at each target force. The average duration of impact was 71.2 ±6.1ms. At a target force of 40N, the output force was 41.5 ±0.7N. With a target of 25N, the output force was 23.5 ±0.6N; a target of 15Newtons revealed an output force of 15.2 ±1.4N. The calculated acceleration range was 12.5-21.2m/s 2 . This custom spinal cord impactor reliably delivers precise impacts to the spinal cord and will be utilized in future research to study acute traumatic SCI in a large animal. Published by Elsevier Ltd.

  14. Old Train, New Track.

    ERIC Educational Resources Information Center

    Prokopeak, Andrew W.

    1984-01-01

    Presents ideas for using model trains as a teaching tool and/or minicourse in junior high school science classes. Students investigate such topics as electric motor operation, electric potential, resistance, electromagnets, transformers, switches, centripetal force, cam mechanism, circuitry and wiring techniques, and ammeters. Directions for…

  15. Optimal design of a for middle-low-speed maglev trains

    NASA Astrophysics Data System (ADS)

    Xiao, Song; Zhang, Kunlun; Liu, Guoqing; Jing, Yongzhi; Sykulski, Jan K.

    2018-04-01

    A middle-low-speed maglev train is supported by an electromagnetic force between the suspension electromagnet (EM) and the steel rail and is driven by a linear induction motor. The capability of the suspension system has a direct bearing on safety and the technical and economic performance of the train. This paper focuses on the dependence of the electromagnetic force on the structural configuration of the EM with the purpose of improving performance of a conventional EM. Finally, a novel configuration is proposed of a hybrid suspension magnet, which combines permanent magnets and coils, in order to increase the suspension force while reducing the suspension power loss.

  16. Device and method for redirecting electromagnetic signals

    DOEpatents

    Garcia, Ernest J.

    1999-01-01

    A device fabricated to redirect electromagnetic signals, the device including a primary driver adapted to provide a predetermined force, a linkage system coupled to the primary driver, a pusher rod rotationally coupled to the linkage system, a flexible rod element attached to the pusher rod and adapted to buckle upon the application of the predetermined force, and a mirror structure attached to the flexible rod element at one end and to the substrate at another end. When the predetermined force buckles the flexible rod element, the mirror structure and the flexible rod element both move to thereby allow a remotely-located electromagnetic signal directed towards the device to be redirected.

  17. Force Balance and Substorm Effects in the Magnetotail

    NASA Technical Reports Server (NTRS)

    Kaufmann, Richard L.; Larson, Douglas J.; Kontodinas, Ioannis D.; Ball, Bryan M.

    1997-01-01

    A model of the quiet time middle magnetotail is developed using a consistent orbit tracing technique. The momentum equation is used to calculate geocentric solar magnetospheric components of the particle and electromagnetic forces throughout the current sheet. Ions generate the dominant x and z force components. Electron and ion forces almost cancel in the y direction because the two species drift earthward at comparable speeds. The force viewpoint is applied to a study of some substorm processes. Generation of the rapid flows seen during substorm injection and bursty bulk flow events implies substantial force imbalances. The formation of a substorm diversion loop is one cause of changes in the magnetic field and therefore in the electromagnetic force. It is found that larger forces are produced when the cross-tail current is diverted to the ionosphere than would be produced if the entire tail current system simply decreased. Plasma is accelerated while the forces are unbalanced resulting in field lines within a diversion loop becoming more dipolar. Field lines become more stretched and the plasma sheet becomes thinner outside a diversion loop. Mechanisms that require thin current sheets to produce current disruption then can create additional diversion loops in the newly thinned regions. This process may be important during multiple expansion substorms and in differentiating pseudoexpansions from full substorms. It is found that the tail field model used here can be generated by a variety of particle distribution functions. However, for a given energy distribution the mixture of particle mirror or reflection points is constrained by the consistency requirement. The study of uniqueness also leads to the development of a technique to select guiding center electrons that will produce charge neutrality all along a flux tube containing nonguiding center ions without the imposition of a parallel electric field.

  18. 50 Years of Army Computing From ENIAC to MSRC

    DTIC Science & Technology

    2000-09-01

    processing capability. The scientifi c visualization program was started in 1984 to provide tools and expertise to help researchers graphically...and materials, forces modeling, nanoelectronics, electromagnetics and acoustics, signal image processing , and simulation and modeling. The ARL...mechanical and electrical calculating equipment, punch card data processing equipment, analog computers, and early digital machines. Before beginning, we

  19. Students' Development of Representational Competence through the Sense of Touch

    ERIC Educational Resources Information Center

    Magana, Alejandra J.; Balachandran, Sadhana

    2017-01-01

    Electromagnetism is an umbrella encapsulating several different concepts like electric current, electric fields and forces, and magnetic fields and forces, among other topics. However, a number of studies in the past have highlighted the poor conceptual understanding of electromagnetism concepts by students even after instruction. This study aims…

  20. Electromagnetic Forces in a Hybrid Magnetic-Bearing Switched-Reluctance Motor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.

    2008-01-01

    Analysis and experimental measurement of the electromagnetic force loads on the hybrid rotor in a novel hybrid magnetic-bearing switched-reluctance motor (MBSRM) have been performed. A MBSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The MBSRM discussed in this report has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of four stator poles, while a second set of four stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Static torque and radial force analysis were done for rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental and the theoretical radial force loads predictions was obtained with typical magnetic bearing derating factors applied to the predictions.

  1. Experimental and numerical analysis on aluminum/steel pipe using magnetic pulse welding

    NASA Astrophysics Data System (ADS)

    Shim, J. Y.; Kim, I. S.; Lee, K. J.; Kang, B. Y.

    2011-12-01

    Recently, there has been a trend in the automotive industry to focus on the improvement of lightweight materials, such as aluminum and magnesium because the welding of dissimilar metals causes many welding defects. Magnetic pulse welding (MPW), one of the solid state welding technologies, uses electromagnetic force from current discharged through a working coil which develops a repulsive force between the induced currents flowing parallel and in the opposite direction in the tube to be welded. The objective of this paper is to develop a numerical model for analysis of the interaction between the outer pipe and the working coil using a finite element method (FEM) in the MPW process. Four Maxwell equations are solved using a general electromagnetic mechanics computer program, ANSYS/EMAG code. Experiments were also carried out with a W-MPW60 machine manufactured by WELMATE CO., LTD. with the Al1070 and SM45C for Al pipe and steel bar respectively. The calculated and measured results were compared to verify the proposed model.

  2. Observation of the doubly strange b-Baryon Ω b -

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jose de Jesus Hernandez Orduna

    2011-02-01

    This thesis reports the first experimental evidence of the doubly strange b-baryon Ω b - (ssb) following the decay channel Ω b - → J/Ψ(1S) μ +μ - Ω - Λ K - p π - in pmore » $$\\bar{p}$$ collisions at √s = 1.96 Tev. Using approximately 1.3 fb -1 of data collected with the D0 detector at the Fermilab Tevatron Collider, they observe 17.8 ± 4.9(stat) ± 0.8(syst) Ω b - signal events at 6.165 ± 0.010(stat) ± 0.013(syst) GeV/c 2 with a corresponding significance of 5.4 σ, meaning that the probability of the signal coming from a fluctuation in the background is 6.7 x 10 -8. The theoretical model we have to describe what we believe are the building blocks of nature and the interactions between them, is known as Standard Model. The Standard Model is the combination of Electroweak Theory and Quantum Chromodynamics into a single core in the attempt to include all interactions of subatomic particles except those due to gravity in a simple framework. This model has proved highly accurate in predicting certain interactions, but it does not explain all aspects of subatomic particles. For example, it cannot say how many particles there should be or what their masses are. The search goes on for a more complete theory, and in particular an unified field theory describing the strong, weak, and electromagnetic forces. Twelve elementary particles are known in the Standard Model: the Fermions. They have spin -1/2 and obey the Pauli Exclusion Principle. Fermions are divided into six Quarks: up u, down d, charm c, strange s, top t and, bottom b; and six Leptons: electron e, muon μ, ττ, electron neutrino v e, muon neutrino v μ and, τ neutrino v τ. Quarks interact via the strong force because they carry color charge, electromagnetically because of their electric charge and via the weak nuclear interaction because of the weak isospin. Quarks form color-neutral composite particles known as Hadrons which are divided in Mesons, containing a quark and an antiquark and Baryons, made up three quarks. Leptons have no color charge and can not interact via the strong force. Only three of them have electric charge, hence interact electromagnetically. The motion of non-electrically charged leptons, the neutrinos, is influenced only by the weak nuclear interaction. Every fermion have an associated antiparticle. For quarks, the antiparticle carry opposite electric charge, color charge and baryon number. For leptons, the antiparticle carry opposite electric charge and lepton number. Fermions are suitably grouped together considering their properties and three generations of them are defined. A higher generation fermion have greater mass than those in lower generations. Charged members of the first generation do not decay and form the ultimate building blocks for all the baryonic matter we know about. Charged members of higher generations have very short half lives and are found normally in high-energy environments. Non-electrically charged fermions do not decay and rarely interact with baryonic matter. The way particles interact and influence each other in the Standard Model is result from matter particles exchanging other particles, known as Force Mediating Particles. They are believed to be the reason of the existence of the forces and interactions between particles observed in the laboratory and the universe. Force mediating particles have spin 1, i.e., they are Bosons, and do not follow the Pauli Exclusion Principle. The types of force mediating particles are: the photon γ, three gauge bosons W ± and Z and, eight gluons g. Photons have no mass, the theory of Quantum Electrodynamics describe them very well and are responsible for mediation of the electromagnetic force between electrically charged particles. Gauge bosons are massive, being Z heavier than W ±. They are responsible for the mediation of the weak interactions between particles of different flavors but W ± act only on left-handed particles and right-handed antiparticles while Z with both left-handed particles and antiparticles. Due to the electric charge of W ±, they couple also to electromagnetic interactions. Photons and the three gauge bosons are grouped together and collectively mediate the electroweak interactions. Finally, gluons have no mass, the theory of Quantum Chromodynamics describe them and are responsible for the mediation of the strong interactions between particles with color charge. Having an effective color charge, gluons can interact among themselves. The Higgs Boson is the only particle in the SM without direct experimental evidence. Its detection would help in the explanation of the difference between massive bosons mediating the weak force and the massless photon mediating the electromagnetism.« less

  3. Carl Neumann versus Rudolf Clausius on the propagation of electrodynamic potentials

    NASA Astrophysics Data System (ADS)

    Archibald, Thomas

    1986-09-01

    In the late 1860's, German electromagnetic theorists employing W. Weber's velocity-dependent force law were forced to confront the issue of energy conservation. One attempt to formulate a conservation law for such forces was due to Carl Neumann, who introduced a model employing retarded potentials in 1868. Rudolf Clausius quickly pointed out certain problems with the physical interpretation of Neumann's mathematical formalism. The debate between the two men continued until the 1880's and illustrates the strictures facing mathematical approaches to physical problems during this prerelativistic, pre-Maxwellian period.

  4. Minkowski momentum resulting from a vacuum-medium mapping procedure, and a brief review of Minkowski momentum experiments

    NASA Astrophysics Data System (ADS)

    Brevik, Iver

    2017-02-01

    A discussion is given on the interpretation and physical importance of the Minkowski momentum in macroscopic electrodynamics (essential for the Abraham-Minkowski problem). We focus on the following two facets: (1) Adopting a simple dielectric model where the refractive index n is constant, we demonstrate by means of a mapping procedure how the electromagnetic field in a medium can be mapped into a corresponding field in vacuum. This mapping was presented many years ago (Brevik and Lautrup, 1970), but is apparently not well known. A characteristic property of this procedure is that it shows how naturally the Minkowski energy-momentum tensor fits into the canonical formalism. Especially the spacelike character of the electromagnetic total four-momentum for a radiation field (implying negative electromagnetic energy in some inertial frames), so strikingly demonstrated in the Cherenkov effect, is worth attention. (2) Our second objective is to give a critical analysis of some recent experiments on electromagnetic momentum. Care must here be taken in the interpretations: it is easy to be misled and conclude that an experiment is important for the energy-momentum problem, while what is demonstrated experimentally is merely the action of the Abraham-Minkowski force acting in surface layers or inhomogeneous regions. The Abraham-Minkowski force is common for the two energy-momentum tensors and carries no information about field momentum. As a final item, we propose an experiment that might show the existence of the Abraham force at high frequencies. This would eventually be a welcome optical analogue to the classic low-frequency 1975 Lahoz-Walker experiment.

  5. Coherent flow structures and heat transfer in a duct with electromagnetic forcing

    NASA Astrophysics Data System (ADS)

    Himo, Rawad; Habchi, Charbel

    2018-04-01

    Coherent vortices are generated electromagnetically in a square duct flow. The vortices are induced by a Lorentz force applied in a small section near the entrance of the duct. The flow structure complexity increases with the electromagnetic forcing since the primary vortices propagating along the duct detach to generate secondary smaller streamwise vortices and hairpin-like structures. The Reynolds number based on the mean flow velocity and hydraulic diameter is 500, and five cases were studied by varying the electromagnetic forcing. Even though this Reynolds number is relatively low, a periodic sequence of hairpin-like structure flow was observed for the high forcing cases. This mechanism enhances the mixing process between the different flow regions resulting in an increase in the thermal performances which reaches 66% relative to the duct flow without forcing. In addition to the flow complexity, lower forcing cases remained steady, unlike high Lorentz forces that induced periodic instabilities with a Strouhal number around 0.59 for the transient eddies. The effect of the flow structure on the heat transfer is analyzed qualitatively and quantitatively using numerical simulations based on the finite volume method. Moreover, proper orthogonal decomposition (POD) analysis was performed on the flow structures to evaluate the most energetic modes contributing in the flow. It is found from the POD analysis that the primary streamwise vortices and hairpin legs are the flow structures that are the most contributing to the heat transfer process.

  6. Ponderomotive forces in electrodynamics of moving media: The Minkowski and Abraham approaches

    NASA Astrophysics Data System (ADS)

    Nesterenko, V. V.; Nesterenko, A. V.

    2016-09-01

    In the general setting of the problem, the explicit compact formulae are derived for the ponderomotive forces in the macroscopic electrodynamics of moving media in the Minkowski and Abraham approaches. Taking account of the Minkowski constitutive relations and making use of a special representation for the Abraham energy-momentum tensor enable one to obtain a compact expression for the Abraham force in the case of arbitrary dependence of the medium velocity on spatial coordinates and the time and for nonstationary external electromagnetic field. We term the difference between the ponderomotive forces in the Abraham and Minkowski approaches as the Abraham force not only under consideration of media at rest but also in the case of moving media. The Lorentz force is found which is exerted by external electromagnetic field on the conduction current in a medium, the covariant Ohm law, and the constitutive Minkowski relations being taken into account. The physical argumentation is traced for the definition of the 4-vector of the ponderomotive force as the 4-divergence of the energy-momentum tensor of electromagnetic field in a medium.

  7. Resonance oscillations of nonreciprocal long-range van der Waals forces between atoms in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Sherkunov, Yury

    2018-03-01

    We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.

  8. A new electromagnetic NDI-technique based on the measurement of source-sample reaction forces

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. L.; Skaugset, R. L.; Shih, W. C. L.

    2001-04-01

    Faraday's law of induction, Lenz's law, the Lorentz force law and Newton's third law, taken together, insure that sources (e.g., coil sources) of time-dependent electromagnetic fields, and nearby "nonmagnetic" electrical conductors (e.g., aluminum), always experience mutually repulsive (source-conductor) forces. This fact forms the basis for a new method for detecting cracks and corrosion in (aging) multi-layer airframes. The presence of cracks or corrosion (e.g., material thinning) in these structures is observed to reduce (second-harmonic) source-conductor reaction forces.

  9. Internal Model-Based Robust Tracking Control Design for the MEMS Electromagnetic Micromirror.

    PubMed

    Tan, Jiazheng; Sun, Weijie; Yeow, John T W

    2017-05-26

    The micromirror based on micro-electro-mechanical systems (MEMS) technology is widely employed in different areas, such as scanning, imaging and optical switching. This paper studies the MEMS electromagnetic micromirror for scanning or imaging application. In these application scenarios, the micromirror is required to track the command sinusoidal signal, which can be converted to an output regulation problem theoretically. In this paper, based on the internal model principle, the output regulation problem is solved by designing a robust controller that is able to force the micromirror to track the command signal accurately. The proposed controller relies little on the accuracy of the model. Further, the proposed controller is implemented, and its effectiveness is examined by experiments. The experimental results demonstrate that the performance of the proposed controller is satisfying.

  10. Internal Model-Based Robust Tracking Control Design for the MEMS Electromagnetic Micromirror

    PubMed Central

    Tan, Jiazheng; Sun, Weijie; Yeow, John T. W.

    2017-01-01

    The micromirror based on micro-electro-mechanical systems (MEMS) technology is widely employed in different areas, such as scanning, imaging and optical switching. This paper studies the MEMS electromagnetic micromirror for scanning or imaging application. In these application scenarios, the micromirror is required to track the command sinusoidal signal, which can be converted to an output regulation problem theoretically. In this paper, based on the internal model principle, the output regulation problem is solved by designing a robust controller that is able to force the micromirror to track the command signal accurately. The proposed controller relies little on the accuracy of the model. Further, the proposed controller is implemented, and its effectiveness is examined by experiments. The experimental results demonstrate that the performance of the proposed controller is satisfying. PMID:28587105

  11. Numerical and experimental study on vorticity measurement in liquid metal using local Lorentz force velocimetry

    NASA Astrophysics Data System (ADS)

    Hernández, Daniel; Marangoni, Rafael; Schleichert, Jan; Karcher, Christian; Fröhlich, Thomas; Wondrak, Thomas

    2018-03-01

    Local Lorentz force velocimetry (local LFV) is a contactless velocity measurement technique for liquid metals. Due to the relative movement between an electrically conductive fluid and a static applied magnetic field, eddy currents and a flow-braking Lorentz force are generated inside the metal melt. This force is proportional to the flow rate or to the local velocity, depending on the volume subset of the flow spanned by the magnetic field. By using small-size magnets, a localized magnetic field distribution is achieved allowing a local velocity assessment in the region adjacent to the wall. In the present study, we describe a numerical model of our experiments at a continuous caster model where the working fluid is GaInSn in eutectic composition. Our main goal is to demonstrate that this electromagnetic technique can be applied to measure vorticity distributions, i.e. to resolve velocity gradients as well. Our results show that by using a cross-shaped magnet system, the magnitude of the torque perpendicular to the surface of the mold significantly increases improving its measurement in a liquid metal flow. According to our numerical model, this torque correlates with the vorticity of the velocity in this direction. Before validating our numerical predictions, an electromagnetic dry calibration of the measurement system composed of a multicomponent force and torque sensor and a cross-shaped magnet was done using a rotating disk made of aluminum. The sensor is able to measure simultaneously all three components of force and torque, respectively. This calibration step cannot be avoided and it is used for an accurate definition of the center of the magnet with respect to the sensor’s coordinate system for torque measurements. Finally, we present the results of the experiments at the mini-LIMMCAST facility showing a good agreement with the numerical model.

  12. 75 FR 55577 - Office of the Secretary: Defense Science Board (DSB) Task Force on the Survivability of DoD...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... DEPARTMENT OF DEFENSE Office of the Secretary: Defense Science Board (DSB) Task Force on the Survivability of DoD Systems and Assets to Electromagnetic Pulse (EMP) and Other Nuclear Weapons Effects AGENCY... Systems and Assets to Electromagnetic Pulse (EMP) and other Nuclear Weapons Effects (hereafter referred to...

  13. About separation and collision of Saturn rings particles

    NASA Astrophysics Data System (ADS)

    Tchernyi, Vladimir

    There is no yet clear picture of the origin of Saturn's rings. We follow importance of electromag-netic idea that rings could originate and form from the frozen particles of the protoplanetary cloud after the appearance of the magnetic field of Saturn due to electromagnetic interaction of icy particles with the planetary magnetic field. The Sun heats the rings weakly, temperature in the area of the rings is about 70-110 K. It makes possible the existence of the superconduct-ing substance in the space behind the belt of asteroids. Theoretical electromagnetic modeling demonstrates that superconductivity can be the physical reason of the origin of the sombrero of rings of Saturn from the frozen particles of the protoplanetary cloud. The sombrero appears during some time after magnetic field of planet appears. Finally, all the Kepler's orbits of the superconducting particles are localizing as a sombrero disk of rings in the magnetic equator plane, where the energy of particles in the magnetic field of Saturn has a minimum value. Recently space probe "Cassini" discovered collisions and separation of the Saturn's rings parti-cles. It is also important fact that from electromagnetic modeling follows possibility of collide of the rings particles on the vertical direction within the width of the sombrero. It could be a reason for the formation of the particles of the bigger size due to coalescence, until gravity and centrifugal force will destroy them to the particles of smaller size again. From the solution of the electromagnetic problem we will demonstrate how rings of Saturn could be originated from the iced particles located within the protoplanetary cloud. Before appearance of the magnetic field of Saturn all particles within the protoplanetary cloud are located on such an orbit as Kepler's, where there is a balance of the force of gravity and the centrifugal force. With the occurrence of the magnetic field of the Saturn the superconducting particles of the protoplane-tary cloud begin to demonstrate an ideal diamagnetism. Due to appearance of the third force of diamagnetic push-out particles start to interact with the magnetic field and all the orbits of the particles become to be involved in additional azimuth-orbital movement. As a result, eventually, during some time, all orbits of the particles of the protoplanetary cloud should come together to magnetic equator plane and create highly flattening disc around planet. For separa-tion and collision of the particles within the sombrero of rings from solution of electromagnetic problem follows that for two particles which are located on the same plane, both particles will be pushing each other and they will be holding separation distance in between them. Then for another situation both particles are located on the same axis but on the different planes, both particles will be attracting each other, they could even collide or stick together and form bigger pieces or lumps of ice. Both facts have an experimental conformation by Cassini mission. Reference: Tchernyi V.V. Origin of the Saturn rings: electromagnetic model of the sombrero rings formation. Chapter in book: Space Exploration Research. Editors: John H. Denis and Paul D. Aldridge. Series: Space Science, Exploration and Policies. ISBN: 978-1-60692-264-4. Hauppauge, NY, USA, Nova Science Publishers, 2009:

  14. Test Bed Considerations for the Evaluation of EMP Protection Measures for Defense Electronics Installations.

    DTIC Science & Technology

    1981-05-31

    number) EMP Hardening EMP Testing Electromagnetic Pulse (EMP) EMP Test Bed Facility Electromagnetic Environment Electromagnetic Susceptibility 20 ABSTRACT...very high energy electromagnetic pulse (EMP). The EMP from an exo-atmospheric :3 burst can disrupt or damage unprotected electronics over an area as...3. A., and Parker, R. L., " Electromagnetic Pulse Handbook for Missiles and Aircraft in Flight EMP Interaction 1-1," Sandia Laboratories for Air Force

  15. Virtual Antiparticle Pairs, the Unit of Charge Epsilon and the QCD Coupling Alpha(sub s)

    NASA Technical Reports Server (NTRS)

    Batchelor, David

    2001-01-01

    New semi-classical models of virtual antiparticle pairs are used to compute the pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field theory (QFT) is found. When the results of the new models and QFT are combined, formulae for e and alpha(sub s)(q) are derived in terms of only h and c. The modeling method applies to both the electromagnetic and color forces. Evaluation of the action integral of potential field fluctuation for each interaction potential yields approx. = h/2 for both electromagnetic and color fluctuations, in agreement with QFT. Thus each model is a quantized semiclassical representation for such virtual antiparticle pairs, to good approximation. This work reduces the number of arbitrary parameters of the Standard Model by two from 18 to 16. These are remarkable, unexpected results from a basically classical method.

  16. A general electromagnetic excitation model for electrical machines considering the magnetic saturation and rub impact

    NASA Astrophysics Data System (ADS)

    Xu, Xueping; Han, Qinkai; Chu, Fulei

    2018-03-01

    The electromagnetic vibration of electrical machines with an eccentric rotor has been extensively investigated. However, magnetic saturation was often neglected. Moreover, the rub impact between the rotor and stator is inevitable when the amplitude of the rotor vibration exceeds the air-gap. This paper aims to propose a general electromagnetic excitation model for electrical machines. First, a general model which takes the magnetic saturation and rub impact into consideration is proposed and validated by the finite element method and reference. The dynamic equations of a Jeffcott rotor system with electromagnetic excitation and mass imbalance are presented. Then, the effects of pole-pair number and rubbing parameters on vibration amplitude are studied and approaches restraining the amplitude are put forward. Finally, the influences of mass eccentricity, resultant magnetomotive force (MMF), stiffness coefficient, damping coefficient, contact stiffness and friction coefficient on the stability of the rotor system are investigated through the Floquet theory, respectively. The amplitude jumping phenomenon is observed in a synchronous generator for different pole-pair numbers. The changes of design parameters can alter the stability states of the rotor system and the range of parameter values forms the zone of stability, which lays helpful suggestions for the design and application of the electrical machines.

  17. Nature of the electromagnetic force between classical magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2017-09-01

    The Lorentz force law of classical electrodynamics states that the force 𝑭𝑭 exerted by the magnetic induction 𝑩𝑩 on a particle of charge 𝑞𝑞 moving with velocity 𝑽𝑽 is given by 𝑭𝑭 = 𝑞𝑞𝑽𝑽 × 𝑩𝑩. Since this force is orthogonal to the direction of motion, the magnetic field is said to be incapable of performing mechanical work. Yet there is no denying that a permanent magnet can readily perform mechanical work by pushing/pulling on another permanent magnet or by attracting pieces of magnetizable material such as scrap iron or iron filings. We explain this apparent contradiction by examining the magnetic Lorentz force acting on an Amperian current loop, which is the model for a magnetic dipole. We then extend the discussion by analyzing the Einstein-Laub model of magnetic dipoles in the presence of external magnetic fields.

  18. Apparatus for enhancing tissue repair in mammals

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)

    2007-01-01

    An apparatus is disclosed for enhancing tissue repair in mammals, with the apparatus comprising: a sleeve for encircling a portion of a mammalian body part, said sleeve comprising an electrically conductive coil capable of generating an electromagnetic field when an electrical current is applied thereto, means for supporting the sleeve on the mammalian body part; and means for supplying the electrically conductive coil with a square wave time varying electrical current sufficient to create a time varying electromagnetic force of from approximately 0.05 gauss to 0.05 gauss within the interior of the coil in order that when the sleeve is placed on a mammalian body part and the time varying electromagnetic force of from approximately 0.05 gauss to 0.05 gauss is generated on the mammalian body part for an extended period of time, tissue regeneration within the mammalian body part is increased to a rate in excess of the normal tissue regeneration rate that would occur without application of the time varying electromagnetic force.

  19. The Inertia Reaction Force and Its Vacuum Origin

    NASA Astrophysics Data System (ADS)

    Rueda, Alfonso; Haisch, Bernard

    By means of a covariant approach we show that there must be a contribution to the inertial mass and to the inertial reaction force on an accelerated massive object by the zero-point electromagnetic field. This development does not require any detailed model of the accelerated object other than the knowledge that it interacts electromagnetically. It is shown that inertia can indeed be construed as an opposition of the vacuum fields to any change to the uniform state of motion of an object. Interesting insights originating from this result are discussed. It is argued why the proposed existence of a Higgs field in no way contradicts or is at odds with the above statements. The Higgs field is responsible for assigning mass to elementary particles. It is argued that still the underlying reason for the opposition to acceleration that massive objects present requires an explanation. The explanation proposed here fulfills that requirement.

  20. Analysis of the mechanical stresses on a squirrel cage induction motor by the finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, C.H.; Nicolas, A.

    1999-05-01

    The mechanical deformations and stresses have been analyzed by the Finite Element Method (FEM) in 3 dimensions on the rotor bars of a small squirrel cage induction motor. The authors considered the magnetic forces and the centrifugal forces as sources which provoked the deformations and stresses on the rotor bars. The mechanical calculations have been performed after doing the electromagnetic Finite Element modeling on the motor in steady states with various slip conditions.

  1. Acceleration of objects to high velocity by electromagnetic forces

    DOEpatents

    Post, Richard F

    2017-02-28

    Two exemplary approaches to the acceleration of projectiles are provided. Both approaches can utilize concepts associated with the Inductrack maglev system. Either of them provides an effective means of accelerating multi-kilogram projectiles to velocities of several kilometers per second, using launchers of order 10 meters in length, thus enabling the acceleration of projectiles to high velocities by electromagnetic forces.

  2. Electromagnetic Radial Forces in a Hybrid Eight-Stator-Pole, Six-Rotor-Pole Bearingless Switched-Reluctance Motor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.

    2007-01-01

    Analysis and experimental measurement of the electromagnet force loads on the hybrid rotor in a novel bearingless switched-reluctance motor (BSRM) have been performed. A BSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The BSRM has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of stator poles. A second set of stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Analysis was done for nonrotating rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental results and the theoretical predictions was obtained with typical magnetic bearing derating factors applied to the predictions.

  3. Electromagnetic liquid pistons for capillarity-based pumping.

    PubMed

    Malouin, Bernard A; Vogel, Michael J; Olles, Joseph D; Cheng, Lili; Hirsa, Amir H

    2011-02-07

    The small scales associated with lab-on-a-chip technologies lend themselves well to capillarity-dominated phenomena. We demonstrate a new capillarity-dominated system where two adjoining ferrofluid droplets can behave as an electronically-controlled oscillator or switch by an appropriate balance of magnetic, capillary, and inertial forces. Their oscillatory motion can be exploited to displace a surrounding liquid (akin to an axial piston pump), forming electromagnetic "liquid pistons." Such ferrofluid pistons can pump a precise volume of liquid via finely tunable amplitudes (cf. pump stroke) or resonant frequencies (cf. pump speed) with no solid moving parts for long-term operation without wear in a small device. Furthermore, the rapid propagation of electromagnetic fields and the favorable scaling of capillary forces with size permit micron sized devices with very fast operating speeds (∼kHz). The pumping dynamics and performance of these liquid pistons is explored, with experimental measurements showing good agreement with a spherical cap model. While these liquid pistons may find numerous applications in micro- and mesoscale fluidic devices (e.g., remotely activated drug delivery), here we demonstrate the use of these liquid pistons in capillarity-dominated systems for chip-level, fast-acting adaptive liquid lenses with nearly perfect spherical interfaces.

  4. Coupling of electromagnetic and structural dynamics for a wind turbine generator

    NASA Astrophysics Data System (ADS)

    Matzke, D.; Rick, S.; Hollas, S.; Schelenz, R.; Jacobs, G.; Hameyer, K.

    2016-09-01

    This contribution presents a model interface of a wind turbine generator to represent the reciprocal effects between the mechanical and the electromagnetic system. Therefore, a multi-body-simulation (MBS) model in Simpack is set up and coupled with a quasi-static electromagnetic (EM) model of the generator in Matlab/Simulink via co-simulation. Due to lack of data regarding the structural properties of the generator the modal properties of the MBS model are fitted with respect to results of an experimental modal analysis (EMA) on the reference generator. The used method and the results of this approach are presented in this paper. The MB S model and the interface are set up in such a way that the EM forces can be applied to the structure and the response of the structure can be fed back to the EM model. The results of this cosimulation clearly show an influence of the feedback of the mechanical response which is mainly damping in the torsional degree of freedom and effects due to eccentricity in radial direction. The accuracy of these results will be validated via test bench measurements and presented in future work. Furthermore it is suggested that the EM model should be adjusted in future works so that transient effects are represented.

  5. A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Alazemi, Saad F.; Daqaq, Mohammed F.; Li, Gang

    2018-03-01

    A computational model is described and implemented in this work to analyze the performance of a ferrofluid based electromagnetic energy harvester. The energy harvester converts ambient vibratory energy into an electromotive force through a sloshing motion of a ferrofluid. The computational model solves the coupled Maxwell's equations and Navier-Stokes equations for the dynamic behavior of the magnetic field and fluid motion. The model is validated against experimental results for eight different configurations of the system. The validated model is then employed to study the underlying mechanisms that determine the electromotive force of the energy harvester. Furthermore, computational analysis is performed to test the effect of several modeling aspects, such as three-dimensional effect, surface tension, and type of the ferrofluid-magnetic field coupling on the accuracy of the model prediction.

  6. Project Physics Tests 4, Light and Electromagnetism.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 4 are presented in this booklet. Included are 70 multiple-choice and 22 problem-and-essay questions. Concepts of light and electromagnetism are examined on charges, reflection, electrostatic forces, electric potential, speed of light, electromagnetic waves and radiations, Oersted's and Faraday's work,…

  7. Rockburst Disaster Prediction of Isolated Coal Pillar by Electromagnetic Radiation Based on Frictional Effect

    PubMed Central

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster. PMID:25054186

  8. Rockburst disaster prediction of isolated coal pillar by electromagnetic radiation based on frictional effect.

    PubMed

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster.

  9. The Scientific Papers of James Prescott Joule 2 Volume Set

    NASA Astrophysics Data System (ADS)

    Prescott Joule, James

    2011-03-01

    Volume 1: Description of an electro-magnetic engine; Description of an electro-magnetic engine, with experiments; On the use of electro-magnets made of iron wire for the electro-magnetic engine; Investigations in magnetism and electro-magnetism; Investigations in magnetism and electro-magnetism; Description of an electro-magnetic engine; On electro-magnetic forces; On electro-magnetic forces; On electro-magnetic forces; Description of a new electro-magnet; On a new class of magnetic forces; On voltaic apparatus; On the production of heat by voltaic electricity; On the heat evolved by metallic conductors of electricity, and in the cells of a battery during electrolysis; On the electric origin of the heat of combustion; On the electrical origin of chemical heat; On Sir G. C. Haughton's experiments; On the heat evolved during the electrolysis of water; On the calorific effects of magneto-electricity, and on the mechanical value of heat; On the intermittent character of the voltaic current in certain cases of electrolysis; and on the intensities of various voltaic arrangements; On the changes of temperature produced by the rarefaction and condensation of air; On specific heat; On a new method for ascertaining the specific heat of bodies; Note on the employment of electrical currents for ascertaining the specific heat of bodies; On the mechanical equivalent of heat; On the existence of an equivalent relation between heat and the ordinary forms of mechanical power; On the heat disengaged in chemical combinations; On the effects of magnetism upon the dimensions of iron and steel bars; On matter, living force, and heat; On the mechanical equivalent of heat, as determined from the heat evolved by the function of fluids; On the theoretical velocity of sound; Expériences sur l'identité entre le calorique et la force méchanique. Détermination de l'équivalent par la chaleur dégagée pendant la friction du mercure; On shooting-stars; On the mechanical equivalent of heat, and on the constitution of elastic fluids; Some remarks on heat and the constitution of elastic fluids; On the mechanical equivalent of heat; On a remarkable appearance of lightning; On some amalgams; On the air-engine; Account of experiments with a powerful electro-magnet; On the economical production of mechanical effect from chemical forces; An account of some experiments with a large electro-magnet; Introductory research on the induction of magnetism by electric currents; On the fusion of metals by voltaic electricity; Note on Dalton's determination of the expansion of air by heat; On the utilization of the sewage of London and other large towns; Notice of experiments on the heat developed by friction in air; On the intensity of light during the recent solar eclipse; On an improved galvanometer; On the thermo-electricity of ferruginous metals, and on the thermal effects of stretching solid bodies; On the thermal effects of longitudinal compression of solids, with an investigation on the alterations of temperature accompanying changes of pressure in fluids; On some thermo-dynamic properties of solids; On the thermal effects of compressing fluids; On a method of testing the strength of steam-boilers; Experiments on the total heat of steam; Experiments on the passage of air through pipes and apertures in thin plates; On some amalgams; On the probable cause of electric storms; On the surface-condensation of steam; Notice of a compressing air-pump; Note on a mirage at Douglas; On a sensitive barometer; On a sensitive thermometer; Note on the meteor of February 6th, 1818; On a method of hardening steel wires for magnetic needles; On an instrument for showing rapid changes in magnetic declination; Determination of the dynamical equivalent of heat from the thermal effects of electric currents; Observations on the alteration of the freezing-point in thermometers; On a new

  10. Applications of Electromagnetic Levitation and Development of Mathematical Models: A Review of the Last 15 Years (2000 to 2015)

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Shi, Zhe; Li, Donghui; Zhang, Guifang; Yang, Yindong; McLean, Alexander; Chattopadhyay, Kinnor

    2016-02-01

    Electromagnetic levitation (EML) is a contact-less, high-temperature technique which has had extensive application with respect to the investigation of both thermophysical and thermochemical properties of liquid alloy systems. The varying magnetic field generates an induced current inside the metal droplet, and interactions are created which produce both the Lorentz force that provides support against gravity and the Joule heating effect that melts the levitated specimen. Since metal droplets are opaque, transport phenomena inside the droplet cannot be visualized. To address this aspect, several numerical modeling techniques have been developed. The present work reviews the applications of EML techniques as well as the contributions that have been made by the use of mathematical modeling to improve understanding of the inherent processes which are characteristic features of the levitation system.

  11. Magnetohydrodynamic Modeling and Experimental Validation of Convection Inside Electromagnetically Levitated Co-Cu Droplets

    NASA Astrophysics Data System (ADS)

    Lee, Jonghyun; Matson, Douglas M.; Binder, Sven; Kolbe, Matthias; Herlach, Dieter; Hyers, Robert W.

    2014-06-01

    A magnetohydrodynamic model of internal convection of a molten Co-Cu droplet processed by the ground-based electromagnetic levitation (EML) was developed. For the calculation of the electromagnetic field generated by the copper coils, the simplified Maxwell's equations were solved. The calculated Lorentz force per volume was used as a momentum source in the Navier-Stokes equations, which were solved by using a commercial computational fluid dynamics package. The RNG k- ɛ model was adopted for the prediction of turbulent flow. For the validation of the developed model, a Co16Cu84 sample was tested using the EML facility in the German Aerospace Center, Cologne, Germany. The sample was subjected to a full melt cycle, during which the surface of the sample was captured by a high-speed camera. With a sufficient undercooling, the liquid phase separation occurred and the Co-rich liquid phase particles could be observed as they were floating on the surface along streamlines. The convection velocity was estimated by the combination of the displacement of the Co-rich particles and the temporal resolution of the high-speed camera. Both the numerical and experimental results showed an excellent agreement in the convection velocity on the surface.

  12. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Andrew, William V.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has fruitfully completed its fourth year. Under the support of the AHE members and the joint effort of the research team, new and significant progress has been achieved in the year. Following the recommendations by the Advisory Task Force, the research effort is placed on more practical helicopter electromagnetic problems, such as HF antennas, composite materials, and antenna efficiencies. In this annual report, the main topics to be addressed include composite materials and antenna technology. The research work on each topic has been driven by the AHE consortium members' interests and needs. The remarkable achievements and progresses in each subject is reported respectively in individual sections of the report. The work in the area of composite materials includes: modeling of low conductivity composite materials by using Green's function approach; guidelines for composite material modeling by using the Green's function approach in the NEC code; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; modeling antenna elements mounted on a composite Comanche tail stabilizer; and antenna pattern control and efficiency estimate for a horn antenna loaded with composite dielectric materials.

  13. Comments on the Misunderstandings of Relativity and Theoretical Interpretation of the Kreuzer Experiment

    NASA Astrophysics Data System (ADS)

    Lo, C. Y.

    1997-03-01

    In 1966, the Kreuzer experiment set an upper limit on the difference in the ratio of active to passive mass between fluorine and bromine, and an interesting interpretation was given by Thorne et al. However, in 1976 Will, with his new parameterized post-Newtonian (PPN) approach, interpreted this experiment as providing an upper limit on his parameter combination related to electromagnetism. We show that, from the viewpoint of general relativity, Will's approach remains to be justified. Moreover, his result originates from his unphysical nuclear model, which ignores the isospin-dependent nuclear forces and is actually inconsistent with general relativity. It seems that to determine the constraint on the gravitational coupling to electromagnetism is beyond the valid application of the PPN formalism. As a further step, experimental measurement for the coupling constant to electromagnetism is recommended.

  14. Parameter estimation and statistical analysis on frequency-dependent active control forces

    NASA Astrophysics Data System (ADS)

    Lim, Tau Meng; Cheng, Shanbao

    2007-07-01

    The active control forces of an active magnetic bearing (AMB) system are known to be frequency dependent in nature. This is due to the frequency-dependent nature of the AMB system, i.e. time lags in sensors, digital signal processing, amplifiers, filters, and eddy current and hysteresis losses in the electromagnetic coils. The stiffness and damping coefficients of these control forces can be assumed to be linear for small limit of perturbations within the air gap. Numerous studies have also attempted to estimate these coefficients directly or indirectly without validating the model and verifying the results. This paper seeks to address these issues, by proposing a one-axis electromagnetic suspension system to simplify the measurement requirements and eliminate the possibility of control force cross-coupling capabilities. It also proposes an on-line frequency domain parameter estimation procedure with statistical information to provide a quantitative measure for model validation and results verification purposes. This would lead to a better understanding and a design platform for optimal vibration control scheme for suspended system. This is achieved by injecting Schroeder Phased Harmonic Sequences (SPHS), a multi-frequency test signal, to persistently excite all possible suspended system modes. By treating the system as a black box, the parameter estimation of the "actual" stiffness and damping coefficients in the frequency domain are realised experimentally. The digitally implemented PID controller also facilitated changes on the feedback gains, and this allowed numerous system response measurements with their corresponding estimated stiffness and damping coefficients.

  15. Spin contribution to the ponderomotive force in a plasma.

    PubMed

    Brodin, G; Misra, A P; Marklund, M

    2010-09-03

    The concept of a ponderomotive force due to the intrinsic spin of electrons is developed. An expression containing both the classical as well as the spin-induced ponderomotive force is derived. The results are used to demonstrate that an electromagnetic pulse can induce a spin-polarized plasma. Furthermore, it is shown that, for certain parameters, the nonlinear backreaction on the electromagnetic pulse from the spin magnetization current can be larger than that from the classical free current. Suitable parameter values for a direct test of this effect are presented.

  16. The Origin of Gravitation

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng Ming

    2012-10-01

    In the natural world, people have discovered four kinds of forces: electromagnetic force, gravitation, weak force, and strong force. Although the gravitation has been discovered more than three hundred years, its mechanism of origin is unclear until today. While investigating the origin of gravitation, I do some experiments discover the moving photons produce gravitation. This discovery shows the origin of gravitation. Meanwhile I do some experiments discover the light interference fringes are produced by the gravitation: my discovery demonstrate light is a particle, but is not a wave-particle duality. Furthermore, applications of this discovery to other moving particles show a similar effect. In a word: the micro particle moving produce gravitation and electromagnetic force. Then I do quantity experiment get a general formula: Reveal the essence of gravitational mass and the essence of electric charge; reveal the origin of gravitation and the essence of matter wave. Along this way, I unify the gravitation and electromagnetic force. Namely I find a natural law that from atomic world to star world play in moving track. See website: https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-8473-2658-8/mechanism-of-interaction-in-moving-matter

  17. Internal resonance of an elastic body levitated above high-Tc superconducting bulks

    NASA Astrophysics Data System (ADS)

    Kokuzawa, T.; Toshihiko, S.; Yoshizawa, M.

    2010-06-01

    In high-Tc superconducting magnetic levitation systems, levitated bodies can keep stable levitation with no contact and no control and thus their damping is very small. Thanks to these features, their applications to various apparatus are expected. However, on account of their small damping, the nonlinearity of electromagnetic levitation force can give notable effects upon motion of the levitated bodies. Therefore this nonlinearity must be taken into account to accurately analyze the dynamical behavior of the levitated bodies. Structures of such a levitated body can show elastic deformation if the large electromagnetic force acts on it. Therefore, we need to deal with the model as an elastic body. As mentioned above, nonlinear characteristics easily appear in this elastic vibration on account of the small damping. Especially when the ratio of the natural frequencies of the eigenmodes is integer, internal resonance can occur. This nonlinear resonance is derived from nonlinear interactions among the eigenmodes of the elastic levitated body. This kind of internal resonance of an elastic body appearing in high-Tc superconducting levitation systems has not been studied so far. This research especially deals with internal resonance of a beam supported at both its ends by electromagnetic forces acting on permanent magnets. The governing equation with the nonlinear boundary conditions for the dynamics of a levitated beam has been derived. Numerical results show internal resonance of the 1st mode and the 3rd mode. Experimental results are qualitatively in good agreement with numerical ones.

