Science.gov

Sample records for electromagnetic induction phenomena

  1. University Students' Understanding of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Guisasola, Jenaro; Almudi, Jose M.; Zuza, Kristina

    2013-01-01

    This study examined engineering and physical science students' understanding of the electromagnetic induction (EMI) phenomena. It is assumed that significant knowledge of the EMI theory is a basic prerequisite when students have to think about electromagnetic phenomena. To analyse students' conceptions, we have taken into account the fact that…

  2. Analyzing high school students' reasoning about electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Jelicic, Katarina; Planinic, Maja; Planinsic, Gorazd

    2017-06-01

    Electromagnetic induction is an important, yet complex, physics topic that is a part of Croatian high school curriculum. Nine Croatian high school students of different abilities in physics were interviewed using six demonstration experiments from electromagnetism (three of them concerned the topic of electromagnetic induction). Students were asked to observe, describe, and explain the experiments. The analysis of students' explanations indicated the existence of many conceptual and reasoning difficulties with the basic concepts of electromagnetism, and especially with recognizing and explaining the phenomenon of electromagnetic induction. Three student mental models of electromagnetic induction, formed during the interviews, which reoccurred among students, are described and analyzed within the knowledge-in-pieces framework.

  3. Electromagnetic Induction Rediscovered Using Original Texts.

    ERIC Educational Resources Information Center

    Barth, Michael

    2000-01-01

    Describes a teaching unit on electromagnetic induction using historic texts. Uses some of Faraday's diary entries from 1831 to introduce the phenomenon of electromagnetic induction and teach about the properties of electricity, of taking conclusions from experiment, and scientific methodology. (ASK)

  4. Analyzing High School Students' Reasoning about Electromagnetic Induction

    ERIC Educational Resources Information Center

    Jelicic, Katarina; Planinic, Maja; Planinsic, Gorazd

    2017-01-01

    Electromagnetic induction is an important, yet complex, physics topic that is a part of Croatian high school curriculum. Nine Croatian high school students of different abilities in physics were interviewed using six demonstration experiments from electromagnetism (three of them concerned the topic of electromagnetic induction). Students were…

  5. Earthquake prediction with electromagnetic phenomena

    SciTech Connect

    Hayakawa, Masashi, E-mail: hayakawa@hi-seismo-em.jp; Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo; Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQsmore » prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.« less

  6. Self field electromagnetism and quantum phenomena

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    1994-07-01

    Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.

  7. Portable Electromagnetic Induction Sensor with Integrated Positioning

    DTIC Science & Technology

    2013-08-20

    Subsurface electromagnetic induction imaging for unexploded ordnance detection. Journal of Applied Geophysics, 79:38 – 45, 2012. ISSN 09269851. URL http...Portable Electromagnetic Induction Sensor with Integrated Positioning MR-1712 Final Report Submitted to Strategic Environmental Research and...19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Rev. 8–98) Prescribed by ANSI Std. Z39.18 06–25–2013

  8. Modelling high frequency phenomena in the rotor of induction motors under no-load test conditions

    NASA Astrophysics Data System (ADS)

    Boglietti, Aldo; Bottauscio, Oriano; Chiampi, Mario; Lazzari, Mario

    2003-01-01

    The paper aims to deep the electromagnetic phenomena in the rotor of induction motors produced during the no-load test by the high-order harmonics of the spatial distribution of magnetic flux. The analysis is carried out by a flux driven finite element procedure, which can take into account the hysteresis of magnetic material, the induced currents in rotor cage and the eddy currents in the laminations. The computed results, including losses and local waveforms of electrical and magnetic quantities, are finally discussed.

  9. Using a PC and external media to quantitatively investigate electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.

    2011-07-01

    In this article we describe an experimental learning path about electromagnetic induction which uses an Atwood machine where one of the two hanging bodies is a cylindrical magnet falling through a plexiglass guide, surrounded either by a coil or by a copper pipe. The first configuration (magnet falling across a coil) allows students to quantitatively study the Faraday-Neumann-Lenz law, while the second configuration (falling through a copper pipe) permits learners to investigate the complex phenomena of induction by quantifying the amount of electric power dissipated through the pipe as a result of Foucault eddy currents, when the magnet travels through the pipe. The magnet's fall acceleration can be set by adjusting the counterweight of the Atwood machine so that both the kinematic quantities associated with it and the electromotive force induced within the coil are continuously and quantitatively monitored (respectively, by a common personal computer (PC) equipped with a webcam and by freely available software that makes it possible to use the audio card to convert the PC into an oscilloscope). Measurements carried out when the various experimental parameters are changed provide a useful framework for a thorough understanding and clarification of the conceptual nodes related to electromagnetic induction. The proposed learning path is under evaluation in various high schools participating in the project 'Lauree Scientifiche' promoted by the Italian Department of Education.

  10. Assessment of precursory information in seismo-electromagnetic phenomena

    NASA Astrophysics Data System (ADS)

    Han, P.; Hattori, K.; Zhuang, J.

    2017-12-01

    Previous statistical studies showed that there were correlations between seismo-electromagnetic phenomena and sizeable earthquakes in Japan. In this study, utilizing Molchan's error diagram, we evaluate whether these phenomena contain precursory information and discuss how they can be used in short-term forecasting of large earthquake events. In practice, for given series of precursory signals and related earthquake events, each prediction strategy is characterized by the leading time of alarms, the length of alarm window, the alarm radius (area) and magnitude. The leading time is the time length between a detected anomaly and its following alarm, and the alarm window is the duration that an alarm lasts. The alarm radius and magnitude are maximum predictable distance and minimum predictable magnitude of earthquake events, respectively. We introduce the modified probability gain (PG') and the probability difference (D') to quantify the forecasting performance and to explore the optimal prediction parameters for a given electromagnetic observation. The above methodology is firstly applied to ULF magnetic data and GPS-TEC data. The results show that the earthquake predictions based on electromagnetic anomalies are significantly better than random guesses, indicating the data contain potential useful precursory information. Meanwhile, we reveal the optimal prediction parameters for both observations. The methodology proposed in this study could be also applied to other pre-earthquake phenomena to find out whether there is precursory information, and then on this base explore the optimal alarm parameters in practical short-term forecast.

  11. Joseph Henry’s role in the discovery of electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Smith, Glenn S.

    2017-01-01

    The discovery of electromagnetic induction in the early part of the 19th century is one of the greatest scientific achievements of all time, and it has had tremendous technological consequences. The credit for this discovery rightfully goes to the great English experimental physicist Michael Faraday. However, the American physicist Joseph Henry made some observations comparable to Faraday’s at nearly the same time, and for that reason, Faraday and Henry are often considered to be co-discoverers of some aspects of electromagnetic induction. We examine Henry’s early research on electromagnetism, starting from his efforts to improve the electromagnet, which led directly to his investigations of induction. We describe his earliest experiments on both mutual and self-induction, and pay particular attention to the relationship of Henry’s research to that of Faraday. The approach is one in which the experiments are described and then analysed using modern theory and terminology.

  12. Flow-field differences and electromagnetic-field properties of air and N2 inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Yu, Minghao; Yamada, Kazuhiko; Takahashi, Yusuke; Liu, Kai; Zhao, Tong

    2016-12-01

    A numerical model for simulating air and nitrogen inductively coupled plasmas (ICPs) was developed considering thermochemical nonequilibrium and the third-order electron transport properties. A modified far-field electromagnetic model was introduced and tightly coupled with the flow field equations to describe the Joule heating and inductive discharge phenomena. In total, 11 species and 49 chemical reactions of air, which include 5 species and 8 chemical reactions of nitrogen, were employed to model the chemical reaction process. The internal energy transfers among translational, vibrational, rotational, and electronic energy modes of chemical species were taken into account to study thermal nonequilibrium effects. The low-Reynolds number Abe-Kondoh-Nagano k-ɛ turbulence model was employed to consider the turbulent heat transfer. In this study, the fundamental characteristics of an ICP flow, such as the weak ionization, high temperature but low velocity in the torch, and wide area of the plasma plume, were reproduced by the developed numerical model. The flow field differences between the air and nitrogen ICP flows inside the 10-kW ICP wind tunnel were made clear. The interactions between the electromagnetic and flow fields were also revealed for an inductive discharge.

