Sample records for electromagnetic form factor

  1. Electromagnetic structure of the proton within the CP-violation hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krutov, A. F., E-mail: krutov@ssu.samara.ru; Kudinov, M. Yu., E-mail: kudinov@ssu.samara.ru

    2013-11-15

    The so-called non-Rosenbluth behavior of the proton electromagnetic form factors can be explained within the hypothesis of CP violation in electromagnetic processes involving composite systems of strongly interacting particles. It is shown that this hypothesis leads to the appearance of an additional, anapole, form factor of the proton. The proton electromagnetic form factors, including the anapole form factor, are estimated on the basis of experimental data on elastic electron-proton scattering.

  2. Electromagnetic {\\varvec{N}}^{\\varvec{*}} Transition Form Factors in the ANL-Osaka Dynamical Coupled-Channels Approach

    NASA Astrophysics Data System (ADS)

    Kamano, Hiroyuki

    2018-05-01

    We give an overview of our recent efforts to extract electromagnetic transition form factors for N^* and Δ^* baryon resonances through a global analysis of the single-pion electroproductions off the proton within the ANL-Osaka dynamical coupled-channels approach. Preliminary results for the extracted form factors associated with Δ(1232)3/2^+ and the Roper resonance are presented, with emphasis on the complex-valued nature of the transition form factors defined by poles.

  3. Strange nucleon electromagnetic form factors from lattice QCD

    NASA Astrophysics Data System (ADS)

    Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, C.; Koutsou, G.; Avilés-Casco, A. Vaquero

    2018-05-01

    We evaluate the strange nucleon electromagnetic form factors using an ensemble of gauge configurations generated with two degenerate maximally twisted mass clover-improved fermions with mass tuned to approximately reproduce the physical pion mass. In addition, we present results for the disconnected light quark contributions to the nucleon electromagnetic form factors. Improved stochastic methods are employed leading to high-precision results. The momentum dependence of the disconnected contributions is fitted using the model-independent z-expansion. We extract the magnetic moment and the electric and magnetic radii of the proton and neutron by including both connected and disconnected contributions. We find that the disconnected light quark contributions to both electric and magnetic form factors are nonzero and at the few percent level as compared to the connected. The strange form factors are also at the percent level but more noisy yielding statistical errors that are typically within one standard deviation from a zero value.

  4. Strange and Charge Symmetry Violating Electromagnetic Form Factors of the Nucleon

    NASA Astrophysics Data System (ADS)

    Shanahan, P. E.

    We summarise recent work based on lattice QCD simulations of the electromagnetic form factors of the octet baryons from the CSSM/QCDSF/UKQCD collaborations. After an analysis of the simulation results using techniques to approach the infinite volume limit and the physical pseudoscalar masses at non-zero momentum transfer, the extrapolated proton and neutron form factors are found to be in excellent agreement with those extracted from experiment. Given the success of these calculations, we describe how the strange electromagnetic form factors may be estimated from these results under the same assumption of charge symmetry used in experimental determinations of those quantities. Motivated by the necessity of that assumption, we explore a method for determining the size of charge symmetry breaking effects using the same lattice results.

  5. Spin-1 Particles and Perturbative QCD

    NASA Astrophysics Data System (ADS)

    de Melo, J. P. B. C.; Frederico, T.; Ji, Chueng-Ryong

    2018-07-01

    Due to the angular condition in the light-front dynamics (LFD), the extraction of the electromagnetic form factors for spin-1 particles can be uniquely determined taking into account implicitly non-valence and/or the zero-mode contributions to the matrix elements of the electromagnetic current. No matter which matrix elements of the electromagnetic current is used to extract the electromagnetic form factors, the same unique result is obtained. As physical observables, the electromagnetic form factors obtained from matrix elements of the current in LFD must be equal to those obtained in the instant form calculations. Recently, the Babar collaboration (Phys Rev D 78:071103, 2008) has analyzed the reaction e^+ + e^-→ ρ ^+ + ρ ^- at √{s}=10.58 GeV to measure the cross section as well as the ratios of the helicity amplitudes F_{λ 'λ }. We present our recent analysis of the Babar data for the rho meson considering the angular condition in LFD to put a stringent test on the onset of asymptotic perturbative QCD and predict the energy regime where the subleading contributions are still considerable.

  6. The scalar and electromagnetic form factors of the nucleon in dispersively improved Chiral EFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alarcon, Jose Manuel

    We present a method for calculating the nucleon form factors of G-parity-even operators. This method combines chiral effective field theory (χEFT) and dispersion theory. Through unitarity we factorize the imaginary part of the form factors into a perturbative part, calculable with χEFT, and a non-perturbative part, obtained through other methods. We consider the scalar and electromagnetic (EM) form factors of the nucleon. The results show an important improvement compared to standard chiral calculations, and can be used in analysis of the low-energy properties of the nucleon.

  7. Proton and neutron electromagnetic form factors and uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Zhihong; Arrington, John; Hill, Richard J.

    We determine the nucleon electromagnetic form factors and their uncertainties from world electron scattering data. The analysis incorporates two-photon exchange corrections, constraints on the low-Q 2 and high-Q 2 behavior, and additional uncertainties to account for tensions between different data sets and uncertainties in radiative corrections.

  8. Proton and neutron electromagnetic form factors and uncertainties

    DOE PAGES

    Ye, Zhihong; Arrington, John; Hill, Richard J.; ...

    2017-12-06

    We determine the nucleon electromagnetic form factors and their uncertainties from world electron scattering data. The analysis incorporates two-photon exchange corrections, constraints on the low-Q 2 and high-Q 2 behavior, and additional uncertainties to account for tensions between different data sets and uncertainties in radiative corrections.

  9. Electromagnetic interaction in the theory of straight strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitin, I.N.; Pron`ko, G.P.

    1995-06-01

    A scheme is proposed for including electromagnetic interaction into the theories of stretched relativistic objects. In the theory of the straight string, the operator of electromagnetic interaction is constructed, and form factors of electromagnetic transitions are calculated. 6 refs., 1 fig.

  10. Analysis of nucleon electromagnetic form factors from light-front holographic QCD: The spacelike region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sufian, Raza Sabbir; de Teramond, Guy F.; Brodsky, Stanley J.

    We present a comprehensive analysis of the space-like nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock componentsmore » $$|{qqqq\\bar{q}}$$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$$\\%$$ in the proton and about 40$$\\%$$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter $r$, required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. As a result, the covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS$$_5$$ semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.« less

  11. Analysis of nucleon electromagnetic form factors from light-front holographic QCD: The spacelike region

    DOE PAGES

    Sufian, Raza Sabbir; de Teramond, Guy F.; Brodsky, Stanley J.; ...

    2017-01-10

    We present a comprehensive analysis of the space-like nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock componentsmore » $$|{qqqq\\bar{q}}$$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$$\\%$$ in the proton and about 40$$\\%$$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter $r$, required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. As a result, the covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS$$_5$$ semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.« less

  12. Electromagnetic structure of light nuclei

    DOE PAGES

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  13. Electromagnetic structure of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastore, Saori

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  14. Flavor structure of the nucleon electromagnetic form factors and transverse charge densities in the chiral quark-soliton model

    NASA Astrophysics Data System (ADS)

    Silva, António; Urbano, Diana; Kim, Hyun-Chul

    2018-02-01

    We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model (χQSM) with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (ms) corrections. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). Finally, we discuss the transverse charge densities for both unpolarized and polarized nucleons. The transverse charge density inside a neutron turns out to be negative in the vicinity of the center within the SU(3) χQSM, which can be explained by the contribution of the strange quark.

  15. Charge symmetry breaking effects in pion and kaon structure

    NASA Astrophysics Data System (ADS)

    Hutauruk, Parada T. P.; Bentz, Wolfgang; Cloët, Ian C.; Thomas, Anthony W.

    2018-05-01

    Charge symmetry breaking (CSB) effects associated with the u and d quark mass difference are investigated in the quark distribution functions and spacelike electromagnetic form factors of the pion and kaon. We use a confining version of the Nambu-Jona-Lasinio model, where CSB effects at the infrared scale associated with the model are driven by the dressed u and d quark mass ratio, which because of dynamical chiral symmetry breaking is much closer to unity than the associated current quark mass ratio. The pion and kaon are given as bound states of a dressed quark and a dressed antiquark governed by the Bethe-Salpeter equation, and exhibit the properties of Goldstone bosons, with a pion mass difference given by mπ+2-mπ0 2∝(mu-md)2 as demanded by dynamical chiral symmetry breaking. We find significant CSB effects for realistic current quark mass ratios (mu/md˜0.5 ) in the quark flavor-sector electromagnetic form factors of both the pion and kaon. For example, the difference between the u and d quark contributions to the π+ electromagnetic form factors is about 8% at a momentum transfer of Q2≃10 GeV2 , while the analogous effect for the light quark sector form factors in the K+ and K0 is about twice as large. For the parton distribution functions we find CSB effects which are considerably smaller than those found in the electromagnetic form factors.

  16. Nucleon electromagnetic form factors using lattice simulations at the physical point

    NASA Astrophysics Data System (ADS)

    Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, Ch.; Koutsou, G.; Vaquero Aviles-Casco, A.

    2017-08-01

    We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small, giving an upper bound of up to 2% of the connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z expansion, we extract the nucleon electric and magnetic radii, as well as the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.

  17. The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granados, Carlos; Leupold, Stefan; Perotti, Elisabetta

    Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magneticmore » transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. Furthermore, one obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR).« less

  18. The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies

    DOE PAGES

    Granados, Carlos; Leupold, Stefan; Perotti, Elisabetta

    2017-06-09

    Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magneticmore » transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. Furthermore, one obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR).« less

  19. Feasibility studies of time-like proton electromagnetic form factors at $$\\overline{\\rm P}$$ANDA at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, B.; Erni, W.; Krusche, B.

    Simulation results for future measurements of electromagnetic proton form factors atmore » $$\\overline{\\rm P}$$ANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel p¯p → e +e – is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. p¯p → π +π –, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. Furthermore, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.« less

  20. Feasibility studies of time-like proton electromagnetic form factors at $$\\overline{\\rm P}$$ANDA at FAIR

    DOE PAGES

    Singh, B.; Erni, W.; Krusche, B.; ...

    2016-10-28

    Simulation results for future measurements of electromagnetic proton form factors atmore » $$\\overline{\\rm P}$$ANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel p¯p → e +e – is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. p¯p → π +π –, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. Furthermore, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.« less

  1. Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits

    DTIC Science & Technology

    2017-03-01

    real-time an IC device. This non-invasive solution is cost effective, with a small form factor. Keywords: Electromagnetic radiation; Near-Field...solicitation was to design, develop and fabricate a low cost electromagnetic probe array for ICs counterfeit. The probe array should operate in the near...Our overall effort was focus on modeling, designing, fabricating, and utilizing novel electromagnetic probes for the analysis, characterization

  2. Deuteron electromagnetic form factors with the light-front approach

    NASA Astrophysics Data System (ADS)

    Sun, Bao-dong; Dong, Yu-bing

    2017-01-01

    The electromagnetic form factors and low-energy observables of the deuteron are studied with the help of the light-front approach, where the deuteron is regarded as a weakly bound state of a proton and a neutron. Both the S and D wave interacting vertexes among the deuteron, proton, and neutron are taken into account. Moreover, the regularization functions are also introduced. In our calculations, the vertex and the regularization functions are employed to simulate the momentum distribution inside the deuteron. Our numerical results show that the light-front approach can roughly reproduce the deuteron electromagnetic form factors, like charge G 0, magnetic G 1, and quadrupole G 2, in the low Q 2 region. The important effect of the D wave vertex on G 2 is also addressed. Supported by National Natural Science Foundation of China (10975146, 11475192), The fund provided by the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD" project is also appreciated, YBD thanks FAPESP grant 2011/11973-4 for funding his visit to ICTP-SAIFR

  3. Electromagnetic Transition Form Factor of the η meson with WASA-at-COSY

    NASA Astrophysics Data System (ADS)

    Goswami, A.

    2016-11-01

    In this work we present a study of the Dalitz decay η → γe+e-. The aim of this work is to measure the transition form factor of the η meson. The transition form factor of the η meson describes the electromagnetic structure of the meson. The study of the Dalitz decay helps to calculate the transition form factor of the η meson. When a particle is point-like it's decay rate can be calculated within QED. However, the complex structure of the meson modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. For this study data on proton-proton reaction at a beam energy of 1.4 GeV has been collected with WASA-at-COSY detector at Forschungszentrum Juelich, Germany. In the higher invariant mass region recent theoretical calculations slightly deviate from the fit to the data. We expect better results in the higher invariant mass region than previous measurements. The preliminary results of the analysis will be presented.

  4. Parity-violating electroweak asymmetry in e→ p scattering

    NASA Astrophysics Data System (ADS)

    Aniol, K. A.; Armstrong, D. S.; Averett, T.; Baylac, M.; Burtin, E.; Calarco, J.; Cates, G. D.; Cavata, C.; Chai, Z.; Chang, C. C.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Coman, M.; Dale, D.; Deur, A.; Djawotho, P.; Epstein, M. B.; Escoffier, S.; Ewell, L.; Falletto, N.; Finn, J. M.; Fissum, K.; Fleck, A.; Frois, B.; Frullani, S.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gerstner, G. M.; Gilman, R.; Glamazdin, A.; Gomez, J.; Gorbenko, V.; Hansen, O.; Hersman, F.; Higinbotham, D. W.; Holmes, R.; Holtrop, M.; Humensky, T. B.; Incerti, S.; Iodice, M.; de Jager, C. W.; Jardillier, J.; Jiang, X.; Jones, M. K.; Jorda, J.; Jutier, C.; Kahl, W.; Kelly, J. J.; Kim, D. H.; Kim, M.-J.; Kim, M. S.; Kominis, I.; Kooijman, E.; Kramer, K.; Kumar, K. S.; Kuss, M.; Lerose, J.; de Leo, R.; Leuschner, M.; Lhuillier, D.; Liang, M.; Liyanage, N.; Lourie, R.; Madey, R.; Malov, S.; Margaziotis, D. J.; Marie, F.; Markowitz, P.; Martino, J.; Mastromarino, P.; McCormick, K.; McIntyre, J.; Meziani, Z.-E.; Michaels, R.; Milbrath, B.; Miller, G. W.; Mitchell, J.; Morand, L.; Neyret, D.; Pedrisat, C.; Petratos, G. G.; Pomatsalyuk, R.; Price, J. S.; Prout, D.; Punjabi, V.; Pussieux, T.; Quéméner, G.; Ransome, R. D.; Relyea, D.; Roblin, Y.; Roche, J.; Rutledge, G. A.; Rutt, P. M.; Rvachev, M.; Sabatie, F.; Saha, A.; Souder, P. A.; Spradlin, M.; Strauch, S.; Suleiman, R.; Templon, J.; Teresawa, T.; Thompson, J.; Tieulent, R.; Todor, L.; Tonguc, B. T.; Ulmer, P. E.; Urciuoli, G. M.; Vlahovic, B.; Wijesooriya, K.; Wilson, R.; Wojtsekhowski, B.; Woo, R.; Xu, W.; Younus, I.; Zhang, C.

    2004-06-01

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from protons. Significant contributions to this asymmetry could arise from the contributions of strange form factors in the nucleon. The measured asymmetry is A= -15.05±0.98 (stat) ±0.56 (syst) ppm at the kinematic point < θlab > =12.3° and < Q2 > =0.477 (GeV/c)2 . Based on these data as well as data on electromagnetic form factors, we extract the linear combination of strange form factors GsE +0.392 GsM = 0.014±0.020±0.010 , where the first error arises from this experiment and the second arises from the electromagnetic form factor data. This paper provides a full description of the special experimental techniques employed for precisely measuring the small asymmetry, including the first use of a strained GaAs crystal and a laser-Compton polarimeter in a fixed target parity-violation experiment.

  5. The Kroll-Lee-Zumino Model and Pion Form Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, C. A.; Loewe, M.

    2010-08-04

    At the one loop level, we make use of the renormalizable Abelian quantum field theory model of Kroll, Lee, and Zumino (KLZ) in order to compute the vertex corrections to the tree-level, Vector Meson Dominance (VMD) electromagnetic pion form factor. This result, together with the one-loop vacuum polarization contribution, implies an electromagnetic pion form factor which is in outstanding agreement with data in the whole range of accessible momentum transfers in the space-like region. The time-like form factor, which reproduces the Gounaris-Sakurai formula at and near the rho-meson peak, remains unaffected by the vertex correction at order O(g{sup 2}). Wemore » also use the KLZ model to compute the pion scalar radius at the one loop level, finding S = 0.40 fm{sup 2}. From this value we find for the low energy constant of chiral perturbation theory l{sub 4} = 3.4.« less

  6. Synchronization behaviors of coupled neurons under electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Fuqiang; Wang, Chunni

    2017-01-01

    Based on an improved neuronal model, in which the effect of magnetic flux is considered during the fluctuation and change of ion concentration in cells, the transition of synchronization is investigated by imposing external electromagnetic radiation on the coupled neurons, and networks, respectively. It is found that the synchronization degree depends on the coupling intensity and the intensity of external electromagnetic radiation. Indeed, appropriate intensity of electromagnetic radiation could be effective to realize intermittent synchronization, while stronger intensity of electromagnetic radiation can induce disorder of coupled neurons and network. Neurons show rhythm synchronization in the electrical activities by increasing the coupling intensity under electromagnetic radiation, and spatial patterns can be formed in the network under smaller factor of synchronization.

  7. The pion form factor from first principles

    NASA Astrophysics Data System (ADS)

    van der Heide, J.

    2004-08-01

    We calculate the electromagnetic form factor of the pion in quenched lattice QCD. The non-perturbatively improved Sheikoleslami-Wohlert lattice action is used together with the O(a) improved current. We calculate form factor for pion masses down to mπ = 380 MeV. We compare the mean square radius for the pion extracted from our form factors to the value obtained from the `Bethe Salpeter amplitude'. Using (quenched) chiral perturbation theory, we extrapolate our results towards the physical pion mass.

  8. Baryon octet electromagnetic form factors in a confining NJL model

    NASA Astrophysics Data System (ADS)

    Carrillo-Serrano, Manuel E.; Bentz, Wolfgang; Cloët, Ian C.; Thomas, Anthony W.

    2016-08-01

    Electromagnetic form factors of the baryon octet are studied using a Nambu-Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result that rEp < rEΣ+ and | rEn | < | rEΞ0 |, whereas the magnetic radii have a pattern largely consistent with a naive expectation based on the dressed quark masses.

  9. From quarks and gluons to baryon form factors.

    PubMed

    Eichmann, Gernot

    2012-04-01

    I briefly summarize recent results for nucleon and [Formula: see text] electromagnetic, axial and transition form factors in the Dyson-Schwinger approach. The calculation of the current diagrams from the quark-gluon level enables a transparent discussion of common features such as: the implications of dynamical chiral symmetry breaking and quark orbital angular momentum, the timelike structure of the form factors, and their interpretation in terms of missing pion-cloud effects.

  10. Proton Form Factor Puzzle and the CEBAF Large Acceptance Spectrometer (CLAS) Two-Photon Exchange Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimal, Dipak

    2014-05-01

    The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q 2) and the virtual photon polarization parameter (ε).

  11. Determination of Transverse Charge Density from Kaon Form Factor Data

    NASA Astrophysics Data System (ADS)

    Mejia-Ott, Johann; Horn, Tanja; Pegg, Ian; Mecholski, Nicholas; Carmignotto, Marco; Ali, Salina

    2016-09-01

    At the level of nucleons making up atomic nuclei, among subatomic particles made up of quarks, K-mesons or kaons represent the most simple hadronic system including the heavier strange quark, having a relatively elementary bound state of a quark and an anti-quark as its valence structure. Its electromagnetic structure is then parametrized by a single, dimensionless quantity known as the form factor, the two-dimensional Fourier transform of which yields the quantity of transverse charge density. Transverse charge density, in turn, provides a needed framework for the interpretation of form factors in terms of physical charge and magnetization, both with respect to the propagation of a fast-moving nucleon. To this is added the value of strange quarks in ultimately presenting a universal, process-independent description of nucleons, further augmenting the importance of studying the kaon's internal structure. The pressing character of such research questions directs the present paper, describing the first extraction of transverse charge density from electromagnetic kaon form factor data. The extraction is notably extended to form factor data at recently acquired higher energy levels, whose evaluation could permit more complete phenomenological models for kaon behavior to be proposed. This work was supported in part by NSF Grant PHY-1306227.

  12. Electric and magnetic form factors of strange baryons

    NASA Astrophysics Data System (ADS)

    Van Cauteren, T.; Merten, D.; Corthals, T.; Janssen, S.; Metsch, B.; Petry, H.-R.; Ryckebusch, J.

    . Predictions for the electromagnetic form factors of the Λ , Σ and Ξ hyperons are presented. The numerical calculations are performed within the framework of the fully relativistic constituent-quark model developed by the Bonn group. The computed magnetic moments compare favorably with the experimentally known values. Most magnetic form factors GM (Q2) can be parameterized in terms of a dipole with cutoff masses ranging from 0.79 to 1.14 GeV.

  13. From quarks and gluons to baryon form factors

    PubMed Central

    Eichmann, Gernot

    2012-01-01

    I briefly summarize recent results for nucleon and Δ(1232) electromagnetic, axial and transition form factors in the Dyson–Schwinger approach. The calculation of the current diagrams from the quark–gluon level enables a transparent discussion of common features such as: the implications of dynamical chiral symmetry breaking and quark orbital angular momentum, the timelike structure of the form factors, and their interpretation in terms of missing pion-cloud effects. PMID:26766879

  14. Scalar perturbations of nonsingular nonrotating black holes in conformal gravity

    NASA Astrophysics Data System (ADS)

    Toshmatov, Bobir; Bambi, Cosimo; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Schee, Jan

    2017-09-01

    We study scalar and electromagnetic perturbations of a family of nonsingular nonrotating black hole spacetimes that are solutions in a large class of conformally invariant theories of gravity. The effective potential for scalar perturbations depends on the exact form of the scaling factor. Electromagnetic perturbations do not feel the scaling factor, and the corresponding quasinormal mode spectrum is the same as in the Schwarzschild metric. We find that these black hole metrics are stable under scalar and electromagnetic perturbations. Assuming that the quasinormal mode spectrum for scalar perturbations is not too different from that for gravitational perturbations, we can expect that the calculation of the quasinormal mode spectrum and the observation with gravitational wave detectors of quasinormal modes from astrophysical black holes can constrain the scaling factor and test these solutions.

  15. Baryon octet electromagnetic form factors in a confining NJL model

    DOE PAGES

    Carrillo-Serrano, Manuel E.; Bentz, Wolfgang; Cloet, Ian C.; ...

    2016-05-25

    Electromagnetic form factors of the baryon octet are studied using a Nambu–Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Here, comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result that r p E < r Σ+ E and |r n E| < |r Ξ0 E|, whereas the magnetic radii have a pattern largely consistent with a naivemore » expectation based on the dressed quark masses.« less

  16. Electromagnetic form factors of singly heavy baryons in the self-consistent SU(3) chiral quark-soliton model

    NASA Astrophysics Data System (ADS)

    Kim, June-Young; Kim, Hyun-Chul

    2018-06-01

    The self-consistent chiral quark-soliton model is a relativistic pion mean-field approach in the large Nc limit, which describes both light and heavy baryons on an equal footing. In the limit of the infinitely heavy mass of the heavy quark, a heavy baryon can be regarded as Nc-1 valence quarks bound by the pion mean fields, leaving the heavy quark as a color static source. The structure of the heavy baryon in this scheme is mainly governed by the light-quark degrees of freedom. Based on this framework, we evaluate the electromagnetic form factors of the lowest-lying heavy baryons. The rotational 1 /Nc and strange current quark mass corrections in linear order are considered. We discuss the electric charge and magnetic densities of heavy baryons in comparison with those of the nucleons. The results of the electric charge radii of the positive-charged heavy baryons show explicitly that the heavy baryon is a compact object. The electric form factors are presented. The form factor of Σc++ is compared with that from a lattice QCD. We also discuss the results of the magnetic form factors. The magnetic moments of the baryon sextet with spin 1 /2 and the magnetic radii are compared with other works and the lattice data.

  17. Quark Mass Functions and Pion Structure in the Covariant Spectator Theory

    DOE PAGES

    Biernat, Elmar P.; Gross, Franz; Pena, Teresa; ...

    2018-05-24

    The Covariant Spectator Theory is applied to the description of quarks and the pion. The dressed quark mass function is calculated dynamically in Minkowski space and used in the calculation of the pion electromagnetic form factor. The effects of the mass function on the pion form factor and the different quark-pole contributions to the triangle diagram then are analyzed.

  18. Quark Mass Functions and Pion Structure in the Covariant Spectator Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biernat, Elmar P.; Gross, Franz; Pena, Teresa

    The Covariant Spectator Theory is applied to the description of quarks and the pion. The dressed quark mass function is calculated dynamically in Minkowski space and used in the calculation of the pion electromagnetic form factor. The effects of the mass function on the pion form factor and the different quark-pole contributions to the triangle diagram then are analyzed.

  19. Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alarcón, J. M.; Hiller Blin, A. N.; Vicente Vacas, M. J.

    2017-05-08

    The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. In this paper, we calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b=O(Mmore » $$-1\\atop{π}$$) using methods of relativistic chiral effective field theory (χ EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M$$2\\atop{π}$$ are calculated using relativistic χEFT including octet and decuplet baryons. The χEFT calculations are extended into the ρ meson mass region using an N/D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. Finally, the approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.« less

  20. [Pulse-modulated Electromagnetic Radiation of Extremely High Frequencies Protects Cellular DNA against Damaging Effect of Physico-Chemical Factors in vitro].

    PubMed

    Gapeyev, A B; Lukyanova, N A

    2015-01-01

    Using a comet assay technique, we investigated protective effects of. extremely high frequency electromagnetic radiation in combination with the damaging effect of X-ray irradiation, the effect of damaging agents hydrogen peroxide and methyl methanesulfonate on DNA in mouse whole blood leukocytes. It was shown that the preliminary exposure of the cells to low intensity pulse-modulated electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20-min exposure, modulation frequencies of 1 and 16 Hz) caused protective effects decreasing the DNA damage by 20-45%. The efficacy of pulse-modulated electromagnetic radiation depended on the type of genotoxic agent and increased in a row methyl methanesulfonate--X-rays--hydrogen peroxide. Continuous electromagnetic radiation was ineffective. The mechanisms of protective effects may be connected with an induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated electromagnetic radiation.

  1. ω→π0γ* and ϕ→π0γ* transition form factors in dispersion theory

    NASA Astrophysics Data System (ADS)

    Schneider, Sebastian P.; Kubis, Bastian; Niecknig, Franz

    2012-09-01

    We calculate the ω→π0γ* and ϕ→π0γ* electromagnetic transition form factors based on dispersion theory, relying solely on a previous dispersive analysis of the corresponding three-pion decays and the pion vector form factor. We compare our findings to recent measurements of the ω→π0μ+μ- decay spectrum by the NA60 collaboration, and strongly encourage experimental investigation of the Okubo-Zweig-Iizuka forbidden ϕ→π0ℓ+ℓ- decays in order to understand the strong deviations from vector-meson dominance found in these transition form factors.

  2. Proton Form Factor Puzzle and the CEBAF Large Acceptance Spectrometer (CLAS) two-photon exchange experiment

    NASA Astrophysics Data System (ADS)

    Rimal, Dipak

    The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. The electric (GE) and the magnetic ( GM) form factors contain information about the spatial distribution of the charge and magnetization inside the nucleon. A significant discrepancy exists between the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors of the proton. One possible explanation for the discrepancy is the contributions of two-photon exchange (TPE) effects. Theoretical calculations estimating the magnitude of the TPE effect are highly model dependent, and limited experimental evidence for such effects exists. Experimentally, the TPE effect can be measured by comparing the ratio of positron-proton elastic scattering cross section to that of the electron-proton [R = sigma(e +p)/sigma(e+p)]. The ratio R was measured over a wide range of kinematics, utilizing a 5.6 GeV primary electron beam produced by the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q2) and the virtual photon polarization parameter (epsilon). A mixed electron-positron beam was produced from the primary electron beam in experimental Hall B. The mixed beam was scattered from a liquid hydrogen (LH2) target. Both the scattered lepton and the recoil proton were detected by the CEBAF Large Acceptance Spectrometer (CLAS). The elastic events were then identified by using elastic scattering kinematics. This work extracted the Q2 dependence of R at high epsilon(epsilon > 0.8) and the $epsilon dependence of R at approx 0.85 GeV2. In these kinematics, our data confirm the validity of the hadronic calculations of the TPE effect by Blunden, Melnitchouk, and Tjon. This hadronic TPE effect, with additional corrections contributed by higher excitations of the intermediate state nucleon, largely reconciles the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors.

  3. Future Perspectives on Baryon Form Factor Measurements with BES III

    NASA Astrophysics Data System (ADS)

    Schönning, Karin; Li, Cui

    2017-03-01

    The electromagnetic structure of hadrons, parameterised in terms of electromagnetic form factors, EMFF's, provide a key to the strong interaction. Nucleon EMFF's have been studied rigorously for more than 60 years but the new techniques and larger data samples available at modern facilities have given rise to a renewed interest for the field. Recently, the access to hyperon structure by hyperon time-like EMFF provides an additional dimension. The BEijing Spectrometer (BES III) at the Beijing Electron Positron Collider (BEPC-II) in China is the only running experiment where time-like baryon EMFF's can be studied in the e+e- → BB̅ reaction. The BES III detector is an excellent tool for baryon form factor measurements thanks to its near 4π coverage, precise tracking, PID and calorimetry. All hyperons in the SU(3) spin 1/2 octet and spin 3/2 decuplet are energetically accessible within the BEPC-II energy range. Recent data on proton and Λ hyperon form factors will be presented. Furthermore, a world-leading data sample was collected in 2014-2015 for precision measurements of baryon form factors. In particular, the data will enable a measurement of the relative phase between the electric and the magnetic form factors for Λ and Λc+ and hyperons. The modulus of the phase can be extracted from the hyperon polarisation, which in turn is experimentally accessible via the weak, parity violating decay. Furthermore, from the spin correlation between the outgoing hyperon and antihyperon, the sign of the phase can be extracted. This means that the time-like form factors can be completely determined for the first time. The methods will be outlined and the prospects of the BES III form factor measurements will be given. We will also present a planned upgrade of the BES III detector which is expected to improve future form factor measurements.

  4. Electromagnetic properties of baryon resonances

    NASA Astrophysics Data System (ADS)

    Tiator, Lothar

    2013-10-01

    Longitudinal and transverse transition form factors for most of the four-star nucleon resonances have been obtained from high-quality cross section data and polarization observables measured at MAMI, ELSA, BATES, GRAAL and CEBAF. As an application, we further show how the transition form factors can be used to obtain empirical transverse charge densities. Contour plots of the thus derived densities are shown and compared for the Roper and S11 nucleon resonances.

  5. The structure of the nucleon: Elastic electromagnetic form factors

    DOE PAGES

    Punjabi, V.; Perdrisat, C. F.; Jones, M. K.; ...

    2015-07-10

    Precise proton and neutron form factor measurements at Jefferson Lab, using spin observables, have recently made a significant contribution to the unraveling of the internal structure of the nucleon. Accurate experimental measurements of the nucleon form factors are a test-bed for understanding how the nucleon's static properties and dynamical behavior emerge from QCD, the theory of the strong interactions between quarks. There has been enormous theoretical progress, since the publication of the Jefferson Lab proton form factor ratio data, aiming at reevaluating the picture of the nucleon. We will review the experimental and theoretical developments in this field and discussmore » the outlook for the future.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornelis de Jager

    The experimental and theoretical status of elastic electron scattering from the nucleon is reviewed. As a consequence of new experimental facilities, data of unprecedented precision have recently become available for the electromagnetic and the strange form factors of the nucleon.

  7. Components of polarization-transfer to a bound proton in a deuteron measured by quasi-elastic electron scattering

    NASA Astrophysics Data System (ADS)

    Izraeli, D.; Yaron, I.; Schlimme, B. S.; Achenbach, P.; Arenhövel, H.; Ashkenazi, A.; Beričič, J.; Böhm, R.; Bosnar, D.; Cohen, E. O.; Distler, M. O.; Esser, A.; Friščić, I.; Gilman, R.; Korover, I.; Lichtenstadt, J.; Mardor, I.; Merkel, H.; Middleton, D. G.; Mihovilovič, M.; Müller, U.; Olivenboim, M.; Piasetzky, E.; Pochodzalla, J.; Ron, G.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Štajner, S.; Strauch, S.; Thiel, M.; Tyukin, A.; Weber, A.; A1 Collaboration

    2018-06-01

    We report the first measurements of the transverse (Px and Py) and longitudinal (Pz) components of the polarization transfer to a bound proton in the deuteron via the 2H (e → ,e‧ p →) reaction, over a wide range of missing momentum. A precise determination of the electron beam polarization reduces the systematic uncertainties on the individual components to a level that enables a detailed comparison to a state-of-the-art calculation of the deuteron using free-proton electromagnetic form factors. We observe very good agreement between the measured and the calculated Px /Pz ratios, but deviations of the individual components. Our results cannot be explained by medium modified electromagnetic form factors. They point to an incomplete description of the nuclear reaction mechanism in the calculation.

  8. Vector and Axial Form Factors Applied to Neutrino Quasielastic Scattering

    NASA Astrophysics Data System (ADS)

    Budd, H.; Bodek, A.; Arrington, J.

    2005-02-01

    We calculate the quasielastic cross sections for neutrino scattering on nucleons using up to date fits to the nucleon elastic electromagnetic form factors GEp, GEn, GMp, GMn, and weak form factors. We show the extraction of F(q). We show the that F(q) has a different contribution to the anti-neutrino cross section, and how the anti-neutrino data can be used to check F(q) extracted from neutrino scattering. (Presented by Howard Budd at NuInt04, Mar. 2004, Laboratori Nazionali del Gran Sasso - INFN - Assergi, Italy [ http://nuint04.lngs.infn.it/])

  9. Absorptive corrections for vector mesons: matching to complex mass scheme and longitudinal corrections

    NASA Astrophysics Data System (ADS)

    Jiménez Pérez, L. A.; Toledo Sánchez, G.

    2017-12-01

    Unstable spin-1 particles are properly described by including absorptive corrections to the electromagnetic vertex and propagator, without breaking the electromagnetic gauge invariance. We show that the modified propagator can be set in a complex mass form, provided the mass and width parameters, which are properly defined at the pole, are replaced by energy dependent functions fulfilling the same requirements at the pole. We exemplify the case for the {K}* (892) vector meson, and find that the mass function deviates around 2 MeV from the Kπ threshold to the pole, and that the width function exhibits a different behavior compared to the uncorrected energy dependent width. Considering the {τ }-\\to {K}{{S}}{π }-{ν }τ decay as dominated by the {K}* (892) and {K}{\\prime * }(1410) vectors and one scalar particle, we exhibit the role of the transversal and longitudinal corrections to the vector propagator by obtaining the modified vector and scalar form factors. The modified vector form factor is found to be the same as in the complex mass form, while the scalar form factor receives a modification from the longitudinal correction to the vector propagator. A fit to the experimental Kπ spectrum shows that the phase induced by the presence of this new contribution in the scalar sector improves the description of the experimental data in the troublesome region around 0.7 GeV. Besides that, the correction to the scalar form factor is found to be negligible.

  10. The QCD form factor of heavy quarks at NNLO

    NASA Astrophysics Data System (ADS)

    Gluza, J.; Mitov, A.; Moch, S.; Riemann, T.

    2009-07-01

    We present an analytical calculation of the two-loop QCD corrections to the electromagnetic form factor of heavy quarks. The two-loop contributions to the form factor are reduced to linear combinations of master integrals, which are computed through higher orders in the parameter of dimensional regularization epsilon = (4-D)/2. Our result includes all terms of order epsilon at two loops and extends the previous literature. We apply the exponentiation of the heavy-quark form factor to derive new improved three-loop expansions in the high-energy limit. We also discuss the implications for predictions of massive n-parton amplitudes based on massless results in the limit, where the quark mass is small compared to all kinematical invariants.

  11. In-Medium K^+ Electromagnetic Form Factor with a Symmetric Vertex in a Light Front Approach

    NASA Astrophysics Data System (ADS)

    Yabusaki, George H. S.; de Melo, J. P. B. C.; de Paula, Wayne; Tsushima, K.; Frederico, T.

    2018-05-01

    Using the light-front K^ +-Meson wave function based on a Bethe-Salpeter amplitude model for the Quark-Antiquark bound state, we study the Electromagnetic Form Factor (EMFF) of the K^ +-Meson in nuclear medium within the framework of light-front field theory. The K^ +-Meson model we adopt is well constrained by previous and recent studies to explain its properties in vacuum. The in-medium K^ +-Meson EMFF is evaluated for the plus-component of the electromagnetic current, J^+, in the Breit frame. In order to consistently incorporate the constituent up and antistrange Quarks of the K^ +-Meson immersed in symmetric nuclear matter, we use the Quark-Meson coupling model, which has been widely applied to various hadronic and nuclear phenomena in a nuclear medium with success. We predict the in-medium modification of the K^ +-Meson EMFF in symmetric nuclear matter. It is found that, after a fine tuning of the regulator mass, i.e. m_R = 0.600 GeV, the model is suitable to fit the available experimental data in vacuum within the theoretical uncertainties, and based on this we predict the in-medium modification of the K^ +-Meson EMFF.

  12. Precision measurements of the timelike electromagnetic form factors of pion, kaon, and proton.

    PubMed

    Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Arms, K; Severini, H; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Bornheim, A; Pappas, S P; Weinstein, A J; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Shepherd, M R; Stroiney, S; Sun, W M; Wilksen, T; Weaver, K M; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Williams, J; Wiss, J; Asner, D M; Edwards, K W; Besson, D

    2005-12-31

    Using 20.7 pb(-1) of e(+)e(-) annihilation data taken at sq.rt(r) = 3.671 GeV with the CLEO-c detector, precision measurements of the electromagnetic form factors of the charged pion, charged kaon, and proton have been made for timelike momentum transfer of |Q(2)| = 13.48 GeV(2) by the reaction e(+)e(-) --> h(+)h(-). The measurements are the first ever with identified pions and kaons of |Q(2)| > 4 GeV(2), with the results F(13.48 GeV(2)) = 0.075 +/- 0.008(stat) +/- 0.005(syst) and F(K)(13.48 GeV(2)) = 0.063 +/- 0.004(stat) +/- 0.001(syst). The result for the proton, assuming G(p)(E) = G(p)(M), is G(p)(M)(13.48 GeV(2)) = 0.014 +/- 0.002(stat) +/- 0.001(syst), which is in agreement with earlier results.

  13. Exposing strangeness: Projections for kaon electromagnetic form factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Chang, Lei; Liu, Yu -Xin

    A continuum approach to the kaon and pion bound-state problems is used to reveal their electromagnetic structure. For both systems, when used with parton distribution amplitudes appropriate to the scale of the experiment, Standard Model hard-scattering formulas are accurate to within 25% at momentum transfers Q 2 ≈ 8 GeV 2. There are measurable differences between the distribution of strange and normal matter within the kaons, e.g. the ratio of their separate contributions reaches a peak value of 1.5 at Q 2 ≈ 6 GeV 2. Its subsequent Q 2 evolution is accurately described by the hard scattering formulas. Projectionsmore » for the ratio of kaon and pion form factors at timelike momenta beyond the resonance region are also presented. In conclusion, these results and projections should prove useful in planning next-generation experiments.« less

  14. Exposing strangeness: Projections for kaon electromagnetic form factors

    DOE PAGES

    Gao, Fei; Chang, Lei; Liu, Yu -Xin; ...

    2017-08-28

    A continuum approach to the kaon and pion bound-state problems is used to reveal their electromagnetic structure. For both systems, when used with parton distribution amplitudes appropriate to the scale of the experiment, Standard Model hard-scattering formulas are accurate to within 25% at momentum transfers Q 2 ≈ 8 GeV 2. There are measurable differences between the distribution of strange and normal matter within the kaons, e.g. the ratio of their separate contributions reaches a peak value of 1.5 at Q 2 ≈ 6 GeV 2. Its subsequent Q 2 evolution is accurately described by the hard scattering formulas. Projectionsmore » for the ratio of kaon and pion form factors at timelike momenta beyond the resonance region are also presented. In conclusion, these results and projections should prove useful in planning next-generation experiments.« less

  15. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    NASA Astrophysics Data System (ADS)

    Xu, Da; Liu, Xuesong; Fang, Kun; Fang, Hongyuan

    2010-06-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  16. Strong Coupling Continuum QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennington, M. R.

    2011-05-23

    The Schwinger-Dyson, Bethe-Salpeter system of equations are the link between coloured quarks and gluons, and colourless hadrons and their properties. This talk reviews some aspects of these studies from the infrared behaviour of ghosts to the prediction of electromagnetic form-factors.

  17. Strong Coupling Continuum QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Pennington

    2011-05-01

    The Schwinger-Dyson, Bethe-Salpeter system of equations are the link between coloured quarks and gluons, and colourless hadrons and their properties. This talk reviews some aspects of these studies from the infrared behaviour of ghosts to the prediction of electromagnetic form-factors.

  18. Tiny Electromagnetic Explosions

    NASA Astrophysics Data System (ADS)

    Thompson, Christopher

    2017-08-01

    This paper considers electromagnetic transients of a modest total energy ({ E }≳ {10}40 erg) and small initial size ({ R }≳ {10}-1 cm). They could be produced during collisions between relativistic field structures (e.g., macroscopic magnetic dipoles) that formed around or before cosmic electroweak symmetry breaking. The outflowing energy has a dominant electromagnetic component; a subdominant thermal component (temperature > 1 GeV) supplies inertia in the form of residual {e}+/- . A thin shell forms, expanding subluminally and attaining a Lorentz factor ˜ {10}6{--7} before decelerating. Drag is supplied by the reflection of an ambient magnetic field and deflection of ambient free electrons. Emission of low-frequency (GHz-THz) superluminal waves takes place through three channels: (I) reflection of the ambient magnetic field; (II) direct linear conversion of the embedded magnetic field into a superluminal mode; and (III) excitation outside the shell by corrugation of its surface. The escaping electromagnetic pulse is very narrow (a few wavelengths), so the width of the detected transient is dominated by propagation effects. GHz radio transients are emitted from (I) the dark matter halos of galaxies and (II) the near-horizon regions of supermassive black holes that formed via direct gas collapse and now accrete slowly. Brighter and much narrower 0.01-1 THz pulses are predicted at a rate at least comparable to fast radio bursts, experiencing weaker scattering and absorption. The same explosions also accelerate protons up to ˜ {10}19 eV, and heavier nuclei up to 1020-21 eV.

  19. Precise measurement of the neutron magnetic form factor G(M)n in the few-GeV2 region.

    PubMed

    Lachniet, J; Afanasev, A; Arenhövel, H; Brooks, W K; Gilfoyle, G P; Higinbotham, D; Jeschonnek, S; Quinn, B; Vineyard, M F; Adams, G; Adhikari, K P; Amaryan, M J; Anghinolfi, M; Asavapibhop, B; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Batourine, V; Battaglieri, M; Beard, K; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Bonner, B E; Bookwalter, C; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Bültmann, S; Burkert, V D; Calarco, J R; Careccia, S L; Carman, D S; Casey, L; Cheng, L; Cole, P L; Coleman, A; Collins, P; Cords, D; Corvisiero, P; Crabb, D; Crede, V; Cummings, J P; Dale, D; Daniel, A; Dashyan, N; De Masi, R; De Vita, R; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Deur, A; Dhamija, S; Dharmawardane, K V; Dhuga, K S; Dickson, R; Djalali, C; Dodge, G E; Doughty, D; Dragovitsch, P; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; El Fassi, L; Elouadrhiri, L; Empl, A; Eugenio, P; Fatemi, R; Fedotov, G; Fersch, R; Feuerbach, R J; Forest, T A; Fradi, A; Gabrielyan, M Y; Garçon, M; Gavalian, G; Gevorgyan, N; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Graham, L; Griffioen, K A; Guidal, M; Guillo, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, H; Hanretty, C; Hardie, J; Hassall, N; Heddle, D; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hu, J; Huertas, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Johnstone, J R; Joo, K; Juengst, H G; Kageya, T; Kalantarians, N; Keller, D; Kellie, J D; Khandaker, M; Khetarpal, P; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klusman, M; Konczykowski, P; Kossov, M; Kramer, L H; Kubarovsky, V; Kuhn, J; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Laget, J M; Langheinrich, J; Lawrence, D; Lima, A C S; Livingston, K; Lowry, M; Lu, H Y; Lukashin, K; Maccormick, M; Malace, S; Manak, J J; Markov, N; Mattione, P; McAleer, S; McCracken, M E; McKinnon, B; McNabb, J W C; Mecking, B A; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Mineeva, T; Minehart, R; Mirazita, M; Miskimen, R; Mokeev, V; Moreno, B; Moriya, K; Morrow, S A; Moteabbed, M; Mueller, J; Munevar, E; Mutchler, G S; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Park, S; Pasyuk, E; Paterson, C; Pereira, S Anefalos; Philips, S A; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O; Polli, E; Popa, I; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Rosner, G; Rossi, P; Rowntree, D; Rubin, P D; Sabatié, F; Saini, M S; Salamanca, J; Salgado, C; Sandorfi, A; Santoro, J P; Sapunenko, V; Schott, D; Schumacher, R A; Serov, V S; Sharabian, Y G; Sharov, D; Shaw, J; Shvedunov, N V; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Sokhan, D; Starostin, A; Stavinsky, A; Stepanyan, S; Stepanyan, S S; Stokes, B E; Stoler, P; Stopani, K A; Strakovsky, I I; Strauch, S; Suleiman, R; Taiuti, M; Taylor, S; Tedeschi, D J; Thompson, R; Tkabladze, A; Tkachenko, S; Ungaro, M; Vlassov, A V; Watts, D P; Wei, X; Weinstein, L B; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Yurov, M; Zana, L; Zhang, J; Zhao, B; Zhao, Z W

    2009-05-15

    The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data.

  20. Polarization transfer observables in elastic electron-proton scattering at Q 2 = 2.5 , 5.2, 6.8, and 8.5   GeV 2

    DOE PAGES

    Puckett, Andrew J. R.; Brash, E. J.; Jones, M. K.; ...

    2017-11-06

    In this paper, interest in the behavior of nucleon electromagnetic form factors at large momentum transfers has steadily increased since the discovery, using polarization observables, of the rapid decrease of the ratio G p E/G p M of the proton's electric and magnetic form factors for momentum transfers Q 2 ≳ 1 GeV 2, in strong disagreement with previous extractions of this ratio using the traditional Rosenbluth separation technique.

  1. Polarization transfer observables in elastic electron-proton scattering at Q 2 = 2.5 , 5.2, 6.8, and 8.5   GeV 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puckett, Andrew J. R.; Brash, E. J.; Jones, M. K.

    In this paper, interest in the behavior of nucleon electromagnetic form factors at large momentum transfers has steadily increased since the discovery, using polarization observables, of the rapid decrease of the ratio G p E/G p M of the proton's electric and magnetic form factors for momentum transfers Q 2 ≳ 1 GeV 2, in strong disagreement with previous extractions of this ratio using the traditional Rosenbluth separation technique.

  2. Constraints on the [Formula: see text] form factor from analyticity and unitarity.

    PubMed

    Ananthanarayan, B; Caprini, I; Kubis, B

    Motivated by the discrepancies noted recently between the theoretical calculations of the electromagnetic [Formula: see text] form factor and certain experimental data, we investigate this form factor using analyticity and unitarity in a framework known as the method of unitarity bounds. We use a QCD correlator computed on the spacelike axis by operator product expansion and perturbative QCD as input, and exploit unitarity and the positivity of its spectral function, including the two-pion contribution that can be reliably calculated using high-precision data on the pion form factor. From this information, we derive upper and lower bounds on the modulus of the [Formula: see text] form factor in the elastic region. The results provide a significant check on those obtained with standard dispersion relations, confirming the existence of a disagreement with experimental data in the region around [Formula: see text].

  3. New Precision Limit on the Strange Vector Form Factors of the Proton

    DOE PAGES

    Ahmed, Z.; Allada, K.; Aniol, K. A.; ...