  18. Global simulation of the induction heating TSSG process of SiC for the effects of Marangoni convection, free surface deformation and seed rotation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takuya; Okano, Yasunori; Ujihara, Toru; Dost, Sadik

    2017-07-01

    A global numerical simulation was performed for the induction heating Top-Seeded Solution Growth (TSSG) process of SiC. Analysis included the furnace and growth melt. The effects of interfacial force due to free surface tension gradient, the RF coil-induced electromagnetic body force, buoyancy, melt free surface deformation, and seed rotation were examined. The simulation results showed that the contributions of free surface tension gradient and the electromagnetic body force to the melt flow are significant. Marangoni convection affects the growth process adversely by making the melt flow downward in the region under the seed crystal. This downward flow reduces carbon flux into the seed and consequently lowers growth rate. The effects of free surface deformation and seed rotation, although positive, are not so significant compared with those of free surface tension gradient and the electromagnetic body force. Due to the small size of the melt the contribution of buoyancy is also small.

  19. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidana, Carlos O.; Nieminen, Juha E.

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less

  20. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

    DOE PAGES

    Maidana, Carlos O.; Nieminen, Juha E.

    2017-02-01

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less

  1. Development of the Vacuum Circuit Breaker with an Electromagnetic Actuator

    NASA Astrophysics Data System (ADS)

    Morita, Ayumu; Yabu, Masato; Kajiwara, Satoru

    A new type of vacuum circuit breaker (VCB) has been developed, which needs a minimum of maintenance. This VCB is characterized by the following: (a) a significantly simplified driving mechanism, (b) no need for grease, and (c) a new electromagnetic actuator called a hybrid-type electromagnet. The number of movable parts is decreased to 15% of that of our conventional product with a spring drive. Solid lubricant is adopted instead of grease for almost all of the linkages, which helps to eliminate periodical lubricating maintenance. The hybrid-type electromagnet has an attractive force suitable for the spring force characteristics of the VCB through its combination of conventional plunger-type and plate-armature-type electromagnet. The VCB is held in the closed position by the attractive force of the permanent magnet without using a coil current. Its core structure is optimized to prevent the permanent magnet from demagnetization and to secure long-term reliability. To assess the solid lubricant reliability, some special tests were performed such as a rare operation test. Dynamic characteristics were measured for three specimens at intervals of a month, a year, and two years, respectively. It was confirmed that variation of the armature speed is small and the influence of the non-operation interval is negligible.

  2. Force-free electromagnetic pulses in a laboratory plasma

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Urrutia, J. M.

    1990-01-01

    A short, intense current pulse is drawn from an electrode immersed in a magnetized afterglow plasma. The induced magnetic field B(r,t) assumes the shape of a helical double vortex which propagates along B(0) through the uniform plasma as a whistler mode. The observations support a prediction of force-free (J x B + neE = 0) electromagnetic fields and solitary waves. Energy and helicity are approximately conserved.

  3. Stability considerations for magnetic suspension systems using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Britcher, Colin P.

    1991-01-01

    Mathematical models of a 5, 6, 7, and 8 coil large gap magnetic suspension system (MSDS) are presented. Some of the topics covered include: force and torque equations, reduction of state-space form, natural modes, origins of modes, effect of rotation in azimuth (yaw), future work, and n-coil ring conclusions.

  4. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  5. A Basic Study on Countermeasure Against Aerodynamic Force Acting on Train Running Inside Tunnel Using Air Blowing

    NASA Astrophysics Data System (ADS)

    Suzuki, Masahiro; Nakade, Koji

    A basic study of flow controls using air blowing was conducted to reduce unsteady aerodynamic force acting on trains running in tunnels. An air blowing device is installed around a model car in a wind tunnel. Steady and periodic blowings are examined utilizing electromagnetic valves. Pressure fluctuations are measured and the aerodynamic force acting on the car is estimated. The results are as follows: a) The air blowing allows reducing the unsteady aerodynamic force. b) It is effective to blow air horizontally at the lower side of the car facing the tunnel wall. c) The reduction rate of the unsteady aerodynamic force relates to the rate of momentum of the blowing to that of the uniform flow. d) The periodic blowing with the same frequency as the unsteady aerodynamic force reduces the aerodynamic force in a manner similar to the steady blowing.

  6. A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting

    NASA Astrophysics Data System (ADS)

    Košnik, N.; Guštin, A. Z.; Mavrič, B.; Šarler, B.

    2016-03-01

    Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology.

  7. EMPTAC (Electromagnetic Pulse Test Aircraft) user's guide

    NASA Astrophysics Data System (ADS)

    Cleaveland, Dale R.; Burkhard, Avery

    1988-04-01

    This guide was established to give test managers a way to familiarize themselves with the Air Force Weapons Laboratory's electromagnetic pulse (EMP) test aircraft program located at Kirtland Air Force Base (KAFB), New Mexico. Brief descriptions of the available EMP test facilities at KAFB are also included. This guide should give prospective customers (users) adequate information to scope the magnitude of their test effort and to accomplish general planning without extensive involvement in test execution details.

  8. Shaping metallic glasses by electromagnetic pulsing

    PubMed Central

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-01-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460

  9. Analysis of eddy current induced in track on medium-low speed maglev train

    NASA Astrophysics Data System (ADS)

    Li, Guanchun; Jia, Zhen; He, Guang; Li, Jie

    2017-06-01

    Electromagnetic levitation (EMS) maglev train relies on the attraction between the electromagnets and rails which are mounted on the train to achieve suspension. During the movement, the magnetic field generated by the electromagnet will induce the eddy current in the orbit and the eddy current will weaken the suspended magnetic field. Which leads to the attenuation of the levitation force, the increases of suspension current and the degradation the suspension performance. In this paper, the influence of eddy current on the air gap magnetic field is solved by theoretical analysis, and the correction coefficient of air gap magnetic field is fitted according to the finite element data. The levitation force and current are calculated by the modified formula, and the velocity curves of the levitation force and current are obtained. The results show that the eddy current effect increases the load power by 61.9% in the case of heavy loads.

  10. Cavity magnomechanics

    PubMed Central

    Zhang, Xufeng; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.

    2016-01-01

    A dielectric body couples with electromagnetic fields through radiation pressure and electrostrictive forces, which mediate phonon-photon coupling in cavity optomechanics. In a magnetic medium, according to the Korteweg-Helmholtz formula, which describes the electromagnetic force density acting on a medium, magneostrictive forces should arise and lead to phonon-magnon interaction. We report such a coupled phonon-magnon system based on ferrimagnetic spheres, which we term as cavity magnomechanics, by analogy to cavity optomechanics. Coherent phonon-magnon interactions, including electromagnetically induced transparency and absorption, are demonstrated. Because of the strong hybridization of magnon and microwave photon modes and their high tunability, our platform exhibits new features including parametric amplification of magnons and phonons, triple-resonant photon-magnon-phonon coupling, and phonon lasing. Our work demonstrates the fundamental principle of cavity magnomechanics and its application as a new information transduction platform based on coherent coupling between photons, phonons, and magnons. PMID:27034983

  11. Thin sheet casting with electromagnetic pressurization

    DOEpatents

    Walk, Steven R.; Slepian, R. Michael; Nathenson, Richard D.; Williams, Robert S.

    1991-01-01

    An apparatus, method and system for the casting of thin strips or strips of metal upon a moving chill block that includes an electromagnet located so that molten metal poured from a reservoir onto the chill block passes into the magnetic field produced by the electromagnet. The electromagnet produces a force on the molten metal on said chill block in the direction toward said chill block in order to enhance thermal contact between the molten metal and the chill block.

  12. Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals.

    PubMed

    Bakunov, M I; Maslov, A V; Bodrov, S B

    2007-11-16

    We show that the usual Fresnel formulas for a free-propagating pulse are not applicable for a forced terahertz electromagnetic pulse supported by an optical pulse at the end of a nonlinear crystal. The correct linear reflection and transmission coefficients that we derive show that such pulses can experience a gain or loss at the boundary. This energy change depends on linear dielectric constants only. We also predict a regime where a complete disappearance of the forced pulse under oblique incidence occurs, an effect that has no counterpart for free-propagating pulses.

  13. Thermal infrared near-field spectroscopy.

    PubMed

    Jones, Andrew C; Raschke, Markus B

    2012-03-14

    Despite the seminal contributions of Kirchhoff and Planck describing far-field thermal emission, fundamentally distinct spectral characteristics of the electromagnetic thermal near-field have been predicted. However, due to their evanescent nature their direct experimental characterization has remained elusive. Combining scattering scanning near-field optical microscopy with Fourier-transform spectroscopy using a heated atomic force microscope tip as both a local thermal source and scattering probe, we spectroscopically characterize the thermal near-field in the mid-infrared. We observe the spectrally distinct and orders of magnitude enhanced resonant spectral near-field energy density associated with vibrational, phonon, and phonon-polariton modes. We describe this behavior and the associated distinct on- and off-resonance nanoscale field localization with model calculations of the near-field electromagnetic local density of states. Our results provide a basis for intrinsic and extrinsic resonant manipulation of optical forces, control of nanoscale radiative heat transfer with optical antennas, and use of this new technique of thermal infrared near-field spectroscopy for broadband chemical nanospectroscopy. © 2012 American Chemical Society

  14. Gravitational Casimir-Polder effect

    NASA Astrophysics Data System (ADS)

    Hu, Jiawei; Yu, Hongwei

    2017-04-01

    The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir-Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z-5 in the near zone, and z-6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose-Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10-21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.

  15. Force-velocity relationship of single actin filament interacting with immobilised myosin measured by electromagnetic technique.

    PubMed

    Holohan, S-J P; Marston, S B

    2005-06-01

    The effect of applying an external load to actin filaments moving in the in vitro motility assay is studied. Bead-tailed actin filaments were made by polymerising actin onto 2.8 microm diameter Dynabeads conjugated with gelsolin-G actin. These were introduced into a motility cell coated with 100 microg/ml rabbit fast skeletal myosin in the presence of ATP and 0.5% methylcellulose. The motility cell was inserted between the pole-pieces of an electromagnet and the fluorescent beads and filaments were observed. The force-current relationship of the electromagnet was determined from the velocity of free beads in viscous solution and Stokes' equation. The magnet produced up to 6 pN force on the Dynabeads at 1 A. Many bead-tailed actin filaments stuck to the surface, but the beads that did move moved at the same speed as unloaded f-actin in the same cell. Bead-tailed filaments slowed down under an increasing magnetic load, eventually stalled and then slid backward under increasing load before detaching from the surface. Single-filament force-velocity curves were constructed and a stalling force of about 0.6 pN/mm of actin filament estimated.

  16. Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spethmann, A., E-mail: spethmann@physik.uni-kiel.de; Trottenberg, T., E-mail: trottenberg@physik.uni-kiel.de; Kersten, H., E-mail: kersten@physik.uni-kiel.de

    The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forcesmore » and currents onto the same target are compared with each other and with Faraday cup measurements.« less

  17. A general theory of DC electromagnetic launchers

    NASA Astrophysics Data System (ADS)

    Engel, Thomas G.; Timpson, Erik J.

    2015-08-01

    The non-linear, transient operation of DC electromagnetic launchers (EMLs) complicates their theoretical understanding and prevents scaling studies and performance comparisons without the aid of detailed numerical models. This paper presents a general theory for DC electromagnetic launchers that has simplified these tasks by identifying critical EML parameters and relationships affecting the EML's voltage, current, and power scaling, as well as its performance and energy conversion efficiency. EML parameters and relationships discussed in this paper include the specific force, the operating mode, the launcher constant, the launcher characteristic velocity, the contact characteristic velocity, the energy conversion efficiency, and the kinetic power and voltage-current scaling relationship. The concepts of the ideal EML, same-scale comparisons, and EML impedance are discussed. This paper defines conditions needed for the EML to operate in the steady-state. A comparison of the general theory with experimental results of several different types of DC (i.e., non-induction) electromagnetic launchers ranging from medium velocity (100's m/s) to high velocity (1000's m/s) is performed. There is good agreement between the general theory and the experimental results.

  18. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has continuously progressed with its research effort focused on subjects identified and recommended by the Advisory Task Force of the program. The research activities in this reporting period have been steered toward practical helicopter electromagnetic problems, such as HF antenna problems and antenna efficiencies, recommended by the AHE members at the annual conference held at Arizona State University on 28-29 Oct. 1992 and the last biannual meeting held at the Boeing Helicopter on 19-20 May 1993. The main topics addressed include the following: Composite Materials and Antenna Technology. The research work on each topic is closely tied with the AHE Consortium members' interests. Significant progress in each subject is reported. Special attention in the area of Composite Materials has been given to the following: modeling of material discontinuity and their effects on towel-bar antenna patterns; guidelines for composite material modeling by using the Green's function approach in the NEC code; measurements of towel-bar antennas grounded with a partially material-coated plate; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; FDTD modeling of horn antennas with composite E-plane walls; and antenna efficiency analysis for a horn antenna loaded with composite dielectric materials.

  19. A triangular prism solid and shell interactive mapping element for electromagnetic sheet metal forming process

    NASA Astrophysics Data System (ADS)

    Cui, Xiangyang; Li, She; Feng, Hui; Li, Guangyao

    2017-05-01

    In this paper, a novel triangular prism solid and shell interactive mapping element is proposed to solve the coupled magnetic-mechanical formulation in electromagnetic sheet metal forming process. A linear six-node "Triprism" element is firstly proposed for transient eddy current analysis in electromagnetic field. In present "Triprism" element, shape functions are given explicitly, and a cell-wise gradient smoothing operation is used to obtain the gradient matrices without evaluating derivatives of shape functions. In mechanical field analysis, a shear locking free triangular shell element is employed in internal force computation, and a data mapping method is developed to transfer the Lorentz force on solid into the external forces suffered by shell structure for dynamic elasto-plasticity deformation analysis. Based on the deformed triangular shell structure, a "Triprism" element generation rule is established for updated electromagnetic analysis, which means inter-transformation of meshes between the coupled fields can be performed automatically. In addition, the dynamic moving mesh is adopted for air mesh updating based on the deformation of sheet metal. A benchmark problem is carried out for confirming the accuracy of the proposed "Triprism" element in predicting flux density in electromagnetic field. Solutions of several EMF problems obtained by present work are compared with experiment results and those of traditional method, which are showing excellent performances of present interactive mapping element.

  20. Optimization of an electromagnetic linear actuator using a network and a finite element model

    NASA Astrophysics Data System (ADS)

    Neubert, Holger; Kamusella, Alfred; Lienig, Jens

    2011-03-01

    Model based design optimization leads to robust solutions only if the statistical deviations of design, load and ambient parameters from nominal values are considered. We describe an optimization methodology that involves these deviations as stochastic variables for an exemplary electromagnetic actuator used to drive a Braille printer. A combined model simulates the dynamic behavior of the actuator and its non-linear load. It consists of a dynamic network model and a stationary magnetic finite element (FE) model. The network model utilizes lookup tables of the magnetic force and the flux linkage computed by the FE model. After a sensitivity analysis using design of experiment (DoE) methods and a nominal optimization based on gradient methods, a robust design optimization is performed. Selected design variables are involved in form of their density functions. In order to reduce the computational effort we use response surfaces instead of the combined system model obtained in all stochastic analysis steps. Thus, Monte-Carlo simulations can be applied. As a result we found an optimum system design meeting our requirements with regard to function and reliability.

  1. The Vulnerabilities of Unmanned Aircraft System Common Data Links to Electronic Attack

    DTIC Science & Technology

    2010-06-11

    jamming, radar acquisition, and radar tracking (US Joint Forces Command 2009b, 101). Electromagnetic Interference ( EMI ). Any electromagnetic...has a range of up to 125 kilometers, and can remain airborne for up to 6 hours (see figure 6). The Shadow 200 is launched using a trailer mounted...disruption by EMI and friendly EW jamming systems. Second, FM 3-04.115 is the only publication that addresses counter-UAS threats and how enemy forces may

  2. Mitigation measures of electromagnetic field exposure in the vicinity of high frequency welders.

    PubMed

    Zubrzak, Bartłomiej; Bieńkowski, Paweł; Cała, Pawel

    2017-10-17

    Presented information about the welding process and equipment, focusing on the emission of electromagnetic field (EMF) with levels significant in terms of the labor safety regulations in force in Poland - the ordinances of the Minister of Family, Labour and Social Policy that came into force on June 27, 2016 and June 29, 2016 - emerged due to harmonization with European Union directive 2013/35/EU of 26 June 2013 of the European Parliament and the Council. They presented methods of determination of the EMF distribution in the welding machine surroundings and analyzed the background knowledge from the available literature. The subject of the analysis included popular high frequency welders widely used in the industry. Electromagnetic field measurements were performed in the welder operating place (in situ) during machine normal operations, using measurement methods accordant with labor safety regulations in force in Poland and according to the same guidelines, the EMF distributions and parameters having been described. They presented various scenarios of particular, real examples of excessive exposure to EMF in the dielectric welder surroundings and showed solutions, ranging from simple and costless and ending on dedicated electromagnetic shielding systems, which allowed to reduce EMF exposure in some cases of more than 80% (protection zone ranges) or eliminate dangerous zone presence. It has shown that in the dielectric welders surrounding, significant EMF strength levels may be the result of errors or omissions which often occur during development, installation, operation or modification of welding machines. It has allowed to present the measures that may significantly reduce the exposure to EMF of workers in the welder surroundings. The role of accredited laboratories in helping in such cases was underlined. Med Pr 2017;68(6):693-703. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  3. Ponderomotive Forces in Cosmos

    NASA Astrophysics Data System (ADS)

    Lundin, R.; Guglielmi, A.

    2006-12-01

    This review is devoted to ponderomotive forces and their importance for the acceleration of charged particles by electromagnetic waves in space plasmas. Ponderomotive forces constitute time-averaged nonlinear forces acting on a media in the presence of oscillating electromagnetic fields. Ponderomotive forces represent a useful analytical tool to describe plasma acceleration. Oscillating electromagnetic fields are also related with dissipative processes, such as heating of particles. Dissipative processes are, however, left outside these discussions. The focus will be entirely on the (conservative) ponderomotive forces acting in space plasmas. The review consists of seven sections. In Section 1, we explain the rational for using the auxiliary ponderomotive forces instead of the fundamental Lorentz force for the study of particle motions in oscillating fields. In Section 2, we present the Abraham, Miller, Lundin-Hultqvist and Barlow ponderomotive forces, and the Bolotovsky-Serov ponderomotive drift. The hydrodynamic, quasi-hydrodynamic, and ‘`test-particle’' approaches are used for the study of ponderomotive wave-particle interaction. The problems of self-consistency and regularization are discussed in Section 3. The model of static balance of forces (Section 4) exemplifies the interplay between thermal, gravitational and ponderomotive forces, but it also introduces a set of useful definitions, dimensionless parameters, etc. We analyze the Alfvén and ion cyclotron waves in static limit with emphasis on the specific distinction between traveling and standing waves. Particular attention has been given to the impact of traveling Alfvén waves on the steady state anabatic wind that blows over the polar regions (Section~5). We demonstrate the existence of a wave-induced cold anabatic wind. We also show that, at a critical point, the ponderomotive acceleration of the wind is a factor of 3 greater than the thermal acceleration. Section 6 demonstrates various manifestations of ponderomotive forces in the Earth's magnetosphere, for instance the ionospheric plasma acceleration and outflow. The polar wind and the auroral density cavities are considered in relation to results from the Freja and Viking satellites. The high-altitude energization and escape of ions is discussed. The ponderomotive anharmonicity of standing Alfvén waves is analyzed from ground based ULF wave measurements. The complexity of the many challenging problems related with plasma processes near the magnetospheric boundaries is discussed in the light of recent Cluster observations. At the end of Section 6, we consider the application of ponderomotive forces to the diversity of phenomena on the Sun, in the interstellar environment, on newborn stars, pulsars and active galaxies. We emphasize the role of forcing of magnetized plasmas in general and ponderomotive forcing in particular, presenting some simple conceivable scenarios for massive outflow and jets from astrophysical objects.

  4. On electromagnetic forming processes in finitely strained solids: Theory and examples

    NASA Astrophysics Data System (ADS)

    Thomas, J. D.; Triantafyllidis, N.

    2009-08-01

    The process of electromagnetic forming (EMF) is a high velocity manufacturing technique that uses electromagnetic (Lorentz) body forces to shape sheet metal parts. EMF holds several advantages over conventional forming techniques: speed, repeatability, one-sided tooling, and most importantly considerable ductility increase in several metals. Current modeling techniques for EMF processes are not based on coupled variational principles to simultaneously account for electromagnetic and mechanical effects. Typically, separate solutions to the electromagnetic (Maxwell) and motion (Newton) equations are combined in staggered or lock-step methods, sequentially solving the mechanical and electromagnetic problems. The present work addresses these issues by introducing a fully coupled Lagrangian (reference configuration) least-action variational principle, involving magnetic flux and electric potentials and the displacement field as independent variables. The corresponding Euler-Lagrange equations are Maxwell's and Newton's equations in the reference configuration, which are shown to coincide with their current configuration counterparts obtained independently by a direct approach. The general theory is subsequently simplified for EMF processes by considering the eddy current approximation. Next, an application is presented for axisymmetric EMF problems. It is shown that the proposed variational principle forms the basis of a variational integration numerical scheme that provides an efficient staggered solution algorithm. As an illustration a number of such processes are simulated, inspired by recent experiments of freely expanding uncoated and polyurea-coated aluminum tubes.

  5. Reactor vibration reduction based on giant magnetostrictive materials

    NASA Astrophysics Data System (ADS)

    Rongge, Yan; Weiying, Liu; Yuechao, Wu; Menghua, Duan; Xiaohong, Zhang; Lihua, Zhu; Ling, Weng; Ying, Sun

    2017-05-01

    The vibration of reactors not only produces noise pollution, but also affects the safe operation of reactors. Giant magnetostrictive materials can generate huge expansion and shrinkage deformation in a magnetic field. With the principle of mutual offset between the giant magnetostrictive force produced by the giant magnetostrictive material and the original vibration force of the reactor, the vibration of the reactor can be reduced. In this paper, magnetization and magnetostriction characteristics in silicon steel and the giant magnetostrictive material are measured, respectively. According to the presented magneto-mechanical coupling model including the electromagnetic force and the magnetostrictive force, reactor vibration is calculated. By comparing the vibration of the reactor with different inserted materials in the air gaps between the reactor cores, the vibration reduction effectiveness of the giant magnetostrictive material is validated.

  6. Casimir force in a Lorentz violating theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Mariana; Turan, Ismail

    2006-08-01

    We study the effects of the minimal extension of the standard model including Lorentz violation on the Casimir force between two parallel conducting plates in the vacuum. We provide explicit solutions for the electromagnetic field using scalar field analogy, for both the cases in which the Lorentz violating terms come from the CPT-even or CPT-odd terms. We also calculate the effects of the Lorentz violating terms for a fermion field between two parallel conducting plates and analyze the modifications of the Casimir force due to the modifications of the Dirac equation. In all cases under consideration, the standard formulas formore » the Casimir force are modified by either multiplicative or additive correction factors, the latter case exhibiting different dependence on the distance between the plates.« less

  7. Motion of dust in a planetary magnetosphere - Orbit-averaged equations for oblateness, electromagnetic, and radiation forces with application to Saturn's E ring

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas P.

    1993-01-01

    The orbital dynamics of micrometer-sized dust grains is explored numerically and analytically, treating the strongest perturbation forces acting on close circumplanetary dust grains: higher-order gravity, radiation pressure, and the electromagnetic force. The appropriate orbit-average equations are derived and applied to the E ring. Arguments are made for the existence of azimuthal and vertical asymmetries in the E ring. New understanding of the dynamics of E ring dust grains is applied to problems of the ring's breadth and height. The possibility for further ground-based and spacecraft observations is considered.

  8. Double-sided electromagnetic pump with controllable normal force for rapid solidification of liquid metals

    DOEpatents

    Kuznetsov, Stephen B.

    1987-01-01

    A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink.

  9. Double-sided electromagnetic pump with controllable normal force for rapid solidification of liquid metals

    DOEpatents

    Kuznetsov, S.B.

    1987-01-13

    A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink. 5 figs.

  10. A mathematical model of extremely low frequency ocean induced electromagnetic noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dautta, Manik, E-mail: manik.dautta@anyeshan.com; Faruque, Rumana Binte, E-mail: rumana.faruque@anyeshan.com; Islam, Rakibul, E-mail: rakibul.islam@anyeshan.com

    2016-07-12

    Magnetic Anomaly Detection (MAD) system uses the principle that ferromagnetic objects disturb the magnetic lines of force of the earth. These lines of force are able to pass through both water and air in similar manners. A MAD system, usually mounted on an aerial vehicle, is thus often employed to confirm the detection and accomplish localization of large ferromagnetic objects submerged in a sea-water environment. However, the total magnetic signal encountered by a MAD system includes contributions from a myriad of low to Extremely Low Frequency (ELF) sources. The goal of the MAD system is to detect small anomaly signalsmore » in the midst of these low-frequency interfering signals. Both the Range of Detection (R{sub d}) and the Probability of Detection (P{sub d}) are limited by the ratio of anomaly signal strength to the interfering magnetic noise. In this paper, we report a generic mathematical model to estimate the signal-to-noise ratio or SNR. Since time-variant electro-magnetic signals are affected by conduction losses due to sea-water conductivity and the presence of air-water interface, we employ the general formulation of dipole induced electromagnetic field propagation in stratified media [1]. As a first step we employ a volumetric distribution of isolated elementary magnetic dipoles, each having its own dipole strength and orientation, to estimate the magnetic noise observed by a MAD system. Numerical results are presented for a few realizations out of an ensemble of possible realizations of elementary dipole source distributions.« less

  11. Cost and Savings Estimates the Air Force Used to Decide Against Relocating the Electromagnetic Compatibility Analysis Center from Annapolis, Maryland, to Duluth, Minnesota.

    DTIC Science & Technology

    1983-03-09

    that maximize electromagnetic compatibility potential. -- Providing direct assistance on an reimbursable basis to DOD and other Government agencies on...value, we estimated that reimburs - able real estate expenses would average about $6,458 rather than $4,260 included in the Air Force estimate. When the...of estimated reimbursement was assumed to be necessary to encourage the relocation of more professional employees and increase their estimated

  12. Analysis of radial and longitudinal force of plasma wakefield generated by a chirped pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghasemi, Leila; Afhami, Saeedeh; Eslami, Esmaeil, E-mail: eeslami@iust.ac.ir

    2015-08-15

    In present paper, the chirp effect of an electromagnetic pulse via an analytical model of wakefield generation is studied. Different types of chirps are employed in this study. Our results show that by the use of nonlinear chirped pulse the longitudinal wakefield and focusing force is stronger than that of linear chirped pulse. It is indicated that quadratic nonlinear chirped pulses are globally much efficient than periodic nonlinear chirped pulses. Our calculations also predict that in nonlinear chirped pulse case, the overlap of focusing and accelerating regions is broader than that achieved in linear chirped pulse.

  13. Design and modeling of a hydraulically amplified magnetostrictive actuator for automotive engine mounts

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Suryarghya; Dapino, Marcelo J.

    2009-03-01

    A bidirectional magnetostrictive actuator with millimeter stroke and a blocked force of few tens of Newtons has been developed based on a Terfenol-D driver and a simple hydraulic magnification stage. The actuator is compared with an electrodynamic actuator used in active powertrain mounts in terms of electrical power consumption, frequency bandwidth, and spectral content of the response. The measurements show that the actuator has a flat free-displacement and blocked-force response up to 200 Hz, suggesting a significantly broader frequency bandwidth than commercial electromagnetic actuators while drawing comparable amounts of power.

  14. Modelling of electron beam induced nanowire attraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitzer, Lucas A.; Benson, Niels, E-mail: niels.benson@uni-due.de; Schmechel, Roland

    2016-04-14

    Scanning electron microscope (SEM) induced nanowire (NW) attraction or bundling is a well known effect, which is mainly ascribed to structural or material dependent properties. However, there have also been recent reports of electron beam induced nanowire bending by SEM imaging, which is not fully explained by the current models, especially when considering the electro-dynamic interaction between NWs. In this article, we contribute to the understanding of this phenomenon, by introducing an electro-dynamic model based on capacitor and Lorentz force interaction, where the active NW bending is stimulated by an electromagnetic force between individual wires. The model includes geometrical, electrical,more » and mechanical NW parameters, as well as the influence of the electron beam source parameters and is validated using in-situ observations of electron beam induced GaAs nanowire (NW) bending by SEM imaging.« less

  15. Modeling, design, and testing of a proof-of-concept prototype damper with friction and eddy current damping effects

    NASA Astrophysics Data System (ADS)

    Amjadian, Mohsen; Agrawal, Anil K.

    2018-01-01

    Friction is considered as one of the most reliable mechanisms of energy dissipation that has been utilized extensively in passive damping devices to mitigate vibration of civil engineering structures subjected to extreme natural hazards such as earthquakes and windstorms. However, passive friction dampers are well-known for having a highly nonlinear hysteretic behavior caused by stick-slip motion at low velocities, a phenomenon that is inherent in friction and increases the acceleration response of the structure under control unfavorably. The authors have recently proposed the theoretical concept of a new type of damping device termed as "Passive Electromagnetic Eddy Current Friction Damper" (PEMECFD) in which an eddy current damping mechanism was utilized not only to decrease the undesirable effects of stick-slip motion, but also to increase the energy dissipation capacity of the damping device as a whole. That study was focused on demonstration of the theoretical performance of the proposed damping device through numerical simulations. This paper further investigates the influence of eddy current damping on energy dissipation due to friction through modeling, design, and testing of a proof-of-concept prototype damper. The design of this damper has been improved over the design in the previous study. The normal force in this damper is produced by the repulsive magnetic force between two cuboidal permanent magnets (PMs) magnetized in the direction normal to the direction of the motion. The eddy current damping force is generated because of the motion of the two PMs and two additional PMs relative to a copper plate in their vicinity. The dynamic models for the force-displacement relationship of the prototype damper are based on LuGre friction model, electromagnetic theory, and inertial effects of the prototype damper. The parameters of the dynamic models have been identified through a series of characterization tests on the prototype damper under harmonic excitations of different frequencies in the laboratory. Finally, the identified dynamic models have been validated by subjecting the prototype damper to two different random excitations. The results indicate that the proposed dynamic models are capable of representing force-displacement behavior of the new type of passive damping device for a wide range of operating conditions.

  16. Can a virtual reality assessment of fine motor skill predict successful central line insertion?

    PubMed

    Mohamadipanah, Hossein; Parthiban, Chembian; Nathwani, Jay; Rutherford, Drew; DiMarco, Shannon; Pugh, Carla

    2016-10-01

    Due to the increased use of peripherally inserted central catheter lines, central lines are not performed as frequently. The aim of this study is to evaluate whether a virtual reality (VR)-based assessment of fine motor skills can be used as a valid and objective assessment of central line skills. Surgical residents (N = 43) from 7 general surgery programs performed a subclavian central line in a simulated setting. Then, they participated in a force discrimination task in a VR environment. Hand movements from the subclavian central line simulation were tracked by electromagnetic sensors. Gross movements as monitored by the electromagnetic sensors were compared with the fine motor metrics calculated from the force discrimination tasks in the VR environment. Long periods of inactivity (idle time) during needle insertion and lack of smooth movements, as detected by the electromagnetic sensors, showed a significant correlation with poor force discrimination in the VR environment. Also, long periods of needle insertion time correlated to the poor performance in force discrimination in the VR environment. This study shows that force discrimination in a defined VR environment correlates to needle insertion time, idle time, and hand smoothness when performing subclavian central line placement. Fine motor force discrimination may serve as a valid and objective assessment of the skills required for successful needle insertion when placing central lines. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Phenomenological Model of Current Sheet Canting in Pulsed Electromagnetic Accelerators

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas; Choueiri, E. Y.

    2003-01-01

    The phenomenon of current sheet canting in pulsed electromagnetic accelerators is the departure of the plasma sheet (that carries the current) from a plane that is perpendicular to the electrodes to one that is skewed, or tipped. Review of pulsed electromagnetic accelerator literature reveals that current sheet canting is a ubiquitous phenomenon - occurring in all of the standard accelerator geometries. Developing an understanding of current sheet canting is important because it can detract from the propellant sweeping capabilities of current sheets and, hence, negatively impact the overall efficiency of pulsed electromagnetic accelerators. In the present study, it is postulated that depletion of plasma near the anode, which results from axial density gradient induced diamagnetic drift, occurs during the early stages of the discharge, creating a density gradient normal to the anode, with a characteristic length on the order of the ion skin depth. Rapid penetration of the magnetic field through this region ensues, due to the Hall effect, leading to a canted current front ahead of the initial current conduction channel. In this model, once the current sheet reaches appreciable speeds, entrainment of stationary propellant replenishes plasma in the anode region, inhibiting further Hall-convective transport of the magnetic field; however, the previously established tilted current sheet remains at a fairly constant canting angle for the remainder of the discharge cycle, exerting a transverse J x B force which drives plasma toward the cathode and accumulates it there. This proposed sequence of events has been incorporated into a phenomenological model. The model predicts that canting can be reduced by using low atomic mass propellants with high propellant loading number density; the model results are shown to give qualitative agreement with experimentally measured canting angle mass dependence trends.

  18. New formula of Nuclear Force

    NASA Astrophysics Data System (ADS)

    Uddin, Kamal

    2011-04-01

    It is well established that the forces between nucleons are transmitted by meson. The quantitative explanation of nuclear forces in terms of meson theory was extremely tentative & in complete but this theory supplies a valuable point of view . it is fairly certain now that the nucleons within nuclear matter are in a state made rather different from their free condition by the proximity of other nucleons charge independence of nuclear forces demand the existence of neutral meson as amongst the same type of nucleolus (P-P) or (N-N). this force demand the same spin & orbital angular momentum. The exchange interaction in produced by only a neutral meson. The involving mesons without electric charge, that it gives exchanges forces between proton & Neutron & also therefore maintains charge in dependence character. It is evident for the nature of the products that neutral mesons decay by strong & weak interaction both. It means that neutral mesons constituents responsible for the electromagnetic interaction. Dramatically neutral mesons plays important role for electromagnetic & nuclear force both.

  19. Trouble with the Lorentz law of force: incompatibility with special relativity and momentum conservation.

    PubMed

    Mansuripur, Masud

    2012-05-11

    The Lorentz law of force is the fifth pillar of classical electrodynamics, the other four being Maxwell's macroscopic equations. The Lorentz law is the universal expression of the force exerted by electromagnetic fields on a volume containing a distribution of electrical charges and currents. If electric and magnetic dipoles also happen to be present in a material medium, they are traditionally treated by expressing the corresponding polarization and magnetization distributions in terms of bound-charge and bound-current densities, which are subsequently added to free-charge and free-current densities, respectively. In this way, Maxwell's macroscopic equations are reduced to his microscopic equations, and the Lorentz law is expected to provide a precise expression of the electromagnetic force density on material bodies at all points in space and time. This Letter presents incontrovertible theoretical evidence of the incompatibility of the Lorentz law with the fundamental tenets of special relativity. We argue that the Lorentz law must be abandoned in favor of a more general expression of the electromagnetic force density, such as the one discovered by Einstein and Laub in 1908. Not only is the Einstein-Laub formula consistent with special relativity, it also solves the long-standing problem of "hidden momentum" in classical electrodynamics.

  20. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    NASA Astrophysics Data System (ADS)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  1. A Transport Model for Non-Local Heating of Electrons in ICP Reactors

    NASA Technical Reports Server (NTRS)

    Chang, C. H.; Bose, Deepak; Arnold, James O. (Technical Monitor)

    1998-01-01

    A new model has been developed for non-local heating of electrons in ICP reactors, based on a hydrodynamic approach. The model has been derived using the electron momentum conservation in azimuthal direction with electromagnetic and frictional forces respectively as driving force and damper of harmonic oscillatory motion of electrons. The resulting transport equations include the convection of azimuthal electron momentum in radial and axial directions, thereby accounting for the non-local effects. The azimuthal velocity of electrons and the resulting electrical current are coupled to the Maxwell's relations, thus forming a self-consistent model for non-local heating. This model is being implemented along with a set of Navier-Stokes equations for plasma dynamics and gas flow to simulate low-pressure (few mTorr's) ICP discharges. Characteristics of nitrogen plasma in a TCP 300mm etch reactor is being studied. The results will be compared against the available Langmuir probe measurements.

  2. Scientific and Technological Achievements, 1946-2011, of the AFRL Electromagnetics Technology Division (AFRL/RYH) and Its Progenitors

    DTIC Science & Technology

    2012-07-01

    AFRL /RYH) Sensors Directorate Air Force Research Laboratory Wright-Patterson Air Force ...Lossless Acoustic Monopoles, Electric Dipoles, and Magnetodielectric Spheres, Air Force Research Laboratory in-house report AFRL -SN-HS-TR-2006-0039... FORCE RESEARCH LABORATORY SENSORS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320 AIR FORCE MATERIEL COMMAND UNITED

  3. Semiphenomenological model for gas-liquid phase transitions.

    PubMed

    Benilov, E S; Benilov, M S

    2016-03-01

    We examine a rarefied gas with inter-molecular attraction. It is argued that the attraction force amplifies random density fluctuations by pulling molecules from lower-density regions into high-density regions and thus may give rise to an instability. To describe this effect, we use a kinetic equation where the attraction force is taken into account in a way similar to how electromagnetic forces in plasma are treated in the Vlasov model. It is demonstrated that the instability occurs when the temperature T is lower than a certain threshold value T(s) depending on the gas density. It is further shown that, even if T is only marginally lower than T(s), the instability generates clusters with density much higher than that of the gas. These results suggest that the instability should be interpreted as a gas-liquid phase transition, with T(s) being the temperature of saturated vapor and the high-density clusters representing liquid droplets.

  4. Do Optomechanical Metasurfaces Run Out of Time?

    PubMed

    Viaene, Sophie; Ginis, Vincent; Danckaert, Jan; Tassin, Philippe

    2018-05-11

    Artificially structured metasurfaces make use of specific configurations of subwavelength resonators to efficiently manipulate electromagnetic waves. Additionally, optomechanical metasurfaces have the desired property that their actual configuration may be tuned by adjusting the power of a pump beam, as resonators move to balance pump-induced electromagnetic forces with forces due to elastic filaments or substrates. Although the reconfiguration time of optomechanical metasurfaces crucially determines their performance, the transient dynamics of unit cells from one equilibrium state to another is not understood. Here, we make use of tools from nonlinear dynamics to analyze the transient dynamics of generic optomechanical metasurfaces based on a damped-resonator model with one configuration parameter. We show that the reconfiguration time of optomechanical metasurfaces is not only limited by the elastic properties of the unit cell but also by the nonlinear dependence of equilibrium states on the pump power. For example, when switching is enabled by hysteresis phenomena, the reconfiguration time is seen to increase by over an order of magnitude. To illustrate these results, we analyze the nonlinear dynamics of a bilayer cross-wire metasurface whose optical activity is tuned by an electromagnetic torque. Moreover, we provide a lower bound for the configuration time of generic optomechanical metasurfaces. This lower bound shows that optomechanical metasurfaces cannot be faster than state-of-the-art switches at reasonable powers, even at optical frequencies.

  5. Do Optomechanical Metasurfaces Run Out of Time?

    NASA Astrophysics Data System (ADS)

    Viaene, Sophie; Ginis, Vincent; Danckaert, Jan; Tassin, Philippe

    2018-05-01

    Artificially structured metasurfaces make use of specific configurations of subwavelength resonators to efficiently manipulate electromagnetic waves. Additionally, optomechanical metasurfaces have the desired property that their actual configuration may be tuned by adjusting the power of a pump beam, as resonators move to balance pump-induced electromagnetic forces with forces due to elastic filaments or substrates. Although the reconfiguration time of optomechanical metasurfaces crucially determines their performance, the transient dynamics of unit cells from one equilibrium state to another is not understood. Here, we make use of tools from nonlinear dynamics to analyze the transient dynamics of generic optomechanical metasurfaces based on a damped-resonator model with one configuration parameter. We show that the reconfiguration time of optomechanical metasurfaces is not only limited by the elastic properties of the unit cell but also by the nonlinear dependence of equilibrium states on the pump power. For example, when switching is enabled by hysteresis phenomena, the reconfiguration time is seen to increase by over an order of magnitude. To illustrate these results, we analyze the nonlinear dynamics of a bilayer cross-wire metasurface whose optical activity is tuned by an electromagnetic torque. Moreover, we provide a lower bound for the configuration time of generic optomechanical metasurfaces. This lower bound shows that optomechanical metasurfaces cannot be faster than state-of-the-art switches at reasonable powers, even at optical frequencies.

  6. Optical forces, torques, and force densities calculated at a microscopic level using a self-consistent hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Chan, C. T.

    2018-04-01

    The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.

  7. Electromagnetically-Actuated Reciprocating Pump for High-Flow-Rate Microfluidic Applications

    PubMed Central

    Ke, Ming-Tsun; Zhong, Jian-Hao; Lee, Chia-Yen

    2012-01-01

    This study presents an electromagnetically-actuated reciprocating pump for high-flow-rate microfluidic applications. The pump comprises four major components, namely a lower glass plate containing a copper microcoil, a middle PMMA plate incorporating a PDMS diaphragm with a surface-mounted magnet, upper PMMA channel plates, and a ball-type check valve located at the channel inlet. When an AC current is passed through the microcoil, an alternating electromagnetic force is established between the coil and the magnet. The resulting bi-directional deflection of the PDMS diaphragm causes the check-valve to open and close; thereby creating a pumping effect. The experimental results show that a coil input current of 0.4 A generates an electromagnetic force of 47 mN and a diaphragm deflection of 108 μm. Given an actuating voltage of 3 V and a driving frequency of 15 Hz, the flow rate is found to be 13.2 mL/min under zero head pressure conditions. PMID:23201986

  8. Optical Modification of Casimir Forces for Improved Function of Micro-and Nano-Scale Devices

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nan

    2010-01-01

    Recently, there has been a considerable effort to study the Casimir and van der Waals forces, enabled by the improved ability to measure small forces near surfaces. Because of the continuously growing role of micro- and nanomechanical devices, the focus of this activity has shifted towards the ability to control these forces. Possible approaches to manipulating the Casimir force include development of composite materials, engineered nanostructures, mixed-phase materials, or active elements. So far, practical success has been limited. The role of geometrical factors in the Casimir force is significant. It is known, for example, that the Casimir force between two spherical shells enclosed one into the other is repulsive instead of normal attractive. Unfortunately, nanosurfaces with this topology are very difficult to make. A more direct approach to manipulating and neutralizing the Casimir force is using external mechanical or electromagnetic forces. Unfortunately, the technological overhead of such an approach is quite large. Using electromagnetic compensation instead of mechanical will considerably reduce this overhead and at the same time provide the degree of control over the Casimir force that mechanical springs cannot provide. A mechanical analog behind Casimir forces is shown.

  9. Effect of electromagnetic field on Kordylewski clouds formation

    NASA Astrophysics Data System (ADS)

    Salnikova, Tatiana; Stepanov, Sergey

    2018-05-01

    In previous papers the authors suggest a clarification of the phenomenon of appearance-disappearance of Kordylewski clouds - accumulation of cosmic dust mass in the vicinity of the triangle libration points of the Earth-Moon system. Under gravi-tational and light perturbation of the Sun the triangle libration points aren't the points of relative equilibrium. However, there exist the stable periodic motion of the particles, surrounding every of the triangle libration points. Due to this fact we can consider a probabilistic model of the dust clouds formation. These clouds move along the periodical orbits in small vicinity of the point of periodical orbit. To continue this research we suggest a mathematical model to investigate also the electromagnetic influences, arising under consideration of the charged dust particles in the vicinity of the triangle libration points of the Earth-Moon system. In this model we take under consideration the self-unduced force field within the set of charged particles, the probability distribution density evolves according to the Vlasov equation.

  10. A constitutive model for the forces of a magnetic bearing including eddy currents

    NASA Technical Reports Server (NTRS)

    Taylor, D. L.; Hebbale, K. V.