  13. The Search for Electromagnetic Induction (1820-1831). Experiment No. 20.

    ERIC Educational Resources Information Center

    Devons, Samuel

    This paper focuses on the search for electromagnetic induction from 1820 to 1831 and the efforts by Augustin Fresnel's colleague, Andre Marie Ampere, in electric and magnetic induction. Faraday's work is discussed with excerpts from his diary on electromagnetism. A variety of different experiments by researchers including Francoise Jean Arago,…

  14. Research in Antenna Technology, Radar Technology and Electromagnetic Scattering Phenomena

    DTIC Science & Technology

    2015-04-06

    a group of six researchers in the fields of electromagnetics , radar and antenna technology. Research was conducted during this reporting period in...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Research in Antenna technology, Radar Technology and Electromagnetic Scattering Phenomena...Matrix Theory Based on Gaussian Beams………...65 4.5.3 Array realization of complex-source beam……………………………85 4.5.4 Electromagnetic Scattering-Matrix

  15. Electromagnetic induction sensor for dynamic testing of coagulation process.

    PubMed

    Wang, Zhe; Yu, Yuanhua; Yu, Zhanjiang; Chen, Qimeng

    2018-03-01

    With the increasing demand for coagulation POCT for patients in the surgery department or the ICU, rapid coagulation testing techniques and methods have drawn widespread attention from scholars and businessmen. This paper proposes the use of electromagnetic induction sensor probe for detection of dynamic process causing changes in the blood viscosity and density before and after coagulation based on the damped vibration principle, in order to evaluate the coagulation status. Utilizing the dynamic principle, the differential equation of vibration system comprising elastic support and electromagnetic induction device is established through sensor dynamic modeling. The structural parameters of elastic support are optimized, and the circular sheet spring is designed. Furthermore, harmonic response analysis and vibration fatigue coupling analysis are performed on the elastic support of the sensor by considering the natural frequency of the system, and the electromagnetic induction sensor testing device is set up. Using the device and coagulation reagent, the standard curve for coagulation POCT is plotted, and the blood sample application in clinical patients is established, which are methodologically compared with the imported POCT coagulation analyzer. The results show that the sensor designed in this paper has a first-order natural frequency of 11.368 Hz, which can withstand 5.295 × 10 2 million times of compressions and rebounds. Its correlation with the results of SONOCLOT analyzer reaches 0.996, and the reproducibility 0.002. The electromagnetic induction coagulation testing sensor designed has good elasticity and anti-fatigue, which can meet the accuracy requirement of clinical detection. This study provides the core technology for developing the electromagnetic induction POCT instrument for dynamic testing of coagulation process.

  16. Fuel saver based on electromagnetic induction for automotive engine

    NASA Astrophysics Data System (ADS)

    Siregar, Houtman P.; Sibarani, Maradu

    2007-12-01

    In the considered research is designed and analyzed the performance of the fuel saver which is based on electromagnetic induction for automotive diesel engine. The fuel saver which is based on permanent magnet has sold in market and its performance has tested. In comparison to the former fuel saver, in the proposed work is produced fuel saver which is based on electromagnetic induction. The considered research is the continuation of my former work. Performance of the produced fuel saver which is installed in the fuel line of internal combustion engine rig is compared to the performance of the standard internal combustion engine rig Speed of the engine, wire diameter of coil, and number of coil which is coiled in the winding of the the fuel saver are chosen as the testing variables. The considered research has succeeded to design the fuel saver which is based on electromagnetic induction for saving the automotive fuel consumption. Results of the research show that the addition of the fuel saver which is based on electromagnetic induction to the flow of the diesel fuel can significantly save the automative fuel consumption. In addition the designed fuel saver can reduce the opacity of the emission gas.

  17. Some Student Conceptions of Electromagnetic Induction

    NASA Astrophysics Data System (ADS)

    Thong, Wai Meng; Gunstone, Richard

    2008-01-01

    Introductory electromagnetism is a central part of undergraduate physics. Although there has been some research into student conceptions of electromagnetism, studies have been sparse and separated. This study sought to explore second year physics students’ conceptions of electromagnetism, to investigate to what extent the results from the present study are similar to these results from other studies, and to uncover any new forms of alternative conceptions. Data for this study came from 15 in-depth interviews. Three previously unreported alternative conceptions were identified in the study: 1) induced current varies proportionately with current in solenoid; 2) there must be contact between magnetic flux and the external coil in order for any emf to be induced in the coil; 3) coulombic or electrostatic potential difference is present in an induced electric field. These alternative conceptions were manifested in these students’ explanations of electromagnetic phenomena presented to them during the interviews.

  18. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Lani, A.; Panesi, M.

    2016-07-01

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  19. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    SciTech Connect

    Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu; Lani, A.

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) Amore » Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.« less

  20. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    PubMed

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Investigating Electromagnetic Induction through a Microcomputer-Based Laboratory.

    ERIC Educational Resources Information Center

    Trumper, Ricardo; Gelbman, Moshe

    2000-01-01

    Describes a microcomputer-based laboratory experiment designed for high school students that very accurately analyzes Faraday's law of electromagnetic induction, addressing each variable separately while the others are kept constant. (Author/CCM)

  2. Analysis of Arguments Constructed by First-Year Engineering Students Addressing Electromagnetic Induction Problems

    ERIC Educational Resources Information Center

    Almudi, Jose Manuel; Ceberio, Mikel

    2015-01-01

    This study explored the quality of arguments used by first-year engineering university students enrolled in a traditional physics course dealing with electromagnetic induction and related problem solving where they had to assess whether the electromagnetic induction phenomenon would occur. Their conclusions were analyzed for the relevance of the…

  3. Nonlinear Phenomena in Electromagnetic and Acoustic Wave Propagation.

    DTIC Science & Technology

    1984-04-01

    W~ . f. W. ~.. ~ . . W-71 40. R. Burridge Poroelasticity equations derived from J. B. Keller microstructure Pub: J. Acoust . Soc. Am., 70, 1140...Pub: Coin. Pure Appl. Math., 36, 547-569, 1983. 91. J. B. Keller Asymptotic analysis of a viscous Cochlear model 1. C. ou Sub: J. Acoust . Soc. Am. 92...34RD-R49 螜 NONLINEAR PHENOMENA IN ELECTROMAGNETIC AND ACOUSTIC /1 NAVE PROPAORTION(U) STANFORD UNIV CA DEPT OF MATHEMATICS J B KELLER APR 84 ARO

  4. Science 101: What Causes Electromagnetic Induction?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2013-01-01

    Electromagnetic induction is the technical name for the fact that, when a wire is moved near a magnet or a magnet is moved near a wire, an electric current flows in the wire. Although Bill Robertson honestly admits to not knowing why this happens, he does say that it is possible to get a deeper understanding of what's going on in terms of…

  5. Project MANTIS: A MANTle Induction Simulator for coupling geodynamic and electromagnetic modeling

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.

    2009-12-01

    A key component to testing geodynamic hypotheses resulting from the 3D mantle convection simulations is the ability to easily translate the predicted physiochemical state to the model space relevant for an independent geophysical observation, such as earth's seismic, geodetic or electromagnetic response. In this contribution a new parallel code for simulating low-frequency, global-scale electromagnetic induction phenomena is introduced that has the same Earth discretization as the popular CitcomS mantle convection code. Hence, projection of the CitcomS model into the model space of electrical conductivity is greatly simplified, and focuses solely on the node-to-node, physics-based relationship between these Earth parameters without the need for "upscaling", "downscaling", averaging or harmonizing with some other model basis such as spherical harmonics. Preliminary performance tests of the MANTIS code on shared and distributed memory parallel compute platforms shows favorable scaling (>70% efficiency) for up to 500 processors. As with CitcomS, an OpenDX visualization widget (VISMAN) is also provided for 3D rendering and interactive interrogation of model results. Details of the MANTIS code will be briefly discussed here, focusing on compatibility with CitcomS modeling, as will be preliminary results in which the electromagnetic response of a CitcomS model is evaluated. VISMAN rendering of electrical tomography-derived electrical conductivity model overlain by an a 1x1 deg crustal conductivity map. Grey scale represents the log_10 magnitude of conductivity [S/m]. Arrows are horiztonal components of a hypothetical magnetospheric source field used to electromagnetically excite the conductivity model.

  6. Luminous phenomena and electromagnetic VHF wave emission originated from earthquake-related radon exhalation

    NASA Astrophysics Data System (ADS)

    Seki, A.; Tobo, I.; Omori, Y.; Muto, J.; Nagahama, H.