    2012-03-01

    The parity-violating cross-section asymmetry in the elastic scattering of polarized electrons from unpolarized protons has been measured at a four-momentum transfer squared Q 2 = 0.624 GeV 2 and beam energy E b = 3.48 GeV to be A PV = -23.80 ± 0.78 (stat) ± 0.36 (syst) parts per million. This result is consistent with zero contribution of strange quarks to the combination of electric and magnetic form factors G E s + 0.517 G M s = 0.003 ± 0.010 (stat) ± 0.004 (syst) ± 0.009 (ff), where the third error is due to the limits of precisionmore » on the electromagnetic form factors and radiative corrections. With this measurement, the world data on strange contributions to nucleon form factors are seen to be consistent with zero and not more than a few percent of the proton form factors.« less

  4. Nonlinear interferometric vibrational imaging

    NASA Technical Reports Server (NTRS)

    Boppart, Stephen A. (Inventor); Marks, Daniel L. (Inventor)

    2009-01-01

    A method of examining a sample, which includes: exposing a reference to a first set of electromagnetic radiation, to form a second set of electromagnetic radiation scattered from the reference; exposing a sample to a third set of electromagnetic radiation to form a fourth set of electromagnetic radiation scattered from the sample; and interfering the second set of electromagnetic radiation and the fourth set of electromagnetic radiation. The first set and the third set of electromagnetic radiation are generated from a source; at least a portion of the second set of electromagnetic radiation is of a frequency different from that of the first set of electromagnetic radiation; and at least a portion of the fourth set of electromagnetic radiation is of a frequency different from that of the third set of electromagnetic radiation.

  5. Simultaneous production of lepton pairs in ultraperipheral relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Kurban, E.; Güçlü, M. C.

    2017-10-01

    We calculate the total cross sections and probabilities of electromagnetic productions of electron, muon, and tauon pairs simultaneously. At the CERN Large Hadron Collider (LHC), the available electromagnetic energy is sufficient to produce all kinds of leptons coherently. The masses of muons and tauons are large, so their Compton wavelengths are small enough to interact with the colliding nuclei. Therefore, the realistic nuclear form factors are included in the calculations of electromagnetic pair productions. The cross section calculations show that, at LHC energies, the probabilities of simultaneous productions of all kinds of leptons are increased significantly compared to energies available at the BNL Relativistic Heavy Ion Collider (RHIC) . Experimentally, observing this simultaneous production can give us important information about strong QED.

  6. What are the correct ρ0(770 ) meson mass and width values?

    NASA Astrophysics Data System (ADS)

    Bartoš, Erik; Dubnička, Stanislav; Liptaj, Andrej; Dubničková, Anna Zuzana; Kamiński, Robert

    2017-12-01

    The accuracy of the Gounaris-Sakurai pion electromagnetic form factor model at the elastic region, in which just the ρ0(770 ) resonance appears, is investigated by the particular analysis of the most accurate P-wave isovector π π scattering phase shift δ11(t ) data, obtained by the Garcia-Martin-Kamiński-Peláez-Yndurain approach, and by an application of the Unitary&Analytic pion electromagnetic structure model to a description of the newest precise data on the e+e-→π+π- process.

  7. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    NASA Astrophysics Data System (ADS)

    Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.-W.; Meißner, U.-G.

    2016-11-01

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ→bar{N} N partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius.

  8. The γγ Physics Program at BESIII

    NASA Astrophysics Data System (ADS)

    Redmer, C. F.

    2018-01-01

    A key motivation for the two-photon physics program of the BESIII collaboration is the need of high precision data on electromagnetic transition form factors as input to the calculations of the contribution of hadronic Light-by-light scattering to the anomalous magnetic moment of the muon. The data collected with the BESIII detector allow to study the momentum dependence of the form factors at small momentum transfers, which is of special relevance for αμ. In this presentation the ongoing measurements of the transition form factors of π0,η and η' mesons, as well as pion pairs, are discussed, and the potential for first double-tagged measurements at BESIII are pointed out.

  9. Control and monitoring method and system for electromagnetic forming process

    DOEpatents

    Kunerth, Dennis C.; Lassahn, Gordon D.

    1990-01-01

    A process, system, and improvement for a process for electromagnetic forming of a workpiece in which characteristics of the workpiece such as its geometry, electrical conductivity, quality, and magnetic permeability can be determined by monitoring the current and voltage in the workcoil. In an electromagnet forming process in which a power supply provides current to a workcoil and the electromagnetic field produced by the workcoil acts to form the workpiece, the dynamic interaction of the electromagnetic fields produced by the workcoil with the geometry, electrical conductivity, and magnetic permeability of the workpiece, provides information pertinent to the physical condition of the workpiece that is available for determination of quality and process control. This information can be obtained by deriving in real time the first several time derivatives of the current and voltage in the workcoil. In addition, the process can be extended by injecting test signals into the workcoil during the electromagnetic forming and monitoring the response to the test signals in the workcoil.

  10. [The combined action of drinking mineral water and low-intensity electromagnetic radiation under the immobilization stress conditions (an experimental study)].

    PubMed

    Korolev, Yu N; Bobrovnitsky, I P; Geniatulina, M S; Mikhailik, L V; Nikulina, L A; Bobkova, A S; Yakovlev, M Yu

    2015-01-01

    The present study carried out on white male rats in experiments with the use of biochemical, radioimmunological, and electron- microscopic methods. It was shown that the combined treatment with potable mineral water (MV) and low-intensity electromagnetic radiation (LIEMR) of ultrahigh frequency (power density less than 1 pW/cm2, the frequency about 1000 MHz) facilitated the activation of metabolic and intracellular regenerative processes in the liver and testes. One of the advantages of the combined application of MV and LIEMR over the single-factor treatment manifested itself as the weakening of stress reactions, the increase in the frequency of the plastic processes, and the more harmonious development of different forms of intracellular regeneration. The results of the study provide a deeper insight ino the mechanisms underlying the combined actions of drinking mineral water and low-intensity electromagnetic radiation; also, they justify the application of these factors for the protection of the reproductive system and the entire body from stress-induced disorders.

  11. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    NASA Astrophysics Data System (ADS)

    Zamorano, M.; Torres-Silva, H.

    2006-04-01

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.

  12. Study of the in-medium nucleon electromagnetic form factors using a light-front nucleon wave function combined with the quark-meson coupling model

    NASA Astrophysics Data System (ADS)

    de Araújo, W. R. B.; de Melo, J. P. B. C.; Tsushima, K.

    2018-02-01

    We study the nucleon electromagnetic (EM) form factors in symmetric nuclear matter as well as in vacuum within a light-front approach using the in-medium inputs calculated by the quark-meson coupling model. The same in-medium quark properties are used as those used for the study of in-medium pion properties. The zero of the proton EM form factor ratio in vacuum, the electric to magnetic form factor ratio μpGEp (Q2) /GMp (Q2) (Q2 = -q2 > 0 with q being the four-momentum transfer), is determined including the latest experimental data by implementing a hard constituent quark component in the nucleon wave function. A reasonable fit is achieved for the ratio μpGEp (Q2) /GMp (Q2) in vacuum, and we predict that the Q02 value to cross the zero of the ratio to be about 15 GeV2. In addition the double ratio data of the proton EM form factors in 4He and H nuclei, [GEp4He (Q2) /G4HeMp (Q2) ] / [GEp1H (Q2) /GMp1H (Q2) ], extracted by the polarized (e → ,e‧ p →) scattering experiment on 4He at JLab, are well described. We also predict that the Q02 value satisfying μpGEp (Q02) /GMp (Q0 2) = 0 in symmetric nuclear matter, shifts to a smaller value as increasing nuclear matter density, which reflects the facts that the faster falloff of GEp (Q2) as increasing Q2 and the increase of the proton mean-square charge radius. Furthermore, we calculate the neutron EM form factor double ratio in symmetric nuclear matter for 0.1

  13. Electromagnetic flat sheet forming by spiral type actuator coil

    NASA Astrophysics Data System (ADS)

    Akbar, S.; Aleem, M. A.; Sarwar, M. N.; Zillohu, A. U.; Awan, M. S.; Haider, A.; Ahmad, Z.; Akhtar, S.; Farooque, M.

    2016-08-01

    Focus of present work is to develop a setup for high strain rate electromagnetic forming of thin aluminum sheets (0.5, 1.0, 1.5 and 2.0 mm) and optimization of forming parameters. Flat spiral coil of 99.9% pure Cu strip (2.5x8.0 mm) with self-inductance 11 μH, 13 no. of turns and resultant outer diameter of 130mm has been fabricated and was coupled to a capacitor bank of energy, voltage and capacitance of 9 kJ, 900 V and 22.8 mF, respectively. To optimize the coil design, a commercially available software FEMM-4.2 was used to simulate the electromagnetic field profile generated by the coils of different pitch but same number of turns. Results of electromagnetic field intensity proposed by simulation agree in close proximity with those of theoretical as well as experimental data. The calculation of electromagnetic force and magnetic couplings between the coil and metal sheet are made. Forming parameters were optimized for different sheet thicknesses. Electromagnetic field intensity's profile plays a principal role in forming of typical shapes and patterns in sheets.

  14. The effective chiral Lagrangian from the theta term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mereghetti, E., E-mail: emanuele@physics.arizona.ed; Hockings, W.H., E-mail: whockings@bmc.ed; Kolck, U. van, E-mail: vankolck@physics.arizona.ed

    2010-11-15

    We construct the effective chiral Lagrangian involving hadronic and electromagnetic interactions originating from the QCD {theta}-bar term. We impose vacuum alignment at both quark and hadronic levels, including field redefinitions to eliminate pion tadpoles. We show that leading time-reversal-violating (TV) hadronic interactions are related to isospin-violating interactions that can in principle be determined from charge-symmetry-breaking experiments. We discuss the complications that arise from TV electromagnetic interactions. Some implications of the expected sizes of various pion-nucleon TV interactions are presented, and the pion-nucleon form factor is used as an example.

  15. Electromagnetic and axial-vector form factors of the quarks and nucleon

    NASA Astrophysics Data System (ADS)

    Dahiya, Harleen; Randhawa, Monika

    2017-11-01

    In light of the improved precision of the experimental measurements and enormous theoretical progress, the nucleon form factors have been evaluated with an aim to understand how the static properties and dynamical behavior of nucleons emerge from the theory of strong interactions between quarks. We have analyzed the vector and axial-vector nucleon form factors (GE,Mp,n(Q2) and GAp,n(Q2)) using the spin observables in the chiral constituent quark model (χCQM) which has made a significant contribution to the unraveling of the internal structure of the nucleon in the nonperturbative regime. We have also presented a comprehensive analysis of the flavor decomposition of the form factors (GEq(Q2), GMq(Q2) and GAq(Q2) for q = u,d,s) within the framework of χCQM with emphasis on the extraction of the strangeness form factors which are fundamental to determine the spin structure and test the chiral symmetry breaking effects in the nucleon. The Q2 dependence of the vector and axial-vector form factors of the nucleon has been studied using the conventional dipole form of parametrization. The results are in agreement with the available experimental data.

  16. Large-basis ab initio no-core shell model and its application to {sup 12}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navratil, P.; Vary, J. P.; Barrett, B. R.

    2000-11-01

    We present the framework for the ab initio no-core nuclear shell model and apply it to obtain properties of {sup 12}C. We derive two-body effective interactions microscopically for specific model spaces from the realistic CD-Bonn and the Argonne V8' nucleon-nucleon (NN) potentials. We then evaluate binding energies, excitation spectra, radii, and electromagnetic transitions in the 0{Dirac_h}{Omega}, 2{Dirac_h}{Omega}, and 4{Dirac_h}{Omega} model spaces for the positive-parity states and the 1{Dirac_h}{Omega}, 3{Dirac_h}{Omega}, and 5{Dirac_h}{Omega} model spaces for the negative-parity states. Dependence on the model-space size, on the harmonic-oscillator frequency, and on the type of the NN potential, used for the effective interaction derivation,more » are studied. In addition, electromagnetic and weak neutral elastic charge form factors are calculated in the impulse approximation. Sensitivity of the form-factor ratios to the strangeness one-body form-factor parameters and to the influence of isospin-symmetry violation is evaluated and discussed. Agreement between theory and experiment is favorable for many observables, while others require yet larger model spaces and/or three-body forces. The limitations of the present results are easily understood by virtue of the trends established and previous phenomenological results.« less

  17. Dirac and Pauli form factors from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, S.; Goeckeler, M.; Nobile, A.

    2011-10-01

    We present a comprehensive analysis of the electromagnetic form factors of the nucleon from a lattice simulation with two flavors of dynamical O(a)-improved Wilson fermions. A key feature of our calculation is that we make use of an extensive ensemble of lattice gauge field configurations with four different lattice spacings, multiple volumes, and pion masses down to m{sub {pi}{approx}1}80 MeV. We find that by employing Kelly-inspired parametrizations for the Q{sup 2} dependence of the form factors, we are able to obtain stable fits over our complete ensemble. Dirac and Pauli radii and the anomalous magnetic moments of the nucleon aremore » extracted and results at light quark masses provide evidence for chiral nonanalytic behavior in these fundamental observables.« less

  18. Attosecond electromagnetic pulse generation due to the interaction of a relativistic soliton with a breaking-wake plasma wave.

    PubMed

    Isanin, A V; Bulanov, S S; Kamenets, F F; Pegoraro, F

    2005-03-01

    During the interaction of a low-frequency relativistic soliton with the electron density modulations of a wake plasma wave, part of the electromagnetic energy of the soliton is reflected in the form of an extremely short and ultraintense electromagnetic pulse. We calculate the spectra of the reflected and of the transmitted electromagnetic pulses analytically. The reflected wave has the form of a single cycle attosecond pulse.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, W. A.; Brown, B. Alex

    Assignments are made between theory and experiment of corresponding levels in {sup 26}Mg levels based on energies, lifetimes, branching ratios, electron scattering form factors, and reduced electromagnetic transition strengths. Results based on the new sd-shell interactions USDA (universal sd-shell interaction A) and USDB (universal sd-shell interaction B), as well as the older USD interaction, are compared.

  20. Excited heavy baryons and their symmetries III: Phenomenology

    NASA Astrophysics Data System (ADS)

    Baccouche, Z. Aziza; Chow, Chi-Keung; Cohen, Thomas D.; Gelman, Boris A.

    2001-12-01

    Phenomenological applications of an effective theory of low-lying excited states of charm and bottom isoscalar baryons are discussed at leading and next-to-leading order in the combined heavy-quark and large- Nc expansion. The combined expansion is formulated in terms of the counting parameter λ˜1/ mQ,1/ Nc; the combined expansion is in powers of λ1/2. We work up to next-to-leading order. We obtain model-independent predictions for the excitation energies, the semileptonic form factors and electromagnetic decay rates. At leading order in the combined expansion these observables are given in terms of one phenomenological constant which can be determined from the excitation energy of the first excited state of Λc baryon. At next-to-leading order an additional phenomenological constant is required. The spin-averaged mass of the doublet of the first orbitally excited state of Λb is predicted to be approximately 5920 MeV. It is shown that in the combined limit at leading and next-to-leading order there is only one independent form factor describing Λ b→Λ cℓ ν¯; similarly, Λ b→Λ c∗ℓ ν¯ and Λ b→Λ c1ℓ ν¯ decays are described by a single independent form factor. These form factors are calculated at leading and next-to-leading order in the combined expansion. The value of the Λ b→Λ cℓ ν¯ form factor at zero recoil is predicted to be 0.998 at leading order which is very close to HQET value of unity. The electromagnetic decay rates of the first excited states of Λc and Λb are determined at leading and next-to-leading order. The ratio of radiative decay rates Γ(Λ c∗→Λ cγ)/Γ(Λ b1→Λ bγ) is predicted to be approximately 0.2, greatly different from the heavy-quark effective theory value of unity.

  1. Flavor dependence of the pion and kaon form factors and parton distribution functions

    DOE PAGES

    Hutauruk, Parada T. P.; Cloët, Ian C.; Thomas, Anthony W.

    2016-09-01

    The separate quark flavor contributions to the pion and kaon valence quark distribution functions are studied, along with the corresponding electromagnetic form factors in the space-like region. The calculations are made using the solution of the Bethe-Salpeter equation for the model of Nambu and Jona-Lasinio with proper-time regularization. Both the pion and kaon form factors and the valence quark distribution functions reproduce many features of the available empirical data. The larger mass of the strange quark naturally explains the empirical fact that the ratio u(K) + (x)/u(pi) + (x) drops below unity at large x, with a value of approximately Mmore » $$2\\atop{u}$$/Ms$$2\\atop{s}$$ as x → 1. With regard to the elastic form factors we report a large flavor dependence, with the u-quark contribution to the kaon form factor being an order of magnitude smaller than that of the s-quark at large Q 2, which may be a sensitive measure of confinement effects in QCD. Surprisingly though, the total K + and π + form factors differ by only 10%. Lastly, in general we find that flavor breaking effects are typically around 20%.« less

  2. Flavor dependence of the pion and kaon form factors and parton distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutauruk, Parada T. P.; Cloët, Ian C.; Thomas, Anthony W.

    The separate quark flavor contributions to the pion and kaon valence quark distribution functions are studied, along with the corresponding electromagnetic form factors in the space-like region. The calculations are made using the solution of the Bethe-Salpeter equation for the model of Nambu and Jona-Lasinio with proper-time regularization. Both the pion and kaon form factors and the valence quark distribution functions reproduce many features of the available empirical data. The larger mass of the strange quark naturally explains the empirical fact that the ratio u(K) + (x)/u(pi) + (x) drops below unity at large x, with a value of approximately Mmore » $$2\\atop{u}$$/Ms$$2\\atop{s}$$ as x → 1. With regard to the elastic form factors we report a large flavor dependence, with the u-quark contribution to the kaon form factor being an order of magnitude smaller than that of the s-quark at large Q 2, which may be a sensitive measure of confinement effects in QCD. Surprisingly though, the total K + and π + form factors differ by only 10%. Lastly, in general we find that flavor breaking effects are typically around 20%.« less

  3. Multifunctional Merkel cells: their roles in electromagnetic reception, finger-print formation, Reiki, epigenetic inheritance and hair form.

    PubMed

    Irmak, M Kemal

    2010-08-01

    Merkel cells are located in glabrous and hairy skin and in some mucosa. They are characterized by dense-core secretory granules and cytoskeletal filaments. They are attached to neighboring keratinocytes by desmosomes and contain melanosomes similar to keratinocytes. They are excitable cells in close contact with sensory nerve endings but their function is still unclear. In this review, following roles are attributed for the first time to the Merkel cells: (1) melanosomes in Merkel cells may be involved in mammalian magnetoreception. In this model melanosome as a biological magnetite is connected by cytoskeletal filaments to mechanically gated ion channels embedded in the Merkel cell membrane. The movement of melanosome with the changing electromagnetic field may open ion channels directly producing a receptor potential that can be transmitted to brain via sensory neurons. (2) Merkel cells may be involved in finger-print formation: Merkel cells in glabrous skin are located at the base of the epidermal ridges the type of which defines the finger-print pattern. Finger-print formation starts at the 10th week of pregnancy after the arrival of Merkel cells. Keratinocyte proliferation and the buckling process observed in the basal layer of epidermis resulting in the epidermal ridges may be controlled and formed by Merkel cells. (3) Brain-Merkel cell connection is bi-directional and Merkel cells not only absorb but also radiate the electromagnetic frequencies. Hence, efferent aspects of the palmar and plantar Merkel nerve endings may form the basis of the biofield modalities such as Reiki, therapeutic touch and telekinesis. (4) Adaptive geographic variations such as skin color, craniofacial morphology and hair form result from interactions between environmental factors and epigenetic inheritance system. While environmental factors produce modifications in the body, they simultaneously induce epigenetic modifications in the oocytes and in this way adaptive changes could be passed onto the next generations. Merkel cells are multisensorial cells that can receive almost all environmental stimuli including electromagnetic and ultraviolet radiations, temperature, humidity and food type and they seem to transfer the environmental information to oocytes by affecting nuclear receptors in oocytes. (5) Hair form is categorized as straight, wavy and spiral. Merkel cells found at the bulge region of hair follicles may determine the hair form with their different paracrine secretions related to hair cycle producing variations between populations. In conclusion, Merkel cells are multifunctional cells which may close the gap between orthodox medicine and complementary medicine such as acupuncture and Reiki. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Examination of electromagnetic powers with the example of a uc(Faraday) disc dynamo

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Müller, Wolfgang H.

    2018-03-01

    This paper studies the mathematical form of electromagnetic powers and their influence on the balance of energy by using the example of a uc(Faraday) disc. First, two forms of energy (and balances thereof) are discussed. These employ different forms of powers, which can be distinguished w.r.t. their physical origins and their interpretations in context with the notions of supply and production. The stationary uc(Faraday) disc experiment is modeled following the description by Kovetz (Electromagnetic theory, Oxford University Press, Oxford, 2000). Concepts for formulating the electromagnetic field equations for the rotating disc are discussed, and the corresponding approximate analytical solutions are presented. Based on the obtained electromagnetic fields, the powers of the disc are analyzed for a stationary process. The conversion of mechanical power to heating and electromagnetic powering of an external resistor is explained. The paper concludes with the computation of the time evolution of the angular velocity for a magnetically induced breaking process of the disc.

  5. Partonic structure of neutral pseudoscalars via two photon transition form factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raya, Khepani; Ding, Minghui; Bashir, Adnan

    Here, the γγ* → η c,b transition form factors are computed using a continuum approach to the two valence-body bound-state problem in relativistic quantum field theory, and thereby unified with equivalent calculations of electromagnetic pion elastic and transition form factors. The resulting γγ* → η c form factor, G ηc(Q 2), is consistent with available data; significantly, at accessible momentum transfers, Q 2G ηc(Q 2) lies well below its conformal limit. These observations confirm that the leading-twist parton distribution amplitudes of heavy-heavy bound states are compressed relative to the conformal limit. A clear understanding of the distribution of valence quarksmore » within mesons thus emerges, a picture which connects Goldstone modes, built from the lightest quarks in nature, with systems containing the heaviest valence quarks that can now be studied experimentally, and highlights basic facts about manifestations of mass within the Standard Model.« less

  6. Partonic structure of neutral pseudoscalars via two photon transition form factors

    DOE PAGES

    Raya, Khepani; Ding, Minghui; Bashir, Adnan; ...

    2017-04-10

    Here, the γγ* → η c,b transition form factors are computed using a continuum approach to the two valence-body bound-state problem in relativistic quantum field theory, and thereby unified with equivalent calculations of electromagnetic pion elastic and transition form factors. The resulting γγ* → η c form factor, G ηc(Q 2), is consistent with available data; significantly, at accessible momentum transfers, Q 2G ηc(Q 2) lies well below its conformal limit. These observations confirm that the leading-twist parton distribution amplitudes of heavy-heavy bound states are compressed relative to the conformal limit. A clear understanding of the distribution of valence quarksmore » within mesons thus emerges, a picture which connects Goldstone modes, built from the lightest quarks in nature, with systems containing the heaviest valence quarks that can now be studied experimentally, and highlights basic facts about manifestations of mass within the Standard Model.« less

  7. Fully relativistic form factor for Thomson scattering.

    PubMed

    Palastro, J P; Ross, J S; Pollock, B; Divol, L; Froula, D H; Glenzer, S H

    2010-03-01

    We derive a fully relativistic form factor for Thomson scattering in unmagnetized plasmas valid to all orders in the normalized electron velocity, beta[over ]=v[over ]/c. The form factor is compared to a previously derived expression where the lowest order electron velocity, beta[over], corrections are included [J. Sheffield, (Academic Press, New York, 1975)]. The beta[over ] expansion approach is sufficient for electrostatic waves with small phase velocities such as ion-acoustic waves, but for electron-plasma waves the phase velocities can be near luminal. At high phase velocities, the electron motion acquires relativistic corrections including effective electron mass, relative motion of the electrons and electromagnetic wave, and polarization rotation. These relativistic corrections alter the scattered emission of thermal plasma waves, which manifest as changes in both the peak power and width of the observed Thomson-scattered spectra.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, David G.

    I present a survey of calculations of the excited $N^*$ spectrum in lattice QCD. I then describe recent advances aimed at extracting the momentum-dependent phase shifts from lattice calculations, notably in the meson sector, and the potential for their application to baryons. I conclude with a discussion of calculations of the electromagnetic transition form factors to excited nucleons, including calculations at high $Q^2$.

  9. $$\\chi$$EFT studies of few-nucleon systems: a status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiavilla, Rocco

    2016-06-01

    A status report onmore » $$\\chi$$EFT studies of few-nucleon electroweak structure and dynamics is provided, including electromagnetic elastic form factors of few-nucleon systems, the $pp$ weak fusion and muon weak captures on deuteron and $^3$He, and a number of parity-violating processes induced by hadronic weak interactions.« less

  10. First measurement of proton's charge form factor at very low Q2 with initial state radiation

    NASA Astrophysics Data System (ADS)

    Mihovilovič, M.; Weber, A. B.; Achenbach, P.; Beranek, T.; Beričič, J.; Bernauer, J. C.; Böhm, R.; Bosnar, D.; Cardinali, M.; Correa, L.; Debenjak, L.; Denig, A.; Distler, M. O.; Esser, A.; Ferretti Bondy, M. I.; Fonvieille, H.; Friedrich, J. M.; Friščić, I.; Griffioen, K.; Hoek, M.; Kegel, S.; Kohl, Y.; Merkel, H.; Middleton, D. G.; Müller, U.; Nungesser, L.; Pochodzalla, J.; Rohrbeck, M.; Sánchez Majos, S.; Schlimme, B. S.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Štajner, S.; Thiel, M.; Tyukin, A.; Vanderhaeghen, M.; Weinriefer, M.

    2017-08-01

    We report on a new experimental method based on initial-state radiation (ISR) in e-p scattering, which exploits the radiative tail of the elastic peak to study the properties of electromagnetic processes and to extract the proton charge form factor (GEp) at extremely small Q2. The ISR technique was implemented in an experiment at the three-spectrometer facility of the Mainz Microtron (MAMI). This led to a precise validation of radiative corrections far away from elastic line and provided first measurements of GEp for 0.001 ≤Q2 ≤ 0.004(GeV / c)2.

  11. Measurement of GEP/GMP to Q2 = 5.6 GEV2 via Recoil Polarization at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Gayou, Olivier

    2001-10-01

    The measurement of the elastic form factors is a key ingredient to any complete understanding of the internal structure of the nucleons, and ultimately of the strong force. Precise data are essential to impose stringent tests on any QCD-based theory. The electromagnetic interaction provides a unique tool to investigate these form factors. In elastic electron scattering off a proton, the electron interacts with the nucleon exchanging a virtual photon. The electron-photon interaction is fully understood from QED, hence making the hadron vertex the only unknown of the reaction...

  12. Anisotropic inflation with a non-minimally coupled electromagnetic field to gravity

    NASA Astrophysics Data System (ADS)

    Adak, Muzaffer; Akarsu, Özgür; Dereli, Tekin; Sert, Özcan

    2017-11-01

    We consider the non-minimal model of gravity in Y(R) F2-form. We investigate a particular case of the model, for which the higher order derivatives are eliminated but the scalar curvature R is kept to be dynamical via the constraint YRFmnFmn =-2/κ2. The effective fluid obtained can be represented by interacting electromagnetic field and vacuum depending on Y(R), namely, the energy density of the vacuum tracks R while energy density of the conventional electromagnetic field is dynamically scaled with the factor Y(R)/2. We give exact solutions for anisotropic inflation by assuming the volume scale factor of the Universe exhibits a power-law expansion. The directional scale factors do not necessarily exhibit power-law expansion, which would give rise to a constant expansion anisotropy, but expand non-trivially and give rise to a non-monotonically evolving expansion anisotropy that eventually converges to a non-zero constant. Relying on this fact, we discuss the anisotropic e-fold during the inflation by considering observed scale invariance in CMB and demanding the Universe to undergo the same amount of e-folds in all directions. We calculate the residual expansion anisotropy at the end of inflation, though as a result of non-monotonic behaviour of expansion anisotropy all the axes of the Universe undergo the same of amount of e-folds by the end of inflation. We also discuss the generation of the modified electromagnetic field during the first few e-folds of the inflation and its persistence against to the vacuum till end of inflation.

  13. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials

    DOEpatents

    Sanchez, Robert O.; Gunewardena, Shelton; Masi, James V.

    2007-11-27

    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  14. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials

    DOEpatents

    Sanchez, Robert O.; Gunewardena, Shelton; Masi, James V.

    2005-03-29

    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  15. Electromagnetic Pulse - The Fifth Factor in the Impact of a Nuclear Explosion,

    DTIC Science & Technology

    1986-01-16

    ELECTROMAGNETIC PULSE -THE...8217. -..-:. ’ - ’: .’ . .. ., .. ,.- ,:- .:. :. ... . -’ -:. -, .: ., ,: -:,’ ... ’. .: ,- :... ..: ,’. .,, ,-, : ., ’,, ’.. ..,.. i ii FTD- ID(RS )T-1176-85 :i EDITED TRANSLATION FTD-ID(RS)T-1176-85 16 January 1986 MICROFICHE NR: FTD-86-C-001361 ELECTROMAGNETIC PULSE - THE...34 L ELECTROMAGNETIC PULSE -THE FIFTH FACTOR IN THE IMPACT OF A NUCLEAR EXPLOSION Colonel Zbigniew Jastrak Words

  16. Chiral behavior of K →π l ν decay form factors in lattice QCD with exact chiral symmetry

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Cossu, G.; Feng, X.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.; Jlqcd Collaboration

    2017-08-01

    We calculate the form factors of the K →π l ν semileptonic decays in three-flavor lattice QCD and study their chiral behavior as a function of the momentum transfer and the Nambu-Goldstone boson masses. Chiral symmetry is exactly preserved by using the overlap quark action, which enables us to directly compare the lattice data with chiral perturbation theory (ChPT). We generate gauge ensembles at a lattice spacing of 0.11 fm with four pion masses covering 290-540 MeV and a strange quark mass ms close to its physical value. By using the all-to-all quark propagator, we calculate the vector and scalar form factors with high precision. Their dependence on ms and the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields. We compare the results for the semileptonic form factors with ChPT at next-to-next-to-leading order in detail. While many low-energy constants appear at this order, we make use of our data of the light meson electromagnetic form factors in order to control the chiral extrapolation. We determine the normalization of the form factors as f+(0 )=0.9636 (36 )(-35+57) and observe reasonable agreement of their shape with experiment.

  17. Strange Quark Magnetic Moment of the Nucleon at the Physical Point.

    PubMed

    Sufian, Raza Sabbir; Yang, Yi-Bo; Alexandru, Andrei; Draper, Terrence; Liang, Jian; Liu, Keh-Fei

    2017-01-27

    We report a lattice QCD calculation of the strange quark contribution to the nucleon's magnetic moment and charge radius. This analysis presents the first direct determination of strange electromagnetic form factors including at the physical pion mass. We perform a model-independent extraction of the strange magnetic moment and the strange charge radius from the electromagnetic form factors in the momentum transfer range of 0.051  GeV^{2}≲Q^{2}≲1.31  GeV^{2}. The finite lattice spacing and finite volume corrections are included in a global fit with 24 valence quark masses on four lattices with different lattice spacings, different volumes, and four sea quark masses including one at the physical pion mass. We obtain the strange magnetic moment G_{M}^{s}(0)=-0.064(14)(09)μ_{N}. The four-sigma precision in statistics is achieved partly due to low-mode averaging of the quark loop and low-mode substitution to improve the statistics of the nucleon propagator. We also obtain the strange charge radius ⟨r_{s}^{2}⟩_{E}=-0.0043(16)(14)  fm^{2}.

  18. Baryon transition form factors at the pole

    DOE PAGES

    Tiator, L.; Döring, M.; Workman, R. L.; ...

    2016-12-21

    Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. In this paper, we derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare themore » $$G_M$$, $$G_E$$, and $$G_C$$ form factors for the $$\\Delta(1232)$$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. Finally, for pole and residue extraction, we apply the Laurent + Pietarinen method.« less

  19. Baryon transition form factors at the pole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiator, L.; Döring, M.; Workman, R. L.

    Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. In this paper, we derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare themore » $$G_M$$, $$G_E$$, and $$G_C$$ form factors for the $$\\Delta(1232)$$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. Finally, for pole and residue extraction, we apply the Laurent + Pietarinen method.« less

  20. First measurement of proton's charge form factor at very low Q 2 with initial state radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihovilovič, M.; Weber, A. B.; Achenbach, P.

    Here we report on a new experimental method based on initial-state radiation (ISR) in e–pscattering, which exploits the radiative tail of the elastic peak to study the properties of electromagnetic processes and to extract the proton charge form factor (Gmore » $$p\\atop{E}$$) at extremely small Q 2. The ISR technique was implemented in an experiment at the three-spectrometer facility of the Mainz Microtron (MAMI). This led to a precise validation of radiative corrections far away from elastic line and provided first measurements of G$$p\\atop{E}$$ for 0.001 ≤Q 2≤0.004 (GeV/c) 2.« less

  1. A covariant model for the gamma N -> N(1535) transition at high momentum transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Ramalho, M.T. Pena

    2011-08-01

    A relativistic constituent quark model is applied to the gamma N -> N(1535) transition. The N(1535) wave function is determined by extending the covariant spectator quark model, previously developed for the nucleon, to the S11 resonance. The model allows us to calculate the valence quark contributions to the gamma N -> N(1535) transition form factors. Because of the nucleon and N(1535) structure the model is valid only for Q^2> 2.3 GeV^2. The results are compared with the experimental data for the electromagnetic form factors F1* and F2* and the helicity amplitudes A_1/2 and S_1/2, at high Q^2.

  2. Nucleon Axial and Electromagnetic Form Factors

    NASA Astrophysics Data System (ADS)

    Jang, Yong-Chull; Bhattacharya, Tanmoy; Gupta, Rajan; Lin, Huey-Wen; Yoon, Boram

    2018-03-01

    We present results for the isovector axial, induced pseudoscalar, electric, and magnetic form factors of the nucleon. The calculations were done using 2 + 1 + 1-flavor HISQ ensembles generated by the MILC collaboration with lattice spacings a ≈ 0.12, 0.09, 0.06 fm and pion masses Mπ ≈ 310, 220, 130 MeV. Excited-states contamination is controlled by using four-state fits to two-point correlators and by comparing two-versus three-states in three-point correlators. The Q2 behavior is analyzed using the model independent z-expansion and the dipole ansatz. Final results for the charge radii and magnetic moment are obtained using a simultaneous fit in Mπ, lattice spacing a and finite volume.

  3. First measurement of proton's charge form factor at very low Q 2 with initial state radiation

    DOE PAGES

    Mihovilovič, M.; Weber, A. B.; Achenbach, P.; ...

    2017-05-15

    Here we report on a new experimental method based on initial-state radiation (ISR) in e–pscattering, which exploits the radiative tail of the elastic peak to study the properties of electromagnetic processes and to extract the proton charge form factor (Gmore » $$p\\atop{E}$$) at extremely small Q 2. The ISR technique was implemented in an experiment at the three-spectrometer facility of the Mainz Microtron (MAMI). This led to a precise validation of radiative corrections far away from elastic line and provided first measurements of G$$p\\atop{E}$$ for 0.001 ≤Q 2≤0.004 (GeV/c) 2.« less

  4. Form factors and differential branching ratio of B →K μ+μ- in AdS/QCD

    NASA Astrophysics Data System (ADS)

    Momeni, S.; Khosravi, R.

    2018-03-01

    The holographic distribution amplitudes (DAs) for the K pseudoscalar meson are derived. For this aim, the light-front wave function (LFWF) of the K meson is extracted within the framework of the anti-de Sitter/quantum chromodynamics (AdS/QCD) correspondence. We consider a momentum-dependent (dynamical) helicity wave function that contains the dynamical spin effects. We use the LFWF to predict the radius and the electromagnetic form factor of the kaon and compare them with the experimental values. Then, the holographic twist-2 DA of K meson ϕK(α ,μ ) is investigated and compared with the result of the light-cone sum rules (LCSR). The transition form factors of the semileptonic B →K ℓ+ℓ- decays are derived from the holographic DAs of the kaon. With the help of these form factors, the differential branching ratio of the B →K μ+μ- on q2 is plotted. A comparison is made between our prediction in AdS/QCD and the results obtained from two models including the LCSR and the lattice QCD as well as the experimental values.

  5. On electromagnetic forming processes in finitely strained solids: Theory and examples

    NASA Astrophysics Data System (ADS)

    Thomas, J. D.; Triantafyllidis, N.

    2009-08-01

    The process of electromagnetic forming (EMF) is a high velocity manufacturing technique that uses electromagnetic (Lorentz) body forces to shape sheet metal parts. EMF holds several advantages over conventional forming techniques: speed, repeatability, one-sided tooling, and most importantly considerable ductility increase in several metals. Current modeling techniques for EMF processes are not based on coupled variational principles to simultaneously account for electromagnetic and mechanical effects. Typically, separate solutions to the electromagnetic (Maxwell) and motion (Newton) equations are combined in staggered or lock-step methods, sequentially solving the mechanical and electromagnetic problems. The present work addresses these issues by introducing a fully coupled Lagrangian (reference configuration) least-action variational principle, involving magnetic flux and electric potentials and the displacement field as independent variables. The corresponding Euler-Lagrange equations are Maxwell's and Newton's equations in the reference configuration, which are shown to coincide with their current configuration counterparts obtained independently by a direct approach. The general theory is subsequently simplified for EMF processes by considering the eddy current approximation. Next, an application is presented for axisymmetric EMF problems. It is shown that the proposed variational principle forms the basis of a variational integration numerical scheme that provides an efficient staggered solution algorithm. As an illustration a number of such processes are simulated, inspired by recent experiments of freely expanding uncoated and polyurea-coated aluminum tubes.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Tanja; Roberts, Craig D.

    Quantum chromodynamics (QCDs) is the strongly interacting part of the Standard Model. It is supposed to describe all of nuclear physics; and yet, almost 50 years after the discovery of gluons and quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: neutrons and protons, and the pions that bind them together. QCD is characterised by two emergent phenomena: confinement and dynamical chiral symmetry breaking (DCSB). They have far-reaching consequences, expressed with great force in the character of the pion; and pion properties, in turn, suggest that confinement and DCSB are intimately connected. Indeed,more » since the pion is both a Nambu–Goldstone boson and a quark–antiquark bound-state, it holds a unique position in nature and, consequently, developing an understanding of its properties is critical to revealing some very basic features of the Standard Model. We describe experimental progress toward meeting this challenge that has been made using electromagnetic probes, highlighting both dramatic improvements in the precision of charged-pion form factor data that have been achieved in the past decade and new results on the neutral-pion transition form factor, both of which challenge existing notions of pion structure. We also provide a theoretical context for these empirical advances, which begins with an explanation of how DCSB works to guarantee that the pion is un-naturally light; but also, nevertheless, ensures that the pion is the best object to study in order to reveal the mechanisms that generate nearly all the mass of hadrons. In canvassing advances in these areas, our discussion unifies many aspects of pion structure and interactions, connecting the charged-pion elastic form factor, the neutral-pion transition form factor and the pion's leading-twist parton distribution amplitude. It also sketches novel ways in which experimental and theoretical studies of the charged-kaon electromagnetic form factor can provide significant contributions. Importantly, it appears that recent predictions for the large-Q 2 behaviour of the charged-pion form factor can be tested by experiments planned at the upgraded 12 GeV Jefferson Laboratory. Those experiments will extend precise charged-pion form factor data up to momentum transfers that it now appears may be large enough to serve in validating factorisation theorems in QCD. If so, they may expose the transition between the non-perturbative and perturbative domains and thereby reach a goal that has driven hadro-particle physics for around 35 years.« less

  7. The pion: an enigma within the Standard Model

    NASA Astrophysics Data System (ADS)

    Horn, Tanja; Roberts, Craig D.

    2016-07-01

    Quantum chromodynamics (QCDs) is the strongly interacting part of the Standard Model. It is supposed to describe all of nuclear physics; and yet, almost 50 years after the discovery of gluons and quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: neutrons and protons, and the pions that bind them together. QCD is characterised by two emergent phenomena: confinement and dynamical chiral symmetry breaking (DCSB). They have far-reaching consequences, expressed with great force in the character of the pion; and pion properties, in turn, suggest that confinement and DCSB are intimately connected. Indeed, since the pion is both a Nambu-Goldstone boson and a quark-antiquark bound-state, it holds a unique position in nature and, consequently, developing an understanding of its properties is critical to revealing some very basic features of the Standard Model. We describe experimental progress toward meeting this challenge that has been made using electromagnetic probes, highlighting both dramatic improvements in the precision of charged-pion form factor data that have been achieved in the past decade and new results on the neutral-pion transition form factor, both of which challenge existing notions of pion structure. We also provide a theoretical context for these empirical advances, which begins with an explanation of how DCSB works to guarantee that the pion is un-naturally light; but also, nevertheless, ensures that the pion is the best object to study in order to reveal the mechanisms that generate nearly all the mass of hadrons. In canvassing advances in these areas, our discussion unifies many aspects of pion structure and interactions, connecting the charged-pion elastic form factor, the neutral-pion transition form factor and the pion's leading-twist parton distribution amplitude. It also sketches novel ways in which experimental and theoretical studies of the charged-kaon electromagnetic form factor can provide significant contributions. Importantly, it appears that recent predictions for the large-Q 2 behaviour of the charged-pion form factor can be tested by experiments planned at the upgraded 12 GeV Jefferson Laboratory. Those experiments will extend precise charged-pion form factor data up to momentum transfers that it now appears may be large enough to serve in validating factorisation theorems in QCD. If so, they may expose the transition between the non-perturbative and perturbative domains and thereby reach a goal that has driven hadro-particle physics for around 35 years.

  8. Numerical simulation of hull curved plate forming by electromagnetic force assisted line heating

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Wang, Shun; Liu, Yujun; Li, Rui; Liu, xiao

    2017-11-01

    Line heating is a common method in shipyards for forming of hull curved plate. The aluminum alloy plate is widely used in shipbuilding. To solve the problem of thick aluminum alloy plate forming with complex curved surface, a new technology named electromagnetic force assisted line heating(EFALH) was proposed in this paper. The FEM model of EFALH was established and the effect of electromagnetic force assisted forming was verified by self development equipment. Firstly, the solving idea of numerical simulation for EFALH was illustrated. Then, the coupled numerical simulation model of multi physical fields were established. Lastly, the reliability of the numerical simulation model was verified by comparing the experimental data. This paper lays a foundation for solving the forming problems of thick aluminum alloy curved plate in shipbuilding.

  9. Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alarcon, J. M.; Weiss, C.

    We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining Chiral Effective Field Theory (more » $$\\chi$$EFT) and dispersion analysis. The spectral functions on the two-pion cut at $$t > 4 M_\\pi^2$$ are constructed using the elastic unitarity relation and an $N/D$ representation. $$\\chi$$EFT is used to calculate the real unctions $$J_\\pm^1 (t) = f_\\pm^1(t)/F_\\pi(t)$$ (ratios of the complex $$\\pi\\pi \\rightarrow N \\bar N$$ partial-wave amplitudes and the timelike pion FF), which are free of $$\\pi\\pi$$ rescattering. Rescattering effects are included through the empirical timelike pion FF $$|F_\\pi(t)|^2$$. The method allows us to compute the isovector EM spectral functions up to $$t \\sim 1$$ GeV$^2$ with controlled accuracy (LO, NLO, and partial N2LO). With the spectral functions we calculate the isovector nucleon EM FFs and their derivatives at $t = 0$ (EM radii, moments) using subtracted dispersion relations. We predict the values of higher FF derivatives with minimal uncertainties and explain their collective behavior. Finally, we estimate the individual proton and neutron FFs by adding an empirical parametrization of the isoscalar sector. Excellent agreement with the present low-$Q^2$ FF data is achieved up to $$\\sim$$0.5 GeV$^2$ for $$G_E$$, and up to $$\\sim$$0.2 GeV$^2$ for $$G_M$$. Our results can be used to guide the analysis of low-$Q^2$ elastic scattering data and the extraction of the proton charge radius.« less

  10. Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors

    DOE PAGES

    Alarcon, J. M.; Weiss, C.

    2018-05-08

    We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining Chiral Effective Field Theory (more » $$\\chi$$EFT) and dispersion analysis. The spectral functions on the two-pion cut at $$t > 4 M_\\pi^2$$ are constructed using the elastic unitarity relation and an $N/D$ representation. $$\\chi$$EFT is used to calculate the real unctions $$J_\\pm^1 (t) = f_\\pm^1(t)/F_\\pi(t)$$ (ratios of the complex $$\\pi\\pi \\rightarrow N \\bar N$$ partial-wave amplitudes and the timelike pion FF), which are free of $$\\pi\\pi$$ rescattering. Rescattering effects are included through the empirical timelike pion FF $$|F_\\pi(t)|^2$$. The method allows us to compute the isovector EM spectral functions up to $$t \\sim 1$$ GeV$^2$ with controlled accuracy (LO, NLO, and partial N2LO). With the spectral functions we calculate the isovector nucleon EM FFs and their derivatives at $t = 0$ (EM radii, moments) using subtracted dispersion relations. We predict the values of higher FF derivatives with minimal uncertainties and explain their collective behavior. Finally, we estimate the individual proton and neutron FFs by adding an empirical parametrization of the isoscalar sector. Excellent agreement with the present low-$Q^2$ FF data is achieved up to $$\\sim$$0.5 GeV$^2$ for $$G_E$$, and up to $$\\sim$$0.2 GeV$^2$ for $$G_M$$. Our results can be used to guide the analysis of low-$Q^2$ elastic scattering data and the extraction of the proton charge radius.« less

  11. Electromagnetic Meson Production in the Nucleon Resonance Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volker Burkert; T.-S. H. Lee

    Recent experimental and theoretical advances in investigating electromagnetic meson production reactions in the nucleon resonance region are reviewed. The article gives a description of current experimental facilities with electron and photon beams and presents a unified derivation of most of the phenomenological approaches being used to extract the resonance parameters from the data. The analyses of {pi} and {eta} production data and the resulting transition form factors for the {Delta}(1232)P{sub 33}, N(1535)S{sub 11}, N(1440)P{sub 11}, and N(1520)D{sub 13} resonances are discussed in detail. The status of our understanding of the reactions with production of two pions, kaons, and vector mesonsmore » is also reviewed.« less

  12. Differential form representation of stochastic electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haider, Michael; Russer, Johannes A.

    2017-09-01

    In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.

  13. Electromagnetic energy flux vector for a dispersive linear medium.

    PubMed

    Crenshaw, Michael E; Akozbek, Neset

    2006-05-01

    The electromagnetic energy flux vector in a dispersive linear medium is derived from energy conservation and microscopic quantum electrodynamics and is found to be of the Umov form as the product of an electromagnetic energy density and a velocity vector.

  14. Health Issues: Do Cell Phones Pose a Health Hazard?

    MedlinePlus

    ... confused with the effects from other types of electromagnetic energy. Very high levels of electromagnetic energy, such as is found in X-rays ... light, infrared radiation (heat) and other forms of electromagnetic radiation with relatively low frequencies. While RF energy ...

  15. [Medical and biologic research of electromagnetic fields in radiofrequencies range. Results and prospects].

    PubMed

    Kaliada, T V; Vishnevskiĭ, A M; Gorodetskiĭ, B N; Plekhanov, V P; Kuznetsov, A V

    2014-01-01

    The authors present research findings on the problem of technology-related electromagnetic fields as an occupational risk factor of workers health disturbances, and on the issue of prevention measures development against this adverse physical factor effects. Prospects for further research development in the field of electromagnetic safety are discussed.

  16. Electromagnetic Compatibility Analysis Group VA-H3

    NASA Technical Reports Server (NTRS)

    Armanda, Carlos A.

    2008-01-01

    During the eight weeks working at NASA, I was fortunate enough to work with the Expendable Launch Vehicle's (ELV) Electromagnetic Compatibility (EMC) Team, who is responsible for the evaluation and analysis of any EMI risk an ELV mission might face. This group of people concern themselves with practically any form of electromagnetic interference that may risk the safety of a rocket, a mission, or even people. Taking this into consideration, the group investigates natural forms of interference, such as lightning, to manmade interferences, such as antennas.

  17. The Teaching of Electromagnetic Induction at Sixth Form Level

    ERIC Educational Resources Information Center

    Archenhold, W. F.