    1993-01-01

    A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.

  11. Lateral-drag propulsion forces induced by anisotropy.

    PubMed

    Nefedov, Igor S; Rubi, J Miguel

    2017-07-21

    We predict the existence of lateral drag forces near the flat surface of an absorbing slab made of an anisotropic material. The forces originate from the fluctuations of the electromagnetic field, when the anisotropy axis of the material forms a certain angle with the surface. In this situation, the spatial spectra of the fluctuating electromagnetic fields becomes asymmetric, different for positive and negative transverse wave vectors components. Differently from the case of van der Waals interactions in which the forward-backward symmetry is broken due to the particle movement, in our case the lateral motion results merely from the anisotropy of the slab. This new effect, of particular significance in hyperbolic materials, could be used for the manipulation of nanoparticles.

  12. Particle-in-cell simulations of Hall plasma thrusters

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  13. Conceptual design of a high-speed electromagnetic switch for a modified flux-coupling-type SFCL and its application in renewable energy system.

    PubMed

    Chen, Lei; Chen, Hongkun; Yang, Jun; Shu, Zhengyu; He, Huiwen; Shu, Xin

    2016-01-01

    The modified flux-coupling-type superconducting fault current (SFCL) is a high-efficient electrical auxiliary device, whose basic function is to suppress the short-circuit current by controlling the magnetic path through a high-speed switch. In this paper, the high-speed switch is based on electromagnetic repulsion mechanism, and its conceptual design is carried out to promote the application of the modified SFCL. Regarding that the switch which is consisting of a mobile copper disc, two fixed opening and closing coils, the computational method for the electromagnetic force is discussed, and also the dynamic mathematical model including circuit equation, magnetic field equation as well as mechanical motion equation is theoretically deduced. According to the mathematical modeling and calculation of characteristic parameters, a feasible design scheme is presented, and the high-speed switch's response time can be less than 0.5 ms. For that the modified SFCL is equipped with this high-speed switch, the SFCL's application in a 10 kV micro-grid system with multiple renewable energy sources are assessed in the MATLAB software. The simulations are well able to affirm the SFCL's performance behaviors.

  14. Electromagnetic Coupling of Negative Parity Nucleon Resonances N (1535) Based on Nonrelativistic Constituent Quark Model

    NASA Astrophysics Data System (ADS)

    Parsaei, Sara; Rajabi, Ali Akbar

    2018-01-01

    The electromagnetic transition between the nucleon and excited baryons has long been recognized as an important source of information for understanding strong interactions in the domain of quark confinement. We study the electromagnetic properties of the excitation of the negative parity the N*(1535) resonances in the nonrelativistic constituent quark model at large momentum transfers and have performed a calculation the longitudinal and transverse helicity amplitudes. Since the helicity amplitudes depend strongly on the quark wave function in this paper, we consider the baryon as a simple, non-relativistically three-body quark model and also consider a hypercentral potential scheme for the internal baryon structure, which makes three-body forces among three quarks. Since the hyper central potential depends only on the hyper radius, therefore, the Cornell potential which is a combination of the Coulombic-like term plus a linear confining term is considered as the potential for interaction between quarks. In our work, in solving the Schrodinger equation with the Cornell potential, the Nikiforov-Uvarov method employed, and the analytic eigen-energies and eigen-functions obtained. By using the obtained eigen-functions, the transition amplitudes calculated. We show that our results in the range {{{Q}}}2> 2 {{GeV}}2 lead to an overall better agreement with the experimental data in comparison with the other three non-relativistic quark models.

  15. Rigorous derivation of electromagnetic self-force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gralla, Samuel E.; Harte, Abraham I.; Wald, Robert M.

    2009-07-15

    During the past century, there has been considerable discussion and analysis of the motion of a point charge in an external electromagnetic field in special relativity, taking into account 'self-force' effects due to the particle's own electromagnetic field. We analyze the issue of 'particle motion' in classical electromagnetism in a rigorous and systematic way by considering a one-parameter family of solutions to the coupled Maxwell and matter equations corresponding to having a body whose charge-current density J{sup a}({lambda}) and stress-energy tensor T{sub ab}({lambda}) scale to zero size in an asymptotically self-similar manner about a worldline {gamma} as {lambda}{yields}0. In thismore » limit, the charge, q, and total mass, m, of the body go to zero, and q/m goes to a well-defined limit. The Maxwell field F{sub ab}({lambda}) is assumed to be the retarded solution associated with J{sup a}({lambda}) plus a homogeneous solution (the 'external field') that varies smoothly with {lambda}. We prove that the worldline {gamma} must be a solution to the Lorentz force equations of motion in the external field F{sub ab}({lambda}=0). We then obtain self-force, dipole forces, and spin force as first-order perturbative corrections to the center-of-mass motion of the body. We believe that this is the first rigorous derivation of the complete first-order correction to Lorentz force motion. We also address the issue of obtaining a self-consistent perturbative equation of motion associated with our perturbative result, and argue that the self-force equations of motion that have previously been written down in conjunction with the 'reduction of order' procedure should provide accurate equations of motion for a sufficiently small charged body with negligible dipole moments and spin. (There is no corresponding justification for the non-reduced-order equations.) We restrict consideration in this paper to classical electrodynamics in flat spacetime, but there should be no difficulty in extending our results to the motion of a charged body in an arbitrary globally hyperbolic curved spacetime.« less

  16. Theoretical and experimental evaluation of the flow behavior of a magnetorheological damper using an extremely bimodal magnetic fluid

    NASA Astrophysics Data System (ADS)

    Iglesias, G. R.; Ahualli, S.; Echávarri Otero, J.; Fernández Ruiz-Morón, L.; Durán, J. D. G.

    2014-08-01

    The flow behavior of a magnetorheological (MR) fluid, consisting of iron particles dispersed in a ferrofluid carrier (‘MRFF’) in a commercial monotube MR shock absorber is studied. The magnetorheological properties of the MRFF suspensions are compared with those of a conventional oil-based MR fluid (‘MRF’). The mechanical behavior of the MR damper, filled with the MRFF or alternatively with the MRF, is characterized by means of different oscillatory force-displacement and force-velocity tests. The MR shock absorber has an internal electromagnet that generates a controlled magnetic field in the channels through which the MR suspensions flow under operation conditions. The results obtained indicate that the damper filled with MRFF shows a reliable and reproducible behavior. In particular, the response of the shock absorber can be controlled to a large extent by adjusting the electromagnetic current, showing a response that is independent of the mechanical and magnetic history of the MRFF. The non-linear hysteresis model proposed for predicting the damping force provides good agreement with the experimental results when the MRFF is employed. The improved response of the damper loaded with ferrofluid-based MRFF (instead of the conventional MRF) is explained considering the physical properties and the internal structure of the suspension.

  17. The Influence of the External Signal Modulation Waveform and Frequency on the Performance of a Photonic Forced Oscillator.

    PubMed

    Sánchez-Castro, Noemi; Palomino-Ovando, Martha Alicia; Estrada-Wiese, Denise; Valladares, Nydia Xcaret; Del Río, Jesus Antonio; de la Mora, Maria Beatriz; Doti, Rafael; Faubert, Jocelyn; Lugo, Jesus Eduardo

    2018-05-21

    Photonic crystals have been an object of interest because of their properties to inhibit certain wavelengths and allow the transmission of others. Using these properties, we designed a photonic structure known as photodyne formed by two porous silicon one-dimensional photonic crystals with an air defect between them. When the photodyne is illuminated with appropriate light, it allows us to generate electromagnetic forces within the structure that can be maximized if the light becomes localized inside the defect region. These electromagnetic forces allow the microcavity to oscillate mechanically. In the experiment, a chopper was driven by a signal generator to modulate the laser light that was used. The driven frequency and the signal modulation waveform (rectangular, sinusoidal or triangular) were changed with the idea to find optimal conditions for the structure to oscillate. The microcavity displacement amplitude, velocity amplitude and Fourier spectrum of the latter and its frequency were measured by means of a vibrometer. The mechanical oscillations are modeled and compared with the experimental results and show good agreement. For external frequency values of 5 Hz and 10 Hz, the best option was a sinusoidal waveform, which gave higher photodyne displacements and velocity amplitudes. Nonetheless, for an external frequency of 15 Hz, the best option was the rectangular waveform.

  18. The Influence of the External Signal Modulation Waveform and Frequency on the Performance of a Photonic Forced Oscillator

    PubMed Central

    Sánchez-Castro, Noemi; Palomino-Ovando, Martha Alicia; Estrada-Wiese, Denise; Valladares, Nydia Xcaret; del Río, Jesus Antonio; Doti, Rafael; Faubert, Jocelyn; Lugo, Jesus Eduardo

    2018-01-01

    Photonic crystals have been an object of interest because of their properties to inhibit certain wavelengths and allow the transmission of others. Using these properties, we designed a photonic structure known as photodyne formed by two porous silicon one-dimensional photonic crystals with an air defect between them. When the photodyne is illuminated with appropriate light, it allows us to generate electromagnetic forces within the structure that can be maximized if the light becomes localized inside the defect region. These electromagnetic forces allow the microcavity to oscillate mechanically. In the experiment, a chopper was driven by a signal generator to modulate the laser light that was used. The driven frequency and the signal modulation waveform (rectangular, sinusoidal or triangular) were changed with the idea to find optimal conditions for the structure to oscillate. The microcavity displacement amplitude, velocity amplitude and Fourier spectrum of the latter and its frequency were measured by means of a vibrometer. The mechanical oscillations are modeled and compared with the experimental results and show good agreement. For external frequency values of 5 Hz and 10 Hz, the best option was a sinusoidal waveform, which gave higher photodyne displacements and velocity amplitudes. Nonetheless, for an external frequency of 15 Hz, the best option was the rectangular waveform. PMID:29883393

  19. Dual actuation micro-mirrors

    NASA Astrophysics Data System (ADS)

    Alneamy, A. M.; Khater, M. E.; Al-Ghamdi, M. S.; Park, S.; Heppler, G. R.; Abdel-Rahman, E. M.

    2018-07-01

    This paper investigates the performance of cantilever-type micro-mirrors under electromagnetic, electrostatic and dual actuation. We developed and validated a two-DOFs model of the coupled bending-torsion motions of the mirror and used it in conjunction with experiments in air and in vacuum to compare all three actuation methods. We found that electromagnetic actuation is the most effective delivering a scanning range of  ± out of a geometrically allowable range of  ± at a current amplitude i  =  3 mA and a magnetic field of B  =  30 mT. Electrostatic actuation, whether alone or in conjunction with electromagnetic actuation, limited the stable angular range to smaller values (as small as ) due to the presence of spurious piston motions. This is an innate characteristic of micro-scale electrostatic actuation, the electrostatic force and the undesirable piston motion grow faster than the electrostatic torque and the desired angular displacement as the voltage is increased and they limit the stable angular range. Finally, we found that the dual actuation can be used to design two-DOF mirrors where electromagnetic actuation drives angular motion for optical beam steering and electrostatic actuation drives piston motion to control the mirror focus.

  20. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    NASA Astrophysics Data System (ADS)

    Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.

    2018-01-01

    Plasma-facing components (PFC’s) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC’s can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC’s and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.

  1. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hvasta, Michael George; Kolemen, Egemen; Fisher, Adam

    Plasma-facing components (PFC's) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC's, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC's can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metalmore » that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. Furthermore, these results show the promise of electromagnetic control for LM-PFC's and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.« less

  2. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    DOE PAGES

    Hvasta, Michael George; Kolemen, Egemen; Fisher, Adam; ...

    2017-10-13

    Plasma-facing components (PFC's) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC's, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC's can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metalmore » that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. Furthermore, these results show the promise of electromagnetic control for LM-PFC's and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.« less

  3. Looking into Generator Room, showing electromagnetic pulse (EMP) filter boxes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking into Generator Room, showing electromagnetic pulse (EMP) filter boxes mounted above door - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Power Plant, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  4. Nonlinear effects of electromagnetic forces on primary resonance of a levitated elastic bar supported by high- Tc superconducting bearings

    NASA Astrophysics Data System (ADS)

    Iori, T.; Ogawa, S.; Sugiura, T.

    2007-10-01

    This research investigates nonlinear dynamics of an elastic body supported at both its ends by electromagnetic forces between superconductors and magnets. We focus on the primary resonance of each eigenmode under vertical excitation of superconducting bulks. Experiment and numerical analysis show the softening tendency in the resonance of the 3rd mode consisting of mainly deflection and slightly translation. This nonlinear response can be theoretically explained only by nonlinear coupling between the 1st and 3rd modes through their quadratic terms.

  5. The essence of the Blandford-Znajek process

    NASA Astrophysics Data System (ADS)

    Kinoshita, Shunichiro; Igata, Takahisa

    2018-03-01

    From a spacetime perspective, the dynamics of magnetic field lines of force-free electromagnetic fields can be rewritten into a quite similar form for the dynamics of strings, i.e., dynamics of "field sheets". Using this formalism, we explicitly show that the field sheets of stationary and axisymmetric force-free electromagnetic fields have identical intrinsic properties to the world sheets of rigidly rotating Nambu-Goto strings. Thus, we conclude that the Blandford-Znajek process is kinematically identical to an energy-extraction mechanism by the Nambu-Goto string with an effective magnetic tension.

  6. A portable back massage robot based on Traditional Chinese Medicine.

    PubMed

    Wang, Wendong; Liang, Chaohong; Zhang, Peng; Shi, Yikai

    2018-05-30

    A portable back massage robot which can complete the massage operations such as tapping, kneading and rolling was designed to improve the level of intelligence and massage effect. An efficient full covered path planning algorithm was put forward for a portable back massage robot to improve the coverage. Currently, massage robots has become one of important research focuses with the increasing requirements for healthcare. The massage robot is difficult to be widely accepted as there are problems of massage robot in control, structure, and coverage path planning. The 3D electromagnetic simulation model was established to optimize electromagnetic force. By analyzing the Traditional Chinese Medicine massage operation and the demands, the path planning algorithm models were established. The experimental platform of the massage robot was built. The simulation results show presented path planning algorithm is suitable for back massage, which ensures that the massage robot traverse the entire back area with improved massage coverage. The tested results show that the massage effect is best when the duty cycle is in the range of 1/8 to 1/2, and the massage force increases with the increase of the input voltage. The massage robot eventually achieved the desired massage effect, and the proposed efficient algorithm can effectively improve the coverage and promote the massage effect.

  7. Electromagnetic plasma simulation in realistic geometries

    NASA Astrophysics Data System (ADS)

    Brandon, S.; Ambrosiano, J. J.; Nielsen, D.

    1991-08-01

    Particle-in-Cell (PIC) calculations have become an indispensable tool to model the nonlinear collective behavior of charged particle species in electromagnetic fields. Traditional finite difference codes, such as CONDOR (2-D) and ARGUS (3-D), are used extensively to design experiments and develop new concepts. A wide variety of physical processes can be modeled simply and efficiently by these codes. However, experiments have become more complex. Geometrical shapes and length scales are becoming increasingly more difficult to model. Spatial resolution requirements for the electromagnetic calculation force large grids and small time steps. Many hours of CRAY YMP time may be required to complete 2-D calculation -- many more for 3-D calculations. In principle, the number of mesh points and particles need only to be increased until all relevant physical processes are resolved. In practice, the size of a calculation is limited by the computer budget. As a result, experimental design is being limited by the ability to calculate, not by the experimenters ingenuity or understanding of the physical processes involved. Several approaches to meet these computational demands are being pursued. Traditional PIC codes continue to be the major design tools. These codes are being actively maintained, optimized, and extended to handle large and more complex problems. Two new formulations are being explored to relax the geometrical constraints of the finite difference codes. A modified finite volume test code, TALUS, uses a data structure compatible with that of standard finite difference meshes. This allows a basic conformal boundary/variable grid capability to be retrofitted to CONDOR. We are also pursuing an unstructured grid finite element code, MadMax. The unstructured mesh approach provides maximum flexibility in the geometrical model while also allowing local mesh refinement.

  8. Electromagnetic and Radiative Properties of Neutron Star Magnetospheres

    NASA Astrophysics Data System (ADS)

    Li, Jason G.

    2014-05-01

    Magnetospheres of neutron stars are commonly modeled as either devoid of plasma in "vacuum'' models or filled with perfectly conducting plasma with negligible inertia in "force-free'' models. While numerically tractable, neither of these idealized limits can simultaneously account for both the plasma currents and the accelerating electric fields that are needed to explain the morphology and spectra of high-energy emission from pulsars. In this work we improve upon these models by considering the structure of magnetospheres filled with resistive plasma. We formulate Ohm's Law in the minimal velocity fluid frame and implement a time-dependent numerical code to construct a family of resistive solutions that smoothly bridges the gap between the vacuum and force-free magnetosphere solutions. We further apply our method to create a self-consistent model for the recently discovered intermittent pulsars that switch between two distinct states: an "on'', radio-loud state, and an "off'', radio-quiet state with lower spin-down luminosity. Essentially, we allow plasma to leak off open field lines in the absence of pair production in the "off'' state, reproducing observed differences in spin-down rates. Next, we examine models in which the high-energy emission from gamma-ray pulsars comes from reconnecting current sheets and layers near and beyond the light cylinder. The reconnected magnetic field provides a reservoir of energy that heats particles and can power high-energy synchrotron radiation. Emitting particles confined to the sheet naturally result in a strong caustic on the skymap and double peaked light curves for a broad range of observer angles. Interpulse bridge emission likely arises from interior to the light cylinder, along last open field lines that traverse the space between the polar caps and the current sheet. Finally, we apply our code to solve for the magnetospheric structure of merging neutron star binaries. We find that the scaling of electromagnetic luminosity with orbital angular velocity varies between the power 4 for nonspinning stars and the power 1.5 for rapidly spinning millisecond pulsars near contact. Our derived scalings and magnetospheres can be used to help understand electromagnetic signatures from merging neutron stars to be observed by Advanced LIGO.

  9. Development and Integration of an Advanced Stirling Convertor Linear Alternator Model for a Tool Simulating Convertor Performance and Creating Phasor Diagrams

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan F.; Lewandowski, Edward J.

    2013-01-01

    A simple model of the Advanced Stirling Convertors (ASC) linear alternator and an AC bus controller has been developed and combined with a previously developed thermodynamic model of the convertor for a more complete simulation and analysis of the system performance. The model was developed using Sage, a 1-D thermodynamic modeling program that now includes electro-magnetic components. The convertor, consisting of a free-piston Stirling engine combined with a linear alternator, has sufficiently sinusoidal steady-state behavior to allow for phasor analysis of the forces and voltages acting in the system. A MATLAB graphical user interface (GUI) has been developed to interface with the Sage software for simplified use of the ASC model, calculation of forces, and automated creation of phasor diagrams. The GUI allows the user to vary convertor parameters while fixing different input or output parameters and observe the effect on the phasor diagrams or system performance. The new ASC model and GUI help create a better understanding of the relationship between the electrical component voltages and mechanical forces. This allows better insight into the overall convertor dynamics and performance.

  10. A Novel Angular Acceleration Sensor Based on the Electromagnetic Induction Principle and Investigation of Its Calibration Tests

    PubMed Central

    Zhao, Hao; Feng, Hao

    2013-01-01

    An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor. PMID:23941911

  11. Advanced concepts. [specific impulse, mass drivers, electromagnetic launchers, and the rail gun

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1980-01-01

    The relative strengths of those interactions which enable propulsive forces are listed as well as the specific impulse of various propellants. Graphics show the linear synchronous motor of the mass driver, the principle of the direct current electromagnetic launcher, and the characteristics of the rail gun.

  12. Nonadditivity of van der Waals forces on liquid surfaces

    NASA Astrophysics Data System (ADS)

    Venkataram, Prashanth S.; Whitton, Jeremy D.; Rodriguez, Alejandro W.

    2016-09-01

    We present an approach for modeling nanoscale wetting and dewetting of textured solid surfaces that exploits recently developed, sophisticated techniques for computing exact long-range dispersive van der Waals (vdW) or (more generally) Casimir forces in arbitrary geometries. We apply these techniques to solve the variational formulation of the Young-Laplace equation and predict the equilibrium shapes of liquid-vacuum interfaces near solid gratings. We show that commonly employed methods of computing vdW interactions based on additive Hamaker or Derjaguin approximations, which neglect important electromagnetic boundary effects, can result in large discrepancies in the shapes and behaviors of liquid surfaces compared to exact methods.

  13. Electromagnetic stress tensor for an amorphous metamaterial medium

    NASA Astrophysics Data System (ADS)

    Wang, Neng; Wang, Shubo; Ng, Jack

    2018-03-01

    We analytically and numerically investigated the internal optical forces exerted by an electromagnetic wave inside an amorphous metamaterial medium. We derived, by using the principle of virtual work, the Helmholtz stress tensor, which takes into account the electrostriction effect. Several examples of amorphous media are considered, and different electromagnetic stress tensors, such as the Einstein-Laub tensor and Minkowski tensor, are also compared. It is concluded that the Helmholtz stress tensor is the appropriate tensor for such systems.

  14. Electromagnetic attachment mechanism

    NASA Technical Reports Server (NTRS)

    Monford, Leo G., Jr. (Inventor)

    1992-01-01

    An electromagnetic attachment mechanism is disclosed for use as an end effector of a remote manipulator system. A pair of electromagnets, each with a U-shaped magnetic core with a pull-in coil and two holding coils, are mounted by a spring suspension system on a base plate of the mechanism housing with end pole pieces adapted to move through openings in the base plate when the attractive force of the electromagnets is exerted on a strike plate of a grapple fixture affixed to a target object. The pole pieces are spaced by an air gap from the strike plate when the mechanism first contacts the grapple fixture. An individual control circuit and power source is provided for the pull-in coil and one holding coil of each electromagnet. A back-up control circuit connected to the two power sources and a third power source is provided for the remaining holding coils. When energized, the pull-in coils overcome the suspension system and air gap and are automatically de-energized when the pole pieces move to grapple and impose a preload force across the grapple interface. A battery backup is a redundant power source for each electromagnet in each individual control circuit and is automatically connected upon failure of the primary source. A centerline mounted camera and video monitor are used in cooperation with a target pattern on the reflective surface of the strike plate to effect targeting and alignment.

  15. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    NASA Astrophysics Data System (ADS)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  16. Chaotic advection at large Péclet number: Electromagnetically driven experiments, numerical simulations, and theoretical predictions

    NASA Astrophysics Data System (ADS)

    Figueroa, Aldo; Meunier, Patrice; Cuevas, Sergio; Villermaux, Emmanuel; Ramos, Eduardo

    2014-01-01

    We present a combination of experiment, theory, and modelling on laminar mixing at large Péclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, "The diffusive strip method for scalar mixing in two-dimensions," J. Fluid Mech. 662, 134-172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement with quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors.

  17. Magnetohydrodynamic drag reduction and its efficiency

    NASA Astrophysics Data System (ADS)

    Shatrov, V.; Gerbeth, G.

    2007-03-01

    We present results of direct numerical simulations of a turbulent channel flow influenced by electromagnetic forces. The magnetohydrodynamic Lorentz force is created by the interaction of a steady magnetic field and electric currents fed to the fluid via electrodes placed at the wall surface. Two different cases are considered. At first, a time-oscillating electric current and a steady magnetic field create a spanwise time-oscillating Lorentz force. In the second case, a stationary electric current and a steady magnetic field create a steady, mainly streamwise Lorentz force. Besides the viscous drag, the importance of the electromagnetic force acting on the wall is figured out. Regarding the energetic efficiency, it is demonstrated that in all cases a balance between applied and flow-induced electric currents improves the efficiency significantly. But even then, the case of a spanwise oscillating Lorentz force remains with a very low efficiency, whereas for the self-propelled regime in the case of a steady streamwise force, much higher efficiencies are found. Still, no set of parameters has yet been found for which an energetic breakthrough, i.e., a saved power exceeding the used power, is reached.

  18. Linear or Rotary Actuator Using Electromagnetic Driven Hammer as Prime Mover

    NASA Technical Reports Server (NTRS)

    McMahan, Bert K. (Inventor); Sesler, Joshua J. (Inventor); Paine, Matthew T. (Inventor); McMahan, Mark C. (Inventor); Paine, Jeffrey S. N. (Inventor); Smith, Byron F. (Inventor)

    2018-01-01

    We claim a hammer driven actuator that uses the fast-motion, low-force characteristics of an electro-magnetic or similar prime mover to develop kinetic energy that can be transformed via a friction interface to produce a higher-force, lower-speed linear or rotary actuator by using a hammering process to produce a series of individual steps. Such a system can be implemented using a voice-coil, electro-mechanical solenoid or similar prime mover. Where a typical actuator provides limited range of motion or low force, the range of motion of a linear or rotary impact driven motor can be configured to provide large displacements which are not limited by the characteristic dimensions of the prime mover.

  19. Electromagnetic torque tweezers: a versatile approach for measurement of single-molecule twist and torque.

    PubMed

    Janssen, Xander J A; Lipfert, Jan; Jager, Tessa; Daudey, Renier; Beekman, Jaap; Dekker, Nynke H

    2012-07-11

    The well-established single-molecule force-spectroscopy techniques have recently been complemented by methods that can measure torque and twist directly, notably magnetic torque tweezers and the optical torque wrench. A limitation of the current torque measurement schemes is the intrinsic coupling between the force and torque degrees of freedom. Here we present electromagnetic torque tweezers (eMTT) that combine permanent and electromagnets to enable independent control of the force and torsional trap stiffness for sensitive measurements of single molecule torque and twist. Using the eMTT, we demonstrate sensitive torque measurements on tethered DNA molecules from simple tracking of the beads' (x,y)-position, obviating the need for any angular tracking algorithms or markers. Employing the eMTT for high-resolution torque measurements, we experimentally confirm the theoretically predicted torque overshoot at the DNA buckling transition in high salt conditions. We envision that the flexibility and control afforded by the eMTT will enable a range of new torque and twist measurement schemes from single-molecules to living cells.

  20. Application of physical parameter identification to finite-element models

    NASA Technical Reports Server (NTRS)

    Bronowicki, Allen J.; Lukich, Michael S.; Kuritz, Steven P.

    1987-01-01

    The time domain parameter identification method described previously is applied to TRW's Large Space Structure Truss Experiment. Only control sensors and actuators are employed in the test procedure. The fit of the linear structural model to the test data is improved by more than an order of magnitude using a physically reasonable parameter set. The electro-magnetic control actuators are found to contribute significant damping due to a combination of eddy current and back electro-motive force (EMF) effects. Uncertainties in both estimated physical parameters and modal behavior variables are given.

  1. Large-scale shell-model calculations for 32-39P isotopes

    NASA Astrophysics Data System (ADS)

    Srivastava, P. C.; Hirsch, J. G.; Ermamatov, M. J.; Kota, V. K. B.

    2012-10-01

    In this work, the structure of 32-39P isotopes is described in the framework of stateof-the-art large-scale shell-model calculations, employing the code ANTOINE with three modern effective interactions: SDPF-U, SDPF-NR and the extended pairing plus quadrupole-quadrupoletype forces with inclusion of monopole interaction (EPQQM). Protons are restricted to fill the sd shell, while neutrons are active in the sd - pf valence space. Results for positive and negative level energies and electromagnetic observables are compared with the available experimental data.

  2. Techniques for extreme attitude suspension of a wind tunnel model in a magnetic suspension and balance system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Parker, David Huw

    1989-01-01

    Although small scale magnetic suspension and balance systems (MSBSs) for wind tunnel use have been in existence for many years, they have not found general application in the production testing of flight vehicles. One reason for this is thought to lie in the relatively limited range of attitudes over which a wind tunnel model may be suspended. Modifications to a small MSBS to permit the suspension and control of axisymmetric models over angles of attack from less than zero to over ninety degrees are reported. Previous work has shown that existing arrangement of ten electromagnets was unable to generate one of the force components needed for control at extreme attitudes. Examination of possible solutions resulted in a simple alteration to rectify this deficiency. To generate the feedback signals to control the suspended model, an optical position sensing system using collimated laser beams and photodiode arrays was installed and tested. An analytical basis was developed for distributing the demands for force and moment needed for model stabilization amonge the electromagnets over the full attitude range. This was implemented by an MSBS control program able to continually adjust the distribution for the instantaneous incidence in accordance with prescheduled data. Results presented demonstrate rotations of models from zero to ninety degrees at rates up to ninety degrees per second, with pitching rates rising to several hundred degrees per second in response to step-change demands. A study of a design for a large MSBS suggests that such a system could be given the capability to control a model in six degrees of freedom over an unlimited angle of attack range.

  3. SPIREs: A Finite-Difference Frequency-Domain electromagnetic solver for inhomogeneous magnetized plasma cylinders

    NASA Astrophysics Data System (ADS)

    Melazzi, D.; Curreli, D.; Manente, M.; Carlsson, J.; Pavarin, D.

    2012-06-01

    We present SPIREs (plaSma Padova Inhomogeneous Radial Electromagnetic solver), a Finite-Difference Frequency-Domain (FDFD) electromagnetic solver in one dimension for the rapid calculation of the electromagnetic fields and the deposited power of a large variety of cylindrical plasma problems. The two Maxwell wave equations have been discretized using a staggered Yee mesh along the radial direction of the cylinder, and Fourier transformed along the other two dimensions and in time. By means of this kind of discretization, we have found that mode-coupling of fast and slow branches can be fully resolved without singularity issues that flawed other well-established methods in the past. Fields are forced by an antenna placed at a given distance from the plasma. The plasma can be inhomogeneous, finite-temperature, collisional, magnetized and multi-species. Finite-temperature Maxwellian effects, comprising Landau and cyclotron damping, have been included by means of the plasma Z dispersion function. Finite Larmor radius effects have been neglected. Radial variations of the plasma parameters are taken into account, thus extending the range of applications to a large variety of inhomogeneous plasma systems. The method proved to be fast and reliable, with accuracy depending on the spatial grid size. Two physical examples are reported: fields in a forced vacuum waveguide with the antenna inside, and forced plasma oscillations in the helicon radiofrequency range.

  4. Drag and Lift Forces Between a Rotating Conductive Sphere and a Cylindrical Magnet

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Youngquist, Robert C.

    2017-01-01

    Modeling the interaction between a non-uniform magnetic field and a rotating conductive object allows study of the drag force which is used in applications such as eddy current braking and linear induction motors as well as the transition to a repulsive force that is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two step mathematics process is developed to find a closed form solution in terms of only two eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.

  5. Drag and lift forces between a rotating conductive sphere and a cylindrical magnet

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.

    2018-06-01

    Modeling the interaction between a non-uniform magnetic field and a rotating conductive object provides insight into the drag force, which is used in applications such as eddy current braking and linear induction motors, as well as the transition to a repulsive force, which is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two-step mathematical process is developed to find a closed-form solution in terms of only three eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate-level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.

  6. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    NASA Astrophysics Data System (ADS)

    Li, Y. J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R. X.; Zheng, J.; Deng, C. Y.; Deng, Z. G.

    2016-09-01

    Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical 'Y' shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs', meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  7. Students' Development of Representational Competence Through the Sense of Touch

    NASA Astrophysics Data System (ADS)

    Magana, Alejandra J.; Balachandran, Sadhana

    2017-06-01

    Electromagnetism is an umbrella encapsulating several different concepts like electric current, electric fields and forces, and magnetic fields and forces, among other topics. However, a number of studies in the past have highlighted the poor conceptual understanding of electromagnetism concepts by students even after instruction. This study aims to identify novel forms of "hands-on" instruction that can result in representational competence and conceptual gain. Specifically, this study aimed to identify if the use of visuohaptic simulations can have an effect on student representations of electromagnetic-related concepts. The guiding questions is How do visuohaptic simulations influence undergraduate students' representations of electric forces? Participants included nine undergraduate students from science, technology, or engineering backgrounds who participated in a think-aloud procedure while interacting with a visuohaptic simulation. The think-aloud procedure was divided in three stages, a prediction stage, a minimally visual haptic stage, and a visually enhanced haptic stage. The results of this study suggest that students' accurately characterized and represented the forces felt around a particle, line, and ring charges either in the prediction stage, a minimally visual haptic stage or the visually enhanced haptic stage. Also, some students accurately depicted the three-dimensional nature of the field for each configuration in the two stages that included a tactile mode, where the point charge was the most challenging one.

  8. Electromagnetic Gun With Commutated Coils

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1991-01-01

    Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.

  9. [Electromagnetic Shielding Alters Behaviour of Rats].

    PubMed

    Temuryants, N A; Kostyuk, A S; Tumanyants, K N

    2015-01-01

    It has been found that long-term electromagnetic shielding (19 hours per day for 10 days) leads to an increase in the duration of passive swimming time in male rats, decrease the duration of active swimming in the "forced swim" test as well as decrease of libido. On the other hand animals kept under the "open field" conditions do not show significant deviations from their normal behavior. Therefore, one could conclude that moderate electromagnetic shielding causes a depression-like state in rats.

  10. Project Physics Text 4, Light and Electromagnetism.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Optical and electromagnetic fundamentals are presented in this fourth unit of the Project Physics text for use by senior high students. Development of the wave theory in the first half of the 19th Century is described to deal with optical problems at the early stage. Following explanations of electric charges and forces, field concepts are…

  11. Electromagnetic brake/clutch device

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1994-01-01

    An electromagnetic brake/clutch device includes a drive shaft supported by at least one bearing for transmitting torque, a housing, affixed to prevent its rotation, surrounding the drive shaft, and an electromagnetically activated device within the housing to selectively prevent and allow rotation of the drive shaft. The electromagnetically activated device includes a plurality of cammed rollers to prevent counter-clockwise rotation of the drive shaft. The drive shaft includes a circumferential disk and the housing includes a reaction ring for engagement with the plurality of cammed rollers. The plurality of cammed rollers are released from engagement with the circumferential disk and the reaction ring by a plurality of tripping mechanisms within the housing. The tripping action uses the locking force to act as a release force merely by changing the boundary conditions of the roller interface angles. The tripping mechanisms include trippers for disengaging the plurality of cammed rollers and an anvil shaped portion for providing lateral movement of the trippers. The plurality of cammed rollers is preloaded to engagement with the circumferential disk and reaction ring by a spring, and is located with respect to an adjacent tripping mechanism with another spring.

  12. Calculations and experiments concerning lifting force and power in TEMPUS

    NASA Technical Reports Server (NTRS)

    Zong, J. H.; Szekely, J.; Lohofer, G.

    1993-01-01

    A critical comparison is reported between the theoretically predicted and experimentally measured values for the electromagnetic lifting force and the heating rates which may be achieved, under simulated microgravity conditions, using the TEMPUS electromagnetic levitation device. The experiments involved the suspending of a metallic sample from one arm of a recording balance, such that it was carefully positioned between the heating and the positioning coils of the levitation device. The net force exerted by the sample was measured as a function of position, the coil currents, and the nature of the sample. Some calculations are also reported regarding the power absorption by the sample. The theoretical predictions, based on the numerical solution of Maxwell's equations using the volume integral technique, were found to be in excellent agreement with the measurements. For the idealized case of a spherical sample, analytical solutions describing the lifting force were also found to agree very well with the computed results.

  13. Electromagnetic induction pump for pumping liquid metals and other conductive liquids

    DOEpatents

    Smither, R.K.

    1993-05-11

    An electromagnetic induction pump is described in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

  14. Electromagnetic induction pump for pumping liquid metals and other conductive liquids

    DOEpatents

    Smither, Robert K.

    1993-01-01

    An electromagnetic induction pump in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

  15. Trapping of a micro-bubble by non-paraxial Gaussian beam: computation using the FDTD method.

    PubMed

    Sung, Seung-Yong; Lee, Yong-Gu

    2008-03-03

    Optical forces on a micro-bubble were computed using the Finite Difference Time Domain method. Non-paraxial Gaussian beam equation was used to represent the incident laser with high numerical aperture, common in optical tweezers. The electromagnetic field distribution around a micro-bubble was computed using FDTD method and the electromagnetic stress tensor on the surface of a micro-bubble was used to compute the optical forces. By the analysis of the computational results, interesting relations between the radius of the circular trapping ring and the corresponding stability of the trap were found.

  16. A magnetorheological fluid locking device

    NASA Astrophysics Data System (ADS)

    Kavlicoglu, Barkan; Liu, Yanming

    2011-04-01

    A magnetorheological fluid (MRF) device is designed to provide a static locking force caused by the operation of a controllable MRF valve. The intent is to introduce an MRF device which provides the locking force of a fifth wheel coupler while maintaining the "powerless" locking capability when required. A passive magnetic field supplied by a permanent magnet provides a powerless locking resistance force. The passively closed MRF valve provides sufficient reaction force to eliminate axial displacement to a pre-defined force value. Unlocking of the device is provided by means of an electromagnet which re-routes the magnetic field distribution along the MR valve, and minimizes the resistance. Three dimensional electromagnetic finite element analyses are performed to optimize the MRF lock valve performance. The MRF locking valve is fabricated and tested for installation on a truck fifth wheel application. An experimental setup, resembling actual working conditions, is designed and tests are conducted on vehicle interface schemes. The powerless-locking capacity and the unlocking process with minimal resistance are experimentally demonstrated.

  17. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatara, Gen, E-mail: gen.tatara@riken.jp; Nakabayashi, Noriyuki; Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 Japan

    2014-05-07

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  18. Electromagnetic field radiation model for lightning strokes to tall structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motoyama, H.; Janischewskyj, W.; Hussein, A.M.

    1996-07-01

    This paper describes observation and analysis of electromagnetic field radiation from lightning strokes to tall structures. Electromagnetic field waveforms and current waveforms of lightning strokes to the CN Tower have been simultaneously measured since 1991. A new calculation model of electromagnetic field radiation is proposed. The proposed model consists of the lightning current propagation and distribution model and the electromagnetic field radiation model. Electromagnetic fields calculated by the proposed model, based on the observed lightning current at the CN Tower, agree well with the observed fields at 2km north of the tower.

  19. May the Forces Be with You!

    ERIC Educational Resources Information Center

    Sirola, Christopher

    2018-01-01

    In everyday life, we usually directly note two basic forces: gravity and electromagnetism. Gravity--as in the acceleration due to Earth's gravity--tends to be a background force of sorts, something that is always present and always the same. We don't always see electricity and/or magnetism as such, but their subsidiaries are all around…

  20. Van der Waals forces in pNRQED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtabovenko, Vladyslav

    2016-01-22

    We report on the calculation of electromagnetic van der Waals forces [1] between two hydrogen atoms using non-relativistic effective field theories (EFTs) of QED for large and small momentum transfers with respect to the intrinsic energy scale of the hydrogen atom. Our results reproduce the well known London and Casimir-Polder forces.

  1. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2003-01-01

    An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

  2. An Improved Computational Technique for Calculating Electromagnetic Forces and Power Absorptions Generated in Spherical and Deformed Body in Levitation Melting Devices

    NASA Technical Reports Server (NTRS)

    Zong, Jin-Ho; Szekely, Julian; Schwartz, Elliot

    1992-01-01

    An improved computational technique for calculating the electromagnetic force field, the power absorption and the deformation of an electromagnetically levitated metal sample is described. The technique is based on the volume integral method, but represents a substantial refinement; the coordinate transformation employed allows the efficient treatment of a broad class of rotationally symmetrical bodies. Computed results are presented to represent the behavior of levitation melted metal samples in a multi-coil, multi-frequency levitation unit to be used in microgravity experiments. The theoretical predictions are compared with both analytical solutions and with the results or previous computational efforts for the spherical samples and the agreement has been very good. The treatment of problems involving deformed surfaces and actually predicting the deformed shape of the specimens breaks new ground and should be the major usefulness of the proposed method.

  3. ELECTROMAGNETIC RELEASE MECHANISM

    DOEpatents

    Michelson, C.

    1960-09-13

    An electromagnetic release mechanism is offered that may be used, for example, for supporting a safety rod for a nuclear reactor. The release mechanism is designed to have a large excess holding force and a rapid, uniform, and dependable release. The fast release is accomplished by providing the electromagnet with slotttd polts separated by an insulating potting resin, and by constructing the poles with a ferro-nickel alloy. The combination of these two features materially reduces the eddy current power density whenever the magnetic field changes during a release operation. In addition to these features, the design of the armature is such as to provide ready entrance of fluid into any void that might tend to form during release of the armature. This also improves the release time for the mechanism. The large holding force for the mechanism is accomplished by providing a small, selected, uniform air gap between the inner pole piece and the armature.

  4. Pulsed thrust measurements using electromagnetic calibration techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Haibin; Shi Chenbo; Zhang Xin'ai

    2011-03-15

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 {mu}N s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measuredmore » to give a 310 {mu}N s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 {mu}N s with 95% credibility.« less

  5. A transport model for non-local heating of electrons in ICP reactors

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Bose, Deepak

    1998-10-01

    A new model has been developed for non-local heating of electrons in ICP reactors, based on a hydrodynamic approach. The model has been derived using the electron momentum conservation in azimuthal direction with electromagnetic and frictional forces respectively as driving force and damper of harmonic oscillatory motion of electrons. The resulting transport equations include the convection of azimuthal electron momentum in radial and axial directions, thereby accounting for the non-local effects. The azimuthal velocity of electrons and the resulting electrical current are coupled to the Maxwell's relations, thus forming a self-consistent model for non-local heating. This model is being implemented along with a set of Navier-Stokes equations for plasma dynamics and gas flow to simulate low-pressure (few mTorr's) ICP discharges. Characteristics of nitrogen plasma in a TCP 300mm etch reactor is being studied. The results will be compared against the available Langmuir probe measurements [Collison et al. JVST-A 16(1),1998].

  6. Optimum dimensions of power solenoids for magnetic suspension

    NASA Technical Reports Server (NTRS)

    Kaznacheyev, B. A.

    1985-01-01

    Design optimization of power solenoids for controllable and stabilizable magnetic suspensions with force compensation in a wind tunnel is shown. It is assumed that the model of a levitating body is a sphere of ferromagnetic material with constant magnetic permeability. This sphere, with a radius much smaller than its distance from the solenoid above, is to be maintained in position on the solenoid axis by balance of the vertical electromagnetic force and the force of gravitation. The necessary vertical (axial) force generated by the solenoid is expressed as a function of relevant system dimensions, solenoid design parameters, and physical properties of the body. Three families of curves are obtained which depict the solenoid power for a given force as a function of the solenoid length with either outside radius or inside radius as a variable parameter and as a function of the outside radius with inside radius as a variable parameter. The curves indicate the optimum solenoid length and outside radius, for minimum power, corresponding to a given outside radius and inside radius, respectively.

  7. Probing axions with neutron star inspirals and other stellar processes

    NASA Astrophysics Data System (ADS)

    Hook, Anson; Huang, Junwu

    2018-06-01

    In certain models of a QCD axion, finite density corrections to the axion potential can result in the axion being sourced by large dense objects. There are a variety of ways to test this phenomenon, but perhaps the most surprising effect is that the axion can mediate forces between neutron stars that can be as strong as gravity. These forces can be attractive or repulsive and their presence can be detected by Advanced LIGO observations of neutron star inspirals. By a numerical coincidence, axion forces between neutron stars with gravitational strength naturally have an associated length scale of tens of kilometers or longer, similar to that of a neutron star. Future observations of neutron star mergers in Advanced LIGO can probe many orders of magnitude of axion parameter space. Because the axion is only sourced by large dense objects, the axion force evades fifth force constraints. We also outline several other ways to probe this phenomenon using electromagnetic signals associated with compact objects.

  8. Conformal invariance and the metrication of the fundamental forces

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip D.

    2016-07-01

    We revisit Weyl’s metrication (geometrization) of electromagnetism. We show that by making Weyl’s proposed geometric connection be pure imaginary, not only are we able to metricate electromagnetism, an underlying local conformal invariance makes the geometry be strictly Riemannian and prevents observational gravity from being complex. Via torsion, we achieve an analogous metrication for axial-vector fields. We generalize our procedure to Yang-Mills theories, and achieve a metrication of all the fundamental forces. Only in the gravity sector does our approach differ from the standard picture of fundamental forces, with our approach requiring that standard Einstein gravity be replaced by conformal gravity. We show that quantum conformal gravity is a consistent and unitary quantum gravitational theory, one that, unlike string theory, only requires four spacetime dimensions.