    2013-12-01

    Anomalous luminous phenomena and electromagnetic wave emission before or during earthquakes have been reported (e.g., the 1965 Matsushiro earthquake swarm). However, their mechanism is still unsolved, in spite of many models for these phenomena. Here, we propose a new model about luminous phenomena and electromagnetic wave emission during earthquake by focusing on atmospheric radon (Rn-222) and its daughter nuclides (Po-218 and Po-214). Rn-222, Po-218 and Po-214 are alpha emitters, and these alpha particles ionize atmospheric molecules. A light emission phenomenon, called 'the air luminescence', is caused by de-excitation of the ionized molecules of atmospheric nitrogen due to electron impact ionization from alpha particles. The de-excitation is from the second positive system of neutral nitrogen molecules and the first negative system of nitrogen molecule ion. Wavelengths of lights by these transitions include the visible light wavelength. So based on this mechanism, we proposed a new luminous phenomenon model before or during earthquake: 1. The concentration of atmospheric radon and its daughter nuclides increase anomalously before or during earthquakes, 2. Nitrogen molecules and their ions are excited by alpha particles emitted from Rn-222, Po-218 and Po-214, and air luminescence is generated by their de-excitation. Similarly, electromagnetic VHF wave emission can be explained by ionizing effect of radon and its daughter nuclides. Boyarchuk et al. (2005) proposed a model that electromagnetic VHF wave emission is originated when excited state of neutral clusters changes. Radon gas ionizes atmosphere and forms positively and negatively charged heavy particles. The process of ion hydration in ordinary air can be determined by the formation of complex chemically active structures of the various types of ion radicals. As a result of the association of such hydration radical ions, a neutral cluster, which is dipole quasi-molecules, is formed. A neutral cluster

  7. An innovative experimental sequence on electromagnetic induction and eddy currents based on video analysis and cheap data acquisition

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Bozzo, G.; Sapia, P.

    2017-11-01

    In this work, we present a coherent sequence of experiments on electromagnetic (EM) induction and eddy currents, appropriate for university undergraduate students, based on a magnet falling through a drilled aluminum disk. The sequence, leveraging on the didactical interplay between the EM and mechanical aspects of the experiments, allows us to exploit the students’ awareness of mechanics to elicit their comprehension of EM phenomena. The proposed experiments feature two kinds of measurements: (i) kinematic measurements (performed by means of high-speed video analysis) give information on the system’s kinematics and, via appropriate numerical data processing, allow us to get dynamic information, in particular on energy dissipation; (ii) induced electromagnetic field (EMF) measurements (by using a homemade multi-coil sensor connected to a cheap data acquisition system) allow us to quantitatively determine the inductive effects of the moving magnet on its neighborhood. The comparison between experimental results and the predictions from an appropriate theoretical model (of the dissipative coupling between the moving magnet and the conducting disk) offers many educational hints on relevant topics related to EM induction, such as Maxwell’s displacement current, magnetic field flux variation, and the conceptual link between induced EMF and induced currents. Moreover, the didactical activity gives students the opportunity to be trained in video analysis, data acquisition and numerical data processing.

  8. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  9. The Teaching of Electromagnetic Induction at Sixth Form Level

    ERIC Educational Resources Information Center

    Archenhold, W. F.

    1974-01-01

    Presents some ideas about teaching electromagnetic induction at sixth form level, including educational objectives, learning difficulties, syllabus requirements, selection of unit system, and sequence of material presentation. Suggests the Education Group of the Institute of Physics hold further discussions on these aspects before including the…

  10. Electromagnetic, heat and fluid flow phenomena in levitated metal droplets both under earthbound and microgravity conditions

    NASA Technical Reports Server (NTRS)

    Szekely, Julian

    1988-01-01

    The purpose is to develop an improved understanding of the electromagnetic, heat, and fluid flow phenomena in electromagnetically levitated metal droplets, both under earthbound and microgravity conditions. The main motivation for doing this work, together with the past accomplishments, and the plans for future research are discussed.

  11. Global electromagnetic induction in the moon and planets. [poloidal eddy current transient response

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.

    1973-01-01

    Experiments and analyses concerning electromagnetic induction in the moon and other extraterrestrial bodies are summarized. The theory of classical electromagnetic induction in a sphere is first considered, and this treatment is extended to the case of the moon, where poloidal eddy-current response has been found experimentally to dominate other induction modes. Analysis of lunar poloidal induction yields lunar internal electrical conductivity and temperature profiles. Two poloidal-induction analytical techniques are discussed: a transient-response method applied to time-series magnetometer data, and a harmonic-analysis method applied to data numerically Fourier-transformed to the frequency domain, with emphasis on the former technique. Attention is given to complicating effects of the solar wind interaction with both induced poloidal fields and remanent steady fields. The static magnetization field induction mode is described, from which are calculated bulk magnetic permeability profiles. Magnetic field measurements obtained from the moon and from fly-bys of Venus and Mars are studied to determine the feasibility of extending theoretical and experimental induction techniques to other bodies in the solar system.

  12. Electromagnetic earthquake triggering phenomena: State-of-the-art research and future developments

    NASA Astrophysics Data System (ADS)

    Zeigarnik, Vladimir; Novikov, Victor

    2014-05-01

    of geoacoustic emission recorded in the wells at a distance of 7-12 km from the emitting dipole to the ERGU-600 pulses confirmed the effects of an influence of electromagnetic field on the deformation processes in the Earth crust and the real existence of electromagnetic triggering phenomena. For verification of results of field observations laboratory studies of behavior of rock samples under critical stress-strain state and external electric actions were carried out at the spring and lever presses, as well as at the stick-slip models simulated the seismic cycle (stress accumulation and discharge) in the seismogenic geological fault. Various possible mechanisms of weak electrical stimulation (electric current density 10-7-10-8 mA/cm2 at a depth of earthquake epicenters of 5 to10 km) of deformation processes in the Earth crust, including increased fluid pore pressure, electrokinetic phenomena, magnetostriction, electrical stimulation of fluid migration into the fault area are considered. However, the mechanism of electromagnetic earthquake triggering phenomena is still open. Based on the field observations of electromagnetic triggering of weak seismicity resulting in a partial safe release of stresses in the Earth crust a possibility of control of seismic process is considered for risk reduction of catastrophic earthquakes. The results obtained from field and laboratory experiments on electromagnetic initiation of seismic events allow to consider a problem of lithosphere-ionosphere relations from another point of view. Keeping in mind that the current density generated in the Earth crust by artificial electric source is comparable with the density of telluric currents induced during severe ionospheric disturbances (e.g., magnetic storms) it may be possible under certain favorable conditions in lithosphere to initiate earthquakes by electromagnetic disturbances in ionosphere. A possibility of application of these triggering phenomena for short-term earthquake

  13. Subsurface Electromagnetic Induction Imaging for Unexploded Ordnance Detection

    DTIC Science & Technology

    2012-01-01

    Baum, 1999; Pasion and Oldenburg, 2001). The EMI- response problem has been solved analytically for spheroids (Ao et al., 2002; Barrowes et al., 2004...components. We also have made explicit the fact that the polarizabilities are always positive ( Pasion et al., 2008); we impose this constraint in the...Wiley-Blackwell, Chichester, UK. Pasion , L.R., Oldenburg, D.W., 2001. A discrimination algorithm for UXO using time- domain electromagnetic induction

  14. Chapter 9.5: Electromagnetic induction to manage cattle feedlot waste

    USDA-ARS?s Scientific Manuscript database

    This book chapter summarizes results of waste management research that utilized electromagnetic induction (EMI) tools for the purposes of: 1) collection of solid waste from feedlot surfaces to be utilized by crops 2) control and utilization of nutrient laden liquid runoff, and 3) feedlot surface man...

  15. Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Fuqiang; Hayat, Tasawar; Zhou, Ping; Tang, Jun

    2017-11-01

    Continuous wave emitting from sinus node of the heart plays an important role in wave propagating among cardiac tissue, while the heart beating can be terminated when the target wave is broken into turbulent states by electromagnetic radiation. In this investigation, local periodical forcing is applied on the media to induce continuous target wave in the improved cardiac model, which the effect of electromagnetic induction is considered by using magnetic flux, then external electromagnetic radiation is imposed on the media. It is found that target wave propagation can be blocked to stand in a local area and the excitability of media is suppressed to approach quiescent but homogeneous state when electromagnetic radiation is imposed on the media. The sampled time series for membrane potentials decrease to quiescent state due to the electromagnetic radiation. It could accounts for the mechanism of abnormality in heart failure exposed to continuous electromagnetic field.

  16. Demonstration of Lenz's Law with an Induction Motor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2005-01-01

    The interaction of a conductor with a time-dependent magnetic field is an important topic of electromagnetic theory. A computerized classroom demonstration shows how the eddy currents induced in the rotor of an induction motor cause its rotation or braking. Both phenomena are directly related to Lenz's law.

  17. Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method

    NASA Astrophysics Data System (ADS)

    Ciurys, Marek Pawel

    2017-12-01

    Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network - converter - BLDC motor was carried out.