    1974-01-01

    Presents some ideas about teaching electromagnetic induction at sixth form level, including educational objectives, learning difficulties, syllabus requirements, selection of unit system, and sequence of material presentation. Suggests the Education Group of the Institute of Physics hold further discussions on these aspects before including the…

  18. Analyzing high school students' reasoning about electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Jelicic, Katarina; Planinic, Maja; Planinsic, Gorazd

    2017-06-01

    Electromagnetic induction is an important, yet complex, physics topic that is a part of Croatian high school curriculum. Nine Croatian high school students of different abilities in physics were interviewed using six demonstration experiments from electromagnetism (three of them concerned the topic of electromagnetic induction). Students were asked to observe, describe, and explain the experiments. The analysis of students' explanations indicated the existence of many conceptual and reasoning difficulties with the basic concepts of electromagnetism, and especially with recognizing and explaining the phenomenon of electromagnetic induction. Three student mental models of electromagnetic induction, formed during the interviews, which reoccurred among students, are described and analyzed within the knowledge-in-pieces framework.

  19. Off-forward gluonic structure of vector mesons

    NASA Astrophysics Data System (ADS)

    Detmold, W.; Pefkou, D.; Shanahan, P. E.

    2017-06-01

    The spin-independent and transversity generalized form factors (GFFs) of the ϕ meson are studied using lattice QCD calculations with light quark masses corresponding to a pion mass mπ˜450 (5 ) MeV . One transversity and three spin-independent GFFs related to the lowest moments of leading-twist spin-independent and transversity gluon distributions are obtained at six nonzero values of the momentum transfer up to 1.2 GeV 2 . These quantities are compared with the analogous spin-independent quark GFFs and the electromagnetic form factors determined on the same lattice ensemble. The results show quantitative distinction between the spatial distribution of transversely polarized gluons, unpolarized gluons, and quarks and point the way towards further investigations of the gluon structure of nucleons and nuclei.

  20. Small Diameter Bomb Increment II (SDB II)

    DTIC Science & Technology

    2013-12-01

    in 2013: Electromagnetic Environments and Effects and Hazards of Electromagnetic Radiation to Ordnance . Reliability Growth Testing started in June...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 SDB II December 2013 SAR April 16, 2014 17:24:29...Framework EMC - Electromagnetic Compatibility EMI - Electromagnetic Interference GESP - GIG Enterprise Service Profiles GIG - Global Information Grid i.e

  1. Cluster shell model: I. Structure of 9Be, 9B

    NASA Astrophysics Data System (ADS)

    Della Rocca, V.; Iachello, F.

    2018-05-01

    We calculate energy spectra, electromagnetic transition rates, longitudinal and transverse electron scattering form factors and log ft values for beta decay in 9Be, 9B, within the framework of a cluster shell model. By comparing with experimental data, we find strong evidence for the structure of these nuclei to be two α-particles in a dumbbell configuration with Z2 symmetry, plus an additional nucleon.

  2. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    NASA Astrophysics Data System (ADS)

    Cadena, M. S. Reyes; Chapul, L. Sánchez; Pérez, Javiér; García, M. N. Jiménez; López, M. A. Jiménez; Espíndola, M. E. Sánchez; Perez, R. Paniagua; Hernández, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodríguez

    2008-08-01

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-β) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.

  3. A Reconnection Switch to Trigger gamma-Ray Burst Jet Dissipation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinney, Jonathan C.; Uzdensky, Dmitri A.

    2012-03-14

    Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questionsmore » in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii (r {approx} 10{sup 13}-10{sup 14}cm), by which the jet obtains a high Lorentz factor ({gamma} {approx} 100-1000), has a luminosity of L{sub j} {approx} 10{sup 50}-10{sup 51} erg s{sup -1}, has observer variability timescales of order 1s (ranging from 0.001-10s), achieves {gamma}{theta}{sub j} {approx} 10-20 (for opening half-angle {theta}{sub j}) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. A range of model parameters are investigated and simplified scaling laws are derived. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet. We hope this work helps motivate the development of self-consistent radiative compressible relativistic reconnection models.« less

  4. Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors

    NASA Astrophysics Data System (ADS)

    Alarcón, J. M.; Weiss, C.

    2018-05-01

    We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining chiral effective field theory (χ EFT ) and dispersion analysis. The spectral functions on the two-pion cut at t >4 Mπ2 are constructed using the elastic unitarity relation and an N /D representation. χ EFT is used to calculate the real functions J±1(t ) =f±1(t ) /Fπ(t ) (ratios of the complex π π →N N ¯ partial-wave amplitudes and the timelike pion FF), which are free of π π rescattering. Rescattering effects are included through the empirical timelike pion FF | Fπ(t) | 2 . The method allows us to compute the isovector EM spectral functions up to t ˜1 GeV2 with controlled accuracy (leading order, next-to-leading order, and partial next-to-next-to-leading order). With the spectral functions we calculate the isovector nucleon EM FFs and their derivatives at t =0 (EM radii, moments) using subtracted dispersion relations. We predict the values of higher FF derivatives, which are not affected by higher-order chiral corrections and are obtained almost parameter-free in our approach, and explain their collective behavior. We estimate the individual proton and neutron FFs by adding an empirical parametrization of the isoscalar sector. Excellent agreement with the present low-Q2 FF data is achieved up to ˜0.5 GeV2 for GE, and up to ˜0.2 GeV2 for GM. Our results can be used to guide the analysis of low-Q2 elastic scattering data and the extraction of the proton charge radius.

  5. Electromagnetic Charge Radius of the Pion at High Precision

    NASA Astrophysics Data System (ADS)

    Ananthanarayan, B.; Caprini, Irinel; Das, Diganta

    2017-09-01

    We present a determination of the pion charge radius from high precision data on the pion vector form factor from both timelike and spacelike regions, using a novel formalism based on analyticity and unitarity. At low energies, instead of the poorly known modulus of the form factor, we use its phase, known with high accuracy from Roy equations for π π elastic scattering via the Fermi-Watson theorem. We use also the values of the modulus at several higher timelike energies, where the data from e+e- annihilation and τ decay are mutually consistent, as well as the most recent measurements at spacelike momenta. The experimental uncertainties are implemented by Monte Carlo simulations. The results, which do not rely on a specific parametrization, are optimal for the given input information and do not depend on the unknown phase of the form factor above the first inelastic threshold. Our prediction for the charge radius of the pion is rπ=(0.657 ±0.003 ) fm , which amounts to an increase in precision by a factor of about 2.7 compared to the Particle Data Group average.

  6. Constraints on the ωπ Form Factor from Analyticity and Unitarity

    NASA Astrophysics Data System (ADS)

    Ananthanarayan, B.; Caprini, Irinel; Kubis, Bastian

    Form factors are important low-energy quantities and an accurate knowledge of these sheds light on the strong interactions. A variety of methods based on general principles have been developed to use information known in different energy regimes to constrain them in regions where experimental information needs to be tested precisely. Here we review our recent work on the electromagnetic ωπ form factor in a model-independent framework known as the method of unitarity bounds, partly motivated by the discre-pancies noted recently between the theoretical calculations of the form factor based on dispersion relations and certain experimental data measured from the decay ω → π0γ*. We have applied a modified dispersive formalism, which uses as input the discontinuity of the ωπ form factor calculated by unitarity below the ωπ threshold and an integral constraint on the square of its modulus above this threshold. The latter constraint was obtained by exploiting unitarity and the positivity of the spectral function of a QCD correlator, computed on the spacelike axis by operator product expansion and perturbative QCD. An alternative constraint is obtained by using data available at higher energies for evaluating an integral of the modulus squared with a suitable weight function. From these conditions we derived upper and lower bounds on the modulus of the ωπ form factor in the region below the ωπ threshold. The results confirm the existence of a disagreement between dispersion theory and experimental data on the ωπ form factor around 0:6 GeV, including those from NA60 published in 2016.

  7. Constraints on the ωπ form factor from analyticity and unitarity

    NASA Astrophysics Data System (ADS)

    Ananthanarayan, B.; Caprini, Irinel; Kubis, Bastian

    2016-05-01

    Form factors are important low-energy quantities and an accurate knowledge of these sheds light on the strong interactions. A variety of methods based on general principles have been developed to use information known in different energy regimes to constrain them in regions where experimental information needs to be tested precisely. Here we review our recent work on the electromagnetic ωπ form factor in a model-independent framework known as the method of unitarity bounds, partly motivated by the discrepancies noted recently between the theoretical calculations of the form factor based on dispersion relations and certain experimental data measured from the decay ω → π0γ∗. We have applied a modified dispersive formalism, which uses as input the discontinuity of the ωπ form factor calculated by unitarity below the ωπ threshold and an integral constraint on the square of its modulus above this threshold. The latter constraint was obtained by exploiting unitarity and the positivity of the spectral function of a QCD correlator, computed on the spacelike axis by operator product expansion and perturbative QCD. An alternative constraint is obtained by using data available at higher energies for evaluating an integral of the modulus squared with a suitable weight function. From these conditions we derived upper and lower bounds on the modulus of the ωπ form factor in the region below the ωπ threshold. The results confirm the existence of a disagreement between dispersion theory and experimental data on the ωπ form factor around 0.6 GeV, including those from NA60 published in 2016.

  8. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadena, M. S. Reyes; Chapul, L. Sanchez; Perez, Javier

    2008-08-11

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-{beta}) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animalsmore » subjected to ELF together with the transfer factor.« less

  9. Photonic crystal devices formed by a charged-particle beam

    DOEpatents

    Lin, Shawn-Yu; Koops, Hans W. P.

    2000-01-01

    A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.

  10. Evidence for the Role of Blue Light in the Development of Uveal Melanoma

    PubMed Central

    Logan, Patrick; Bernabeu, Miguel; Ferreira, Alberto; Burnier, Miguel N.

    2015-01-01

    Uveal melanoma is the most common malignancy of the adult eye. Although it is a relatively infrequent tumor, clinical prognosis is often poor owing to a high incidence of aggressive metastatic disease, for which there are limited treatment options. Little is known about the etiology of this condition, although several risk factors have been identified. Unlike cutaneous melanoma, however, ultraviolet radiation does not figure prominently among these risk factors. In this review, we focus on an associated form of visible electromagnetic radiation, high-energy short-wave (blue) light, a causative agent in various forms of age-related retina damage, as a previously overlooked risk factor in uveal melanoma development and progression. Finally, we discuss the impact of these data on contemporary ocular therapy, particularly the debate surrounding the filtering capabilities of intraocular lenses used to replace dysfunctional crystalline lenses during cataract surgery. PMID:26075084

  11. Proton elastic form factor ratios to Q2=3.5GeV2 by polarization transfer

    NASA Astrophysics Data System (ADS)

    Punjabi, V.; Perdrisat, C. F.; Aniol, K. A.; Baker, F. T.; Berthot, J.; Bertin, P. Y.; Bertozzi, W.; Besson, A.; Bimbot, L.; Boeglin, W. U.; Brash, E. J.; Brown, D.; Calarco, J. R.; Cardman, L. S.; Chai, Z.; Chang, C.-C.; Chen, J.-P.; Chudakov, E.; Churchwell, S.; Cisbani, E.; Dale, D. S.; Leo, R. De; Deur, A.; Diederich, B.; Domingo, J. J.; Epstein, M. B.; Ewell, L. A.; Fissum, K. G.; Fleck, A.; Fonvieille, H.; Frullani, S.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gerstner, G.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Green, A.; Hansen, J.-O.; Howell, C. R.; Huber, G. M.; Iodice, M.; de Jager, C. W.; Jaminion, S.; Jiang, X.; Jones, M. K.; Kahl, W.; Kelly, J. J.; Khayat, M.; Kramer, L. H.; Kumbartzki, G.; Kuss, M.; Lakuriki, E.; Laveissière, G.; Lerose, J. J.; Liang, M.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Macri, R.; Madey, R.; Malov, S.; Margaziotis, D. J.; Markowitz, P.; McCormick, K.; McIntyre, J. I.; Meer, R. L.; Michaels, R.; Milbrath, B. D.; Mougey, J. Y.; Nanda, S. K.; Offermann, E. A.; Papandreou, Z.; Pentchev, L.; Petratos, G. G.; Piskunov, N. M.; Pomatsalyuk, R. I.; Prout, D. L.; Quéméner, G.; Ransome, R. D.; Raue, B. A.; Roblin, Y.; Roche, R.; Rutledge, G.; Rutt, P. M.; Saha, A.; Saito, T.; Sarty, A. J.; Smith, T. P.; Sorokin, P.; Strauch, S.; Suleiman, R.; Takahashi, K.; Templon, J. A.; Todor, L.; Ulmer, P. E.; Urciuoli, G. M.; Vernin, P.; Vlahovic, B.; Voskanyan, H.; Wijesooriya, K.; Wojtsekhowski, B. B.; Woo, R. J.; Xiong, F.; Zainea, G. D.; Zhou, Z.-L.

    2005-05-01

    The ratio of the proton elastic electromagnetic form factors, GEp/GMp, was obtained by measuring Pt and Pℓ, the transverse and longitudinal recoil proton polarization components, respectively, for the elastic e→p→ep→reaction in the four-momentum transfer squared range of 0.5 to 3.5GeV2. In the single-photon exchange approximation, GEp/GMp is directly proportional to Pt/Pℓ. The simultaneous measurement of Pt and Pℓ in a polarimeter reduces systematic uncertainties. The results for GEp/GMp show a systematic decrease with increasing Q2, indicating for the first time a definite difference in the distribution of charge and magnetization in the proton. The data have been reanalyzed and their systematic uncertainties have become significantly smaller than those reported previously.

  12. Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions).

    PubMed

    Bulanov, Sergei V; Esirkepov, Timur Zh; Kando, Masaki; Koga, James K; Bulanov, Stepan S

    2011-11-01

    When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.

  13. Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki

    2011-11-15

    When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to themore » nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.« less

  14. System and Network Security Acronyms and Abbreviations

    DTIC Science & Technology

    2009-09-01

    hazards of electromagnetic radiation to fuel HERO hazards of electromagnetic radiation to ordnance HERP hazards of electromagnetic ...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 System and Network Security Acronyms...authentication and key management ALG application layer gateway ANSI American National Standards Institute AP access point API application

  15. Voyager Saturnian ring measurements and the early history of the solar system

    NASA Technical Reports Server (NTRS)

    Alfven, H.; Axnaes, I.; Brenning, N.; Lindquist, P. A.

    1985-01-01

    The mass distribution in the Saturnian ring system is investigated and compared with predictions from plasma cosmogony. According to this theory, the matter in the rings was once a magnetized plasma, in which gravitation is balanced by the centrifugal and electromagnetic forces. As the plasma is neutralized, the electromagnetic forces disappear and the matter falls in to 2/3 of the original saturnocentric distance. This causes the cosmogonic shadow effect, demonstrated for the large scale structure of the Saturnian ring system. It is shown that many structures of the present ring system can be understood as shadows and antishadows of cosmogonic origin. These appear in the form of double rings centered around a position a factor 0.64 (slightly 2/3) closer to Saturn than the causing feature. Voyager data agree with an accuracy 1%.

  16. Electromagnetic Compatibility Design of the Computer Circuits

    NASA Astrophysics Data System (ADS)

    Zitai, Hong

    2018-02-01

    Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.

  17. Research in Antenna Technology, Radar Technology and Electromagnetic Scattering Phenomena

    DTIC Science & Technology

    2015-03-01

    efforts of a group of six researchers in the fields of electromagnetics , radar and antenna technology. Research was conducted during this reporting...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Research in Antenna technology, Radar Technology and Electromagnetic Scattering...Scattering-Matrix Theory Based on Gaussian Beams………...65 4.5.3 Array realization of complex-source beam……………………………85 4.5.4 Electromagnetic Scattering

  18. Research in Antenna Technology, Radar Technology and Electromagnetic Scattering Phenomena

    DTIC Science & Technology

    2015-04-06

    a group of six researchers in the fields of electromagnetics , radar and antenna technology. Research was conducted during this reporting period in...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Research in Antenna technology, Radar Technology and Electromagnetic Scattering Phenomena...Matrix Theory Based on Gaussian Beams………...65 4.5.3 Array realization of complex-source beam……………………………85 4.5.4 Electromagnetic Scattering-Matrix

  19. Exact analytic solutions of Maxwell's equations describing propagating nonparaxial electromagnetic beams.

    PubMed

    Garay-Avendaño, Roger L; Zamboni-Rached, Michel

    2014-07-10

    In this paper, we propose a method that is capable of describing in exact and analytic form the propagation of nonparaxial scalar and electromagnetic beams. The main features of the method presented here are its mathematical simplicity and the fast convergence in the cases of highly nonparaxial electromagnetic beams, enabling us to obtain high-precision results without the necessity of lengthy numerical simulations or other more complex analytical calculations. The method can be used in electromagnetism (optics, microwaves) as well as in acoustics.

  20. Precision study of the η → μ+μ-γ and ω → μ+μ-π0 electromagnetic transition form-factors and of the ρ → μ+μ- line shape in NA60

    NASA Astrophysics Data System (ADS)

    Arnaldi, R.; Banicz, K.; Borer, K.; Castor, J.; Chaurand, B.; Chen, W.; Cicalò, C.; Colla, A.; Cortese, P.; Damjanovic, S.; David, A.; de Falco, A.; Devaux, A.; Ducroux, L.; En'yo, H.; Fargeix, J.; Ferretti, A.; Floris, M.; Förster, A.; Force, P.; Guettet, N.; Guichard, A.; Gulkanian, H.; Heuser, J. M.; Jarron, P.; Keil, M.; Kluberg, L.; Li, Z.; Lourenço, C.; Lozano, J.; Manso, F.; Martins, P.; Masoni, A.; Neves, A.; Ohnishi, H.; Oppedisano, C.; Parracho, P.; Pillot, P.; Poghosyan, T.; Puddu, G.; Radermacher, E.; Ramalhete, P.; Rosinsky, P.; Scomparin, E.; Seixas, J.; Serci, S.; Shahoyan, R.; Sonderegger, P.; Specht, H. J.; Tieulent, R.; Uras, A.; Usai, G.; Veenhof, R.; Wöhri, H. K.

    2016-06-01

    The NA60 experiment studied low-mass muon pair production in proton-nucleus (p-A) collisions using a 400 GeV proton beam at the CERN SPS. The low-mass dimuon spectrum is well described by the superposition of the two-body and Dalitz decays of the light neutral mesons η, ρ, ω, η‧ and ϕ, and no evidence of in-medium effects is found. A new high-precision measurement of the electromagnetic transition form factors of the η and ω was performed, profiting from a 10 times larger data sample than the peripheral In-In sample previously collected by NA60. Using the pole-parameterisation | F (M)|2 =(1 -M2 /Λ2)- 2 we find Λη-2 = 1.934 ± 0.067 (stat.) ±0.050 (syst.) (GeV /c2)-2 and Λω-2 = 2.223 ± 0.026 (stat.) ±0.037 (syst.) (GeV /c2)-2. An improved value of the branching ratio of the Dalitz decay ω →μ+μ-π0 is also obtained, with BR (ω →μ+μ-π0) = [ 1.41 ± 0.09 (stat.) ± 0.15 (syst.) ] ×10-4. Further results refer to the ρ line shape and a new limit on ρ / ω interference in hadron interactions.

  1. Artificial Excitation of Schumann Resonance with HAARP

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C. L.

    2014-12-01

    We report results from the experiment aimed at the artificial excitation of extremely-low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance (typically, 7.5 - 8.0 Hz frequency range). Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated by the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range of the Schumann resonance, when the ionosphere has a strong F-layer and an electric field greater than 5 mV/m is present in the E-region.

  2. Light meson form factors at high Q2 from lattice QCD

    NASA Astrophysics Data System (ADS)

    Koponen, Jonna; Zimermmane-Santos, André; Davies, Christine; Lepage, G. Peter; Lytle, Andrew

    2018-03-01

    Measurements and theoretical calculations of meson form factors are essential for our understanding of internal hadron structure and QCD, the dynamics that bind the quarks in hadrons. The pion electromagnetic form factor has been measured at small space-like momentum transfer |q2| < 0.3 GeV2 by pion scattering from atomic electrons and at values up to 2.5 GeV2 by scattering electrons from the pion cloud around a proton. On the other hand, in the limit of very large (or infinite) Q2 = -q2, perturbation theory is applicable. This leaves a gap in the intermediate Q2 where the form factors are not known. As a part of their 12 GeV upgrade Jefferson Lab will measure pion and kaon form factors in this intermediate region, up to Q2 of 6 GeV2. This is then an ideal opportunity for lattice QCD to make an accurate prediction ahead of the experimental results. Lattice QCD provides a from-first-principles approach to calculate form factors, and the challenge here is to control the statistical and systematic uncertainties as errors grow when going to higher Q2 values. Here we report on a calculation that tests the method using an ηs meson, a 'heavy pion' made of strange quarks, and also present preliminary results for kaon and pion form factors. We use the nf = 2 + 1 + 1 ensembles made by the MILC collaboration and Highly Improved Staggered Quarks, which allows us to obtain high statistics. The HISQ action is also designed to have small dicretisation errors. Using several light quark masses and lattice spacings allows us to control the chiral and continuum extrapolation and keep systematic errors in check. Warning, no authors found for 2018EPJWC.17506016.

  3. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    PubMed

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  4. Automatic box loader

    DOEpatents

    Eldridge, Harry H.; Jones, Robert A.; Lindner, Gordon M.; Hight, Paul H.

    1976-01-01

    This invention relates to a system for repetitively forming an assembly consisting of a single layer of tubes and a row of ferromagnetic armatures underlying the same, electromagnetically conveying the resulting assembly to a position overlying a storage box, and depositing the assembly in the box. The system includes means for simultaneously depositing a row of the armatures on the inclined surface of a tube retainer. Tubes then are rolled down the surface to form a single tube layer bridging the armatures. A magnet assembly carrying electromagnets respectively aligned with the armatures is advanced close to the tube layer, and in the course of this advance is angularly displaced to bring the pole pieces of the electromagnets into parallelism with the tube layer. The magnets then are energized to pick up the assembly. The loaded magnet assembly is retracted to a position overlying the box, and during this retraction is again displaced to bring the pole pieces of the electromagnets into a horizontal plane. Means are provided for inserting the loaded electromagnets in the box and then de-energizing the electromagnets to deposit the assembly therein. The system accomplishes the boxing of fragile tubes at relatively high rates. Because the tubes are boxed as separated uniform layers, subsequent unloading operations are facilitated.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramanik, Souvik, E-mail: souvick.in@gmail.com; Ghosh, Subir, E-mail: subir_ghosh2@rediffmail.com; Pal, Probir, E-mail: probirkumarpal@rediffmail.com

    In the present paper, dynamics of generalized charged particles are studied in the presence of external electromagnetic interactions. This particular extension of the free relativistic particle model lives in Non-Commutative κ-Minkowski space–time, compatible with Doubly Special Relativity, that is motivated to describe Quantum Gravity effects. Furthermore we have also considered the electromagnetic field to be dynamical and have derived the modified forms of Lienard–Wiechert like potentials for these extended charged particle models. In all the above cases we exploit the new and extended form of κ-Minkowski algebra where electromagnetic effects are incorporated in the lowest order, in the Dirac frameworkmore » of Hamiltonian constraint analysis.« less

  6. Induced polarization and its interaction with electromagnetic coupling in low-frequency geophysical exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruszka, T.P.

    1987-01-01

    Starting from the dynamic equations of electromagnetics we derive mutual impedance formulas that include the effects of induced polarization (IP) and electromagnetic (EM) coupling. The mutual impedance formulas are given for four geometries: a fullspace, a cylinder in a fullspace, a halfspace, and a layer over a halfspace. IP effects are characterized by a Cole-Cole model, the properties of which are fully investigated. From the general mutual impedance formulas specific limiting forms are defined to characterize the IP and EM effects. Using these limiting forms a framework is developed to justify the addition or multiplication of the two effects. Themore » additive and multiplicative models are compared in the cylinder and layer geometries with the conclusion that the additive model proves to be more accurate over a wider range of frequencies than the multiplicative model. The nature of the IP and EM effects is illustrated in all four geometries showing the effects of relevant parameters. In all cases it is shown that the real part of the mutual impedance contains important IP information that is less influenced by EM effects. Finally the effects of boundaries are illustrated by the cylinder and layer geometries and a theory is developed to incorporate EM effects and IP effects from multiple regions which utilizes frequency dependent real dilution factors. The author also included a brief review of some EM removal schemes and dilution theory approximations.« less

  7. FAST TRACK COMMUNICATION: Free form of the Foldy-Wouthuysen transformation in external electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Murguía, Gabriela; Raya, Alfredo

    2010-10-01

    We derive the exact Foldy-Wouthuysen transformation for Dirac fermions in a time-independent external electromagnetic field in the basis of the Ritus eigenfunctions, namely the eigenfunctions of the operator (γ sdot Π)2, with Πμ = pμ - eAμ. On this basis, the transformation acquires a free form involving the dynamical quantum numbers induced by the field.

  8. Modeling particle injections during magnetospheric substorm by a propagating earthward electromagnetic pulse.

    NASA Astrophysics Data System (ADS)

    Kalugin, G. A.; Kabin, K.; Donovan, E.; Spanswick, E.

    2016-12-01

    During substorm expansion phase the electrons and ions with energies of up to 100 keV appear in the near-Earth magnetotail. Often, this increase occurs simultaneously for a broad range of particle energies; such events are called dispersionless injections (DIs). Explanations of DIs usually relay on some form of an earthward propagating electromagnetic pulse, which is capable of effectively energizing an initial distribution of electrons and ions. Most of the previous models of such pulses were developed for the equatorial plane only. We propose a new model of an electromagnetic pulse which is two-dimensional in the meridional plane. Electric and magnetic fields in the pulse are calculated self-consistently and satisfy Maxwell's equations. We use realistic time-independent stretched magnetic field as the background. Our model has several adjustable parameters, such as the speed of the pulse propagation, its amplitude and spatial extent, which makes it versatile enough to investigate effects of the pulse characteristics on the particle energization. We present and discuss several examples of particle energization in our model and find that in some cases the energies of the seed electrons can increase by a factor of 10 or more. Two-dimensional nature of our model allows us to visualize the motion of the field lines in the meridional plane associated with the travelling electromagnetic pulse and to calculate the ionospheric footprints of the particle dynamics in the equatorial plane.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ananthanarayan, B.; Imsong, I. Sentitemsu; Caprini, Irinel

    The recently evaluated two-pion contribution to the muon g-2 and the phase of the pion electromagnetic form factor in the elastic region, known from {pi}{pi} scattering by Fermi-Watson theorem, are exploited by analytic techniques for finding correlations between the coefficients of the Taylor expansion at t=0 and the values of the form factor at several points in the spacelike region. We do not use specific parametrizations, and the results are fully independent of the unknown phase in the inelastic region. Using for instance, from recent determinations, =(0.435{+-}0.005) fm{sup 2} and F(-1.6 GeV{sup 2})=0.243{sub -0.014}{sup +0.022}, we obtain themore » allowed ranges 3.75 GeV{sup -4} < or approx. c < or approx. 3.98 GeV{sup -4} and 9.91 GeV{sup -6} < or approx. d < or approx. 10.46 GeV{sup -6} for the curvature and the next Taylor coefficient, with a strong correlation between them. We also predict a large region in the complex plane where the form factor cannot have zeros.« less

  10. Broad band waveguide spectrometer

    DOEpatents

    Goldman, Don S.

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  11. Quantized Electromagnetic-Field Propagation in General Non-Local and Non-Stationary Dispersive and Absorbing Media

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne

    Dynamical descriptions for the propagation of quantized electromagnetic fields, in the presence of environmental interactions, are systematically and self-consistently developed in the complimentary Schrödinger and Heisenberg pictures. An open-systems (non-equilibrium) quantum-electrodynamics description is thereby provided for electromagnetic-field propagation in general non-local and non-stationary dispersive and absorbing optical media, including a fundamental microscopic treatment of decoherence and relaxation processes due to environmental collisional and electromagnetic interactions. Particular interest is centered on entangled states and other non-classical states of electromagnetic fields, which may be created by non-linear electromagnetic interactions and detected by the measurement of various electromagnetic-field correlation functions. Accordingly, we present dynamical descriptions based on general forms of electromagnetic-field correlation functions involving both the electric-field and the magnetic-field components of the electromagnetic field, which are treated on an equal footing. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.

  12. Artificial excitation of ELF waves with frequency of Schumann resonance

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.

    2014-11-01

    We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.

  13. Micro-fabricated integrated coil and magnetic circuit and method of manufacturing thereof

    DOEpatents

    Mihailovich, Robert E.; Papavasiliou, Alex P.; Mehrotra, Vivek; Stupar, Philip A.; Borwick, III, Robert L.; Ganguli, Rahul; DeNatale, Jeffrey F.

    2017-03-28

    A micro-fabricated electromagnetic device is provided for on-circuit integration. The electromagnetic device includes a core. The core has a plurality of electrically insulating layers positioned alternatingly between a plurality of magnetic layers to collectively form a continuous laminate having alternating magnetic and electrically insulating layers. The electromagnetic device includes a coil embedded in openings of the semiconductor substrate. An insulating material is positioned in the cavity and between the coil and an inner surface of the core. A method of manufacturing the electromagnetic device includes providing a semiconductor substrate having openings formed therein. Windings of a coil are electroplated and embedded in the openings. The insulating material is coated on or around an exposed surface of the coil. Alternating magnetic layers and electrically insulating layers may be micro-fabricated and electroplated as a single and substantially continuous segment on or around the insulating material.

  14. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  15. QCD Sum Rules and Models for Generalized Parton Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anatoly Radyushkin

    2004-10-01

    I use QCD sum rule ideas to construct models for generalized parton distributions. To this end, the perturbative parts of QCD sum rules for the pion and nucleon electromagnetic form factors are interpreted in terms of GPDs and two models are discussed. One of them takes the double Borel transform at adjusted value of the Borel parameter as a model for nonforward parton densities, and another is based on the local duality relation. Possible ways of improving these Ansaetze are briefly discussed.

  16. Carter separable electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, D.

    2000-02-01

    The purely electromagnetic analogue in flat space of Kerr's metric in general relativity is only rarely considered. Here we carry out in flat space a programme similar to Carter's investigation of metrics in general relativity in which the motion of a charged particle is separable. We concentrate on the separability of the motion (be it classical, relativistic or quantum) of a charged particle in electromagnetic fields that lie in planes through an axis of symmetry. In cylindrical polar coordinates (t,R,φ,z) the four-vector potential takes the form [formmu2] is the unit toroidal vector. The forms of the functions Φ(R,z) and A(R,z) are sought that allow separable motion. This occurs for relativistic motion only when AR,Φ and A2-Φ2 are all of the separable form ζ(λ)-η(μ)]/(λ-μ), where ζ and η are arbitrary functions, and λ and μ are spheroidal coordinates or degenerations thereof. The special forms of A and Φ that allow this are deduced. They include the Kerr metric analogue, with E+iB=-∇{q[(r-ia).(r-ia)]-1/2}. Rather more general electromagnetic fields allow separation when the motion is non-relativistic. The investigation is extended to fields that lie in parallel planes. Connections to Larmor's theorem are remarked upon.

  17. Effects of Electromagnetic Stimulation on Cell Density and Neural Markers in Murine Enteric Cell Cultures

    NASA Astrophysics Data System (ADS)

    Carreón-Rodríguez, A.; Belkind-Gerson, J.; Serrano-Luna, G.; Cañedo-Dorantes, L.

    2008-08-01

    Availability of adult stem cells from several organs like bone marrow, umbilical cord blood or peripheral blood has become a powerful therapeutic tool for many chronic diseases. Potential of adult stem cells for regeneration extents to other tissues among them the nervous system. However two obstacles should be resolved before such cells could be currently applied in clinical practice: a) slow growth rate and b) ability to form enough dense colonies in order to populate a specific injury or cellular deficiency. Many approaches have been explored as genetic differentiation programs, growth factors, and supplemented culture media, among others. Electromagnetic field stimulation of differentiation, proliferation, migration, and particularly on neurogenesis is little known. Since the biological effects of ELF-EMF are well documented, we hypothesize ELF-EMF could affect growth and maturation of stem cells derived of enteric tissue.

  18. The Use of a Gain Monitoring System in the G0 Experiment

    NASA Astrophysics Data System (ADS)

    Nakos, Melissa T.

    2001-11-01

    The main goal of the G0 experiment is to find the contributions of the three light quark flavors to the electromagnetic properties of the nucleon by comparing the electromagnetic and neutral weak form factors, measured through the observation of parity-violating asymmetries in elastic electron-nucleon scattering. The experiment will measure the time of flight and the momentum transfer of protons (at forward scattering angles) and electrons (at backward scattering angles). The detectors used in this experiment are plastic scintillators placed in the focal plane of a magnetic spectrometer such that the momentum transfer is directly measured. A gain monitoring system has been designed to track the timing and gain of the photomultiplier tubes at the end of each scintillator. The system is made of a pulsed ultraviolet laser, pure silica fiber optic cables, and a masking system to mimic a real event.

  19. Analysis and measurements of low frequency lightning component penetration through aerospace vehicle metal and graphite skins

    NASA Technical Reports Server (NTRS)

    Robb, J. D.; Chen, T.

    1980-01-01

    An analysis of the shielding properties of mixed metal and graphite composite structures has illustrated some important aspects of electromagnetic field penetration into the interior. These include: (1) that graphite access doors on metallic structures will attenuate lightning magnetic fields very little; conversely, metal doors on a graphite structure will also attenuate fields from lightning strike currents very little, i.e., homogeneity of the shield is a critical factor in shielding and (2) that continuous conductors between two points inside a graphite skin such as an air data probe metallic tubing connection to an air data computer can allow large current penetrations into a vehicle interior. The true weight savings resulting from the use of composite materials can only be evaluated after the resulting electromagnetic problems such as current penetrations have been solved, and this generally requires weight addition in the form of cable shields, conductor bonding or external metallization.

  20. Electromagnetic cellular interactions.

    PubMed

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Portable Electromagnetic Induction Sensor with Integrated Positioning

    DTIC Science & Technology

    2013-08-20

    Subsurface electromagnetic induction imaging for unexploded ordnance detection. Journal of Applied Geophysics, 79:38 – 45, 2012. ISSN 09269851. URL http...Portable Electromagnetic Induction Sensor with Integrated Positioning MR-1712 Final Report Submitted to Strategic Environmental Research and...19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Rev. 8–98) Prescribed by ANSI Std. Z39.18 06–25–2013

  2. Linear and angular coherence momenta in the classical second-order coherence theory of vector electromagnetic fields.

    PubMed

    Wang, Wei; Takeda, Mitsuo

    2006-09-01

    A new concept of vector and tensor densities is introduced into the general coherence theory of vector electromagnetic fields that is based on energy and energy-flow coherence tensors. Related coherence conservation laws are presented in the form of continuity equations that provide new insights into the propagation of second-order correlation tensors associated with stationary random classical electromagnetic fields.

  3. Effects of low-intensity ultrahigh frequency electromagnetic radiation on inflammatory processes.

    PubMed

    Lushnikov, K V; Shumilina, Yu V; Yakushina, V S; Gapeev, A B; Sadovnikov, V B; Chemeris, N K

    2004-04-01

    Low-intensity ultrahigh frequency electromagnetic radiation (42 GHz, 100 microW/cm(2)) reduces the severity of inflammation and inhibits production of active oxygen forms by inflammatory exudate neutrophils only in mice with inflammatory process. These data suggest that some therapeutic effects of electromagnetic radiation can be explained by its antiinflammatory effect which is realized via modulation of functional activity of neutrophils in the focus of inflammation.

  4. Laser Spiderweb Sensor Used with Portable Handheld Devices

    NASA Technical Reports Server (NTRS)

    Scott, David C. (Inventor); Ksendzov, Alexander (Inventor); George, Warren P. (Inventor); Smith, James A. (Inventor); Steinkraus, Joel M. (Inventor); Hofmann, Douglas C. (Inventor); Aljabri, Abdullah S. (Inventor); Bendig, Rudi M. (Inventor)

    2017-01-01

    A portable spectrometer, including a smart phone case storing a portable spectrometer, wherein the portable spectrometer includes a cavity; a source for emitting electromagnetic radiation that is directed on a sample in the cavity, wherein the electromagnetic radiation is reflected within the cavity to form multiple passes of the electromagnetic radiation through the sample; a detector for detecting the electromagnetic radiation after the electromagnetic radiation has made the multiple passes through the sample in the cavity, the detector outputting a signal in response to the detecting; and a device for communicating the signal to a smart phone, wherein the smart phone executes an application that performs a spectral analysis of the signal.

  5. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  6. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  7. Toroidal plasmoid generation via extreme hydrodynamic shear

    PubMed Central

    Gharib, Morteza; Mendoza, Sean; Rosenfeld, Moshe; Beizai, Masoud

    2017-01-01

    Saint Elmo’s fire and lightning are two known forms of naturally occurring atmospheric pressure plasmas. As a technology, nonthermal plasmas are induced from artificially created electromagnetic or electrostatic fields. Here we report the observation of arguably a unique case of a naturally formed such plasma, created in air at room temperature without external electromagnetic action, by impinging a high-speed microjet of deionized water on a dielectric solid surface. We demonstrate that tribo-electrification from extreme and focused hydrodynamic shear is the driving mechanism for the generation of energetic free electrons. Air ionization results in a plasma that, unlike the general family, is topologically well defined in the form of a coherent toroidal structure. Possibly confined through its self-induced electromagnetic field, this plasmoid is shown to emit strong luminescence and discrete-frequency radio waves. Our experimental study suggests the discovery of a unique platform to support experimentation in low-temperature plasma science. PMID:29146825

  8. Human Health and Exposure to Electromagnetic Radiation

    DTIC Science & Technology

    1992-07-01

    electromagnetic field exposures and cancer. Studies of electrical and electronic workers are suggestive of such a link, but are subject to the confounding factor ...associations between cancer and electrical installations 108 51 Factors associated with increased risk of childhood cancer in the Denver studies 109 52...It is important in epidemiological studies to make Arenuous efforts to adjust for possible confounding factors , many - in particular the early

  9. High speed displacement measurement based on electro-magnetic induction applied to electromagnetically driven ring expansion

    NASA Astrophysics Data System (ADS)

    Han, Xiaotao; Wu, Jiawei; Huang, Lantao; Qiu, Lei; Chen, Qi; Cao, Quanliang; Herlach, Fritz; Li, Liang

    2017-11-01

    Investigating the mechanism of electromagnetic forming (EMF) becomes a hot topic in the field of metal forming. The high speed up to 200 m/s in EMF makes it a real challenge to capture the forming process. To this end, a new method for measuring displacement at high speed based on electromagnetic induction has been developed. Specifically this is used to measure the displacement of an expanding metal ring driven by a pulsed magnetic field; this is one of the basic EMF processes. The new method is simple and practical, and it combines high-speed response with adequate precision. The new measurement system consists of a printed circuit board (PCB) and a Rogowski probe. Eleven coaxial annular detecting probes are arranged in the PCB plate to acquire induced voltage at different positions, and a Rogowski probe is used to measure the current in the driving coil. The displacement of the ring is deduced by analyzing the output voltages of the detecting probes and the Rogowski probe. The feasibility of the method is verified by comparing the results with pictures from a high speed camera taken simultaneously.

  10. Electromagnetism on anisotropic fractal media

    NASA Astrophysics Data System (ADS)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  11. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.

    PubMed

    Dhawan, Anuj; Norton, Stephen J; Gerhold, Michael D; Vo-Dinh, Tuan

    2009-06-08

    This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as "hot spots" between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

  12. Precision study of the η → μ +μ -γ and ω → μ +μ -π 0 electromagnetic transition form-factors and of the ρ → μ +μ - line shape in NA60

    DOE PAGES

    Arnaldi, R.; Banicz, K.; Borer, K.; ...

    2016-04-11

    The NA60 experiment studied low-mass muon pair production in proton–nucleus (p–A) collisions using a 400 GeV proton beam at the CERN SPS. The low-mass dimuon spectrum is well described by the superposition of the two-body and Dalitz decays of the light neutral mesons η, ρ, ω, η' and φ, and no evidence of in-medium effects is found. A new high-precision measurement of the electromagnetic transition form factors of the η and ω was performed, profiting from a 10 times larger data sample than the peripheral In–In sample previously collected by NA60. Using the pole-parameterisation |F(M)| 2=(1 - M 2/Λ 2)more » -2 we find Λ -2 η = 1.934 ± 0.067 (stat.) ±0.050(syst.) (GeV/c 2) -2 and Λ -2 ω = 2.223 ± 0.026(stat.) ± 0.037(syst.) (GeV/c 2) -2. An improved value of the branching ratio of the Dalitz decay ω → μ +μ -π 0 is also obtained, with BR(ω → μ +μ -π 0) = [1.41 ± 0.09(stat.) ± 0.15(syst.)] ×10 -4. Finally, further results refer to the ρ line shape and a new limit on ρ/ω interference in hadron interactions.« less

  13. The pion: an enigma within the Standard Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Tanja; Roberts, Craig D.

    2016-05-27

    Almost 50 years after the discovery of gluons & quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: neutrons, protons, and the pions that bind them. QCD is characterised by two emergent phenomena: confinement & dynamical chiral symmetry breaking (DCSB). They are expressed with great force in the character of the pion. In turn, pion properties suggest that confinement & DCSB are closely connected. As both a Nambu-Goldstone boson and a quark-antiquark bound-state, the pion is unique in Nature. Developing an understanding of its properties is thus critical to revealing basic features ofmore » the Standard Model. We describe experimental progress in this direction, made using electromagnetic probes, highlighting both improvements in the precision of charged-pion form factor data, achieved in the past decade, and new results on the neutral-pion transition form factor. Both challenge existing notions of pion structure. We also provide a theoretical context for these empirical advances, first explaining how DCSB works to guarantee that the pion is unnaturally light; but also, nevertheless, ensures the pion is key to revealing the mechanisms that generate nearly all the mass of hadrons. Our discussion unifies the charged-pion elastic and neutral-pion transition form factors, and the pion's twist-2 parton distribution amplitude. It also indicates how studies of the charged-kaon form factor can provide significant contributions. Importantly, recent predictions for the large-$Q^2$ behaviour of the pion form factor can be tested by experiments planned at JLab 12. Those experiments will extend precise charged-pion form factor data to momenta that can potentially serve in validating factorisation theorems in QCD, exposing the transition between the nonperturbative and perturbative domains, and thereby reaching a goal that has long driven hadro-particle physics.« less

  14. Design of electromagnetic refractor and phase transformer using coordinate transformation theory.

    PubMed

    Lin, Lan; Wang, Wei; Cui, Jianhua; Du, Chunlei; Luo, Xiangang

    2008-05-12

    We designed an electromagnetic refractor and a phase transformer using form-invariant coordinate transformation of Maxwell's equations. The propagation direction of electromagnetic energy in these devices can be modulated as desired. Unlike the conventional dielectric refractor, electromagnetic fields at our refraction boundary do not conform to the Snell's law in isotropic materials and the impedance at this boundary is matched which makes the reflection extremely low; and the transformation of the wave front from cylindrical to plane can be realized in the phase transformer with a slab structure. Two dimensional finite-element simulations were performed to confirm the theoretical results.

  15. Final analysis of proton form factor ratio data at Q 2 = 4.0, 4.8, and 5.6 GeV 2

    DOE PAGES

    Puckett, A. J. R.; Brash, E. J.; Gayou, O.; ...

    2012-04-11

    Recently published measurements of the proton electromagnetic form factor ratio R = μ p G E p/G M p at momentum transfers Q 2 up to 8.5 GeV 2 in Jefferson Lab Hall C deviate from the linear trend of previous measurements in Jefferson Lab Hall A, favoring a slower rate of decrease of R with Q 2. While statistically compatible in the region of overlap with Hall A, the Hall C data hint at a systematic difference between the two experiments. This possibility was investigated in a reanalysis of the Hall A data. We find that the original analysismore » underestimated the background in the selection of elastic events. The application of an additional cut to further suppress the background increases the results for R, improving the consistency between Halls A and C.« less

  16. Charge-conjugation symmetric complete impulse approximation for the pion electromagnetic form factor in the covariant spectator theory

    DOE PAGES

    Biernat, Elmar P.; Gross, Franz; Peña, M. T.; ...

    2015-10-26

    The pion form factor is calculated in the framework of the charge-conjugation invariant covariant spectator theory. This formalism is established in Minkowski space, and the calculation is set up in momentum space. In a previous calculation we included only the leading pole coming from the spectator quark (referred to as the relativistic impulse approximation). In this study we also include the contributions from the poles of the quark which interacts with the photon and average over all poles in both the upper and lower half-planes in order to preserve charge conjugation invariance (referred to as the C-symmetric complete impulse approximation).more » We find that for small pion mass these contributions are significant at all values of the four-momentum transfer Q 2 but, surprisingly, do not alter the shape obtained from the spectator poles alone.« less

  17. Analysis of Transient Electromagnetic Scattering from Three Dimensional Cavities

    DTIC Science & Technology

    2014-01-01

    New York, 2002. [24] J. Jin and J. L. Volakis, A hybrid finite element method for scattering and radiation by micro strip patch antennas and arrays...applications such as the design of cavity-backed conformal antennas and the deliberate control in the form of enhancement or reduction of radar cross...electromagnetic scattering analysis, IEEE Trans. Antennas Propagat., 50 (2002), pp. 1192–1202. [22] J. Jin, Electromagnetic scattering from large, deep, and

  18. Impact of electromagnetic radiation emitted by monitors on changes in the cellular membrane structure and protective antioxidant effect of vitamin A - In vitro study.

    PubMed

    Lewicka, Małgorzata; Henrykowska, Gabriela; Zawadzka, Magdalena; Rutkowski, Maciej; Pacholski, Krzysztof; Buczyński, Andrzej

    2017-07-14

    The increasing number of devices emitting electromagnetic radiation (EMR) in people's everyday life attracted the attention of researchers because of possible adverse effects of this factor on living organisms. One of the EMR effect may be peroxidation of lipid membranes formed as a result of free radical process. The article presents the results of in vitro studies aimed at identifying changes in malondialdehyde (MDA) concentration - a marker of lipid peroxidation and antioxidant role of vitamin A during the exposure of blood platelets to electromagnetic radiation generated by liquid-crystal-display (LCD) monitors. Electromagnetic radiation emitted by LCD monitors is characterized by parameters: 1 kHz frequency and 220 V/m intensity (15 cm from display screen). The time of exposure was 30 and 60 min. The study was conducted on porcine blood platelets. The samples were divided into 6 groups: unexposed to radiation, unexposed + vitamin A, exposed for 30 min, exposed for 30 min + vitamin A, exposed for 60 min, exposed for 60 min + vitamin A. The MDA concentration in blood platelets increases significantly as compared to control values after 60 min of exposure to EMR. A significant decrease in MDA concentration after the addition of vitamin A was noticed. In the blood samples exposed to EMR for 30 and 60 min the MDA concentration was significantly increased by addition of vitamin A. The results show the possibly negative effect of electromagnetic radiation on the cellular membrane structure manifested by changes in malondialdehyde concentration and indicate a possible protective role of vitamin A in this process. Int J Occup Med Environ Health 2017;30(5):695-703. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  19. Exclusive QCD processes, quark-hadron duality, and the transition to perturbative QCD

    NASA Astrophysics Data System (ADS)

    Corianò, Claudio; Li, Hsiang-nan; Savkli, Cetin

    1998-07-01

    Experiments at CEBAF will scan the intermediate-energy region of the QCD dynamics for the nucleon form factors and for Compton Scattering. These experiments will definitely clarify the role of resummed perturbation theory and of quark-hadron duality (QCD sum rules) in this regime. With this perspective in mind, we review the factorization theorem of perturbative QCD for exclusive processes at intermediate energy scales, which embodies the transverse degrees of freedom of a parton and the Sudakov resummation of the corresponding large logarithms. We concentrate on the pion and proton electromagnetic form factors and on pion Compton scattering. New ingredients, such as the evolution of the pion wave function and the complete two-loop expression of the Sudakov factor, are included. The sensitivity of our predictions to the infrared cutoff for the Sudakov evolution is discussed. We also elaborate on QCD sum rule methods for Compton Scattering, which provide an alternative description of this process. We show that, by comparing the local duality analysis to resummed perturbation theory, it is possible to describe the transition of exclusive processes to perturbative QCD.

  20. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  1. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  2. An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms

    NASA Astrophysics Data System (ADS)

    Sá, Lucas

    2017-03-01

    Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.

  3. Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons

    NASA Astrophysics Data System (ADS)

    Chanyal, B. C.

    2017-12-01

    In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.