  9. Neutrons and Fundamental Symmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plaster, Bradley

    2016-01-11

    The research supported by this project addressed fundamental open physics questions via experiments with subatomic particles. In particular, neutrons constitute an especially ideal “laboratory” for fundamental physics tests, as their sensitivities to the four known forces of nature permit a broad range of tests of the so-called “Standard Model”, our current best physics model for the interactions of subatomic particles. Although the Standard Model has been a triumphant success for physics, it does not provide satisfactory answers to some of the most fundamental open questions in physics, such as: are there additional forces of nature beyond the gravitational, electromagnetic, weakmore » nuclear, and strong nuclear forces?, or why does our universe consist of more matter than anti-matter? This project also contributed significantly to the training of the next generation of scientists, of considerable value to the public. Young scientists, ranging from undergraduate students to graduate students to post-doctoral researchers, made significant contributions to the work carried out under this project.« less

  10. Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.

    2017-05-01

    The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.

  11. Application of Manning's Formula for Estimation of Liquid Metal Levels in Electromagnetic Flow Measurements

    NASA Astrophysics Data System (ADS)

    Stelian, Carmen

    2015-02-01

    Lorentz force velocimetry is a new technique in electromagnetic flow measurements based on exposing an electrical conducting metal to a static magnetic field and measuring the force acting on the magnet system. The calibration procedure of a Lorentz force flowmeter used in industrial open-channel flow measurements is difficult because of the fluctuating liquid level in the channel. In this paper, the application of Manning's formula to estimate the depth of a liquid metal flowing in an open channel is analyzed by using the numerical modeling. Estimations of Manning's n parameter for aluminum show higher values as compared with water flowing in artificial channels. Saint-Venant equations are solved in order to analyze the wave propagation at the free surface of the liquid. Numerical results show a significant damping of waves at the surface of liquid metals as compared with water. Therefore, the Manning formula can be used to correlate the liquid depth and the flow rate in LFF numerical calibration procedure. These results show that the classical formulas, used exclusively to study the water flow in open channels, can be also applied for the liquid metals. The application of Manning's formulas requires experimental measurements of the parameter n, which depends on the channel bed roughness and also on the physical properties of the liquid flowing in channel.

  12. Electro-Acoustic Behavior of the Mitotic Spindle: A Semi-Classical Coarse-Grained Model

    PubMed Central

    Havelka, Daniel; Kučera, Ondřej; Deriu, Marco A.; Cifra, Michal

    2014-01-01

    The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i) the triggering of the apoptosis or (ii) the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells—a strategy used in novel methods for cancer treatment. PMID:24497952

  13. The use of electromagnetic body forces to enhance the quality of laser welds

    NASA Astrophysics Data System (ADS)

    Ambrosy, Guenter; Berger, P.; Huegel, H.; Lindenau, D.

    2003-11-01

    The use of electromagnetic body forces in laser beam welding of aluminum alloys is a new method to shape the geometry and to enhance the quality of the weld seams. In this new approach, electromagnetic volume forces are utilized by applying magnetic fields and electric currents of various origins. Acting in the liquid metal, they directly affect the flow field and can lead to favourable conditions for the melt dynamics and energy coupling. Numerous welds with full and partial penetration using both CO2 and Nd:YAG lasers demonstrate that this method directly influences the seam geometry and top-bead topography as well as the penetration depth and the evolution of pores and cracks. In the case of full penetration, it is also possible to lift or to lower the weld pool. The method, therefore, can be used to shape the geometry and to enhance the quality of the weld seam. Depending on the orientation of an external magnetic field, significant impacts are achieved in CO2 welding, even without an external current: the shape of the cross-sectional area can be increased of up to 50% and also the seam width is changed. Whereas for such conditions with Nd:YAG lasers no significant effect could be observed, it turned out that, when an external electric current is applied, similar effects are present with both wavelengths. In further investigations, the effect of electromagnetic body forces resulting from the interaction of an external current and its self-induced magnetic field was studied. Hereby, the current was fed into the workpiece via a tungsten electrode or a filler wire. The resulting phenomena are the same independent from wavelength and means of current feed.

  14. Distributed energy store railguns experiment and analysis

    NASA Astrophysics Data System (ADS)

    Holland, L. D.

    1984-02-01

    Electromagnetic acceleration of projectiles holds the potential for achieving higher velocities than yet achieved by any other means. A railgun is the simplest form of electromagnetic macroparticle accelerator and can generate the highest sustained accelerating force. The practical length of conventional railguns is limited by the impedance of the rails because current must be carried along the entire length of the rails. A railgun and power supply system called the distributed energy store railgun was proposed as a solution to this limitation. A distributed energy storage railgun was constructed and successfully operated. In addition to this demonstration of the distributed energy store railgun principle, a theoretical model of the system was also constructed. A simple simulation of the railgun system based on this model, but ignoring frictional drag, was compared with the experimental results. During the process of comparing results from the simulation and the experiment, the effect of significant frictional drag of the projectile on the sidewalls of the bore was observed.

  15. Design and analysis of a plane vibration-based electromagnetic generator using a magnetic spring and ferrofluid

    NASA Astrophysics Data System (ADS)

    Wang, Siqi; Li, Decai

    2015-09-01

    This paper describes the design and characterization of a plane vibration-based electromagnetic generator that is capable of converting low-frequency vibration energy into electrical energy. A magnetic spring is formed by a magnetic attractive force between fixed and movable permanent magnets. The ferrofluid is employed on the bottom of the movable permanent magnet to suspend it and reduce the mechanical damping as a fluid lubricant. When the electromagnetic generator with a ferrofluid of 0.3 g was operated under a resonance condition, the output power reached 0.27 mW, and the power density of the electromagnetic generator was 5.68 µW/cm2. The electromagnetic generator was also used to harvest energy from human motion. The measured average load powers of the electromagnetic generator from human waist motion were 0.835 mW and 1.3 mW during walking and jogging, respectively.

  16. Electromagnetic Momentum in Magnetic Media and the Abraham-Minkowski Controversy

    ERIC Educational Resources Information Center

    Jimenez, J. L.; Campos, I.; Lopez-Marino, M. A.

    2011-01-01

    We explore the consequences of a force density, [image omitted], studied by some authors, for the device designed by Lai (1980 "Am. J. Phys. 48" 658) to analyse which definition of electromagnetic momentum density, either Minkowski's or Abraham's, is consistent with mechanical torques that arise from the change in time of a magnetic field, which…

  17. Maxwell-Faraday Stresses in Electromagnetic Fields and the Self-Force on a Uniformly Accelerating Point Charge

    ERIC Educational Resources Information Center

    Rowland, D. R.

    2007-01-01

    The physical analysis of a uniformly accelerating point charge provides a rich problem to explore in advanced courses in electrodynamics and relativity since it brings together fundamental concepts in relation to electromagnetic radiation, Einstein's equivalence principle and the inertial mass of field energy in ways that reveal subtleties in each…

  18. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XI, INTRODUCTION TO ELECTRICAL MAINTENANCE FOR OFF-HIGHWAY VEHICLES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO FAMILIARIZE THE TRAINEE WITH THE FUNDAMENTALS OF ELECTRICITY AND MAGNETISM AS THEY RELATE TO DIESEL POWERED EQUIPMENT. TOPICS ARE (1) FUNDAMENTALS OF ELECTRICITY AND MAGNETISM, (2) ELECTROMAGNETIC FIELDS, (3) MAGNETIC FORCE ON A CONDUCTOR, (4) ELECTROMAGNETIC INDUCTION, (5) OHM'S LAW, (6) METER…

  19. Hypothesis on the nature of atmospheric UFOs

    NASA Astrophysics Data System (ADS)

    Mukharev, L. A.

    1991-08-01

    A hypothesis is developed according to which the atmospheric UFO phenomenon has an electromagnetic nature. It is suggested that an atmospheric UFO is an agglomeration of charged atmospheric dust within which there exists a slowly damped electromagnetic field. This field is considered to be the source of the observed optical effects and the motive force of the UFO.

  20. Multi-Mode Excitation and Data Reduction for Fatigue Crack Characterization in Conducting Plates

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Namkung, M.; Fulton, J. P.; Clendenin, C. G.

    1992-01-01

    Advances in the technique of fatigue crack characterization by resonant modal analysis have been achieved through a new excitation mechanism and data reduction of multiple resonance modes. A non-contacting electromagnetic device is used to apply a time varying Lorentz force to thin conducting sheets. The frequency and direction of the Lorentz force are such that resonance modes are generated in the test sample. By comparing the change in frequency between distinct resonant modes of a sample, detecting and sizing of fatigue cracks are achieved and frequency shifts caused by boundary condition changes can be discriminated against. Finite element modeling has been performed to verify experimental results.

  1. Multiple degree-of-freedom force and moment measurement for static propulsion testing using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Stuart, Keith; Bartosh, Blake

    1993-01-01

    Innovative Information Systems (IIS), Inc. is in the process of designing and fabricating a high bandwidth force and moment measuring device (i.e. the Magnetic Thruster Test Stand). This device will use active magnetic suspension to allow direct measurements of the forces and torques generated by the rocket engines of the missile under test. The principle of operation of the Magnetic Thruster Test Stand (MTTS) is based on the ability to perform very precise, high bandwidth force and position measurements on an object suspended in a magnetic field. This ability exists due to the fact that the digital servo control mechanism that performs the magnetic suspension uses high bandwidth (10 kHz) position data (via an eddy-current proximity sensor) to determine the amount of force required to maintain stable suspension at a particular point. This force is converted into required electromagnet coil current, which is then output to a current amplifier driving the coils. A discussion of how the coil current and magnetic gap distance (the distance between the electromagnet and the object being suspended) is used to determine the forces being applied from the suspended assembly is presented.

  2. Diminishing detonator effectiveness through electromagnetic effects

    DOEpatents

    Schill, Jr, Robert A.

    2016-09-20

    An inductively coupled transmission line with distributed electromotive force source and an alternative coupling model based on empirical data and theory were developed to initiate bridge wire melt for a detonator with an open and a short circuit detonator load. In the latter technique, the model was developed to exploit incomplete knowledge of the open circuited detonator using tendencies common to all of the open circuit loads examined. Military, commercial, and improvised detonators were examined and modeled. Nichrome, copper, platinum, and tungsten are the detonator specific bridge wire materials studied. The improvised detonators were made typically made with tungsten wire and copper (.about.40 AWG wire strands) wire.

  3. Analysis of space charge fields using the Lienard-Wiechert potential and the method of images during the photoemission of the electron beam from the cathode

    NASA Astrophysics Data System (ADS)

    Salah, Wa'el

    2017-01-01

    We present a numerical analysis of the space charge effect and the effect of image charge force on the cathode surface for a laser-driven RF-photocathode gun. In this numerical analysis, in the vicinity of the cathode surface, we used an analytical method based on Lienard-Weichert retarded potentials. The analytical method allows us to calculate longitudinal and radial electric fields, and the azimuth magnetic field due to both space charge effect and the effect of the image charge force. We calculate the electro-magnetic fields in the following two conditions for the "ELSA" photoinjector. The first condition is in the progress of photoemission, which corresponds to the inside of the emitted beam, and the second condition is at the end of the photoemission. The electromagnetic fields due to the space charge effect and the effect of the image charge force, and the sum of them, which corresponds to the global electro-magnetic fields, are shown. Based on these numerical results, we discussed the effects of the space charge and the image charge in the immediate vicinity of the cathode.

  4. Degradation of the performance of an epoxy-impregnated REBCO solenoid due to electromagnetic forces

    NASA Astrophysics Data System (ADS)

    Matsuda, T.; Okamura, T.; Hamada, M.; Matsumoto, S.; Ueno, T.; Piao, R.; Yanagisawa, Y.; Maeda, H.

    2018-03-01

    Recently, degradation of a high-field REBCO coil due to strong electromagnetic forces, has been identified. This issue is related to a conductor movement, forming a kink in the conductor body, and hence epoxy impregnation should be effective to prevent it. The purpose of this paper is to examine the effect of epoxy impregnation on the electromagnetic force-induced degradation of a REBCO coil. We made an epoxy impregnated solenoid coil and charged it at 4.2 K in an external field of 11 T. A notable characteristic behavior, which is different from that of a dry or paraffin impregnated coil, was observed in the coil's performance. The coil did not show any normal voltage below 408 A, at 65% on the coil load line, but it showed a sudden voltage jump at 408 A, resulted from a sudden fracture of the REBCO conductor. The outward bending, combined with a strong circumferential stress, caused the REBCO layer to fracture. Although epoxy impregnation is effective to suppress a conductor movement inside the winding, avoiding self-supported sites at a coil edge is required to eliminate degradation of the thin and flexible REBCO conductor.

  5. Electromagnetic panel deployment and retraction using the geomagnetic field in LEO satellite missions

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Sugawara, Yoshiki; Satou, Yasutaka

    2015-12-01

    Increasingly, spacecraft are installed with large-area structures that are extended and deployed post-launch. These extensible structures have been applied in several missions for power generation, thermal radiation, and solar propulsion. Here, we propose a deployment and retraction method using the electromagnetic force generated when the geomagnetic field interacts with electric current flowing on extensible panels. The panels are installed on a satellite in low Earth orbit. Specifically, electrical wires placed on the extensible panels generate magnetic moments, which interfere with the geomagnetic field. The resulting repulsive and retraction forces enable panel deployment and retraction. In the proposed method, a satellite realizes structural deployment using simple electrical wires. Furthermore, the satellite can achieve not only deployment but also retraction for avoiding damage from space debris and for agile attitude maneuvers. Moreover, because the proposed method realizes quasi-static deployment and the retraction of panels by electromagnetic forces, low impulsive force is exerted on fragile panels. The electrical wires can also be used to detect the panel deployment and retraction and generate a large magnetic moment for attitude control. The proposed method was assessed in numerical simulations based on multibody dynamics. Simulation results shows that a small cubic satellite with a wire current of 25 AT deployed 4 panels (20 cm × 20 cm) in 500 s and retracted 4 panels in 100 s.

  6. Mathematical Model for Collision-Coalescence Among Inclusions in the Bloom Continuous Caster with M-EMS

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Jiang, Jimin; Yang, Bin; Zhao, Yan; Zhang, Hongwei; Wang, Weixian; Dong, Guiwen

    2018-04-01

    Mathematical simulation is an effective tool to analyze the fluid flow and the inclusion behavior in the bloom continuous caster with mold electromagnetic stirring (M-EMS). The mathematical model is applied to the modeling of magnetic field, flow field, and inclusion field. Due to the introduction of Archimedes force, the collision mechanism and inclusion's slipping velocity should be modified in the inclusion mass and population conservation model. Numerically predicted magnetic field, flow field, and the inclusion spatial distribution conform to the experimental results in the existing literature. Lorentz force plays an important role in the fluid flow, and Archimedes force plays an important role in the inclusion distribution in the continuous caster. Due to Brownian collision, Stokes collision, Archimedes collision, and turbulent collision, the coalescence among inclusions occurs in the bloom continuous caster with M-EMS. Among the four types of collisions, turbulent collision occurs most frequently, followed by Archimedes collision and Stokes collision. The frequency of Brownian collision is several orders of magnitudes smaller and is therefore negligible. The inclusion volume concentration, number density, and characteristic radius exhibit a U-shape in the continuous caster without M-EMS. However, with M-EMS, they exhibit an inverted U-shape.

  7. Counterbalance of cutting force for advanced milling operations

    NASA Astrophysics Data System (ADS)

    Tsai, Nan-Chyuan; Shih, Li-Wen; Lee, Rong-Mao

    2010-05-01

    The goal of this work is to concurrently counterbalance the dynamic cutting force and regulate the spindle position deviation under various milling conditions by integrating active magnetic bearing (AMB) technique, fuzzy logic algorithm and an adaptive self-tuning feedback loop. Since the dynamics of milling system is highly determined by a few operation conditions, such as speed of spindle, cut depth and feedrate, therefore the dynamic model for cutting process is more appropriate to be constructed by experiments, instead of using theoretical approach. The experimental data, either for idle or cutting, are utilized to establish the database of milling dynamics so that the system parameters can be on-line estimated by employing the proposed fuzzy logic algorithm as the cutting mission is engaged. Based on the estimated milling system model and preset operation conditions, i.e., spindle speed, cut depth and feedrate, the current cutting force can be numerically estimated. Once the current cutting force can be real-time estimated, the corresponding compensation force can be exerted by the equipped AMB to counterbalance the cutting force, in addition to the spindle position regulation by feedback of spindle position. On the other hand, for the magnetic force is nonlinear with respect to the applied electric current and air gap, the characteristics of the employed AMB is investigated also by experiments and a nonlinear mathematic model, in terms of air gap between spindle and electromagnetic pole and coil current, is developed. At the end, the experimental simulations on realistic milling are presented to verify the efficacy of the fuzzy controller for spindle position regulation and the capability of the dynamic cutting force counterbalance.

  8. Physics Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, demonstrations, and classroom materials including a technique for estimating speed of electromagnetic waves; a support for multipin components when soldering; use of dynometer to measure force; bending light; using a microcomputer to measure and produce voltage; force-distance curves; and two games. (DS)

  9. Effect of high electromagnetic fields on cellular growth

    NASA Astrophysics Data System (ADS)

    Albalawi, Abdullah; Mustafa, Mohammed; Masood, Samina

    It is already known that high-intensity electromagnetic field affect the human lung growth and forces the T-cells to decrease by 20-30 percent. The electromagnetic field had a severe impact on human T-cells in contrast to lung cells. Due to the high-intensity electromagnetic field, the growth of T-cells becomes low and release of Ca+2 increases up to 3.5 times more than the lung cells. The high-intensity electromagnetic radiations do not directly produce cancer cells but had a severe impact on the growth of T-cells. It can also be said that electromagnetic field acts a role in the cancer initiation. It creates disordered in the structure of membranes and gesture transduction. The higher exposure to electromagnetic field increases PKC-alpha and this larger release from membranes cannot be controlled. It was concluded that greater exposure to the electromagnetic field is dangerous and had a severe impact on T-cells growth and lung cells growth and due to this greater possibility of leukemia occurrence. We show a similar effect of electromagnetic fields single celled bacteria to compare the bacterial cellular growth with the human cells using the bacteria strains which are commonly found in human body.

  10. Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry

    NASA Astrophysics Data System (ADS)

    Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su

    2017-01-01

    The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.

  11. Microprocessor controlled force actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1986-01-01

    The mechanical and electrical design of a prototype force actuator for vibration control of large space structures (LSS) is described. The force actuator is an electromagnetic system that produces a force by reacting against a proof-mass. The actuator has two colocated sensors, a digital microcontroller, and a power amplifier. The total weight of actuator is .998 kg. The actuator has a steady state force output of approximately 2.75 N from approximately 2 Hz to well beyond 1000 Hz.

  12. Chaotic advection at large Péclet number: Electromagnetically driven experiments, numerical simulations, and theoretical predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, Aldo; Meunier, Patrice; Villermaux, Emmanuel

    2014-01-15

    We present a combination of experiment, theory, and modelling on laminar mixing at large Péclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, “The diffusive strip method for scalar mixing in two-dimensions,” J. Fluid Mech. 662, 134–172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement withmore » quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors.« less

  13. NSTX Disruption Simulations of Detailed Divertor and Passive Plate Models by Vector Potential Transfer from OPERA Global Analysis Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. H. Titus, S. Avasaralla, A.Brooks, R. Hatcher

    2010-09-22

    The National Spherical Torus Experiment (NSTX) project is planning upgrades to the toroidal field, plasma current and pulse length. This involves the replacement of the center-stack, including the inner legs of the TF, OH, and inner PF coils. A second neutral beam will also be added. The increased performance of the upgrade requires qualification of the remaining components including the vessel, passive plates, and divertor for higher disruption loads. The hardware needing qualification is more complex than is typically accessible by large scale electromagnetic (EM) simulations of the plasma disruptions. The usual method is to include simplified representations of componentsmore » in the large EM models and attempt to extract forces to apply to more detailed models. This paper describes a more efficient approach of combining comprehensive modeling of the plasma and tokamak conducting structures, using the 2D OPERA code, with much more detailed treatment of individual components using ANSYS electromagnetic (EM) and mechanical analysis. This capture local eddy currents and resulting loads in complex details, and allows efficient non-linear, and dynamic structural analyses.« less

  14. Transformation of body force localized near the surface of a half-space into equivalent surface stresses.

    PubMed

    Rouge, Clémence; Lhémery, Alain; Ségur, Damien

    2013-10-01

    An electromagnetic acoustic transducer (EMAT) or a laser used to generate elastic waves in a component is often described as a source of body force confined in a layer close to the surface. On the other hand, models for elastic wave radiation more efficiently handle sources described as distributions of surface stresses. Equivalent surface stresses can be obtained by integrating the body force with respect to depth. They are assumed to generate the same field as the one that would be generated by the body force. Such an integration scheme can be applied to Lorentz force for conventional EMAT configuration. When applied to magnetostrictive force generated by an EMAT in a ferromagnetic material, the same scheme fails, predicting a null stress. Transforming body force into equivalent surface stresses therefore, requires taking into account higher order terms of the force moments, the zeroth order being the simple force integration over the depth. In this paper, such a transformation is derived up to the second order, assuming that body forces are localized at depths shorter than the ultrasonic wavelength. Two formulations are obtained, each having some advantages depending on the application sought. They apply regardless of the nature of the force considered.

  15. Design, implementation and control of a magnetic levitation device

    NASA Astrophysics Data System (ADS)

    Shameli, Ehsan

    Magnetic levitation technology has shown a great deal of promise for micromanipulation tasks. Due to the lack of mechanical contact, magnetic levitation systems are free of problems caused by friction, wear, sealing and lubrication. These advantages have made magnetic levitation systems a great candidate for clean room applications. In this thesis, a new large gap magnetic levitation system is designed, developed and successfully tested. The system is capable of levitating a 6.5(gr) permanent magnet in 3D space with an air gap of approximately 50(cm) with the traveling range of 20x20x30 mm3. The overall positioning accuracy of the system is 60mum. With the aid of finite elements method, an optimal geometry for the magnetic stator is proposed. Also, an energy optimization approach is utilized in the design of the electromagnets. In order to facilitate the design of various controllers for the system, a mathematical model of the magnetic force experienced by the levitated object is obtained. The dynamic magnetic force model is determined experimentally using frequency response system identification. The response of the system components including the power amplifiers, and position measurement system are also considered in the development of the force model. The force model is then employed in the controller design for the magnetic levitation device. Through a modular approach, the controller design for the 3D positioning system is started with the controller design for the vertical direction, i.e. z, and then followed by the controller design in the horizontal directions, i.e. x and y. For the vertical direction, several controllers such as PID, feed forward and feedback linearization are designed and their performances are compared. Also a control command conditioning method is introduced as a solution to increase the control performance and the results of the proposed controller are compared with the other designs. Experimental results showed that for the magnetic levitation system, the feedback linearization controller has the shortest settling time and is capable of reducing the positioning error to RMS value of 11.56mum. The force model was also utilized in the design of a model reference adaptive feedback linearization (MRAFL) controller for the z direction. For this case, the levitated object is a small microrobot equipped with a remote controlled gripper weighting approximately 28(gr). Experimental results showed that the MRAFL controller enables the micro-robot to pick up and transport a payload as heavy as 30% of its own weight without a considerable effect on its positioning accuracy. In the presence of the payload, the MRAFL controller resulted in a RMS positioning error of 8microm compared with 27.9mum of the regular feedback linearization controller. For the horizontal position control of the system, a mathematical formula for distributing the electric currents to the multiple electromagnets of the system was proposed and a PID control approach was implemented to control the position of the levitated object in the xy-plane. The control system was experimentally tested in tracking circular and spiral trajectories with overall positioning accuracy of 60mum. Also, a new mathematical approach is presented for the prediction of magnetic field distribution in the horizontal direction. The proposed approach is named the pivot point method and is capable of predicting the two dimensional position of the levitated object in a given vertical plane for an arbitrary current distribution in the electromagnets of the levitation system. Experimental results showed that the proposed method is capable of predicting the location of the levitated object with less than 10% error.

  16. Guidance of Magnetic Nanocontainers for Treating Alzheimer's Disease Using an Electromagnetic, Targeted Drug-Delivery Actuator.

    PubMed

    Do, Ton Duc; Ul Amin, Faiz; Noh, Yeongil; Kim, Myeong Ok; Yoon, Jungwon

    2016-03-01

    The "impermeability" of the blood-brain barrier (BBB) has hindered effective treatment of central nervous system (CNS) disorders such as Alzheimer's disease (AD), which is one of the most common neurodegenerative disorders. A drug can be delivered to a targeted disease site effectively by applying a strong electromagnetic force to the conjugate of a drug and magnetic nanocontainers. This study developed a novel nanotechnology-based strategy to deliver therapeutic agents to the brain via the BBB as a possible therapeutic approach for AD. First, a novel approach for an electromagnetic actuator for guiding nanocontainers is introduced. Then, we analyzed the in vivo uptake in mice experimentally to evaluate the capacity of the nanocontainers. In the mouse model, we demonstrated that magnetic particles can cross the normal BBB when subjected to external electromagnetic fields of 28 mT (0.43 T/m) and 79.8 mT (1.39 T/m). Our study also assessed the differential effects of pulsed (0.25, 0.5, and 1 Hz) and constant magnetic fields on the transport of particles across the BBB in mice injected with magnetic nanoparticles (MNPs) via a tail vein. The applied magnetic field was either kept constant or pulsed on and off. Relative to a constant magnetic field, the rate of MNP uptake and transport across the BBB was enhanced significantly by a pulsed magnetic field. Localization inside the brain was established using fluorescent MNPs. These results using 770-nm fluorescent carboxyl magnetic nanocontainers demonstrated the feasibility of the proposed electromagnetic targeted drug delivery actuator. These results establish an effective strategy for regulating the biodistribution of MNPs in the brain through the application of an external electromagnetic field. This might be a valuable targeting system for AD diagnosis and therapy.

  17. Radiation-reaction force on a small charged body to second order

    NASA Astrophysics Data System (ADS)

    Moxon, Jordan; Flanagan, Éanna

    2018-05-01

    In classical electrodynamics, an accelerating charged body emits radiation and experiences a corresponding radiation-reaction force, or self-force. We extend to higher order in the total charge a previous rigorous derivation of the electromagnetic self-force in flat spacetime by Gralla, Harte, and Wald. The method introduced by Gralla, Harte, and Wald computes the self-force from the Maxwell field equations and conservation of stress-energy in a limit where the charge, size, and mass of the body go to zero, and it does not require regularization of a singular self-field. For our higher-order computation, an adjustment of the definition of the mass of the body is necessary to avoid including self-energy from the electromagnetic field sourced by the body in the distant past. We derive the evolution equations for the mass, spin, and center-of-mass position of the body through second order. We derive, for the first time, the second-order acceleration dependence of the evolution of the spin (self-torque), as well as a mixing between the extended body effects and the acceleration-dependent effects on the overall body motion.

  18. An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments

    NASA Astrophysics Data System (ADS)

    Sevim, Semih; Shamsudhin, Naveen; Ozer, Sevil; Feng, Luying; Fakhraee, Arielle; Ergeneman, Olgaç; Pané, Salvador; Nelson, Bradley J.; Torun, Hamdi

    2016-06-01

    We report a modular atomic force microscope (AFM) design for biomolecular experiments. The AFM head uses readily available components and incorporates deflection-based optics and a piezotube-based cantilever actuator. Jetted-polymers have been used in the mechanical assembly, which allows rapid manufacturing. In addition, a FeCo-tipped electromagnet provides high-force cantilever actuation with vertical magnetic fields up to 0.55 T. Magnetic field calibration has been performed with a micro-hall sensor, which corresponds well with results from finite element magnetostatics simulations. An integrated force resolution of 1.82 and 2.98 pN, in air and in DI water, respectively was achieved in 1 kHz bandwidth with commercially available cantilevers made of Silicon Nitride. The controller and user interface are implemented on modular hardware to ensure scalability. The AFM can be operated in different modes, such as molecular pulling or force-clamp, by actuating the cantilever with the available actuators. The electromagnetic and piezoelectric actuation capabilities have been demonstrated in unbinding experiments of the biotin-streptavidin complex.

  19. An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments

    PubMed Central

    Sevim, Semih; Shamsudhin, Naveen; Ozer, Sevil; Feng, Luying; Fakhraee, Arielle; Ergeneman, Olgaç; Pané, Salvador; Nelson, Bradley J.; Torun, Hamdi

    2016-01-01

    We report a modular atomic force microscope (AFM) design for biomolecular experiments. The AFM head uses readily available components and incorporates deflection-based optics and a piezotube-based cantilever actuator. Jetted-polymers have been used in the mechanical assembly, which allows rapid manufacturing. In addition, a FeCo-tipped electromagnet provides high-force cantilever actuation with vertical magnetic fields up to 0.55 T. Magnetic field calibration has been performed with a micro-hall sensor, which corresponds well with results from finite element magnetostatics simulations. An integrated force resolution of 1.82 and 2.98 pN, in air and in DI water, respectively was achieved in 1 kHz bandwidth with commercially available cantilevers made of Silicon Nitride. The controller and user interface are implemented on modular hardware to ensure scalability. The AFM can be operated in different modes, such as molecular pulling or force-clamp, by actuating the cantilever with the available actuators. The electromagnetic and piezoelectric actuation capabilities have been demonstrated in unbinding experiments of the biotin-streptavidin complex. PMID:27273214

  20. Grapple fixture for use with electromagnetic attachment mechanism

    NASA Technical Reports Server (NTRS)

    Monford, Jr., Leo G. (Inventor)

    1995-01-01

    An electromagnetic attachment mechanism for use as an end effector of a remote manipulator system. A pair of electromagnets 15A,15B, each with a U-shaped magnetic core with a pull-in coil 34 and two holding coils 35,36 are mounted by a spring suspension system 38,47 on a base plate 25 of the mechanism housing 30 with end pole pieces 21,22 adapted to move through openings in the base plate when the attractive force of the electromagnets is exerted on a strike plate 65 of a grapple fixture 20 affixed to a target object 14. The pole pieces are spaced by an air gap from the strike plate when the mechanism first contacts the grapple fixture. An individual control circuit and power source is provided for the pull-in coil and one holding coil of each electromagnet. A back-up control circuit connected to the two power sources and a third power source is provided for the remaining holding coils. When energized, the pull-in coils overcome the suspension system and air gap and are automatically de-energized when the pole pieces move to grapple and impose a preload force across the grapple interface. A battery back-up 89A,89B is a redundant power source for each electromagnet in each individual control circuit and is automatically connected upon failure of the primary power source. A centerline mounted camera 31 and video monitor 70 are used in cooperation with a target pattern 19 on the reflective surface 67 of the strike plate to effect targeting and alignment.

  1. Influence of laser on the droplet behavior in short-circuiting, globular, and spray modes of hybrid fiber laser-MIG welding

    NASA Astrophysics Data System (ADS)

    Cai, Chuang; Feng, Jiecai; Li, Liqun; Chen, Yanbin

    2016-09-01

    The effects of laser on the droplet behavior in short-circuiting, globular, and spray modes of hybrid fiber laser-MIG welding were studied. Transfer sequence of a droplet, welding current wave and morphology of plasma in the three modes of arc welding and hybrid welding were comparatively investigated. Compared with arc welding, the transfer frequency and landing location of droplet in the three modes of hybrid welding changed. In short-circuiting and globular modes, the droplet transfer was promoted by the laser, while the droplet transfer was hindered by the laser in spray mode. The magnitudes and directions of electromagnetic force and plasma drag force acting on the droplet were the keys to affect the droplet behavior. The magnitudes and directions of electromagnetic force and plasma drag force were converted due to the variation of the current distribution into the droplet, which were caused by the laser induced plasma with low ionization potential.

  2. Effective dynamics of a classical point charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polonyi, Janos, E-mail: polonyi@iphc.cnrs.fr

    2014-03-15

    The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham–Lorentz force is recovered and its similarity to quantum anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-polemore » of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out. -- Highlights: •Extension of the classical action principle for dissipative systems. •New derivation of the Abraham–Lorentz force for a point charge. •Absence of a runaway solution of the Abraham–Lorentz force. •Acausality in classical electrodynamics. •Renormalization of classical electrodynamics of point charges.« less

  3. Self-forces on static bodies in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Taylor, Peter

    2016-03-01

    I will present exact expressions for the scalar and electromagnetic self-forces and self-torques acting on arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Non-perturbatively, these results are identical in all dimensions. Meaningful point particle limits are quite different, however. I will discuss how such limits are defined and evaluated, resulting in simple ``regularization algorithms'' which can be used in concrete calculations. In them, self-interaction is shown to be progressively less important in higher numbers of dimensions, generically competing in magnitude with increasingly high-order extended-body effects. Conversely, self-interaction effects can be relatively large in 1 + 1 and 2 + 1 dimensions. It will further be shown that there is considerable freedom to use different ``effective fields'' in the laws of motion. Different choices give rise to different inertias, gravitational forces, and electromagnetic or scalar self-forces. However, the particular combinations of these quantities which are observable remain invariant under all possible field redefinitions.

  4. Short Range Tests of Gravity

    NASA Astrophysics Data System (ADS)

    Cardenas, Crystal; Harter, Andrew; Hoyle, C. D.; Leopardi, Holly; Smith, David

    2014-03-01

    Gravity was the first force to be described mathematically, yet it is the only fundamental force not well understood. The Standard Model of quantum mechanics describes interactions between the fundamental strong, weak and electromagnetic forces while Einstein's theory of General Relativity (GR) describes the fundamental force of gravity. There is yet to be a theory that unifies inconsistencies between GR and quantum mechanics. Scenarios of String Theory predicting more than three spatial dimensions also predict physical effects of gravity at sub-millimeter levels that would alter the gravitational inverse-square law. The Weak Equivalence Principle (WEP), a central feature of GR, states that all objects are accelerated at the same rate in a gravitational field independent of their composition. A violation of the WEP at any length would be evidence that current models of gravity are incorrect. At the Humboldt State University Gravitational Research Laboratory, an experiment is being developed to observe gravitational interactions below the 50-micron distance scale. The experiment measures the twist of a parallel-plate torsion pendulum as an attractor mass is oscillated within 50 microns of the pendulum, providing time varying gravitational torque on the pendulum. The size and distance dependence of the torque amplitude provide means to determine deviations from accepted models of gravity on untested distance scales. undergraduate.

  5. Development of eddy current microscopy for high resolution electrical conductivity imaging using atomic force microscopy.

    PubMed

    Nalladega, V; Sathish, S; Jata, K V; Blodgett, M P

    2008-07-01

    We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.

  6. Electrostatic forces for personnel restraints

    NASA Technical Reports Server (NTRS)

    Ashby, N.; Ciciora, J.; Gardner, R.; Porter, K.

    1977-01-01

    The feasibility of utilizing electrostatic forces for personnel retention devices on exterior spacecraft surfaces was analyzed. The investigation covered: (1) determination of the state of the art; (2) analysis of potential adhesion surfaces; (3) safety considerations for personnel; (4) electromagnetic force field determination and its effect on spacecraft instrumentation; and (5) proposed advances to current technology based on documentation review, analyses, and experimental test data.

  7. Electromagnetic tweezers with independent force and torque control

    NASA Astrophysics Data System (ADS)

    Jiang, Chang; Lionberger, Troy A.; Wiener, Diane M.; Meyhofer, Edgar

    2016-08-01

    Magnetic tweezers are powerful tools to manipulate and study the mechanical properties of biological molecules and living cells. In this paper we present a novel, bona fide electromagnetic tweezer (EMT) setup that allows independent control of the force and torque applied via micrometer-sized magnetic beads to a molecule under study. We implemented this EMT by combining a single solenoid that generates force (f-EMT) with a set of four solenoids arranged into a symmetric quadrupole to generate torque (τ-EMT). To demonstrate the capability of the tweezers, we attached optically asymmetric Janus beads to single, tethered DNA molecules. We show that tension in the piconewton force range can be applied to single DNA molecules and the molecule can simultaneously be twisted with torques in the piconewton-nanometer range. Furthermore, the EMT allows the two components to be independently controlled. At various force levels applied to the Janus bead, the trap torsional stiffness can be continuously changed simply by varying the current magnitude applied to the τ-EMT. The flexible and independent control of force and torque by the EMT makes it an ideal tool for a range of measurements where tensional and torsional properties need to be studied simultaneously on a molecular or cellular level.

  8. Macroscopic kinematics of the Hall electric field under influence of carrier magnetic moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Masamichi, E-mail: sakai@fms.saitama-u.ac.jp

    2016-06-15

    The relativistic effect on electromagnetic forces yields two types of forces which depend on the velocity of the relevant particles: (i) the usual Lorentz force exerted on a moving charged particle and (ii) the apparent Lorentz force exerted on a moving magnetic moment. In sharp contrast with type (i), the type (ii) force originates due to the transverse field induced by the Hall effect (HE). This study incorporates both forces into a Drude-type equation with a fully spin-polarized condition to investigate the effects of self-consistency of the source and the resultant fields on the HE. We also examine the self-consistencymore » of the carrier kinematics and electromagnetic dynamics by simultaneously considering the Drude type equation and Maxwell equations at low frequencies. Thus, our approach can predict both the dc and ac characteristics of the HE, demonstrating that the dc current condition solely yields the ordinary HE, while the ac current condition yields generation of both fundamental and second harmonic modes of the HE field. When the magnetostatic field is absent, the simultaneous presence of dc and ac longitudinal currents generates the ac HE that has both fundamental frequency and second harmonic.« less

  9. Preface

    NASA Astrophysics Data System (ADS)

    2003-09-01

    MEM03: The Second International Workshop on Mechano-Electromagnetic Properties of Composite Superconductors (Kyoto, Japan, 3–5 March 2003) Superconductivity is on course to be widely applied in various advanced technologies including: (1) magnetically levitated vehicles (MAGLEV), international thermonuclear experimental reactors (ITER), electric generators, high energy accelerator and magnetic resonance imaging (MRI) using metallic composite superconductors; (2) cable, fault-current-limiters (FCL), transformers, flywheels and motors by using oxide composite superconductors; (3) high field NMR and other sophisticated devices by combining both metallic and oxide superconductors. In order to create a real market for these advanced technologies using superconductivity, it is absolutely essential to develop superconducting wires/tapes with better performance. The development of accompanying assessment technologies is therefore indispensable for their R&D. Some important properties are related to the mechanical properties of the conductors. It is well known that degraded superconducting and mechanical properties (during fabrication as well as under operation) can cause serious problems, because the critical current depends sensitively on bending and tensile stresses, electromagnetic force, and mechanical and thermal cycling. Therefore he assessment of mechanical properties and the effect of strain on transport properties is crucial for improving and developing high performance superconducting devices. It is now very timely to have a meeting in order to discuss common scientific problems systematically and comprehensively. The Second International Workshop on Mechano-Electromagnetic Properties of Composite Superconductors, MEM03, was held in Kyoto, Japan, 3–5 March 2003, mainly to discuss the fundamentals of the following topics. • Electromagnetic properties: change of critical current, RRR and ac loss due to external forces like bending, compressive and tensile stresses, electromagnetic force, and mechanical and thermal cycling. • Mechanical properties: tensile and compressive properties, fatigue characteristics and fracture behaviour. • Thermal properties: thermal conductivity, thermal dilatation and thermal strain. • Modelling: prediction of critical current and mechanical properties of composite superconductors through statistical analysis, finite element analysis, etc. • Test methods: international cooperative research work to establish test methods for assessing mechano-electromagnetic properties based on the activity of VAMAS/TWA-16. This discussion took place with respect to three types of composites: • MFC (multifilamentary composite): BSCCO, MgB2, Nb-Ti, Nb3Sn and Nb3Al. • CCC (coated conductor composite): YBCO and ReBCO. • BCC (bulk crystal composite): YBCO and ReBCO. More than 55 researchers attended the MEM03 workshop, coming from eight different countries. A total of 42 papers were presented. In this special issue of Superconductor Science and Technology selected papers have been included that are concerned with the comprehensive scientific research subjects mentioned above. The aim of this issue is to provide a snapshot of some of the current state-of-the-art research and to promote further research into the mechano-electromagnetic properties of composite superconductors. The workshop was organized under the activities of NEDO technology quest and VAMAS/TWA-16. We wish to thank the following for their contribution to the success of the workshop: NEDO Super-ACE project, AFOSR, AOARD and IEC/TC90-JNC. Guest Editors: Kozo Osamura Hitoshi Wada Arman Nyilas Damian Hampshire

  10. Electromagnetic finite elements based on a four-potential variational principle

    NASA Technical Reports Server (NTRS)

    Schuler, James J.; Felippa, Carlos A.

    1991-01-01

    Electromagnetic finite elements based on a variational principle that uses the electromagnetic four-potential as a primary variable are derived. This choice is used to construct elements suitable for downstream coupling with mechanical and thermal finite elements for the analysis of electromagnetic/mechanical systems that involve superconductors. The main advantages of the four-potential as a basis for finite element formulation are that the number of degrees of freedom per node remains modest as the problem dimensionally increases, that jump discontinuities on interfaces are naturally accommodated, and that statics as well as dynamics may be treated without any a priori approximations. The new elements are tested on an axisymmetric problem under steady state forcing conditions. The results are in excellent agreement with analytical solutions.

  11. Dynamic investigation of a locomotive with effect of gear transmissions under tractive conditions

    NASA Astrophysics Data System (ADS)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2017-11-01

    Locomotive is used to drag trailers to move or supply the braking forces to slow the running speed of a train. The electromagnetic torque of the motor is always transmitted by the gear transmission system to the wheelset for generation of the tractive or braking forces at the wheel-rail contact interface. Consequently, gear transmission system is significant for power delivery of a locomotive. This paper develops a comprehensive locomotive-track vertical-longitudinal coupled dynamics model with dynamic effect of gear transmissions. This dynamics model enables considering the coupling interactions between the gear transmission motion, the vertical and the longitudinal motions of the vehicle, and the vertical vibration of the track structure. In this study, some complicated dynamic excitations, such as the gear time-varying mesh stiffness, nonlinear gear tooth backlash, the nonlinear wheel-rail normal contact force and creep force, and the rail vertical geometrical irregularity, are considered. Then, the dynamic responses of the locomotive under the tractive conditions are demonstrated by numerical simulations based on the established dynamics model and by experimental test. The developed dynamics model is validated by the good agreement between the experimental and the theoretical results. The calculated results reveal that the gear transmission system has strong dynamic interactions with the wheel-rail contact interface including both the vertical and the longitudinal motions, and it has negligible effect on the vibrations of the bogie frame and carbody.

  12. Project Physics Handbook 4, Light and Electromagnetism.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Seven experiments and 40 activities are presented in this handbook. The experiments are related to Young's experiment, electric forces, forces on currents, electron-beam tubes, and wave modulation and communication. The activities are primarily concerned with aspects of scattered and polarized light, colors, image formation, lenses, cameras,…

  13. The Challenge to Create the Space Drive

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1999-01-01

    To travel to our neighboring stars as practically as envisioned by science fiction, breakthroughs in science are required. One of these breakthroughs is to discover a self-contained means of propulsion that requires no propellant. To chart a path toward such a discovery, seven hypothetical space drives are presented to illustrate the specific unsolved challenges and associated research objectives toward this ambition. One research objective is to discover a means to asymmetrically interact with the electromagnetic fluctuations of the vacuum. Another is to develop a physics that describes inertia, gravity, or the properties of spacetime as a function of electromagnetics that leads to using electromagnetic technology for inducing propulsive forces. Another is to determine if negative mass exists or if its properties can be synthesized. An alternative approach that covers the possibility that negative mass might not exist is to develop a formalism of Mach's Principle or reformulate ether concepts to lay a foundation for addressing reaction forces and conservation of momentum with space drives.

  14. Challenge to Create the Space Drive

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1997-01-01

    To travel to our neighboring stars as practically as envisioned by science fiction, breakthroughs in science are required. One of these breakthroughs is to discover a self-contained means of propulsion that requires no propellant. To chart a path toward such a discovery, seven hypothetical space drives are presented to illustrate the specific unsolved challenges and associated research objectives toward this ambition. One research objective is to discover a means to asymmetrically interact with the electromagnetic fluctuations of the vacuum. Another is to develop a physics that describes inertia, gravity, or the properties of space-time as a function of electromagnetics that leads to using electromagnetic technology for inducing propulsive forces. Another is to determine if negative mass exists or if its properties can be synthesized. An alternative approach that covers the possibility that negative mass might not exist is to develop a formalism of Mach's principle or reformulate ether concepts to lay a foundation for addressing reaction forces and conservation of momentum with space drives.