  18. Pedemis: a portable electromagnetic induction sensor with integrated positioning

    NASA Astrophysics Data System (ADS)

    Barrowes, Benjamin E.; Shubitidze, Fridon; Grzegorczyk, Tomasz M.; Fernández, Pablo; O'Neill, Kevin

    2012-06-01

    Pedemis (PortablE Decoupled Electromagnetic Induction Sensor) is a time-domain handheld electromagnetic induction (EMI) instrument with the intended purpose of improving the detection and classification of UneXploded Ordnance (UXO). Pedemis sports nine coplanar transmitters (the Tx assembly) and nine triaxial receivers held in a fixed geometry with respect to each other (the Rx assembly) but with that Rx assembly physically decoupled from the Tx assembly allowing flexible data acquisition modes and deployment options. The data acquisition (DAQ) electronics consists of the National Instruments (NI) cRIO platform which is much lighter and more energy efficient that prior DAQ platforms. Pedemis has successfully acquired initial data, and inversion of the data acquired during these initial tests has yielded satisfactory polarizabilities of a spherical target. In addition, precise positioning of the Rx assembly has been achieved via position inversion algorithms based solely on the data acquired from the receivers during the "on-time" of the primary field. Pedemis has been designed to be a flexible yet user friendly EMI instrument that can survey, detect and classify targets in a one pass solution. In this paper, the Pedemis instrument is introduced along with its operation protocols, initial data results, and current status.

  19. Coil design considerations for a high-frequency electromagnetic induction sensing instrument

    NASA Astrophysics Data System (ADS)

    Sigman, John B.; Barrowes, Benjamin E.; Wang, Yinlin; Bennett, Hollis J.; Simms, Janet E.; Yule, Donald E.; O'Neill, Kevin; Shubitidze, Fridon

    2016-05-01

    Intermediate electrical conductivity (IEC) materials (101S/m < σ < 104S/m), such as carbon fiber (CF), have recently been used to make smart bombs. In addition, homemade improvised explosive devices (IED) can be produced with low conducting materials (10-4S/m < σ < 1S/m), such as Ammonium Nitrate (AN). To collect unexploded ordnance (UXO) from military training ranges and thwart deadly IEDs, the US military has urgent need for technology capable of detection and identification of subsurface IEC objects. Recent analytical and numerical studies have showed that these targets exhibit characteristic quadrature response peaks at high induction frequencies (100kHz - 15MHz, the High Frequency Electromagnetic Induction (HFEMI) band), and they are not detectable with traditional ultra wideband (UWB) electromagnetic induction (EMI) metal detectors operating between 100Hz - 100kHz. Using the HFEMI band for induction sensing is not so simple as driving existing instruments at higher frequencies, though. At low frequency, EMI systems use more wire turns in transmit and receive coils to boost signal-to-noise ratios (SNR), but at higher frequencies, the transmitter current has non-uniform distribution along the coil length. These non-uniform currents change the spatial distribution of the primary magnetic field and disturb axial symmetry and thwart established approaches for inferring subsurface metallic object properties. This paper discusses engineering tradeoffs for sensing with a broader band of frequencies ever used for EMI sensing, with particular focus on coil geometries.

  20. Electromagnetic Remote Sensing. Low Frequency Electromagnetics

    DTIC Science & Technology

    1989-01-01

    biased superconducting point - contact quantum devices", J.Appl.Phys. 41, p.1572, 1970. [40] A.Yariv and H.Winsor, "Proposal for detection of magnetic ... magnetics , electromagnetic induc- tion, electrostatics) 2. Nondestructive testing (electromagnetic induction, neutron tomography, x-ray imaging) 3...Detection of submarines from aircraft or ships ( magnetics , electromagnetic induction) 4. Detection of land vehicles using buried sensors ( magnetics

  1. Snow Depth Calibrations for Electromagnetic Induction Investigations at a Former Munitions Waste Disposal Site in Alaska

    NASA Astrophysics Data System (ADS)

    Glaser, D. R., II; Wagner, A. M.; Gelvin, A.; Saari, S.; Staples, A.; Larsen, G.

    2017-12-01

    A US Army legacy munitions waste site was identified adjacent to a river near a small arms range in Alaska. As part of remediation efforts, geophysical studies were conducted to characterize the extent of buried metal debris at the site. Time-domain electromagnetic surveys were completed over the site to meet the regulatory guidance for site cleanup. Time-domain and frequency-domain electromagnetic induction, magnetic gradiometry, and ground penetrating radar subsurface geophysical studies were deployed over soil, water, and snow surface conditions throughout the impacted area. The time-domain electromagnetic induction results acquired during summer months, presented clear indications of trenches located directly perpendicular to and adjacent to the river. However, in the follow up investigation where the snow-pack was greater than one meter, the response amplitude of the metallic debris was dampened and possible targets were missed. This was confirmed by the subsequent magnetic gradiometry survey which identified a suspected extension of one of the trenches through the river on to the seasonal sand bar island. The region is subject to extremely cold temperatures as well as significant snow pack and permafrost soil conditions. The snow presented a negative impact to the accurate assessment of the site by changing the effective investigation depth. To address this we developed an approach using ground penetrating radar data calibrated with physical snow depth measurements to generate continuous estimates of snow depth and spatially correct the electromagnetic induction data to the corresponding regulatory amplitude limit as if the snow were not present. Limitations of the approach as related to the signal floor of the electromagnetic induction response were also assessed.

  2. Demonstration of LenzÂ's law with an induction motor

    NASA Astrophysics Data System (ADS)

    Kraftmakher, Yaakov

    2005-03-01

    The interaction of a conductor with a time-dependent magnetic field is an important topic of electromagnetic theory. A computerized classroom demonstration shows how the eddy currents induced in the rotor of an induction motor cause its rotation or braking. Both phenomena are directly related to Lenz’s law.

  3. University Physics Students' Use of Models in Explanations of Phenomena Involving Interaction between Metals and Electromagnetic Radiation.

    ERIC Educational Resources Information Center

    Redfors, Andreas; Ryder, Jim

    2001-01-01

    Examines third year university physics students' use of models when explaining familiar phenomena involving interaction between metals and electromagnetic radiation. Concludes that few students use a single model consistently. (Contains 27 references.) (DDR)

  4. Using a PC and External Media to Quantitatively Investigate Electromagnetic Induction

    ERIC Educational Resources Information Center

    Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.

    2011-01-01

    In this article we describe an experimental learning path about electromagnetic induction which uses an Atwood machine where one of the two hanging bodies is a cylindrical magnet falling through a plexiglass guide, surrounded either by a coil or by a copper pipe. The first configuration (magnet falling across a coil) allows students to…

  5. Paranormal phenomena

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  6. Impact of Electromagnetic Field upon Temperature Measurement of Induction Heated Charges

    NASA Astrophysics Data System (ADS)

    Smalcerz, A.; Przylucki, R.

    2013-04-01

    The use of thermoelements is a commonly applied method in industry and engineering. It provides a wide measurement range of temperature, a direct voltage signal from the transducer, low cost of the thermoelement, and its resistance to many unfavorable factors which occur in an industrial environment. Unfortunately, thermoelements may not be resistant to interferences of a strong electromagnetic field because of the nature and design of a transducer. Induction heating is the most commonly used type of heating, at present, for metals. In order to guarantee the correctness of the carried out heating process, it is essential to control the temperature of the heated element. The impact of a strong electromagnetic field upon the thermocouple temperature measurement of the inductively heated elements has been analyzed in this paper. The experiment includes dozens of measurements where the following parameters have been varied: frequency of the current which feeds the heating inductor, power supplied to the heating system, geometry of heat inductor, and the charge material and its geometrical dimensions. Interferences of the power-line frequency have been eliminated in part of the carried out measurements.

  7. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-07-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.

  8. Electromagnetic compatibility and safety design of a patient compliance-free, inductive implant charger.

    PubMed

    Theodoridis, Michael P; Mollov, Stefan V

    2014-10-01

    This article presents the design of a domestic, radiofrequency induction charger for implants toward compliance with the Federal Communications Commission safety and electromagnetic compatibility regulations. The suggested arrangement does not impose any patient compliance requirements other than the use of a designated bed for night sleep, and therefore can find a domestic use. The method can be applied to a number of applications; a rechargeable pacemaker is considered as a case study. The presented work has proven that it is possible to realize a fully compliant inductive charging system with minimal patient interaction, and has generated important information for consideration by the designers of inductive charging systems. Experimental results have verified the validity of the theoretical findings.

  9. Response of Electrical Activity in an Improved Neuron Model under Electromagnetic Radiation and Noise

    PubMed Central

    Zhan, Feibiao; Liu, Shenquan

    2017-01-01

    Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L) model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI) and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons. PMID:29209192

  10. Response of Electrical Activity in an Improved Neuron Model under Electromagnetic Radiation and Noise.

    PubMed

    Zhan, Feibiao; Liu, Shenquan

    2017-01-01

    Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L) model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI) and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons.