  4. Electric Form Factor of the Neutron

    NASA Astrophysics Data System (ADS)

    Feuerbach, Robert

    2007-10-01

    Recent polarization-based precision measurements of the nucleons' elastic electric form factors have led to surprising results. The measurement of the ratio of the proton's electromagnetic form factors, μpGE^p/GM^p, was found to drop nearly linearly with Q^2 out to at least 5 GeV^2, inconsistent with the older Rosenbluth-type experiments. A recent measurement of GE^n, the neutron's electric form-factor saw GE^n does not fall off as quickly as commonly expected up to Q^2 1.5 GeV^2. Extending this study, a precision measurement of GE^n up to Q^2=3.5 GeV^2 was completed in Hall A at Jefferson Lab. The ratio GE^n/GM^n was measured through the beam-target asymmetry A of electrons quasi-elastically scattered off polarized neutrons in the reaction ^3He(e,e' n). The experiment took full advantage of the electron beam, recent target developments, as well as two detectors new to Jefferson Lab. The measurement used the accelerator's 100% duty-cycle high-polarization (typically 84%) electron beam and a new, hybrid optically-pumped polarized ^3He target which achieved in-beam polarizations in excess of 50%. A medium acceptance (80msr) open-geometry magnetic spectrometer (BigBite) detected the scattered electron, while a geometrically matched neutron detector observed the struck neutron. Preliminary results from this measurement will be discussed and compared to modern calculations of GE^n.

  5. Metronidazole as a protector of cells from electromagnetic radiation of extremely high frequencies

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel E.; Malinina, Ulia A.; Popyhova, Era B.; Rogacheva, Svetlana M.; Somov, Alexander U.

    2006-08-01

    It is well known that weak electromagnetic fields of extremely high frequencies cause significant modification of the functional status of biological objects of different levels of organization. The aim of the work was to study the combinatory effect of metronidazole - the drug form of 1-(2'hydroxiethil)-2-methil-5-nitroimidazole - and electromagnetic radiation of extremely high frequencies (52...75 GHz) on the hemolytic stability of erythrocytes and hemotaxis activity of Infusoria Paramecium caudatum.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimbert, P.; Fernandez, J. I.; Eguia, I.

    It is well known that one of the main advantages of the high speed forming (HSF) processes is the improvement in the forming limits of the used materials.Using the Electromagnetic Forming (EMF) technology two materials have been tested with different mechanical and physical properties: the AA5754 aluminium and the AZ31B magnesium alloys.The EMF process principle can be described as follows: A significant amount of electrical energy is stored in a bank of capacitors which are suddenly discharged releasing all the stored energy. This electric discharge runs through a coil which generates an intense transient magnetic field. At the same timemore » transient Eddy currents are induced in the electrically conductive part placed some millimetres far from the coil. Another intense magnetic field is generated due to those Eddy currents but on the opposite direction as the one generated by the coil. A big magnetic repulsion force is created between the part and the coil. This magnetic repulsion between both fields is used to launch the blank with no physical contact and obtain the desired deformation on it.The Forming Limit Diagrams (FLD) obtained in the EMF experiments were them compared to the ones obtained with the 'Nakazima' method at conventional deformation speed for both alloys. In parallel to these physical experiments, some simulations were carried out. But trying to simulate this process by FEM is a though work. There are several physics and many factors to take into account in a few microseconds deformation process. And all these factors are tightly related with each other, that is why to this date there is no commercial software able to simulate the EMF process accurately.From LABEIN-Tecnalia we are working with to different softwares to simulate the whole process: Maxwell 3D for the electromagnetic part and PAM-STAMP2G for the mechanical part of the problem.« less

  7. Form factors of the d*(2380 ) resonance

    NASA Astrophysics Data System (ADS)

    Dong, Yubing; Shen, Pengnian; Zhang, Zongye

    2018-06-01

    In order to explore the possible physical quantities for judging different structures of the newly observed resonance d*(2380 ), we study its electromagnetic form factors. In addition to the electric charge monopole C 0 , we calculate its electric quadrupole E 2 , magnetic dipole M 1 , and magnetic octupole M 3 form factors on the base of the realistic coupled Δ Δ +C8C8 channel d* wave function with both the S - and D -partial waves. The results show that the magnetic dipole moment and electric quadrupole deformation of d* are 7.602 and 2.53 ×10-2 fm2 , respectively. The calculated magnetic dipole moment in the naive constituent quark model is also compared with the result of D12π picture. By comparing with partial results where the d* state is considered with a single Δ Δ and with a D12π structures, we find that in addition to the charge distribution of d*, the magnetic dipole moment and magnetic radius can be used to discriminate different structures of d*. Moreover, a quite small electric quadrupole deformation indicates that d* is more inclined to a slightly oblate shape due to our compact hexaquark dominated structure of d*.

  8. Risk perception and public concerns of electromagnetic waves from cellular phones in Korea.

    PubMed

    Kim, Kyunghee; Kim, Hae-Joon; Song, Dae Jong; Cho, Yong Min; Choi, Jae Wook

    2014-05-01

    In this study, the difference between the risk perception of electromagnetic waves from cellular phones and the risk perception of other factors such as environment and food was analyzed. The cause of the difference in the psychological and social factors that affect the group with high risk perception of electromagnetic waves was also analyzed. A questionnaire survey on the risk perception of electromagnetic waves from cellular phones was carried out on 1001 subjects (men and women) over the age of 20. In the group with high risk perception of electromagnetic waves from cellular phones, women had higher risk perception than men. Logistic regression analysis, where the group with high risk perception of electromagnetic waves and the group with low risk perception were used as dependent variables, indicated that the risk perception of electromagnetic waves in women was 1.815 times statistically significantly higher than the risk perception of men (95% CI: 1.340-2.457). Also, high risk perception of electromagnetic waves from cellular phones was observed when the subjects considered that they had more personal knowledge (OR: 1.416, 95% CI: 1.216-1.648), that the seriousness of the risk to future generations was high (OR: 1.410, 95% CI: 1.234-1.611), and their outrage for the occurrence of accidents related to electromagnetic waves was high (OR: 1.460, 95% CI: 1.264-1.686). The results of this study need to be sufficiently considered and reflected in designing the risk communication strategies and communication methods for the preventive measures and advice on electromagnetic waves from cellular phones. © 2014 Wiley Periodicals, Inc.

  9. Electromagnetic Faraday Generator and Its Application

    ERIC Educational Resources Information Center

    Mayer , V. V.; Varaksina, E. I.

    2017-01-01

    This paper presents a simple electromagnetic generator meant for use in students' experiments. This apparatus provides realization of a series of experiments demonstrating the principles of electricity generation and the conversion of electricity to other forms of energy with practical application. The experiments can be reproduced in a school…

  10. Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications.

    PubMed

    Jung, Jinwook; Lee, Habeom; Ha, Inho; Cho, Hyunmin; Kim, Kyun Kyu; Kwon, Jinhyeong; Won, Phillip; Hong, Sukjoon; Ko, Seung Hwan

    2017-12-27

    Future electronics are expected to develop into wearable forms, and an adequate stretchability is required for the forthcoming wearable electronics considering various motions occurring in human body. Along with stretchability, transparency can increase both the functionality and esthetic features in future wearable electronics. In this study, we demonstrate, for the first time, a highly stretchable and transparent electromagnetic interference shielding layer for wearable electronic applications with silver nanowire percolation network on elastic poly(dimethylsiloxane) substrate. The proposed stretchable and transparent electromagnetic interference shielding layer shows a high electromagnetic wave shielding effectiveness even under a high tensile strain condition. It is expected for the silver nanowire percolation network-based electromagnetic interference shielding layer to be beyond the conventional electromagnetic interference shielding materials and to broaden its application range to various fields that require optical transparency or nonplanar surface environment, such as biological system, human skin, and wearable electronics.

  11. Design and analysis of a plane vibration-based electromagnetic generator using a magnetic spring and ferrofluid

    NASA Astrophysics Data System (ADS)

    Wang, Siqi; Li, Decai

    2015-09-01

    This paper describes the design and characterization of a plane vibration-based electromagnetic generator that is capable of converting low-frequency vibration energy into electrical energy. A magnetic spring is formed by a magnetic attractive force between fixed and movable permanent magnets. The ferrofluid is employed on the bottom of the movable permanent magnet to suspend it and reduce the mechanical damping as a fluid lubricant. When the electromagnetic generator with a ferrofluid of 0.3 g was operated under a resonance condition, the output power reached 0.27 mW, and the power density of the electromagnetic generator was 5.68 µW/cm2. The electromagnetic generator was also used to harvest energy from human motion. The measured average load powers of the electromagnetic generator from human waist motion were 0.835 mW and 1.3 mW during walking and jogging, respectively.

  12. Electric converters of electromagnetic strike machine with battery power

    NASA Astrophysics Data System (ADS)

    Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.

    2018-03-01

    At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blunden, P. G.; Melnitchouk, W.

    We examine the two-photon exchange corrections to elastic electron-nucleon scattering within a dispersive approach, including contributions from both nucleon and Δ intermediate states. The dispersive analysis avoids off-shell uncertainties inherent in traditional approaches based on direct evaluation of loop diagrams, and guarantees the correct unitary behavior in the high energy limit. Using empirical information on the electromagnetic nucleon elastic and NΔ transition form factors, we compute the two-photon exchange corrections both algebraically and numerically. Finally, results are compared with recent measurements of e + p to e - p cross section ratios from the CLAS, VEPP-3 and OLYMPUS experiments.

  14. Dispersive analysis of ω/Φ → 3π, πγ*

    DOE PAGES

    Danilkin, Igor V.; Fernandez Ramirez, Cesar; Guo, Peng; ...

    2015-05-01

    The decays ω/Φ → 3π are considered in the dispersive framework that is based on the isobar decomposition and subenergy unitarity. The inelastic contributions are parametrized by the power series in a suitably chosen conformal variable that properly accounts for the analytic properties of the amplitude. The Dalitz plot distributions and integrated decay widths are presented. Our results indicate that the final- state interactions may be sizable. As a further application of the formalism we also compute the electromagnetic transition form factors of ω/Φ → π⁰γ*.

  15. Electromagnetic field induced biological effects in humans.

    PubMed

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF or be derived from a combination of many sources. Reported symptoms associated with electromagnetic fields are characterized by the overlapping effect with other individuals with these symptoms exhibited a broad spectrum of clinical manifestations, related to exposure to a single or multiple sources of EMF. The phenomenon of electromagnetic hypersensitivity in the form of dermatological disease is associated with mastocytosis. The biopsies taken from skin lesions of patients with EHS indicated on infiltration of the skin layers of the epidermis with mastocytes and their degranulation, as well as on release anaphylactic reaction mediators such as histamine, chymase and tryptase. The number of people suffering from EHS in the world is growing describing themselves as severely dysfunctional, showing multi organ non-specific symptoms upon exposure to low doses of electromagnetic radiation, often associated with hypersensitivity to many chemical agents (Multiple Chemical Sensitivity-MCS) and/or other environmental intolerances (Sensitivity Related Illness-SRI).

  16. Magnetic Imaging: a New Tool for UK National Nuclear Security

    NASA Astrophysics Data System (ADS)

    Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-01

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  17. Magnetic Imaging: a New Tool for UK National Nuclear Security

    PubMed Central

    Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-01

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications. PMID:25608957

  18. Electromagnetic thrusters for spacecraft prime propulsion

    NASA Technical Reports Server (NTRS)

    Rudolph, L. K.; King, D. Q.

    1984-01-01

    The benefits of electromagnetic propulsion systems for the next generation of US spacecraft are discussed. Attention is given to magnetoplasmadynamic (MPD) and arc jet thrusters, which form a subset of a larger group of electromagnetic propulsion systems including pulsed plasma thrusters, Hall accelerators, and electromagnetic launchers. Mission/system study results acquired over the last twenty years suggest that for future prime propulsion applications high-power self-field MPD thrusters and low-power arc jets have the greatest potential of all electromagnetic thruster systems. Some of the benefits they are expected to provide include major reductions in required launch mass compared to chemical propulsion systems (particularly in geostationary orbit transfer) and lower life-cycle costs (almost 50 percent less). Detailed schematic drawings are provided which describe some possible configurations for the various systems.

  19. Magnetic imaging: a new tool for UK national nuclear security.

    PubMed

    Darrer, Brendan J; Watson, Joe C; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-22

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  20. Relations Among Systems of Electromagnetic Equations

    ERIC Educational Resources Information Center

    page, Chester H.

    1970-01-01

    Contends that the equations of electromagnetism, whether in rationalized or non-rationalized form, express an invariant set of physical relationships. The relationships among corresponding symbols are given and applied to precise statements about the relation between the oersted and the amphere per meter, the abampere and the ampere, etc.…

  1. Energy and technology review: Engineering modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabayan, H.S.; Goudreau, G.L.; Ziolkowski, R.W.

    1986-10-01

    This report presents information concerning: Modeling Canonical Problems in Electromagnetic Coupling Through Apertures; Finite-Element Codes for Computing Electrostatic Fields; Finite-Element Modeling of Electromagnetic Phenomena; Modeling Microwave-Pulse Compression in a Resonant Cavity; Lagrangian Finite-Element Analysis of Penetration Mechanics; Crashworthiness Engineering; Computer Modeling of Metal-Forming Processes; Thermal-Mechanical Modeling of Tungsten Arc Welding; Modeling Air Breakdown Induced by Electromagnetic Fields; Iterative Techniques for Solving Boltzmann's Equations for p-Type Semiconductors; Semiconductor Modeling; and Improved Numerical-Solution Techniques in Large-Scale Stress Analysis.

  2. Investigations of the structure and electromagnetic interactions of few body systems

    NASA Astrophysics Data System (ADS)

    Harper, E. P.; Lehman, D. R.; Prats, F.

    The structure and electromagnetic interactions of few-body systems were investigated. The structural properties of the very light nuclei are examined by developing theoretical models that begin from the basic interactions between the constituents and that are solved exactly (numerically), i.e., full three- or four-body dynamics. Such models are then used in an attempt to understand the details of the strong and electromagnetic interactions of the few-nucleon nuclei after the basic underlying reaction mechanisms are understood with simpler models. Topics included: (1) set up the equations for the low-energy photodisintegration of (3)He and (3)H including final-state interactions and the E1 plus E2 operators; (2) develop a unified picture of the p + d (YIELDS) (3)He + (GAMMA), p + d (YIELDS) (3)He + (PI) (0), p + d (YIELDS) (3)H + (PI) (+) reactions at intermediate energies; (3) calculate the elastic and inelastic (1(+) (YIELDS) 0 (+)) form factors for (6)Li with three-body ((ALPHA)NN) wave functions; (4) calculate static properties (RMS radius, magnetic moment, and quadrupole moment) of (6)Li with three-body wave functions; and (5) develop the theory for the coincidence reactions (6)Li(p,2p)n(ALPHA), (6)Li(e,e'p)n(ALPHA), and (6)Li(e,e'd)(ALPHA).

  3. Magnetosphere-ionosphere coupling: processes and rates

    NASA Astrophysics Data System (ADS)

    Lotko, W.

    Magnetosphere-ionosphere coupling describes the interaction between the collisionless plasma of the magnetosphere and the ionized and neutral collisional gases of the ionosphere and thermosphere. This coupling introduces feedback and scale interactivity in the form of a time-variable mass flux, electron energy flux and Poynting flux flowing between the two regions. Although delineation of an MI coupling region is somewhat ambiguous, at mid and high latitudes it may be considered as the region of the topside ionosphere and low-altitude magnetosphere where electromagnetic energy is converted to plasma beams and heat via collisionless dissipation processes. Above this region the magnetically guided transmission of electromagnetic power from distant magnetospheric dynamos encounters only weak attenuation. The ionospheric region below it is dominated by ionization processes and collisional cross-field transport and current closure. This tutorial will use observations, models and theory to characterize three major issues in MI coupling: (1) the production of plasma beams and heat in the coupling region; (2) the acceleration of ions leading to massive outflows; and (3) the length and time scale dependence of electromagnetic energy deposition at low altitude. Our success in identifying many of the key processes is offset by a lack of quantitative understanding of the factors controlling the rates of energy deposition and of the production of particle energy and mass fluxes.

  4. Electromagnetic confinement for vertical casting or containing molten metal

    DOEpatents

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1991-01-01

    An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

  5. Textured substrate tape and devices thereof

    DOEpatents

    Goyal, Amit

    2006-08-08

    A method for forming a sharply biaxially textured substrate, such as a single crystal substrate, includes the steps of providing a deformed metal substrate, followed by heating above the secondary recrystallization temperature of the deformed substrate, and controlling the secondary recrystallization texture by either using thermal gradients and/or seeding. The seed is selected to shave a stable texture below a predetermined temperature. The sharply biaxially textured substrate can be formed as a tape having a length of 1 km, or more. Epitaxial articles can be formed from the tapes to include an epitaxial electromagnetically active layer. The electromagnetically active layer can be a superconducting layer.

  6. Electromagnetic interference in cardiac rhythm management devices.

    PubMed

    Sweesy, Mark W; Holland, James L; Smith, Kerry W

    2004-01-01

    Clinicians caring for cardiac device patients with implanted pacemakers or cardioverter defibrillators (ICDs) are frequently asked questions by their patients concerning electromagnetic interference (EMI) sources and the devices. EMI may be radiated or conducted and may be present in many different forms including (but not limited to) radiofrequency waves, microwaves, ionizing radiation, acoustic radiation, static and pulsed magnetic fields, and electric currents. Manufacturers have done an exemplary job of interference protection with device features such as titanium casing, signal filtering, interference rejection circuits, feedthrough capacitors, noise reversion function, and programmable parameters. Nevertheless, EMI remains a real concern and a potential danger. Many factors influence EMI including those which the patient can regulate (eg, distance from and duration of exposure) and some the patient cannot control (eg, intensity of the EMI field, signal frequency). Potential device responses are many and range from simple temporary oversensing to permanent device damage Several of the more common EMI-generating devices and their likely effects on cardiac devices are considered in the medical, home, and daily living and work environments.

  7. Covariant electromagnetic field lines

    NASA Astrophysics Data System (ADS)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  8. Time-dependent entropy evolution in microscopic and macroscopic electromagnetic relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker-Jarvis, James

    This paper is a study of entropy and its evolution in the time and frequency domains upon application of electromagnetic fields to materials. An understanding of entropy and its evolution in electromagnetic interactions bridges the boundaries between electromagnetism and thermodynamics. The approach used here is a Liouville-based statistical-mechanical theory. I show that the microscopic entropy is reversible and the macroscopic entropy satisfies an H theorem. The spectral entropy development can be very useful for studying the frequency response of materials. Using a projection-operator based nonequilibrium entropy, different equations are derived for the entropy and entropy production and are applied tomore » the polarization, magnetization, and macroscopic fields. I begin by proving an exact H theorem for the entropy, progress to application of time-dependent entropy in electromagnetics, and then apply the theory to relevant applications in electromagnetics. The paper concludes with a discussion of the relationship of the frequency-domain form of the entropy to the permittivity, permeability, and impedance.« less

  9. Excited Nucleons and Hadron Structure - Proceedings of the Nstar 2000 Conference

    NASA Astrophysics Data System (ADS)

    Burkert, V. D.; Elouadrhiri, L.; Kelly, J. J.; Minehart, R. C.

    The Table of Contents for the book is as follows: * Probing the Structure of Nucleons in the Resonance Region * Pion Photoproduction Results from MAMI * Pion Production and Compton Scattering at LEGS * Electroproduction Multipoles from ELSA * Baryon Resonance Production at Jefferson Lab at High Q2 * A Dynamical Model for the Resonant Multipoles and the Δ Structure * Relations between N and Δ Electromagnetic Form Factors * Measurement of the Recoil Polarization in the [p(ěc e ,{e^prime}ěc p ){π ^0}] Reaction at the Energy of the Δ(1232) Resonance * Electroproduction Results from CLAS * S11 (1535) Resonance Production at Jefferson Lab at High Q2 * η and η' Electro- and Photoproduction with the CEBAF Large Acceptance Spectrometer * η Production in Hadronic Interactions * Electromagnetic Production of η and η' Mesons * The Crystal Barrel Experiment at ELSA * Measurement of π-p → Neutrals Using the Crystal Ball * π+π0 and η Photoproduction at GRAAL * Partial Wave Analysis of Pion Photoproduction with Constraints from Fixed-t Dispersion Relations * N* Resonances in e+e- Collisions at BEPC * What is the Structure of the Roper Resonance? * Hybrid Baryon Signatures * Mixing Angles Determination via the Process γp → ηp * SU(6) Breaking Effects in the Nucleon Elastic Electromagnetic Form Factors * The Hypercentral Constituent Quark Model * Baryon Resonance Decays Within Constituent Quark Models * Pion Production Model - Connection between Dynamics and Quark Models * N* Investigation via Two Pion Electroproduction with the CLAS Detector at Jefferson Laboratory * Isobar Model for Studies of N* Excitation in Charged Double Pion Production by Real and Virtual Photons * Double Pion Photoproduction in the Second Resonance Region * CLAS Electroproduction of ω(783) Mesons * Electromagnetic Production of Vector Mesons at Low Energies * Polarized Target Developments for GRAAL and Prospects * Analytic Structure of a Multichannel Model * Missing Nucleon Resonances in Kaon Production with Pions and Photons * Hyperon Electroproduction with CLAS * From Bjorken to Drell-Hearn-Gerasimov Sum Rules * GDH Measurements at Mainz * Double Polarization Measurements in Inclusive Inelastic e - p Scattering * Measurement of Inclusive Spin Asymmetries and Sum Rules on 3He and the Neutron * Polarization and Out-of-Plane Responses in Pion and ETA Electroproduction * Polarization Observables in π+ Electroproduction with CLAS * Pion Electroproduction on the Nucleon and the Generalized GDH Sum Rule * Virtual Compton Scattering in the Resonance Region * What We Know about the Theoretical Foundation of Duality in Electron Scattering * Hadron Structure in Lattice QCD: Exploring the Gluon Wave Functional * N* Spectrum in Lattice QCD * Baryon Spectrum in the Large Nc Limit * Deeply Virtual Photon and Meson Electroproduction * Why N*'s are Important * Participant List

  10. Research on key factors and their interaction effects of electromagnetic force of high-speed solenoid valve.

    PubMed

    Liu, Peng; Fan, Liyun; Hayat, Qaisar; Xu, De; Ma, Xiuzhen; Song, Enzhe

    2014-01-01

    Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined.

  11. Research on Key Factors and Their Interaction Effects of Electromagnetic Force of High-Speed Solenoid Valve

    PubMed Central

    Fan, Liyun; Xu, De; Ma, Xiuzhen; Song, Enzhe

    2014-01-01

    Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined. PMID:25243217

  12. Quantum mechanical probability current as electromagnetic 4-current from topological EM fields

    NASA Astrophysics Data System (ADS)

    van der Mark, Martin B.

    2015-09-01

    Starting from a complex 4-potential A = αdβ we show that the 4-current density in electromagnetism and the probability current density in relativistic quantum mechanics are of identical form. With the Dirac-Clifford algebra Cl1,3 as mathematical basis, the given 4-potential allows topological solutions of the fields, quite similar to Bateman's construction, but with a double field solution that was overlooked previously. A more general nullvector condition is found and wave-functions of charged and neutral particles appear as topological configurations of the electromagnetic fields.

  13. Nucleation and Grain Refinement of 7A04 Aluminum Alloy Under a Low-Power Electromagnetic Pulse

    NASA Astrophysics Data System (ADS)

    Bai, Qingwei; Ma, Yonglin; Xing, Shuqing; Bao, Xinyu; Feng, Yanfei; Kang, Xiaolan

    2018-02-01

    The effects of a low-power electromagnetic pulse on the grain size and cooling curve of high-strength aluminum alloy 7A04 were investigated for various pulse duty cycles. This electromagnetic pulse treatment was found to effectively produce fine grains with globular crystals and a uniform microstructure for pulse duty cycles between 20 and 40%. The key factors that affected grain refinement under the electromagnetic pulse included the electromagnetic energy and the conversion frequency between \\varvec{B} and \\varvec{E} . The nucleation rate increased as the nucleation period was extended. A new kinetic condition of magnetic nucleation was explored by decreasing the critical Gibbs free energy in the electromagnetic pulse, which was more sensitive under low undercooling. In addition, the crystal orientation was controlled in such a solidification environment.

  14. First-Principles Modeling Of Electromagnetic Scattering By Discrete and Discretely Heterogeneous Random Media

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2016-01-01

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell- Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of the first principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.

  15. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.

    PubMed

    Mishchenko, Michael I; Dlugach, Janna M; Yurkin, Maxim A; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R Lee; Travis, Larry D; Yang, Ping; Zakharova, Nadezhda T

    2016-05-16

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ , or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell-Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.

  16. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    PubMed Central

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2018-01-01

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies. PMID:29657355

  17. Generation of scale invariant magnetic fields in bouncing universes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sriramkumar, L.; Atmjeet, Kumar; Jain, Rajeev Kumar, E-mail: sriram@physics.iitm.ac.in, E-mail: katmjeet@physics.du.ac.in, E-mail: jain@cp3.dias.sdu.dk

    2015-09-01

    We consider the generation of primordial magnetic fields in a class of bouncing models when the electromagnetic action is coupled non-minimally to a scalar field that, say, drives the background evolution. For scale factors that have the power law form at very early times and non-minimal couplings which are simple powers of the scale factor, one can easily show that scale invariant spectra for the magnetic field can arise before the bounce for certain values of the indices involved. It will be interesting to examine if these power spectra retain their shape after the bounce. However, analytical solutions for themore » Fourier modes of the electromagnetic vector potential across the bounce are difficult to obtain. In this work, with the help of a new time variable that we introduce, which we refer to as the e-N-fold, we investigate these scenarios numerically. Imposing the initial conditions on the modes in the contracting phase, we numerically evolve the modes across the bounce and evaluate the spectra of the electric and magnetic fields at a suitable time after the bounce. As one could have intuitively expected, though the complete spectra depend on the details of the bounce, we find that, under the original conditions, scale invariant spectra of the magnetic fields do arise for wavenumbers much smaller than the scale associated with the bounce. We also show that magnetic fields which correspond to observed strengths today can be generated for specific values of the parameters. But, we find that, at the bounce, the backreaction due to the electromagnetic modes that have been generated can be significantly large calling into question the viability of the model. We briefly discuss the implications of our results.« less

  18. Giant angular dependence of electromagnetic induced transparency in THz metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Changji; Huang, Yuanyuan; Yao, Zehan; Yu, Leilei; Jin, Yanping; Xu, Xinlong

    2018-02-01

    The giant electromagnetic induced transparency (EIT) phenomenon is observed in symmetrical metamaterials with angular dependence in the THz region. This is due to the asymmetrical electromagnetic field distribution on the surface of the metamaterials, which induces asymmetric current distribution. Blueshift with the increase of the unit cell period has been observed, which is due to the unusual electromagnetic interaction between units at oblique incidence. This EIT demonstrates an angular dependent high Q-factor, which is sensitive to the dielectric environment. The angle-induced EIT effect could pave the way for future tunable sensing applications in the THz region.

  19. Electromagnetic Faraday generator and its application

    NASA Astrophysics Data System (ADS)

    Mayer, V. V.; Varaksina, E. I.

    2017-07-01

    This paper presents a simple electromagnetic generator meant for use in students’ experiments. This apparatus provides realization of a series of experiments demonstrating the principles of electricity generation and the conversion of electricity to other forms of energy with practical application. The experiments can be reproduced in a school laboratory and can be recommended for students’ project activity.

  20. N* Experiments and Their Impact on Strong QCD Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkert, Volker D.

    Here, I give a brief overview of experimental studies of the spectrum and the structure of the excited states of the nucleon and what we learn about their internal structure. The focus is on the effort to obtain a more complete picture of the light-quark baryon excitation spectrum employing electromagnetic beams, and on the study of the transition form factors and helicity amplitudes and their dependence on the size of the four-momentum transfer $Q^2$, especially on some of the most prominent resonances. These were obtained in pion and eta electroproduction experiments off proton targets.

  1. Measurement of the π 0 → e + e - γ Dalitz decay at the Mainz Microtron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adlarson, P.; Afzal, F.; Aguar-Bartolomé, P.

    The Dalitz decay π 0 → e +e -γ has been measured in the γp → π 0p reaction with the A2 tagged-photon facility at the Mainz Microtron, MAMI. The value obtained for the slope parameter of the π 0 electromagnetic transition form factor, a π= 0.030 ± 0.010 tot, is in agreement with existing measurements of this decay and with recent theoretical calculations. The uncertainty obtained in the value of a π is lower than in previous results based on the π 0 → e +e -γ decay.

  2. N^* Experiments and Their Impact on Strong QCD Physics

    NASA Astrophysics Data System (ADS)

    Burkert, Volker D.

    2018-07-01

    I give a brief report on experimental studies of the spectrum and the structure of the excited states of the nucleon and what we learn about their internal structure. The focus is on the effort to obtain a more complete picture of the light-quark baryon excitation spectrum employing electromagnetic beams, and on the study of the transition form factors and helicity amplitudes an their dependence on the size of the four-momentum transfer Q^2, especially on some of the most prominent resonances. These were obtained in pion and eta electroproduction experiments off proton targets.

  3. N* Experiments and Their Impact on Strong QCD Physics

    DOE PAGES

    Burkert, Volker D.

    2018-04-23

    Here, I give a brief overview of experimental studies of the spectrum and the structure of the excited states of the nucleon and what we learn about their internal structure. The focus is on the effort to obtain a more complete picture of the light-quark baryon excitation spectrum employing electromagnetic beams, and on the study of the transition form factors and helicity amplitudes and their dependence on the size of the four-momentum transfer $Q^2$, especially on some of the most prominent resonances. These were obtained in pion and eta electroproduction experiments off proton targets.

  4. Relativistic many-body bound systems: electromagnetic properties. Monograph report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danos, M.; Gillet, V.

    1977-04-01

    The formulae for the calculation of the electron scattering form factors, and of the static magnetic dipole and electric quadrupole moments, of relativistic many-body bound systems are derived. The framework, given in NBS Monograph 147, is relativistic quantum field theory in the Schrodinger picture; the physical particles, i.e., the solutions of the interacting fields, are given as linear combinations of the solutions of the free fields, called the parton fields. The parton--photon interaction is taken as given by minimal coupling. In addition, the contribution of the photon--vector meson vertex of the vector dominance model is derived.

  5. Measurement of the π 0 → e + e - γ Dalitz decay at the Mainz Microtron

    DOE PAGES

    Adlarson, P.; Afzal, F.; Aguar-Bartolomé, P.; ...

    2017-02-09

    The Dalitz decay π 0 → e +e -γ has been measured in the γp → π 0p reaction with the A2 tagged-photon facility at the Mainz Microtron, MAMI. The value obtained for the slope parameter of the π 0 electromagnetic transition form factor, a π= 0.030 ± 0.010 tot, is in agreement with existing measurements of this decay and with recent theoretical calculations. The uncertainty obtained in the value of a π is lower than in previous results based on the π 0 → e +e -γ decay.

  6. Some Student Conceptions of Electromagnetic Induction

    NASA Astrophysics Data System (ADS)

    Thong, Wai Meng; Gunstone, Richard

    2008-01-01

    Introductory electromagnetism is a central part of undergraduate physics. Although there has been some research into student conceptions of electromagnetism, studies have been sparse and separated. This study sought to explore second year physics students’ conceptions of electromagnetism, to investigate to what extent the results from the present study are similar to these results from other studies, and to uncover any new forms of alternative conceptions. Data for this study came from 15 in-depth interviews. Three previously unreported alternative conceptions were identified in the study: 1) induced current varies proportionately with current in solenoid; 2) there must be contact between magnetic flux and the external coil in order for any emf to be induced in the coil; 3) coulombic or electrostatic potential difference is present in an induced electric field. These alternative conceptions were manifested in these students’ explanations of electromagnetic phenomena presented to them during the interviews.

  7. TPX: Contractor preliminary design review. Volume 3, Design and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-30

    Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presentedmore » as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors.« less

  8. Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.

    PubMed

    Wang, Ken Kang-Hsin; Ye, Zhen

    2003-12-01

    We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.

  9. Single-cycle high-intensity electromagnetic pulse generation in the interaction of a plasma wakefield with regular nonlinear structures.

    PubMed

    Bulanov, S S; Esirkepov, T Zh; Kamenets, F F; Pegoraro, F

    2006-03-01

    The interaction of regular nonlinear structures (such as subcycle solitons, electron vortices, and wake Langmuir waves) with a strong wake wave in a collisionless plasma can be exploited in order to produce ultrashort electromagnetic pulses. The electromagnetic field of the nonlinear structure is partially reflected by the electron density modulations of the incident wake wave and a single-cycle high-intensity electromagnetic pulse is formed. Due to the Doppler effect the length of this pulse is much shorter than that of the nonlinear structure. This process is illustrated with two-dimensional particle-in-cell simulations. The considered laser-plasma interaction regimes can be achieved in present day experiments and can be used for plasma diagnostics.

  10. Stochastic Evolution of Augmented Born-Infeld Equations

    NASA Astrophysics Data System (ADS)

    Holm, Darryl D.

    2018-06-01

    This paper compares the results of applying a recently developed method of stochastic uncertainty quantification designed for fluid dynamics to the Born-Infeld model of nonlinear electromagnetism. The similarities in the results are striking. Namely, the introduction of Stratonovich cylindrical noise into each of their Hamiltonian formulations introduces stochastic Lie transport into their dynamics in the same form for both theories. Moreover, the resulting stochastic partial differential equations retain their unperturbed form, except for an additional term representing induced Lie transport by the set of divergence-free vector fields associated with the spatial correlations of the cylindrical noise. The explanation for this remarkable similarity lies in the method of construction of the Hamiltonian for the Stratonovich stochastic contribution to the motion in both cases, which is done via pairing spatial correlation eigenvectors for cylindrical noise with the momentum map for the deterministic motion. This momentum map is responsible for the well-known analogy between hydrodynamics and electromagnetism. The momentum map for the Maxwell and Born-Infeld theories of electromagnetism treated here is the 1-form density known as the Poynting vector. Two appendices treat the Hamiltonian structures underlying these results.

  11. [Organization of monitoring of electromagnetic radiation in the urban environment].

    PubMed

    Savel'ev, S I; Dvoeglazova, S V; Koz'min, V A; Kochkin, D E; Begishev, M R

    2008-01-01

    The authors describe new current approaches to monitoring the environment, including the sources of electromagnetic radiation and noise. Electronic maps of the area under study are shown to be made, by constructing the isolines or distributing the actual levels of controlled factors. These current approaches to electromagnetic and acoustic monitoring make it possible to automate a process of measurements, to analyze the established situation, and to simplify the risk controlling methodology.

  12. Shaping metallic glasses by electromagnetic pulsing

    PubMed Central

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-01-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460

  13. Electromagnetic fields radiated from a lightning return stroke - Application of an exact solution to Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Meneghini, R.

    1978-01-01

    A solution is presented for the electromagnetic fields radiated by an arbitrarily oriented current filament over a conducting ground plane in the case where the current propagates along the filament at the speed of light, and this solution is interpreted in terms of radiation from lightning return strokes. The solution is exact in the fullest sense; no mathematical approximations are made, and the governing differential equations and boundary conditions are satisfied. The solution has the additional attribute of being specified in closed form in terms of elementary functions. This solution is discussed from the point of view of deducing lightning current wave forms from measurements of the electromagnetic fields and understanding the effects of channel tortuosity on the radiated fields. In addition, it is compared with two approximate solutions, the traditional moment approximation and the Fraunhofer approximation, and a set of criteria describing their applicability are presented and interpreted.

  14. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. Themore » optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.« less

  15. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOEpatents

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  16. Structures, systems and methods for harvesting energy from electromagnetic radiation

    DOEpatents

    Novack, Steven D [Idaho Falls, ID; Kotter, Dale K [Shelley, ID; Pinhero, Patrick J [Columbia, MO

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  17. A triangular prism solid and shell interactive mapping element for electromagnetic sheet metal forming process

    NASA Astrophysics Data System (ADS)

    Cui, Xiangyang; Li, She; Feng, Hui; Li, Guangyao

    2017-05-01

    In this paper, a novel triangular prism solid and shell interactive mapping element is proposed to solve the coupled magnetic-mechanical formulation in electromagnetic sheet metal forming process. A linear six-node "Triprism" element is firstly proposed for transient eddy current analysis in electromagnetic field. In present "Triprism" element, shape functions are given explicitly, and a cell-wise gradient smoothing operation is used to obtain the gradient matrices without evaluating derivatives of shape functions. In mechanical field analysis, a shear locking free triangular shell element is employed in internal force computation, and a data mapping method is developed to transfer the Lorentz force on solid into the external forces suffered by shell structure for dynamic elasto-plasticity deformation analysis. Based on the deformed triangular shell structure, a "Triprism" element generation rule is established for updated electromagnetic analysis, which means inter-transformation of meshes between the coupled fields can be performed automatically. In addition, the dynamic moving mesh is adopted for air mesh updating based on the deformation of sheet metal. A benchmark problem is carried out for confirming the accuracy of the proposed "Triprism" element in predicting flux density in electromagnetic field. Solutions of several EMF problems obtained by present work are compared with experiment results and those of traditional method, which are showing excellent performances of present interactive mapping element.

  18. Multiple wavelength photolithography for preparing multilayer microstructures

    DOEpatents

    Dentinger, Paul Michael; Krafcik, Karen Lee

    2003-06-24

    The invention relates to a multilayer microstructure and a method for preparing thereof. The method involves first applying a first photodefinable composition having a first exposure wavelength on a substrate to form a first polymeric layer. A portion of the first photodefinable composition is then exposed to electromagnetic radiation of the first exposure wavelength to form a first pattern in the first polymeric layer. After exposing the first polymeric layer, a second photodefinable composition having a second exposure wavelength is applied on the first polymeric layer to form a second polymeric layer. A portion of the second photodefinable composition is then exposed to electromagnetic radiation of the second exposure wavelength to form a second pattern in the second polymeric layer. In addition, a portion of each layer is removed according to the patterns to form a multilayer microstructure having a cavity having a shape that corresponds to the portions removed.

  19. Chern-Simons forms in gravitation theories

    NASA Astrophysics Data System (ADS)

    Zanelli, Jorge

    2012-07-01

    The Chern-Simons (CS) form evolved from an obstruction in mathematics into an important object in theoretical physics. In fact, the presence of CS terms in physics is more common than one may think: they seem to play an important role in high Tc superconductivity and in recently discovered topological insulators. In classical physics, the minimal coupling in electromagnetism and to the action for a mechanical system in Hamiltonian form are examples of CS functionals. CS forms are also the natural generalization of the minimal coupling between the electromagnetic field and a point charge when the source is not point like but an extended fundamental object, a membrane. They are found in relation with anomalies in quantum field theories, and as Lagrangians for gauge fields, including gravity and supergravity. A cursory review of the role of CS forms in gravitation theories is presented at an introductory level.

  20. Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering.

    PubMed

    Dvoynenko, Mykhaylo M; Wang, Juen-Kai

    2007-12-15

    The authors report two methods to determine electromagnetic and chemical enhancement factors in surface-enhanced Raman scattering (SERS), which are based on saturation property and decay dynamics of photoluminescence and concurrent measurements of photoluminescence and resonance Raman scattering intensities. Considerations for experimental implementation are discussed. This study is expected to facilitate the understanding of SERS mechanisms and the advancement of the usage of SERS in chemical and biological sensor applications.

  1. Superconducting dark energy

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Dong; Harko, Tiberiu

    2015-04-01

    Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.

  2. Relativistic Tennis with Photons: Frequency Up-Shifting, Light Intensification and Ion Acceleration with Flying Mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.

    2011-01-04

    We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency changemore » due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.« less

  3. Method of depositing epitaxial layers on a substrate

    DOEpatents

    Goyal, Amit

    2003-12-30

    An epitaxial article and method for forming the same includes a substrate having a textured surface, and an electrochemically deposited substantially single orientation epitaxial layer disposed on and in contact with the textured surface. The epitaxial article can include an electromagnetically active layer and an epitaxial buffer layer. The electromagnetically active layer and epitaxial buffer layer can also be deposited electrochemically.

  4. Translation and Rotation of Transformation Media under Electromagnetic Pulse

    PubMed Central

    Gao, Fei; Shi, Xihang; Lin, Xiao; Xu, Hongyi; Zhang, Baile

    2016-01-01

    It is well known that optical media create artificial geometry for light, and curved geometry acts as an effective optical medium. This correspondence originates from the form invariance of Maxwell’s equations, which recently has spawned a booming field called ‘transformation optics’. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause translation and rotation of transformation media although their final momentum can still be zero. Therefore, the transformation media do not necessarily stay the same after an electromagnetic wave passes through. PMID:27321246

  5. Reemission spectra and inelastic processes at interaction of attosecond and shorter duration electromagnetic pulses with atoms

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2017-01-01

    Inelastic processes and the reemission of attosecond and shorter electromagnetic pulses by atoms have been considered within the analytical solution of the Schrödinger equation in the sudden perturbation approximation. A method of calculations with the exact inclusion of spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in the reemission processes has been developed. The probabilities of inelastic processes and spectra of reemission of ultrashort electromagnetic pulses by one- and many-electron atoms have been calculated. The results have been presented in the form of analytical formulas.

  6. Translation and Rotation of Transformation Media under Electromagnetic Pulse.

    PubMed

    Gao, Fei; Shi, Xihang; Lin, Xiao; Xu, Hongyi; Zhang, Baile

    2016-06-20

    It is well known that optical media create artificial geometry for light, and curved geometry acts as an effective optical medium. This correspondence originates from the form invariance of Maxwell's equations, which recently has spawned a booming field called 'transformation optics'. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause translation and rotation of transformation media although their final momentum can still be zero. Therefore, the transformation media do not necessarily stay the same after an electromagnetic wave passes through.

  7. Single phase bi-directional AC-DC converter with reduced passive components size and common mode electro-magnetic interference

    DOEpatents

    Mi, Chris; Li, Siqi

    2017-01-31

    A bidirectional AC-DC converter is presented with reduced passive component size and common mode electro-magnetic interference. The converter includes an improved input stage formed by two coupled differential inductors, two coupled common and differential inductors, one differential capacitor and two common mode capacitors. With this input structure, the volume, weight and cost of the input stage can be reduced greatly. Additionally, the input current ripple and common mode electro-magnetic interference can be greatly attenuated, so lower switching frequency can be adopted to achieve higher efficiency.

  8. Design considerations of electromagnetic force in a direct drive permanent magnet brushless motor

    NASA Astrophysics Data System (ADS)

    Chen, H. S.; Tsai, M. C.

    2008-04-01

    In this paper, a numerical study of electromagnetic force associated with the width of stator teeth, width of rotor back iron, and slot opening for a ten-pole nine-slot direct drive permanent magnet brushless motor is presented. The study calculates the amplitude of the electromagnetic force on the rotating rotor by using the finite-element method. The results show that the amplitude of electromagnetic force, which may cause the noise and vibration of motors, changes with the variation of these above mentioned three factors. The relationship between the considerations of output torque and the minimization of noise and vibration is also established in this paper.

  9. Relativistically strong electromagnetic radiation in a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. V., E-mail: svbulanov@gmail.com, E-mail: bulanov.sergei@jaea.go.jp; Esirkepov, T. Zh.; Kando, M.

    Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated inmore » the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron–positron pairs, which is described within quantum electrodynamics theory.« less

  10. A new topology and control method for electromagnetic transmitter power supplies

    NASA Astrophysics Data System (ADS)

    Zhang, Yiming; Zhang, Jialin; Yuan, Dakang

    2017-04-01

    As essential equipment for electromagnetic exploration, electromagnetic transmitter reverse the steady power supply with desired frequency and transmit the power through grounding electrodes. To obtain effective geophysical data during deep exploration, the transmitter needs to be high-voltage, high-current, with high-accuracy output, and yet compact and light. The researches on the power supply technologies for high-voltage high-power electromagnetic transmitter is of significant importance to the deep geophysical explorations. Therefore, the performance of electromagnetic transmitter is mainly subject to the following two aspects: the performance of emission current and voltage, and the power density. These requirements bring technical difficulties to the development of power supplies. Conventionally, high-frequency switching power supplies are applied in the design of a high-power transmitter power supply. However, the structure of the topology is complicate, which may reduce the controllability of the output voltage and the reliability of the system. Without power factor control, the power factor of the structure is relatively low. Moreover high switching frequency causes high loss. With the development of the PWM (pulse width modulation) technique, its merits of simple structure, low loss, convenient control and unit power factor have made it popular in electrical energy feedback, active filter, and power factor compensation. Studies have shown that using PWM converters and space vector modulation have become the trend in designing transmitter power supply. However, the earth load exhibits different impedances at different frequencies. Thus ensuing high-accuracy and a stable output from a transmitter power supply in harsh environment has become a key topic in the design of geophysical exploration instruments. Based on SVPWM technology, an electromagnetic transmitter power supply has been designed and its control strategy has been studied. The transmitting system is composed of power supply, SVPWM converter, and power inverter units. The functions of the units are as follows: (1) power supply: a generator providing power with three phase; (2) SVPWM converter: convert AC to DC output; (3) power inverter unit: the inverter is used to convert DC to AC output whose frequency, amplitude and waveform are variable. In the SVPWM technique, the active current and the reactive current are controlled separately, and each variable is analyzed individually, thus the power factor of the system is improved. Through controlling the PWM converter at the generation side, we can get any power factor. Usually the power factor of the generation side is set to 1. Finally, simulation and experimental results validate both the correctness of the established model and the effectiveness of the control method. We can acquire unity power factor for the input and steady current for the output. They also demonstrated that the electromagnetic transmitter power supply designed in this study can meet the practical needs of field geological exploration. We can improve the utilization of the transmitter system.

  11. Homeopathic potentization based on nanoscale domains.

    PubMed

    Czerlinski, George; Ypma, Tjalling

    2011-12-01

    The objectives of this study were to present a simple descriptive and quantitative model of how high potencies in homeopathy arise. The model begins with the mechanochemical production of hydrogen and hydroxyl radicals from water and the electronic stabilization of the resulting nanodomains of water molecules. The life of these domains is initially limited to a few days, but may extend to years when the electromagnetic characteristic of a homeopathic agent is copied onto the domains. This information is transferred between the original agent and the nanodomains, and also between previously imprinted nanodomains and new ones. The differential equations previously used to describe these processes are replaced here by exponential expressions, corresponding to simplified model mechanisms. Magnetic stabilization is also involved, since these long-lived domains apparently require the presence of the geomagnetic field. Our model incorporates this factor in the formation of the long-lived compound. Numerical simulation and graphs show that the potentization mechanism can be described quantitatively by a very simplified mechanism. The omitted factors affect only the fine structure of the kinetics. Measurements of pH changes upon absorption of different electromagnetic frequencies indicate that about 400 nanodomains polymerize to form one cooperating unit. Singlet excited states of some compounds lead to dramatic changes in their hydrogen ion dissociation constant, explaining this pH effect and suggesting that homeopathic information is imprinted as higher singlet excited states. A simple description is provided of the process of potentization in homeopathic dilutions. With the exception of minor details, this simple model replicates the results previously obtained from a more complex model. While excited states are short lived in isolated molecules, they become long lived in nanodomains that form coherent cooperative aggregates controlled by the geomagnetic field. These domains either slowly emit biophotons or perform specific biochemical work at their target.

  12. Exclusive photoproduction of J/ψ and ψ(2S) in pp and AA collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisek, Anna; Schäfer, Wolfgang; Szczurek, Antoni

    2015-04-10

    The amplitude for γp → J/ψp(γp → ψ'p) is calculated in a pQCD k{sub ⊥}-factorization approach. The total cross section for this process is calculated for different unintegrated gluon distributions and compared with the HERA data and the data extracted recently by the LHCb collaboration. The amplitude for γp → J/ψp(γp → ψ'p) is used to predict the cross section for exclusive photoproduction of the J/ψ(ψ') meson in proton-proton and nucleus-nucleus collisions. In the pp case, compared to earlier calculations we include both Dirac and Pauli electromagnetic form factors. We also discuss the dependence of nuclear shadowing on the charmoniummore » state.« less

  13. The momentum of an electromagnetic wave inside a dielectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Testa, Massimo, E-mail: massimo.testa@roma1.infn.it

    2013-09-15

    The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham–Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored. -- Highlights: •We discuss an approximation to treat electrodynamics of a dielectric material. •We support the Abraham form for the electromagnetic momentum. •We deduce Snell’s law from themore » conservation of the Abraham momentum. •We show how to deal with the electric field discontinuity at the dielectric boundary.« less

  14. [Cell phone communication: hygienic characteristics, biological action, standardization (a review)].