  15. The challenge to create the space drive

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1996-01-01

    To travel to our neighboring stars as practically as envisioned by science fiction, breakthroughs in science are required. One of these breakthroughs is to discover a self-contained means of propulsion that requires no propellant. To chart a path toward such a discovery, seven hypothetical space drives are presented to illustrate the specific unsolved challenges and associated research objectives toward this ambition. One research objective is to discover a means to asymmetrically interact with the electro-magnetic fluctuations of the vacuum. Another is to develop a physics that describes inertia, gravity, or the properties of spacetime as a function of electro-magnetics that leads to using electro-magnetic technology for inducing propulsive forces. Another is to determine if negative mass exists or if its properties can be synthesized. An alternative approach that covers the possibility that negative mass might not exist is to develop a formalism of Mach's Principle or re-formulate ether concepts to lay a foundation for addressing reaction forces and conservation of momentum with space drives.

  16. Strong coupling in electromechanical computation

    NASA Astrophysics Data System (ADS)

    Füzi, János

    2000-06-01

    A method is presented to carry out simultaneously electromagnetic field and force computation, electrical circuit analysis and mechanical computation to simulate the dynamic operation of electromagnetic actuators. The equation system is solved by a predictor-corrector scheme containing a Powell error minimization algorithm which ensures that every differential equation (coil current, field strength rate, flux rate, speed of the keeper) is fulfilled within the same time step.

  17. The effects of corona on current surges induced on conducting lines by EMP: A comparison of experiment data with results of analytic corona models

    NASA Astrophysics Data System (ADS)

    Blanchard, J. P.; Tesche, F. M.; McConnell, B. W.

    1987-09-01

    An experiment to determine the interaction of an intense electromagnetic pulse (EMP), such as that produced by a nuclear detonation above the Earth's atmosphere, was performed in March, 1986 at Kirtland Air Force Base near Albuquerque, New Mexico. The results of that experiment have been published without analysis. Following an introduction of the corona phenomenon, the reason for interest in it, and a review of the experiment, this paper discusses five different analytic corona models that may model corona formation on a conducting line subjected to EMP. The results predicted by these models are compared with measured data acquired during the experiment to determine the strengths and weaknesses of each model.

  18. Dimensionless Analysis and Numerical Modeling of Rebalancing Phenomena During Levitation

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Shi, Zhe; Li, Donghui; McLean, Alexander; Chattopadhyay, Kinnor

    2016-06-01

    Electromagnetic levitation (EML) has proved to be a powerful tool for research activities in areas pertaining to materials physics and engineering. The customized EML setups in various fields, ranging from solidification to nanomaterial manufacturing, require the designing of stable levitation systems. Since the elevated droplet is opaque, the most effective way to research on EML is mathematical modeling. In the present study, a 3D model was built to investigate the rebalancing phenomenon causing instabilities during droplet melting. A mathematical model modified based on Hooke's law (spring) was proposed to describe the levitation system. This was combined with dimensionless analysis to investigate the generation of levitation forces as it will significantly affect the behavior of the spring model.

  19. An experimental nonlinear low dynamic stiffness device for shock isolation

    NASA Astrophysics Data System (ADS)

    Francisco Ledezma-Ramirez, Diego; Ferguson, Neil S.; Brennan, Michael J.; Tang, Bin

    2015-07-01

    The problem of shock generated vibration is very common in practice and difficult to isolate due to the high levels of excitation involved and its transient nature. If not properly isolated it could lead to large transmitted forces and displacements. Typically, classical shock isolation relies on the use of passive stiffness elements to absorb energy by deformation and some damping mechanism to dissipate residual vibration. The approach of using nonlinear stiffness elements is explored in this paper, focusing in providing an isolation system with low dynamic stiffness. The possibilities of using such a configuration for a shock mount are studied experimentally following previous theoretical models. The model studied considers electromagnets and permanent magnets in order to obtain nonlinear stiffness forces using different voltage configurations. It is found that the stiffness nonlinearities could be advantageous in improving shock isolation in terms of absolute displacement and acceleration response when compared with linear elastic elements.

  20. Dynamic Performance of Subway Vehicle with Linear Induction Motor System

    NASA Astrophysics Data System (ADS)

    Wu, Pingbo; Luo, Ren; Hu, Yan; Zeng, Jing

    The light rail vehicle with Linear Induction Motor (LIM) bogie, which is a new type of urban rail traffic tool, has the advantages of low costs, wide applicability, low noise, simple maintenance and better dynamic behavior. This kind of vehicle, supported and guided by the wheel and rail, is not driven by the wheel/rail adhesion force, but driven by the electromagnetic force between LIM and reaction plate. In this paper, three different types of suspensions and their characteristic are discussed with considering the interactions both between wheel and rail and between LIM and reaction plate. A nonlinear mathematical model of the vehicle with LIM bogie is set up by using the software SIMPACK, and the electromechanical model is also set up on Simulink roof. Then the running behavior of the LIM vehicle is simulated, and the influence of suspension on the vehicle dynamic performance is investigated.

  1. Translation and Rotation of Transformation Media under Electromagnetic Pulse

    PubMed Central

    Gao, Fei; Shi, Xihang; Lin, Xiao; Xu, Hongyi; Zhang, Baile

    2016-01-01

    It is well known that optical media create artificial geometry for light, and curved geometry acts as an effective optical medium. This correspondence originates from the form invariance of Maxwell’s equations, which recently has spawned a booming field called ‘transformation optics’. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause translation and rotation of transformation media although their final momentum can still be zero. Therefore, the transformation media do not necessarily stay the same after an electromagnetic wave passes through. PMID:27321246

  2. Translation and Rotation of Transformation Media under Electromagnetic Pulse.

    PubMed

    Gao, Fei; Shi, Xihang; Lin, Xiao; Xu, Hongyi; Zhang, Baile

    2016-06-20

    It is well known that optical media create artificial geometry for light, and curved geometry acts as an effective optical medium. This correspondence originates from the form invariance of Maxwell's equations, which recently has spawned a booming field called 'transformation optics'. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause translation and rotation of transformation media although their final momentum can still be zero. Therefore, the transformation media do not necessarily stay the same after an electromagnetic wave passes through.

  3. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOEpatents

    Kuznetsov, Stephen B.

    1986-01-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.

  4. The Problem of Inertia in a Friedmann Universe

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2012-01-01

    In this talk I will discuss the origin of inertia in a curved spacetime, particularly the spatially flat, open and closed Friedmann universes. This is done using Sciama's law of inertial induction, which is based on Mach's principle, and expresses the analogy between the retarded far fields of electrodynamics and those of gravitation. After obtaining covariant expressions for electromagnetic fields due to an accelerating point charge in Friedmann models, we adopt Sciama's law to obtain the inertial force on an accelerating mass $m$ by integrating over the contributions from all the matter in the universe. The resulting inertial force has the form $F = -kma$ where the constant $k < 1 $ depends on the choice of the cosmological parameters such as $\\Omega_{M},\\ \\Omega_{\\Lambda}, $ and $\\Omega_{R}$. The values of $k$ obtained suggest that inertial contribution from dark matter can be the source for the missing part of the inertial force.

  5. Electromagnetic liquid pistons for capillarity-based pumping

    NASA Astrophysics Data System (ADS)

    Malouin, Bernard; Olles, Joseph; Cheng, Lili; Hirsa, Amir; Vogel, Michael

    2011-11-01

    Two adjoining ferrofluid droplets can behave as an electronically-controlled oscillator or switch by an appropriate balance of magnetic, capillary, and inertial forces. Their motion can be exploited to displace a surrounding liquid, forming electromagnetic liquid pistons. Such ferrofluid pistons can pump a precise volume of liquid via finely tunable amplitudes or resonant frequencies with no solid moving parts. Here we demonstrate the use of these liquid pistons in capillarity-dominated systems for variable focal distance liquid lenses with nearly perfect spherical interfaces. These liquid/liquid lenses feature many promising qualities not previously realized together in a liquid lens, including large apertures, immunity to evaporation, invariance to orientation relative to gravity, and low driving voltages. The dynamics of these liquid pistons is examined, with experimental measurements showing good agreement with a spherical cap model. A centimeter-scale lens was shown to respond in excess of 30 Hz, with resonant frequencies over 1 kHz predicted for scaled down systems.

  6. Melting heat transport of nanofluidic problem over a Riga plate with erratic thickness: Use of Keller Box scheme

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Azhar, Ehtsham; Mehmood, Zaffar; Maraj, E. N.

    Present article is a study of stagnation point flow over Riga plate with erratic thickness. Riga plate is an electromagnetic surface in which electrodes are assembled alternatively. This arrangement generates electromagnetic hydrodynamic behavior in the fluid flow. This is an attempt to investigate influence of melting heat, thermal radiation and viscous dissipation effects on Riga plate. A traversal electric and magnetic fields are produced by Riga plate. It causes Lorentz force parallel to wall which contributes in directing flow pattern. Physical problem is modeled and reduced nonlinear system is solved numerically. Comparative analysis is carried out between solutions obtained by Keller Box Method and shooting technique with Runge-Kutta Fehlberg method of order 5. It is noted that melting heat transfer reduces temperature distribution whereas radiation parameter upsurge it. Velocity is accelerated by modified Hartman number and Eckert number contributes in raising temperature.

  7. Bulk Micromachined 6H-SiC High-g Piezoresistive Accelerometer Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.

    2002-01-01

    High-g accelerometers are needed in certain applications, such as in the study and analysis of high-g impact landings and projectiles. Also, these accelerometers must survive the high electromagnetic fields associated with the all-electric vehicle technology needed for aerospace applications. The choice of SiC is largely due to its excellent thermomechanical properties over conventional silicon-based accelerometers, whose material properties inhibit applicability in high electromagnetic radiation and high temperatures (>150 C) unless more complex and sometimes costly packaging schemes are adopted. This work was the outcome of a NASA Glenn Research Center summer internship program, in collaboration with Cornell University and the Munitions Directorate of the U.S. Air Force in Eglin, Florida. It aimed to provide the enabling technology infrastructure (modeling, fabrication, and validation) for the implementation of SiC accelerometers designed specifically for harsh environments.

  8. Uncertainty principles for inverse source problems for electromagnetic and elastic waves

    NASA Astrophysics Data System (ADS)

    Griesmaier, Roland; Sylvester, John

    2018-06-01

    In isotropic homogeneous media, far fields of time-harmonic electromagnetic waves radiated by compactly supported volume currents, and elastic waves radiated by compactly supported body force densities can be modelled in very similar fashions. Both are projected restricted Fourier transforms of vector-valued source terms. In this work we generalize two types of uncertainty principles recently developed for far fields of scalar-valued time-harmonic waves in Griesmaier and Sylvester (2017 SIAM J. Appl. Math. 77 154–80) to this vector-valued setting. These uncertainty principles yield stability criteria and algorithms for splitting far fields radiated by collections of well-separated sources into the far fields radiated by individual source components, and for the restoration of missing data segments. We discuss proper regularization strategies for these inverse problems, provide stability estimates based on the new uncertainty principles, and comment on reconstruction schemes. A numerical example illustrates our theoretical findings.

  9. Operating characteristics of superconducting fault current limiter using 24kV vacuum interrupter driven by electromagnetic repulsion switch

    NASA Astrophysics Data System (ADS)

    Endo, M.; Hori, T.; Koyama, K.; Yamaguchi, I.; Arai, K.; Kaiho, K.; Yanabu, S.

    2008-02-01

    Using a high temperature superconductor, we constructed and tested a model Superconducting Fault Current Limiter (SFCL). SFCL which has a vacuum interrupter with electromagnetic repulsion mechanism. We set out to construct high voltage class SFCL. We produced the electromagnetic repulsion switch equipped with a 24kV vacuum interrupter(VI). There are problems that opening speed becomes late. Because the larger vacuum interrupter the heavier weight of its contact. For this reason, the current which flows in a superconductor may be unable to be interrupted within a half cycles of current. In order to solve this problem, it is necessary to change the design of the coil connected in parallel and to strengthen the electromagnetic repulsion force at the time of opening the vacuum interrupter. Then, the design of the coil was changed, and in order to examine whether the problem is solvable, the current limiting test was conducted. We examined current limiting test using 4 series and 2 parallel-connected YBCO thin films. We used 12-centimeter-long YBCO thin film. The parallel resistance (0.1Ω) is connected with each YBCO thin film. As a result, we succeed in interrupting the current of superconductor within a half cycle of it. Furthermore, series and parallel-connected YBCO thin film could limit without failure.

  10. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads.

    PubMed

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-01

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm(2), a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  11. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    NASA Astrophysics Data System (ADS)

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-01

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm2, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  12. Electromagnetic eigenmodes of collisional and collisionless plasmas and their stability to stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Pathak, Vishwa Bandhu; Tripathi, V. K.

    2007-02-01

    Nonlinear electromagnetic eigenmodes of collisional and collisionless plasmas, when the temporal extent of the modes is longer than the ambipolar diffusion time, have been investigated. The nonlinearity in a collisionless plasma arises through ponderomotive force, whereas in collisional plasmas Ohmic nonlinearity prevails. The mode structure in both cases, representing a balance between the nonlinearity-induced self-convergence and diffraction-induced divergence, closely resembles Gaussian form. The spot size of the mode decreases with the increasing axial amplitude of the laser, attains a minimum, and then rises very gradually. The modes are susceptible to stimulated Brillouin backscattering. The growth rate of the Brillouin process initially increases with mode amplitude, attains a maximum, and then decreases. The reduction in the growth rate is caused by strong electron evacuation from the axial region by the ponderomotive force and thermal pressure gradient force created by nonuniform Ohmic heating.

  13. Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.

    2001-01-01

    The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.

  14. Fractional Progress Toward Understanding the Fractional Diffusion Limit: The Electromagnetic Response of Spatially Correlated Geomaterials

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.; Beskardes, G. D.; Everett, M. E.

    2016-12-01

    In this presentation we review the observational evidence for anomalous electromagnetic diffusion in near-surface geophysical exploration and how such evidence is consistent with a detailed, spatially-correlated geologic medium. To date, the inference of multi-scale geologic correlation is drawn from two independent methods of data analysis. The first of which is analogous to seismic move-out, where the arrival time of an electromagnetic pulse is plotted as a function of transmitter/receiver separation. The "anomalous" diffusion is evident by the fractional-order power law behavior of these arrival times, with an exponent value between unity (pure diffusion) and 2 (lossless wave propagation). The second line of evidence comes from spectral analysis of small-scale fluctuations in electromagnetic profile data which cannot be explained in terms of instrument, user or random error. Rather, the power-law behavior of the spectral content of these signals (i.e., power versus wavenumber) and their increments reveals them to lie in a class of signals with correlations over multiple length scales, a class of signals known formally as fractional Brownian motion. Numerical results over simulated geology with correlated electrical texture - representative of, for example, fractures, sedimentary bedding or metamorphic lineation - are consistent with the (albeit limited, but growing) observational data, suggesting a possible mechanism and modeling approach for a more realistic geology. Furthermore, we show how similar simulated results can arise from a modeling approach where geologic texture is economically captured by a modified diffusion equation containing exotic, but manageable, fractional derivatives. These derivatives arise physically from the generalized convolutional form for the electromagnetic constitutive laws and thus have merit beyond mere mathematical convenience. In short, we are zeroing in on the anomalous, fractional diffusion limit from two converging directions: a zooming down of the macroscopic (fractional derivative) view; and, a heuristic homogenization of the atomistic (brute force discretization) view.

  15. The Moment of Creation.

    ERIC Educational Resources Information Center

    Schechter, Bruce

    1983-01-01

    Physicists at the European Organization for Nuclear Research discovered W particles using a giant particle accelerator. Existence of the particles confirms a 15-year-old theory about the nature of the universe, proving that electromagnetic and weak forces are related and raising hopes for a comprehensive theory which includes the strong force. (JN)

  16. Transition from steady to periodic liquid-metal magnetohydrodynamic flow in a sliding electrical contact

    NASA Astrophysics Data System (ADS)

    Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1993-09-01

    In homopolar motors and generators, large dc electric currents pass through the sliding electrical contacts between rotating copper disks (rotors) and static copper surfaces shrouding the rotor tips (stators). A liquid metal in the small radial gap between the rotor tip and concentric stator surface can provide a low-resistance, low-drag electrical contact. Since there is a strong magnetic field in the region of the electrical contacts, there are large electromagnetic body forces on the liquid metal. The primary, azimuthal motion consists of simple Couette flow, plus an electromagnetically driven flow with large extremes of the azimuthal velocity near the rotor corners. The secondary flow involves the radial and axial velocity components, is driven by the centrifugal force associated with the primary flow, and is opposed by the electromagnetic body force, so that the circulation varies inversely as the square of the magnetic-field strength. Three flow regimes are identified as the angular velocity Ω of the rotor is increased. For small Ω, the primary flow is decoupled from the secondary flow. As Ω increases, the secondary flow begins to convect the azimuthal-velocity peaks radially outward, which in turn changes the centrifugal force driving the secondary flow. At some critical value of Ω, the flow becomes periodic through the coupling of the primary and secondary flows. The azimuthal-velocity peaks begin to move radially in and out with an accompanying oscillation in the secondary-flow strength.

  17. Optimizing results of lithotripsy using robust electromagnetic probe.

    PubMed

    Keeley, F X; Pye, S D; Smith, G; Tolley, D A

    1999-05-01

    A significant impediment to the measurement of the pressures and forces created by lithotripter shockwaves has been their destructive properties, which have rendered most measuring devices impractical. We have developed and tested a robust electromagnetic probe to measure cavitational forces in vitro in the focal zones of extracorporeal lithotripters. The probe responds to the pressure gradient generated by the radial motion of cavitation bubbles. The effects of shockwaves from the Dornier MPL 9000 electrohydraulic lithotripter were measured over the lifetime of multiple electrodes. The pulse energy from the electrodes dropped off rapidly after approximately 50% of the lifetime quoted by the manufacturer. The electrodes were more efficient at higher power settings. As a result, we altered our protocol for the treatment of ureteral stones to use a higher kilovoltage and a second electrode whenever necessary. Stone-free rates after shockwave lithotripsy (SWL) in situ for stones < 11 mm have increased from 68.2% to 83.3%, and the retreatment rate has dropped from 23% to 15%. Despite significantly higher power settings (23.7 kV v 18.7 kV; P < 0.0001), the need for sedoanalgesia has remained relatively constant (26% v 31%). Measurement of cavitational forces from lithotripters using a robust electromagnetic probe is useful in planning treatment strategy. We have demonstrated a clinically measurable improvement since implementing our new treatment protocol. Because the probe responds directly to cavitational forces, it should also prove useful for the objective comparison of different SWL machines.

  18. Hadron masses in a gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Rujula, A.; Georgi, H.; Glashow, S.L.

    1975-07-01

    We explore the implications for hadron spectroscopy of the ''standard'' gauge model of weak, electromagnetic, and strong interactions. The model involves four types of fractionally charged quarks, each in three colors, coupling to massless gauge gluons. The quarks are confined within colorless hadrons by a long-range spin-independent force realizing infrared slavery. We use the asymptotic freedom of the model to argue that for the calculation of hadron masses, the short-range quark-quark interaction may be taken to be Coulomb- like. We rederive many successful quark-model mass relations for the low-lying hadrons. Because a specific interaction and symmetry-breaking mechanism are forced onmore » us by the underlying renormalizable gauge field theory, we also obtain new mass relations. They are well satisfied. We develop a qualitative understanding of many features of the hadron mass spectrum, such as the origin and sign of the $Sigma$-$lambda$ mass splitting. Interpreting the newly discovered narrow boson resonances as states of charmonium, we use the model to predict the masses of charmed mesons and baryons.« less

  19. Determination of concrete cover thickness in a reinforced concrete pillar by observation of the scattered electromagnetic field

    NASA Astrophysics Data System (ADS)

    Di Gregorio, Pietro Paolo; Frezza, Fabrizio; Mangini, Fabio; Pajewski, Lara

    2017-04-01

    The electromagnetic scattered field by a reinforced concrete structure is calculated by means of frequency-domain numerical simulations and by making use of the scattered-field formulation. The concrete pillar, used as supporting architectural element, is modelled as a parallelepiped shell made of concrete material inside which are present steel bars. In order to make the model simpler, the steel bars are supposed running parallel to the air-pillar interface. To excite the model, a linearly-polarized plane wave impinging normally with respect to the pillars surface, is adopted. We consider two different polarizations in order to determine the most useful in terms of scattered-field sensitivity. Moreover, a preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the pillar cross-section, the steel bars cross-section and the concrete cover. All the three components of the scattered field are monitored along a line just above the interface air-pillar. The electromagnetic properties of the materials employed in this study are present in the literature and, since a frequency-domain technique is adopted, no further approximation is needed. The results obtained for different values of the concrete cover are compared, with the goal of determining the scattered field dependence on the concrete cover thickness. Considering different concrete cover thicknesses, we want to provide an electromagnetic method to obtain this useful parameter by observation of the scattered electromagnetic field. One of the practical applications of this study in the field of Civil Engineering may be the use of ground penetrating radar (GPR) techniques to monitor the thickness of the concrete that separates the metal bars embedded in the pillar from the outer surface. A correct distance is useful because the concrete cover serves as a protection against external agents avoiding corrosion of the bars that might prejudice the reinforced concrete; it ensures also an optimal transmission and distribution of the adhesion forces in the pillar. Acknowledgement This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu).

  20. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity.

    PubMed

    Panagopoulos, Dimitris J; Johansson, Olle; Carlo, George L

    2015-10-12

    In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell's electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects.

  1. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity

    PubMed Central

    Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.

    2015-01-01

    In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell’s electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects. PMID:26456585

  2. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity

    NASA Astrophysics Data System (ADS)

    Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.

    2015-10-01

    In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell’s electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects.

  3. Micromachined piconewton force sensor for biophysics investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Steven J.; Thayer, Gayle E.; Corwin, Alex D.

    2006-10-23

    We describe a micromachined force sensor that is able to measure forces as small as 1 pN in both air and water. First, we measured the force field produced by an electromagnet on individual 2.8 {mu}m magnetic beads glued to the sensor. By repeating with 11 different beads, we measured a 9% standard deviation in saturation magnetization. We next demonstrated that the sensor was fully functional when immersed in physiological buffer. These results show that the force sensors can be useful for magnetic force calibration and also for measurement of biophysical forces on chip.

  4. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lijun, E-mail: lijunwang@mail.xjtu.edu.cn; Deng, Jie; Wang, Haijing

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just asmore » the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.« less

  5. Radiation Force Caused by Scattering, Absorption, and Emission of Light by Nonspherical Particles

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2001-01-01

    General formulas for computing the radiation force exerted on arbitrarily oriented and arbitrarily shaped nonspherical particles due to scattering, absorption, and emission of electromagnetic radiation are derived. For randomly oriented particles with a plane of symmetry, the formula for the average radiation force caused by the particle response to external illumination reduces to the standard Debye formula derived from the Lorenz-Mie theory, whereas the average radiation force caused by emission vanishes.

  6. The total energy-momentum tensor for electromagnetic fields in a dielectric

    NASA Astrophysics Data System (ADS)

    Crenshaw, Michael E.

    2017-08-01

    Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density ρmv. Newtonian fluids can behave very much like dust with the same energy-momentum tensor. The energy and momentum conservation properties of light propagating in the vacuum were long-ago cast in the energy-momentum tensor formalism in terms of the electromagnetic energy density and electromagnetic momentum density. However, extrapolating the tensor theory of energy-momentum conservation for propagation of light in the vacuum to propagation of light in a simple linear dielectric medium has proven to be problematic and controversial. A dielectric medium is not "otherwise empty" and it is typically assumed that optically induced forces accelerate and decelerate nanoscopic material constituents of the dielectric. The corresponding material energy-momentum tensor is added to the electromagnetic energy-momentum tensor to form the total energy-momentum tensor, thereby ensuring that the total energy and the total momentum of the thermodynamically closed system remain constant in time.

  7. Electromagnetic unification of matter and force fields

    NASA Astrophysics Data System (ADS)

    John, Sarah

    2004-05-01

    Special relativity and quantum mechanics are descriptive of electromagnetic propagation in waveguides, with mass analogous to the cutoff frequency of a waveguide mode [S.John, Bull.Am.Phys.Soc. vol.39,no.2,1254 (1994)]. It is further postulated herein that all spin 1/2 matter (necessarily massive) and spin 1 force fields have their origin in the electromagnetic fields E and B. This concept is not new. Majorana, among others have obtained electromagnetic representations of Dirac-like equations valid for the zero-mass case. Here, the spinor representation of the Maxwell equations, as given by Sallhofer, is extended to oscillatory fields with propagation constant m to obtain, in the absence of charge and current densities, the coupled equation (M. hatp + β E)ψ = 0 , where M = diag[ M σ, M^* σ ] , β = offdiag[I,I] , ψ ^ = i ^dag ( σ. B0 ( p), σ. E_0(p)), and M=m+ip, with the energy-mass relation given by E^2 = M M . Further, it is shown that the interaction term of QED is a direct consequence of including the sources and currents of Maxwell equations. Qualitative field patterns for spin 1/2 and spin 1 states, such as the electron, neutrino, magnetic monopole, quarks, photon, and massive gauge bosons are suggested.

  8. An electromagnetic microvalve for pneumatic control of microfluidic systems.

    PubMed

    Liu, Xuling; Li, Songjing

    2014-10-01

    An electromagnetic microvalve for pneumatic control of microfluidic devices has been designed, fabricated, and tested. The microvalve is composed of two parts: a miniature electromagnetic actuator and a valve body. The electromagnetic actuator consists mainly of a thin polydimethylsiloxane (PDMS)-based elastomer, which acts as the valve diaphragm. The diaphragm, used as a solid hydraulic medium, converts the large contact area of a valve core into a small contact area of valve head while maintaining a large stroking force. This microvalve remains closed because of a compressed mechanical spring force generated by the actuator. On the other hand, when a voltage is applied, the valve core moves up, relaxing the thin PDMS membrane, opening the microvalve. The fast open response (~17 ms) of the valve was achieved with a leak rate as low as 0.026 sccm at 200 KPa (N2) pressure. We tested the pertinent dynamic parameters such as flow rate in on/off mode, flow rate of duty cycles, and actuated frequencies in pulse width modulation (PWM) mode. Our method provides a simple, cheap, and small microvalve that avoids the bulky and expensive external pressure control solenoid manifold. This allows it to be easily integrated into portable and disposable devices. © 2014 Society for Laboratory Automation and Screening.

  9. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. Copyright © 2016, American Association for the Advancement of Science.

  10. The momentum of an electromagnetic wave inside a dielectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Testa, Massimo, E-mail: massimo.testa@roma1.infn.it

    2013-09-15

    The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham–Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored. -- Highlights: •We discuss an approximation to treat electrodynamics of a dielectric material. •We support the Abraham form for the electromagnetic momentum. •We deduce Snell’s law from themore » conservation of the Abraham momentum. •We show how to deal with the electric field discontinuity at the dielectric boundary.« less

  11. Three-axis lever actuator with flexure hinges for an optical disk system

    NASA Astrophysics Data System (ADS)

    Han, Chang-Soo; Kim, Soo-Hyun

    2002-10-01

    A three-axis lever actuator with a flexure hinge has been designed and fabricated. This actuator is driven by electromagnetic force based on a coil-magnet system and can be used as a high precision actuator and, especially as a pickup head actuator in optical disks. High precision and low sensitivity to external vibration are the major advantages of this lever actuator. An analysis model was found and compared to the finite element method. Dynamic characteristics of the three-axis lever actuator were measured. The results are in very close agreement to those predicted by the model and finite element analysis.

  12. Large-basis ab initio no-core shell model and its application to {sup 12}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navratil, P.; Vary, J. P.; Barrett, B. R.

    2000-11-01

    We present the framework for the ab initio no-core nuclear shell model and apply it to obtain properties of {sup 12}C. We derive two-body effective interactions microscopically for specific model spaces from the realistic CD-Bonn and the Argonne V8' nucleon-nucleon (NN) potentials. We then evaluate binding energies, excitation spectra, radii, and electromagnetic transitions in the 0{Dirac_h}{Omega}, 2{Dirac_h}{Omega}, and 4{Dirac_h}{Omega} model spaces for the positive-parity states and the 1{Dirac_h}{Omega}, 3{Dirac_h}{Omega}, and 5{Dirac_h}{Omega} model spaces for the negative-parity states. Dependence on the model-space size, on the harmonic-oscillator frequency, and on the type of the NN potential, used for the effective interaction derivation,more » are studied. In addition, electromagnetic and weak neutral elastic charge form factors are calculated in the impulse approximation. Sensitivity of the form-factor ratios to the strangeness one-body form-factor parameters and to the influence of isospin-symmetry violation is evaluated and discussed. Agreement between theory and experiment is favorable for many observables, while others require yet larger model spaces and/or three-body forces. The limitations of the present results are easily understood by virtue of the trends established and previous phenomenological results.« less

  13. Fluid-dynamic design optimization of hydraulic proportional directional valves

    NASA Astrophysics Data System (ADS)

    Amirante, Riccardo; Catalano, Luciano Andrea; Poloni, Carlo; Tamburrano, Paolo

    2014-10-01

    This article proposes an effective methodology for the fluid-dynamic design optimization of the sliding spool of a hydraulic proportional directional valve: the goal is the minimization of the flow force at a prescribed flow rate, so as to reduce the required opening force while keeping the operation features unchanged. A full three-dimensional model of the flow field within the valve is employed to accurately predict the flow force acting on the spool. A theoretical analysis, based on both the axial momentum equation and flow simulations, is conducted to define the design parameters, which need to be properly selected in order to reduce the flow force without significantly affecting the flow rate. A genetic algorithm, coupled with a computational fluid dynamics flow solver, is employed to minimize the flow force acting on the valve spool at the maximum opening. A comparison with a typical single-objective optimization algorithm is performed to evaluate performance and effectiveness of the employed genetic algorithm. The optimized spool develops a maximum flow force which is smaller than that produced by the commercially available valve, mainly due to some major modifications occurring in the discharge section. Reducing the flow force and thus the electromagnetic force exerted by the solenoid actuators allows the operational range of direct (single-stage) driven valves to be enlarged.

  14. Active electromagnetic invisibility cloaking and radiation force cancellation

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2018-03-01

    This investigation shows that an active emitting electromagnetic (EM) Dirichlet source (i.e., with axial polarization of the electric field) in a homogeneous non-dissipative/non-absorptive medium placed near a perfectly conducting boundary can render total invisibility (i.e. zero extinction cross-section or efficiency) in addition to a radiation force cancellation on its surface. Based upon the Poynting theorem, the mathematical expression for the extinction, radiation and amplification cross-sections (or efficiencies) are derived using the partial-wave series expansion method in cylindrical coordinates. Moreover, the analysis is extended to compute the self-induced EM radiation force on the active source, resulting from the waves reflected by the boundary. The numerical results predict the generation of a zero extinction efficiency, achieving total invisibility, in addition to a radiation force cancellation which depend on the source size, the distance from the boundary and the associated EM mode order of the active source. Furthermore, an attractive EM pushing force on the active source directed toward the boundary or a repulsive pulling one pointing away from it can arise accordingly. The numerical predictions and computational results find potential applications in the design and development of EM cloaking devices, invisibility and stealth technologies.

  15. Estimation of Prestress Force Distribution in Multi-Strand System of Prestressed Concrete Structures Using Field Data Measured by Electromagnetic Sensor

    PubMed Central

    Cho, Keunhee; Cho, Jeong-Rae; Kim, Sung Tae; Park, Sung Yong; Kim, Young-Jin; Park, Young-Hwan

    2016-01-01

    The recently developed smart strand can be used to measure the prestress force in the prestressed concrete (PSC) structure from the construction stage to the in-service stage. The higher cost of the smart strand compared to the conventional strand renders it unaffordable to replace all the strands by smart strands, and results in the application of only a limited number of smart strands in the PSC structure. However, the prestress forces developed in the strands of the multi-strand system frequently adopted in PSC structures differ from each other, which means that the prestress force in the multi-strand system cannot be obtained by simple proportional scaling using the measurement of the smart strand. Therefore, this study examines the prestress force distribution in the multi-strand system to find the correlation between the prestress force measured by the smart strand and the prestress force distribution in the multi-strand system. To that goal, the prestress force distribution was measured using electromagnetic sensors for various factors of the multi-strand system adopted on site in the fabrication of actual PSC girders. The results verified the possibility to assume normal distribution for the prestress force distribution per anchor head, and a method computing the mean and standard deviation defining the normal distribution is proposed. This paper presents a meaningful finding by proposing an estimation method of the prestress force based upon field-measured data of the prestress force distribution in the multi-strand system of actual PSC structures. PMID:27548172

  16. The Big Bang, Superstring Theory and the origin of life on the Earth.

    PubMed

    Trevors, J T

    2006-03-01

    This article examines the origin of life on Earth and its connection to the Superstring Theory, that attempts to explain all phenomena in the universe (Theory of Everything) and unify the four known forces and relativity and quantum theory. The four forces of gravity, electro-magnetism, strong and weak nuclear were all present and necessary for the origin of life on the Earth. It was the separation of the unified force into four singular forces that allowed the origin of life.

  17. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOEpatents

    Kuznetsov, S.B.

    1986-04-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

  18. Further evaluation of the constrained least squares electromagnetic compensation method

    NASA Technical Reports Server (NTRS)

    Smith, William T.

    1991-01-01

    Technologies exist for construction of antennas with adaptive surfaces that can compensate for many of the larger distortions caused by thermal and gravitational forces. However, as the frequency and size of reflectors increase, the subtle surface errors become significant and degrade the overall electromagnetic performance. Electromagnetic (EM) compensation through an adaptive feed array offers means for mitigation of surface distortion effects. Implementation of EM compensation is investigated with the measured surface errors of the NASA 15 meter hoop/column reflector antenna. Computer simulations are presented for: (1) a hybrid EM compensation technique, and (2) evaluating the performance of a given EM compensation method when implemented with discretized weights.

  19. Evaluation of clustering algorithms at the < 1 GeV energy scale for the electromagnetic calorimeter of the PADME experiment

    NASA Astrophysics Data System (ADS)

    Leonardi, E.; Piperno, G.; Raggi, M.

    2017-10-01

    A possible solution to the Dark Matter problem postulates that it interacts with Standard Model particles through a new force mediated by a “portal”. If the new force has a U(1) gauge structure, the “portal” is a massive photon-like vector particle, called dark photon or A’. The PADME experiment at the DAΦNE Beam-Test Facility (BTF) in Frascati is designed to detect dark photons produced in positron on fixed target annihilations decaying to dark matter (e+e-→γA‧) by measuring the final state missing mass. One of the key roles of the experiment will be played by the electromagnetic calorimeter, which will be used to measure the properties of the final state recoil γ. The calorimeter will be composed by 616 21×21×230 mm3 BGO crystals oriented with the long axis parallel to the beam direction and disposed in a roughly circular shape with a central hole to avoid the pile up due to the large number of low angle Bremsstrahlung photons. The total energy and position of the electromagnetic shower generated by a photon impacting on the calorimeter can be reconstructed by collecting the energy deposits in the cluster of crystals interested by the shower. In PADME we are testing two different clustering algorithms, PADME-Radius and PADME-Island, based on two complementary strategies. In this paper we will describe the two algorithms, with the respective implementations, and report on the results obtained with them at the PADME energy scale (< 1 GeV), both with a GEANT4 based simulation and with an existing 5×5 matrix of BGO crystals tested at the DAΦNE BTF.

  20. Virtual photons in imaginary time: Computing exact Casimir forces via standard numerical electromagnetism techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Alejandro; Ibanescu, Mihai; Joannopoulos, J. D.

    2007-09-15

    We describe a numerical method to compute Casimir forces in arbitrary geometries, for arbitrary dielectric and metallic materials, with arbitrary accuracy (given sufficient computational resources). Our approach, based on well-established integration of the mean stress tensor evaluated via the fluctuation-dissipation theorem, is designed to directly exploit fast methods developed for classical computational electromagnetism, since it only involves repeated evaluation of the Green's function for imaginary frequencies (equivalently, real frequencies in imaginary time). We develop the approach by systematically examining various formulations of Casimir forces from the previous decades and evaluating them according to their suitability for numerical computation. We illustratemore » our approach with a simple finite-difference frequency-domain implementation, test it for known geometries such as a cylinder and a plate, and apply it to new geometries. In particular, we show that a pistonlike geometry of two squares sliding between metal walls, in both two and three dimensions with both perfect and realistic metallic materials, exhibits a surprising nonmonotonic ''lateral'' force from the walls.« less

  1. Strings: A possible alternative explanation for the Unification of Gravitation Field and Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Rivera, Susana

    Throughout the last century, since the last decades of the XIX century, until present day, there had been many attempts to achieve the unification of the Forces of Nature. First unification was done by James Clerk Maxwell, with his Electromagnetic Theory. Then Max Plank developed his Quantum Theory. In 1905, Albert Einstein gave birth to the Special Relativity Theory, and in 1916 he came out with his General Relativity Theory. He noticed that there was an evident parallelism between the Gravitational Force, and the Electromagnetic Force. So, he tried to unify these forces of Nature. But Quantum Theory interposed on his way. On the 1940’s it had been developed the Quantum Electrodynamics (QED), and with it, the unified field theory had an arise interest. On the 60’s and 70’s there was developed the Quantum Chromodynamics (QCD). Along with these theories came the discovery of the strong interaction force and weak interaction force. And though there had been many attempts to unify all these forces of the nature, it could only be achieved the Unification of strong interaction, weak interaction and Electromagnetic Force. On the late 80”s and throughout the last two decades, theories such as “super-string theory”, “or the “M-theory”, among others, groups of Scientists, had been doing grand efforts and finally they came out with the unification of the forces of nature, being the only limitation the use of more than 11 dimensions. Using an ingenious mathematical tool known as the super symmetries, based on the Kaluza - Klein work, they achieve this goal. The strings of these theories are in the rank of 10-33 m. Which make them undetectable. There are many other string theories. The GEUFT theory is based on the existence of concentrated energy lines, which vibrates, expands and contracts, submitting and absorbing energy, matter and antimatter, and which yields a determined geometry, that gives as a result the formation of stars, galaxies, nebulae, clusters on the Macrocosmic level, and that allows the formation of fundamental particles on the Microcosmic level. The strings are described by a function named Symbiosis (σ), which depends on four energetic contributions: (1) Radiation Energy (2) Plasma Energy (3) Conducted Flux Energy and (4) Mass Energy. There is an intimate relation between them, and depending on the value they have at a certain moment and at a certain time, the string dynamics and its geometry are settled. That means that symbiosis describes the strings state in any point of the geometer - energy field. σ = F [Er(σ), Ep(σ), Ef(σ), Em(σ)] (1) This work is an attempt to achieve the unification of the forces of nature, based on the existence of a four dimension Universe.

  2. High-precision horizontally directed force measurements for high dead loads based on a differential electromagnetic force compensation system

    NASA Astrophysics Data System (ADS)

    Vasilyan, Suren; Rivero, Michel; Schleichert, Jan; Halbedel, Bernd; Fröhlich, Thomas

    2016-04-01

    In this paper, we present an application for realizing high-precision horizontally directed force measurements in the order of several tens of nN in combination with high dead loads of about 10 N. The set-up is developed on the basis of two identical state-of-the-art electromagnetic force compensation (EMFC) high precision balances. The measurement resolution of horizontally directed single-axis quasi-dynamic forces is 20 nN over the working range of  ±100 μN. The set-up operates in two different measurement modes: in the open-loop mode the mechanical deflection of the proportional lever is an indication of the acting force, whereas in the closed-loop mode it is the applied electric current to the coil inside the EMFC balance that compensates deflection of the lever to the offset zero position. The estimated loading frequency (cutoff frequency) of the set-up in the open-loop mode is about 0.18 Hz, in the closed-loop mode it is 0.7 Hz. One of the practical applications that the set-up is suitable for is the flow rate measurements of low electrically conducting electrolytes by applying the contactless technique of Lorentz force velocimetry. Based on a previously developed set-up which uses a single EMFC balance, experimental, theoretical and numerical analyses of the thermo-mechanical properties of the supporting structure are presented.

  3. Computational model for calculating the dynamical behaviour of generators caused by unbalanced magnetic pull and experimental validation

    NASA Astrophysics Data System (ADS)

    Pennacchi, Paolo

    2008-04-01

    The modelling of the unbalanced magnetic pull (UMP) in generators and the experimental validation of the proposed method are presented in this paper. The UMP is one of the most remarkable effects of electromechanical interactions in rotating machinery. As a consequence of the rotor eccentricity, the imbalance of the electromagnetic forces acting between rotor and stator generates a net radial force. This phenomenon can be avoided by means of a careful assembly and manufacture in small and stiff machines, like electrical motors. On the contrary, the eccentricity of the active part of the rotor with respect to the stator is unavoidable in big generators of power plants, because they operate above their first critical speed and are supported by oil-film bearings. In the first part of the paper, a method aimed to calculate the UMP force is described. This model is more general than those available in literature, which are limited to circular orbits. The model is based on the actual position of the rotor inside the stator, therefore on the actual air-gap distribution, regardless of the orbit type. The closed form of the nonlinear UMP force components is presented. In the second part, the experimental validation of the proposed model is presented. The dynamical behaviour in the time domain of a steam turbo-generator of a power plant is considered and it is shown that the model is able to reproduce the dynamical effects due to the excitation of the magnetic field in the generator.

  4. Electromagnetic flat sheet forming by spiral type actuator coil

    NASA Astrophysics Data System (ADS)

    Akbar, S.; Aleem, M. A.; Sarwar, M. N.; Zillohu, A. U.; Awan, M. S.; Haider, A.; Ahmad, Z.; Akhtar, S.; Farooque, M.

    2016-08-01

    Focus of present work is to develop a setup for high strain rate electromagnetic forming of thin aluminum sheets (0.5, 1.0, 1.5 and 2.0 mm) and optimization of forming parameters. Flat spiral coil of 99.9% pure Cu strip (2.5x8.0 mm) with self-inductance 11 μH, 13 no. of turns and resultant outer diameter of 130mm has been fabricated and was coupled to a capacitor bank of energy, voltage and capacitance of 9 kJ, 900 V and 22.8 mF, respectively. To optimize the coil design, a commercially available software FEMM-4.2 was used to simulate the electromagnetic field profile generated by the coils of different pitch but same number of turns. Results of electromagnetic field intensity proposed by simulation agree in close proximity with those of theoretical as well as experimental data. The calculation of electromagnetic force and magnetic couplings between the coil and metal sheet are made. Forming parameters were optimized for different sheet thicknesses. Electromagnetic field intensity's profile plays a principal role in forming of typical shapes and patterns in sheets.