  11. Electromagnetic phenomena in granular flows in the laboratory and dusty plasmas in geophysics and astrophysics

    NASA Astrophysics Data System (ADS)

    Lathrop, Daniel; Eiskowitz, Skylar; Rojas, Ruben

    2017-11-01

    In clouds of suspended particles, collisions electrify particles and the clouds produce electric potential differences over large scales. This is seen in the atmosphere as lightning in thunderstorms, thundersnow, dust storms, and volcanic ash plumes, but it is a general phenomena in granular systems. The electrification process is not well understood. To investigate the relative importance of particle material properties and collective phenomena in granular and atmospheric electrification, we used several tabletop experiments that excite particle-laden flows. Various electromagnetic phenomena ensue. Measured electric fields result from capacitive and direct charge transfer to electrodes. These results suggest that while particle properties do matter (as previous investigations have shown), macroscopic electrification of granular flows is somewhat material independent and large-scale collective phenomena play a major role. As well, our results on charge separation and Hall effects suggest a very different view of the dynamics of clouds, planetary rings, and cold accretion disks in proto-planetary systems. We gratefully acknowledge past funding from the Julian Schwinger Foundation as well as the Ph.D. work of Freja Nordsiek.

  12. Electromagnetic induction imaging of concealed metallic objects by means of resonating circuits

    NASA Astrophysics Data System (ADS)

    Guilizzoni, R.; Watson, J. C.; Bartlett, P. A.; Renzoni, F.

    2016-05-01

    An electromagnetic induction system, suitable for 2D imaging of metallic samples of different electrical conductivities, has been developed. The system is based on a parallel LCR circuit comprising a ferrite-cored coil (7.8 mm x 9.5 mm, L=680 μH at 1 KHz), a variable resistor and capacitor. The working principle of the system is based on eddy current induction inside a metallic sample when this is introduced into the AC magnetic field created by the coil. The inductance of the LCR circuit is modified due to the presence of the sample, to an extent that depends on its conductivity. Such modification is known to increase when the system is operated at its resonant frequency. Characterizing different metals based on their values of conductivity is therefore possible by utilizing a suitable system operated at resonance. Both imaging and material characterization were demonstrated by means of the proposed electromagnetic induction technique. Furthermore, the choice of using a system with an adjustable resonant frequency made it possible to select resonances that allow magnetic-field penetration through conductive screens. Investigations on the possibility of imaging concealed metals by penetrating such shields have been carried out. A penetration depth of δ~3 mm through aluminium (Al) was achieved. This allowed concealed metallic samples- having conductivities ranging from 0.54 to 59.77 MSm-1 and hidden behind 1.5-mm-thick Al shields- to be imaged. Our results demonstrate that the presence of the concealed metallic objects can be revealed. The technique was thus shown to be a promising detection tool for security applications.

  13. A Datalogger Demonstration of Electromagnetic Induction with a Falling, Oscillating and Swinging Magnet

    ERIC Educational Resources Information Center

    Wong, Darren; Lee, Paul; Foong, See Kit

    2010-01-01

    We investigate the electromagnetic induction phenomenon for a "falling," "oscillating" and "swinging" magnet and a coil, with the help of a datalogger. For each situation, we discuss the salient aspects of the phenomenon, with the aid of diagrams, and relate the motion of the magnet to its mathematical and graphical representations. Using various…

  14. The mutual inductance calculation between circular and quadrilateral coils at arbitrary attitudes using a rotation matrix for airborne transient electromagnetic systems

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Wang, Hongyuan; Lin, Jun; Guan, Shanshan; Feng, Xue; Li, Suyi

    2014-12-01

    Performance testing and calibration of airborne transient electromagnetic (ATEM) systems are conducted to obtain the electromagnetic response of ground loops. It is necessary to accurately calculate the mutual inductance between transmitting coils, receiving coils and ground loops to compute the electromagnetic responses. Therefore, based on Neumann's formula and the measured attitudes of the coils, this study deduces the formula for the mutual inductance calculation between circular and quadrilateral coils, circular and circular coils, and quadrilateral and quadrilateral coils using a rotation matrix, and then proposes a method to calculate the mutual inductance between two coils at arbitrary attitudes (roll, pitch, and yaw). Using coil attitude simulated data of an ATEM system, we calculate the mutual inductance of transmitting coils and ground loops at different attitudes, analyze the impact of coil attitudes on mutual inductance, and compare the computational accuracy and speed of the proposed method with those of other methods using the same data. The results show that the relative error of the calculation is smaller and that the speed-up is significant compared to other methods. Moreover, the proposed method is also applicable to the mutual inductance calculation of polygonal and circular coils at arbitrary attitudes and is highly expandable.

  15. Introduction to the special section ‘Applications of electromagnetic induction to digital soil mapping’

    USDA-ARS?s Scientific Manuscript database

    Use of electromagnetic induction (EMI) instruments has increased as a tool to map soils because it provides a means of locating suitable sampling sites that provide the basis for mapping the spatial variability of various soil properties either directly or indirectly measured with EMI, including sa...

  16. Effects of Physical Models and Simulations to Understand Daily Life Applications of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Tural, Güner; Tarakçi, Demet

    2017-01-01

    Background: One of the topics students have difficulties in understanding is electromagnetic induction. Active learning methods instead of traditional learning method may be able to help facilitate students' understanding such topics more effectively. Purpose: The study investigated the effectiveness of physical models and simulations on students'…

  17. Summary of sensor evaluation for the Fusion Electromagnetic Induction Experiment (FELIX)

    NASA Astrophysics Data System (ADS)

    Knott, M. J.

    1982-08-01

    As part of the First Wall/Blanket/Shield Engineering Test Program, a test bed called FELIX (fusion electromagnetic induction experiment) is under construction. Its purpose is to test, evaluate, and develop computer codes for the prediction of electromagnetically induced phenomenon in a magnetic environment modeling that of a fusion reaction. Crucial to this process is the sensing and recording of the various induced effects. Sensor evaluation for FELIX reached the point where most sensor types were evaluated and preliminary decisions are being made as to type and quantity for the initial FELIX experiments. These early experiments, the first, flat plate experiment in particular, will be aimed at testing the sensors as well as the pertinent theories involved. The reason for these evaluations, decisions, and proof tests is the harsh electrical and magnetic environment that FELIX presents.

  18. Inductive reasoning.

    PubMed

    Hayes, Brett K; Heit, Evan; Swendsen, Haruka

    2010-03-01

    Inductive reasoning entails using existing knowledge or observations to make predictions about novel cases. We review recent findings in research on category-based induction as well as theoretical models of these results, including similarity-based models, connectionist networks, an account based on relevance theory, Bayesian models, and other mathematical models. A number of touchstone empirical phenomena that involve taxonomic similarity are described. We also examine phenomena involving more complex background knowledge about premises and conclusions of inductive arguments and the properties referenced. Earlier models are shown to give a good account of similarity-based phenomena but not knowledge-based phenomena. Recent models that aim to account for both similarity-based and knowledge-based phenomena are reviewed and evaluated. Among the most important new directions in induction research are a focus on induction with uncertain premise categories, the modeling of the relationship between inductive and deductive reasoning, and examination of the neural substrates of induction. A common theme in both the well-established and emerging lines of induction research is the need to develop well-articulated and empirically testable formal models of induction. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  19. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow

    NASA Astrophysics Data System (ADS)

    Wahhab, H. A. Abdul; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.; Reda, M. N.

    2018-03-01

    In this work, electromagnetic induction technique of measuring void fraction in liquid/gas fuel flow was utilized. In order to improve the electric properties of liquid fuel, an iron oxide Fe3O4 nanoparticles at 3% was blended to enhance the liquid fuel magnetization. Experiments have been conducted for a wide range of liquid and gas superficial velocities. From the experimental results, it was realized that there is an existing linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for excitation coils, regardless of increase or decrease CNG bubbles distribution in liquid fuel flow. Therefore, it was revealed that the utilized method yielded quite reasonable account for measuring the void fraction, showing good agreement with the other available measurement techniques in the two-phase flow, and also with the published literature of the bubbly flow pattern. From the results of the present investigation, it has been proven that the electromagnetic induction is a feasible technique for the actual measurement of void fraction in a Diesel/CNG fuel flow.