    PubMed

    Gudina, M V; Volkotrub, L P

    2010-01-01

    The paper considers the topical issues concerning the functioning of the cellular communication system. It provides the hygienic characteristics of its individual elements. The factors influencing the size of an electromagnetic field generated by mobile phones are stated. Research data on the impact of electromagnetic radiation from a mobile phone on users' health are reviewed. The pivots of present-day Russian hygienic rating regarding the permissible exposures to nonionizing electromagnetic energy generated by the elements of the cellular communication system are identified.

  15. Design of a bistable electromagnetic coupling mechanism for underactuated manipulators

    NASA Astrophysics Data System (ADS)

    Miyuranga Kaluarachchi, Malaka; Ho, Jee-Hou; Yahya, Samer; Teh, Sze-Hong

    2018-07-01

    Electromagnetic clutches have been widely used in underactuated lightweight manipulator designs as a coupling mechanism due to their advantages of fast activation and electrical controllability. However, an electromagnetic clutch consumes electrical energy continuously during its operation. Furthermore, conventional electromagnetic clutches are not fail-safe in unexpected power failure conditions. These factors have a significant impact on the energy efficiency and the safety of the design, and these are vital aspects for underactuated lightweight manipulators. This paper introduces a bistable electromagnetic coupling mechanism design, with reduced energy consumption and with a fail-safe mechanism. The concept of a bistable electromagnetic mechanism consists of an electromagnet with two permanent magnets. The design has the capability to maintain stable mechanism states, either engaged or disengaged, without a continuous electrical power supply, thus enhancing fail-safety and efficiency. Moreover, the design incorporates the advantages of conventional electromagnetic clutches such as rapid activation and electrical controllability. The experimental results highlight the effectiveness of the proposed mechanism in reducing electric energy consumption. Besides this, a theoretical model is developed and a good correlation is achieved between the theoretical and experimental results. The reduced electric energy consumption and fail-safe design make the bistable electromagnetic mechanism a promising concept for underactuated lightweight manipulators.

  16. Electromagnetic Fields

    PubMed Central

    Ishida, Masashi; Takahashi, Kenji A.; Arai, Yuji; Kubo, Toshikazu

    2008-01-01

    Establishing a means to prevent osteonecrosis after corticosteroid administration is an important theme. We asked whether pulsed electromagnetic field stimulation, a noninvasive treatment, could prevent osteonecrosis. Ninety rabbits were divided into four treatment groups: (1) exposure of 10 hours per day to electromagnetic stimulation for 1 week, followed by injection of methylprednisolone (20 mg/kg), and exposure of 10 hours per day to electromagnetism for a further 4 weeks (n = 40); (2) methylprednisolone injection only (n = 40); (3) no treatment (n = 5); and (4) exposure of 10 hours per day to electromagnetism for 5 weeks (n = 5). After 5 weeks, we harvested and histologically examined femurs bilaterally. The frequency of osteonecrosis was lower in the steroid-electromagnetism group (15/40) than in the steroid-only group (26/40). No necrotic lesions were found in the two control groups. We observed no clear effects of electromagnetism on the number, location, extent, and repair of necrotic lesions and intramedullary fat cell size in affected rabbits. Pulsed electromagnetic field stimulation reportedly augments angiogenesis factors and dilates blood vessels; these effects may lower the frequency of osteonecrosis. Exposure to pulsed electromagnetic field stimulation before corticosteroid administration could be an effective means to reduce the risk of osteonecrosis. PMID:18350347

  17. Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tobita, Miwa; Omura, Yoshiharu

    2018-03-01

    We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.

  18. Nanoporous Silicon Ignition of JA2 Propellant

    DTIC Science & Technology

    2014-06-01

    signals that would satisfy the hazard of electromagnetic radiation to ordnance (HERO) requirements of modern munitions. Such integrated circuits can...NUMBER (Include area code) 410-278-6098 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 iii Contents List of Figures iv 1...fabricated as an integral element of a silicon chip. Integrated circuits that filter the firing command signal could remove extraneous electromagnetic

  19. Luminous phenomena and electromagnetic VHF wave emission originated from earthquake-related radon exhalation

    NASA Astrophysics Data System (ADS)

    Seki, A.; Tobo, I.; Omori, Y.; Muto, J.; Nagahama, H.

    2013-12-01

    Anomalous luminous phenomena and electromagnetic wave emission before or during earthquakes have been reported (e.g., the 1965 Matsushiro earthquake swarm). However, their mechanism is still unsolved, in spite of many models for these phenomena. Here, we propose a new model about luminous phenomena and electromagnetic wave emission during earthquake by focusing on atmospheric radon (Rn-222) and its daughter nuclides (Po-218 and Po-214). Rn-222, Po-218 and Po-214 are alpha emitters, and these alpha particles ionize atmospheric molecules. A light emission phenomenon, called 'the air luminescence', is caused by de-excitation of the ionized molecules of atmospheric nitrogen due to electron impact ionization from alpha particles. The de-excitation is from the second positive system of neutral nitrogen molecules and the first negative system of nitrogen molecule ion. Wavelengths of lights by these transitions include the visible light wavelength. So based on this mechanism, we proposed a new luminous phenomenon model before or during earthquake: 1. The concentration of atmospheric radon and its daughter nuclides increase anomalously before or during earthquakes, 2. Nitrogen molecules and their ions are excited by alpha particles emitted from Rn-222, Po-218 and Po-214, and air luminescence is generated by their de-excitation. Similarly, electromagnetic VHF wave emission can be explained by ionizing effect of radon and its daughter nuclides. Boyarchuk et al. (2005) proposed a model that electromagnetic VHF wave emission is originated when excited state of neutral clusters changes. Radon gas ionizes atmosphere and forms positively and negatively charged heavy particles. The process of ion hydration in ordinary air can be determined by the formation of complex chemically active structures of the various types of ion radicals. As a result of the association of such hydration radical ions, a neutral cluster, which is dipole quasi-molecules, is formed. A neutral cluster's rotation-rotation transition causes electromagnetic VHF wave emission. We also discuss a possibility of electromagnetic VHF wave emission from excitation of polyatomic molecules by alpha particles from Rn-222 and its daughter nuclides, similar to air luminescence by excitation of nitrogen molecule in the viewpoint of electromagnetic radiation in quantum theory.

  20. Limitations in the 2D description of the electromagnetic waves propagation in thin dielectric and magnetic layers

    NASA Astrophysics Data System (ADS)

    Radożycki, Tomasz; Bargieła, Piotr

    2018-07-01

    The propagation of electromagnetic waves trapped within dielectric and magnetic layers is considered. The description within the three-dimensional theory is compared to the simplified analysis in two dimensions. Two distinct media configurations of different topology are dealt with: a plane slab and a hollow cylinder. Choosing the appropriate values for the geometrical parameters (layer thickness, radius of the cylinder) and for the electromagnetic properties of the media one can trap exactly one mode corresponding to that obtained within the two-dimensional electromagnetism. However, the symmetry between electric and magnetic fields suggests, that the two versions of the simplified electromagnetism ought to be equally considered. Its usual form is incomplete to describe all modes. It is also found that there exists a domain of optimal values of parameters for which the 2D model works relatively correctly. However, in the case of a cylindrical surface we observe several differences which may be attributed to the curvature of the layer, and which exclude the propagation of evanescent modes. The two-dimensional electrodynamics, whichever form is used, turns out still too poor to describe the so-called 'hybrid modes' excited in a real layer. The obtained results can be essential for proper description of the propagating waves within thin layers for which 3D approach is not available due to mathematical complexity and reducing the layer to a lower dimensional structure seems the only possible option.

  1. Electromagnetic hypersensitivity: biological effects of dirty electricity with emphasis on diabetes and multiple sclerosis.

    PubMed

    Havas, Magda

    2006-01-01

    Dirty electricity is a ubiquitous pollutant. It flows along wires and radiates from them and involves both extremely low frequency electromagnetic fields and radio frequency radiation. Until recently, dirty electricity has been largely ignored by the scientific community. Recent inventions of metering and filter equipment provide scientists with the tools to measure and reduce dirty electricity on electrical wires. Several case studies and anecdotal reports are presented. Graham/Stetzer (GS) filters have been installed in schools with sick building syndrome and both staff and students reported improved health and more energy. The number of students needing inhalers for asthma was reduced in one school and student behavior associated with ADD/ADHD improved in another school. Blood sugar levels for some diabetics respond to the amount of dirty electricity in their environment. Type 1 diabetics require less insulin and Type 2 diabetics have lower blood sugar levels in an electromagnetically clean environment. Individuals diagnosed with multiple sclerosis have better balance and fewer tremors. Those requiring a cane walked unassisted within a few days to weeks after GS filters were installed in their home. Several disorders, including asthma, ADD/ADHD, diabetes, multiple sclerosis, chronic fatigue, fibromyalgia, are increasing at an alarming rate, as is electromagnetic pollution in the form of dirty electricity, ground current, and radio frequency radiation from wireless devices. The connection between electromagnetic pollution and these disorders needs to be investigated and the percentage of people sensitive to this form of energy needs to be determined.

  2. A Variational Method in Out-of-Equilibrium Physical Systems

    PubMed Central

    Pinheiro, Mario J.

    2013-01-01

    We propose a new variational principle for out-of-equilibrium dynamic systems that are fundamentally based on the method of Lagrange multipliers applied to the total entropy of an ensemble of particles. However, we use the fundamental equation of thermodynamics on differential forms, considering U and S as 0-forms. We obtain a set of two first order differential equations that reveal the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. From this approach, a topological torsion current emerges of the form , where Aj and ωk denote the components of the vector potential (gravitational and/or electromagnetic) and where ω denotes the angular velocity of the accelerated frame. We derive a special form of the Umov-Poynting theorem for rotating gravito-electromagnetic systems. The variational method is then applied to clarify the working mechanism of particular devices. PMID:24316718

  3. Electromagnetic immunity of infusion pumps to GSM mobile phones: a systematic review.

    PubMed

    Calcagnini, Giovanni; Censi, Federica; Triventi, Michele; Mattei, Eugenio; Bartolini, Pietro

    2007-01-01

    Electromagnetic interference with life-sustaining medical care devices has been reported by various groups. Previous studies have demonstrated that volumetric and syringe pumps are susceptible to false alarm buzzing and blocking, when exposed to various electromagnetic sources. The risk of electromagnetic interference depends on several factors such as the phone-emitted power, distance and carrier frequency, phone model and antenna type. The main recommendations and the relevant harmonized standard are also reported and discussed. >From the data available in literature emerges that, for distances lower than 1 m there is a non negligible risk of electromagnetic interferences, although significant differences exists in the reported minimum distances. Interference effects clinically relevant for the patients are rare. No permanent damage to the pumps has been ever reported, although in several cases intervention of personnel is required to resume normal operation.

  4. An inhomogeneous thermal block model of man for the electromagnetic environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, I.; Gandhi, O.P.

    An inhomogeneous four layer block thermal model of a human body, composed of 476 electromagnetic-sensitive cubical cells has been developed to study the effects of electromagnetic radiation. Varying tissue properties defined by thermal conductivity, specific heat, blood flow rate and metabolic heat production are accounted for by equations. Peripheral cell temperature is weight-averaged for total cell volume and is thereby higher than actual skin temperature. During electromagnetic field exposure, additional factors considered are increased blood flow rate caused by vasodilation and sweat-induced heat loss. Hot spots have been located in the model and numerical results are presented. Subjected to planemore » wave iradiation, the model's sweating and insensible perspiration cease and all temperatures converge. Testing during electromagnetic hyperthemia shows all temperature body parts to increase approximately at the same rate.« less

  5. Electromagnetic homeostasis and the role of low-amplitude electromagnetic fields on life organization.

    PubMed

    De Ninno, Antonella; Pregnolato, Massimo

    2017-01-01

    The appearance of endogenous electromagnetic fields in biological systems is a widely debated issue in modern science. The electrophysiological fields have very tiny intensities and it can be inferred that they are rapidly decreasing with the distance from the generating structure, vanishing at very short distances. This makes very hard their detection using standard experimental methods. However, the existence of fast-moving charged particles in the macromolecules inside both intracellular and extracellular fluids may envisage the generation of localized electric currents as well as the presence of closed loops, which implies the existence of magnetic fields. Moreover, the whole set of oscillatory frequencies of various substances, enzymes, cell membranes, nucleic acids, bioelectrical phenomena generated by the electrical rhythm of coherent groups of cells, cell-to-cell communication among population of host bacteria, forms the increasingly complex hierarchies of electromagnetic signals of different frequencies which cover the living being and represent a fundamental information network controlling the cell metabolism. From this approach emerges the concept of electromagnetic homeostasis: that is, the capability of the human body to maintain the balance of highly complex electromagnetic interactions within, in spite of the external electromagnetic noisy environment. This concept may have an important impact on the actual definitions of heal and disease.

  6. Dispersive approach to two-photon exchange in elastic electron-proton scattering

    DOE PAGES

    Blunden, P. G.; Melnitchouk, W.

    2017-06-14

    We examine the two-photon exchange corrections to elastic electron-nucleon scattering within a dispersive approach, including contributions from both nucleon and Δ intermediate states. The dispersive analysis avoids off-shell uncertainties inherent in traditional approaches based on direct evaluation of loop diagrams, and guarantees the correct unitary behavior in the high energy limit. Using empirical information on the electromagnetic nucleon elastic and NΔ transition form factors, we compute the two-photon exchange corrections both algebraically and numerically. Finally, results are compared with recent measurements of e + p to e - p cross section ratios from the CLAS, VEPP-3 and OLYMPUS experiments.

  7. Systematic study of baryons in a three-body quark model

    NASA Astrophysics Data System (ADS)

    Aslanzadeh, M.; Rajabi, A. A.

    2016-09-01

    We investigated the structure of baryons within a three-body quark model based on hypercentral approach. We considered an SU(6)-invariant potential consisting of the well-known "Coulomb-plus-linear" potential plus some multipole interactions as V ( x) ∝ x - n with n > 2. Then, through an analytical solution, we obtained the energy eigenvalues and eigenfunctions of the three-body problem and evaluated some observables such as the mass spectrum of light baryons and both the electromagnetic elastic form factors, and the charge radii of nucleons. We compared our results with the experimental data and showed that the present model provides a good description of the observed resonances.

  8. Electromagnetic duality and the electric memory effect

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Seo, Min-Seok; Shiu, Gary

    2018-02-01

    We study large gauge transformations for soft photons in quantum electrodynamics which, together with the helicity operator, form an ISO(2) algebra. We show that the two non-compact generators of the ISO(2) algebra correspond respectively to the residual gauge symmetry and its electromagnetic dual gauge symmetry that emerge at null infinity. The former is helicity universal (electric in nature) while the latter is helicity distinguishing (magnetic in nature). Thus, the conventional large gauge transformation is electric in nature, and is naturally associated with a scalar potential. We suggest that the electric Aharonov-Bohm effect is a direct measure for the electromagnetic memory arising from large gauge transformations.

  9. Bursty, Broadband Electromagnetic Waves Associated with Thin Current Layers and Turbulent Magnetosheath Reconnection

    NASA Technical Reports Server (NTRS)

    Adrian, M. L.; Wendel, D. E.

    2011-01-01

    We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X- and O-nulls, as well as their correlation to the amount of magnetic energy converted by the process of magnetic reconnection.

  10. Electromagnetic mapping of buried paleochannels in eastern Abu Dhabi Emirate, U.A.E.

    USGS Publications Warehouse

    Fitterman, D.V.; Menges, C.M.; Al Kamali, A.M.; Essa, Jama F.

    1991-01-01

    Transient electromagnetic soundings and terrain conductivity meter measurements were used to map paleochannel geometry in the Al Jaww Plain of eastern Abu Dhabi Emirate, U.A.E. as part of an integrated hydrogeologic study of the Quaternary alluvial aquifer system. Initial interpretation of the data without benefit of well log information was able to map the depth to a conductive clay layer of Tertiary age that forms the base of the aquifer. Comparison of the results with induction logs reveals that a resistive zone exists that was incorporated into the interpretation and its lateral extent mapped with the transient electromagnetic sounding data. ?? 1991.

  11. [The ultrastructure of Leydig cells under the influence of drinking mineral water and electromagnetic radiation under the stress conditions in the rats].

    PubMed

    Geniatulina, M S; Korolev, Yu N; Nikulina, L A

    The objective of the present study was elucidate the peculiar features of low-intensity electromagnetic radiation (LI EMR) and mineral water (MW) on the ultrastructure of rat Leydig cells under conditions of immobilization stress. The experiments were carried out on outbred male rats with the use of electron microscopy. It has been demonstrated that the prophylactic consumption of drinking sulfate-containing mineral water and the application low-intensity electromagnetic radiation (with the flow power density of 1 mcW/cm2 and frequency around 1,000 Hz) or the combination of these two modalities under conditions of immobilization stress reduced the degree of ultrastructural derangement in the rat Leydig cells and stimulated the development of regenerative processes. In the cases of the single-factor impact, drinking mineral water exerted more pronounced action than low-intensity electromagnetic radiation on mitochondrial regeneration. In case of the simultaneous application of the two factors their protective action on the Leydig cells was much more conspicuous than that of either of them applied alone. It is concluded that drinking sulfate-containing mineral water in combination with the application of low-intensity electromagnetic radiation enhances resistance of the rat Leydig cells to stress.

  12. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon [Pinole, CA; Bruchez, Jr., Marcel; Alivisatos, Paul [Oakland, CA

    2008-01-01

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  13. A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation.

    PubMed

    Feng, Peihua; Wu, Ying; Zhang, Jiazhong

    2017-01-01

    Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN) neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 < ω < 2.208, chaotic motion characterizes the main behavior type. The mechanism of mode transition from quasi-periodic to chaotic motion is also observed when varying the amplitude of external electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior.

  14. A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation

    PubMed Central

    Feng, Peihua; Wu, Ying; Zhang, Jiazhong

    2017-01-01

    Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN) neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 < ω < 2.208, chaotic motion characterizes the main behavior type. The mechanism of mode transition from quasi-periodic to chaotic motion is also observed when varying the amplitude of external electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior. PMID:29089882

  15. Confined states in photonic-magnonic crystals with complex unit cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadoenkova, Yu. S.; Novgorod State University, 173003 Veliky Novgorod; Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk

    2016-08-21

    We have investigated multifunctional periodic structures in which electromagnetic waves and spin waves can be confined in the same areas. Such simultaneous localization of both sorts of excitations can potentially enhance the interaction between electromagnetic waves and spin waves. The system we considered has a form of one dimensional photonic-magnonic crystal with two types of magnetic layers (thicker and thinner ones) separated by sections of the dielectric photonic crystals. We focused on the electromagnetic defect modes localized in the magnetic layers (areas where spin waves can be excited) and decaying in the sections of conventional (nonmagnetic) photonic crystals. We showedmore » how the change of relative thickness of two types of the magnetic layers can influence on the spectrum of spin waves and electromagnetic defect modes, both localized in magnetic parts of the system.« less

  16. Magnetic circuit for hall effect plasma accelerator

    NASA Technical Reports Server (NTRS)

    Manzella, David H. (Inventor); Jacobson, David T. (Inventor); Hofer, Richard (Inventor); Peterson, Peter (Inventor); Jankovsky, Robert S. (Inventor)

    2009-01-01

    A Hall effect plasma accelerator includes inner and outer electromagnets, circumferentially surrounding the inner electromagnet along a thruster centerline axis and separated therefrom, inner and outer magnetic conductors, in physical connection with their respective inner and outer electromagnets, with the inner magnetic conductor having a mostly circular shape and the outer magnetic conductor having a mostly annular shape, a discharge chamber, located between the inner and outer magnetic conductors, a magnetically conducting back plate, in magnetic contact with the inner and outer magnetic conductors, and a combined anode electrode/gaseous propellant distributor, located at a bottom portion of the discharge chamber. The inner and outer electromagnets, the inner and outer magnetic conductors and the magnetically conducting back plate form a magnetic circuit that produces a magnetic field that is largely axial and radially symmetric with respect to the thruster centerline.

  17. Dielectric properties of glassy disaccharides for electromagnetic interference shielding application

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, P.; Hawelek, L.; Paluch, M.; Wlodarczyk, A.; Wojnarowska, Z.; Kolano-Burian, A.

    2015-11-01

    Three amorphous disaccharides (sucrose, trehalose, and lactulose) and their mixtures were studied in order to evaluate their ability to absorb a high frequency (>1 MHz) electromagnetic wave. The materials were characterized by a dielectric loss tangent. It was found out that the highest tan(δ) value is observed in pure amorphous sucrose (tan(δ) = 0.17 at f = 1 MHz at T = 293 K). Moreover, the best Tg/tan(δ) ratio is observed in binary mixtures of sucrose and trehalose. A high glass transition temperature is advantageous as it increases operational temperatures of the material. The high tangent delta in microwave frequencies of sugars is connected with the mobility of sugar groups (possibly -CH2OH). The energy of the electromagnetic wave is converted into rotational movements of side groups and in consequence it is dissipated in the form of heat. It was proven that the polar low molecular glasses such as sugars may form dielectric components of composite microwave absorbers.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imani, Mohammadreza F., E-mail: mohamad.imani@gmail.com; Grbic, Anthony

    One of the obstacles preventing wireless power transfer from becoming ubiquitous is their leakage of power: high-amplitude electromagnetic fields that can interfere with other electronic devices, increase health concerns, or hinder power metering. In this paper, we present near-field plates (NFPs) as a novel method to tailor the electromagnetic fields generated by a wireless power transfer system while maintaining high efficiency. NFPs are modulated arrays or surfaces designed to form prescribed near-field patterns. The NFP proposed in this paper consists of an array of loaded loops that are designed to confine the electromagnetic fields of a resonant transmitting loop tomore » the desired direction (receiving loop) while suppressing fields in other directions. The step-by-step design procedure for this device is outlined. Two NFPs are designed and examined in full-wave simulation. Their performance is shown to be in close agreement with the design predictions, thereby verifying the proposed design and operation. A NFP is also fabricated and experimentally shown to form a unidirectional wireless power transfer link with high efficiency.« less

  19. Polarization-dependent electromagnetic responses of ultrathin and highly flexible asymmetric terahertz metasurfaces

    NASA Astrophysics Data System (ADS)

    Burrow, Joshua A.; Yahiaoui, Riad; Sarangan, Andrew; Agha, Imad; Mathews, Jay; Searles, Thomas A.

    2017-12-01

    We report the polarization-dependent electromagnetic response from a series of novel terahertz (THz) metasurfaces where asymmetry is introduced through the displacement of two adjacent metallic arms separated by a distance $\\delta$. For all polarization states, the symmetric metasurface exhibits a low quality (Q) factor fundamental dipole mode. By breaking the symmetry, we experimentally observe a secondary dipole-like mode with a Q factor nearly $9\\times$ higher than the fundamental resonance. As $\\delta$ increases, the fundamental dipole mode $f_{1}$ redshifts and the secondary mode $f_{2}$ blueshifts creating a highly transmissive spectral window. Polarization-dependent measurements reveal a full suppression of $f_{2}$ for all asymmetries at $\\theta \\geq 60^\\circ$. Furthermore, at $\\delta \\geq 60 \\text{ }\\mu\\text{m}$, we observe a polarization selective electromagnetic induced transparency (EIT) for the fundamental mode. This work paves the way for applications in filtering, sensing and slow-light devices common to other high Q factor THz metasurfaces with EIT-like response.

  20. Converting Existing Copper Wire Firing System to a Fiber Optically Controlled Firing System for Electromagnetic Pulsed Power Experiments

    DTIC Science & Technology

    2017-12-19

    Firing System for Electromagnetic Pulsed Power Experiments by Robert Borys Jr and Colby Adams Approved for public release...Belcamp, MD Approved for public release; distribution is unlimited. ii REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188... Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions

  1. High-Fidelity Simulations of Electromagnetic Propagation and RF Communication Systems

    DTIC Science & Technology

    2017-05-01

    addition to high -fidelity RF propagation modeling, lower-fidelity mod- els, which are less computationally burdensome, are available via a C++ API...expensive to perform, requiring roughly one hour of computer time with 36 available cores and ray tracing per- formed by a single high -end GPU...ER D C TR -1 7- 2 Military Engineering Applied Research High -Fidelity Simulations of Electromagnetic Propagation and RF Communication

  2. DDG-1000 Missile Integration: A Case Study

    DTIC Science & Technology

    2014-03-01

    hazards of electromagnetic radiation to ordnance (HERO) from those emitters, are not addressed in the JUWL program because legacy requirements are...UU NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89) Prescribed by ANSI Std. 239–18 ii THIS PAGE INTENTIONALLY LEFT BLANK iii Approved...weapon link on a xvii new frequency. All other requirements, such as pre- and post-launch interfaces, electromagnetic vulnerability requirements

  3. Air and Space Power Journal. Volume 24, Number 1, Spring 2010

    DTIC Science & Technology

    2010-01-01

    unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 SP IN E http...messen- gers to conduct psychological operations (PSYOP). EW operations seek to achieve ef- fects across the electromagnetic domain, including radio...a man­ made virtual domain. Further study reveals its natural similarities to the other domains, as defined by the electromagnetic spectrum

  4. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule.

    PubMed

    Sahu, Satyajit; Ghosh, Subrata; Fujita, Daisuke; Bandyopadhyay, Anirban

    2014-12-03

    As we bring tubulin protein molecules one by one into the vicinity, they self-assemble and entire event we capture live via quantum tunneling. We observe how these molecules form a linear chain and then chains self-assemble into 2D sheet, an essential for microtubule, --fundamental nano-tube in a cellular life form. Even without using GTP, or any chemical reaction, but applying particular ac signal using specially designed antenna around atomic sharp tip we could carry out the self-assembly, however, if there is no electromagnetic pumping, no self-assembly is observed. In order to verify this atomic scale observation, we have built an artificial cell-like environment with nano-scale engineering and repeated spontaneous growth of tubulin protein to its complex with and without electromagnetic signal. We used 64 combinations of plant, animal and fungi tubulins and several doping molecules used as drug, and repeatedly observed that the long reported common frequency region where protein folds mechanically and its structures vibrate electromagnetically. Under pumping, the growth process exhibits a unique organized behavior unprecedented otherwise. Thus, "common frequency point" is proposed as a tool to regulate protein complex related diseases in the future.

  5. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule

    PubMed Central

    Sahu, Satyajit; Ghosh, Subrata; Fujita, Daisuke; Bandyopadhyay, Anirban

    2014-01-01

    As we bring tubulin protein molecules one by one into the vicinity, they self-assemble and entire event we capture live via quantum tunneling. We observe how these molecules form a linear chain and then chains self-assemble into 2D sheet, an essential for microtubule, —fundamental nano-tube in a cellular life form. Even without using GTP, or any chemical reaction, but applying particular ac signal using specially designed antenna around atomic sharp tip we could carry out the self-assembly, however, if there is no electromagnetic pumping, no self-assembly is observed. In order to verify this atomic scale observation, we have built an artificial cell-like environment with nano-scale engineering and repeated spontaneous growth of tubulin protein to its complex with and without electromagnetic signal. We used 64 combinations of plant, animal and fungi tubulins and several doping molecules used as drug, and repeatedly observed that the long reported common frequency region where protein folds mechanically and its structures vibrate electromagnetically. Under pumping, the growth process exhibits a unique organized behavior unprecedented otherwise. Thus, “common frequency point” is proposed as a tool to regulate protein complex related diseases in the future. PMID:25466883

  6. Vibration properties of and power harvested by a system of electromagnetic vibration energy harvesters that have electrical dynamics

    NASA Astrophysics Data System (ADS)

    Cooley, Christopher G.

    2017-09-01

    This study investigates the vibration and dynamic response of a system of coupled electromagnetic vibration energy harvesting devices that each consist of a proof mass, elastic structure, electromagnetic generator, and energy harvesting circuit with inductance, resistance, and capacitance. The governing equations for the coupled electromechanical system are derived using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary number of these subsystems. The equations are cast in matrix operator form to expose the device's vibration properties. The device's complex-valued eigenvalues and eigenvectors are related to physical characteristics of its vibration. Because the electrical circuit has dynamics, these devices have more natural frequencies than typical electromagnetic vibration energy harvesters that have purely resistive circuits. Closed-form expressions for the steady state dynamic response and average power harvested are derived for devices with a single subsystem. Example numerical results for single and double subsystem devices show that the natural frequencies and vibration modes obtained from the eigenvalue problem agree with the resonance locations and response amplitudes obtained independently from forced response calculations. This agreement demonstrates the usefulness of solving eigenvalue problems for these devices. The average power harvested by the device differs substantially at each resonance. Devices with multiple subsystems have multiple modes where large amounts of power are harvested.

  7. Lie algebraic approach to the time-dependent quantum general harmonic oscillator and the bi-dimensional charged particle in time-dependent electromagnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.

    We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra ismore » later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a rotating quadrupole field ion trap are presented. •Exact solutions for magneto-transport in variable electromagnetic fields are shown.« less

  8. Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro.

    PubMed

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment.Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm(2) to 2 mW/cm(2), representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction.

  9. Terahertz Electromagnetic Fields (0.106 THz) Do Not Induce Manifest Genomic Damage In Vitro

    PubMed Central

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment. Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm2 to 2 mW/cm2, representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction. PMID:23029508

  10. Tents and Shelters

    DTIC Science & Technology

    2010-07-15

    Electromagnetic Interference ( EMI ), Transportability, Environmental, Human Factors Engineering (HFE), Reliability, Availability and Maintainability (RAM), and...vehicles and trailers to store, protect, and secure equipment, tools, and other theft-prone items. CBCs are designed not to interfere with the carrier’s...Transportability Test Facility. d. Electromagnetic Interference ( EMI ) Test Facility. e. Areas capable of conducting Blackout, Sound, Sand and Dust tests

  11. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 1. Electromagnetic properties

    USGS Publications Warehouse

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2010-01-01

    The marked decrease in bulk electrical conductivity of sediments in the presence of gas hydrates has been used to interpret borehole electrical resistivity logs and, to a lesser extent, the results of controlled source electromagnetic surveys to constrain the spatial distribution and predicted concentration of gas hydrate in natural settings. Until now, an exhaustive laboratory data set that could be used to assess the impact of gas hydrate on the electromagnetic properties of different soils (sand, silt, and clay) at different effective stress and with different saturations of hydrate has been lacking. The laboratory results reported here are obtained using a standard geotechnical cell and the hydrate-formed tetrahydrofuran (THF), a liquid that is fully miscible in water and able to produce closely controlled saturations of hydrate from dissolved phase. Both permittivity and electrical conductivity are good indicators of the volume fraction of free water in the sediment, which is in turn dependent on hydrate saturation. Permittivity in the microwave frequency range is particularly predictive of free water content since it is barely affected by ionic concentration, pore structure, and surface conduction. Electrical conductivity (or resistivity) is less reliable for constraining water content or hydrate saturation: In addition to fluid-filled porosity, other factors, such as the ionic concentration of the pore fluid and possibly other conduction effects (e.g., surface conduction in high specific surface soils having low conductivity pore fluid), also influence electrical conductivity.

  12. Clinical and laboratory evaluation of microstructural changes in the physical, mechanical and chemical properties of dental filling materials under the influence of an electromagnetic field.

    PubMed

    Moiseeva, Natalia S; Kunin, Anatoly A

    2018-03-01

    Restorative filling materials used for dental caries prevention and treatment consist of various components including monomers or oligomers, which play a significant role in forming the main structure of these materials, as well as in characterising their physical, mechanical and chemical properties. The necessity for the development and improvement of structural characteristics of polymeric dental filling materials intended for caries prevention and their life duration increase served as the initiating factor of our research. According to the research purpose and challenges, we studied the changes in the physical, mechanical and chemical properties of composite filling materials with and without electromagnetic field influence. The investigations in vivo include the study of microstructural features of polymeric filling materials by scanning electron microscopy (SEM) and the investigations in vitro include the study of sealed and extracted human teeth chips by using X-ray spectral analysis. We also evaluated the changes in the strength characteristics of dental filling materials with and without electromagnetic field influence. The analysis of the obtained data indicates the presence of structural changes in polymeric dental filling materials, including the material microstructure condensation confirmed by the SEM results, an increase in the strength and adhesion characteristics and certain regularities of the chemical elemental composition concentration change in the area of hard tooth tissue and dental filling material. These scientific data will provide tooth caries prevention and promote the increase of treatment quality.

  13. Transverse Densities of Octet Baryons from Chiral Effective Field Theory

    DOE PAGES

    Alarcón, Jose Manuel; Hiller Blin, Astrid N.; Weiss, Christian

    2017-03-24

    Transverse densities describe the distribution of charge and current at fixed light-front time and provide a frame-independent spatial representation of hadrons as relativistic systems. In this paper, we calculate the transverse densities of the octet baryons at peripheral distances b=O(M π -1) in an approach that combines chiral effective field theory (χχEFT) and dispersion analysis. The densities are represented as dispersive integrals of the imaginary parts of the baryon electromagnetic form factors in the timelike region (spectral functions). The spectral functions on the two-pion cut at t>4Mmore » $$2\\atop{π}$$ are computed using relativistic χEFT with octet and decuplet baryons in the extended on-mass-shell renormalization scheme. The calculations are extended into the ρ-meson mass region using a dispersive method that incorporates the timelike pion form-factor data. The approach allows us to construct densities at distances b>1 fm with controlled uncertainties. Finally, our results provide insight into the peripheral structure of nucleons and hyperons and can be compared with empirical densities and lattice-QCD calculations.« less

  14. Hydraulic continuity and biological effects of low strength very low frequency electromagnetic waves: Case of microbial biofilm growth in water treatment.

    PubMed

    Gérard, Merlin; Noamen, Omri; Evelyne, Gonze; Eric, Valette; Gilles, Cauffet; Marc, Henry

    2015-10-15

    This study aims to elucidate the interactions between water, subjected to electromagnetic waves of very low frequency (VLF) (kHz) with low strength electromagnetic fields (3.5 mT inside the coils), and the development of microbial biofilms in this exposed water. Experimental results demonstrate that in water exposed to VLF electromagnetic waves, the biomass of biofilm is limited if hydraulic continuity is achieved between the electromagnetic generator and the biofilm media. The measured amount of the biofilm's biomass is approximately a factor two lower for exposed biofilm than the non-exposed biofilm. Measurements of electromagnetic fields in the air and simulations exhibit very low intensities of fields (<10 nT and 2 V/m) in the biofilm-exposed region at a distance of 1 m from the electromagnetic generator. Exposure to electric and magnetic fields of the quoted intensities cannot explain thermal and ionizing effects on the biofilm. A variable electrical potential with a magnitude close to 20 mV was detected in the tank in hydraulic continuity with the electromagnetic generator. The application of quantum field theory may help to explain the observed effects in this case. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2006-09-05

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  16. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon [Pinole, CA; Bruchez, Jr., Marcel; Alivisatos, Paul [Oakland, CA

    2004-03-02

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  17. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2005-08-09

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  18. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2002-01-01

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in he probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  19. Autogenerator of beams of charged particles

    DOEpatents

    Adler, Richard J.; Mazarakis, Michael G.; Miller, Robert B.; Shope, Steven L.; Smith, David L.

    1986-01-01

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  20. Autogenerator of beams of charged particles

    DOEpatents

    Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.

    1983-10-31

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  1. Constraints and stability in vector theories with spontaneous Lorentz violation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bluhm, Robert; Gagne, Nolan L.; Potting, Robertus

    2008-06-15

    Vector theories with spontaneous Lorentz violation, known as bumblebee models, are examined in flat spacetime using a Hamiltonian constraint analysis. In some of these models, Nambu-Goldstone modes appear with properties similar to photons in electromagnetism. However, depending on the form of the theory, additional modes and constraints can appear that have no counterparts in electromagnetism. An examination of these constraints and additional degrees of freedom, including their nonlinear effects, is made for a variety of models with different kinetic and potential terms, and the results are compared with electromagnetism. The Hamiltonian constraint analysis also permits an investigation of the stabilitymore » of these models. For certain bumblebee theories with a timelike vector, suitable restrictions of the initial-value solutions are identified that yield ghost-free models with a positive Hamiltonian. In each case, the restricted phase space is found to match that of electromagnetism in a nonlinear gauge.« less

  2. The 1983 direct strike lightning data, part 1

    NASA Technical Reports Server (NTRS)

    Thomas, Mitchel E.

    1985-01-01

    Data waveforms are presented which were obtained during the 1983 direct strike lightning tests utilizing the NASA F106-B aircraft specially instrumented for lightning electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached lightning. Part 1 contains 435 pages of lightning strike data in chart form.

  3. The 1983 direct strike lightning data, part 2

    NASA Technical Reports Server (NTRS)

    Thomas, Mitchel E.

    1985-01-01

    Data waveforms are presented which were obtained during the 1983 direct strike lightning tests utilizing the NASA F106-B aircraft specially instrumented for lightning electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached lightning. Part 2 contains 443 pages of lightning strike data in chart form.

  4. Device for conversion of electromagnetic radiation into electrical current

    DOEpatents

    Blakeslee, A.E.; Mitchell, K.W.

    1980-03-25

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  5. Device for conversion of electromagnetic radiation into electrical current

    DOEpatents

    Blakeslee, A. Eugene; Mitchell, Kim W.

    1981-01-01

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  6. Testing of Unmanned Ground Vehicle (UGV) Systems

    DTIC Science & Technology

    2009-02-12

    Emissions - Intra-system EMC TOP 1-2-51253 TOP 1-2-51154 TOP 2-2-61355 Determines whether the item tested meets the electromagnetic radiation ...effects, static electricity, and lightning criteria and the maximum electromagnetic radiation environment to which the test item may be exposed...Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 2-2-540 Testing of Unmanned Ground Vehicle (UGV) Systems 5c. PROGRAM ELEMENT NUMBER 5d

  7. The Fermionic Signature Operator and Hadamard States in the Presence of a Plane Electromagnetic Wave

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Reintjes, Moritz

    2017-05-01

    We give a non-perturbative construction of a distinguished state for the quantized Dirac field in Minkowski space in the presence of a time-dependent external field of the form of a plane electromagnetic wave. By explicit computation of the fermionic signature operator, it is shown that the Dirac operator has the strong mass oscillation property. We prove that the resulting fermionic projector state is a Hadamard state.

  8. Observation of electromagnetically induced Talbot effect in an atomic system

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyang; Liu, Xing; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2018-01-01

    The electromagnetically induced Talbot effect (EITE) resulting from the repeated self-reconstruction of a spatially intensity-modulated probe field is experimentally demonstrated in a three-level atomic configuration. The probe beam is launched into an optically induced lattice (established by the interference of two coupling fields) inside a rubidium vapor cell and is diffracted by the electromagnetically induced grating that was formed. The diffraction pattern repeats itself at the planes of integer multiple Talbot lengths. In addition, a fractional EITE is also investigated. The experimental observations agree well with the theoretical predictions. This investigation may potentially pave the way for studying the nonlinear and quantum dynamical features that have been predicted for established periodic optical systems.

  9. Meridian is a three-dimensional network from bio-electromagnetic radiation interference: an interference hypothesis of meridian.

    PubMed

    Han, Jinxiang

    2012-03-01

    An electromagnetic radiation field within a biological organism is characterized by non-local interference. The interfering beams form a unitary tridimensional network with beams of varying intensity, also called striae, which are distributed on the organism surface. These striae are equivalent to semi-reflectors. The striae carry bio-information of corresponding organs and, thus, integrate all tissues, and organs of the organism. The longitudinal striae are classified as channels, while the transverse striae are collaterals. The acupoints are seen as the points where electromagnetic interfering striae intersect or converge. This hypothesis builds a foundation to understand the traditional Chinese medicine, including acupuncture, from the perspective of scientific knowledge.

  10. Industrial grade versus scientific pure: Influence on melt properties

    NASA Astrophysics Data System (ADS)

    Jonas, I.; Hembree, W.; Yang, F.; Busch, R.; Meyer, A.

    2018-04-01

    Viscosity, density, and the undercooling ability of the Zr-based bulk glass forming melt, which was manufactured in two different degrees of purity, have been studied. Investigations have been carried out by means of Couette rheometry and electrostatic and electromagnetic levitation with the latter under microgravity conditions. We found that oxygen and impurities present in industrial grade metals do not significantly alter the melt viscosity and density, while they clearly affect the undercooling ability. Comparing container based and containerless results showed that Couette rheometry can be applied in the temperature range between 1150 K and 1375 K, where it provides reliable data, but only at a rather low oxygen content. Higher oxygen contents, as in the case of the industrial grade alloy, cause measurement artefacts. In the case of Zr59.3Cu28.8Al10.4Nb1.5 alloys, these findings allow a better localization of the key factors dominating the glass forming ability.

  11. Directive and enhanced spontaneous emission using shifted cubes nanoantenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahari, B.; Tellez-Limon, R.; Kante, B., E-mail: bkante@ucsd.edu

    2016-09-07

    Recent studies have demonstrated that nano-patch antennas formed by metallic nanocubes placed on top of a metallic film largely enhance the spontaneous emission rate of quantum emitters due to the confinement of the electromagnetic field in the small nanogap cavity. The popularity of this architecture is, in part, due to the ease in fabrication. In this contribution, we theoretically demonstrate that a dimer formed by two metallic nanocubes embedded in a dielectric medium exhibits enhanced emission rate compared to the nano-patch antenna. Furthermore, we compare the directivity and radiation efficiency of both nanoantennas. From these characteristics, we obtained information aboutmore » the “material efficiency” and the coupling mismatch efficiency between a dipole emitter and the nanoantenna. These quantities provide a more intuitive insight than the Purcell factor or localized density of states, opening new perspectives in nanoantenna design for ultra-directive light emission.« less

  12. Roy-Steiner equations for pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Ditsche, C.; Hoferichter, M.; Kubis, B.; Meißner, U.-G.

    2012-06-01

    Starting from hyperbolic dispersion relations, we derive a closed system of Roy-Steiner equations for pion-nucleon scattering that respects analyticity, unitarity, and crossing symmetry. We work out analytically all kernel functions and unitarity relations required for the lowest partial waves. In order to suppress the dependence on the high energy regime we also consider once- and twice-subtracted versions of the equations, where we identify the subtraction constants with subthreshold parameters. Assuming Mandelstam analyticity we determine the maximal range of validity of these equations. As a first step towards the solution of the full system we cast the equations for the π π to overline N N partial waves into the form of a Muskhelishvili-Omnès problem with finite matching point, which we solve numerically in the single-channel approximation. We investigate in detail the role of individual contributions to our solutions and discuss some consequences for the spectral functions of the nucleon electromagnetic form factors.

  13. Matrix-mediated synthesis of nanocrystalline gamma-Fe2O3 - A new optically transparent magnetic material

    NASA Astrophysics Data System (ADS)

    Ziolo, Ronald F.; Giannelis, Emmanuel P.; Weinstein, Bernard A.; O'Horo, Michael P.; Ganguly, Bishwanath N.; Mehrotra, Vivek; Russell, Michael W.; Huffman, Donald R.

    1992-07-01

    A magnetic material with appreciable optical transmission in the visible region at room temperature is isolated as a gamma-Fe2O3/polymer nanocomposite. The synthesis is carried out in an ion-exchange resin at 60 C. Magnetization and susceptibility data demonstrate loading-dependent saturation moments as high as 46 electromagnetic units per gram and superparamagnetism for lower loadings where particle sizes are less than 100 angstroms. Optical absorption studies show that the small-particle form of gamma-Fe2O3 is considerably more transparent to visible light than the single-crystal form. The difference in absorption ranges from nearly an order of magnitude in the 'red' spectral region to a factor of 3 at 5400 angstroms. The magnetization of the nanocomposite is greater by more than an order of magnitude than those of the strongest room-temperature transparent magnets, FeBO3 and FeF3.

  14. Electromagnetically induced absorption in detuned stub waveguides: a simple analytical and experimental model

    NASA Astrophysics Data System (ADS)

    Mouadili, A.; El Boudouti, E. H.; Soltani, A.; Talbi, A.; Djafari-Rouhani, B.; Akjouj, A.; Haddadi, K.

    2014-12-01

    We give an analytical and experimental demonstration of a classical analogue of the electromagnetic induced absorption (EIA) in a simple photonic device consisting of two stubs of lengths d1 and d2 grafted at the same site along a waveguide. By detuning the lengths of the two stubs (i.e. δ = d2 - d1) we show that: (i) the amplitudes of the electromagnetic waves in the two stubs can be written following the two resonators model where each stub plays the role of a radiative resonator with low Q factor. The destructive interference between the waves in the two stubs may give rise to a sharp resonance peak with high Q factor in the transmission as well as in the absorption. (ii) The transmission coefficient around the resonance induced by the stubs can be written following a Fano-like form. In particular, we give an explicit expression of the position, width and Fano parameter of the resonances as a function of δ. (iii) By taking into account the loss in the waveguides, we show that at the transmission resonance, the transmission (reflection) increases (decreases) as a function of δ. Whereas the absorption goes through a maximum around 0.5 for a threshold value δth which depends on the attenuation in the system and then falls to zero. (iv) We give a comparison between the phase of the determinant of the scattering matrix, the so-called Friedel phase and the phase of the transmission amplitude. (v) The effect of the boundary conditions at the end of the resonators on the EIA resonance is also discussed. The analytical results are obtained by means of the Green's function method, whereas the experiments are carried out using coaxial cables in the radio-frequency regime. These results should have important consequences for designing integrated devices such as narrow-frequency optical or microwave filters and high-speed switches.

  15. Gradient Structure Design of Flexible Waterborne Polyurethane Conductive Films for Ultraefficient Electromagnetic Shielding with Low Reflection Characteristic.

    PubMed

    Xu, Yadong; Yang, Yaqi; Yan, Ding-Xiang; Duan, Hongji; Zhao, Guizhe; Liu, Yaqing

    2018-06-06

    Highly efficient electromagnetic shielding materials entailing strong electromagnetic wave absorption and low reflection have become an increasing requirement for next-generation communication technologies and high-power electronic instruments. In this study, a new strategy is employed to provide flexible waterborne polyurethane composite films with an ultra-efficient electromagnetic shielding effectiveness (EMI SE) and low reflection by constructing gradient shielding layers with a magnetic ferro/ferric oxide deposited on reduced graphene oxide (rGO@Fe 3 O 4 ) and silver-coated tetraneedle-like ZnO whisker (T-ZnO/Ag) functional nanoparticles. Because of the differences in density between rGO@Fe 3 O 4 and T-ZnO/Ag, a gradient structure is automatically formed during the film formation process. The gradient distribution of rGO@Fe 3 O 4 over the whole thickness range forms an efficient electromagnetic wave absorption network that endows the film with a strong absorption ability on the top side, while a thin layer of high-density T-ZnO/Ag at the bottom constructs a highly conductive network that provides an excellent electromagnetic reflection ability for the film. This specific structure results in an "absorb-reflect-reabsorb" process when electromagnetic waves penetrate into the composite film, leading to an excellent EMI shielding performance with an extremely low reflection characteristic at a very low nanofiller content (0.8 vol % Fe 3 O 4 @rGO and 5.7 vol % T-ZnO/Ag): the EMI SE reaches 87.2 dB against the X band with a thickness of only 0.5 mm, while the shielding effectiveness of reflection (SE R ) is only 2.4 dB and the power coefficient of reflectivity ( R) is as low as 0.39. This result means that only 39% of the microwaves are reflected in the propagation process when 99.9999998% are attenuated, which is the lowest value among the reported references. This composite film with remarkable performance is suitable for application in portable and wearable smart electronics, and this method offers an effective strategy for absorption-dominated EMI shielding.

  16. An electromagnetic method for removing the communication blackout with a space vehicle upon re-entry into the atmosphere

    NASA Astrophysics Data System (ADS)

    Cheng, Jianjun; Jin, Ke; Kou, Yong; Hu, Ruifeng; Zheng, Xiaojing

    2017-03-01

    When a hypersonic vehicle travels in the Earth and Mars atmosphere, the surface of the vehicle is surrounded by a plasma layer, which is an envelope of ionized air, created from the compression and heat of the atmosphere by the shock wave. The vehicles will lose contact with ground stations known as the reentry communication blackout. Based on the magnetohydrodynamic framework and electromagnetic wave propagation theory, an analytical model is proposed to describe the effect of the effectiveness of electromagnetic mitigation scheme on removing the reentry communication blackout. C and Global Positioning System (GPS) bands, two commonly used radio bands for communication, are taken as the cases to discuss the effectiveness of the electromagnetic field mitigation scheme. The results show that the electron density near the antenna of vehicles can be reduced by the electromagnetic field, and the required external magnetic field strength is far below the one in the magnetic window method. The directions of the external electric field and magnetic field have a significant impact on the effectiveness of the mitigation scheme. Furthermore, the effect of electron collisions on the required applied electromagnetic field is discussed, and the result indicates that electron collisions are a key factor to analyze the electromagnetic mitigation scheme. Finally, the feasible regions of the applied electromagnetic field for eliminating blackout are given. These investigations could have a significant benefit on the design and optimization of electromagnetic mitigation scheme for the blackout problem.