  5. Influence of Spectral Transfer Processes in Compressible Low Frequency Plasma Turbulence on Scattering and Refraction of Electromagnetic Signals

    DTIC Science & Technology

    2015-01-01

    AFRL-RY-WP-TR-2014-0230 INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND...INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND REFRACTION OF ELECTROMAGNETIC SIGNALS 5a...research is to analyze influence of plasma turbulence on hypersonic sensor systems and NGOTHR applications and to meet the Air Force’s ever-increasing

  6. United States Air Force Role in Mass Atrocity Response Operations

    DTIC Science & Technology

    2012-05-17

    Factsheet, http://www.af.mil/information/factsheets/factsheet.asp?id=122 (accessed November 29, 2011). 28 electromagnetic spectrum. The mission...crew can then forward gathered information in a variety of formats to a wide range of consumers via Rivet Joint’s extensive communications suite.”71...130H and EC-130J, they can effectively cut off internal electromagnetic communication and replace it with their own local narrative, such as the video

  7. Assessing the potential for improved scramjet performance through application of electromagnetic flow control

    NASA Astrophysics Data System (ADS)

    Lindsey, Martin Forrester

    Sustained hypersonic flight using scramjet propulsion is the key technology bridging the gap between turbojets and the exoatmospheric environment where a rocket is required. Recent efforts have focused on electromagnetic (EM) flow control to mitigate the problems of high thermomechanical loads and low propulsion efficiencies associated with scramjet propulsion. This research effort is the first flight-scale, three-dimensional computational analysis of a realistic scramjet to determine how EM flow control can improve scramjet performance. Development of a quasi-one dimensional design tool culminated in the first open source geometry of an entire scramjet flowpath. This geometry was then tested extensively with the Air Force Research Laboratory's three-dimensional Navier-Stokes and EM coupled computational code. As part of improving the model fidelity, a loosely coupled algorithm was developed to incorporate thermochemistry. This resulted in the only open-source model of fuel injection, mixing and combustion in a magnetogasdynamic (MGD) flow controlled engine. In addition, a control volume analysis tool with an electron beam ionization model was presented for the first time in the context of the established computational method used. Local EM flow control within the internal inlet greatly impacted drag forces and wall heat transfer but was only marginally successful in raising the average pressure entering the combustor. The use of an MGD accelerator to locally increase flow momentum was an effective approach to improve flow into the scramjet's isolator. Combustor-based MGD generators proved superior to the inlet generator with respect to power density and overall engine efficiency. MGD acceleration was shown to be ineffective in improving overall performance, with all of the bypass engines having approximately 33% more drag than baseline and none of them achieving a self-powered state.

  8. Theoretical Modeling and Electromagnetic Response of Complex Metamaterials

    DTIC Science & Technology

    2017-03-06

    AFRL-AFOSR-VA-TR-2017-0042 Theoretical Modeling and Electromagnetic Response of Complex Metamaterials Andrea Alu UNIVERSITY OF TEXAS AT AUSTIN Final...Nov 2016 4. TITLE AND SUBTITLE Theoretical Modeling and Electromagnetic Response of Complex Metamaterials 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER...based on parity-time symmetric metasurfaces, and various advances in electromagnetic and acoustic theory and applications. Our findings have opened

  9. Electrodynamic eigenmodes in cellular morphology.

    PubMed

    Cifra, M

    2012-09-01

    Eigenmodes of the spherical and ellipsoidal dielectric electromagnetic resonator have been analysed. The sizes and shape of the resonators have been chosen to represent the shape of the interphase and dividing animal cell. Electromagnetic modes that have shape exactly suitable for positioning of the sufficiently large organelles in cell (centrosome, nucleus) have been identified. We analysed direction and magnitude of dielectrophoretic force exerted on large organelles by electric field of the modes. We found that the TM(1m1) mode in spherical resonator acts by centripetal force which drags the large organelles which have higher permittivity than the cytosol to the center of the cell. TM-kind of mode in the ellipsoidal resonator acts by force on large polarizable organelles in a direction that corresponds to the movement of the centrosomes (also nucleus) observed during the cell division, i.e. to the foci of the ellipsoidal cell. Minimal required force (10(-16) N), gradient of squared electric field and corresponding energy (10(-16) J) of the mode have been calculated to have biological significance within the periods on the order of time required for cell division. Minimal required energy of the mode, in order to have biological significance, can be lower in the case of resonance of organelle with the field of the cellular resonator mode. In case of sufficient energy in the biologically relevant mode, electromagnetic field of the mode will act as a positioning or steering mechanism for centrosome and nucleus in the cell, thus contribute to the spatial and dynamical self-organization in biological systems. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Un-renormalized classical electromagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibison, Michael

    2006-02-15

    This paper follows in the tradition of direct-action versions of electromagnetism having the aim of avoiding a balance of infinities wherein a mechanical mass offsets an infinite electromagnetic mass so as to arrive at a finite observed value. However, the direct-action approach ultimately failed in that respect because its initial exclusion of self-action was later found to be untenable in the relativistic domain. Pursing the same end, this paper examines instead a version of electromagnetism wherein mechanical action is excluded and self-action is retained. It is shown that the resulting theory is effectively interacting due to the presence of infinitemore » forces. A vehicle for the investigation is a pair of classical point charges in a positronium-like arrangement for which the orbits are found to be self-sustaining and naturally quantized.« less

  11. Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study.

    PubMed

    Rafati, A; Rahimi, S; Talebi, A; Soleimani, A; Haghani, M; Mortazavi, S M J

    2015-09-01

    The rapid growth of wireless communication technologies has caused public concerns regarding the biological effects of electromagnetic radiations on human health. Some early reports indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians such as the alterations of the pattern of muscle extractions. This study is aimed at investigating the effects of exposure to radiofrequency (RF) radiation emitted from mobile phone jammers on the pulse height of contractions, the time interval between two subsequent contractions and the latency period of frog's isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz). Frogs were kept in plastic containers in a room. Animals in the jammer group were exposed to radiofrequency (RF) radiation emitted from a common Jammer at a distance of 1m from the jammer's antenna for 2 hours while the control frogs were only sham exposed. Then animals were sacrificed and isolated gastrocnemius muscles were exposed to on/off jammer radiation for 3 subsequent 10 minute intervals. Isolated gastrocnemius muscles were attached to the force transducer with a string. Using a PowerLab device (26-T), the pattern of muscular contractions was monitored after applying single square pulses of 1V (1 Hz) as stimuli. The findings of this study showed that the pulse height of muscle contractions could not be affected by the exposure to electromagnetic fields. However, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions.

  12. Examination of extremely low frequency electromagnetic fields on orthodontic tooth movement in rats

    PubMed Central

    Dogru, Mehmet; Akpolat, Veysi; Dogru, Arzum Guler; Karadede, Beyza; Akkurt, Atilim; Karadede, M. Irfan

    2014-01-01

    The purpose of this study was to evaluate whether 50 Hz extremely low frequency electromagnetic fields (ELF-EMFs) affect the amount of orthodontic tooth movement in rats. The experiments were performed on 18 male Sprague-Dawley rats. The rats were randomly divided into three groups (n = 6): cage-control (Cg-Cnt) group (n = 6); sinusoidal electromagnetic field (SEMF) group (n = 6); and pulsed electromagnetic field (PEMF) group (n = 6). In SEMF and PEMF groups, rats were subjected to 1.5 mT EMF exposure eight hours per day for eight days. In order to obtain tooth movement, holes were drilled on the right and left maxillary central incisors of the rats at a distance 1.5–2 mm away from the gingiva and 20 g of orthodontic forces were applied to the teeth. Generated linear model for repeated measures and Bonferroni tests were used to evaluate the differences between the groups. Interactions among groups by days were found by using Pillai's trace multivariate test. The results showed that significant differences were present among the groups (F = 5.035; p = 0.03) according to the extent of tooth movement. Significant differences between the amount of tooth movements were determined especially after the fifth day and the following days six, seven and eight (p < 0.001). Within the limitations, according to the results of the present study, the application of ELF-EMF accelerated the orthodontic tooth movement in rats. PMID:26019497

  13. Electromagnetic modulation of the ultrasonic signal for nondestructive detection of small defects and ferromagnetic inclusions in thin wall structures

    NASA Astrophysics Data System (ADS)

    Finkel, Peter

    2008-03-01

    We report on new nondestructive evaluation technique based on electromagnetic modulation of ultrasonic signal for detection of the small crack, flaws and inclusions in thin-walled parts. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small crack near holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.

  14. Electron–Positron Pair Flow and Current Composition in the Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Brambilla, Gabriele; Kalapotharakos, Constantinos; Timokhin, Andrey N.; Harding, Alice K.; Kazanas, Demosthenes

    2018-05-01

    We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron–positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting force-free-like configuration with those obtained in a PIC simulation where particles are injected everywhere as well as with macroscopic force-free simulations. We find that, although both PIC solutions have similar structure of electromagnetic fields and current density distributions, they have different particle density distributions. In fact, in the injection from the surface solution, electrons and positrons counterstream only along parts of the return current regions and most of the particles leave the magnetosphere without returning to the star. We also find that pair production in the outer magnetosphere is not critical for filling the whole magnetosphere with plasma. We study how the current density distribution supporting the global electromagnetic configuration is formed by analyzing particle trajectories. We find that electrons precipitate to the return current layer inside the light cylinder and positrons precipitate to the current sheet outside the light cylinder by crossing magnetic field lines, contributing to the charge density distribution required by the global electrodynamics. Moreover, there is a population of electrons trapped in the region close to the Y-point. On the other hand, the most energetic positrons are accelerated close to the Y-point. These processes can have observational signatures that, with further modeling effort, would help to distinguish this particular magnetosphere configuration from others.

  15. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-15

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented amore » bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm{sup 2}, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle’s position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.« less

  16. Effects of Space Weather on Geosynchronous Electromagnetic Spacecraft Perturbations Using Statistical Fluxes

    NASA Astrophysics Data System (ADS)

    Hughes, J.; Schaub, H.

    2017-12-01

    Spacecraft can charge to very negative voltages at GEO due to interactions with the space plasma. This can cause arcing which can damage spacecraft electronics or solar panels. Recently, it has been suggested that spacecraft charging may lead to orbital perturbations which change the orbits of lightweight uncontrolled debris orbits significantly. The motions of High Area to Mass Ratio objects are not well explained with just perturbations from Solar Radiation Pressure (SRP) and earth, moon, and sun gravity. A charged spacecraft will experience a Lorentz force as the spacecraft moves relative to Earth's magnetic field, as well as a Lorentz torque and eddy current torques if the object is rotating. Prior work assuming a constant "worst case" voltage has shown that Lorentz and eddy torques can cause quite large orbital changes by rotating the object to experience more or less SRP. For some objects, including or neglecting these electromagnetic torques can lead to differences of thousands of kilometers after only two orbits. This paper will further investigate the effects of electromagnetic perturbations by using a charging model that uses measured flux distributions to better simulate natural charging. This differs from prior work which used a constant voltage or Maxwellian distributions. This is done to a calm space weather case of Kp = 2 and a stormy case where Kp = 8. Preliminary analysis suggests that electrostatics will still cause large orbital changes even with the more realistic charging model.

  17. Kinematics analysis of vertical magnetic suspension energy storage flywheel rotor under transient rotational speed

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyi; Huang, Tong; Feng, Jiajia; Zhou, Yuanwei

    2018-05-01

    In this paper, a 600Wh vertical maglev energy storage flywheel rotor system is taken as a model. The motion equation of a rigid rotor considering the gyroscopic effect and the center of mass offset is obtained by the centroid theorem, and the experimental verification is carried out. Using the state variable method, the Matlab software was used to program and simulate the radial displacement and radial electromagnetic force of the rotor system at each speed. The results show that the established system model is in accordance with the designed 600Wh vertical maglev energy storage flywheel model. The results of the simulation analysis are helpful to further understand the dynamic nature of the flywheel rotor at different transient speeds.

  18. Magnetic fields applied to collagen-coated ferric oxide beads induce stretch-activated Ca2+ flux in fibroblasts.

    PubMed

    Glogauer, M; Ferrier, J; McCulloch, C A

    1995-11-01

    The ability to apply controlled forces to the cell membrane may enable elucidation of the mechanisms and pathways involved in signal transduction in response to applied physical stimuli. We have developed a magnetic particle-electromagnet model that allows the application of controlled forces to the plasma membrane of substrate-attached fibroblasts. The system allows applied forces to be controlled by the magnitude of the magnetic field and by the surface area of cell membrane covered with collagen-coated ferric beads. Analysis by single-cell ratio fluorimetry of fura 2-loaded cells demonstrated large calcium transients (50-300 nM) in response to the magnetic force applications. Experiments using either the stretch-activated channel blocker gadolinium chloride or ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid to eliminate external calcium ions, or addition of extracellular manganese ions, indicated that there was a calcium influx through putative stretch-activated channels. The probability of a calcium influx in single cells was increased by higher surface bead loading and the degree of cell spreading. Depolymerization of actin filaments by cytochalasin D increased the amplitude of calcium response twofold. The regulation of calcium flux by filamentous actin content and by cell spreading indicates a possible modulatory role for the cytoskeleton in channel sensitivity. Magnetic force application to beads on single cells provides a controlled model to study mechanisms and heterogeneity in physical force stimulation of cation-permeable channels.

  19. Occupational exposure to electromagnetic fields in the Polish Armed Forces.

    PubMed

    Sobiech, Jaromir; Kieliszek, Jarosław; Puta, Robert; Bartczak, Dagmara; Stankiewicz, Wanda

    2017-06-19

    Standard devices used by military personnel that may pose electromagnetic hazard include: radars, missile systems, radio navigation systems and radio transceivers. The aim of this study has been to evaluate the exposure of military personnel to electromagnetic fields. Occupational exposure to electromagnetic fields was analyzed in the work environment of personnel of 204 devices divided into 5 groups (surface-to-air missile system radars, aircraft and helicopters, communication devices, surveillance and height finder radars, airport radars and radio navigation systems). Measurements were carried out at indicators, device terminals, radio panels, above vehicle seats, in vehicle hatches, by cabinets containing high power vacuum tubes and other transmitter components, by transmission lines, connectors, etc. Portable radios emit the electric field strength between 20-80 V/m close to a human head. The manpack radio operator's exposure is 60-120 V/m. Inside vehicles with high frequency/very high frequency (HF/VHF) band radios, the electric field strength is between 7-30 V/m and inside the radar cabin it ranges between 9-20 V/m. Most of the personnel on ships are not exposed to the electromagnetic field from their own radar systems but rather by accidental exposure from the radar systems of other ships. Operators of surface-to-air missile systems are exposed to the electric field strength between 7-15 V/m and the personnel of non-directional radio beacons - 100-150 V/m. In 57% of military devices Polish soldiers work in the occupational protection zones. In 35% of cases, soldiers work in intermediate and hazardous zones and in 22% - only in the intermediate zone. In 43% of devices, military personnel are not exposed to electromagnetic field. Int J Occup Med Environ Health 2017;30(4):565-577. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  20. Origin of the Earth's Electromagnetic Field Based on the Pulsating Mantle Hypothesis (PMH)

    NASA Astrophysics Data System (ADS)

    Gholibeigian, Hassan

    2017-11-01

    In PMH, the Earth's Inner Core's Dislocation (ICD) and Outer Core's Bulge (OCB) phenomena are generated by unbalanced gravitational fields of the Sun and Moon on the Earth. Distance between the Earth's center and inner core's center varies permanently in magnitude and direction inside two hemispheres. Geometrical loci of the inner core's center has the shape of back and force spiral cone in each hemisphere. In other words, the inner core is rotating fast in the outer core inverse of the Earth's rotation a round per day. This mechanism speed up the processes inside the core and generates a Large Scale Forced Convection System (LSFCS) inverse of the Earth's rotation in the core. The LSFCS is the origin of the Earth's electromagnetic field. The LSFCS generates huge mass transfer and momentum of inertia inside the Earth too. The inner core's axis which is the Earth's electromagnetic axis doesn't cross the Earth's geophysical axis and rotates around it per day. The mechanism of this LSFCS has diurnal, monthly and yearly cycles. These cycles are sources of the Earth's electromagnetic field variability. Direction of the variable Earth's magnetic field lines from the South Pole (hemisphere) to the sky and 146 seconds/years apparent solar day length variations can be two observable factors for this mechanism. This dynamic system may occurred inside the other planets like the Sun and the Jupiter.

  1. Neutron star merger GW170817 strongly constrains doubly coupled bigravity

    NASA Astrophysics Data System (ADS)

    Akrami, Yashar; Brax, Philippe; Davis, Anne-Christine; Vardanyan, Valeri

    2018-06-01

    We study the implications of the recent detection of gravitational waves emitted by a pair of merging neutron stars and their electromagnetic counterpart, events GW170817 and GRB170817A, on the viability of the doubly coupled bimetric models of cosmic evolution, where the two metrics couple directly to matter through a composite, effective metric. We demonstrate that the bounds on the speed of gravitational waves place strong constraints on the doubly coupled models, forcing either the two metrics to be proportional at the background level or the models to become singly coupled. Proportional backgrounds are particularly interesting as they provide stable cosmological solutions with phenomenologies equivalent to that of Λ CDM at the background level as well as for linear perturbations, while nonlinearities are expected to show deviations from the standard model.

  2. Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles

    NASA Astrophysics Data System (ADS)

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.

    2009-12-01

    The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.

  3. [Towards an unified theory of the universe basic forces ("the everything theory")].

    PubMed

    Aguilar Peris, José

    2004-01-01

    Numerous efforts have been made in order to unify all the basic forces in nature. In 1967 the fusion of electromagnetic and weak forces was obtained and in 1973 a theoretical bridge between the electroweak and the strong forces have been constructed. This theory is waiting for experimental proofs in the CERN large hadron collider. The last stage would be "the everything theory", which includes the gravitational force. Only the so called superstring theory is a good candidate to overcome the incompatibility of the quantum mechanics and the general relativity, but this theory is not already achieved.

  4. Calibration of force actuators on an adaptive secondary prototype.

    PubMed

    Ricci, Davide; Riccardi, Armando; Zanotti, Daniela

    2008-07-10

    In the context of the Large Binocular Telescope project, we present the results of force actuator calibrations performed on an adaptive secondary prototype called P45, a thin deformable glass with magnets glued onto its back. Electromagnetic actuators, controlled in a closed loop with a system of internal metrology based on capacitive sensors, continuously deform its shape to correct the distortions of the wavefront. Calibrations of the force actuators are needed because of the differences between driven forces and measured forces. We describe the calibration procedures and the results, obtained with errors of less than 1.5%.

  5. Apparatus and method for enhancing tissue repair in mammals

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)

    2009-01-01

    An apparatus is introduced for the use of enhancing tissue repair in mammals. The apparatus includes a sleeve; an electrically conductive coil; a sleeve support; an electrical circuit configured to supply the coil with a square wave time varying electrical current sufficient to create approximately 0.05 gauss to 0.5 gauss. When in use, the sleeve of the apparatus is placed on a mammalian body part and the time varying electromagnetic force of from approximately 0.05 gauss to 0.5 gauss is generated on the mammalian body for an extended period of time so that the tissue is encouraged to be regenerated in the mammalian body part at a rate in excess of the normal tissue regeneration rate relative to regeneration without application of the time varying electromagnetic force.

  6. Self-force as probe of internal structure

    NASA Astrophysics Data System (ADS)

    Isoyama, Soichiro; Poisson, Eric

    2012-08-01

    The self-force acting on a (scalar or electric) charge held in place outside a massive body contains information about the body’s composition, and can therefore be used as a probe of internal structure. We explore this theme by computing the (scalar or electromagnetic) self-force when the body is a spherical ball of perfect fluid in hydrostatic equilibrium, under the assumption that its rest-mass density and pressure are related by a polytropic equation of state. The body is strongly self-gravitating, and all computations are performed in exact general relativity. The dependence on internal structure is best revealed by expanding the self-force in powers of r-10, with r0 denoting the radial position of the charge outside the body. To the leading order, the self-force scales as r-30 and depends only on the square of the charge and the body’s mass; the leading self-force is universal. The dependence on internal structure is seen at the next order, r-50, through a structure factor that depends on the equation of state. We compute this structure factor for relativistic polytropes, and show that for a fixed mass, it increases linearly with the body’s radius in the case of the scalar self-force, and quadratically with the body’s radius in the case of the electromagnetic self-force. In both cases we find that for a fixed mass and radius, the self-force is smaller if the body is more centrally dense, and larger if the mass density is more uniformly distributed.

  7. Design and Analysis of an Electromagnetic Thrust Bearing

    NASA Technical Reports Server (NTRS)

    Banerjee, Bibhuti; Rao, Dantam K.

    1996-01-01

    A double-acting electromagnetic thrust bearing is normally used to counter the axial loads in many rotating machines that employ magnetic bearings. It essentially consists of an actuator and drive electronics. Existing thrust bearing design programs are based on several assumptions. These assumptions, however, are often violated in practice. For example, no distinction is made between maximum external loads and maximum bearing forces, which are assumed to be identical. Furthermore, it is assumed that the maximum flux density in the air gap occurs at the nominal gap position of the thrust runner. The purpose of this paper is to present a clear theoretical basis for the design of the electromagnetic thrust bearing which obviates such assumptions.

  8. A Generalization of the Einstein-Maxwell Equations

    NASA Astrophysics Data System (ADS)

    Cotton, Fredrick

    2016-03-01

    The proposed modifications of the Einstein-Maxwell equations include: (1) the addition of a scalar term to the electromagnetic side of the equation rather than to the gravitational side, (2) the introduction of a 4-dimensional, nonlinear electromagnetic constitutive tensor and (3) the addition of curvature terms arising from the non-metric components of a general symmetric connection. The scalar term is defined by the condition that a spherically symmetric particle be force-free and mathematically well-behaved everywhere. The constitutive tensor introduces two auxiliary fields which describe the particle structure. The additional curvature terms couple both to particle solutions and to electromagnetic and gravitational wave solutions. http://sites.google.com/site/fwcotton/em-30.pdf

  9. Principle, design and validation of a power-generated magnetorheological energy absorber with velocity self-sensing capability

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Xu; Zhong, Wei-Min; Zou, Qi; Zhu, An-Ding; Sun, Jun

    2018-07-01

    Based on the structural design concept of ‘functional integration’, this paper proposes the principle of a power-generated magnetorheological energy absorber with velocity self-sensing capability (PGMREA), which realizes the integration of controllable damping mechanism and mechanical energy-electrical energy conversion mechanism in structure profile and multiple functions in function profile, including controllable damping, power generation and velocity self-sensing. The controllable damping mechanism consists of an annular gap and a ball screw. The annular gap fulfilled with MR fluid that operates in pure shear mode under controllable electromagnetic field. The rotational damping torque generated from the controllable damping mechanism is translated to a linear damping force via the ball screw. The mechanical energy-electrical energy conversion mechanism is realized by the ball screw and a generator composed of a permanent magnet rotor and a generator stator. The ball screw based mechanical energy-electrical energy conversion mechanism converts the mechanical energy of excitations to electrical energy for storage or directly to power the controllable damping mechanism of the PGMREA. The velocity self-sensing capability of the PGMREA is achieved via signal processing using the mechanical energy-electrical energy conversion information. Based on the principle of the proposed PGMREA, the mathematical model of the PGMREA is established, including the damping force, generated power and self-sensing velocity. The electromagnetic circuit of the PGMREA is simulated and verified via a finite element analysis software ANSYS. The developed PGMREA prototype is experimentally tested on a servo-hydraulic testing system. The model-based predicted results and the experimental results are compared and analyzed.

  10. Analysis on the multi-dimensional spectrum of the thrust force for the linear motor feed drive system in machine tools

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Lu, Dun; Ma, Chengfang; Zhang, Jun; Zhao, Wanhua

    2017-01-01

    The motor thrust force has lots of harmonic components due to the nonlinearity of drive circuit and motor itself in the linear motor feed drive system. What is more, in the motion process, these thrust force harmonics may vary with the position, velocity, acceleration and load, which affects the displacement fluctuation of the feed drive system. Therefore, in this paper, on the basis of the thrust force spectrum obtained by the Maxwell equation and the electromagnetic energy method, the multi-dimensional variation of each thrust harmonic is analyzed under different motion parameters. Then the model of the servo system is established oriented to the dynamic precision. The influence of the variation of the thrust force spectrum on the displacement fluctuation is discussed. At last the experiments are carried out to verify the theoretical analysis above. It can be found that the thrust harmonics show multi-dimensional spectrum characteristics under different motion parameters and loads, which should be considered to choose the motion parameters and optimize the servo control parameters in the high-speed and high-precision machine tools equipped with the linear motor feed drive system.

  11. Electromagnetic jets from stars and black holes

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Lupsasca, Alexandru; Rodriguez, Maria J.

    2016-02-01

    We present analytic force-free solutions modeling rotating stars and black holes immersed in the magnetic field of a thin disk that terminates at an inner radius. The solutions are exact in flat spacetime and approximate in Kerr spacetime. The compact object produces a conical jet whose properties carry information about its nature. For example, the jet from a star is surrounded by a current sheet, while that of a black hole is smooth. We compute an effective resistance in each case and compare to the canonical values used in circuit models of energy extraction. These solutions illustrate all of the basic features of the Blandford-Znajek process for energy extraction and jet formation in a clean setting.

  12. Analytical modeling and analysis of magnetic field and torque for novel axial flux eddy current couplers with PM excitation

    NASA Astrophysics Data System (ADS)

    Li, Zhao; Wang, Dazhi; Zheng, Di; Yu, Linxin

    2017-10-01

    Rotational permanent magnet eddy current couplers are promising devices for torque and speed transmission without any mechanical contact. In this study, flux-concentration disk-type permanent magnet eddy current couplers with double conductor rotor are investigated. Given the drawback of the accurate three-dimensional finite element method, this paper proposes a mixed two-dimensional analytical modeling approach. Based on this approach, the closed-form expressions of magnetic field, eddy current, electromagnetic force and torque for such devices are obtained. Finally, a three-dimensional finite element method is employed to validate the analytical results. Besides, a prototype is manufactured and tested for the torque-speed characteristic.

  13. Analytical coupled modeling of a magneto-based acoustic metamaterial harvester

    NASA Astrophysics Data System (ADS)

    Nguyen, H.; Zhu, R.; Chen, J. K.; Tracy, S. L.; Huang, G. L.

    2018-05-01

    Membrane-type acoustic metamaterials (MAMs) have demonstrated unusual capacity in controlling low-frequency sound transmission, reflection, and absorption. In this paper, an analytical vibro-acoustic-electromagnetic coupling model is developed to study MAM harvester sound absorption, energy conversion, and energy harvesting behavior under a normal sound incidence. The MAM harvester is composed of a prestressed membrane with an attached rigid mass, a magnet coil, and a permanent magnet coin. To accurately capture finite-dimension rigid mass effects on the membrane deformation under the variable magnet force, a theoretical model based on the deviating acoustic surface Green’s function approach is developed by considering the acoustic near field and distributed effective shear force along the interfacial boundary between the mass and the membrane. The accuracy and capability of the theoretical model is verified through comparison with the finite element method. In particular, sound absorption, acoustic-electric energy conversion, and harvesting coefficient are quantitatively investigated by varying the weight and size of the attached mass, prestress and thickness of the membrane. It is found that the highest achievable conversion and harvesting coefficients can reach up to 48%, and 36%, respectively. The developed model can serve as an efficient tool for designing MAM harvesters.

  14. Nonlinear dynamics of attractive magnetic bearings

    NASA Technical Reports Server (NTRS)

    Hebbale, K. V.; Taylor, D. L.

    1987-01-01

    The nonlinear dynamics of a ferromagnetic shaft suspended by the force of attraction of 1, 2, or 4 independent electromagnets is presented. Each model includes a state variable feedback controller which has been designed using the pole placement method. The constitutive relationships for the magnets are derived analytically from magnetic circuit theory, and the effects of induced eddy currents due to the rotation of the journal are included using Maxwell's field relations. A rotor suspended by four electro-magnets with closed loop feedback is shown to have nine equilibrium points within the bearing clearance space. As the rotor spin speed increases, the system is shown to pass through a Hopf bifurcation (a flutter instability). Using center manifold theory, this bifurcation can be shown to be of the subcritical type, indicating an unstable limit cycle below the critical speed. The bearing is very sensitive to initial conditions, and the equilibrium position is easily upset by transient excitation. The results are confirmed by numerical simulation.

  15. Governing equations for 1D opto-mechanical vibrations of elastic cubical micro-resonators

    NASA Astrophysics Data System (ADS)

    Sobhani, Hassan; Zohrabi, Mehdi

    2018-03-01

    In this paper by employing the Lagrangian method, the effect of the radiation pressure on the coupling between the optical and mechanical modes in an elastic cavity is surveyed. The radiation pressure couldn't be considered as an external force because the electromagnetic waves are non-separable part of the elastic media. Due to the deformation of elastic media, the electromagnetic waves is modified as a result of the element velocity. To consider the electromagnetic evolution, it is preferred to employ the Lagrangian method instead of the second Newton's law. Here, using an elastic frame, governing equations on opto-mechanical oscillations in an elastic media are derived. In a specific case, by comparing the results to the other methods, it shown that this method is more accurate because the exchange of electromagnetic waves by regarding the movement of the elastic media due to deform is considered.

  16. A New Method for Raising Opening Velocity of Electromagnetic Actuated Vacuum Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Tsukima, Mitsuru; Takeuchi, Toshie; Koyama, Kenichi; Yoshiyasu, Hajimu

    Recently an electromagnetic actuator has been widely used as an operating mechanism for the vacuum circuit breaker (VCB). The opening velocity of the contact is supposed to be strongly related with current interruption performance. This paper presents a simple and new technique that raises opening velocity of the electromagnetic actuated VCB. In order to investigate this reason, we built a numerical simulator that predicts the dynamic characteristics of the VCB contact. It takes into account of the magnetic behavior in the actuator and is also coupled with the external control circuit. According to this simulation, it is shown that it is originated from the sharp rise in the electromagnetic thrust force due to the selective saturation of the magnetic yoke. As the result of our experiments, by this technique the opening velocity was verified to be 1.5 times faster than by the conventional way.

  17. A Model for Microcontroller Functionality Upset Induced by External Pulsed Electromagnetic Irradiation

    DTIC Science & Technology

    2016-11-21

    AFRL-RD-PS- AFRL-RD-PS- TN-2016-0003 TN-2016-0003 A Model for Microcontroller Functionality Upset Induced by External Pulsed Electromagnetic ...External Pulsed Electromagnetic Irradiation 5a. CONTRACT NUMBER FA9451-15-C-0004 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) David...microcontroller (µC) subjected to external irradiation by a narrowband electromagnetic (EM) pulse. In our model, the state of a µC is completely specified by

  18. Simplifications in modelling of dynamical response of coupled electro-mechanical system

    NASA Astrophysics Data System (ADS)

    Darula, Radoslav; Sorokin, Sergey

    2016-12-01

    The choice of a most suitable model of an electro-mechanical system depends on many variables, such as a scale of the system, type and frequency range of its operation, or power requirements. The article focuses on the model of the electromagnetic element used in passive regime (no feedback loops are assumed) and a general lumped parameter model (a conventional mass-spring-damper system coupled to an electric circuit consisting of a resistance, an inductance and a capacitance) is compared with its simplified version, where the full RLC circuit is replaced with its RL simplification, i.e. the capacitance of the electric system is neglected and just its inductance and the resistance are considered. From the comparison of dynamical responses of these systems, the range of applicability of a simplified model is assessed for free as well as forced vibration.

  19. Active magnetic bearing control loop modeling for a finite element rotordynamics code

    NASA Technical Reports Server (NTRS)

    Genta, Giancarlo; Delprete, Cristiana; Carabelli, Stefano

    1994-01-01

    A mathematical model of an active electromagnetic bearing which includes the actuator, the sensor and the control system is developed and implemented in a specialized finite element code for rotordynamic analysis. The element formulation and its incorporation in the model of the machine are described in detail. A solution procedure, based on a modal approach in which the number of retained modes is controlled by the user, is then shown together with other procedures for computing the steady-state response to both static and unbalance forces. An example of application shows the numerical results obtained on a model of an electric motor suspended on a five active-axis magnetic suspension. The comparison of some of these results with the experimental characteristics of the actual system shows the ability of the present model to predict its performance.

  20. Semi-active compressor valve

    DOEpatents

    Brun, Klaus; Gernentz, Ryan S.

    2010-07-27

    A method and system for fine-tuning the motion of suction or discharge valves associated with cylinders of a reciprocating gas compressor, such as the large compressors used for natural gas transmission. The valve's primary driving force is conventional, but the valve also uses an electromagnetic coil to sense position of the plate (or other plugging element) and to provide an opposing force prior to impact.

  1. Integrating Space Systems Operations at the Marine Expeditionary Force Level

    DTIC Science & Technology

    2015-06-01

    Electromagnetic Interference ENVI Environment for Visualizing Images EW Electronic Warfare xvi FA40 Space Operations Officer FEC Fires and Effects...Information Facility SFE Space Force Enhancement SIGINT Signals Intelligence SSA Space Situational Awareness SSE Space Support Element STK Systems...April 23, 2015. 65 • GPS Interference and Navigation Tool (GIANT) for providing GPS accuracy prediction reports • Systems Toolkit ( STK ) Analysis

  2. Modification of Turbulence Structures in a Channel Flow by Uniform Magnetic Fluxes

    NASA Astrophysics Data System (ADS)

    Lee, D.; Choi, H.; Kim, J.

    1997-11-01

    Effects of electromagnetic forcing on the near-wall turbulence are investigated by applying a uniform magnetic flux in a turbulent channel flow in the streamwise and spanwise directions, respectively. The base flow is a fully developed turbulent channel flow and the direct numerical simulation technique is used. The electromagnetic force induced from the magnetic fluxes reduces the intensity of the wall-layer structures and thus drag is significantly reduced. The wall-normal and spanwise velocity fluctuations and the Reynolds shear stress decrease with the increased magnetic flux in both directions. The streamwise velocity fluctuations increase with the streamwise magnetic flux, whereas they decrease with the spanwise magnetic flux. It is also shown that the spanwise magnetic flux is much more effective than the streamwise magnetic flux in reducing the skin-friction drag. Instantaneous Lorentz force vectors show that the flow motions by the near-wall vortices are directly inhibited by the spanwise magnetic flux, while they are less effectively inhibited by the streamwise magnetic flux. Other turbulence statistics that reveal the effects of the applied magnetic forcing will be presented. ^* Supported by KOSEF Contract No. 965-1008-003-2 and ONR Grant No. N00014-95-1-0352.

  3. A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage.

    PubMed

    Choi, Young-Man; Lee, Moon G; Gweon, Dae-Gab; Jeong, Jaehwa

    2009-04-01

    Next-generation lithography requires a high precision stage, which is compatible with a high vacuum condition. A magnetic levitation stage with six degrees-of-freedom is considered state-of-the-art technology for a high vacuum condition. The noncontact characteristic of magnetic levitation enables high precision positioning as well as no particle generation. To position the stage against gravity, z-directional electromagnetic levitation mechanisms are widely used. However, if electromagnetic actuators for levitation are used, heat is inevitably generated, which deforms the structures and degrades accuracy of the stage. Thus, a gravity compensator is required. In this paper, we propose a new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage. The novel Halbach magnetic bearing exerts a force four times larger than a conventional magnetic bearing with the same volume. We also discuss the complementary characteristics of the two magnetic bearings. By modifying the height of the center magnet in a Halbach magnetic bearing, a performance compromise between levitating force density and force uniformity is obtained. The Halbach linear active magnetic bearing can be a good solution for magnetic levitation stages because of its large and uniform levitation force.

  4. Report for the MPV Demonstration at New Boston Air Force Base, New Hampshire: UXO Characterization in Challenging Survey Environments Using the MPV

    DTIC Science & Technology

    2017-04-28

    EM Electromagnetic EMI Electromagnetic Induction ERDC Engineering Research and Development Center ESTCP Environmental Security Technology... bombs , HE bombs and incendiary bombs . The site hosted demonstrations with the MPV and the 2x2 TEMTADS, both with crews from CH2MHill. Each study...array of five receiver units that measure all three components of the EM field (Figure 2). This second-generation MPV is specifically designed to

  5. Doomed to Repeat It How the United States Air Force Can Apply History via Counterinsurgency Lessons Learned to Meet Anti-Access/Area Denial Challenges

    DTIC Science & Technology

    2012-08-01

    technology used in the COIN fight are not readily transferable to conflicts against enemies using A2/AD tactics, such as heavy electromagnetic attack...particularly when matched against a technology advanced enemy. Technologies unsuitable for an opposed electromagnetic spectrum are unsurvivable...increased numbers of weapons systems such as the MQ-1, MQ-9, and MC-12. Additionally, open-ended deployments of ISR assets such as the RC-135 RIVET

  6. Cannon Air Force base New Mexico, Installation of Digital Airport Surveillance Radar, Final Environmental Assessment

    DTIC Science & Technology

    2005-07-06

    C95.1-1991, American National Standard Safety Levels With Respect to Human Exposure to Radiofrequency Electromagnetic Fields , 300 kHz to 100 GHz. New...Site 4) were evaluated for possible siting of the ASR- 11. All three sites are situated in undeveloped fields on base. Site 2 is located between the...alternative ASR-1 1 sites. 3.12 ELECTROMAGNETIC ENERGY 3.12.1 Existing Conditions Electrical currents and components generate electrical fields and

  7. Introduction to Radar Polarimetry

    DTIC Science & Technology

    1991-04-23

    Coulomb force 11 1,2 Static etectric fields 13 1.3 Summary 15 2 ELECTROMAGNETIC WAVES 16 2.1 Harmonic plane waves 16 2.2 The average intensity of a...harmonic plane wave 17 2.3 Spherical harmonic waves 18 2.4 Summary 19 3 THE POLARIZATION OF AN ELECTROMAGNETIC WAVE 20 3.1 The polarization ellipse 20 3.2...CHANGE OF POLARIZATION 31 4.1 Simple examples 31 4.2 Scattering at a plane interface 33 4.3 Summary 36 5 THE SCATTERING MATRIX 37 5.1 Transmission

  8. The pedagogical value of the four-dimensional picture: II. Another way of looking at the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Kosyakov, B. P.

    2014-03-01

    A definition of the electromagnetic field can be neatly formulated by recognizing that the simplest form of the four-force is indeed feasible. We show that Maxwell’s equations almost entirely stem from the properties of spacetime, notably from the fact that our world has dimension d = 4. Their complete reconstruction requires three additional assumptions that are seemingly divorced from spacetime properties but which may, in fact, have much to do with their geometry.

  9. Simultaneous vibration control and energy harvesting using actor-critic based reinforcement learning

    NASA Astrophysics Data System (ADS)

    Loong, Cheng Ning; Chang, C. C.; Dimitrakopoulos, Elias G.

    2018-03-01

    Mitigating excessive vibration of civil engineering structures using various types of devices has been a conspicuous research topic in the past few decades. Some devices, such as electromagnetic transducers, which have a capability of exerting control forces while simultaneously harvesting energy, have been proposed recently. These devices make possible a self-regenerative system that can semi-actively mitigate structural vibration without the need of external energy. Integrating mechanical, electrical components, and control algorithms, these devices open up a new research domain that needs to be addressed. In this study, the feasibility of using an actor-critic based reinforcement learning control algorithm for simultaneous vibration control and energy harvesting for a civil engineering structure is investigated. The actor-critic based reinforcement learning control algorithm is a real-time, model-free adaptive technique that can adjust the controller parameters based on observations and reward signals without knowing the system characteristics. It is suitable for the control of a partially known nonlinear system with uncertain parameters. The feasibility of implementing this algorithm on a building structure equipped with an electromagnetic damper will be investigated in this study. Issues related to the modelling of learning algorithm, initialization and convergence will be presented and discussed.

  10. Accelerated Time-Domain Modeling of Electromagnetic Pulse Excitation of Finite-Length Dissipative Conductors over a Ground Plane via Function Fitting and Recursive Convolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Warne, Larry K.; Sainath, Kamalesh

    In this report we overview the fundamental concepts for a pair of techniques which together greatly hasten computational predictions of electromagnetic pulse (EMP) excitation of finite-length dissipative conductors over a ground plane. In a time- domain, transmission line (TL) model implementation, predictions are computationally bottlenecked time-wise, either for late-time predictions (about 100ns-10000ns range) or predictions concerning EMP excitation of long TLs (order of kilometers or more ). This is because the method requires a temporal convolution to account for the losses in the ground. Addressing this to facilitate practical simulation of EMP excitation of TLs, we first apply a techniquemore » to extract an (approximate) complex exponential function basis-fit to the ground/Earth's impedance function, followed by incorporating this into a recursion-based convolution acceleration technique. Because the recursion-based method only requires the evaluation of the most recent voltage history data (versus the entire history in a "brute-force" convolution evaluation), we achieve necessary time speed- ups across a variety of TL/Earth geometry/material scenarios. Intentionally Left Blank« less

  11. Three-axis force sensor with fiber Bragg grating.

    PubMed

    Hyundo Choi; Yoan Lim; Junhyung Kim

    2017-07-01

    Haptic feedback is critical for many surgical tasks, and it replicates force reflections at the surgical site. To meet the force reflection requirements, we propose a force sensor with an optical fiber Bragg grating (FBG) for robotic surgery. The force sensor can calculate three directional forces of an instrument from the strain of three FBGs, even under electromagnetic interference. A flexible ring-shape structure connects an instrument tip and fiber strain gages to sense three directional force. And a stopper mechanism is added in the structure to avoid plastic deformation under unexpected large force on the instrument tip. The proposed sensor is experimentally verified to have a sensing range from -12 N to 12 N, and its sensitivity was less than 0.06 N.

  12. Bobbing and kicks in electromagnetism and gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gralla, Samuel E.; Harte, Abraham I.; Wald, Robert M.

    2010-05-15

    We study systems analogous to binary black holes with spin in order to gain some insight into the origin and nature of 'bobbing' motion and 'kicks' that occur in this system. Our basic tool is a general formalism for describing the motion of extended test bodies in an external electromagnetic field in curved spacetime and possibly subject to other forces. We first show that bobbing of exactly the type as observed in numerical simulations of the binary black hole system occurs in a simple system consisting of two spinning balls connected by an elastic band in flat spacetime. This bobbingmore » may be understood as arising from the difference between a spinning body's 'lab frame centroid' and its true center of mass, and is purely 'kinematical' in the sense that it will appear regardless of the forces holding two spinning bodies in orbit. Next, we develop precise rules for relating the motion of charged bodies in a stationary external electromagnetic field in flat spacetime with the motion of bodies in a weakly curved stationary spacetime. We then consider the system consisting of two orbiting charges with magnetic dipole moment and spin at a level of approximation corresponding to 1.5 post-Newtonian order. Here we find that considerable amounts of momentum are exchanged between the bodies and the electromagnetic field; however, the bodies store this momentum entirely as ''hidden'' mechanical momentum, so that the interchange does not give rise to any net bobbing. The net bobbing that does occur is due solely to the kinematical spin effect, and we therefore argue that the net bobbing of the electromagnetic binary is not associated with possible kicks. We believe that this conclusion holds in the gravitational case as well.« less

  13. Quantum Color

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    The idea of electric charges and electricity in general is a familiar one to the science savvy viewer. However, electromagnetism is but one of the four fundamental forces and not the strongest one. The strongest of the fundamental forces is called the strong nuclear force and it has its own associated charge. Physicists call this charge “color” in analogy with the primary colors, although there is no real connection with actual color. In this video, Fermilab’s Dr. Don Lincoln explains why it is that we live in a colorful world.

  14. The dynamics of submicron-sized dust particles lost from Phobos

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Tatrallyay, M.; Juhasz, A.; Luhmann, J. G.

    1991-01-01

    The dynamics of submicron-sized dielectric particles lost from the Martian moon Phobos are studied in connection with the possible detection of dust by the Phobos 2 spacecraft. The motion of these small dust grains is influenced not only by gravity but also by solar radiation pressure and electromagnetic forces. The plasma environment of Mars is described by applying a hybrid gasdynamic-cometary model. Some of the submicron-sized grains ejected at speeds on the order of a few tens meters per second can stay in orbit around Mars for several months forming a nonuniform and time-dependent dust halo.

  15. The Third General Scientific Assembly of the International Association of Geomagnetism and Aeronomy - Special sessions of auroral processes

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1978-01-01

    Methods of timing magnetic substorms, the rapid fluctuations of aurorae, electromagnetic and electrostatic instabilities observed on the field lines of aurorae, the auroral microstructure, and the relationship of currents, electric field and particle precipitation to auroral form are discussed. Attention is given to such topics as D-perturbations as an indicator of substorm onset, the role of the magnetotail in substorms, spectral information derived from imaging data on aurorae, terrestrial kilometric radiation, and the importance of the mirror force in self-consistent models of particle fluxes, currents and potentials on auroral field lines.

  16. Sensitivity of airborne geophysical data to sublacustrine permafrost thaw

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Wellman, T. P.; Walvoord, M. A.; Revil, A.