  20. Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - A review

    NASA Astrophysics Data System (ADS)

    Pivac, Ivan; Barbir, Frano

    2016-09-01

    The results of electrochemical impedance spectroscopy of proton exchange membrane (PEM) fuel cells may exhibit inductive phenomena at low frequencies. The occurrence of inductive features at high frequencies is explained by the cables and wires of the test system. However, explanation of inductive loop at low frequencies requires a more detailed study. This review paper discusses several possible causes of such inductive behavior in PEM fuel cells, such as side reactions with intermediate species, carbon monoxide poisoning, and water transport, also as their equivalent circuit representations. It may be concluded that interpretation of impedance spectra at low frequencies is still ambiguous, and that better equivalent circuit models are needed with clearly defined physical meaning of each of the circuit elements.

  1. High speed displacement measurement based on electro-magnetic induction applied to electromagnetically driven ring expansion

    NASA Astrophysics Data System (ADS)

    Han, Xiaotao; Wu, Jiawei; Huang, Lantao; Qiu, Lei; Chen, Qi; Cao, Quanliang; Herlach, Fritz; Li, Liang

    2017-11-01

    Investigating the mechanism of electromagnetic forming (EMF) becomes a hot topic in the field of metal forming. The high speed up to 200 m/s in EMF makes it a real challenge to capture the forming process. To this end, a new method for measuring displacement at high speed based on electromagnetic induction has been developed. Specifically this is used to measure the displacement of an expanding metal ring driven by a pulsed magnetic field; this is one of the basic EMF processes. The new method is simple and practical, and it combines high-speed response with adequate precision. The new measurement system consists of a printed circuit board (PCB) and a Rogowski probe. Eleven coaxial annular detecting probes are arranged in the PCB plate to acquire induced voltage at different positions, and a Rogowski probe is used to measure the current in the driving coil. The displacement of the ring is deduced by analyzing the output voltages of the detecting probes and the Rogowski probe. The feasibility of the method is verified by comparing the results with pictures from a high speed camera taken simultaneously.

  2. The application of magnetic gradiometry and electromagnetic induction at a former radioactive waste disposal site.

    PubMed

    Rucker, Dale Franklin

    2010-04-01

    A former radioactive waste disposal site is surveyed with two non-intrusive geophysical techniques, including magnetic gradiometry and electromagnetic induction. Data were gathered over the site by towing the geophysical equipment mounted to a non-electrically conductive and non-magnetic fibre-glass cart. Magnetic gradiometry, which detects the location of ferromagnetic material, including iron and steel, was used to map the existence of a previously unknown buried pipeline formerly used in the delivery of liquid waste to a number of surface disposal trenches and concrete vaults. The existence of a possible pipeline is reinforced by historical engineering drawing and photographs. The electromagnetic induction (EMI) technique was used to map areas of high and low electrical conductivity, which coincide with the magnetic gradiometry data. The EMI also provided information on areas of high electrical conductivity unrelated to a pipeline network. Both data sets demonstrate the usefulness of surface geophysical surveillance techniques to minimize the risk of exposure in the event of future remediation efforts.

  3. Some Student Conceptions of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Thong, Wai Meng; Gunstone, Richard

    2008-01-01

    Introductory electromagnetism is a central part of undergraduate physics. Although there has been some research into student conceptions of electromagnetism, studies have been sparse and separated. This study sought to explore second year physics students' conceptions of electromagnetism, to investigate to what extent the results from the present…

  4. Effects of Gender and Collaborative Learning Approach on Students' Conceptual Understanding of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Adolphus, Telima; Omeodu, Doris

    2016-01-01

    The study investigates the effect of gender and collaborative learning approach on students' conceptual understanding of electromagnetic induction in Secondary Schools in Nigeria. Three research questions and 2 hypotheses were formulated to guide the research. The research design adopted for this study is the quasi-experimental design. In…

  5. Electromagnetic induction pump for pumping liquid metals and other conductive liquids

    DOEpatents

    Smither, Robert K.

    1993-01-01

    An electromagnetic induction pump in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

  6. Design and test of a simple fast electromagnetic inductive gas valve for planar pulsed inductive plasma thruster

    NASA Astrophysics Data System (ADS)

    Guo, Dawei; Cheng, Mousen; Li, Xiaokang

    2017-10-01

    In support of our planar pulsed inductive plasma thruster research, a fast electromagnetic inductive valve for a gas propellant injection system has been built and tested. A new and important design feature is the use of a conical diaphragm as the action part, which greatly contributes to the virtue of simplicity for adopting the resultant force of the diaphragm deformation as the closing force. An optical transmission technique is adopted to measure the opening and closing characters of the valve while the gas throughput is determined by measuring the pressure change per pulse in a test chamber with a capacitance manometer. The experimental results revealed that the delay time before the valve reaction is less than 40 μs, and the valve pulse width is no longer than 160 μs full width at half maximum. The valve delivers 0-2.5 mg of argon gas per pulse varied by adjusting the drive voltage and gas pressure.

  7. Design and test of a simple fast electromagnetic inductive gas valve for planar pulsed inductive plasma thruster.

    PubMed

    Guo, Dawei; Cheng, Mousen; Li, Xiaokang

    2017-10-01

    In support of our planar pulsed inductive plasma thruster research, a fast electromagnetic inductive valve for a gas propellant injection system has been built and tested. A new and important design feature is the use of a conical diaphragm as the action part, which greatly contributes to the virtue of simplicity for adopting the resultant force of the diaphragm deformation as the closing force. An optical transmission technique is adopted to measure the opening and closing characters of the valve while the gas throughput is determined by measuring the pressure change per pulse in a test chamber with a capacitance manometer. The experimental results revealed that the delay time before the valve reaction is less than 40 μs, and the valve pulse width is no longer than 160 μs full width at half maximum. The valve delivers 0-2.5 mg of argon gas per pulse varied by adjusting the drive voltage and gas pressure.

  8. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons.

    PubMed

    Smith, Ray T; Jjunju, Fred P M; Young, Iain S; Taylor, Stephen; Maher, Simon

    2016-07-01

    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting's theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond.

  9. Research on Stabilization Properties of Inductive-Capacitive Transducers Based on Hybrid Electromagnetic Elements

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirllov, R. V.; Konev, A. A.

    2017-01-01

    Some electrical consumers (the charge system of storage capacitor, powerful pulse generators, electrothermal systems, gas-discharge lamps, electric ovens, plasma torches) require constant power consumption, while their resistance changes in the limited range. Current stabilization systems (CSS) with inductive-capacitive transducers (ICT) provide constant power, when the load resistance changes over a wide range and increaseы the efficiency of high-power loads’ power supplies. ICT elements are selected according to the maximum load, which leads to exceeding a predetermined value of capacity. The paper suggests carrying load power by the ICT based on multifunction integrated electromagnetic components (MIEC) to reduce the predetermined capacity of ICT elements and CSS weights and dimensions. The authors developed and patented ICT based on MIEC that reduces the CSS weights and dimensions by reducing components number with the possibility of device’s electric energy transformation and resonance frequency changing. An ICT mathematical model was produced. The model determines the width of the load stabilization range. Electromagnetic processes study model was built with the MIEC integral parameters (full inductance of the electrical lead, total capacity, current of electrical lead). It shows independence of the load current from the load resistance for different ways of MIEC connection.

  10. Electromagnetic induction pump for pumping liquid metals and other conductive liquids

    DOEpatents

    Smither, R.K.

    1993-05-11

    An electromagnetic induction pump is described in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

  11. Joint Electromagnetic Spectrum Management Operations

    DTIC Science & Technology

    2012-03-20

    electromagnetic radiation to ordnance ( HERO ), hazards of electromagnetic radiation to fuels (HERF), and natural phenomena effects of lightning and...fuels HERO hazards of electromagnetic radiation to ordnance HERP hazards of electromagnetic radiation to personnel HF high frequency HN host... electromagnetic pulse (EMP); hazards of EM radiation to personnel, ordnance ,

  12. Frequency domain electromagnetic induction survey in the intertidal zone: Limitations of low-induction-number and depth of exploration

    NASA Astrophysics Data System (ADS)

    Delefortrie, Samuël; Saey, Timothy; Van De Vijver, Ellen; De Smedt, Philippe; Missiaen, Tine; Demerre, Ine; Van Meirvenne, Marc

    2014-01-01

    Subsurface investigation in the Belgian intertidal zone is severely complicated due to high heterogeneity and tides. Near-surface geophysical techniques can offer assistance since they allow fast surveying and collection of high spatial density data and frequency domain electromagnetic induction (EMI) was chosen for archaeological prospection on the Belgian shore. However, in the intertidal zone the effects of extreme salinity compromise validity of low-induction-number (LIN) approximated EMI data. In this paper, the effects of incursion of seawater on multi-receiver EMI data are investigated by means of survey results, field observations, cone penetration tests and in-situ electrical conductivity measurements. The consequences of LIN approximation breakdown were researched. Reduced depth of investigation of the quadrature-phase (Qu) response and a complex interpretation of the in-phase response were confirmed. Nonetheless, a high signal-to-noise ratio of the Qu response and viable data with regard to shallow subsurface investigation were also evidenced, allowing subsurface investigation in the intertidal zone.