  17. [Seasonal changes in tumor necrosis factor production in hibernating animals in normal conditions and under the effects of electromagnetic and ionizing radiation].

    PubMed

    Ogaĭ, V B; Novoselova, E G; Makar, V R; Kolaeva, S G

    2002-01-01

    Production of tumor necrosis factor (TNF) has been investigated in peritoneal macrophages and splenic T cells of Arctic Yakutian ground squirrel (Citellus Undulatus Pallas) upon in vitro action of electromagnetic and ionizing radiation during annual cycle. The significant activation of TNF production in the cells of awaken ground squirrels in winter and increasing level of the lymphokine production at spring-summer period has been indicated. The level of TNF production in splenic T cells was not changed during whole year. The electromagnetic radiation (EMR) of low intensity (8.15-18 GHz, 1 microW/cm2) induced an augmentation of both secretory and proliferative activity in TNF-producing cells. Ionizing radiation suppressed T cell proliferation, but the doses 2 and 5 Gy resulted in a significant stimulation of TNF production in T cells and macrophages.

  18. Including electromagnetism in K → ππ decay calculations

    NASA Astrophysics Data System (ADS)

    Christ, Norman; Feng, Xu

    2018-03-01

    Because of the small size of the ratio A2/A0 of the I = 2 to I = 0 K → ππ decay amplitudes (the ΔI = 1/2 rule) the effects of electromagnetism on A2 may be a factor of 20 larger than given by a naive O(±EM) estimate. Thus, if future calculations of A2 and epsilon'/epsilon are to achieve 10% accuracy, these effects need to be included. Here we present the first steps toward including electromagnetism in a calculation of the standard model K → ππ decay amplitudes using lattice QCD.

  19. Electromagnetic fields and public health.

    PubMed Central

    Aldrich, T E; Easterly, C E

    1987-01-01

    A review of the literature is provided for the topic of health-related research and power frequency electromagnetic fields. Minimal evidence for concern is present on the basis of animal and plant research. General observation would accord with the implication that there is no single and manifest health effect as the result of exposure to these fields. There are persistent indications, however, that these fields have biologic activity, and consequently, there may be a deleterious component to their action, possibly in the presence of other factors. Power frequency electromagnetic field exposures are essentially ubiquitous in modern society, and their implications in the larger perspective of public health are unclear at this time. Electromagnetic fields represent a methodological obstacle for epidemiologic studies and a quandary for risk assessment; there is need for more data. PMID:3319560

  20. Shuttle Communications and Tracking, Avionics, and Electromagnetic Compatibility

    NASA Technical Reports Server (NTRS)

    deSilva, K.; Hwu, Shian; Kindt, Kaylene; Kroll, Quin; Nuss, Ray; Romero, Denise; Schuler, Diana; Sham, Catherine; Scully, Robert

    2011-01-01

    By definition, electromagnetic compatibility (EMC) is the capability of components, sub-systems, and systems, to operate in their intended electromagnetic environment, within an established margin of safety, and at design levels of performance. Practice of the discipline itself incorporates knowledge of various aspects of applied physics, materials science, and engineering across the board, and includes control and mitigation of undesirable electromagnetic interaction between intentional and unintentional emitters and receivers of radio frequency energy, both within and external to the vehicle; identification and control of the hazards of non-ionizing electromagnetic radiation to personnel, ordnance, and fuels and propellants; and vehicle and system protection from the direct and indirect effects of lightning and various other forms of electrostatic discharge (ESD) threats, such as triboelectrification and plasma charging. EMC is extremely complex and far-reaching, affecting in some degree every aspect of the vehicle s design and operation. The most successful efforts incorporate EMC design features and techniques throughout design and fabrication of the vehicle s structure and components, as well as appropriate operational considerations with regard to electromagnetic threats in the operational environment, from the beginning of the design effort to the end of the life cycle of the manufactured product. This approach yields the highest design performance with the lowest cost and schedule impact.

  1. Electromagnetic scattering and emission by a fixed multi-particle object in local thermal equilibrium: General formalism.

    PubMed

    Mishchenko, Michael I

    2017-10-01

    The majority of previous studies of the interaction of individual particles and multi-particle groups with electromagnetic field have focused on either elastic scattering in the presence of an external field or self-emission of electromagnetic radiation. In this paper we apply semi-classical fluctuational electrodynamics to address the ubiquitous scenario wherein a fixed particle or a fixed multi-particle group is exposed to an external quasi-polychromatic electromagnetic field as well as thermally emits its own electromagnetic radiation. We summarize the main relevant axioms of fluctuational electrodynamics, formulate in maximally rigorous mathematical terms the general scattering-emission problem for a fixed object, and derive such fundamental corollaries as the scattering-emission volume integral equation, the Lippmann-Schwinger equation for the dyadic transition operator, the multi-particle scattering-emission equations, and the far-field limit. We show that in the framework of fluctuational electrodynamics, the computation of the self-emitted component of the total field is completely separated from that of the elastically scattered field. The same is true of the computation of the emitted and elastically scattered components of quadratic/bilinear forms in the total electromagnetic field. These results pave the way to the practical computation of relevant optical observables.

  2. Deep electromagnetic sounding of the moon with Lunokhod 2 data

    NASA Technical Reports Server (NTRS)

    Vanyan, L. L.; Yegorov, I. V.; Faynberg, E. B.

    1977-01-01

    Results of electromagnetic sounding distinguished an outer high resistance shell about 200 km thick in the moon's structure. A preliminary petrological interpretation of the moon's layers indicated their origin as a consequence of differentiation of the initial peridotite material. Upon melting, 20% to 40% of the material melts and is removed to form a high resistance basaltic shell underlain by a layer of spinal peridotites enriched in divalent iron oxides and having a reduced resistance.

  3. Hand-Held EMI Sensor Combined with Inertial Positioning for Cued UXO Discrimination - APG Standardized UXO Test Site

    DTIC Science & Technology

    2013-04-01

    Measurement Tracking System (SAINT) with an advanced hand-held, time-domain electromagnetic sensor (TEM-HH) and document classification performance at...rejecting 77% of the clutter. 15. SUBJECT TERMS EMI, electromagnetic induction, UXO classification, UXO, IMU, inertial measurement unit, 16. SECURITY...U c. THIS PAGE U UU 19b. TELEPHONE NUMBER (include area code) 919-677-1560 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

  4. Normal Component of Induced Velocity for Entire Field of a Uniformly Loaded Lifting Rotor with Highly Swept Wake as Determined by Electromagnetic Analog

    NASA Technical Reports Server (NTRS)

    Castles, Walter, Jr.; Durham, Howard L., Jr.; Kevorkian, Jirair

    1959-01-01

    Values of the normal component of induced velocity throughout the entire field of a uniformly loaded r(rotor at high high speed are presented in the form of charts and tables. Many points were found by an electromagnetic analog, details of which are given. Comparisons of computed and analog values for the induced velocity indicate that the latter are sufficiently accurate for engineering purposes.

  5. Chiral-symmetry breaking and confinement in Minkowski space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biernat, Elmer P.; Pena, M. T.; Ribiero, J. E.

    2016-01-01

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and comparedmore » with the experimental data from JLab.« less

  6. Chiral-symmetry breaking and confinement in Minkowski space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biernat, Elmar P.; Peña, M. T.; Departamento de Física, Instituto Superior Técnico

    2016-01-22

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and comparedmore » with the experimental data from JLab.« less

  7. Radiative nonrecoil nuclear finite size corrections of order α(Zα)5 to the Lamb shift in light muonic atoms

    NASA Astrophysics Data System (ADS)

    Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.

    2017-12-01

    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude with spanning photon are obtained. We present also numerical results for these contributions using modern experimental data on the electromagnetic form factors of light nuclei.

  8. UV protection of euglenoids: computation of the electromagnetic response

    NASA Astrophysics Data System (ADS)

    Dolinko, Andrés.; Valencia, Claudio; Skigin, Diana C.; Inchaussandague, Marina E.; Tolivia, Analía.; Conforti, Visitación

    2015-06-01

    Euglenoids are a group of predominantly free-living unicellular microorganisms that mostly live in freshwater bodies but can also be found in marine and brackish waters. These organisms have a characteristic that distinguishes them form the other protists: they are covered by a surface pellicle formed by S-shaped overlapping bands which resemble a diffraction grating. These microorganisms have developed numerous protection mechanisms intended to avoid or reduce the damage produced by UV radiation, such as the production of pigments and the repair mechanisms in hours of darkness and during daylight. In a recent paper we have investigated the role played by the pellicle of Euglenoids in the protection of the cell against UV radiation, by means of an electromagnetic approach based on the approximation of the pellicle profile by a one-dimensional diffraction grating. This simplified model allowed us to confirm that under certain incidence conditions, the corrugation of the pellicle helps increase the UV reflection, and consequently, diminish the UV radiation that enters the cell. In order to analyze the electromagnetic response of the whole cell, we extend two different approaches to calculate the reflected response: a simulation method especially developed to deal with complex biological structures that permits the introduction of the scattering object via an electron microscopy image, and the integral method, which has been widely used to compute the electromagnetic response of finite structures. Numerical results of near and far fields are shown.

  9. Numerical simulation for the magnetic force distribution in electromagnetic forming of small size flat sheet

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowei; Wang, Wenping; Wan, Min

    2013-12-01

    It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.

  10. Inkjet printing of paracetamol and indomethacin using electromagnetic technology: Rheological compatibility and polymorphic selectivity.

    PubMed

    Kollamaram, Gayathri; Hopkins, Simon C; Glowacki, Bartek A; Croker, Denise M; Walker, Gavin M

    2018-03-30

    Drop-on-demand inkjet printing is a potential enabling technology both for continuous manufacturing of pharmaceuticals and for personalized medicine, but its use is often restricted to low-viscosity solutions and nano-suspensions. In the present study, a robust electromagnetic (valvejet) inkjet technology has been successfully applied to deposit prototype dosage forms from solutions with a wide range of viscosities, and from suspensions with particle sizes exceeding 2 μm. A detailed solid-state study of paracetamol, printed from a solution ink on hydroxypropyl methylcellulose (HPMC), revealed that the morphology of the substrate and its chemical interactions can have a considerable influence on polymorphic selectivity. Paracetamol ink crystallized exclusively into form II when printed on a smooth polyethylene terephthalate substrate, and exclusively into form I when in sufficient proximity to the rough surface of the HPMC substrate to be influenced by confinement in pores and chemical interactions. The relative standard deviation in the strength of the dosage forms was <4% in all cases, for doses as low as 0.8 mg, demonstrating the accuracy and reproducibility associated with electromagnetic inkjet technology. Good adhesion of indomethacin on HPMC was achieved using a suspension ink with hydroxypropyl cellulose, but not on an alternative polyethylene terephthalate substrate, emphasising the need to tailor the binder to the substrate. Future work will focus on lower-dose drugs, for which dosing flexibility and fixed dose combinations are of particular interest. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Issues on 3D noncommutative electromagnetic duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, Davi C.; Wotzasek, Clovis

    We extend the ordinary 3D electromagnetic duality to the noncommutative (NC) space-time through a Seiberg-Witten map to second order in the noncommutativity parameter {theta}, defining a new scalar field model. There are similarities with the 4D NC duality; these are exploited to clarify properties of both cases. Up to second order in {theta}, we find that duality interchanges the 2-form {theta} with its 1-form Hodge dual *{theta} times the gauge coupling constant, i.e., {theta}{yields}*{theta}g{sup 2} (similar to the 4D NC electromagnetic duality). We directly prove that this property is false in the third order expansion in both 3D and 4Dmore » space-times, unless the slowly varying fields limit is imposed. Outside this limit, starting from the third order expansion, {theta} cannot be rescaled to attain an S-duality. In addition to possible applications on effective models, the 3D space-time is useful for studying general properties of NC theories. In particular, in this dimension, we deduce an expression that significantly simplifies the Seiberg-Witten mapped Lagrangian to all orders in {theta}.« less

  12. A proposal to improve a 3D printing technology of composite materials products

    NASA Astrophysics Data System (ADS)

    Zlobina, I. V.; Bekrenev, N. V.; Pavlov, S. P.

    2017-12-01

    The objects formed by 3D printing, in particular from nonmetallic materials, have an essential disadvantage not eliminated at the present time - a significant anisotropy of the structure and, as a consequence, of physical and mechanical characteristics. The research of 3DP technology in combination with the influence of microwave electromagnetic field of various power on the formed three-dimensional product has been carried out. It was established that a microwave electromagnetic field with an average specific power of 2450 MHz causes an increase in the homogeneity of the of powder materials’ structure, expressed in a decrease of the pore size by 24% and a decrease in their dispersion by almost 30%. As a consequence of the increase in the homogeneity of the structure, the flexural strength of Zp130-powder plates impregnated with cyanoacrylate has increased to 1.77 times. Thus, the use of the microwave electromagnetic field as a final stage in the formation of products made from composite materials is promising and requires additional studies to justify the serial production technology.

  13. C3I system modification and EMC (electromagnetic compatibility) methodology, volume 1

    NASA Astrophysics Data System (ADS)

    Wilson, J. L.; Jolly, M. B.

    1984-01-01

    A methodology (i.e., consistent set of procedures) for assessing the electromagnetic compatibility (EMC) of RF subsystem modifications on C3I aircraft was generated during this study (Volume 1). An IEMCAP (Intrasystem Electromagnetic Compatibility Analysis Program) database for the E-3A (AWACS) C3I aircraft RF subsystem was extracted to support the design of the EMC assessment methodology (Volume 2). Mock modifications were performed on the E-3A database to assess, using a preliminary form of the methodology, the resulting EMC impact. Application of the preliminary assessment methodology to modifications in the E-3A database served to fine tune the form of a final assessment methodology. The resulting final assessment methodology is documented in this report in conjunction with the overall study goals, procedures, and database. It is recommended that a similar EMC assessment methodology be developed for the power subsystem within C3I aircraft. It is further recommended that future EMC assessment methodologies be developed around expert systems (i.e., computer intelligent agents) to control both the excruciating detail and user requirement for transparency.

  14. Devices, systems, and methods for harvesting energy and methods for forming such devices

    DOEpatents

    Kotter, Dale K.; Novack, Steven D.

    2012-12-25

    Energy harvesting devices include a substrate coupled with a photovoltaic material and a plurality of resonance elements associated with the substrate. The resonance elements are configured to collect energy in at least visible and infrared light spectra. Each resonance element is capacitively coupled with the photovoltaic material, and may be configured to resonate at a bandgap energy of the photovoltaic material. Systems include a photovoltaic material coupled with a feedpoint of a resonance element. Methods for harvesting energy include exposing a resonance element having a resonant electromagnetic radiation having a frequency between approximately 20 THz and approximately 1,000 THz, absorbing at least a portion of the electromagnetic radiation with the resonance element, and resonating the resonance element at a bandgap energy of an underlying photovoltaic material. Methods for forming an energy harvesting device include forming resonance elements on a substrate and capacitively coupling the resonance elements with a photovoltaic material.

  15. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  16. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  17. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  18. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  19. [Development of innovative methods of electromagnetic field evaluation for portable radio-station].

    PubMed

    Rubtsova, N B; Perov, S Iu; Bogacheva, E V; Kuster, N

    2013-01-01

    The results of portable radio-station "Radiy-301" electromagnetic fields (EMF) emission measurement and specific absorption rate data evaluation has shown that workers' exposure EMF levels may elevate hygienic norms and hereupon can be health risk factor. Possible way of portable radio-station EMF dosimetry enhancement by means of domestic and international approaches harmonization is considered.

  20. Scattering from a quantum anapole at low energies

    NASA Astrophysics Data System (ADS)

    Whitcomb, Kyle M.; Latimer, David C.

    2017-12-01

    In quantum field theory, the photon-fermion vertex can be described in terms of four form-factors that encode the static electromagnetic properties of the particle, namely, its charge, magnetic dipole moment, electric dipole moment, and anapole moment. For Majorana fermions, only the anapole moment can be nonzero, a consequence of the fact that these particles are their own antiparticles. Using the framework of quantum field theory, we perform a scattering calculation that probes the anapole moment with a spinless charged particle. In the limit of low momentum transfer, we confirm that the anapole can be classically likened to a point-like toroidal solenoid whose magnetic field is confined to the origin. Such a toroidal current distribution can be used to demonstrate the Aharonov-Bohm effect. We find that, in the non-relativistic limit, our scattering cross section agrees with a quantum mechanical computation of the cross section for a spinless current scattered by an infinitesimally thin toroidal solenoid. Our presentation is geared toward advanced undergraduate or beginning graduate students. This work serves as an introduction to the anapole moment and also provides an example of how one can develop an understanding of a particle's electromagnetic properties in quantum field theory.

  1. Electromagnetic structure of few-nucleon ground states

    DOE PAGES

    Marcucci, Laura E.; Gross, Franz L.; Peña, M. T.; ...

    2016-01-08

    Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled ChiEFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled CST). Furthermore, for momentum transfers belowmore » Q < 5 fm -1 there is satisfactory agreement between experimental data and theoretical results in all three approaches. Conversely, at Q > 5 fm -1, particularly in the case of the deuteron, a relativistic treatment of the dynamics, as is done in the CST, is necessary. The experimental data on the deuteron A structure function extend to Q ~ 12 fm -1, and the close agreement between these data and the CST results suggests that, even in this extreme kinematical regime, there is no evidence for new effects coming from quark and gluon degrees of freedom at short distances.« less

  2. M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps.

    PubMed

    Zhu, Zhendong; Bai, Benfeng; Duan, Huigao; Zhang, Haosu; Zhang, Mingqian; You, Oubo; Li, Qunqing; Tan, Qiaofeng; Wang, Jia; Fan, Shoushan; Jin, Guofan

    2014-04-24

    Plasmonic nanostructures separated by nanogaps enable strong electromagnetic-field confinement on the nanoscale for enhancing light-matter interactions, which are in great demand in many applications such as surface-enhanced Raman scattering (SERS). A simple M-shaped nanograting with narrow V-shaped grooves is proposed. Both theoretical and experimental studies reveal that the electromagnetic field on the surface of the M grating can be pronouncedly enhanced over that of a grating without such grooves, due to field localization in the nanogaps formed by the narrow V grooves. A technique based on room-temperature nanoimprinting lithography and anisotropic reactive-ion etching is developed to fabricate this device, which is cost-effective, reliable, and suitable for fabricating large-area nanostructures. As a demonstration of the potential application of this device, the M grating is used as a SERS substrate for probing Rhodamine 6G molecules. Experimentally, an average SERS enhancement factor as high as 5×10⁸ has been achieved, which verifies the greatly enhanced light-matter interaction on the surface of the M grating over that of traditional SERS surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electromagnetic modulation of the ultrasonic signal for nondestructive detection of small defects and ferromagnetic inclusions in thin wall structures

    NASA Astrophysics Data System (ADS)

    Finkel, Peter

    2008-03-01

    We report on new nondestructive evaluation technique based on electromagnetic modulation of ultrasonic signal for detection of the small crack, flaws and inclusions in thin-walled parts. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small crack near holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.

  4. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    DOEpatents

    Bell, Zane W.

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  5. Dynamic profile of a prototype pivoted proof-mass actuator. [damping the vibration of large space structures

    NASA Technical Reports Server (NTRS)

    Miller, D. W.

    1981-01-01

    A prototype of a linear inertial reaction actuation (damper) device employing a flexure-pivoted reaction (proof) mass is discussed. The mass is driven by an electromechanic motor using a dc electromagnetic field and an ac electromagnetic drive. During the damping process, the actuator dissipates structural kinetic energy as heat through electromagnetic damping. A model of the inertial, stiffness and damping properties is presented along with the characteristic differential equations describing the coupled response of the actuator and structure. The equations, employing the dynamic coefficients, are oriented in the form of a feedback control network in which distributed sensors are used to dictate actuator response leading to a specified amount of structural excitation or damping.

  6. Magnetic antenna using metallic glass

    NASA Technical Reports Server (NTRS)

    Desch, Michael D. (Inventor); Farrell, William M. (Inventor); Houser, Jeffrey G. (Inventor)

    1996-01-01

    A lightweight search-coil antenna or sensor assembly for detecting magnetic fields and including a multi-turn electromagnetic induction coil wound on a spool type coil form through which is inserted an elongated coil loading member comprised of metallic glass material wrapped around a dielectric rod. The dielectric rod consists of a plastic or a wooden dowel having a length which is relatively larger than its thickness so as to provide a large length-to-diameter ratio. A tri-axial configuration includes a housing in which is located three substantially identical mutually orthogonal electromagnetic induction coil assemblies of the type described above wherein each of the assemblies include an electromagnetic coil wound on a dielectric spool with an elongated metallic glass coil loading member projecting therethrough.

  7. Spectra for the reemission of attosecond and shorter electromagnetic pulses by multielectron atoms

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2017-08-01

    Based on the analytical solution of the Schrödinger equation, we have considered the reemission of attosecond and shorter electromagnetic pulses by multielectron atoms in the sudden perturbation approximation. We have developed a technique of calculating the spectra for the reemission of attosecond and shorter electromagnetic pulses by neutral multielectron atoms with nuclear charges from 1 to 92. The results are presented in the form of analytical formulas dependent on several coefficients and screening parameters tabulated for all of the atoms whose electron densities are described by the well-known Dirac-Hartree-Fock-Slater model. As examples we have calculated the spectra for the reemission by lithium, carbon, calcium, and iron atoms for two types of incident pulse: Gaussian and "sombrero."

  8. Design and Performance Estimates of an Ablative Gallium Electromagnetic Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.

    2012-01-01

    The present study details the high-power condensable propellant research being conducted at NASA Glenn Research Center. The gallium electromagnetic thruster is an ablative coaxial accelerator designed to operate at arc discharge currents in the range of 10-25 kA. The thruster is driven by a four-parallel line pulse forming network capable of producing a 250 microsec pulse with a 60 kA amplitude. A torsional-type thrust stand is used to measure the impulse of a coaxial GEM thruster. Tests are conducted in a vacuum chamber 1.5 m in diameter and 4.5 m long with a background pressure of 2 microtorr. Electromagnetic scaling calculations predict a thruster efficiency of 50% at a specific impulse of 2800 seconds.

  9. Alternate solution to generalized Bernoulli equations via an integrating factor: an exact differential equation approach

    NASA Astrophysics Data System (ADS)

    Tisdell, C. C.

    2017-08-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem through a substitution. The purpose of this note is to present an alternative approach using 'exact methods', illustrating that a substitution and linearization of the problem is unnecessary. The ideas may be seen as forming a complimentary and arguably simpler approach to Azevedo and Valentino that have the potential to be assimilated and adapted to pedagogical needs of those learning and teaching exact differential equations in schools, colleges, universities and polytechnics. We illustrate how to apply the ideas through an analysis of the Gompertz equation, which is of interest in biomathematical models of tumour growth.

  10. Investigation of the factors responsible for burns during MRI.

    PubMed

    Dempsey, M F; Condon, B; Hadley, D M

    2001-04-01

    Numerous reported burn injuries have been sustained during clinical MRI procedures. The aim of this study was to investigate the possible factors that may be responsible for such burns. Experiments were performed to investigate three possible mechanisms for causing heating in copper wire during MRI: direct electromagnetic induction in a conductive loop, induction in a resonant conducting loop, and electric field resonant coupling with a wire (the antenna effect). Maximum recorded temperature rises were 0.6 degrees C for the loop, 61.1 degrees C for the resonant loop, and 63.5 degrees C for the resonant antenna. These experimental findings suggest that, contrary to common belief, it is unlikely that direct induction in a conductive loop will result in thermal injury. Burn incidents are more likely to occur due to the formation of resonant conducting loops and from extended wires forming resonant antenna. The characteristics of resonance should be considered when formulating safety guidelines.

  11. Assessment of the Therapeutic Effectiveness of Deep Electromagnetic Stimulation in Patients with Chronic Low Back Pain.

    PubMed

    Przedborska, Agnieszka; Misztal, Małgorzata; Raczkowski, Jan W

    2015-10-01

    The study presents the results of the application of deep electromagnetic stimulation (DEMS) therapy in the treatment of low back pain. The study aimed to evaluate and compare pain severity before and after deep electromagnetic stimulation sessions and to assess persistence of the analgesic effect and identify factors which influenced it significantly. The study enrolled a series of 105 consecutive patients with chronic low back pain who underwent a series of 10 sessions of deep electromagnetic stimulation. The effectiveness of the therapy was assessed according to VAS and Laitinen scores. Risk factors significantly affecting the stability of analgesic effect after DEMS therapy were identified using the Cox regression model. Statistically significant pain relief was observed after deep electromagnetic therapy. Both the Laitinen and VAS scales demonstrated the reduction in pain intensity by half (Me (IQR): 6 (5-9) before the therapy vs. 3 (24) afterwards, p<0.0001 for Laitinen scale and 7 (6-8) before vs. 3 (2-5) after the therapy, p<0.0001 for VAS). During 12-month follow up, pain recurred in 84 (80%) patients. Pain recurrence within a year after the therapy was stimulated in a statistically significant manner by pain duration (HR=1.032, 95% CI: 0.988-1.078; p=0.032) and the co-occurrence of degenerative joint disease (HR=5.521, 95%CI: 2.905-10.493; p=0.001). 1. Deep electromagnetic stimulation is an effective treatment in patients with chronic low back pain. 2. The degree of effectiveness of this modality in the longer term depends on the cause and duration of pain.

  12. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Current sheet characteristics of a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Huang, Yizhi; Guo, Haishan; Lin, Tianyu; Huang, Dong; Yang, Lanjun

    2018-05-01

    The axial characteristics of a current sheet in a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode are reported. The accelerator is powered by a fourteen stage pulse forming network. The capacitor and inductor in each stage are 1.5 μF and 300 nH, respectively, and yield a damped oscillation square wave of current with a pulse width of 20.6 μs. Magnetic probes and photodiodes are placed at various axial positions to measure the behavior of the current sheet. Both magnetic probe and photodiode signals reveal a secondary breakdown when the current reverses the direction. An increase in the discharge current amplitude and a decrease in pressure lead to a decrease in the current shedding factor. The current sheet velocity and thickness are nearly constant during the run-down phase under the first half-period of the current. The current sheet thicknesses are typically in the range of 25 mm to 40 mm. The current sheet velocities are in the range of 10 km/s to 45 km/s when the discharge current is between 10 kA and 55 kA and the gas prefill pressure is between 30 Pa and 800 Pa. The experimental velocities are about 75% to 90% of the theoretical velocities calculated with the current shedding factor. One reason for this could be that the idealized snowplow analysis model ignores the surface drag force.

  14. Voxel inversion of airborne electromagnetic data for improved groundwater model construction and prediction accuracy

    NASA Astrophysics Data System (ADS)

    Kruse Christensen, Nikolaj; Ferre, Ty Paul A.; Fiandaca, Gianluca; Christensen, Steen

    2017-03-01

    We present a workflow for efficient construction and calibration of large-scale groundwater models that includes the integration of airborne electromagnetic (AEM) data and hydrological data. In the first step, the AEM data are inverted to form a 3-D geophysical model. In the second step, the 3-D geophysical model is translated, using a spatially dependent petrophysical relationship, to form a 3-D hydraulic conductivity distribution. The geophysical models and the hydrological data are used to estimate spatially distributed petrophysical shape factors. The shape factors primarily work as translators between resistivity and hydraulic conductivity, but they can also compensate for structural defects in the geophysical model. The method is demonstrated for a synthetic case study with sharp transitions among various types of deposits. Besides demonstrating the methodology, we demonstrate the importance of using geophysical regularization constraints that conform well to the depositional environment. This is done by inverting the AEM data using either smoothness (smooth) constraints or minimum gradient support (sharp) constraints, where the use of sharp constraints conforms best to the environment. The dependency on AEM data quality is also tested by inverting the geophysical model using data corrupted with four different levels of background noise. Subsequently, the geophysical models are used to construct competing groundwater models for which the shape factors are calibrated. The performance of each groundwater model is tested with respect to four types of prediction that are beyond the calibration base: a pumping well's recharge area and groundwater age, respectively, are predicted by applying the same stress as for the hydrologic model calibration; and head and stream discharge are predicted for a different stress situation. As expected, in this case the predictive capability of a groundwater model is better when it is based on a sharp geophysical model instead of a smoothness constraint. This is true for predictions of recharge area, head change, and stream discharge, while we find no improvement for prediction of groundwater age. Furthermore, we show that the model prediction accuracy improves with AEM data quality for predictions of recharge area, head change, and stream discharge, while there appears to be no accuracy improvement for the prediction of groundwater age.

  15. Hidden momentum and the Abraham-Minkowski debate

    NASA Astrophysics Data System (ADS)

    Saldanha, Pablo L.; Filho, J. S. Oliveira

    2017-04-01

    We use an extended version of electrodynamics, which admits the existence of magnetic charges and currents, to discuss how different models for electric and magnetic dipoles do or do not carry hidden momentum under the influence of external electromagnetic fields. Based on that, we discuss how the models adopted for the electric and magnetic dipoles from the particles that compose a material medium influence the expression for the electromagnetic part of the light momentum in the medium. We show that Abraham expression is compatible with electric dipoles formed by electric charges and magnetic dipoles formed by magnetic charges, while Minkowski expression is compatible with electric dipoles formed by magnetic currents and magnetic dipoles formed by electric currents. The expression ɛ0E ×B , on the other hand, is shown to be compatible with electric dipoles formed by electric charges and magnetic dipoles formed by electric currents, which are much more natural models. So this expression has an interesting interpretation in the Abraham-Minkowski debate about the momentum of light in a medium: It is the expression compatible with the nonexistence of magnetic charges. We also provide a simple justification of why Abraham and Minkowski momenta can be associated with the kinetic and canonical momentum of light, respectively.

  16. Electromagnetic packable technology (EMPACT) for detection and characterization of ordnance in post-conflict areas

    NASA Astrophysics Data System (ADS)

    Schultz, Gregory; Miller, Jonathan; Keranen, Joe

    2013-06-01

    Land reclamation efforts in post-conflict regions are often hampered by the presence of Unexploded Ordnance (UXO) or other Explosive Remnants of War (ERW). Surface geophysical methods, such as Electromagnetic Induction (EMI) and magnetometry, are typically applied to screen rehabilitation areas for UXO prior to excavation; however, the prevalence of innocuous magnetic clutter related to indigenous scrap, fragmentation, or geology can severely impede the progress and efficiency of these remediation efforts. Additionally, the variability in surface conditions and local topography necessitates the development of sensor technologies that can be applied to a range of sites including those that prohibit the use of vehicle-mounted or large array systems. We present a man-portable EMI sensor known as the Electromagnetic Packable Technology (EMPACT) system that features a multi-axis sensor configuration in a compact form factor. The system is designed for operation in challenging site conditions and can be used in low ground-standoff modes to detect small and low-metal content objects. The EMPACT acquires high spatial density, multi-axis data that enable high resolution of small objects. This high density data can also be used to provide characterization of target physical features, such as size, material content, and shape. We summarize the development of this system for humanitarian demining operations and present results from preliminary system evaluations against a range of target types. Specifically, we assess the general detection capabilities of the EMPACT system and we evaluate the potential for target classification based on analysis of data and target model features.

  17. Study on electromagnetic radiation and mechanical characteristics of coal during an SHPB test

    NASA Astrophysics Data System (ADS)

    Chengwu, Li; Qifei, Wang; Pingyang, Lyu

    2016-06-01

    Dynamic loads provided by a Split Hopkinson pressure bar are applied in the impact failure experiment on coal with an impact velocity of 4.174-17.652 m s-1. The mechanical property characteristics of coal and an electromagnetic radiation signal can be detected and measured during the experiment. The variation of coal stress, strain, incident energy, dissipated energy and other mechanical parameters are analyzed by the unidimensional stress wave theory. It suggests that with an increase of the impact velocity, the mechanical parameters and electromagnetic radiation increased significantly and the dissipated energy of the coal sample has a high discrete growing trend during the failure process of coal impact. Combined with the received energy of the electromagnetic radiation signal, the relationship between these mechanical parameters and electromagnetic radiation during the failure process of coal burst could be analyzed by the grey correlation model. The results show that the descending order of the gray correlation degree between the mechanical characteristics and electromagnetic radiation energy are impact velocity, maximum stress, the average stress, incident energy, the average strain, maximum strain, the average strain rate and dissipation energy. Due to the correlation degree, the impact velocity and incident energy are relatively large, and the main factor affecting the electromagnetic radiation energy of coal is the energy magnitude. While the relationship between extreme stress and the radiation energy change trend is closed, the stress state of coal has a greater impact on electromagnetic radiation than the strain and destruction which can deepen the research of the coal-rock dynamic disaster electromagnetic monitoring technique.

  18. On the Intensity of Radiation of an Electromagnetic Field by a Rotating Ferroelectric Sphere

    NASA Astrophysics Data System (ADS)

    Gladkov, S. O.; Bogdanova, S. B.

    2018-05-01

    It is shown that in the case when the spontaneous polarization vector P 0 and the rotational frequency vector ω of a ferroelectric sphere do not coincide, electromagnetic waves will be radiated. The intensity of the radiation is calculated as a function of the coordinates and time, and the anisotropy of this radiation is proven. The distribution of the intensity of radiation is graphically illustrated in the form of a function of the central distance r.

  19. Reversed rainbow with a nonlocal metamaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgado, Tiago A., E-mail: tiago.morgado@co.it.pt; Marcos, João S.; Silveirinha, Mário G., E-mail: mario.silveirinha@co.it.pt

    2014-12-29

    One of the intriguing potentials of metamaterials is the possibility to realize a nonlocal electromagnetic reaction, such that the effective medium response at a given point is fundamentally entangled with the macroscopic field distribution at long distances. Here, it is experimentally and numerically verified that a microwave nonlocal metamaterial formed by crossed metallic wires enables a low-loss broadband anomalous material response such that the refractive index decreases with frequency. Notably, it is shown that an electromagnetic beam refracted by our metamaterial prism creates a reversed microwave rainbow.

  20. The Comparative Study of the Effects of Extremely Low Frequency Electromagnetic Fields and Infrasound on Water Molecule Dissociation and Generation of Reactive Oxygen Species

    DTIC Science & Technology

    2008-11-01

    ISTC Project No. #1592P The Comparative Study of The Effects of Extremely Low Frequency Electromagnetic Fields and Infrasound on Water Molecule...performed under the agreement with the International Science and Technology Center ( ISTC ), Moscow. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704...dissociation and generation of reactive oxygen spaces. 5a. CONTRACT NUMBER ISTC Registration No: A-1592p 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  1. Diffraction of Electromagnetic Waves on a Waveguide Joint

    NASA Astrophysics Data System (ADS)

    Malykh, Mikhail; Sevastianov, Leonid; Tyutyunnik, Anastasiya; Nikolaev, Nikolai

    2018-02-01

    In general, the investigation of the electromagnetic field in an inhomogeneous waveguide doesn't reduce to the study of two independent boundary value problems for the Helmholtz equation. We show how to rewrite the Helmholtz equations in the "Hamiltonian form" to express the connection between these two problems explicitly. The problem of finding monochromatic waves in an arbitrary waveguide is reduced to an infinite system of ordinary differential equations in a properly constructed Hilbert space. The calculations are performed in the computer algebra system Sage.

  2. UAVEMI Project: Numerical and Experimental EM Immunity Assessment of UAV for HIRF and Lightning Indirect Effects

    NASA Astrophysics Data System (ADS)

    Garcia, Salvador G.; Silvia, Ferran; Escot, David; Pascual, Enrique; Pantoja, Mario F.; Riu, Pere; Anon, Manuel; Alvarez, Jesus; Cabello, M.; Pous, Marc; Fernandez, Sergio; Trallero, Rafael; Poyatos, David; Nuno, Luis

    2016-05-01

    The UAVEMI project, funded by the Spanish Ministry of Economy and Competitiveness, gathers a consortium formed by several research and development institutions and one industrial partner. The main goal is to develop innovative experimental and numerical approaches for the assessment of the electromagnetic compatibility of unmanned air vehicles, under high intensity radiated fields, lightning indirect effects and non-nuclear electromagnetic pulses. This contribution describes the capabilities currently being developed under the project.

  3. An IBM-3 analysis of the nuclei just beyond the magic numbers N = Z = 28

    NASA Astrophysics Data System (ADS)

    Elliott, J. P.; Evans, J. A.; Lac, V. S.; Long, G. L.

    1996-02-01

    The isospin-invariant form IBM-3 of the interacting boson model has been used to study energies and electromagnetic properties of the isotopes of nickel, zinc, germanium and selenium in the first half of the 1p {3}/{2}, 0f {5}/{2} and 1p {1}/{2} shell. The hamiltonian and electromagnetic operators vary with boson number and isospin in a manner determined by a mapping into the shell-model based on seniority and reduced isospin.

  4. The pedagogical value of the four-dimensional picture: II. Another way of looking at the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Kosyakov, B. P.

    2014-03-01

    A definition of the electromagnetic field can be neatly formulated by recognizing that the simplest form of the four-force is indeed feasible. We show that Maxwell’s equations almost entirely stem from the properties of spacetime, notably from the fact that our world has dimension d = 4. Their complete reconstruction requires three additional assumptions that are seemingly divorced from spacetime properties but which may, in fact, have much to do with their geometry.

  5. The frequency-domain method of calculation for the pulsed electromagnetic field in a conductive ferromagnetic plate

    NASA Astrophysics Data System (ADS)

    Nosov, G. V.; Kuleshova, E. O.; Lefebvre, S.; Plyusnin, A. A.; Tokmashev, D. M.

    2017-02-01

    The technique for parameters determination of magnetic skin effect on ferromagnetic plate at a specified pulse of magnetic field intensity on the plate surface is proposed. It is based on a frequency-domain method and could be applied for a pulsing transformer, a dynamoelectric pulse generator and a commutating inductor that contains an imbricated core. Due to this technique, such plate parameters as specific heat loss energy, the average power of this energy and the plate temperature raise, the magnetic flux attenuation factor and the plate q-factor could be calculated. These parameters depend on the steel type, the amplitude, the rms value, the duration and the form of the magnetic field intensity impulse on the plate surface. The plate thickness is defined by the value of the flux attenuation factor and the plate q-factor that should be maximal. The reliability of the proposed technique is built on a common frequency-domain usage applicable for pulse transient study under zero boundary conditions of the electric circuit and the conformity of obtained results with the sinusoidal steady-state mode.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Kenneth A.; Knudson, Richard T.; Smith, Frank R.

    Generally annular full tape thickness conductors are formed in single or multiple tape layers, and then stacked to produce an annular solid conductive wall for enclosing an electromagnetic isolation cavity. The conductors may be formed using punch and fill operations, or by flowing conductor-containing material onto the tape edge surfaces that define the interior sidewalls of the cavity.

  7. Exclusive Reactions at High Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Radyushkin, Anatoly; Stoler, Paul

    2008-03-01

    Hard exclusive scattering at JLab / P. Kroll -- AdS/CFT and exclusive processes in QCD / S. J. Brodsky and G. F. de Téramond -- Hadron structure matters in collisions at high energy and momentum / A. W. Thomas -- Inclusive perspectives / P. Hoyer -- Fitting DVCS at NLO and beyond / K. Kumericki, D. Müller and K. Passek-Kumericki -- Spin-orbit correlations and single-spin asymmetries / M. Burkardt -- Electroproduction of soft pions at large momentum transfers / V. M. Braun, D. Yu. Ivanov and A. Peters -- Color transparency: 33 years and still running / M. Strikman -- Meson clouds and nucleon electromagnetic form factors / G. A. Miller -- Covariance, dynamics and symmetries, and hadron form factors / M. S. Bhagwat, I. C. Cloët and C. D. Roberts -- N to [symbol] electromagnetic and axial form factors in full QCD / C. Alexandrou -- Real and virtual compton scattering in perturbative QCD / C.-R. Ji and R. Thomson -- Deeply virtual compton scattering at Jefferson Lab / F. Sabatie -- DVCS at HERMES: recent results / F. Ellinghaus -- Deeply virtual compton scattering with CLAS / F. X. Girod -- Deeply virtual compton scattering off the neutron at JLab Hall A / M. Mazouz -- The future DVCS experiments in Hall A at JLab / J. Roche -- Deeply virtual compton scattering with CLAS12 / L. Elouadrhiri -- Quark helicity flip and the transverse spin dependence of inclusive DIS / A. Afanasev, M. Strikman and C. Weiss -- Deeply virtual pseudoscalar meson production / V. Kubarovsky and P. Stoler -- Exclusive p[symbol] electroproduction on the proton: GPDs or not GPDs? / M. Guidal and S. Morrow -- p[symbol] transverse target spin asymmetry at HERMES / A. Airapetian -- Electroproduction of ø(1020) mesons / J. P. Santoro and E. S. Smith -- Generalized parton distributions from hadronic observables / S. Ahmad ... [et al.] -- Imaging the proton via hard exclusive production in diffractive pp scattering / G. E. Hyde ... [et al.] -- Regge contributions to exclusive electro-production / A. P. Szczepaniak and J. T. Londergan -- High energy break-up of few-nucleon systems / M. Sargsian -- Photodisintegration of the deuteron, and [symbol]He / R. Gilman -- A review of the few-body form factors / G. G. Petratos -- Nucleon form factor measurements and interpretation / C. F. Perdrisat -- Implications of G[symbol](Q[symbol])/G[symbol](Q[symbol]) / S. Dubnicka and A. Z. Dubnickova -- High Q[symbol] large acceptance G[symbol]/G[symbol] measurements using polarization transfer / L. Pentchev, C. F. Perdrisat and B. Wojtsekhowski -- A precise measurement of the neutron magnetic form factor G[symbol] in the few-GeV[symbol] region / G. P. Gilfoyle et al. (the CLAS collaboration) -- Magnetic form factor of the neutron up to 8 (GeV/c)[symbol] / B. Quinn -- Timelike form factors / K. K. Seth -- Polarization phenomena in e[symbol]e[symbol] [symbol] pp¯ revisited / A. Z. Dubnickova and S. Dubnicka -- Light-cone sum rules for form factors of the N[symbol] transition at Q[symbol] = 0 / J. Rohrwild -- Exclusive electroproduction of [symbol] mesons / A. N. Villano (for the JLab E01-002 collaboration) -- Exclusive electroproduction of [symbol] mesons in the S[symbol](1535) resonance region at high momentum transfer / M. M. Dalton (for the JLab E01-002 collaboration) -- Two-photon exchange in electron-proton elastic scattering: theory update / A. V. Afanasev -- Two-photon exchange contributions to elastic ep scattering in the non-local field formalism / P. Jain, S. D. Joglekar and S. Mitra -- Beyond the born approximation: a precise comparison of positron-proton and electron-proton elastic scattering in CLAS / J. Lachniet et al. -- Meson form factors in the space-like region / D. Gaskell -- Pion-nucleon distribution amplitudes / A. Peters -- [symbol] scattering in the 1/N[symbol] expansion / H. J. Kwee -- [symbol] annihilations into quasi-two-body final states at 10.58 GeV / Kai Yi -- Transition distribution amplitudes / J. P. Lansberg, B. Pire and L. Szymanowski -- Novel QCD effects from initial and final state interactions / S. J. Brodsky -- Parton distributions and spin-orbital correlations / F. Yuan -- Transverse momentum dependences of distribution and fragmentation functions / D. S. Hwang and D. S. Kim -- Flavor dependence of the Boer-Mulders function and its influence on Azimuthal and single-spin asymmetries in semi-inclusive DIS / L. P. Gamberg, G. R. Goldstein and M. Schlegel -- Symmetric spin-dependent structure function in deep inelastic processes / D. S. Hwang, J. H. Kim and S. Kim -- HERMES recoil detector / R. Perez-Benito -- Inner calorimeter in CLAS/DVCS experiment / R. Niyazov -- Frozen-spin HD as a possible target for electro-production experiments / A. M. Sandorfi et al.

  8. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency.

    PubMed

    Xu, Qianfan; Sandhu, Sunil; Povinelli, Michelle L; Shakya, Jagat; Fan, Shanhui; Lipson, Michal

    2006-03-31

    We provide the first experimental observation of structure tuning of the electromagnetically induced transparency-like spectrum in integrated on-chip optical resonator systems. The system consists of coupled silicon ring resonators with 10 microm diameter on silicon, where the coherent interference between the two coupled resonators is tuned. We measured a transparency-resonance mode with a quality factor of 11,800.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yu; Liu Jinliang; Fan Xuliang

    In this paper, the electromagnetic dispersion theory and the classic telegraph equations were combined to calculate the important parameters of the helical Blumlein pulse forming line (BPFL) of accelerator based on tape helix. In the work band of the BPFL at several hundred ns range, electromagnetic dispersion characteristics were almost determined by the zeroth harmonic. In order to testify the dispersion theory of BPFL in this paper, filling dielectrics, such as de-ionized water, transformer oil, and air were employed in the helical BPFL, respectively. Parameters such as capacitance, inductance, characteristic impedance, and pulse duration of the BPFL were calculated. Effectsmore » of dispersion on these parameters were analyzed. Circuit simulation and electromagnetic simulation were carried out to prove these parameters of BPFL filled with these three kinds of dielectrics, respectively. The accelerator system was set up, and experimental results also corresponded to the theoretical calculations. The average theoretical errors of impedances and pulse durations were 3.5% and 3.4%, respectively, which proved the electromagnetic dispersion analyses in this paper.« less

  10. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances

    NASA Astrophysics Data System (ADS)

    Guddala, Sriram; Narayana Rao, D.; Ramakrishna, S. Anantha

    2016-06-01

    A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminum layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than C60 on metamaterials with off-resonant absorption bands peaking at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance-matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by numerical simulations.

  11. A sophisticated cad tool for the creation of complex models for electromagnetic interaction analysis

    NASA Astrophysics Data System (ADS)

    Dion, Marc; Kashyap, Satish; Louie, Aloisius

    1991-06-01

    This report describes the essential features of the MS-DOS version of DIDEC-DREO, an interactive program for creating wire grid, surface patch, and cell models of complex structures for electromagnetic interaction analysis. It uses the device-independent graphics library DIGRAF and the graphics kernel system HALO, and can be executed on systems with various graphics devices. Complicated structures can be created by direct alphanumeric keyboard entry, digitization of blueprints, conversion form existing geometric structure files, and merging of simple geometric shapes. A completed DIDEC geometric file may then be converted to the format required for input to a variety of time domain and frequency domain electromagnetic interaction codes. This report gives a detailed description of the program DIDEC-DREO, its installation, and its theoretical background. Each available interactive command is described. The associated program HEDRON which generates simple geometric shapes, and other programs that extract the current amplitude data from electromagnetic interaction code outputs, are also discussed.

  12. Electromagnetic interference assessment of an ion drive electric propulsion system

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.

    1979-01-01

    The electromagnetic interference (EMI) form elements of an ion drive electric propulsion system was analyzed, and the effects of EMI interaction with a typical interplanetary spacecraft engineering and scientific subsystems were predicted. SEMCAP, a computerized electromagnetic compatibility assessment code, was used to analyze the impact of EMI noise sources on 65 engineering/telemetry circuits and 48 plasma wave and planetary radio astronomy channels measuring over the range of 100 Hz to 40 MHz in a spacecraft of the Voyager type; manual methods were used to evaluate electrostatics, magnetics, and communications effects. Results indicate that some conducted and radiated spectra are in excess of electromagnetic compatibility specification limits; direct design changes may be required for filtering and shielding of thrust system elements. The worst source of broadband radiated noise appears to be the power processor. The magnetic field necessary to thruster operation is equivalent to about 18 amp-sq m per amp of beam current at right angles to the axis caused by the neutralizer/plume loop.

  13. Electromagnetic pulses bone healing booster

    NASA Astrophysics Data System (ADS)

    Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.

    2015-11-01

    Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.

  14. Impressed sources and fields in the volume-integral-equation formulation of electromagnetic scattering by a finite object: A tutorial

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.; Yurkin, Maxim A.

    2018-07-01

    Although free space cannot generate electromagnetic waves, the majority of existing accounts of frequency-domain electromagnetic scattering by particles and particle groups are based on the postulate of existence of an impressed incident field, usually in the form of a plane wave. In this tutorial we discuss how to account for the actual existence of impressed source currents rather than impressed incident fields. Specifically, we outline a self-consistent theoretical formalism describing electromagnetic scattering by an arbitrary finite object in the presence of arbitrarily distributed impressed currents, some of which can be far removed from the object and some can reside in its vicinity, including inside the object. To make the resulting formalism applicable to a wide range of scattering-object morphologies, we use the framework of the volume integral equation formulation of electromagnetic scattering, couple it with the notion of the transition operator, and exploit the fundamental symmetry property of this operator. Among novel results, this tutorial includes a streamlined proof of fundamental symmetry (reciprocity) relations, a simplified derivation of the Foldy equations, and an explicit analytical expression for the transition operator of a multi-component scattering object.