    2014-12-01

    A coupled hydrogeophysical forward and inverse modeling approach is developed to illustrate the ability of frequency-domain airborne electromagnetic (AEM) data to characterize subsurface physical properties associated with sublacustrine permafrost thaw during lake talik formation. Several scenarios are evaluated that consider the response to variable hydrologic forcing from different lake depths and hydrologic gradients. The model includes a physical property relationship that connects the dynamic distribution of subsurface electrical resistivity based on lithology as well as ice-saturation and temperature outputs from the SUTRA groundwater simulator with freeze/thaw physics. Electrical resistivity models are used to simulate AEM data in order to explore the sensitivity of geophysical observations to permafrost thaw. Simulations of sublacustrine talik formation over a 1000 year period modeled after conditions found in the Yukon Flats, Alaska, are evaluated. Synthetic geophysical data are analyzed with a Bayesian Markov chain Monte Carlo algorithm that provides a probabilistic assessment of geophysical model uncertainty and resolution. Major lithological and permafrost features are well resolved in the examples considered. The subtle geometry of partial ice-saturation beneath lakes during talik formation cannot be resolved using AEM data, but the gross characteristics of sub-lake resistivity models reflect bulk changes in ice content and can be used to determine the presence of a talik. A final example compares AEM and ground-based electromagnetic responses for their ability to resolve shallow permafrost and thaw features in the upper 1-2 m below ground.

  17. Energy and technology review: Engineering modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabayan, H.S.; Goudreau, G.L.; Ziolkowski, R.W.

    1986-10-01

    This report presents information concerning: Modeling Canonical Problems in Electromagnetic Coupling Through Apertures; Finite-Element Codes for Computing Electrostatic Fields; Finite-Element Modeling of Electromagnetic Phenomena; Modeling Microwave-Pulse Compression in a Resonant Cavity; Lagrangian Finite-Element Analysis of Penetration Mechanics; Crashworthiness Engineering; Computer Modeling of Metal-Forming Processes; Thermal-Mechanical Modeling of Tungsten Arc Welding; Modeling Air Breakdown Induced by Electromagnetic Fields; Iterative Techniques for Solving Boltzmann's Equations for p-Type Semiconductors; Semiconductor Modeling; and Improved Numerical-Solution Techniques in Large-Scale Stress Analysis.

  18. Flow produced by a free-moving floating magnet driven electromagnetically

    NASA Astrophysics Data System (ADS)

    Piedra, Saúl; Román, Joel; Figueroa, Aldo; Cuevas, Sergio

    2018-04-01

    The flow generated by a free-moving magnet floating in a thin electrolyte layer is studied experimentally and numerically. The magnet is dragged by a traveling vortex dipole produced by a Lorentz force created when a uniform dc current injected in the electrolyte interacts with the magnetic field of the same magnet. The problem represents a typical case of fluid-solid interaction but with a localized electromagnetic force promoting the motion. Classical wake flow structures are observed when the applied current varies in the range of 0.2 to 10 A. Velocity fields at the surface of the electrolyte are obtained for different flow conditions through particle image velocimetry. Quasi-two-dimensional numerical simulations, based on the immersed boundary technique that incorporates the fluid-solid interaction, reproduce satisfactorily the dynamics observed in the experiments.

  19. Voyager Saturnian ring measurements and the early history of the solar system

    NASA Technical Reports Server (NTRS)

    Alfven, H.; Axnaes, I.; Brenning, N.; Lindquist, P. A.

    1985-01-01

    The mass distribution in the Saturnian ring system is investigated and compared with predictions from plasma cosmogony. According to this theory, the matter in the rings was once a magnetized plasma, in which gravitation is balanced by the centrifugal and electromagnetic forces. As the plasma is neutralized, the electromagnetic forces disappear and the matter falls in to 2/3 of the original saturnocentric distance. This causes the cosmogonic shadow effect, demonstrated for the large scale structure of the Saturnian ring system. It is shown that many structures of the present ring system can be understood as shadows and antishadows of cosmogonic origin. These appear in the form of double rings centered around a position a factor 0.64 (slightly 2/3) closer to Saturn than the causing feature. Voyager data agree with an accuracy 1%.

  20. An electromagnetic compressive force by cell exciter stimulates chondrogenic differentiation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Park, Sang-Hyug; Sim, Woo Young; Park, Sin Wook; Yang, Sang Sik; Choi, Byung Hyune; Park, So Ra; Park, Kwideok; Min, Byoung-Hyun

    2006-11-01

    In this study, we present a biological micro-electromechanical system and its application to the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (MSCs). Actuated by an electromagnetic force, the micro cell exciter was designed to deliver a cyclic compressive load (CCL) with various magnitudes. Two major parts in the system are an actuator and a cartridge-type chamber. The former has a permanent magnet and coil, and the latter is equipped with 7 sample dishes and 7 metal caps. Mixed with a 2.4% alginate solution, the alginate/MSC layers were positioned in the sample dishes; the caps contained chondrogenic defined medium without transforming growth factor-beta (TGF-beta). Once powered, the actuator coil-derived electromagnetic force pulled the metal caps down, compressing the samples. The cyclic load was given at 1-Hz frequency for 10 min twice a day. Samples in the dishes without a cap served as a control. The samples were analyzed at 3, 5, and 7 days after stimulation for cell viability, biochemical assays, histologic features, immunohistochemistry, and gene expression of the chondrogenic markers. Applied to the alginate/MSC layer, the CCL system enhanced the synthesis of cartilage-specific matrix proteins and the chondrogenic markers, such as aggrecan, type II collagen, and Sox9. We found that the micromechanically exerted CCL by the cell exciter was very effective in enhancing the chondrogenic differentiation of MSCs, even without using exogenous TGF-beta.

  1. History of Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.

    1970-07-01

    While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.

  2. FDTD simulations of localization and enhancements on fractal plasmonics nanostructures.

    PubMed

    Buil, Stéphanie; Laverdant, Julien; Berini, Bruno; Maso, Pierre; Hermier, Jean-Pierre; Quélin, Xavier

    2012-05-21

    A parallelized 3D FDTD (Finite-Difference Time-Domain) solver has been used to study the near-field electromagnetic intensity upon plasmonics nanostructures. The studied structures are obtained from AFM (Atomic Force Microscopy) topography measured on real disordered gold layers deposited by thermal evaporation under ultra-high vacuum. The simulation results obtained with these 3D metallic nanostructures are in good agreement with previous experimental results: the localization of the electromagnetic intensity in subwavelength areas ("hot spots") is demonstrated; the spectral and polarization dependences of the position of these "hot spots" are also satisfactory; the enhancement factors obtained are realistic compared to the experimental ones. These results could be useful to further our understanding of the electromagnetic behavior of random metal layers.

  3. Development of electromagnetic welding facility of flat plates for nuclear industry

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Sahoo, Subhanarayan; Sarkar, Biswanath; Shyam, Anurag

    2017-04-01

    Electromagnetic pulse welding (EMPW) process, one of high speed welding process uses electromagnetic force from discharged current through working coil, which develops a repulsive force between the induced current flowing parallel and in opposite direction. For achieving the successful weldment using this process the design of working coil is the most important factor due to high magnetic field on surface of work piece. In case of high quality flat plate welding factors such as impact velocity, angle of impact standoff distance, thickness of flyer and overlap length have to be chosen carefully. EMPW has wide applications in nuclear industry, automotive industry, aerospace, electrical industries. However formability and weldability still remain major issues. Due to ease in controlling the magnetic field enveloped inside tubes, the EMPW has been widely used for tube welding. In case of flat components control of magnetic field is difficult. Hence the application of EMPW gets restricted. The present work attempts to make a novel contribution by investigating the effect of process parameters on welding quality of flat plates. The work emphasizes the approaches and engineering calculations required to effectively use of actuator in EMPW of flat components.

  4. Experimental Study for Reduction of Noises and Vibrations in Hermetic Type Compressor

    NASA Astrophysics Data System (ADS)

    Sano, Kiyoshi; Kawahara, Sadao; Akazawa, Teruyuki; Ishii, Noriaki

    A brushless DC motor with a permanent magnet rotor has been adopted for a scroll compressor for domestic-use air-conditioners because of a demand for compressor high efficiency. A waveform of the driving voltage in the inverter power supply unit is chopped by the PWM signal. Its duty ratio is increased/decreased to control the DC voltage in order to provide a wide range of rotation frequencies for the compressor. The driving voltage includes the carrier frequency and its harmonic components, which produce an electro-magnetic force in the moter, resulting in high electro-magnetic noise. In the present report, the author clarifies the relationships between the noise and the waveform of driving voltage and frequency response function of the motor. A method to improve the frequency response function by changing the stator shape in order to reduce electro-magnetic noise is presented. Subsequently, the influence on electro-magnetic noise from the waveform of driving voltage is examined. Furthermore, the electro-magnetic noises during inverter driving of an induction motor are presented.

  5. Electromagnetic Smart Valves for Cryogenic Applications

    NASA Astrophysics Data System (ADS)

    Traum, M. J.; Smith, J. L.; Brisson, J. G.; Gerstmann, J.; Hannon, C. L.

    2004-06-01

    Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization. The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end. The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.

  6. The difference of detecting water mist and smoke by electromagnetic wave in simulation experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdi; Cui, Bing; Xiao, Si

    2015-10-01

    Although mist is similar to smoke in morphology, their compositions are very different. Therefore there is a significant difference between mist and smoke when detected by electromagnetic wave. This paper puts forward a kind of feasible solution based on Ansoft HFSS software about how to determine the forest fire by distinguishing mist and smoke above the forest. The experiments simulate the difference between mist and smoke model when detected by electromagnetic wave in different wavelengths. We find the mist and smoke model cannot absorb or reflect electromagnetic wave efficiently in Megahertz band. While in Gigahertz band mist model began to absorb and reflect electromagnetic wave above 650 Gigahertz band, but no change in smoke model. And the biggest difference appears in Terahertz band.

  7. Discrete element weld model, phase 2

    NASA Technical Reports Server (NTRS)

    Prakash, C.; Samonds, M.; Singhal, A. K.

    1987-01-01

    A numerical method was developed for analyzing the tungsten inert gas (TIG) welding process. The phenomena being modeled include melting under the arc and the flow in the melt under the action of buoyancy, surface tension, and electromagnetic forces. The latter entails the calculation of the electric potential and the computation of electric current and magnetic field therefrom. Melting may occur at a single temperature or over a temperature range, and the electrical and thermal conductivities can be a function of temperature. Results of sample calculations are presented and discussed at length. A major research contribution has been the development of numerical methodology for the calculation of phase change problems in a fixed grid framework. The model has been implemented on CHAM's general purpose computer code PHOENICS. The inputs to the computer model include: geometric parameters, material properties, and weld process parameters.

  8. Design and experiment study of a semi-active energy-regenerative suspension system

    NASA Astrophysics Data System (ADS)

    Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie

    2015-01-01

    A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.

  9. [The electroporation effects of high power pulse microwave and electromagnetic pulse irradiation on the membranes of cardiomyocyte cells and the mechanism therein involved].

    PubMed

    Deng, Hua; Wang, Dewen; Peng, Ruiyun; Wang, Shuiming; Chen, Jiankui; Zhang, Sa; Dong, Bo; Wang, Xiaomin

    2005-08-01

    Though there is ongoing public concern on potential hazards and risk of electromagnetic radiation, the bioeffects mechanism of electromagnetic fields remains obscure. Heart is one of the organs susceptive to electromagnetic fields (EMF). This study was designed to assess the influence of high power pulse microwave and electromagnetic pulse irradiation on cardiomyocytes, to explore the critical mechanism of electromagnetic fields, and to explain the regular course of injury caused by exposure to pulse EMF. Cultured cardiomyocytes were irradiated by high power pulse microwave and electromagnetic pulse first, then a series of apparatus including atom force microscope, laser scanning confocal microscope and flow cytometer were used to examine the changes of cell membrane conformation, structure and function. After irradiation, the cardiomyocytes pulsated slower or stop, the cells conformation was abnormal, the cells viability declined, and the percentage of apoptosis and necrosis increased significantly (P< 0.01). The cell membrane had pores unequal in size, and lost its penetration character. The concentration of Na+, K+, Ca2+, Cl-, Mg2+, Ca2+ and P3+ in cell culture medium increased significantly (P< 0.01). and the concentration of Ca2+ in cells ([Ca2+]i) decreased significantly (P<0.01). The results indicated that cardiomyocytes are susceptible to non-ionizing radiation. Pulse electromagnetic field can induce cardiomyocytes electroporation, and can do great damage to cells conformation, structure and function. Electroporation is one of the most critical mechanisms to explain the athermal effects of electromagnetic radiation.

  10. Comparison of Electromagnetic and Marangoni Forces on Thin Coatings during Rapid Heating Process

    NASA Astrophysics Data System (ADS)

    Steinberg, T.; Opitz, T.; Rybakov, A.; Baake, E.

    2018-05-01

    The present paper is dedicated to the investigation of Marangoni and Lorentz forces in a rapid heating process. During the melting of aluminum-silicon (AlSi) layer on the bor-manganese steel 22MnB5, the liquid AlSi is shifting from the middle to the side and leaves dry spots on the steel due to a combination of both forces. In order to solve this process design issue, the impact of each force in the process will be evaluated. Evaluation is carried out using experimental data and numerical simulation.

  11. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  12. Lorentz Force on Sodium and Chlorine Ions in a Salt Water Solution Flow under a Transverse Magnetic Field

    ERIC Educational Resources Information Center

    De Luca, R.

    2009-01-01

    It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity v[subscript A] under the influence of a transverse magnetic field B[subscript 0], an electromotive force generator can be conceived. In fact, the Lorentz force…

  13. Interim Report of the Defense Science Board (DSB) Task Force on the Survivability of Systems and Assets to Electromagnetic Pulse (EMP) and other Nuclear Weapon Effects (NWE)

    DTIC Science & Technology

    2011-08-01

    Bob Hermann Dr. Maneck Master Dr. Gordon Soper Dr. Jim Tegnelia Dr. Joan Woodard Executive Secretaries (DFOs) John Franco, DTRA COL Jeffrey...Helen Mearns, Ms Kari O’Dell, Joint CBRO Appendix C: Presentations to the Task Force Name Topic July 15 - 16, 2010 Dr. Gordon Soper

  14. Multiphysics analysis of liquid metal annular linear induction pumps: A project overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidana, Carlos Omar; Nieminen, Juha E.

    Liquid metal-cooled fission reactors are both moderated and cooled by a liquid metal solution. These reactors are typically very compact and they can be used in regular electric power production, for naval and space propulsion systems or in fission surface power systems for planetary exploration. The coupling between the electromagnetics and thermo-fluid mechanical phenomena observed in liquid metal thermo-magnetic systems for nuclear and space applications gives rise to complex engineering magnetohydrodynamics and numerical problems. It is known that electromagnetic pumps have a number of advantages over rotating mechanisms: absence of moving parts, low noise and vibration level, simplicity of flowmore » rate regulation, easy maintenance and so on. However, while developing annular linear induction pumps, we are faced with a significant problem of magnetohydrodynamic instability arising in the device. The complex flow behavior in this type of devices includes a time-varying Lorentz force and pressure pulsation due to the time-varying electromagnetic fields and the induced convective currents that originates from the liquid metal flow, leading to instability problems along the device geometry. The determinations of the geometry and electrical configuration of liquid metal thermo-magnetic devices give rise to a complex inverse magnetohydrodynamic field problem were techniques for global optimization should be used, magnetohydrodynamics instabilities understood –or quantified- and multiphysics models developed and analyzed. Lastly, we present a project overview as well as a few computational models developed to study liquid metal annular linear induction pumps using first principles and the a few results of our multi-physics analysis.« less

  15. Multiphysics analysis of liquid metal annular linear induction pumps: A project overview

    DOE PAGES

    Maidana, Carlos Omar; Nieminen, Juha E.

    2016-03-14

    Liquid metal-cooled fission reactors are both moderated and cooled by a liquid metal solution. These reactors are typically very compact and they can be used in regular electric power production, for naval and space propulsion systems or in fission surface power systems for planetary exploration. The coupling between the electromagnetics and thermo-fluid mechanical phenomena observed in liquid metal thermo-magnetic systems for nuclear and space applications gives rise to complex engineering magnetohydrodynamics and numerical problems. It is known that electromagnetic pumps have a number of advantages over rotating mechanisms: absence of moving parts, low noise and vibration level, simplicity of flowmore » rate regulation, easy maintenance and so on. However, while developing annular linear induction pumps, we are faced with a significant problem of magnetohydrodynamic instability arising in the device. The complex flow behavior in this type of devices includes a time-varying Lorentz force and pressure pulsation due to the time-varying electromagnetic fields and the induced convective currents that originates from the liquid metal flow, leading to instability problems along the device geometry. The determinations of the geometry and electrical configuration of liquid metal thermo-magnetic devices give rise to a complex inverse magnetohydrodynamic field problem were techniques for global optimization should be used, magnetohydrodynamics instabilities understood –or quantified- and multiphysics models developed and analyzed. Lastly, we present a project overview as well as a few computational models developed to study liquid metal annular linear induction pumps using first principles and the a few results of our multi-physics analysis.« less

  16. Feedback Controlled Colloidal Assembly at Fluid Interfaces

    NASA Astrophysics Data System (ADS)

    Bevan, Michael

    The autonomous and reversible assembly of colloidal nano- and micro- scale components into ordered configurations is often suggested as a scalable process capable of manufacturing meta-materials with exotic electromagnetic properties. As a result, there is strong interest in understanding how thermal motion, particle interactions, patterned surfaces, and external fields can be optimally coupled to robustly control the assembly of colloidal components into hierarchically structured functional meta-materials. We approach this problem by directly relating equilibrium and dynamic colloidal microstructures to kT-scale energy landscapes mediated by colloidal forces, physically and chemically patterned surfaces, multiphase fluid interfaces, and electromagnetic fields. 3D colloidal trajectories are measured in real-space and real-time with nanometer resolution using an integrated suite of evanescent wave, video, and confocal microscopy methods. Equilibrium structures are connected to energy landscapes via statistical mechanical models. The dynamic evolution of initially disordered colloidal fluid configurations into colloidal crystals in the presence of tunable interactions (electromagnetic field mediated interactions, particle-interface interactions) is modeled using a novel approach based on fitting the Fokker-Planck equation to experimental microscopy and computer simulated assembly trajectories. This approach is based on the use of reaction coordinates that capture important microstructural features of crystallization processes and quantify both statistical mechanical (free energy) and fluid mechanical (hydrodynamic) contributions. Ultimately, we demonstrate real-time control of assembly, disassembly, and repair of colloidal crystals using both open loop and closed loop control to produce perfectly ordered colloidal microstructures. This approach is demonstrated for close packed colloidal crystals of spherical particles at fluid-solid interfaces and is being extended to anisotropic particles and multiphase fluid interfaces.

  17. The effect of low force chiropractic adjustments for 4 weeks on body surface electromagnetic field.

    PubMed

    Zhang, John; Snyder, Brian J

    2005-01-01

    To study the effects of 4 weeks of low-force chiropractic adjustments on body surface electromagnetic fields (EMFs). Thirty-five chiropractic students randomly assigned into control (17 subjects) and experimental groups (28 subjects). A triaxial fluxgate magnetometer was used for EMF detection. The subjects' body surface EMF was determined in the prone position before and after the chiropractic adjustment. A Toftness low-force chiropractic adjustment was applied to the cervical, thoracic, lumbar, and sacral areas as determined by the practitioner. Heart rate variability analysis was recorded once a week to determine autonomic nervous system activity in both the control and experimental groups. The EMF on the subjects' body surface decreased after chiropractic adjustment at the cervical, thoracic, lumbar, and sacral regions in all 6 visits during the 4-week treatment period. The EMF showed a downtrend over the 4-week period after the low-force adjustment. The same changes were not observed in the control group. The chiropractic adjustment group had a slight decrease in heart rate over the 4-week treatment period, and no significant change was observed in the control group. Heart rate variability analysis did not show consistent changes before and after the low-force adjustments during the treatment period. Low-force chiropractic adjustment in the cervical and thoracic areas resulted in a consistent reduction of the body surface EMF after 4 weeks of active treatment. No statistically significant differences were found in the heart rate and heart rate variability in the 4-week study.

  18. Tabletop Models for Electrical and Electromagnetic Geophysics.

    ERIC Educational Resources Information Center

    Young, Charles T.

    2002-01-01

    Details the use of tabletop models that demonstrate concepts in direct current electrical resistivity, self-potential, and electromagnetic geophysical models. Explains how data profiles of the models are obtained. (DDR)

  19. Measurement of Spindle Rigidity by using a Magnet Loader

    NASA Astrophysics Data System (ADS)

    Yamazaki, Taku; Matsubara, Atsushi; Fujita, Tomoya; Muraki, Toshiyuki; Asano, Kohei; Kawashima, Kazuyuki

    The static rigidity of a rotating spindle in the radial direction is investigated in this research. A magnetic loading device (magnet loader) has been developed for the measurement. The magnet loader, which has coils and iron cores, generates the electromagnetic force and attracts a dummy tool attached to the spindle. However, the eddy current is generated in the dummy tool with the spindle rotation and reduces the attractive force at high spindle speed. In order to understand the magnetic flux and eddy current in the dummy tool, the electromagnetic field analysis by FEM was carried out. Grooves on the attraction surface of the dummy tool were designed to cut the eddy current flow. The dimension of the groove were decided based on the FEM analysis, and the designed tool were manufactured and tested. The test result shows that the designed tool successfully reduces the eddy current and recovers the attractive force. By using the magnet loader and the grooved tool, the spindle rigidity can be measured when the spindle rotates with a speed up to 10,000 min-1.

  20. Electromagnetic Launch Vehicle Fairing and Acoustic Blanket Model of Received Power Using FEKO

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Evaluating the impact of radio frequency transmission in vehicle fairings is important to electromagnetically sensitive spacecraft. This study employs the multilevel fast multipole method (MLFMM) from a commercial electromagnetic tool, FEKO, to model the fairing electromagnetic environment in the presence of an internal transmitter with improved accuracy over industry applied techniques. This fairing model includes material properties representative of acoustic blanketing commonly used in vehicles. Equivalent surface material models within FEKO were successfully applied to simulate the test case. Finally, a simplified model is presented using Nicholson Ross Weir derived blanket material properties. These properties are implemented with the coated metal option to reduce the model to one layer within the accuracy of the original three layer simulation.

  1. Decoupling suspension controller based on magnetic flux feedback.

    PubMed

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  2. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    PubMed Central

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced. PMID:23844415

  3. An inhomogeneous thermal block model of man for the electromagnetic environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, I.; Gandhi, O.P.

    An inhomogeneous four layer block thermal model of a human body, composed of 476 electromagnetic-sensitive cubical cells has been developed to study the effects of electromagnetic radiation. Varying tissue properties defined by thermal conductivity, specific heat, blood flow rate and metabolic heat production are accounted for by equations. Peripheral cell temperature is weight-averaged for total cell volume and is thereby higher than actual skin temperature. During electromagnetic field exposure, additional factors considered are increased blood flow rate caused by vasodilation and sweat-induced heat loss. Hot spots have been located in the model and numerical results are presented. Subjected to planemore » wave iradiation, the model's sweating and insensible perspiration cease and all temperatures converge. Testing during electromagnetic hyperthemia shows all temperature body parts to increase approximately at the same rate.« less

  4. Modeling of ultrasonic and terahertz radiations in defective tiles for condition monitoring of thermal protection systems

    NASA Astrophysics Data System (ADS)

    Kabiri Rahani, Ehsan

    Condition based monitoring of Thermal Protection Systems (TPS) is necessary for safe operations of space shuttles when quick turn-around time is desired. In the current research Terahertz radiation (T-ray) has been used to detect mechanical and heat induced damages in TPS tiles. Voids and cracks inside the foam tile are denoted as mechanical damage while property changes due to long and short term exposures of tiles to high heat are denoted as heat induced damage. Ultrasonic waves cannot detect cracks and voids inside the tile because the tile material (silica foam) has high attenuation for ultrasonic energy. Instead, electromagnetic terahertz radiation can easily penetrate into the foam material and detect the internal voids although this electromagnetic radiation finds it difficult to detect delaminations between the foam tile and the substrate plate. Thus these two technologies are complementary to each other for TPS inspection. Ultrasonic and T-ray field modeling in free and mounted tiles with different types of mechanical and thermal damages has been the focus of this research. Shortcomings and limitations of FEM method in modeling 3D problems especially at high-frequencies has been discussed and a newly developed semi-analytical technique called Distributed Point Source Method (DPSM) has been used for this purpose. A FORTRAN code called DPSM3D has been developed to model both ultrasonic and electromagnetic problems using the conventional DPSM method. This code is designed in a general form capable of modeling a variety of geometries. DPSM has been extended from ultrasonic applications to electromagnetic to model THz Gaussian beams, multilayered dielectrics and Gaussian beam-scatterer interaction problems. Since the conventional DPSM has some drawbacks, to overcome it two modification methods called G-DPSM and ESM have been proposed. The conventional DPSM in the past was only capable of solving time harmonic (frequency domain) problems. Time history was obtained by FFT (Fast Fourier Transform) algorithm. In this research DPSM has been extended to model DPSM transient problems without using FFT. This modified technique has been denoted as t-DPSM. Using DPSM, scattering of focused ultrasonic fields by single and multiple cavities in fluid & solid media is studied. It is investigated when two cavities in close proximity can be distinguished and when it is not possible. A comparison between the radiation forces generated by the ultrasonic energies reflected from two small cavities versus a single big cavity is also carried out.

  5. Modeling and test of a kinaesthetic actuator based on MR fluid for haptic applications.

    PubMed

    Yang, Tae-Heon; Koo, Jeong-Hoi; Kim, Sang-Youn; Kwon, Dong-Soo

    2017-03-01

    Haptic display units have been widely used for conveying button sensations to users, primarily employing vibrotactile actuators. However, the human feeling for pressing buttons mainly relies on kinaesthetic sensations (rather than vibrotactile sensations), and little studies exist on small-scale kinaesthetic haptic units. Thus, the primary goals of this paper are to design a miniature kinaesthetic actuator based on Magneto-Rheological (MR) fluid that can convey various button-clicking sensations and to experimentally evaluate its haptic performance. The design focuses of the proposed actuator were to produce sufficiently large actuation forces (resistive forces) for human users in a given size constraint and to offer a wide range of actuation forces for conveying vivid haptic sensations to users. To this end, this study first performed a series of parametric studies using mathematical force models for multiple operating modes of MR fluid in conjunction with finite element electromagnetism analysis. After selecting design parameters based on parametric studies, a prototype actuator was constructed, and its performance was evaluated using a dynamic mechanical analyzer. It measured the actuator's resistive force with a varying stroke (pressed depth) up to 1 mm and a varying input current from 0 A to 200 mA. The results show that the proposed actuator creates a wide range of resistive forces from around 2 N (off-state) to over 9.5 N at 200 mA. In order to assess the prototype's performance in the terms of the haptic application prospective, a maximum force rate was calculated to determine just noticeable difference in force changes for the 1 mm stoke of the actuator. The results show that the force rate is sufficient to mimic various levels of button sensations, indicating that the proposed kinaesthetic actuator can offer a wide range of resistive force changes that can be conveyed to human operators.

  6. On Electromagnetic Modulation of Flow Instabilities, Mixing and Heat Transfer in Conducting and Magnetized Fluids

    NASA Astrophysics Data System (ADS)

    Kenjeres, S.

    2016-09-01

    In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.

  7. Pragmatic analysis of the electric submerged arc furnace continuum

    NASA Astrophysics Data System (ADS)

    Karalis, K.; Karkalos, N.; Antipas, G. S. E.; Xenidis, A.

    2017-09-01

    A transient mathematical model was developed for the description of fluid flow, heat transfer and electromagnetic phenomena involved in the production of ferronickel in electric arc furnaces. The key operating variables considered were the thermal and electrical conductivity of the slag and the shape, immersion depth and applied electric potential of the electrodes. It was established that the principal stimuli of the velocities in the slag bath were the electric potential and immersion depth of the electrodes and the thermal and electrical conductivities of the slag. Additionally, it was determined that, under the set of operating conditions examined, the maximum slag temperature ranged between 1756 and 1825 K, which is in accordance with industrial measurements. Moreover, it was affirmed that contributions to slag stirring due to Lorentz forces and momentum forces due to the release of carbon monoxide bubbles from the electrode surface were negligible.

  8. A new blackhole theorem and its applications to cosmology and astrophysics

    NASA Astrophysics Data System (ADS)

    Wang, Shouhong; Ma, Tian

    2015-04-01

    We shall present a blackhole theorem and a theorem on the structure of our Universe, proved in a recently published paper, based on 1) the Einstein general theory of relativity, and 2) the cosmological principle that the universe is homogeneous and isotropic. These two theorems are rigorously proved using astrophysical dynamical models coupling fluid dynamics and general relativity based on a symmetry-breaking principle. With the new blackhole theorem, we further demonstrate that both supernovae explosion and AGN jets, as well as many astronomical phenomena including e.g. the recent reported are due to combined relativistic, magnetic and thermal effects. The radial temperature gradient causes vertical Benard type convection cells, and the relativistic viscous force (via electromagnetic, the weak and the strong interactions) gives rise to a huge explosive radial force near the Schwarzschild radius, leading e.g. to supernovae explosion and AGN jets.

  9. Pragmatic analysis of the electric submerged arc furnace continuum

    PubMed Central

    Karkalos, N.; Xenidis, A.

    2017-01-01

    A transient mathematical model was developed for the description of fluid flow, heat transfer and electromagnetic phenomena involved in the production of ferronickel in electric arc furnaces. The key operating variables considered were the thermal and electrical conductivity of the slag and the shape, immersion depth and applied electric potential of the electrodes. It was established that the principal stimuli of the velocities in the slag bath were the electric potential and immersion depth of the electrodes and the thermal and electrical conductivities of the slag. Additionally, it was determined that, under the set of operating conditions examined, the maximum slag temperature ranged between 1756 and 1825 K, which is in accordance with industrial measurements. Moreover, it was affirmed that contributions to slag stirring due to Lorentz forces and momentum forces due to the release of carbon monoxide bubbles from the electrode surface were negligible. PMID:28989738

  10. Forced vibration of a carbon nanotube with emission currents in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Bulyarskiy, S. V.; Dudin, A. A.; Orlov, A. P.; Pavlov, A. A.; Leont'ev, V. L.

    2017-11-01

    The occurrence of vibrations in a single carbon nanotubes placed in an electromagnetic field through which constant field-emission current passes has been analyzed. It has been shown experimentally that the emission current, along with the constant component, has a variable one that resonates at a certain frequency. Calculations show a relationship between the resonance frequency and the parameters of the whole system and nanotube itself. The conditions under which resonance may occur in the terahertz range of vibration frequencies have been analyzed.

  11. Electromagnetic interference impact of the proposed emitters for the High Frequency Active Auroral Research Program (HAARP). Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertshaw, G.A.; Snyder, A.L.; Weiner, M.M.

    1993-05-14

    The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder(VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyne, G.; Magnin, H.; Berliat, G.

    A supervisor has been developed so as to allow successive 3D computations of different quantities by different softwares on the same physical problem. Noise of a given power oil transformer can be deduced from the surface vibrations of the tank. These vibrations are obtained through a mechanic computation whose Inputs are the electromagnetic forces provided . by an electromagnetic computation. Magnetic, mechanic and acoustic experimental data are compared with the results of the 3D computations. Stress Is put on the main characteristics of the supervisor such as the transfer of a given quantity from one mesh to the other.

  13. The determination of the constitutive parameters of a medium with application to a reinforced concrete pad

    NASA Technical Reports Server (NTRS)

    Poggio, A. J.; Burke, G. L.; Pennock, S. T.

    1995-01-01

    This report describes the experimental and analytical efforts performed to determine the constitutive parameters of a reinforced concrete pad on which an aircraft (the NASA Boeing 757) was parked while its internal electromagnetic environment was measured. This concrete pad is part of the Large Electromagnetic System-Level Illuminator (LESLI) test facility at the Phillips Laboratory, Kirtland Air Force Base, New Mexico. The relative dielectric constant, conductivity, index of refraction, and reflection coefficient have been determined over the frequency range of 0 to 300 MHz and are presented.

  14. Electromagnetic Measurements Conducted by the Central Radio Propagation Laboratory During Operation Upshot-Knothole (Redacted)

    DTIC Science & Technology

    1954-03-31

    b . ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 31...March 1954 Final report Electromagnetic Measurements Conducted by the Central Radio Propagation Laboratory During Operation Upshot-Knothole B /216/E...Vubington 25, D. C. COD fw 5 U.S.C. § 552 ( b )( 6) O££ice (or AtOIIIie Fnergy, DCS/0 r r T l A . O!tp1rtment o£ the 1\\ir force \\ ·-’ . If

  15. Electromagnetic calibration system for sub-micronewton torsional thrust stand

    NASA Astrophysics Data System (ADS)

    Lam, J. K.; Koay, S. C.; Cheah, K. H.

    2017-12-01

    It is critical for a micropropulsion system to be evaluated. Thrust stands are widely recognised as the instrument to complete such tasks. This paper presents the development of an alternative electromagnetic calibration technique for thrust stands. Utilising the commercially made voice coils and permanent magnets, the proposed system is able to generate repeatable and also consistent steady-state calibration forces at over four orders of magnitude (30 - 23000 μN). The system is then used to calibrate a custom-designed torsional thrust stand, where its inherent ability in ease of setup is well demonstrated.

  16. Rodded shutdown system for a nuclear reactor

    DOEpatents

    Golden, Martin P.; Govi, Aldo R.

    1978-01-01

    A top mounted nuclear reactor diverse rodded shutdown system utilizing gas fed into a pressure bearing bellows region sealed at the upper extremity to an armature. The armature is attached to a neutron absorber assembly by a series of shafts and connecting means. The armature is held in an uppermost position by an electromagnet assembly or by pressurized gas in a second embodiment. Deenergizing the electromagnet assembly, or venting the pressurized gas, causes the armature to fall by the force of gravity, thereby lowering the attached absorber assembly into the reactor core.

  17. Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter

    DTIC Science & Technology

    2009-03-31

    AFRL-RV-HA-TR-2009-1055 Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter ...m (or even 500 m) at mid to high latitudes . At low latitudes , the FDTD model exhibits variations that make it difficult to determine a reliable...Scientific, Final 3. DATES COVERED (From - To) 02-08-2006 – 31-12-2008 4. TITLE AND SUBTITLE Accurate Modeling of Ionospheric Electromagnetic Fields

  18. Materials perspective on Casimir and van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A. W.; Podgornik, R.

    2016-10-01

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. Such interactions are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insights into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. This review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. The outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.

  19. Visco-Resistive MHD Modeling Benchmark of Forced Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Hegna, C. C.; Sovinec, C. R.; Callen, J. D.; Ferraro, N. M.

    2016-10-01

    The presence of externally-applied 3D magnetic fields can affect important phenomena in tokamaks, including mode locking, disruptions, and edge localized modes. External fields penetrate into the plasma and can lead to forced magnetic reconnection (FMR), and hence magnetic islands, on resonant surfaces if the local plasma rotation relative to the external field is slow. Preliminary visco-resistive MHD simulations of FMR in a slab geometry are consistent with theory. Specifically, linear simulations exhibit proper scaling of the penetrated field with resistivity, viscosity, and flow, and nonlinear simulations exhibit a bifurcation from a flow-screened to a field-penetrated, magnetic island state as the external field is increased, due to the 3D electromagnetic force. These results will be compared to simulations of FMR in a circular cross-section, cylindrical geometry by way of a benchmark between the NIMROD and M3D-C1 extended-MHD codes. Because neither this geometry nor the MHD model has the physics of poloidal flow damping, the theory of will be expanded to include poloidal flow effects. The resulting theory will be tested with linear and nonlinear simulations that vary the resistivity, viscosity, flow, and external field. Supported by OFES DoE Grants DE-FG02-92ER54139, DE-FG02-86ER53218, DE-AC02-09CH11466, and the SciDAC Center for Extended MHD Modeling.

  20. A Magnetic Bumper-Tether System Using ZFC Y123

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad; Obot, Victor; Liu, Jianxiong; Arndt, G. D.

    1996-01-01

    We consider the use of magnetic forces in a bumper system, to soften docking procedures. We investigate a system which exhibits no magnetic field except during the docking process, which, if desired, can automatically tether two craft together, and which provides lateral stability during docking. A system composed of zero field cooled Y(1.7)Ba2Cu3O(7-delta) (Y123) tiles and electromagnets is proposed. The Y123 high temperature superconductor (HTS) is mounted on one craft, and the electromagnet on the other. Results of small prototype laboratory experiments are reported. The electromagnet has, for convenience, been replaced by a permanent SmCo ferromagnet in these measurements. When the two craft approach, a mirror image of the ferromagnet is induced in the Y123, and a repulsive bumper force, F(sub B), results. F(sub B) is velocity dependent, and increases with v. For presently available HTS materials, bumper pressure of approx. 3.7 N/cm(exp 2) is achieved using SmCo. This extrapolates to approx. 18 N/cm(exp 2) for an electromagnet, or a force of up to 20 tons for a 1 m(exp 2) system. After reaching a minimum distance of approach, the two colliding craft begin to separate. However, the consequent change of SmCo magnetic field at the Y123 results in a reversal of current in the Y123 so that the Y123 is attractive to the SmCo. The attractive (tether) force, F(sub T), is a function of R = B(sub Fe)/B(sub t, max), where B(sub Fe) is the field at the surface of the ferromagnet, and B(sub t, max) is the maximum trapped field of the Y123, i.e., the trapped field in the so-called critical state. For R greater than or equal to 2, F(sub T) saturates at a value comparable to F(sub B). For a range of initial approach velocities the two craft are tethered following the bumper sequence. Most of the kinetic energy of the collision is first converted to magnetic field energy in the Y123, and then into heat via the creep mechanism. About 15% of the work done against magnetic forces during collision remains stored as magnetic energy after 1 hour. Experiments have also been conducted on the spatial range of the bumper force for arrays of HTS tiles. For a single HTS tile approx. 2 cm in diameter, the range of F(sub B) is approx. l cm. For a l m(exp 2) array the range of F(sub B) will be circa 50 cm.

  1. The Particle Adventure | What is fundamental? | Fundamental

    Science.gov Websites

    Electromagnetism Residual EM force What about the nucleus? Strong Color charge Quark confinement Quarks emit gluons Decaying to two photons Shortcomings of the first data Is this particle really the Higgs Boson? Does it

  2. The Particle Adventure | Particle Decays and Annihilations

    Science.gov Websites

    Electromagnetism Residual EM force What about the nucleus? Strong Color charge Quark confinement Quarks emit gluons Decaying to two photons Shortcomings of the first data Is this particle really the Higgs Boson? Does it

  3. The Particle Adventure | Accelerators and Particle Detectors

    Science.gov Websites

    Electromagnetism Residual EM force What about the nucleus? Strong Color charge Quark confinement Quarks emit gluons Decaying to two photons Shortcomings of the first data Is this particle really the Higgs Boson? Does it

  4. Large-stroke convex micromirror actuated by electromagnetic force for optical power control.

    PubMed

    Hossain, Md Mahabub; Bin, Wu; Kong, Seong Ho

    2015-11-02

    This paper contributes a novel design and the corresponding fabrication process to research on the unique topic of micro-electro-mechanical systems (MEMS) deformable convex micromirror used for focusing-power control. In this design, the shape of a thin planar metal-coated polymer-membrane mirror is controlled electromagnetically by using the repulsive force between two magnets, a permanent magnet and a coil solenoid, installed in an actuator system. The 5 mm effective aperture of a large-stroke micromirror showed a maximum center displacement of 30.08 µm, which enabled control of optical power across a wide range that could extend up to around 20 diopters. Specifically, utilizing the maximum optical power of 20 diopter by applying a maximum controlling current of 0.8 A yielded consumption of at most 2 W of electrical power. It was also demonstrated that this micromirror could easily be integrated in miniature tunable optical imaging systems.

  5. A New Electromagnetic Acoustic Transducer Design for Generating and Receiving S0 Lamb Waves in Ferromagnetic Steel Plate

    PubMed Central

    He, Jianpeng; Dixon, Steve; Hill, Samuel; Xu, Ke

    2017-01-01

    Electromagnetic acoustic transducers (EMATs) are non-contact, ultrasonic transducers that are usually kept within 5 mm from the sample surface to obtain a sufficient signal-to-noise ratio (SNR). One important issue associated with operation on a ferromagnetic plate is that the strong attraction force from the magnet can affect measurements and make scanning difficult. This paper investigates a method to generate fundamental, symmetric Lamb waves on a ferromagnetic plate. A coil-only, low-weight, generation EMAT is designed and investigated, operating at lift-offs of over 5 mm. Another design of an EMAT is investigated using a rectangular magnet with a much higher lift-off than the coil, of up to 19 mm. This results in a much lower force between the EMAT and sample, making scanning the EMAT much easier. PMID:28471377

  6. Self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.

    1988-01-01

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  7. Characterization of a rotary hybrid multimodal energy harvester

    NASA Astrophysics Data System (ADS)

    Larkin, Miles R.; Tadesse, Yonas

    2014-04-01

    In this study, experimental characterizations of a new hybrid energy harvesting device consisting of piezoelectric and electromagnetic transducers are presented. The generator, to be worn on the legs or arms of a person, harnesses linear motion and impact forces from human motion to generate electrical energy. The device consists of an unbalanced rotor made of three piezoelectric beams which have permanent magnets attached to the ends. Impact forces cause the beams to vibrate, generating a voltage across their electrodes and linear motion causes the rotor to spin. As the rotor spins, the magnets pass over ten electromagnetic coils mounted to the base, inducing a current through the wire. Several design related issues were investigated experimentally in order to optimize the hybrid device for maximum power generation. Further experiments were conducted on the system to characterize the energy harvesting capabilities of the device, all of which are presented in this study.

  8. Electromagnetic needles with submicron pole tip radii for nanomanipulation of biomolecules and living cells

    NASA Astrophysics Data System (ADS)

    Matthews, Benjamin D.; LaVan, David A.; Overby, Darryl R.; Karavitis, John; Ingber, Donald E.

    2004-10-01

    We describe the design and fabrication of a temperature-controlled electromagnetic microneedle (EMN) to generate custom magnetic field gradients for biomedical and biophysical applications. An electropolishing technique was developed to sharpen the EMN pole tip to any desired radius between 100 nm and 20 μm. The EMN can be used to apply strong static or dynamic forces (>50nN) to micrometer- or nanometer-sized magnetic beads without producing significant heating or needle movement. Large tip radii (20 μm) allow magnetic force application to multiple magnetic beads over a large area, while small radii (0.1-6 μm) can be used to selectively pull or capture single magnetic beads from within a large population of similar particles. The customizable EMN is thus well suited for micro- and nanomanipulation of magnetic particles linked to biomolecules or living cells.

  9. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-07-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.

  10. First Observation of a Hall Effect in a Dusty Plasma: A Charged Granular Flow with Relevance to Planetary Rings

    NASA Astrophysics Data System (ADS)

    Eiskowitz, Skylar; Ballew, Nolan; Rojas, Rubén; Lathrop, Daniel

    2017-11-01

    The particles in Saturn's rings exhibit complex dynamic behavior. They experience solar radiation pressure, electromagnetic forces, and granular collisions. To investigate the possibility of the Hall Effect in the dusty plasma that comprise Saturn's rings, we have built an experiment that demonstrates the Hall Effect in granular matter. We focus on the Hall Effect because the rings' grains become collisionally charged and experience Saturn's dipolar magnetic field and Lorentz forces as they orbit. The experimental setup includes a closed ring-like track where granular matter is forced to circulate driven by compressed air. The structure sits between two electromagnets so that a portion of the track experiences up to a 0.2 T magnetic field. We vary the strength of the field and the speed of the particles. We report the voltage differences between two conducting plates on opposite sides of the track. If Saturn's rings do experience the Hall Effect, the inside and outside of the rings will develop a charge separation that can lead to a radial electric field and various phenomena including orbital effects due to the additional electric forces. Observational evidence from Cassini suggests that Saturn's rings exhibit lighting, supporting the notion that they are electrically charged. TREND REU program sponsored by the National Science Foundation.