  13. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons

    PubMed Central

    Smith, Ray T.; Jjunju, Fred P. M.; Young, Iain S.; Taylor, Stephen

    2016-01-01

    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting’s theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond. PMID:27493580

  14. Electromagnetic receiver with capacitive electrodes and triaxial induction coil for tunnel exploration

    NASA Astrophysics Data System (ADS)

    Kai, Chen; Sheng, Jin; Wang, Shun

    2017-09-01

    A new type of electromagnetic (EM) receiver has been developed by integrating four capacitive electrodes and a triaxial induction coil with an advanced data logger for tunnel exploration. The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of surface-tunnel-borehole EM detection for deep ore deposit mapping. The use of capacitive electrodes enables us to record the electrical field (E-field) signals from hard rock surfaces, which are high-resistance terrains. A compact triaxial induction coil integrates three independent induction coils for narrow-tunnel exploration applications. A low-time-drift-error clock source is developed for tunnel applications where GPS signals are unavailable. The three main components of our tunnel EM receiver are: (1) four capacitive electrodes for measuring the E-field signal without digging in hard rock regions; (2) a triaxial induction coil sensor for audio-frequency magnetotelluric and controlled-source audio-frequency magnetotelluric signal measurements; and (3) a data logger that allows us to record five-component MT signals with low noise levels, low time-drift-error for the clock source, and high dynamic range. The proposed tunnel EM receiver was successfully deployed in a mine that exhibited with typical noise characteristics. [Figure not available: see fulltext. Caption: The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of the surface-tunnel-borehole EM (STBEM) detection for deep ore deposit mapping. The use of a capacitive electrode enables us to record the electrical field (E-field) signals from hard rock surfaces. A compact triaxial induction coil integrated three induction coils, for narrow-tunnel applications.

  15. An analysis of how electromagnetic induction and Faraday's law are presented in general physics textbooks, focusing on learning difficulties

    NASA Astrophysics Data System (ADS)

    Guisasola, Jenaro; Zuza, Kristina; Almudi, José-Manuel

    2013-07-01

    Textbooks are a very important tool in the teaching-learning process and influence important aspects of the process. This paper presents an analysis of the chapter on electromagnetic induction and Faraday's law in 19 textbooks on general physics for first-year university courses for scientists and engineers. This analysis was based on criteria formulated from the theoretical framework of electromagnetic induction in classical physics and students' learning difficulties concerning these concepts. The aim of the work presented here is not to compare a textbook against the ideal book, but rather to try and find a series of explanations, examples, questions, etc that provide evidence on how the topic is presented in relation to the criteria above. It concludes that despite many aspects being covered properly, there are others that deserve greater attention.

  16. Subcritical Hopf Bifurcation and Stochastic Resonance of Electrical Activities in Neuron under Electromagnetic Induction

    PubMed Central

    Fu, Yu-Xuan; Kang, Yan-Mei; Xie, Yong

    2018-01-01

    The FitzHugh–Nagumo model is improved to consider the effect of the electromagnetic induction on single neuron. On the basis of investigating the Hopf bifurcation behavior of the improved model, stochastic resonance in the stochastic version is captured near the bifurcation point. It is revealed that a weak harmonic oscillation in the electromagnetic disturbance can be amplified through stochastic resonance, and it is the cooperative effect of random transition between the resting state and the large amplitude oscillating state that results in the resonant phenomenon. Using the noise dependence of the mean of interburst intervals, we essentially suggest a biologically feasible clue for detecting weak signal by means of neuron model with subcritical Hopf bifurcation. These observations should be helpful in understanding the influence of the magnetic field to neural electrical activity. PMID:29467642

  17. Subcritical Hopf Bifurcation and Stochastic Resonance of Electrical Activities in Neuron under Electromagnetic Induction.

    PubMed

    Fu, Yu-Xuan; Kang, Yan-Mei; Xie, Yong

    2018-01-01

    The FitzHugh-Nagumo model is improved to consider the effect of the electromagnetic induction on single neuron. On the basis of investigating the Hopf bifurcation behavior of the improved model, stochastic resonance in the stochastic version is captured near the bifurcation point. It is revealed that a weak harmonic oscillation in the electromagnetic disturbance can be amplified through stochastic resonance, and it is the cooperative effect of random transition between the resting state and the large amplitude oscillating state that results in the resonant phenomenon. Using the noise dependence of the mean of interburst intervals, we essentially suggest a biologically feasible clue for detecting weak signal by means of neuron model with subcritical Hopf bifurcation. These observations should be helpful in understanding the influence of the magnetic field to neural electrical activity.

  18. An electromagnetic induction method for underground target detection and characterization

    SciTech Connect

    Bartel, L.C.; Cress, D.H.

    1997-01-01

    An improved capability for subsurface structure detection is needed to support military and nonproliferation requirements for inspection and for surveillance of activities of threatening nations. As part of the DOE/NN-20 program to apply geophysical methods to detect and characterize underground facilities, Sandia National Laboratories (SNL) initiated an electromagnetic induction (EMI) project to evaluate low frequency electromagnetic (EM) techniques for subsurface structure detection. Low frequency, in this case, extended from kilohertz to hundreds of kilohertz. An EMI survey procedure had already been developed for borehole imaging of coal seams and had successfully been applied in a surface mode to detect amore » drug smuggling tunnel. The SNL project has focused on building upon the success of that procedure and applying it to surface and low altitude airborne platforms. Part of SNL`s work has focused on improving that technology through improved hardware and data processing. The improved hardware development has been performed utilizing Laboratory Directed Research and Development (LDRD) funding. In addition, SNL`s effort focused on: (1) improvements in modeling of the basic geophysics of the illuminating electromagnetic field and its coupling to the underground target (partially funded using LDRD funds) and (2) development of techniques for phase-based and multi-frequency processing and spatial processing to support subsurface target detection and characterization. The products of this project are: (1) an evaluation of an improved EM gradiometer, (2) an improved gradiometer concept for possible future development, (3) an improved modeling capability, (4) demonstration of an EM wave migration method for target recognition, and a demonstration that the technology is capable of detecting targets to depths exceeding 25 meters.« less

  19. On coincident loop transient electromagnetic induction logging

    SciTech Connect

    Swidinsky, Andrei; Weiss, Chester J.

    Coincident loop transient induction wireline logging is examined as the borehole analog of the well-known land and airborne time-domain electromagnetic (EM) method. The concept of whole-space late-time apparent resistivity is modified from the half-space version commonly used in land and airborne geophysics and applied to the coincident loop voltages produced from various formation, borehole, and invasion models. Given typical tool diameters, off-time measurements with such an instrument must be made on the order of nanoseconds to microseconds — much more rapidly than for surface methods. Departure curves of the apparent resistivity for thin beds, calculated using an algorithm developed tomore » model the transient response of a loop in a multilayered earth, indicate that the depth of investigation scales with the bed thickness. Modeled resistivity logs are comparable in accuracy and resolution with standard frequency-domain focused induction logs. However, if measurement times are longer than a few microseconds, the thicknesses of conductors can be overestimated, whereas resistors are underestimated. Thin-bed resolution characteristics are explained by visualizing snapshots of the EM fields in the formation, where a conductor traps the electric field while two current maxima are produced in the shoulder beds surrounding a resistor. Radial profiling is studied using a concentric cylinder earth model. Results found that true formation resistivity can be determined in the presence of either oil- or water-based mud, although in the latter case, measurements must be taken several orders of magnitude later in time. Lastly, the ability to determine true formation resistivity is governed by the degree that the EM field heals after being distorted by borehole fluid and invasion, a process visualized and particularly evident in the case of conductive water-based mud.« less

  20. On coincident loop transient electromagnetic induction logging

    DOE PAGES

    Swidinsky, Andrei; Weiss, Chester J.