  15. Electromagnetic hypersensitivity: The opinion of an observer neurologist

    NASA Astrophysics Data System (ADS)

    Marc-Vergnes, Jean-Pierre

    2010-11-01

    Electromagnetic hypersensitivity (EHS) is a recent, uncertain and somehow confusing concept. It is now widely agreed that people claiming to be EHS really experience symptoms. However, no evidence for a causal link between the symptoms and electromagnetic fields (EMF) has been reported. Thus, we have to wonder whether EHS constitutes truly a relevant entity. Most of the previous studies suffer from methodological flaws. Owing to the quantification of symptoms, the interdisciplinary assessment of patients, and the use of personal exposimeters, the recent studies are of better quality. A set of convergent associated signs suggests that individual neuropsychic factors take a prominent, but maybe not unique, part in this condition.

  16. Electromagnetic fields and potentials generated by massless charged particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azzurli, Francesco, E-mail: francesco.azzurli@gmail.com; Lechner, Kurt, E-mail: lechner@pd.infn.it; INFN, Sezione di Padova, Via F. Marzolo, 8, 35131 Padova

    2014-10-15

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates amore » planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string. - Highlights: • First exact solution of Maxwell’s equations for massless charges in arbitrary motion. • Explicit expressions of electromagnetic fields and potentials. • Derivations are rigorous and based on distribution theory. • The form of the field depends heavily on whether the motion is bounded or unbounded. • The electromagnetic field contains unexpected Dirac-delta-function contributions.« less

  17. Changes in Ultrastructure and Sensory Characteristics on Electro-magnetic and Air Blast Freezing of Beef during Frozen Storage

    PubMed Central

    2015-01-01

    The ultrastructure in the beef muscle of the electro-magnetic resonance and air blast freezing during the frozen storage, and the changes in the quality characteristics after thawing were evaluated. The size of ice crystal was small and evenly formed in the initial freezing period, and it showed that the size was increased as the storage period was elapsed (p<0.05). The beef stored by the electro-magnetic resonance freezing showed the size of ice crystal with a lower rate of increase than the air blast freezing during the frozen storage. The thawing loss of beef stored by the electro-magnetic resonance freezing was significantly lower than the air blast freezing during frozen storage (p<0.05), and it showed that the thawing loss of the round was higher than the loin. Water holding capacity decreased as the storage period became longer while the electro-magnetic resonance freezing was higher than the air blast on 8 month (p<0.05). As a result of sensory evaluation, the beef stored by the electro-magnetic resonance freezing did not show the difference until 4 months, and it showed higher acceptability in comparison with the beef stored by the air blast freezing. Thus, it is considered that the freezing method has an effect on the change in the ultrastructure and quality characteristics of the beef. PMID:26761797

  18. A 16 MJ compact pulsed power system for electromagnetic launch

    NASA Astrophysics Data System (ADS)

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  19. A 16 MJ compact pulsed power system for electromagnetic launch.

    PubMed

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  20. 32 CFR 651.10 - Actions requiring environmental analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering, laser testing, and electromagnetic pulse generation. (i) Leases, easements, permits, licenses, or..., loans, or other forms of funding such as Government-Owned, Contractor-Operated (GOCO) industrial plants...

  1. 32 CFR 651.10 - Actions requiring environmental analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engineering, laser testing, and electromagnetic pulse generation. (i) Leases, easements, permits, licenses, or..., loans, or other forms of funding such as Government-Owned, Contractor-Operated (GOCO) industrial plants...

  2. 32 CFR 651.10 - Actions requiring environmental analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engineering, laser testing, and electromagnetic pulse generation. (i) Leases, easements, permits, licenses, or..., loans, or other forms of funding such as Government-Owned, Contractor-Operated (GOCO) industrial plants...

  3. 32 CFR 651.10 - Actions requiring environmental analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engineering, laser testing, and electromagnetic pulse generation. (i) Leases, easements, permits, licenses, or..., loans, or other forms of funding such as Government-Owned, Contractor-Operated (GOCO) industrial plants...

  4. Radiative Energy Loss by Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    Interactions between galactic cosmic rays and matter are a primary focus of the NASA radiation problem. The electromagnetic forces involved are for the most part well documented. Building on previous research, this study investigated the relative importance of the weak forces that occur when a cosmic ray impinges on different types of materials. For the familiar electromagnetic case, it is known that energy lost in the form of radiation is more significant than that lost via contact collisions the rate at which the energy is lost is also well understood. Similar results were derived for the weak force case. It was found that radiation is also the dominant mode of energy loss in weak force interactions and that weak force effects are indeed relatively weak compared to electromagnetic effects.

  5. MOM3D method of moments code theory manual

    NASA Technical Reports Server (NTRS)

    Shaeffer, John F.

    1992-01-01

    MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.

  6. Bursty, Broadband Electromagnetic Waves Associated with Three-Dimensional Nulls Observed in Turbulent Magnetosheath Reconnection

    NASA Technical Reports Server (NTRS)

    Adrian, Mark L.; Wendel, D. E.

    2012-01-01

    We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions - typically detected in the layers immediately outside of the current layer proper - form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed near the local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X-IO-nulls and magnetic spine connected null pairs, as well as their correlation - if any - to the amount of magnetic energy converted by the process of magnetic reconnection.

  7. Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, L. C. C.; Yahya, N.; Daud, H.

    The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMSmore » with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.« less

  8. Large numbers hypothesis. II - Electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Adams, P. J.

    1983-01-01

    This paper develops the theory of electromagnetic radiation in the units covariant formalism incorporating Dirac's large numbers hypothesis (LNH). A direct field-to-particle technique is used to obtain the photon propagation equation which explicitly involves the photon replication rate. This replication rate is fixed uniquely by requiring that the form of a free-photon distribution function be preserved, as required by the 2.7 K cosmic radiation. One finds that with this particular photon replication rate the units covariant formalism developed in Paper I actually predicts that the ratio of photon number to proton number in the universe varies as t to the 1/4, precisely in accord with LNH. The cosmological red-shift law is also derived and it is shown to differ considerably from the standard form of (nu)(R) - const.

  9. The momentum of an electromagnetic wave inside a dielectric derived from the Snell refraction law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torchigin, V.P., E-mail: v_torchigin@mail.ru; Torchigin, A.V.

    2014-12-15

    Author of the paper [M. Testa, Ann. Physics 336 (2013) 1] has derived a conclusion that there is a connection between the Snell refraction law and the Abraham form of the momentum of light in matter. In other words, author derived the Snell law on assumption that the momentum of light in matter decreases by n times as compared with that in free space. The conclusion is derived under assumption that the forces exerted on an optical medium by an electromagnetic field do not distinguish between polarization and free charges. We show that, on the contrary, the Minkowski form ofmore » the momentum of light in matter directly follows from the Snell law. No previous assumption is required for this purpose.« less

  10. Equatorial electrojet and its response to external electromagnetic effects

    NASA Astrophysics Data System (ADS)

    Bespalov, P. A.; Savina, O. N.

    2012-09-01

    In the quiet low-latitude Earth's ionosphere, a sufficiently developed current system that is responsible for the Sq magnetic-field variations is formed in quiet Sun days under the action of tidal streams. The density of the corresponding currents is maximum in the midday hours at the equatorial latitudes, where the so-called equatorial electrojet is formed. In this work, we discuss the nature of the equatorial electrojet. This paper studies the value of its response to external effects. First of all, it is concerned with estimating the possibility of using the equatorial electrojet for generating low-frequency electromagnetic signals during periodic heating of the ionosphere by the heating-facility radiation. The equatorial electrojet can also produce electrodynamic response to the natural atmospheric processes, e.g., an acoustic-gravity wave.

  11. Electromagnetic wave scattering from a forest or vegetation canopy - Ongoing research at the University of Texas at Arlington

    NASA Technical Reports Server (NTRS)

    Karam, Mostafa A.; Amar, Faouzi; Fung, Adrian K.

    1993-01-01

    The Wave Scattering Research Center at the University of Texas at Arlington has developed a scattering model for forest or vegetation, based on the theory of electromagnetic-wave scattering in random media. The model generalizes the assumptions imposed by earlier models, and compares well with measurements from several forest canopies. This paper gives a description of the model. It also indicates how the model elements are integrated to obtain the scattering characteristics of different forest canopies. The scattering characteristics may be displayed in the form of polarimetric signatures, represented by like- and cross-polarized scattering coefficients, for an elliptically-polarized wave, or in the form of signal-distribution curves. Results illustrating both types of scattering characteristics are given.

  12. Light tunneling effect tuned by a meta-interface with electromagnetically-induced-transparency-like properties

    NASA Astrophysics Data System (ADS)

    Feng, Tuanhui; Yang, Fei; Li, Yunhui; Sun, Yong; Lu, Hai; Jiang, Haitao; Zhang, Yewen; Chen, Hong

    2013-06-01

    In this letter, light tunneling effect tuned by a meta-interface with electromagnetically-induced-transparency-like (EIT-like) properties is investigated. Both numerical and experimental results show that the Q-factor of tunneling mode can be well enhanced when an atomic-like three-level system with EIT-like properties is introduced at the interface of a pair structure constructed by epsilon-negative and mu-negative metamaterials. Further study reveals that the Q-factor can be tuned conveniently by altering the EIT-like meta-interface. Moreover, these advantages are not at costs of increase of volume and drastic reduction of transmittance.

  13. The method of impedance transformation for electromagnetic waves propagating in one-dimension plasma photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jingfeng; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Gao, Ruilin

    2016-08-15

    This study focuses on the transmission of normal-incidence electromagnetic waves in one-dimensional plasma photonic crystals. Using the Maxwell's equations in a medium, a method that is based on the concept of impendence is employed to perform the simulation. The accuracy of the method was evaluated by simulating a one-layer plasma and conventional photonic crystal. In frequency-domain, the transmission and reflection coefficients in the unmagnetized plasma photonic crystal were calculated, and the influence factors on plasma photonic crystals including dielectric constants of dielectric, spatial period, filling factor, plasma frequency, and collision frequency were studied.

  14. Modulation of spectral intensity, polarization and coherence of a stochastic electromagnetic beam.

    PubMed

    Wu, Gaofeng; Cai, Yangjian

    2011-04-25

    Analytical formula for the cross-spectral density matrix of a stochastic electromagnetic Gaussian Schell-model (EGSM) beam truncated by a circular phase aperture propagating in free space is derived with the help of a tensor method, which provides a reliable and fast way for studying the propagation and transformation of a truncated EGSM beam. Statistics properties, such as the spectral intensity, the degree of coherence, the degree of polarization and the polarization ellipse of a truncated EGSM beam in free space are studied numerically. The propagation factor of a truncated EGSM beam is also analyzed. Our numerical results show that we can modulate the spectral intensity, the polarization, the coherence and the propagation factor of an EGSM beam by a circular phase aperture. It is found that the phase aperture can be used to shape the beam profile of an EGSM beam and generate electromagnetic partially coherent dark hollow or flat-topped beam, which is useful in some applications, such as optical trapping, material processing, free-space optical communications.

  15. Measurement and mapping of the GSM-based electromagnetic pollution in the Black Sea region of Turkey.

    PubMed

    Tuysuz, Burak; Mahmutoglu, Yigit

    2017-01-01

    Electromagnetic pollution caused by mobile communication devices, a new form of environmental pollution, has been one of the most concerning problems to date. Consequences of long-term exposure to the electromagnetic radiation caused by cell phone towers are still unknown and can potentially be a new health hazard. It is important to measure, analyze and map the electromagnetic radiation levels periodically because of the potential risks. The electromagnetic pollution maps can be used for the detection of diseases caused by the radiation. With the help of the radiation maps of different regions, comparative analysis can be provided and distribution of the diseases can be investigated. In this article, Global System for Mobile communication (GSM)-based electromagnetic pollution map of the Rize Providence, which has high cancer rates because of the Chernobyl nuclear explosion, is generated. First, locations of the GSM base stations are identified and according to the antenna types of the base stations, safety distances are determined. Subsequently, 155 measurements are taken during November 2014 from the nearest living quarters of the Rize city center in Turkey. The measurements are then assessed statistically. Thenceforth, for visual judgment of the determined statistics, collected measurements are presented on the map. It is observed that national limits are not exceeded, but it is also discovered that the safety distance is waived at some of the measurement points and above the average radiation levels are noted. Even if the national limits are not exceeded, the long-term effects of the exposition to the electromagnetic radiation can cause serious health problems.

  16. Semianalytical model for the electromagnetic enhancement by a rectangular nanowire optical antenna on metallic substrate.

    PubMed

    Wan, Jianing; Zhu, Junda; Zhong, Ying; Liu, Haitao

    2018-06-01

    The electromagnetic enhancement by a metallic nanowire optical antenna on metallic substrate is investigated theoretically. By considering the excitation and multiple scattering of surface plasmon polaritons in the nanogap between the antenna and the substrate, we build up an intuitive and comprehensive model that provides semianalytical expressions for the electromagnetic field in the nanogap to achieve an understanding of the mechanism of electromagnetic enhancement. Our results show that antennas with short lengths that support the lowest order of resonance can achieve a high electric-field enhancement factor over a large range of incidence angles. Two phase-matching conditions are derived from the model for predicting the antenna lengths at resonance. Excitation of symmetric or antisymmetric localized surface plasmon resonance is further explained with the model. The model also shows superior computational efficiency compared to the full-wave numerical method when scanning the antenna length, the incidence angle, or the wavelength.

  17. Measurement of the Two-Photon Exchange Contribution to the Elastic e ± p Scattering Cross Sections at the VEPP-3 Storage Ring

    DOE PAGES

    Rachek, I. A.; Arrington, J.; Dmitriev, V. F.; ...

    2015-02-12

    The ratio of the elastic e +p to e –p scattering cross sections has been measured precisely, allowing the determination of the two-photon exchange contribution to these processes. This neglected contribution is believed to be the cause of the discrepancy between the Rosenbluth and polarization transfer methods of measuring the proton electromagnetic form factors. The experiment was performed at the VEPP-3 storage ring at beam energies of 1.6 and 1.0 GeV and at lepton scattering angles between 15° and 105°. The data obtained show evidence of a significant two-photon exchange effect. Furthermore, the results are compared with several theoretical predictions.

  18. Qualitative investigation into students' use of divergence and curl in electromagnetism

    NASA Astrophysics Data System (ADS)

    Bollen, Laurens; van Kampen, Paul; Baily, Charles; De Cock, Mieke

    2016-12-01

    Many students struggle with the use of mathematics in physics courses. Although typically well trained in rote mathematical calculation, they often lack the ability to apply their acquired skills to physical contexts. Such student difficulties are particularly apparent in undergraduate electrodynamics, which relies heavily on the use of vector calculus. To gain insight into student reasoning when solving problems involving divergence and curl, we conducted eight semistructured individual student interviews. During these interviews, students discussed the divergence and curl of electromagnetic fields using graphical representations, mathematical calculations, and the differential form of Maxwell's equations. We observed that while many students attempt to clarify the problem by making a sketch of the electromagnetic field, they struggle to interpret graphical representations of vector fields in terms of divergence and curl. In addition, some students confuse the characteristics of field line diagrams and field vector plots. By interpreting our results within the conceptual blending framework, we show how a lack of conceptual understanding of the vector operators and difficulties with graphical representations can account for an improper understanding of Maxwell's equations in differential form. Consequently, specific learning materials based on a multiple representation approach are required to clarify Maxwell's equations.

  19. Shaping electromagnetic waves using software-automatically-designed metasurfaces.

    PubMed

    Zhang, Qian; Wan, Xiang; Liu, Shuo; Yuan Yin, Jia; Zhang, Lei; Jun Cui, Tie

    2017-06-15

    We present a fully digital procedure of designing reflective coding metasurfaces to shape reflected electromagnetic waves. The design procedure is completely automatic, controlled by a personal computer. In details, the macro coding units of metasurface are automatically divided into several types (e.g. two types for 1-bit coding, four types for 2-bit coding, etc.), and each type of the macro coding units is formed by discretely random arrangement of micro coding units. By combining an optimization algorithm and commercial electromagnetic software, the digital patterns of the macro coding units are optimized to possess constant phase difference for the reflected waves. The apertures of the designed reflective metasurfaces are formed by arranging the macro coding units with certain coding sequence. To experimentally verify the performance, a coding metasurface is fabricated by automatically designing two digital 1-bit unit cells, which are arranged in array to constitute a periodic coding metasurface to generate the required four-beam radiations with specific directions. Two complicated functional metasurfaces with circularly- and elliptically-shaped radiation beams are realized by automatically designing 4-bit macro coding units, showing excellent performance of the automatic designs by software. The proposed method provides a smart tool to realize various functional devices and systems automatically.

  20. X-ray (image)

    MedlinePlus

    X-rays are a form of electromagnetic radiation, just like visible light. Structures that are dense (such as bone) will block most of the x-ray particles, and will appear white. Metal and contrast media ( ...

  1. [The application of low-intensity electromagnetic radiation under immobilization stress conditions (an experimental study)].

    PubMed

    Korolev, Iu N; Bobrovnitskiĭ, I P; Nikoulina, L A; Mikhaĭlik, L V; Geniatulina, M S; Bobkova, A S

    2014-01-01

    The experiments carried out on outbred male white rats with the use of optical, electron-microscopic, biochemical, and radioimmunological methods have demonstrated that the application of low-intensity electromagnetic radiation (LI-EMR) with a flow density of 1 mcW/cm2 and a frequency of around 1,000 MHz both in the primary prophylaxis regime and as the therapeuticpreventive modality arrested the development of post-stress disorders in the rat testicles, liver, and thymus; moreover, it promoted activation of the adaptive, preventive, and compensatory processes. The data obtained provide a rationale for the application of low-intensity electromagnetic radiation to protect the organism from negative effects of stressful factors.

  2. Effects of noise and electromagnetic fields on reproductive outcomes.

    PubMed Central

    Meyer, R E; Aldrich, T E; Easterly, C E

    1989-01-01

    Much public health research has been directed to studies of cancer risks due to chemical agents. Recently, increasing attention has been given to adverse reproductive outcomes as another, shorter-term biologic indicator of public health impact. Further, several low-level ubiquitous physical agents have been implicated recently as possibly affecting human health. These physical factors (noise and electromagnetic fields) represent difficult topics for research with epidemiologic study methods. This paper provides a brief review of the published data related to the risk of adverse reproductive outcomes and exposure to noise or electromagnetic fields. The discussion includes ideas for possible biologic mechanisms, considerations for exposure assessment, and suggestions for epidemiologic research. PMID:2667980

  3. Modeling of MOEMS electromagnetic scanning grating mirror for NIR micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wen, Quan; Wen, Zhiyu; Yang, Tingyan

    2016-02-01

    In this paper, the mathematical model is developed for researching the detailed electromagnetic mechanism of MOEMS scanning mirror. We present the relationship between spectral range and optical scanning angle. Furthermore, the variation tendencies of resonant frequency and maximal torsional angle are studied in detail under different aspect ratios of MOEMS scanning mirror and varied dimensions of torsional bar. The numerical results and Finite Element Analysis simulations both indicate that the thickness of torsional bar is the most important factor. The maximal torsional angle appears when the aspect ratio equals to 1. This mathematical model is an effective way for designing the MOEMS electromagnetic scanning grating mirror in actual fabrication.

  4. Cell therapy for spinal cord injury informed by electromagnetic waves.

    PubMed

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.

  5. Microwave imaging by three-dimensional Born linearization of electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Caorsi, S.; Gragnani, G. L.; Pastorino, M.

    1990-11-01

    An approach to microwave imaging is proposed that uses a three-dimensional vectorial form of the Born approximation to linearize the equation of electromagnetic scattering. The inverse scattering problem is numerically solved for three-dimensional geometries by means of the moment method. A pseudoinversion algorithm is adopted to overcome ill conditioning. Results show that the method is well suited for qualitative imaging purposes, while its capability for exactly reconstructing the complex dielectric permittivity is affected by the limitations inherent in the Born approximation and in ill conditioning.

  6. Quantum kinetic theory of the filamentation instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Haas, F.

    2011-07-15

    The quantum electromagnetic dielectric tensor for a multi-species plasma is re-derived from the gauge-invariant Wigner-Maxwell system and presented under a form very similar to the classical one. The resulting expression is then applied to a quantum kinetic theory of the electromagnetic filamentation instability. Comparison is made with the quantum fluid theory including a Bohm pressure term and with the cold classical plasma result. A number of analytical expressions are derived for the cutoff wave vector, the largest growth rate, and the most unstable wave vector.

  7. The electromagnetic pendulum in quickly changing magnetic field of constant intensity

    NASA Astrophysics Data System (ADS)

    Rodyukov, F. F.; Shepeljavyi, A. I.

    2018-05-01

    The Lagrange-Maxwell equations for the pendulum in the form of a conductive frame, which is suspended in a uniform sinusoidal electromagnetic field of constant intensity, are obtained. The procedure for obtaining simplified mathematical models by a traditional method of separating fast and slow motions with subsiquent averaging a fast time is used. It is shown that this traditional approach may lead to inappropriate mathematical models. Suggested ways on how this can be avoided for the case are considered. The main statements by numerical experiments are illustrated.

  8. Weak low-frequency electromagnetic oscillations in water.

    PubMed

    Liboff, A R; Poggi, Claudio; Pratesi, Piero

    2017-01-01

    Recent observations of low-frequency electromagnetic oscillations in water suggest an inductive structural component. Accordingly, we assume a helical basis enabling us to model water as an LC tuned oscillator. A proposed tetrahedral structure consisting of three water molecules and one hydronium ion is incorporated into the Boerdijk-Coxeter tetrahelix to form long water chains that are shown to have resonance frequencies consistent with observation. This model also serves to explain separately reported claims of ion cyclotron resonance of hydronium ions, in that the tetrahelix provides a built-in path for helical proton-hopping.

  9. Estimation of the electromagnetic bias from retracked TOPEX data

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto; Martin, Jan M.

    1994-01-01

    We examine the electromagnetic (EM) bias by using retracked TOPEX altimeter data. In contrast to previous studies, we use a parameterization of the EM bias which does not make stringent assumptions about the form of the correction or its global behavior. We find that the most effective single parameter correction uses the altimeter-estimated wind speed but that other parameterizations, using a wave age related parameter of significant wave height, may also significantly reduce the repeat pass variance. The different corrections are compared, and their improvement of the TOPEX height variance is quantified.

  10. Electromagnetic Measurements Conducted by the Central Radio Propagation Laboratory During Operation Upshot-Knothole (Redacted)

    DTIC Science & Technology

    1954-03-31

    b . ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 31...March 1954 Final report Electromagnetic Measurements Conducted by the Central Radio Propagation Laboratory During Operation Upshot-Knothole B /216/E...Vubington 25, D. C. COD fw 5 U.S.C. § 552 ( b )( 6) O££ice (or AtOIIIie Fnergy, DCS/0 r r T l A . O!tp1rtment o£ the 1\\ir force \\ ·-’ . If

  11. Parametric disordering of meta-atoms and nonlinear topological transitions in liquid metacrystals

    NASA Astrophysics Data System (ADS)

    Zharov, Alexander A.; Zharova, Nina A.; Zharov, Alexander A.

    2017-09-01

    We show that amplitude-modulated electromagnetic wave incident onto a liquid metacrystal may cause parametric instability of meta-atoms resulting in isotropization of the medium that can be treated in terms of effective temperature. It makes possible to switch the sign of certain components of dielectric permittivity and/or magnetic permeability tensors that, in turn, modifies the topology of isofrequency surface. At the same time it leads to the changes of the conditions of electromagnetic wave propagation appearing in the form of focusing or defocusing nonlinearity.

  12. A new electromagnetic NDI-technique based on the measurement of source-sample reaction forces

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. L.; Skaugset, R. L.; Shih, W. C. L.

    2001-04-01

    Faraday's law of induction, Lenz's law, the Lorentz force law and Newton's third law, taken together, insure that sources (e.g., coil sources) of time-dependent electromagnetic fields, and nearby "nonmagnetic" electrical conductors (e.g., aluminum), always experience mutually repulsive (source-conductor) forces. This fact forms the basis for a new method for detecting cracks and corrosion in (aging) multi-layer airframes. The presence of cracks or corrosion (e.g., material thinning) in these structures is observed to reduce (second-harmonic) source-conductor reaction forces.

  13. The essence of the Blandford-Znajek process

    NASA Astrophysics Data System (ADS)

    Kinoshita, Shunichiro; Igata, Takahisa

    2018-03-01

    From a spacetime perspective, the dynamics of magnetic field lines of force-free electromagnetic fields can be rewritten into a quite similar form for the dynamics of strings, i.e., dynamics of "field sheets". Using this formalism, we explicitly show that the field sheets of stationary and axisymmetric force-free electromagnetic fields have identical intrinsic properties to the world sheets of rigidly rotating Nambu-Goto strings. Thus, we conclude that the Blandford-Znajek process is kinematically identical to an energy-extraction mechanism by the Nambu-Goto string with an effective magnetic tension.

  14. Electromagnetic processes during phase commutation in field regulated reluctance machine

    NASA Astrophysics Data System (ADS)

    Shishkov, A. N.; Sychev, D. A.; Zemlyansky, A. A.; Krupnova, M. N.; Funk, T. A.; Ishmet'eva, V. D.

    2018-03-01

    The processes of currents switching in stator windings have been explained by the existence of the electromagnetic torque ripples in the electric drive with the field-regulated reluctance machine. The maximum value of ripples in the open loop control system for the six-phase machine can reach 20 percent from the developed electromagnetic torque. This method allows one to make calculation of ripple spike towards average torque developed by the electromotor for the different number of phases. Application of a trapezoidal form of current at six phases became the solution. In case of a less number of phases than six, a ripple spike considerably increases, which is inadmissible. On the other hand, increasing the number of phases tends to the increase of the semiconductor inverter external dimensions based on the inconspicuous decreasing of a ripple spike. The creation and usage of high-speed control loops of current (HCLC) have been recommended for a reduction of the electromagnetic torque’s ripple level, as well as the appliance of positive current feedback in switching phase currents. This decision allowed one to receive a mean value of the torque more than 10%, compared to system without change, to reduce greatly ripple spike of the electromagnetic torque. The possibility of the electric drive effective operation with FRRM in emergency operation has been shown.

  15. Disconnected-Sea Quarks Contribution to Nucleon Electromagnetic Form Factors

    NASA Astrophysics Data System (ADS)

    Sufian, Raza Sabbir

    We present comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon electric and magnetic form factors. The lattice QCD estimates of strange quark magnetic moment GsM (0) = -0.064(14)(09) microN and the mean squared charge radius E = -0.0043(16)(14) fm2 are more precise than any existing experimental measurements and other lattice calculations. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light-sea and strange quarks contribution to the nucleon magnetic moment is -0.022(11)(09) microN and to the nucleon mean square charge radius is -0.019(05)(05) fm 2. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light-sea and strange quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of 0 ≤ Q2 ≤ 0.5 GeV2.

  16. Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle

    NASA Astrophysics Data System (ADS)

    Shishodia, Manmohan Singh; Juneja, Soniya

    2016-05-01

    Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. The theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.

  17. Use of the Lorentz-operator in relativistic quantum mechanics to guarentee a single-energy root

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, A B

    1998-08-01

    The Lorentz-operator form of relativistic quantum mechanics, with relativistic wave equation i{h_bar}{partial_derivative}{psi}/{partial_derivative}t=(mc{sup 2}{gamma}+e{Phi}){psi}, is implemented to guarantee a single-energy root. The Lorentz factor as modified by Pauli's ansatz is given by {gamma}={radical}1+[{rvec {sigma}}{center_dot}(i{h_bar}{rvec {del}}+(e/c){rvec A})]{sup 2}/m{sup 2}c{sup 2}, such that the theory is appropriate for electrons. Magnetic fine structure in the Lorentz relativistic wave equation emerges on the use of an appropriate operator form of the Lienard-Wiechert four- potential ({Phi},{rvec A}) from electromagnetic theory. Although computationally more intensive the advantage of the theory is the elimination of the negative-root of the energy and an interpretation of the wave function basedmore » on a one-particle, positive definite probability density like that of nonrelativistic quantum mechanics.« less

  18. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  19. Apparatus for and method of operating a cylindrical pulsed induction mass launcher

    DOEpatents

    Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.

    1992-06-30

    An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.

  20. Apparatus for and method of operating a cylindrical pulsed induction mass launcher

    DOEpatents

    Cowan, Jr., Maynard; Duggin, Billy W.; Widner, Melvin M.

    1992-01-01

    An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher.

  1. Solar Eruptions: Coronal Mass Ejections and Flares

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    This lecture introduces the topic of Coronal mass ejections (CMEs) and solar flares, collectively known as solar eruptions. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. Flares can be eruptive or confined. Eruptive flares accompany CMEs, while confined flares hav only electromagnetic signature. CMEs can drive MHD shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. CMEs heading in the direction of Earth arrive in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currnts that can disrupt power grids, railroads, and underground pipelines

  2. Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals.

    PubMed

    Yu, Tianbao; Wang, Zhong; Liu, Wenxing; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua

    2016-04-18

    We report numerically large and complete photonic and phononic band gaps that simultaneously exist in eight-fold phoxonic quasicrystals (PhXQCs). PhXQCs can possess simultaneous photonic and phononic band gaps over a wide range of geometric parameters. Abundant localized modes can be achieved in defect-free PhXQCs for all photonic and phononic polarizations. These defect-free localized modes exhibit multiform spatial distributions and can confine simultaneously electromagnetic and elastic waves in a large area, thereby providing rich selectivity and enlarging the interaction space of optical and elastic waves. The simulated results based on finite element method show that quasiperiodic structures formed of both solid rods in air and holes in solid materials can simultaneously confine and tailor electromagnetic and elastic waves; these structures showed advantages over the periodic counterparts.

  3. Low temperature deformation behavior of an electromagnetically bulged 5052 aluminum alloy

    PubMed Central

    Li, Zu; Li, Ning; Wang, Duzhen; Ouyang, Di; Liu, Lin

    2016-01-01

    The fundamental understanding of the deformation behavior of electromagnetically formed metallic components under extreme conditions is important. Here, the effect of low temperature on the deformation behavior of an electromagnetically-bulged 5052 aluminum alloy was investigated through uniaxial tension. We found that the Portevin-Le Chatelier Effect, designated by the serrated characteristic in stress-strain curves, continuously decays until completely disappears with decreasing temperature. The physical origin of the phenomenon is rationalized on the basis of the theoretical analysis and the Monte Carlo simulation, which reveal an increasing resistance to dislocation motion imposed by lowering temperature. The dislocations are captured completely by solute atoms at −50 °C, which results in the extinction of Portevin-Le Chatelier. The detailed mechanism responsible for this process is further examined through Monte Carlo simulation. PMID:27426919

  4. Effects of weak electromagnetic irradiation on various types of behavior in the mealworm Tenebrio molitor.

    PubMed

    Sheiman, I M; Kreshchenko, N D

    2010-10-01

    The effects of weak electromagnetic irradiation on simple forms of behavior were studied using adult Tenebrio molitor mealworms. The beetles' motor behavior was studied in conditions of different motivations, i.e., positive (food) and negative (avoidance of light), in otherwise identical experimental conditions. The beetles had to navigate a defined space to reach their target - potato or cover from light. Experiments consisted of one trial per day for five days. Target attainment time was measured in groups of beetles. Behavior in both cases developed as follows: an initial orientation reaction appeared and was followed by adaptation to the apparatus. Exposure to weak electromagnetic irradiation led to increases in the response time at the initial stages of the experiments. The effects of irradiation were seasonal in nature and differed in the two types of behavior.

  5. Gravitoelectromagnetic analogy based on tidal tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, L. Filipe O.; Herdeiro, Carlos A. R.

    2008-07-15

    We propose a new approach to a physical analogy between general relativity and electromagnetism, based on tidal tensors of both theories. Using this approach we write a covariant form for the gravitational analogues of the Maxwell equations, which makes transparent both the similarities and key differences between the two interactions. The following realizations of the analogy are given. The first one matches linearized gravitational tidal tensors to exact electromagnetic tidal tensors in Minkowski spacetime. The second one matches exact magnetic gravitational tidal tensors for ultrastationary metrics to exact magnetic tidal tensors of electromagnetism in curved spaces. In the third wemore » show that our approach leads to a two-step exact derivation of Papapetrou's equation describing the force exerted on a spinning test particle. Analogous scalar invariants built from tidal tensors of both theories are also discussed.« less

  6. A Fortran 77 computer code for damped least-squares inversion of Slingram electromagnetic anomalies over thin tabular conductors

    NASA Astrophysics Data System (ADS)

    Dondurur, Derman; Sarı, Coşkun

    2004-07-01

    A FORTRAN 77 computer code is presented that permits the inversion of Slingram electromagnetic anomalies to an optimal conductor model. Damped least-squares inversion algorithm is used to estimate the anomalous body parameters, e.g. depth, dip and surface projection point of the target. Iteration progress is controlled by maximum relative error value and iteration continued until a tolerance value was satisfied, while the modification of Marquardt's parameter is controlled by sum of the squared errors value. In order to form the Jacobian matrix, the partial derivatives of theoretical anomaly expression with respect to the parameters being optimised are calculated by numerical differentiation by using first-order forward finite differences. A theoretical and two field anomalies are inserted to test the accuracy and applicability of the present inversion program. Inversion of the field data indicated that depth and the surface projection point parameters of the conductor are estimated correctly, however, considerable discrepancies appeared on the estimated dip angles. It is therefore concluded that the most important factor resulting in the misfit between observed and calculated data is due to the fact that the theory used for computing Slingram anomalies is valid for only thin conductors and this assumption might have caused incorrect dip estimates in the case of wide conductors.

  7. Chevron beam dump for ITER edge Thomson scattering system.

    PubMed

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  8. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors.

    PubMed

    Vitale, Salvatore

    2016-07-29

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  9. Environmental Intolerance, Symptoms and Disability Among Fertile-Aged Women

    PubMed Central

    Vuokko, Aki; Karvala, Kirsi; Lampi, Jussi; Keski-Nisula, Leea; Pasanen, Markku; Voutilainen, Raimo; Pekkanen, Juha; Sainio, Markku

    2018-01-01

    The purpose was to study the prevalence of environmental intolerance (EI) and its different manifestations, including behavioral changes and disability. Fertile-aged women (n = 680) of the Kuopio Birth Cohort Study were asked about annoyance to 12 environmental factors, symptoms and behavioral changes. We asked how much the intolerance had disrupted their work, household responsibilities or social life. We chose intolerance attributed to chemicals, indoor molds, and electromagnetic fields to represent typical intolerance entities. Of the respondents, 46% reported annoyance to chemicals, molds, or electromagnetic fields. Thirty-three percent reported symptoms relating to at least one of these three EIs, 18% reported symptoms that included central nervous system symptoms, and 15% reported behavioral changes. Indicating disability, 8.4% reported their experience relating to any of the three EIs as at least “somewhat difficult”, 2.2% “very difficult” or “extremely difficult”, and 0.9% “extremely difficult”. Of the latter 2.2%, all attributed their intolerance to indoor molds, and two thirds also to chemicals. As the number of difficulties increased, the number of organ systems, behavioral changes and overlaps of the three EIs also grew. EI is a heterogeneous phenomenon and its prevalence depends on its definition. The manifestations of EI form a continuum, ranging from annoyance to severe disability. PMID:29419757

  10. Bonner Prize: The Elastic Form Factors of the Nucleon

    NASA Astrophysics Data System (ADS)

    Perdrisat, Charles F.

    2017-01-01

    A series of experiments initiated in 1998 at the then new Continuous Electron Beam Accelerator, or CEBAF in Newport News Virginia, resulted in unexpected results, changing significantly our understanding of the structure of the proton. These experiments used a relatively new technique to obtain the ratio of the two form factors of the proton, namely polarization. An intense beam of highly polarized electrons with energy up to 6 GeV was made to interact elastically with un-polarized protons in a hydrogen target. The polarization of the recoiling protons, with energies up to 5 GeV, was measured from a second interaction in a polarimeter consisting of blocs of graphite or CH2 and tracking wire chambers. The scattered electrons were detected in an electromagnetic lead-glass calorimeter, to select elastically scattered events. After a short introduction describing the path which brought me from the University of Geneva to the College of William and Mary in 1966, I will introduce the subject of elastic electron scattering, describe some of the apparatus required for such experiments, and show the results which were unexpected at the time. These results demonstrated unequivocally that the two form factors required to describe elastic ep scattering, electric GE and magnetic GM in the Born approximation, had a drastically different dependence upon the four-momentum squared q2 = q2 -ω2 with q the momentum, and ω the energy transferred in the reaction. The finding, in flagrant disagreement with the data available at the time, which had been obtained dominantly from cross section measurements of the type first used by Nobel Prize R. Hofstadter 60 years ago, have led to a reexamination of the information provided by form factors on the structure of the nucleon, in particular its quark-gluon content. The conclusion will then be a brief outline of several theoretical considerations to put the results in a proper perspective.

  11. Exact mode volume and Purcell factor of open optical systems

    NASA Astrophysics Data System (ADS)

    Muljarov, E. A.; Langbein, W.

    2016-12-01

    The Purcell factor quantifies the change of the radiative decay of a dipole in an electromagnetic environment relative to free space. Designing this factor is at the heart of photonics technology, striving to develop ever smaller or less lossy optical resonators. The Purcell factor can be expressed using the electromagnetic eigenmodes of the resonators, introducing the notion of a mode volume for each mode. This approach allows an analytic treatment, reducing the Purcell factor and other observables to sums over eigenmode resonances. Calculating the mode volumes requires a correct normalization of the modes. We introduce an exact normalization of modes, not relying on perfectly matched layers. We present an analytic theory of the Purcell effect based on this exact mode normalization and the resulting effective mode volume. We use a homogeneous dielectric sphere in vacuum, which is analytically solvable, to exemplify these findings. We furthermore verify the applicability of the normalization to numerically determined modes of a finite dielectric cylinder.

  12. Comment on “Maxwell's equations and electromagnetic Lagrangian density in fractional form” [J. Math. Phys. 53, 033505 (2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabei, Eqab M.; Al-Jamel, A.; Widyan, H.

    In a recent paper, Jaradat et al. [J. Math. Phys. 53, 033505 (2012)] have presented the fractional form of the electromagnetic Lagrangian density within the Riemann-Liouville fractional derivative. They claimed that the Agrawal procedure [O. P. Agrawal, J. Math. Anal. Appl. 272, 368 (2002)] is used to obtain Maxwell's equations in the fractional form, and the Hamilton's equations of motion together with the conserved quantities obtained from fractional Noether's theorem are reported. In this comment, we draw the attention that there are some serious steps of the procedure used in their work are not applicable even though their final resultsmore » are correct. Their work should have been done based on a formulation as reported by Baleanu and Muslih [Phys. Scr. 72, 119 (2005)].« less

  13. Fabrication and Electromagnetic Properties of Conjugated NH2-CuPc@Fe3O4

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Pu, Zejun; Xu, Mingzhen; Wei, Renbo; Liu, Xiaobo

    2017-10-01

    Conjugated amino-phthalocyanine copper containing carboxyl groups/magnetite (NH2-CuPc@Fe3O4) has been fabricated from FeCl3·6H2O and NH2-CuPc via a simple solvothermal method and its electromagnetic properties investigated. Scanning electron microscopy and transmission electron microscopy revealed that the NH2-CuPc@Fe3O4 was a waxberry-like nanomaterial with NH2-CuPc molecules effectively embedded in the interior of Fe3O4 particles in the form of beads. Introduction of NH2-CuPc effectively improved the complementarity between the dielectric and magnetic losses of the system, resulting in excellent electromagnetic performance. The minimum reflection loss of the as-prepared composite reached -33.4 dB at 7.0 GHz for coating layer thickness of 4.0 mm and bandwidth below -10.0 dB (90% absorption) of up to 3.8 GHz. These results indicate that introduction of NH2-CuPc results in a composite with potential for use as an electromagnetic microwave absorption material.

  14. ELECTROMAGNETICALLY INDUCED DISTORTION OF A FIBRIN MATRIX WITH EMBEDDED MICROPARTICLES

    PubMed Central

    SCOGIN, TYLER; YESUDASAN, SUMITH; WALKER, MITCHELL L. R.

    2018-01-01

    Blood clots occur in the human body when they are required to prevent bleeding. In pathological states such as diabetes and sickle cell disease, blood clots can also form undesirably due to hypercoagulable plasma conditions. With the continued effort in developing fibrin therapies for potential life-saving solutions, more mechanical modeling is needed to understand the properties of fibrin structures with inclusions. In this study, a fibrin matrix embedded with magnetic micro particles (MMPs) was subjected to a magnetic field to determine the magnitude of the required force to create plastic deformation within the fibrin clot. Using finite element (FE) analysis, we estimated the magnetic force from an electromagnet at a sample space located approximately 3 cm away from the coil center. This electromagnetic force coupled with gravity was applied on a fibrin mechanical system with MMPs to calculate the stresses and displacements. Using appropriate coil parameters, it was determined that application of a magnetic field of 730 A/m on the fibrin surface was necessary to achieve an electromagnetic force of 36 nN (to engender plastic deformation). PMID:29628543

  15. Nonlinear dynamics of electromagnetic turbulence in a nonuniform magnetized plasma

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Mirza, Arshad M.; Faria, R. T.

    1998-03-01

    By using the hydrodynamic electron response with fixed (kinetic) ions along with Poisson's equation as well as Ampère's law, a system of nonlinear equations for low-frequency (in comparison with the electron gyrofrequency) long-(short-) wavelength electromagnetic waves in a nonuniform resistive magnetoplasma has been derived. The plasma contains equilibrium density gradient and sheared equilibrium plasma flows. In the linear limit, local dispersion relations are obtained and analyzed. It is found that sheared equilibrium flows can cause instability of Alfvén-like electromagnetic waves even in the absence of a density gradient. Furthermore, it is shown that possible stationary solutions of the nonlinear equations without dissipation can be represented in the form of various types of vortices. On the other hand, the temporal behavior of our nonlinear dissipative systems without the equilibrium density inhomogeneity can be described by the generalized Lorenz equations which admit chaotic trajectories. The density inhomogeneity may lead to even qualitative changes in the chaotic dynamics. The results of our investigation should be useful in understanding the linear and nonlinear properties of nonthermal electromagnetic waves in space and laboratory plasmas.

  16. Poynting Theorem, Relativistic Transformation of Total Energy-Momentum and Electromagnetic Energy-Momentum Tensor

    NASA Astrophysics Data System (ADS)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga

    2016-02-01

    We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.

  17. Electromagnetically induced absorption and transparency in degenerate two level systems of metastable Kr atoms and measurement of Landé g-factor

    NASA Astrophysics Data System (ADS)

    Kale, Y. B.; Tiwari, V. B.; Mishra, S. R.; Singh, S.; Rawat, H. S.

    2016-12-01

    We report electromagnetically induced absorption (EIA) and transparency (EIT) resonances of sub-natural linewidth in degenerate two level systems (DTLSs) of metastable 84Kr (84Kr*) and 83Kr (83Kr*) atoms. Using the spectrally narrow EIA signals obtained corresponding to the closed hyperfine transition 4p55s[3/2]2(F=13/2) to 4p55p[5/2]3(F‧ = 15 / 2) in 83Kr* atom, we have measured the Landé g-factor (gF) for the lower hyperfine level involved in this transition by application of small values of magnetic field of few Gauss.

  18. Composites incorporated a conductive polymer nanofiber network

    DOEpatents

    Pozzo, Lilo Danielle; Newbloom, Gregory

    2017-04-11

    Methods of forming composites that incorporate networks of conductive polymer nanofibers are provided. Networks of less-than conductive polymers are first formed and then doped with a chemical dopant to provide networks of conductive polymers. The networks of conductive polymers are then incorporated into a matrix in order to improve the conductivity of the matrix. The formed composites are useful as conductive coatings for applications including electromagnetic energy management on exterior surfaces of vehicles.

  19. [On prevention of a combined impact of electromagnetic radiation and climatic/weather factors on worker's organism].

    PubMed

    Rakhmanov, R S; Gadzhiibragimov, D A; Gladilin, A V

    2012-01-01

    Under conditions of combined exposure of the electromagnetic radiation generated by the PC or the industrial frequency and impact of hot or high-level continental climate to the organism the need to assess microclimatic conditions of open areas and the introduction of preventive nutrition to enhance the body's natural resistance, prevention of obesity and diseases associated with increased blood pressure and the development of coronary heart disease has been established.

  20. Electromagnetic radiation and behavioural response of ticks: an experimental test.

    PubMed

    Vargová, Blažena; Majláth, Igor; Kurimský, Juraj; Cimbala, Roman; Kosterec, Michal; Tryjanowski, Piotr; Jankowiak, Łukasz; Raši, Tomáš; Majláthová, Viktória

    2018-05-01

    Factors associated with the increased usage of electronic devices, wireless technologies and mobile phones nowadays are present in increasing amounts in our environment. All living organisms are constantly affected by electromagnetic radiation which causes serious environmental pollution. The distribution and density of ticks in natural habitats is influenced by a complex of abiotic and biotic factors. Exposure to radio-frequency electromagnetic field (RF-EMF) constitutes a potential cause altering the presence and distribution of ticks in the environment. Our main objective was to determine the affinity of Dermacentor reticulatus ticks towards RF-EMF exposure. Originally designed and constructed radiation-shielded tube (RST) test was used to test the affinity of ticks under controlled laboratory conditions. All test were performed in an electromagnetic compatibility laboratory in an anechoic chamber. Ticks were irradiated using a Double-Ridged Waveguide Horn Antenna to RF-EMF at 900 and 5000 MHz, 0 MHz was used as control. The RF-EMF exposure to 900 MHz induced a higher concentration of ticks on irradiated arm of RST as opposed to the RF-EMF at 5000 MHz, which caused an escape of ticks to the shielded arm. This study represents the first experimental evidence of RF-EMF preference in D. reticulatus. The projection of obtained results to the natural environment could help assess the risk of tick borne diseases and could be a tool of preventive medicine.

  1. Non-linear processes in the Earth atmosphere boundary layer

    NASA Astrophysics Data System (ADS)

    Grunskaya, Lubov; Valery, Isakevich; Dmitry, Rubay

    2013-04-01

    The work is connected with studying electromagnetic fields in the resonator Earth-Ionosphere. There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. On account of non-linear property of the resonator Earth-Ionosphere the tides (moon and astrophysical tides) in the electromagnetic Earth fields are kinds of polyharmonic nature. It is impossible to detect such non-linear processes with the help of the classical spectral analysis. Therefore to extract tide processes in the electromagnetic fields, the method of covariance matrix eigen vectors is used. Experimental investigations of electromagnetic fields in the atmosphere boundary layer are done at the distance spaced stations, situated on Vladimir State University test ground, at Main Geophysical Observatory (St. Petersburg), on Kamchatka pen., on Lake Baikal. In 2012 there was continued to operate the multichannel synchronic monitoring system of electrical and geomagnetic fields at the spaced apart stations: VSU physical experimental proving ground; the station of the Institute of Solar and Terrestrial Physics of Russian Academy of Science (RAS) at Lake Baikal; the station of the Institute of volcanology and seismology of RAS in Paratunka; the station in Obninsk on the base of the scientific and production society "Typhoon". Such investigations turned out to be possible after developing the method of scanning experimental signal of electromagnetic field into non- correlated components. There was used a method of the analysis of the eigen vectors ofthe time series covariance matrix for exposing influence of the moon tides on Ez. The method allows to distribute an experimental signal into non-correlated periodicities. The present method is effective just in the situation when energetical deposit because of possible influence of moon tides upon the electromagnetic fields is little. There have been developed and realized in program components in the form of PAS instruments of processes of geophysical and man-triggered nature; to predict the presence of the features of geophysical nature in the electromagnetic field of the atmosphere boundary surface layer; to study dynamics the analyzed signals coming from the geophysical and man-triggered sources in the electrical and magnetic fields of the atmosphere boundary surface layer; to expose changes of the investigated time series in the periods preceding the appearance of the predicted phenomena; to form clusters of the time series being the features of the predicted events. On the base of the exposed clusters of the time series there have been built the predicting rules allowing to coordinate the probability of appearing the groups of the occurred events. The work is carried out with supporting of Program FPP #14.B37.210668, FPP #5.2071.2011, RFBR #11-05-97518.