  11. Development of a High-speed Electromagnetic Repulsion Mechanism for High-voltage Vacuum Circuit Breakers

    NASA Astrophysics Data System (ADS)

    Tsukima, Mitsuru; Takeuchi, Toshie; Koyama, Kenichi; Yoshiyasu, Hajimu

    This paper presents a design and testing of a new high-speed electromagnetic driving mechanism for a high-voltage vacuum circuit breaker (VCB). This mechanism is based on a high-speed electromagnetic repulsion and a permanent magnet spring (PMS). This PMS is introduced instead of the conventional disk spring due to its low spring energy and more suitable force characteristics for VCB application. The PMS has been optimally designed by the 3d non-linear finite-elements magnetic field analysis and investigated its internal friction and eddy-current effect. Furthermore, we calculated the dynamic of this mechanism coupling with the electromagnetic field and circuit analysis, in order to satisfy the operating characteristics—contact velocity, response time and so on, required for the high-speed VCB. A prototype VCB, which was built based on the above analysis shows sufficient operating performance. Finally, the short circuit interruption tests were carried out with this prototype breaker, and we have been able to verify its satisfying performance.

  12. Controlling Casimir force via coherent driving field

    NASA Astrophysics Data System (ADS)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  13. On the Induced Flow of an Electrically Conducting Liquid in a Rectangular Duct by Electric and Magnetic Fields of Finite Extent

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Jones, William Prichard; Huerta, Robert H.

    1961-01-01

    Reported here are the results of a systematic study of a model of the direct-current electromagnetic pump. Of particular interest is the motion imparted to the electrically conducting fluid in the rectangular duct by the body forces that result from applied electric and magnetic fields. The purpose of the investigation is to associate the observed fluid motion with the characteristics of the electric and magnetic fields which cause them. The experiments were carried out with electromagnetic fields that moved a stream of copper sulphate solution through a clear plastic channel. Ink filaments injected into the stream ahead of the region where the fields were applied identify the motion of the fluid elements as they passed through the test channel. Several magnetic field configurations were employed with a two-dimensional electric current distribution in order to study and identify the magnitude of some of the effects on the fluid motion brought about by nonuniformities in the electromagnetic fields. A theoretical analysis was used to guide and evaluate the identification of the several fluid motions observed. The agreement of the experimental data with the theoretical predictions is satisfactory. It is found that sizable variations in the velocity profile and pressure head of the output stream are produced by the shape of the electric and magnetic fields.

  14. Bio-soliton model that predicts non-thermal electromagnetic frequency bands, that either stabilize or destabilize living cells.

    PubMed

    Geesink, J H; Meijer, D K F

    2017-01-01

    Solitons, as self-reinforcing solitary waves, interact with complex biological phenomena such as cellular self-organization. A soliton model is able to describe a spectrum of electromagnetism modalities that can be applied to understand the physical principles of biological effects in living cells, as caused by endogenous and exogenous electromagnetic fields and is compatible with quantum coherence. A bio-soliton model is proposed, that enables to predict which eigen-frequencies of non-thermal electromagnetic waves are life-sustaining and which are, in contrast, detrimental for living cells. The particular effects are exerted by a range of electromagnetic wave eigen-frequencies of one-tenth of a Hertz till Peta Hertz that show a pattern of 12 bands, and can be positioned on an acoustic reference frequency scale. The model was substantiated by a meta-analysis of 240 published articles of biological electromagnetic experiments, in which a spectrum of non-thermal electromagnetic waves were exposed to living cells and intact organisms. These data support the concept of coherent quantized electromagnetic states in living organisms and the theories of Fröhlich, Davydov and Pang. It is envisioned that a rational control of shape by soliton-waves and related to a morphogenetic field and parametric resonance provides positional information and cues to regulate organism-wide systems properties like anatomy, control of reproduction and repair.

  15. Quantum Color

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The idea of electric charges and electricity in general is a familiar one to the science savvy viewer. However, electromagnetism is but one of the four fundamental forces and not the strongest one. The strongest of the fundamental forces is called the strong nuclear force and it has its own associated charge. Physicists call this charge “color” in analogy with the primary colors, although there is no real connection with actual color. In this video, Fermilab’s Dr. Don Lincoln explains why it is that we live in a colorful world.

  16. Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study

    PubMed Central

    Rafati, A.; Rahimi, S.; Talebi, A.; Soleimani, A.; Haghani, M.; Mortazavi, S. M. J.

    2015-01-01

    Introduction The rapid growth of wireless communication technologies has caused public concerns regarding the biological effects of electromagnetic radiations on human health. Some early reports indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians such as the alterations of the pattern of muscle extractions. This study is aimed at investigating the effects of exposure to radiofrequency (RF) radiation emitted from mobile phone jammers on the pulse height of contractions, the time interval between two subsequent contractions and the latency period of frog’s isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz). Materials and Methods Frogs were kept in plastic containers in a room. Animals in the jammer group were exposed to radiofrequency (RF) radiation emitted from a common Jammer at a distance of 1m from the jammer’s antenna for 2 hours while the control frogs were only sham exposed. Then animals were sacrificed and isolated gastrocnemius muscles were exposed to on/off jammer radiation for 3 subsequent 10 minute intervals. Isolated gastrocnemius muscles were attached to the force transducer with a string. Using a PowerLab device (26-T), the pattern of muscular contractions was monitored after applying single square pulses of 1V (1 Hz) as stimuli. Results The findings of this study showed that the pulse height of muscle contractions could not be affected by the exposure to electromagnetic fields. However, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. Conclusion These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions. PMID:26396969

  17. Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.

    NASA Astrophysics Data System (ADS)

    Hwang, Sangmoon

    The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs. The effect of various design parameters on the output torque and torque ripple are discussed. Design parameters include winding patterns, magnetization direction, magnet arc length, number of segments in poles and magnet pole shaping. New designs of trapezoidal BEMF motors are proposed to reduce the electromagnetic torque ripple. Magnet stepping and magnet edge shaping with reduced arc length, significantly reduce torque ripple, with minimal sacrifice of the maximum output torque. Acoustic noise of electromagnetic origin is investigated using a magnetic frame which emulates a DC motor. The driving electromagnetic force is calculated using finite element analysis and the resulting vibration and acoustic noise is measured. Acoustic noise of purely electromagnetic origin was also tested with a DC brushless motor to confirm the results of the magnetic frame. The mechanism of noise generation in a DC motor is a quasi-static response of a stator not only at the fundamental frequency but also at higher harmonic frequencies of alternating switched DC, which is a current characteristic of a DC motor. Noise generation is significantly aggravated when some of those harmonics are close to the resonant frequencies of the stator. Therefore, acoustic noise is highly dependent upon the excitation current shape, as higher harmonics may match with resonant frequencies of the stator.

  18. A theoretical study of the coupling between a vortex-induced vibration cylindrical resonator and an electromagnetic energy harvester

    NASA Astrophysics Data System (ADS)

    Xu-Xu, J.; Barrero-Gil, A.; Velazquez, A.

    2015-11-01

    This paper presents a theoretical study of the coupling between a vortex-induced vibration (VIV) cylindrical resonator and its associated linear electromagnetic generator. The two-equation mathematical model is based on a dual-mass formulation in which the dominant masses are the stator and translator masses of the generator. The fluid-structure interaction implemented in the model equations follows the so-called ‘advanced forcing model’ whose closure relies on experimental data. The rationale to carry out the study is the fact that in these types of configurations there is a two-way interaction between the moving parts in such a way that their motions influence each other simultaneously, thereby affecting the energy actually harvested. It is believed that instead of mainly resorting to complementary numerical simulations, a theoretical model can shed some light on the nature of the interaction and, at the same time, provide scaling laws that can be used for practical design and optimization purposes. It has been found that the proposed configuration has a maximum hydrodynamic to mechanical to electrical conversion efficiency (based on the VIV resonator oscillation amplitude) of 8%. For a cylindrical resonator 10 cm long with a 2 cm diameter, this translates into an output power of 20 to 160 mW for water stream velocities in the range from 0.5 to 1 m s-1.

  19. NASA Tech Briefs, December 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: Crew Activity Analyzer; Distributing Data to Hand-Held Devices in a Wireless Network; Reducing Surface Clutter in Cloud Profiling Radar Data; MODIS Atmospheric Data Handler; Multibeam Altimeter Navigation Update Using Faceted Shape Model; Spaceborne Hybrid-FPGA System for Processing FTIR Data; FPGA Coprocessor for Accelerated Classification of Images; SiC JFET Transistor Circuit Model for Extreme Temperature Range; TDR Using Autocorrelation and Varying-Duration Pulses; Update on Development of SiC Multi-Chip Power Modules; Radio Ranging System for Guidance of Approaching Spacecraft; Electromagnetically Clean Solar Arrays; Improved Short-Circuit Protection for Power Cells in Series; Electromagnetically Clean Solar Arrays; Logic Gates Made of N-Channel JFETs and Epitaxial Resistors; Improved Short-Circuit Protection for Power Cells in Series; Communication Limits Due to Photon-Detector Jitter; System for Removing Pollutants from Incinerator Exhaust; Sealing and External Sterilization of a Sample Container; Converting EOS Data from HDF-EOS to netCDF; HDF-EOS 2 and HDF-EOS 5 Compatibility Library; HDF-EOS Web Server; HDF-EOS 5 Validator; XML DTD and Schemas for HDF-EOS; Converting from XML to HDF-EOS; Simulating Attitudes and Trajectories of Multiple Spacecraft; Specialized Color Function for Display of Signed Data; Delivering Alert Messages to Members of a Work Force; Delivering Images for Mars Rover Science Planning; Oxide Fiber Cathode Materials for Rechargeable Lithium Cells; Electrocatalytic Reduction of Carbon Dioxide to Methane; Heterogeneous Superconducting Low-Noise Sensing Coils; Progress toward Making Epoxy/Carbon-Nanotube Composites; Predicting Properties of Unidirectional-Nanofiber Composites; Deployable Crew Quarters; Nonventing, Regenerable, Lightweight Heat Absorber; Miniature High-Force, Long-Stroke SMA Linear Actuators; "Bootstrap" Configuration for Multistage Pulse-Tube Coolers; Reducing Liquid Loss during Ullage Venting in Microgravity; Ka-Band Transponder for Deep-Space Radio Science; Replication of Space-Shuttle Computers in FPGAs and ASICs; Demisable Reaction-Wheel Assembly; Spatial and Temporal Low-Dimensional Models for Fluid Flow; Advanced Land Imager Assessment System; Range Imaging without Moving Parts.

  20. Multipole-Based Cable Braid Electromagnetic Penetration Model: Electric Penetration Case

    DOE PAGES

    Campione, Salvatore; Warne, Larry K.; Langston, William L.; ...

    2017-07-11

    In this paper, we investigate the electric penetration case of the first principles multipole-based cable braid electromagnetic penetration model reported in the Progress in Electromagnetics Research B 66, 63–89 (2016). We first analyze the case of a 1-D array of wires: this is a problem which is interesting on its own, and we report its modeling based on a multipole-conformal mapping expansion and extension by means of Laplace solutions in bipolar coordinates. We then compare the elastance (inverse of capacitance) results from our first principles cable braid electromagnetic penetration model to that obtained using the multipole-conformal mapping bipolar solution. Thesemore » results are found in a good agreement up to a radius to half spacing ratio of 0.6, demonstrating a robustness needed for many commercial cables. We then analyze realistic cable implementations without dielectrics and compare the results from our first principles braid electromagnetic penetration model to the semiempirical results reported by Kley in the IEEE Transactions on Electromagnetic Compatibility 35, 1–9 (1993). Finally, although we find results on the same order of magnitude of Kley's results, the full dependence on the actual cable geometry is accounted for only in our proposed multipole model which, in addition, enables us to treat perturbations from those commercial cables measured.« less

  1. Multipole-Based Cable Braid Electromagnetic Penetration Model: Electric Penetration Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Warne, Larry K.; Langston, William L.

    In this paper, we investigate the electric penetration case of the first principles multipole-based cable braid electromagnetic penetration model reported in the Progress in Electromagnetics Research B 66, 63–89 (2016). We first analyze the case of a 1-D array of wires: this is a problem which is interesting on its own, and we report its modeling based on a multipole-conformal mapping expansion and extension by means of Laplace solutions in bipolar coordinates. We then compare the elastance (inverse of capacitance) results from our first principles cable braid electromagnetic penetration model to that obtained using the multipole-conformal mapping bipolar solution. Thesemore » results are found in a good agreement up to a radius to half spacing ratio of 0.6, demonstrating a robustness needed for many commercial cables. We then analyze realistic cable implementations without dielectrics and compare the results from our first principles braid electromagnetic penetration model to the semiempirical results reported by Kley in the IEEE Transactions on Electromagnetic Compatibility 35, 1–9 (1993). Finally, although we find results on the same order of magnitude of Kley's results, the full dependence on the actual cable geometry is accounted for only in our proposed multipole model which, in addition, enables us to treat perturbations from those commercial cables measured.« less

  2. A useful demonstration of calculus in a physics high school laboratory

    NASA Astrophysics Data System (ADS)

    Alvarez, Gustavo; Schulte, Jurgen; Stockton, Geoffrey; Wheeler, David

    2018-01-01

    The real power of calculus is revealed when it is applied to actual physical problems. In this paper, we present a calculus inspired physics experiment suitable for high school and undergraduate programs. A model for the theory of the terminal velocity of a falling body subject to a resistive force is developed and its validity tested in an experiment of a falling magnet in a column of self-induced eddy currents. The presented method combines multiple physics concepts such as 1D kinematics, classical mechanics, electromagnetism and non-trivial mathematics. It offers the opportunity for lateral as well as project-based learning.

  3. Simulation of ultrasonic and EMAT arrays using FEM and FDTD.

    PubMed

    Xie, Yuedong; Yin, Wuliang; Liu, Zenghua; Peyton, Anthony

    2016-03-01

    This paper presents a method which combines electromagnetic simulation and ultrasonic simulation to build EMAT array models. For a specific sensor configuration, Lorentz forces are calculated using the finite element method (FEM), which then can feed through to ultrasonic simulations. The propagation of ultrasound waves is numerically simulated using finite-difference time-domain (FDTD) method to describe their propagation within homogenous medium and their scattering phenomenon by cracks. Radiation pattern obtained with Hilbert transform on time domain waveforms is proposed to characterise the sensor in terms of its beam directivity and field distribution along the steering angle. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Electromagnetic stimulation of the ultrasonic signal for nondestructive detection of the ferromagnetic inclusions and flaws

    NASA Astrophysics Data System (ADS)

    Finkel, Peter

    2007-03-01

    It was recently shown that thermal or optical stimulation can be used to increase sensitivity of the conventional nondestructive ultrasonic detection of the small crack, flaws and inclusions in a ferromagnetic thin-walled parts. We proposed another method based on electromagnetic modulation of the ultrasonic scattered signal from the inclusions or defects. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small cracks near small holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.

  5. Models And Experiments Of Laminar Diffusion Flames In Non-Uniform Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Baker, J.; Varagani, R.; Saito, K.

    2003-01-01

    Non-uniform magnetic fields affect laminar diffusion flames as a result of the paramagnetic and diamagnetic properties of the products and reactants. Paramagnetism is the weak attraction to a magnetic field a material exhibits as a result of permanent magnetic dipole moments in the atoms of the material. Diamagnetism is the weak repulsion to a magnetic field exhibited by a material due to the lack of permanent magnetic dipole moments in the atoms of a material. The forces associated with paramagnetic and diamagnetism are several orders of magnitude less than the forces associated with the more familiar ferromagnetism. A typical example of a paramagnetic gas is oxygen while hydrocarbon fuels and products of combustion are almost always diamagnetic. The fact that magnets can affect flame behavior has been recognized for more than one hundred years. Early speculation was that such behavior was due to the magnetic interaction with the ionized gases associated with a flame. Using a scaling analysis, it was later shown that for laminar diffusion flames the magnetic field/ionized gas interaction was insignificant to the paramagnetic and diamagnetic influences. In this effort, the focus has been on examining laminar diffusion slot flames in the presence of non-uniform upward decreasing magnetic fields produced using permanent magnets. The principal reason for choosing slot flames was mathematical models of such flames show an explicit dependence on gravitational body forces, in the buoyancy-controlled regime, and an applied magnetic field would also impose a body force. In addition, the behavior of such flames was more easily visualized while maintaining the symmetry of the two-dimensional problem whereas it would have been impossible to obtain a symmetric magnetic field around a circular flame and still visually record the flame height and shape along the burner axis. The motivation for choosing permanent magnets to produce the magnetic fields was the assumption that space-related technologies based on the knowledge gained during this investigation would more likely involve permanent magnets as opposed to electromagnets. While no analysis has been done here to quantify the impact that an electric field, associated with an electromagnetic, would have relative to the paramagnetic and diamagnetic interactions, by using permanent magnets this potential effect was completely eliminated and thus paramagnetic and diamagnetic effects were isolated.

  6. EMPHASIS/Nevada UTDEM user guide. Version 2.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, C. David; Seidel, David Bruce; Pasik, Michael Francis

    The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest. UTDEM is a general-purpose code for solving Maxwell's equations on arbitrary, unstructured tetrahedral meshes. The geometries and the meshes thereof are limited only by the patience of the user in meshing and by the available computing resources for the solution. UTDEM solves Maxwell's equations using finite-element method (FEM) techniques on tetrahedral elements using vector, edge-conforming basis functions. EMPHASIS/Nevada Unstructured Time-Domain ElectroMagnetic Particle-In-Cell (UTDEM PIC) ismore » a superset of the capabilities found in UTDEM. It adds the capability to simulate systems in which the effects of free charge are important and need to be treated in a self-consistent manner. This is done by integrating the equations of motion for macroparticles (a macroparticle is an object that represents a large number of real physical particles, all with the same position and momentum) being accelerated by the electromagnetic forces upon the particle (Lorentz force). The motion of these particles results in a current, which is a source for the fields in Maxwell's equations.« less

  7. Electromagnetically levitated vibration isolation system for the manufacturing process of silicon monocrystals

    NASA Technical Reports Server (NTRS)

    Kanemitsu, Yoichi; Watanabe, Katsuhide; Yano, Kenichi; Mizuno, Takayuki

    1994-01-01

    This paper introduces a study on an Electromagnetically Levitated Vibration Isolation System (ELVIS) for isolation control of large-scale vibration. This system features no mechanical contact between the isolation table and the installation floor, using a total of four electromagnetic actuators which generate magnetic levitation force in the vertical and horizontal directions. The configuration of the magnet for the vertical direction is designed to prevent any generation of restoring vibratory force in the horizontal direction. The isolation system is set so that vibration control effects due to small earthquakes can be regulated to below 5(gal) versus horizontal vibration levels of the installation floor of up t 25(gal), and those in the horizontal relative displacement of up to 30 (mm) between the floor and levitated isolation table. In particular, studies on the relative displacement between the installation floor and the levitated isolation table have been made for vibration control in the horizontal direction. In case of small-scale earthquakes (Taft wave scaled: max. 25 gal), the present system has been confirmed to achieve a vibration isolation to a level below 5 gal. The vibration transmission ratio of below 1/10 has been achieved versus continuous micro-vibration (approx. one gal) in the horizontal direction on the installation floor.

  8. Electromagnetic topology: Characterization of internal electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  9. Magnetostrictive energy generator for harvesting the rotation of human knee joint

    NASA Astrophysics Data System (ADS)

    Yan, Baiping; Zhang, Chengming; Li, Liyi

    2018-05-01

    This paper presents the design and fabrication of a rotary-impact magnetostrictive energy generator, used to harvest the rotation of human knee joint. The harvester consists of twelve movable Terfenol-D rods, surrounded by the picked up coils respectively, and alternate permanent magnet (PM) array sandwiched in each part of the shell. Rotational electromagnetic power generating effect and impacted magnetostrictive power generating effect are designed in the harvester. Modeling and simulation are used to validate the concept. Then, magnetic field and leakage of the harvester are analyzed, electromagnetic force in the harvester is simulated. A prototype of harvester is fabricated, and subjected to the experimental characterization. It can be concluded that huge induced voltage generated in the short-time impact situation and that induced voltage in the harvester can reach up to 60-80 volts at 0.91Hz low frequency rotation. Also, the presented harvester has good harvesting effects at low frequency human walking and periodic swing crus situation, which are suitable to be used for future researches of wearable knee joint applications.

  10. Matter in the form of toroidal electromagnetic vortices

    NASA Astrophysics Data System (ADS)

    Hagen, Wilhelm F.

    2015-09-01

    The creation of charged elementary particles from neutral photons is explained as a conversion process of electromagnetic (EM) energy from linear to circular motion at the speed of light into two localized, toroidal shaped vortices of trapped EM energy that resist change of motion, perceptible as particles with inertia and hence mass. The photon can be represented as a superposition of left and right circular polarized transverse electric fields of opposite polarity originating from a common zero potential axis, the optical axis of the photon. If these components are separated by interaction with a strong field (nucleon) they would curl up into two electromagnetic vortices (EMV) due to longitudinal magnetic field components forming toroids. These vortices are perceptible as opposite charged elementary particles e+/- . These spinning toroids generate extended oscillating fields that interact with stationary field oscillations. The velocity-dependent frequency differences cause beat signals equivalent to matter waves, leading to interference. The extended fields entangled with every particle explain wave particle duality issues. Spin and magnetic moment are the natural outcome of these gyrating particles. As the energy and hence mass of the electron increases with acceleration so does its size shrink proportional to its reduced wavelength. The artificial weak and strong nuclear forces can be easily explained as different manifestations of the intermediate EM forces. The unstable neutron consists of a proton surrounded by a contracted and captured electron. The associated radial EM forces represent the weak nuclear force. The deuteron consists of two axially separated protons held together by a centrally captured electron. The axial EM forces represent the strong nuclear force, providing stability for "neutrons" only within nucleons. The same principles were applied to determine the geometries of force-balanced nuclei. The alpha-particle emerges as a very compact symmetric cuboid that provides a unique building block to assemble the isotopic chart. Exotic neutron- 4 appears viable which may explain dark matter. The recognition that all heavy particles, including the protons, are related to electrons via muons and pions explains the identity of all charges to within 10-36. Greater deviations would overpower gravitation. Gravitation can be traced to EM vacuum fluctuations generated by standing EM waves between interacting particles. On that basis, gravity can be correlated via microscopic quantities to the age of the universe of 13.5 billion years. All forces and particles and potentially dark matter and dark energy are different manifestations of EM energy.

  11. Electromagnetic Launch Vehicle Fairing and Acoustic Blanket Model of Received Power Using FEKO

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This paper employees the Multilevel Fast Multipole Method (MLFMM) feature of a commercial electromagnetic tool to model the fairing electromagnetic environment in the presence of an internal transmitter. This work is an extension of the perfect electric conductor model that was used to represent the bare aluminum internal fairing cavity. This fairing model includes typical acoustic blanketing commonly used in vehicle fairings. Representative material models within FEKO were successfully used to simulate the test case.

  12. A self-calibrating multicomponent force/torque measuring system

    NASA Astrophysics Data System (ADS)

    Marangoni, Rafael R.; Schleichert, Jan; Rahneberg, Ilko; Hilbrunner, Falko; Fröhlich, Thomas

    2018-07-01

    A multicomponent self-calibrating force and torque sensor is presented. In this system, the principle of a Kibble balance is adapted for the traceable force and torque measurement in three orthogonal directions. The system has two operating modes: the velocity mode and the force/torque sensing mode. In the velocity mode, the calibration of the sensor is performed, while in the force/torque sensing mode, forces and torques are measured by using the principle of the electromagnetic force compensation. Details about the system are provided, with the main components of the sensor and a description of the operational procedure. A prototype of the system is currently being implemented for measuring forces and torques in a range of  ±2 N and  ±0.1 N · m respectively. A maximal relative expanded measurement uncertainty (k  =  2) of 1 · 10‑4 is expected for the force and torque measurements.

  13. Self-forces on static bodies in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Harte, Abraham I.; Flanagan, Éanna É.; Taylor, Peter

    2016-06-01

    We derive exact expressions for the scalar and electromagnetic self-forces and self-torques acting on arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Nonperturbatively, our results are identical in all dimensions. Meaningful point particle limits are quite different in different dimensions, however. These limits are defined and evaluated, resulting in simple "regularization algorithms" which can be used in concrete calculations. In these limits, self-interaction is shown to be progressively less important in higher numbers of dimensions; it generically competes in magnitude with increasingly high-order extended-body effects. Conversely, we show that self-interaction effects can be relatively large in 1 +1 and 2 +1 dimensions. Our motivations for this work are twofold: First, no previous derivation of the self-force has been provided in arbitrary dimensions, and heuristic arguments presented by different authors have resulted in conflicting conclusions. Second, the static self-force problem in arbitrary dimensions provides a valuable test bed with which to continue the development of general, nonperturbative methods in the theory of motion. Several new insights are obtained in this direction, including a significantly improved understanding of the renormalization process. We also show that there is considerable freedom to use different "effective fields" in the laws of motion—a freedom which can be exploited to optimally simplify specific problems. Different choices give rise to different inertias, gravitational forces, and electromagnetic or scalar self-forces, but there is a sense in which none of these quantities are individually accessible to experiment. Certain combinations are observable, however, and these remain invariant under all possible field redefinitions.

  14. Deterrence Without Escalation:A Case for the Arctic in 2040

    DTIC Science & Technology

    2015-04-08

    electromagnetic pulse (EMP) from a nuclear blast.69 Typical shielding used to protect an asset from an EMP generated by a nuclear blast is...weapons could travel at hypersonic speeds, but the beam must propagate through a plasma field—the same plasma field that causes the ‘radio blackout...Blechman and Stephen S Kaplan, Force Without War: U.S. Armed Forces as a Political Instrument. (Washington, DC: The Brookings Institution, 1978), 4

  15. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1981-03-05

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  16. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1983-11-08

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed. 5 figs.

  17. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, Bernard M.; Miyano, Kenjiro; Ketterson, John B.

    1983-01-01

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  18. Electromagnetic Radiation in the Atmosphere Generated by Excess Negative Charge in a Nuclear-Electromagnetic Cascade

    NASA Astrophysics Data System (ADS)

    Malyshevsky, V. S.; Fomin, G. V.

    2017-01-01

    On the basis of the analytical model "PARMA" (PHITS-based Analytical Radiation Model in the Atmosphere), developed to model particle fluxes of secondary cosmic radiation in the Earth's atmosphere, we have calculated the characteristics of radio waves emitted by excess negative charge in an electromagnetic cascade. The results may be of use in an analysis of experimental data on radio emission of electron-photon showers in the atmosphere.

  19. Electromagnetic ray tracing model for line structures.

    PubMed

    Tan, C B; Khoh, A; Yeo, S H

    2008-03-17

    In this paper, a model for electromagnetic scattering of line structures is established based on high frequency approximation approach - ray tracing. This electromagnetic ray tracing (ERT) model gives the advantage of identifying each physical field that contributes to the total solution of the scattering phenomenon. Besides the geometrical optics field, different diffracted fields associated with the line structures are also discussed and formulated. A step by step addition of each electromagnetic field is given to elucidate the causes of a disturbance in the amplitude profile. The accuracy of the ERT model is also discussed by comparing with the reference finite difference time domain (FDTD) solution, which shows a promising result for a single polysilicon line structure with width of as narrow as 0.4 wavelength.

  20. Electromagnetic Modeling of Human Body Using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Ng, Cho-Kuen; Beall, Mark; Ge, Lixin; Kim, Sanghoek; Klaas, Ottmar; Poon, Ada

    Realistic simulation of electromagnetic wave propagation in the actual human body can expedite the investigation of the phenomenon of harvesting implanted devices using wireless powering coupled from external sources. The parallel electromagnetics code suite ACE3P developed at SLAC National Accelerator Laboratory is based on the finite element method for high fidelity accelerator simulation, which can be enhanced to model electromagnetic wave propagation in the human body. Starting with a CAD model of a human phantom that is characterized by a number of tissues, a finite element mesh representing the complex geometries of the individual tissues is built for simulation. Employing an optimal power source with a specific pattern of field distribution, the propagation and focusing of electromagnetic waves in the phantom has been demonstrated. Substantial speedup of the simulation is achieved by using multiple compute cores on supercomputers.

  1. Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow.

    PubMed

    Thrift, William J; Nguyen, Cuong Q; Darvishzadeh-Varcheie, Mahsa; Zare, Siavash; Sharac, Nicholas; Sanderson, Robert N; Dupper, Torin J; Hochbaum, Allon I; Capolino, Filippo; Abdolhosseini Qomi, Mohammad Javad; Ragan, Regina

    2017-11-28

    Nanoparticles from colloidal solution-with controlled composition, size, and shape-serve as excellent building blocks for plasmonic devices and metasurfaces. However, understanding hierarchical driving forces affecting the geometry of oligomers and interparticle gap spacings is still needed to fabricate high-density architectures over large areas. Here, electrohydrodynamic (EHD) flow is used as a long-range driving force to enable carbodiimide cross-linking between nanospheres and produces oligomers exhibiting sub-nanometer gap spacing over mm 2 areas. Anhydride linkers between nanospheres are observed via surface-enhanced Raman scattering (SERS) spectroscopy. The anhydride linkers are cleavable via nucleophilic substitution and enable placement of nucleophilic molecules in electromagnetic hotspots. Atomistic simulations elucidate that the transient attractive force provided by EHD flow is needed to provide a sufficient residence time for anhydride cross-linking to overcome slow reaction kinetics. This synergistic analysis shows assembly involves an interplay between long-range driving forces increasing nanoparticle-nanoparticle interactions and probability that ligands are in proximity to overcome activation energy barriers associated with short-range chemical reactions. Absorption spectroscopy and electromagnetic full-wave simulations show that variations in nanogap spacing have a greater influence on optical response than variations in close-packed oligomer geometry. The EHD flow-anhydride cross-linking assembly method enables close-packed oligomers with uniform gap spacings that produce uniform SERS enhancement factors. These results demonstrate the efficacy of colloidal driving forces to selectively enable chemical reactions leading to future assembly platforms for large-area nanodevices.

  2. First-Principles Modeling Of Electromagnetic Scattering By Discrete and Discretely Heterogeneous Random Media

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2016-01-01

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell- Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of the first principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.

  3. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.

    PubMed

    Mishchenko, Michael I; Dlugach, Janna M; Yurkin, Maxim A; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R Lee; Travis, Larry D; Yang, Ping; Zakharova, Nadezhda T

    2016-05-16

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ , or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell-Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.

  4. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    PubMed Central

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2018-01-01

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies. PMID:29657355

  5. Theoretical analysis for the design of the French watt balance experiment force comparator

    NASA Astrophysics Data System (ADS)

    Pinot, Patrick; Genevès, Gerard; Haddad, Darine; David, Jean; Juncar, Patrick; Lecollinet, Michel; Macé, Stéphane; Villar, François

    2007-09-01

    This paper presents a preliminary analysis for designing a force comparator to be used in the French watt balance experiment. The first stage of this experiment consists in a static equilibrium, by means of a mechanical beam balance, between a gravitational force (a weight of an artefact having a known mass submitted to the acceleration due to the gravity) and a vertical electromagnetic force acting on a coil driven by a current subject to the magnetic induction field provided by a permanent magnet. The principle of the force comparison in the French experiment is explained. The general design configuration of the force balance using flexure strips as pivots is discussed and theoretical calculation results based on realistic assumptions of the static and dynamic behaviors of the balance are presented.

  6. Theoretical analysis for the design of the French watt balance experiment force comparator.

    PubMed

    Pinot, Patrick; Genevès, Gerard; Haddad, Darine; David, Jean; Juncar, Patrick; Lecollinet, Michel; Macé, Stéphane; Villar, François

    2007-09-01

    This paper presents a preliminary analysis for designing a force comparator to be used in the French watt balance experiment. The first stage of this experiment consists in a static equilibrium, by means of a mechanical beam balance, between a gravitational force (a weight of an artefact having a known mass submitted to the acceleration due to the gravity) and a vertical electromagnetic force acting on a coil driven by a current subject to the magnetic induction field provided by a permanent magnet. The principle of the force comparison in the French experiment is explained. The general design configuration of the force balance using flexure strips as pivots is discussed and theoretical calculation results based on realistic assumptions of the static and dynamic behaviors of the balance are presented.

  7. Apparatus for and method of operating a cylindrical pulsed induction mass launcher

    DOEpatents

    Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.

    1992-06-30

    An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.

  8. Apparatus for and method of operating a cylindrical pulsed induction mass launcher

    DOEpatents

    Cowan, Jr., Maynard; Duggin, Billy W.; Widner, Melvin M.

    1992-01-01

    An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher.

  9. Solidification of Undercooled Melts of Al-Based Alloys on Earth and in Space

    NASA Astrophysics Data System (ADS)

    Herlach, Dieter M.; Burggraf, Stefan; Galenko, Peter; Gandin, Charles-André; Garcia-Escorial, Asuncion; Henein, Hani; Karrasch, Christian; Mullis, Andrew; Rettenmayr, Markus; Valloton, Jonas

    2017-08-01

    Containerless processing of droplets and drops by atomization and electromagnetic levitation are applied to undercool metallic melts and alloys prior to solidification. Heterogeneous nucleation on crucible walls is completely avoided giving access to large undercoolings. Experiments are performed both under terrestrial (1 g) conditions and in reduced gravity ( µg) as well. Microgravity conditions are realized by the free fall of small droplets during atomization of a spray of droplets, individual drops in a drop tube and by electromagnetic levitation of drops during parabolic flights, sounding rocket missions, and using the electro-magnetic levitator multi-user facility on board the International Space Station. The comparison of both sets of experiments in 1 g and µg leads to an estimation of the influence of forced convection on dendrite growth kinetics and microstructure evolution.

  10. Turbulent Transition in Electromagnetically Levitated Drops

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Trapaga, G.; Abedian, B.; Matson, D. M.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Electromagnetic levitation (EML) is an important tool in materials research. Because a sample can be processed without contact with a container, experiments may be performed on high temperature, highly reactive, and undercooled liquid metals. Many of these experiments are affected by fluid flow in the sample, driven by the electromagnetic positioning force. Despite the importance of convection in these experiments, the transition to turbulence is not well understood in this system. However, we have observed a transition from laminar to turbulent flow in EML droplets in the course of microgravity experiments in TEMPUS on the Space Shuttle (STS-94). The transition occurs repeatably and over a narrow range of conditions. These experimental observations are compared with two competing theories about the transition to turbulence. Also, the results of a particle tracking study of the instabilities leading up to the transition to turbulence are presented.

  11. Electromagnetic enhancement of turbulent heat transfer.

    PubMed

    Kenjeres, Sasa

    2008-12-01

    We performed large eddy simulations (LES) of the turbulent natural convection of an electrically conductive fluid (water with 7% Na2SO4 electrolyte solution) in a moderate (4:4:1) aspect ratio enclosure heated from below and cooled from above and subjected to external nonuniformly distributed electromagnetic fields. Different configurations with permanent magnets (located under the lower thermally active wall, B_{0}=1T ) and different strengths of imposed dc electric currents ( I=0-10A ) were compared to the case of pure thermal convection in the turbulent regime, Ra=10;{7} , Pr=7 . It is demonstrated that the electromagnetic forcing of the boundary layers caused significant reorganization of flow and turbulence structures producing significant enhancement of the wall-heat transfer (up to 188% for a configuration with 35 magnets and an applied dc current of 10A ).

  12. Gravitoelectromagnetic analogy based on tidal tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, L. Filipe O.; Herdeiro, Carlos A. R.

    2008-07-15

    We propose a new approach to a physical analogy between general relativity and electromagnetism, based on tidal tensors of both theories. Using this approach we write a covariant form for the gravitational analogues of the Maxwell equations, which makes transparent both the similarities and key differences between the two interactions. The following realizations of the analogy are given. The first one matches linearized gravitational tidal tensors to exact electromagnetic tidal tensors in Minkowski spacetime. The second one matches exact magnetic gravitational tidal tensors for ultrastationary metrics to exact magnetic tidal tensors of electromagnetism in curved spaces. In the third wemore » show that our approach leads to a two-step exact derivation of Papapetrou's equation describing the force exerted on a spinning test particle. Analogous scalar invariants built from tidal tensors of both theories are also discussed.« less

  13. Force Balance at the Magnetopause Determined with MMS: Application to Flux Transfer Events

    NASA Technical Reports Server (NTRS)

    Zhao, C.; Russell, C. T.; Strangeway, R. J.; Petrinec, S. M.; Paterson, W. R.; Zhou, M.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Chutter, M.; hide

    2016-01-01

    The Magnetospheric Multiscale mission (MMS) consists of four identical spacecraft forming a closely separated (less than or equal to 10 km) and nearly regular tetrahedron. This configuration enables the decoupling of spatial and temporal variations and allows the calculation of the spatial gradients of plasma and electromagnetic field quantities. We make full use of the well cross-calibrated MMS magnetometers and fast plasma instruments measurements to calculate both the magnetic and plasma forces in flux transfer events (FTEs) and evaluate the relative contributions of different forces to the magnetopause momentum variation. This analysis demonstrates that some but not all FTEs, consistent with previous studies, are indeed force-free structures in which the magnetic pressure force balances the magnetic curvature force. Furthermore, we contrast these events with FTE events that have non-force-free signatures.

  14. Experimental measurement and theoretical modeling of microwave scattering and the structure of the sea surface influencing radar observations from space

    NASA Technical Reports Server (NTRS)

    Arnold, David; Kong, J. A.

    1992-01-01

    The electromagnetic bias is an error present in radar altimetry of the ocean due to the non-uniform reflection from wave troughs and crests. A study of the electromagnetic bias became necessary to permit error reduction in mean sea level measurements of satellite radar altimeters. Satellite radar altimeters have been used to find the upper and lower bounds for the electromagnetic bias. This report will present a theory using physical optics scattering and an empirical model of the short wave modulation to predict the electromagnetic bias. The predicted electromagnetic bias will be compared to measurements at C and Ku bands.

  15. Experimental Searches for Exotic Short-Range Forces Using Mechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Weisman, Evan

    Experimental searches for forces beyond gravity and electromagnetism at short range have attracted a great deal of attention over the last decade. In this thesis I describe the test mass development for two new experiments searching for forces below 1 mm. Both modify a previous experiment that used 1 kHz mechanical oscillators as test masses with a stiff conducting shield between them to suppress backgrounds, a promising technique for probing exceptionally small distances at the limit of instrumental thermal noise. To further reduce thermal noise, one experiment will use plated silicon test masses at cryogenic temperatures. The other experiment, which searches for spin-dependent interactions, will apply the spin-polarizable material Dy3Fe5O 12 to the test mass surfaces. This material exhibits orbital compensation of the magnetism associated with its intrinsic electron spin, minimizing magnetic backgrounds. Several plated silicon test mass prototypes were fabricated using photolithography (useful in both experiments), and spin-dependent materials were synthesized with a simple chemical recipe. Both silicon and spin-dependent test masses demonstrate the mechanical and magnetic properties necessary for sensitive experiments. I also describe sensitivity calculations of another proposed spin-dependent experiment, based on a modified search for the electron electric dipole moment, which show unprecedented sensitivity to exotic monopole-dipole forces. Inspired by a finite element model, a study attempting to maximize detector quality factor versus geometry is also presented, with experimental results so far not explained by the model.

  16. Modeling Electromagnetic Scattering From Complex Inhomogeneous Objects

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar; Reddy, C. J.

    2011-01-01

    This software innovation is designed to develop a mathematical formulation to estimate the electromagnetic scattering characteristics of complex, inhomogeneous objects using the finite-element-method (FEM) and method-of-moments (MoM) concepts, as well as to develop a FORTRAN code called FEMOM3DS (Finite Element Method and Method of Moments for 3-Dimensional Scattering), which will implement the steps that are described in the mathematical formulation. Very complex objects can be easily modeled, and the operator of the code is not required to know the details of electromagnetic theory to study electromagnetic scattering.

  17. Electromagnetic Nature of Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Schaeffer, Bernard

    2014-09-01

    As it is known since two millenaries, there is an attraction between an electric charge and a neutral object. Coulomb found the fundamental laws of electricity two centuries ago. After one century of nuclear physics, the fundamental laws of the strong force are still ignored. It has been found that electric and magnetic Coulomb's laws alone, without any hypothetical centrifugal force, are able to predict the binding energy of the simplest bound nucleus, the deuteron 2 H with a precision of 4 % . The nuclear potential is given by the formula: Uem2 H / A =e2/4 πɛ0 (1/rnp + a - 1/rnp - a ) + μ0 |μnμp |/4 π rnp3. This potential shows a horizontal inflection point where the electric and magnetic forces are equilibrated, coinciding with the experimental deuteron binding energy. Similar results have been obtained for the α particle 4 He where the electric attractive potential is four times larger than that of 2 H while the magnetic repulsion is only 1 . 5 times larger and the 4 HE binding energy six times larger than that of the deuteron. These results, prove the electromagnetic nature of the nuclear energy without the usual assumptions.

  18. Ultrafast dynamics induced by the interaction of molecules with electromagnetic fields: Several quantum, semiclassical, and classical approaches.

    PubMed

    Antipov, Sergey V; Bhattacharyya, Swarnendu; El Hage, Krystel; Xu, Zhen-Hao; Meuwly, Markus; Rothlisberger, Ursula; Vaníček, Jiří

    2017-11-01

    Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Hartree method, Bohmian dynamics, local control theory, semiclassical thawed Gaussian approximation, phase averaging, dephasing representation, molecular mechanics with proton transfer, and multipolar force fields. In addition to the general overview, some focus is given to the description of nuclear quantum effects and to the direct dynamics, in which the ab initio energies and forces acting on the nuclei are evaluated on the fly. Several practical applications, performed within the framework of the Swiss National Center of Competence in Research "Molecular Ultrafast Science and Technology," are presented: These include Bohmian dynamics description of the collision of H with H 2 , local control theory applied to the photoinduced ultrafast intramolecular proton transfer, semiclassical evaluation of vibrationally resolved electronic absorption, emission, photoelectron, and time-resolved stimulated emission spectra, infrared spectroscopy of H-bonding systems, and multipolar force fields applications in the condensed phase.

  19. Design analysis and performance assessment of hybrid magnetic bearings for a rotary centrifugal blood pump.

    PubMed

    Ren, Zhaohui; Jahanmir, Said; Heshmat, Hooshang; Hunsberger, Andrew Z; Walton, James F

    2009-01-01

    A hybrid magnetic bearing system was designed for a rotary centrifugal blood pump being developed to provide long-term circulatory support for heart failure patients. This design consists of two compact bearings to suspend the rotor in five degrees-of-freedom with single axis active control. Permanent magnets are used to provide passive radial support and electromagnets to maintain axial stability of the rotor. Characteristics of the passive radial and active thrust magnetic bearing system were evaluated by the electromagnetic finite element analysis. A proportional-integral-derivative controller with force balance algorithm was implemented for closed loop control of the magnetic thrust bearing. The control position is continuously adjusted based on the electrical energy in the bearing coils, and thus passive magnetic forces carry static thrust loads to minimize the bearing current. Performance of the magnetic bearing system with associated control algorithm was evaluated at different operating conditions. The bearing current was significantly reduced with the force balance control method and the power consumption was below 0.5 W under various thrust loads. The bearing parameters predicted by the analysis were validated by the experimental data.

  20. Ultrafast dynamics induced by the interaction of molecules with electromagnetic fields: Several quantum, semiclassical, and classical approaches

    PubMed Central

    Antipov, Sergey V.; Bhattacharyya, Swarnendu; El Hage, Krystel; Xu, Zhen-Hao; Meuwly, Markus; Rothlisberger, Ursula; Vaníček, Jiří

    2018-01-01

    Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Hartree method, Bohmian dynamics, local control theory, semiclassical thawed Gaussian approximation, phase averaging, dephasing representation, molecular mechanics with proton transfer, and multipolar force fields. In addition to the general overview, some focus is given to the description of nuclear quantum effects and to the direct dynamics, in which the ab initio energies and forces acting on the nuclei are evaluated on the fly. Several practical applications, performed within the framework of the Swiss National Center of Competence in Research “Molecular Ultrafast Science and Technology,” are presented: These include Bohmian dynamics description of the collision of H with H2, local control theory applied to the photoinduced ultrafast intramolecular proton transfer, semiclassical evaluation of vibrationally resolved electronic absorption, emission, photoelectron, and time-resolved stimulated emission spectra, infrared spectroscopy of H-bonding systems, and multipolar force fields applications in the condensed phase. PMID:29376107

Top