  2. Electromagnetic sunscreen model: design of experiments on particle specifications.

    PubMed

    Lécureux, Marie; Deumié, Carole; Enoch, Stefan; Sergent, Michelle

    2015-10-01

    We report a numerical study on sunscreen design and optimization. Thanks to the combined use of electromagnetic modeling and design of experiments, we are able to screen the most relevant parameters of mineral filters and to optimize sunscreens. Several electromagnetic modeling methods are used depending on the type of particles, density of particles, etc. Both the sun protection factor (SPF) and the UVB/UVA ratio are considered. We show that the design of experiments' model should include interactions between materials and other parameters. We conclude that the material of the particles is a key parameter for the SPF and the UVB/UVA ratio. Among the materials considered, none is optimal for both. The SPF is also highly dependent on the size of the particles.

  3. Electromagnetic diode based on photonic crystal cavity with embedded highly dispersive meta-interface

    NASA Astrophysics Data System (ADS)

    Chen, Yongqiang; Dong, Lijuan; Xu, Xiaohu; Jiang, Jun; Shi, Yunlong

    2017-12-01

    In this paper, we propose a scheme for subwavelength electromagnetic diodes by employing a photonic crystal (PC) cavity with embedded electromagnetically induced-transparency (EIT)-like highly dispersive meta-interface. A nonreciprocal response, with 21.5 dB transmission light contrast and 12.3 dBm working power, is conceptually demonstrated in a microstrip transmission line system with asymmetric absorption and nonlinear medium inclusion. Such high-contrast transmission and relatively low-threshold diode action stem from the composite PC-EIT mechanism. This mechanism not only possesses a large quality factor and strong localization of fields but also does not enlarge the device volume and drastically reduce transmittance. Our findings should be beneficial for the design of new and practical metamaterial-enabled nonlinear devices.

  4. GPU accelerated FDTD solver and its application in MRI.

    PubMed

    Chi, J; Liu, F; Jin, J; Mason, D G; Crozier, S

    2010-01-01

    The finite difference time domain (FDTD) method is a popular technique for computational electromagnetics (CEM). The large computational power often required, however, has been a limiting factor for its applications. In this paper, we will present a graphics processing unit (GPU)-based parallel FDTD solver and its successful application to the investigation of a novel B1 shimming scheme for high-field magnetic resonance imaging (MRI). The optimized shimming scheme exhibits considerably improved transmit B(1) profiles. The GPU implementation dramatically shortened the runtime of FDTD simulation of electromagnetic field compared with its CPU counterpart. The acceleration in runtime has made such investigation possible, and will pave the way for other studies of large-scale computational electromagnetic problems in modern MRI which were previously impractical.

  5. FDTD simulations of localization and enhancements on fractal plasmonics nanostructures.

    PubMed

    Buil, Stéphanie; Laverdant, Julien; Berini, Bruno; Maso, Pierre; Hermier, Jean-Pierre; Quélin, Xavier

    2012-05-21

    A parallelized 3D FDTD (Finite-Difference Time-Domain) solver has been used to study the near-field electromagnetic intensity upon plasmonics nanostructures. The studied structures are obtained from AFM (Atomic Force Microscopy) topography measured on real disordered gold layers deposited by thermal evaporation under ultra-high vacuum. The simulation results obtained with these 3D metallic nanostructures are in good agreement with previous experimental results: the localization of the electromagnetic intensity in subwavelength areas ("hot spots") is demonstrated; the spectral and polarization dependences of the position of these "hot spots" are also satisfactory; the enhancement factors obtained are realistic compared to the experimental ones. These results could be useful to further our understanding of the electromagnetic behavior of random metal layers.

  6. [Antitumor effect of low-intensity extremely high-frequency electromagnetic radiation on a model of solid Ehrlich carcinoma].

    PubMed

    Gapeev, A B; Shved, D M; Mikhaĭlik, E N; Korystov, Iu N; Levitman, M Kh; Shaposhnikova, V V; Sadovnikov, V B; Alekhin, A I; Goncharov, N G; Chemeris, N K

    2009-01-01

    The influence of different exposure regimes of low-intensity extremely high-frequency electromagnetic radiation on the growth rate of solid Ehrlich carcinoma in mice has been studied. It was shown that, at an optimum repetition factor of exposure (20 min daily for five consecutive days after the tumor inoculation), there is a clearly pronounced frequency dependence of the antitumor effect. The analysis of experimental data indicates that the mechanisms of antitumor effects of the radiation may be related to the modification of the immune status of the organism. The results obtained show that extremely high-frequency electromagnetic radiation at a proper selection of exposure regimes can result in distinct and stable antitumor effects.

  7. Exclusive decay of P-wave bottomonium into double J/{psi}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Juan; Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006; Dong Hairong

    2011-11-01

    We calculate the relativistic corrections of J/{psi}, including electromagnetic corrections, to {chi}{sub b}J{yields}J/{psi}J/{psi} in the framework of nonrelativistic QCD factorization. The relativistic effects are found to increase the lower-order prediction for the decay width by about 10%, while the electromagnetism contribution is very small, about 0.2% for {chi}{sub b0} and {chi}{sub b2}. The total branching ratios are predicted to be of order 10{sup -5} for {chi}{sub b0,b2}{yields}J/{psi}J/{psi}, but 10{sup -11} for {chi}{sub b1}{yields}J/{psi}J/{psi}, since there is only electromagnetism contribution in this channel. We predict it is possible to observe these reactions in LHC.

  8. The assessment of electromagnetic field radiation exposure for mobile phone users.

    PubMed

    Buckus, Raimondas; Strukcinskiene, Birute; Raistenskis, Juozas

    2014-12-01

    During recent years, the widespread use of mobile phones has resulted in increased human ex- posure to electromagnetic field radiation and to health risks. Increased usage of mobile phones at the close proximity raises questions and doubts in safety of mobile phone users. The aim of the study was to assess an electromagnetic field radiation exposure for mobile phone users by measuring electromagnetic field strength in different settings at the distance of 1 to 30 cm from the mobile user. In this paper, the measurements of electric field strength exposure were conducted on different brand of mobile phones by the call-related factors: urban/rural area, indoor/outdoor setting and moving/stationary mode during calls. The different types of mobile phone were placed facing the field probe at 1 cm, 10 cm, 20 cm and 30 cm distance. The highest electric field strength was recorded for calls made in rural area (indoors) while the lowest electric field strength was recorded for calls made in urban area (outdoors). Calls made from a phone in a moving car gave a similar result like for indoor calls; however, calls made from a phone in a moving car exposed electric field strength two times more than that of calls in a standing (motionless) position. Electromagnetic field radiation depends on mobile phone power class and factors, like urban or rural area, outdoor or indoor, moving or motionless position, and the distance of the mobile phone from the phone user. It is recommended to keep a mobile phone in the safe distance of 10, 20 or 30 cm from the body (especially head) during the calls.

  9. Mapping saltwater intrusion in the Biscayne Aquifer, Miami-Dade County, Florida using transient electromagnetic sounding

    USGS Publications Warehouse

    Fitterman, David V.

    2014-01-01

    Saltwater intrusion in southern Florida poses a potential threat to the public drinking-water supply that is typically monitored using water samples and electromagnetic induction logs collected from a network of wells. Transient electromagnetic (TEM) soundings are a complementary addition to the monitoring program because of their ease of use, low cost, and ability to fill in data gaps between wells. TEM soundings have been used to map saltwater intrusion in the Biscayne aquifer over a large part of south Florida including eastern Miami-Dade County and the Everglades. These two areas are very different with one being urban and the other undeveloped. Each poses different conditions that affect data collection and data quality. In the developed areas, finding sites large enough to make soundings is difficult. The presence of underground pipes further restricts useable locations. Electromagnetic noise, which reduces data quality, is also an issue. In the Everglades, access to field sites is difficult and working in water-covered terrain is challenging. Nonetheless, TEM soundings are an effective tool for mapping saltwater intrusion. Direct estimates of water quality can be obtained from the inverted TEM data using a formation factor determined for the Biscayne aquifer. This formation factor is remarkably constant over Miami-Dade County owing to the uniformity of the aquifer and the absence of clay. Thirty-six TEM soundings were collected in the Model Land area of southeast Miami-Dade County to aid in calibration of a helicopter electromagnetic (HEM) survey. The soundings and HEM survey revealed an area of saltwater intrusion aligned with canals and drainage ditches along U.S. Highway 1 and the Card Sound Road. These canals and ditches likely reduced freshwater levels through unregulated drainage and provided pathways for seawater to flow at least 12.4 km inland.

  10. Electromagnetic stimulation of the ultrasonic signal for nondestructive detection of the ferromagnetic inclusions and flaws

    NASA Astrophysics Data System (ADS)

    Finkel, Peter

    2007-03-01

    It was recently shown that thermal or optical stimulation can be used to increase sensitivity of the conventional nondestructive ultrasonic detection of the small crack, flaws and inclusions in a ferromagnetic thin-walled parts. We proposed another method based on electromagnetic modulation of the ultrasonic scattered signal from the inclusions or defects. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small cracks near small holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.

  11. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation

    NASA Astrophysics Data System (ADS)

    Alexander, LYSENKO; Iurii, VOLK

    2018-03-01

    We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.

  12. High-Power, High-Efficiency Ka-Band Space Traveling-Wave Tube

    NASA Technical Reports Server (NTRS)

    Krawczyk, Richard; Wilson, Jeffrey; Simons, Rainee; Williams, Wallace; Bhasin, Kul; Robbins, Neal; Dibb, Daniel; Menninger, William; Zhai, Xiaoling; Benton, Robert; hide

    2007-01-01

    The L-3 Communications Model 999H traveling-wave tube (TWT) has been demonstrated to generate an output power of 144 W at 60-percent overall efficiency in continuous-wave operation over the frequency band from 31.8 to 32.3 GHz. The best TWT heretofore commercially available for operation in the affected frequency band is characterized by an output power of only 35 W and an efficiency of 50 percent. Moreover, whereas prior TWTs are limited to single output power levels, it has been shown that the output power of the Model 999H can be varied from 54 to 144 W. A TWT is a vacuum electronic device used to amplify microwave signals. TWTs are typically used in free-space communication systems because they are capable of operating at power and efficiency levels significantly higher than those of solid-state devices. In a TWT, an electron beam is generated by an electron gun consisting of a cathode, focusing electrodes, and an anode. The electrons pass through a hole in the anode and are focused into a cylindrical beam by a stack of periodic permanent magnets and travel along the axis of an electrically conductive helix, along which propagates an electromagnetic wave that has been launched by an input signal that is to be amplified. The beam travels within the helix at a velocity close to the phase velocity of the electromagnetic wave. The electromagnetic field decelerates some of the electrons and accelerates others, causing the beam to become formed into electron bunches, which further interact with the electromagnetic wave in such a manner as to surrender kinetic energy to the wave, thereby amplifying the wave. The net result is to amplify the input signal by a factor of about 100,000. After the electrons have passed along the helix, they impinge on electrodes in a collector. The collector decelerates the electrons in such a manner as to recover most of the remaining kinetic energy and thereby significantly increase the power efficiency of the TWT.

  13. Electromagnetic analysis of a superconducting transformer for high current characterization of cable in conduit conductors in background magnetic field

    NASA Astrophysics Data System (ADS)

    Wu, Xiangyang; Tan, Yunfei; Fang, Zhen; Jiang, Donghui; Chen, Zhiyou; Chen, Wenge; Kuang, Guangli

    2017-10-01

    A large cable-in-conduit-conductor (CICC) test facility has been designed and fabricated at the High Magnetic Field Laboratory of the Chinese Academy of Sciences (CHMFL) in order to meet the test requirement of the conductors which are applied to the future fusion reactor. The critical component of the test facility is an 80 kA superconducting transformer which consists of a multi-turn primary coil and a minor-turn secondary coil. As the current source of the conductor samples, the electromagnetic performance of the superconducting transformer determines the stability and safety of the test facility. In this paper, the key factors and parameters, which have much impact on the performance of the transformer, are analyzed in detail. The conceptual design and optimizing principles of the transformer are discussed. An Electromagnetic-Circuit coupled model built in ANSYS Multiphysics is successfully used to investigate the electromagnetic characterization of the transformer under the dynamic operation condition.

  14. Preliminary analysis of space mission applications for electromagnetic launchers

    NASA Technical Reports Server (NTRS)

    Miller, L. A.; Rice, E. E.; Earhart, R. W.; Conlon, R. J.

    1984-01-01

    The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators.

  15. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    PubMed

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carreon-Rodriguez, A.; Belkind-Gerson, J.; Serrano-Luna, G.

    Availability of adult stem cells from several organs like bone marrow, umbilical cord blood or peripheral blood has become a powerful therapeutic tool for many chronic diseases. Potential of adult stem cells for regeneration extents to other tissues among them the nervous system. However two obstacles should be resolved before such cells could be currently applied in clinical practice: a) slow growth rate and b) ability to form enough dense colonies in order to populate a specific injury or cellular deficiency. Many approaches have been explored as genetic differentiation programs, growth factors, and supplemented culture media, among others. Electromagnetic fieldmore » stimulation of differentiation, proliferation, migration, and particularly on neurogenesis is little known. Since the biological effects of ELF-EMF are well documented, we hypothesize ELF-EMF could affect growth and maturation of stem cells derived of enteric tissue.« less

  17. {{\\rm{\\Lambda }}}_{c}^{+} physics at BESIII

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; BESIII collaboration

    2018-05-01

    Based on the data sets collected by the BESIII detector near the {{{Λ }}}c+{\\bar{{{Λ }}}}c- production threshold, i.e. at \\sqrt{s}=4574.5,4580.0,4590.0, and 4599.5 MeV, we report the preliminary study of the production behaviour of {e}+{e}-\\to {{{Λ }}}c+{\\bar{{{Λ }}}}c- process, including the Born cross section and electromagnetic form factor ratios. Using the large statistic data at \\sqrt{s}=4599.5 {{MeV}}, we measured the absolute branching fractions of Cabibbo-favored hadronic decays of {{{Λ }}}c+ baryon with a double-tag technique. The branching fractions for 12 hadronic decay modes are significantly improved. We also report the model-independent measurement of the branching fraction of {{{Λ }}}c+\\to {{Λ }}{e}+{v}e and {{{Λ }}}c+\\to {{Λ }}{μ }+{v}μ semi-leptonic decays.

  18. Experimental investigation of a metasurface resonator for in vivo imaging at 1.5 T

    NASA Astrophysics Data System (ADS)

    Shchelokova, Alena V.; Slobozhanyuk, Alexey P.; de Bruin, Paul; Zivkovic, Irena; Kallos, Efthymios; Belov, Pavel A.; Webb, Andrew

    2018-01-01

    In this work, we experimentally demonstrate an increase in the local transmit efficiency of a 1.5 T MRI scanner by using a metasurface formed by an array of brass wires embedded in a high permittivity low loss medium. Placement of such a structure inside the scanner results in strong coupling of the radiofrequency field produced by the body coil with the lowest frequency electromagnetic eigenmode of the metasurface. This leads to spatial redistribution of the near fields with enhancement of the local magnetic field and an increase in the transmit efficiency per square root maximum specific absorption rate in the region-of-interest. We have investigated this structure in vivo and achieved a factor of 3.3 enhancement in the local radiofrequency transmit efficiency.

  19. Coupled oscillators: interesting experiments for high school students

    NASA Astrophysics Data System (ADS)

    Kodejška, Č.; Lepil, O.; Sedláčková, H.

    2018-07-01

    This work deals with the experimental demonstration of coupled oscillators using simple tools in the form of mechanical coupled pendulums, magnetically coupled elastic strings or electromagnetic oscillators. For the evaluation of results the data logger Lab Quest Vernier and video analysis in the Tracker program were used. In the first part of this work, coupled mechanical oscillators of different types are shown and the data analysis by the Tracker or Vernier Logger Pro programs. The second part describes a measurement using two LC circuits with inductively or capacitive coupled electromagnetic oscillators and the obtained experimental results.

  20. Electromagnetic fields with vanishing quantum corrections

    NASA Astrophysics Data System (ADS)

    Ortaggio, Marcello; Pravda, Vojtěch

    2018-04-01

    We show that a large class of null electromagnetic fields are immune to any modifications of Maxwell's equations in the form of arbitrary powers and derivatives of the field strength. These are thus exact solutions to virtually any generalized classical electrodynamics containing both non-linear terms and higher derivatives, including, e.g., non-linear electrodynamics as well as QED- and string-motivated effective theories. This result holds not only in a flat or (anti-)de Sitter background, but also in a larger subset of Kundt spacetimes, which allow for the presence of aligned gravitational waves and pure radiation.

  1. New wrinkles on black hole perturbations: Numerical treatment of acoustic and gravitational waves

    NASA Astrophysics Data System (ADS)

    Tenyotkin, Valery

    2009-06-01

    This thesis develops two main topics. A full relativistic calculation of quasinormal modes of an acoustic black hole is carried out. The acoustic black hole is formed by a perfect, inviscid, relativistic, ideal gas that is spherically accreting onto a Schwarzschild black hole. The second major part is the calculation of sourceless vector (electromagnetic) and tensor (gravitational) covariant field evolution equations for perturbations on a Schwarzschild background using the relatively recent [Special characters omitted.] decomposition method. Scattering calculations are carried out in Schwarzschild coordinates for electromagnetic and gravitational cases as validation of the method and the derived equations.

  2. Electromagnetic induction pump for pumping liquid metals and other conductive liquids

    DOEpatents

    Smither, R.K.

    1993-05-11

    An electromagnetic induction pump is described in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

  3. Electromagnetic induction pump for pumping liquid metals and other conductive liquids

    DOEpatents

    Smither, Robert K.

    1993-01-01

    An electromagnetic induction pump in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

  4. Electro-suppression of water nano-droplets' solidification in no man's land: Electromagnetic fields' entropic trapping of supercooled water

    NASA Astrophysics Data System (ADS)

    Nandi, Prithwish K.; Burnham, Christian J.; English, Niall J.

    2018-01-01

    Understanding water solidification, especially in "No Man's Land" (NML) (150 K < T < 235 K) is crucially important (e.g., upper-troposphere cloud processes) and challenging. A rather neglected aspect of tropospheric ice-crystallite formation is inevitably present electromagnetic fields' role. Here, we employ non-equilibrium molecular dynamics of aggressively quenched supercooled water nano-droplets in the gas phase under NML conditions, in externally applied electromagnetic (e/m) fields, elucidating significant differences between effects of static and oscillating fields: although static fields induce "electro-freezing," e/m fields exhibit the contrary - solidification inhibition. This anti-freeze action extends not only to crystal-ice formation but also restricts amorphisation, i.e., suppression of low-density amorphous ice which forms otherwise in zero-field NML environments. E/m-field applications maintain water in the deeply supercooled state in an "entropic trap," which is ripe for industrial impacts in cryo-freezing, etc.

  5. Electrodynamics and Spacetime Geometry: Foundations

    NASA Astrophysics Data System (ADS)

    Cabral, Francisco; Lobo, Francisco S. N.

    2017-02-01

    We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.

  6. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  7. ELECTROMAGNETIC RELEASE MECHANISM

    DOEpatents

    Michelson, C.

    1960-09-13

    An electromagnetic release mechanism is offered that may be used, for example, for supporting a safety rod for a nuclear reactor. The release mechanism is designed to have a large excess holding force and a rapid, uniform, and dependable release. The fast release is accomplished by providing the electromagnet with slotttd polts separated by an insulating potting resin, and by constructing the poles with a ferro-nickel alloy. The combination of these two features materially reduces the eddy current power density whenever the magnetic field changes during a release operation. In addition to these features, the design of the armature is such as to provide ready entrance of fluid into any void that might tend to form during release of the armature. This also improves the release time for the mechanism. The large holding force for the mechanism is accomplished by providing a small, selected, uniform air gap between the inner pole piece and the armature.

  8. Pulse generation scheme for flying electromagnetic doughnuts

    NASA Astrophysics Data System (ADS)

    Papasimakis, Nikitas; Raybould, Tim; Fedotov, Vassili A.; Tsai, Din Ping; Youngs, Ian; Zheludev, Nikolay I.

    2018-05-01

    Transverse electromagnetic plane waves are fundamental solutions of Maxwells equations. It is less known that a radically different type of solutions has been described theoretically, but has never been realized experimentally, that exist only in the form of short bursts of electromagnetic energy propagating in free space at the speed of light. They are distinguished from transverse waves by a doughnutlike configuration of electric and magnetic fields with a strong field component along the propagation direction. Here, we demonstrate numerically that such flying doughnuts can be generated from conventional pulses using a singular metamaterial converter designed to manipulate both the spatial and spectral structure of the input pulse. The ability to generate flying doughnuts is of fundamental interest, as they shall interact with matter in unique ways, including nontrivial field transformations upon reflection from interfaces and the excitation of toroidal response and anapole modes in matter, hence offering opportunities for telecommunications, sensing, and spectroscopy.

  9. Dependence of the Radiation Pressure on the Background Refractive Index

    NASA Astrophysics Data System (ADS)

    Webb, Kevin J.

    2013-07-01

    The 1978 experiments by Jones and Leslie showing that the radiation pressure on a mirror depends on the background medium refractive index have yet to be adequately explained using a force model and have provided a leading challenge to the Abraham form of the electromagnetic momentum. Those experimental results are predicted for the first time using a force representation that incorporates the Abraham momentum by utilizing the power calibration method employed in the Jones and Leslie experiments. With an extension of the same procedure, the polarization and angle independence of the experimental data are also explained by this model. Prospects are good for this general form of the electromagnetic force density to be effective in predicting other experiments with macroscopic materials. Furthermore, the rigorous representation of material dispersion makes the representation important for metamaterials that operate in the vicinity of homogenized material resonances.

  10. Proton-driven electromagnetic instabilities in high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Abraham-Shrauner, B.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.

    1979-01-01

    Electromagnetic instabilities of the field-aligned, right-hand circularly polarized magnetosonic wave and the left-hand circularly polarized Alfven wave driven by two drifted proton components are analyzed for model parameters determined from Imp 7 solar wind proton data measured during high-speed flow conditions. Growth rates calculated using bi-Lorentzian forms for the main and beam proton as well as core and halo electron velocity distributions do not differ significantly from those calculated using bi-Maxwellian forms. Using distribution parameters determined from 17 measured proton spectra, we show that considering the uncertainties the magnetosonic wave may be linearly stable and the Alfven wave is linearly unstable. Because proton velocity distribution function shapes are observed to persist for times long compared to the proton gyroperiod, the latter result suggests that linear stability theory fails for proton-driven ion cyclotron waves in the high-speed solar wind.

  11. Time-domain system for identification of the natural resonant frequencies of aircraft relevant to electromagnetic compatibility testing

    NASA Astrophysics Data System (ADS)

    Adams, J. W.; Ondrejka, A. R.; Medley, H. W.

    1987-11-01

    A method of measuring the natural resonant frequencies of a structure is described. The measurement involves irradiating this structure, in this case a helicopter, with an impulsive electromagnetic (EM) field and receiving the echo reflected from the helicopter. Resonances are identified by using a mathematical algorithm based on Prony's method to operate on the digitized reflected signal. The measurement system consists of special TEM horns, pulse generators, a time-domain system, and Prony's algorithm. The frequency range covered is 5 megahertz to 250 megahertz. This range is determined by antenna and circuit characteristics. The measurement system is demonstrated, and measured data from several different helicopters are presented in different forms. These different forms are needed to determine which of the resonant frequencies are real and which are false. The false frequencies are byproducts of Prony's algorithm.

  12. Light-front representation of chiral dynamics in peripheral transverse densities

    DOE PAGES

    Granados, Carlos G.; Weiss, Christian

    2015-07-31

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independentmore » and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.« less

  13. Charged pions tagged with polarized photons probing strong C P violation in a chiral-imbalance medium

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Mamiya; Harada, Masayasu; Matsuzaki, Shinya; Ouyang, Ruiwen

    2017-06-01

    It is expected that in a hot QCD system, a local parity-odd domain can be produced due to nonzero chirality, which is induced from the difference of winding numbers carried by the gluon topological configuration (QCD sphaleron). This local domain is called the chiral-imbalance medium, characterized by nonzero chiral chemical potential, which can be interpreted as the time variation of the strong C P phase. We find that the chiral chemical potential generates the parity breaking term in the electromagnetic form factor of charged pions. Heavy ion collision experiments could observe the phenomenological consequence of this parity-odd form factor through the elastic scattering of a pion and a photon in the medium. Then we quantify the asymmetry rate of the parity violation by measuring the polarization of the photon associated with the pion, and discuss how it could be measured in a definite laboratory frame. We roughly estimate the typical size of the asymmetry, just by picking up the pion resonant process, and find that the signal can be sufficiently larger than possible background events from parity-breaking electroweak process. Our findings might provide a novel possibility to make a manifest detection for the remnant of the strong C P violation.

  14. [Influence of light and electromagnetic radiation of Sun on circadian rhythms of the total antioxidant capacity of human saliva in the North].

    PubMed

    Borisenkov, M F; Perminova, E V; Kosova, A L

    2008-01-01

    The literature and results of own researches concerning the influence of climatic conditions of the North on human organism are analyzed in the paper. Experimental and clinical data are in accordance with a hypothesis of "circadian destruction" covering the mechanism of negative influence of factors of the North on human health. The model to describe the possible mechanism of action of electromagnetic radiations on circadian system of an organism is offered.

  15. Analysis of long wavelength electromagnetic scattering by a magnetized cold plasma prolate spheroid

    NASA Astrophysics Data System (ADS)

    Ahmadizadeh, Yadollah; Jazi, Bahram; Abdoli-Arani, Abbas

    2013-08-01

    Using dielectric permittivity tensor of the magnetized prolate plasma, the scattering of long wavelength electromagnetic waves from the mentioned object is studied. The resonance frequency and differential scattering cross section for the backward scattered waves are presented. Consistency between the resonance frequency in this configuration and results obtained for spherical plasma are investigated. Finally, the effective factors on obtained results such as incident wave polarization, the frequency of the incident wave, the plasma frequency and the cyclotron frequency are analyzed.

  16. Computational Electronics and Electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeFord, J.F.

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust areamore » fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.« less

  17. Effect of UV-C Radiation, Ultra-Sonication Electromagnetic Field and Microwaves on Changes in Polyphenolic Compounds in Chokeberry (Aronia melanocarpa).

    PubMed

    Cebulak, Tomasz; Oszmiański, Jan; Kapusta, Ireneusz; Lachowicz, Sabina

    2017-07-12

    Chokeberry fruits are highly valued for their high content of polyphenolic compounds. The use of such abiotic stress factors as UV-C radiation, an electromagnetic field, microwave radiation, and ultrasound, at different operation times, caused differentiation in the contents of anthocyanins, phenolic acids, flavonols, and flavan-3-ols. Samples were analyzed for contents of polyphenolics with ultra-performance liquid chromatography and photodiode detector-quadrupole/time-of-flight mass spectrometry (UPLC-PDA-MS/MS). The analysis showed that after exposure to abiotic stress factors, the concentration of anthocyanins ranged from 3587 to 6316 mg/100 g dry matter (dm) that constituted, on average, 67.6% of all identified polyphenolic compounds. The second investigated group included phenolic acids with the contents ranging between 1480 and 2444 mg/100 g dm (26.5%); then flavonols within the range of 133 to 243 mg/100 g dm (3.7%), and finally flavan-3-ols fluctuated between 191 and 369 mg/100 g dm (2.2%). The use of abiotic stress factors such as UV-C radiation, microwaves and ultrasound field, in most cases contributed to an increase in the content of the particular polyphenolic compounds in black chokeberry. Under the influence of these factors, increases were observed: in anthocyanin content, of 22%; in phenolic acids, of 20%; in flavonols, of 43%; and in flavan-3-ols, of 30%. Only the use of the electromagnetic field caused a decrease in the content of the examined polyphenolic compounds.

  18. Revisiting the Balazs thought experiment in the case of a left-handed material: electromagnetic-pulse-induced displacement of a dispersive, dissipative negative-index slab.

    PubMed

    Chau, Kenneth J; Lezec, Henri J

    2012-04-23

    We propose a set of postulates to describe the mechanical interaction between a plane-wave electromagnetic pulse and a dispersive, dissipative slab having a refractive index of arbitrary sign. The postulates include the Abraham electromagnetic momentum density, a generalized Lorentz force law, and a model for absorption-driven mass transfer from the pulse to the medium. These opto-mechanical mechanisms are incorporated into a one-dimensional finite-difference time-domain algorithm that solves Maxwell's equations and calculates the instantaneous force densities exerted by the pulse onto the slab, the momentum-per-unit-area of the pulse and slab, and the trajectories of the slab and system center-of-mass. We show that the postulates are consistent with conservation of global energy, momentum, and center-of-mass velocity at all times, even for cases in which the refractive index of the slab is negative or zero. Consistency between the set of postulates and well-established conservation laws reinforces the Abraham momentum density as the one true electromagnetic momentum density and enables, for the first time, identification of the correct form of the electromagnetic mass density distribution and development of an explicit model for mass transfer due to absorption, for the most general case of a ponderable medium that is both dispersive and dissipative. © 2012 Optical Society of America

  19. Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    1999-01-01

    A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals. Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.

  20. Interaction of biological systems with static and ELF electric and magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, L.E.; Kelman, B.J.; Weigel, R.J.

    1987-01-01

    Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic fieldmore » strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.« less

  1. Superconducting Resonators with Parasitic Electromagnetic Environments

    NASA Astrophysics Data System (ADS)

    Hornibrook, John; Mitchell, Emma; Reilly, David

    2012-02-01

    Microwave losses in niobium superconducting resonators are investigated at milli-Kelvin temperatures and with low drive power. In addition to the well-known suppression of Q-factor that arises from coupling between the resonator and two-level defects in the dielectric substrate [1-4], we report strong dependence of the loaded Q-factor and resonance line-shape on the electromagnetic environment. Methods to suppress parasitic coupling between the resonator and its environment are demonstrated.[4pt] [1] Day, P.K. et al., Nature 425, 817-821 (2003).[0pt] [2] Wallraff, A. et. al., Nature 451, 162-167 (2004).[0pt] [3] Macha, P. et. al., Appl. Phys. Lett., 96, 062503 (2010).[0pt] [4] O'Connell, A.D. et. al., Appl. Phys. Lett., 92, 112903 (2008).

  2. Tuning all-Optical Analog to Electromagnetically Induced Transparency in nanobeam cavities using nanoelectromechanical system.

    PubMed

    Shi, Peng; Zhou, Guangya; Deng, Jie; Tian, Feng; Chau, Fook Siong

    2015-09-29

    We report the observations of all-optical electromagnetically induced transparency in nanostructures using waveguide side-coupled with photonic crystal nanobeam cavities, which has measured linewidths much narrower than individual resonances. The quality factor of transparency resonance can be 30 times larger than those of measured individual resonances. When the gap between cavity and waveguide is reduced to 10 nm, the bandwidth of destructive interference region can reach 10 nm while the width of transparency resonance is 0.3 nm. Subsequently, a comb-drive actuator is introduced to tune the line shape of the transparency resonance. The width of the peak is reduced to 15 pm and the resulting quality factor exceeds 10(5).

  3. Investigating the effect of coil model losses on computational electromagnetic exposure of an ASTM phantom at 64 MHz MRI.

    PubMed

    Kozlov, Mikhail; Horner, Marc; Kainz, Wolfgang; Angelone, Leonardo M

    2017-07-01

    The goal of this work is to investigate the effect of coil losses on the electromagnetic field generated in an ASTM phantom by a birdcage coil. The study was based on different numerical implementations of an RF body coil at 64 MHz, using the same 3D EM and RF circuit co-simulation procedure. The coil quality factor was evaluated with respect to losses due to power feed mismatch and to resistive losses of the coil components. The results of the study showed that the magnetic field at the coil iso-center, normalized to the square root of the whole body specific absorption rate, depends on the coil quality factor.

  4. Beam wander and M2-factor of partially coherent electromagnetic hollow Gaussian beam propagating through non-Kolmogorov turbulence

    NASA Astrophysics Data System (ADS)

    Xu, Yonggen; Tian, Huanhuan; Dan, Youquan; Feng, Hao; Wang, Shijian

    2017-04-01

    Propagation formulae for M2-factor and beam wander of partially coherent electromagnetic hollow Gaussian (PCEHG) beam in non-Kolmogorov turbulence are derived based on the extended Huygens-Fresnel principle and the second-order moments of the Wigner distribution function. Our results indicate that the normalized M2-factors of PCEHG beam with larger beam order, waist width, inner scale of turbulence, the generalized exponent parameter, and smaller transverse coherent widths, outer scale of turbulence, the generalized structure parameter are less affected by the turbulence. The root mean square beam wander and relative beam wander are more obvious for PCEHG beam with smaller beam order, larger inner and outer scales of turbulence, exponent parameter, transverse coherent widths, and the generalized structure parameter. What is more, the beam wander properties of PCEHG beam in non-Kolmogorov turbulence are very different from M2-factor and spreading properties of beam in turbulence.

  5. Dielectric properties of wheat flour mixed with oat meal

    NASA Astrophysics Data System (ADS)

    Łuczycka, D.; Czubaszek, A.; Fujarczuk, M.; Pruski, K.

    2013-03-01

    Possibilities of using electric methods for determining admixtures of oat meal to wheat flour, type 650 are presented. In wheat flour, oat meal and mixtures containing 10, 20 and 30% of the oat meal, moisture, protein, starch and ash content, sedimentation value, yield and softening of wet gluten were determined. In samples containing 0, 5, 10, 15, 20, 25, 30 and 100% of oat meal, the dielectric loss factor and conductivity were determined using an impedance analyzer for electromagnetic field frequency ranging from 0.1-20 kHz. It was found that the dielectric loss factor varied for tested material. The best distinguishing between tested mixtures was obtained at the measuring electromagnetic field frequency of 20 kHz. The loss factor was significantly correlated with the yield of wet gluten and the sedimentation value, parameters indicating the amount and quality of gluten proteins in flour.

  6. Dynamics of current sheath in a hollow electrode Z-pinch discharge using slug model

    NASA Astrophysics Data System (ADS)

    Abd Al-Halim, Mohamed A.; Afify, M. S.

    2017-03-01

    The hollow electrode Z-pinch (HEZP) experiment is a new construction for the electromagnetic propulsion application in which the plasma is formed by the discharge between a plate and ring electrodes through which the plasma is propelled. The experimental results for 8 kV charging voltage shows that the peak discharge current is about 109 kA, which is in good agreement with the value obtained from the simulation in the slug model that simulates the sheath dynamics in the HEZP. The fitting of the discharge current from the slug model indicates that the total system inductance is 238 nH which is relatively a high static inductance accompanied with a deeper pinch depth indicating that the fitted anomalous resistance would be about 95 mΩ. The current and mass factors vary with the changing the gas pressure and the charging voltage. The current factor is between 0.4 and 0.5 on average which is relatively low value. The mass factor decreases by increasing the gas pressure indicating that the sheath is heavy to be driven by the magnetic pressure, which is also indicated from the decreases of the drive factor, hence the radial sheath velocity decreases. The plasma inductance and temperature increase with the increase of the drive factor while the minimum pinch radius decreases.

  7. Magnetic correlates in electromagnetic consciousness.

    PubMed

    Liboff, A R

    2016-01-01

    We examine the hypothesis that consciousness is a manifestation of the electromagnetic field, finding supportive factors not previously considered. It is not likely that traditional electrophysiological signaling modes can be readily transmitted throughout the brain to properly enable this field because of electric field screening arising from the ubiquitous distribution of high dielectric lipid membranes, a problem that vanishes for low-frequency magnetic fields. Many reports over the last few decades have provided evidence that living tissue is robustly sensitive to ultrasmall (1-100 nT) ELF magnetic fields overlapping the γ-frequency range often associated with awareness. An example taken from animal behavior (coherent bird flocking) lends support to the possibility of a disembodied electromagnetic consciousness. In contrast to quantum consciousness hypotheses, the present approach is open to experimental trial.

  8. Electromagnetic fission of238U at 600 and 1000 MeV per nucleon

    NASA Astrophysics Data System (ADS)

    Rubehn, Th.; Müller, W. F. J.; Bassini, R.; Begemann-Blaich, M.; Blaich, Th.; Ferrero, A.; Groß, C.; Imme, G.; Iori, I.; Kunde, G. J.; Kunze, W. D.; Lindenstruth, V.; Lynen, U.; Möhlenkamp, T.; Moretto, L. G.; Ocker, B.; Pochodzalla, J.; Raciti, G.; Reito, S.; Sann, H.; Schüttauf, A.; Seidel, W.; Serfling, V.; Trautmann, W.; Trzcinski, A.; Verde, G.; Wörner, A.; Zude, E.; Zwieglinski, B.

    1995-06-01

    Electromagnetic fission of238U projectiles at E/A =600 and 1000 MeV was studied with the ALADIN spectrometer at the heavy-ion synchrotron SIS. Seven different targets (Be, C, Al, Cu, In, Au and U) were used. By considering only those fission events where the two charges added up to 92, most of the nuclear interactions were excluded. The nuclear contributions to the measured fission cross sections were determined by extrapolating from beryllium to the heavier targets with the concept of factorization. The obtained cross sections for electromagnetic fission are well reproduced by extended Weizsäcker-Williams calculations which include E1 and E2 excitations. The asymmetry of the fission fragments' charge distribution gives evidence for the excitation of the double giant-dipole resonance in uranium.

  9. Comparison of the electromagnetic responses of C 12 obtained from the Green's function Monte Carlo and spectral function approaches

    DOE PAGES

    Rocco, Noemi; Lovato, Alessandro; Benhar, Omar

    2016-12-23

    Here, the electromagnetic responses of carbon obtained from the Green's function Monte Carlo and spectral function approaches using the same dynamical input are compared in the kinematical region corresponding to momentum transfer in the range 300–570 MeV. The results of our analysis, aimed at pinning down the limits of applicability of the approximations involved in the two schemes, indicate that the factorization ansatz underlying the spectral function formalism provides remarkably accurate results down to momentum transfer as low as 300 MeV. On the other hand, it appears that at 570 MeV relativistic corrections to the electromagnetic current not included inmore » the Monte Carlo calculations may play a significant role in the transverse channel.« less

  10. Comparison of the electromagnetic responses of C 12 obtained from the Green's function Monte Carlo and spectral function approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocco, Noemi; Lovato, Alessandro; Benhar, Omar

    Here, the electromagnetic responses of carbon obtained from the Green's function Monte Carlo and spectral function approaches using the same dynamical input are compared in the kinematical region corresponding to momentum transfer in the range 300–570 MeV. The results of our analysis, aimed at pinning down the limits of applicability of the approximations involved in the two schemes, indicate that the factorization ansatz underlying the spectral function formalism provides remarkably accurate results down to momentum transfer as low as 300 MeV. On the other hand, it appears that at 570 MeV relativistic corrections to the electromagnetic current not included inmore » the Monte Carlo calculations may play a significant role in the transverse channel.« less

  11. Asymptotic symmetries and electromagnetic memory

    NASA Astrophysics Data System (ADS)

    Pasterski, Sabrina

    2017-09-01

    Recent investigations into asymptotic symmetries of gauge theory and gravity have illuminated connections between gauge field zero-mode sectors, the corresponding soft factors, and their classically observable counterparts — so called "memories". Namely, low frequency emissions in momentum space correspond to long time integrations of the corre-sponding radiation in position space. Memory effect observables constructed in this manner are non-vanishing in typical scattering processes, which has implications for the asymptotic symmetry group. Here we complete this triad for the case of large U(1) gauge symmetries at null infinity. In particular, we show that the previously studied electromagnetic memory effect, whereby the passage of electromagnetic radiation produces a net velocity kick for test charges in a distant detector, is the position space observable corresponding to th Weinberg soft photon pole in momentum space scattering amplitudes.

  12. Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging

    NASA Astrophysics Data System (ADS)

    Haynes, Mark Spencer

    Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self-consistent characterization formalism, and has made headway in the same area for ultrasound.

  13. Synchrotron Radiation II.

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Synchrotron radiation is a unique form of radiation that spans the electro-magnetic spectrum from X-rays through the ultraviolet and visible into the infrared. Tunable monochromators enable scientists to select a narrow band of wavelengths at any point in the spectrum. (Author/BB)

  14. The Molecular Basis of Form and Color: A Chemistry Course for Art Majors

    ERIC Educational Resources Information Center

    Orna, Mary Virginia

    1976-01-01

    Describes a course including topics such as the nature of electromagnetic radiation, the color of transparent and opaque materials, the detection and description of color, color-order systems, color measurement, and color mixing. (MLH)

  15. Hybrid Method for Power Control Simulation of a Single Fluid Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Jaisankar, S.; Sheshadri, T. S.

    2018-05-01

    Propulsive plasma flow through a cylindrical-conical diverging thruster is simulated by a power controlled hybrid method to obtain the basic flow, thermodynamic and electromagnetic variables. Simulation is based on a single fluid model with electromagnetics being described by the equations of potential Poisson, Maxwell and the Ohm's law while the compressible fluid dynamics by the Navier Stokes in cylindrical form. The proposed method solved the electromagnetics and fluid dynamics separately, both to segregate the two prominent scales for an efficient computation and for the delivery of voltage controlled rated power. The magnetic transport is solved for steady state while fluid dynamics is allowed to evolve in time along with an electromagnetic source using schemes based on generalized finite difference discretization. The multistep methodology with power control is employed for simulating fully ionized propulsive flow of argon plasma through the thruster. Numerical solution shows convergence of every part of the solver including grid stability causing the multistep hybrid method to converge for a rated power delivery. Simulation results are reasonably in agreement with the reported physics of plasma flow in the thruster thus indicating the potential utility of this hybrid computational framework, especially when single fluid approximation of plasma is relevant.

  16. Anapoles in Free-Standing III-V Nanodisks Enhancing Second-Harmonic Generation.

    PubMed

    Timofeeva, Maria; Lang, Lukas; Timpu, Flavia; Renaut, Claude; Bouravleuv, Alexei; Shtrom, Igor; Cirlin, George; Grange, Rachel

    2018-06-13

    Nonradiating electromagnetic configurations in nanostructures open new horizons for applications due to two essential features: a lack of energy losses and invisibility to the propagating electromagnetic field. Such radiationless configurations form a basis for new types of nanophotonic devices, in which a strong electromagnetic field confinement can be achieved together with lossless interactions between nearby components. In our work, we present a new design of free-standing disk nanoantennas with nonradiating current distributions for the optical near-infrared range. We show a novel approach to creating nanoantennas by slicing III-V nanowires into standing disks using focused ion-beam milling. We experimentally demonstrate the suppression of the far-field radiation and the associated strong enhancement of the second-harmonic generation from the disk nanoantennas. With a theoretical analysis of the electromagnetic field distribution using multipole expansions in both spherical and Cartesian coordinates, we confirm that the demonstrated nonradiating configurations are anapoles. We expect that the presented procedure of designing and producing disk nanoantennas from nanowires becomes one of the standard approaches to fabricating controlled chains of standing nanodisks with different designs and configurations. These chains can be essential building blocks for new types of lasers and sensors with low power consumption.

  17. Dirty Electricity Elevates Blood Sugar Among Electrically Sensitive Diabetics and May Explain Brittle Diabetes

    PubMed Central

    Havas, Magda

    2008-01-01

    Transient electromagnetic fields (dirty electricity), in the kilohertz range on electrical wiring, may be contributing to elevated blood sugar levels among diabetics and prediabetics. By closely following plasma glucose levels in four Type 1 and Type 2 diabetics, we find that they responded directly to the amount of dirty electricity in their environment. In an electromagnetically clean environment, Type 1 diabetics require less insulin and Type 2 diabetics have lower levels of plasma glucose. Dirty electricity, generated by electronic equipment and wireless devices, is ubiquitous in the environment. Exercise on a treadmill, which produces dirty electricity, increases plasma glucose. These findings may explain why brittle diabetics have difficulty regulating blood sugar. Based on estimates of people who suffer from symptoms of electrical hypersensitivity (3–35%), as many as 5–60 million diabetics worldwide may be affected. Exposure to electromagnetic pollution in its various forms may account for higher plasma glucose levels and may contribute to the misdiagnosis of diabetes. Reducing exposure to electromagnetic pollution by avoidance or with specially designed GS filters may enable some diabetics to better regulate their blood sugar with less medication and borderline or pre-diabetics to remain non diabetic longer. PMID:18568931

  18. Numerical investigation of the influence of electromagnetic treatment on calcium carbonate scaling rate in non-isothermal pipe flow

    NASA Astrophysics Data System (ADS)

    Kireev, Victor; Kovaleva, Liana; Isakov, Andrey; Alimbekova, Sofya

    2017-11-01

    In the present paper, an attempt to explain the mechanisms of the electromagnetic field influence on the process of formation and deposition of calcium carbonate from supersaturated brine solution has been made using numerical modeling. The one-dimensional mathematical model of the brine laminar flow through a cylindrical tube with non-uniform temperature field is written in the form of the system of transient convection-diffusion-reaction partial differential equations describing temperature field and chemical components concentrations (Ca2+, HCO3-, CaCO3). The influence of the temperature on the kinetics of formation of calcium carbonate is taken into account and it is described in accordance with the Arrhenius equation. The kinetics of the calcium carbonate precipitation on the wall of the pipe is given on the basis of the Henry isotherm. It has been established that the electromagnetic treatment of brine solution leads to a decrease of the adsorption rate constant and Henry's constant but it does not significantly influence on the chemical reaction rate of calcium carbonate formation. It also has been shown that treatment with electromagnetic field significantly reduces the amount of calcium carbonate deposits on the wall of the pipe.

  19. Weak charge form factor and radius of 208Pb through parity violation in electron scattering

    DOE PAGES

    Horowitz, C. J.; Ahmed, Z.; Jen, C. -M.; ...

    2012-03-26

    We use distorted wave electron scattering calculations to extract the weak charge form factor F W(more » $$\\bar{q}$$), the weak charge radius R W, and the point neutron radius R n, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer $$\\bar{q}$$ = 0.475 fm -1. We find F W($$\\bar{q}$$) = 0.204 ± 0.028(exp) ± 0.001(model). We use the Helm model to infer the weak radius from F W($$\\bar{q}$$). We find RW = 5.826 ± 0.181(exp) ± 0.027(model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in R W from uncertainties in the surface thickness σ of the weak charge density. The weak radius is larger than the charge radius, implying a 'weak charge skin' where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius R n = 5.751 ± 0.175 (exp) ± 0.026(model) ± 0.005(strange) fm, from R W. Here there is only a very small error (strange) from possible strange quark contributions. We find R n to be slightly smaller than R W because of the nucleon's size. As a result, we find a neutron skin thickness of R n-R p = 0.302 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm, where R p is the point proton radius.« less

  20. The advantages of logarithmically scaled data for electromagnetic inversion

    NASA Astrophysics Data System (ADS)

    Wheelock, Brent; Constable, Steven; Key, Kerry

    2015-06-01

    Non-linear inversion algorithms traverse a data misfit space over multiple iterations of trial models in search of either a global minimum or some target misfit contour. The success of the algorithm in reaching that objective depends upon the smoothness and predictability of the misfit space. For any given observation, there is no absolute form a datum must take, and therefore no absolute definition for the misfit space; in fact, there are many alternatives. However, not all misfit spaces are equal in terms of promoting the success of inversion. In this work, we appraise three common forms that complex data take in electromagnetic geophysical methods: real and imaginary components, a power of amplitude and phase, and logarithmic amplitude and phase. We find that the optimal form is logarithmic amplitude and phase. Single-parameter misfit curves of log-amplitude and phase data for both magnetotelluric and controlled-source electromagnetic methods are the smoothest of the three data forms and do not exhibit flattening at low model resistivities. Synthetic, multiparameter, 2-D inversions illustrate that log-amplitude and phase is the most robust data form, converging to the target misfit contour in the fewest steps regardless of starting model and the amount of noise added to the data; inversions using the other two data forms run slower or fail under various starting models and proportions of noise. It is observed that inversion with log-amplitude and phase data is nearly two times faster in converging to a solution than with other data types. We also assess the statistical consequences of transforming data in the ways discussed in this paper. With the exception of real and imaginary components, which are assumed to be Gaussian, all other data types do not produce an expected mean-squared misfit value of 1.00 at the true model (a common assumption) as the errors in the complex data become large. We recommend that real and imaginary data with errors larger than 10 per cent of the complex amplitude be withheld from a log-amplitude and phase inversion rather than retaining them with large error-bars.

Top