    2017-05-31

    Coincident loop transient induction wireline logging is examined as the borehole analog of the well-known land and airborne time-domain electromagnetic (EM) method. The concept of whole-space late-time apparent resistivity is modified from the half-space version commonly used in land and airborne geophysics and applied to the coincident loop voltages produced from various formation, borehole, and invasion models. Given typical tool diameters, off-time measurements with such an instrument must be made on the order of nanoseconds to microseconds — much more rapidly than for surface methods. Departure curves of the apparent resistivity for thin beds, calculated using an algorithm developed tomore » model the transient response of a loop in a multilayered earth, indicate that the depth of investigation scales with the bed thickness. Modeled resistivity logs are comparable in accuracy and resolution with standard frequency-domain focused induction logs. However, if measurement times are longer than a few microseconds, the thicknesses of conductors can be overestimated, whereas resistors are underestimated. Thin-bed resolution characteristics are explained by visualizing snapshots of the EM fields in the formation, where a conductor traps the electric field while two current maxima are produced in the shoulder beds surrounding a resistor. Radial profiling is studied using a concentric cylinder earth model. Results found that true formation resistivity can be determined in the presence of either oil- or water-based mud, although in the latter case, measurements must be taken several orders of magnitude later in time. Lastly, the ability to determine true formation resistivity is governed by the degree that the EM field heals after being distorted by borehole fluid and invasion, a process visualized and particularly evident in the case of conductive water-based mud.« less

  1. Electromagnetic Propulsion

    NASA Technical Reports Server (NTRS)

    Schafer, Charles

    2000-01-01

    The design and development of an Electromagnetic Propulsion is discussed. Specific Electromagnetic Propulsion Topics discussed include: (1) Technology for Pulse Inductive Thruster (PIT), to design, develop, and test of a multirepetition rate pulsed inductive thruster, Solid-State Switch Technology, and Pulse Driver Network and Architecture; (2) Flight Weight Magnet Survey, to determine/develop light weight high performance magnetic materials for potential application Advanced Space Flight Systems as these systems develop; and (3) Magnetic Flux Compression, to enable rapid/robust/reliable omni-planetary space transportation within realistic development and operational costs constraints.

  2. Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light.

    PubMed

    Tan, Jiubin; Lu, Zhengang

    2007-02-05

    This paper presents the experimental study on an inductive mesh composed of contiguous metallic rings fabricated using UV-lithography on quartz glass. Experimental results indicate that, at the same period and linewidth as square mesh, ring mesh has better transmissivity for its higher obscuration ratio, stronger electromagnetic shielding performance for its smaller maximum aperture, and less degradation of imaging quality for its lower ratio and uniform distribution of high order diffraction energy. It is therefore concluded that this kind of ring mesh can be used as high-pass filters to provide electromagnetic shielding of optical transparent elements.

  3. Using computer simulations to facilitate conceptual understanding of electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Fen

    This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit

  4. Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting.

    PubMed

    Hu, Youfan; Yang, Jin; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin

    2014-07-22

    The recently introduced triboelectric nanogenerator (TENG) and the traditional electromagnetic induction generator (EMIG) are coherently integrated in one structure for energy harvesting and vibration sensing/isolation. The suspended structure is based on two oppositely oriented magnets that are enclosed by hollow cubes surrounded with coils, which oscillates in response to external disturbance and harvests mechanical energy simultaneously from triboelectrification and electromagnetic induction. It extends the previous definition of hybrid cell to harvest the same type of energy with multiple approaches. Both the sliding-mode TENG and contact-mode TENG can be achieved in the same structure. In order to make the TENG and EMIG work together, transformers are used to match the output impedance between these two power sources with very different characteristics. The maximum output power of 7.7 and 1.9 mW on the same load of 5 kΩ was obtained for the TENG and EMIG, respectively, after impedance matching. Benefiting from the rational design, the output signal from the TENG and the EMIG are in phase. They can be added up directly to get an output voltage of 4.6 V and an output current of 2.2 mA in parallel connection. A power management circuit was connected to the hybrid cell, and a regulated voltage of 3.3 V with constant current was achieved. For the first time, a logic operation was carried out on a half-adder circuit by using the hybrid cell working as both the power source and the input digit signals. We also demonstrated that the hybrid cell can serve as a vibration isolator. Further applications as vibration dampers, triggers, and sensors are all promising.

  5. Modelling of resonant MEMS magnetic field sensor with electromagnetic induction sensing

    NASA Astrophysics Data System (ADS)

    Liu, Song; Xu, Huaying; Xu, Dehui; Xiong, Bin

    2017-06-01

    This paper presents an analytical model of resonant MEMS magnetic field sensor with electromagnetic induction sensing. The resonant structure vibrates in square extensional (SE) mode. By analyzing the vibration amplitude and quality factor of the resonant structure, the magnetic field sensitivity as a function of device structure parameters and encapsulation pressure is established. The developed analytical model has been verified by comparing calculated results with experiment results and the deviation between them is only 10.25%, which shows the feasibility of the proposed device model. The model can provide theoretical guidance for further design optimization of the sensor. Moreover, a quantitative study of the magnetic field sensitivity is conducted with respect to the structure parameters and encapsulation pressure based on the proposed model.

  6. The detection of brain oedema with frequency-dependent phase shift electromagnetic induction.

    PubMed

    González, César A; Rubinsky, Boris

    2006-06-01

    The spectroscopic distribution of inductive phase shift in the brain as a function of the relative volume of oedema was evaluated with theoretical and experimental methods in the frequency range 1 to 8 MHz. The theoretical study employed a simple mathematical model of electromagnetic induction in tissue and brain tissue data available from the literature to calculate the phase shift as a function of oedema in the bulk of the brain. Experimental data were generated from bulk measurements of ex vivo homogenized pig brain tissue mixed with various volumes of physiological saline in a volume sample typical of the human brain. There is good agreement between the analytical and the experimental results. Detectable changes in phase shift begin from a frequency of about 3 MHz to 4 MHz in the tested compositions and volume. The phase shift increases with frequency and fluid content. The results suggest that measuring phase shift in the bulk of the brain has the potential for becoming a robust means for non-contact detection of oedema in the brain.

  7. Three-dimensional sensitivity distribution and sample volume of low-induction-number electromagnetic-induction instruments

    USGS Publications Warehouse

    Callegary, J.B.; Ferré, T.P.A.; Groom, R.W.

    2012-01-01

    There is an ongoing effort to improve the understanding of the correlation of soil properties with apparent soil electrical conductivity as measured by low-induction-number electromagnetic-induction (LIN FEM) instruments. At a minimum, the dimensions of LIN FEM instruments' sample volume, the spatial distribution of sensitivity within that volume, and implications for surveying and analyses must be clearly defined and discussed. Therefore, a series of numerical simulations was done in which a conductive perturbation was moved systematically through homogeneous soil to elucidate the three-dimensional sample volume of LIN FEM instruments. For a small perturbation with electrical conductivity similar to that of the soil, instrument response is a measure of local sensitivity (LS). Our results indicate that LS depends strongly on the orientation of the instrument's transmitter and receiver coils and includes regions of both positive and negative LS. Integration of the absolute value of LS from highest to lowest was used to contour cumulative sensitivity (CS). The 90% CS contour was used to define the sample volume. For both horizontal and vertical coplanar coil orientations, the longest dimension of the sample volume was at the surface along the main instrument axis with a length of about four times the intercoil spacing (s) with maximum thicknesses of about 1 and 0.3 s, respectively. The imaged distribution of spatial sensitivity within the sample volume is highly complex and should be considered in conjunction with the expected scale of heterogeneity before the use and interpretation of LIN FEM for mapping and profiling. ?? Soil Science Society of America.

  8. Research in Antenna Technology, Radar Technology and Electromagnetic Scattering Phenomena

    DTIC Science & Technology

    2015-03-01

    efforts of a group of six researchers in the fields of electromagnetics , radar and antenna technology. Research was conducted during this reporting...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Research in Antenna technology, Radar Technology and Electromagnetic Scattering...Scattering-Matrix Theory Based on Gaussian Beams………...65 4.5.3 Array realization of complex-source beam……………………………85 4.5.4 Electromagnetic Scattering

  9. Endocardial Energy Harvesting by Electromagnetic Induction.

    PubMed

    Zurbuchen, Adrian; Haeberlin, Andreas; Bereuter, Lukas; Pfenniger, Alois; Bosshard, Simon; Kernen, Micha; Philipp Heinisch, Paul; Fuhrer, Juerg; Vogel, Rolf

    2018-02-01

    cardiac pacemakers require regular medical follow-ups to ensure proper functioning. However, device replacements due to battery depletion are common and account for ∼25% of all implantation procedures. Furthermore, conventional pacemakers require pacemaker leads which are prone to fractures, dislocations or isolation defects. The ensuing surgical interventions increase risks for the patients and costs that need to be avoided. in this study, we present a method to harvest energy from endocardial heart motions. We developed a novel generator, which converts the heart's mechanical into electrical energy by electromagnetic induction. A mathematical model has been introduced to identify design parameters strongly related to the energy conversion efficiency of heart motions and fit the geometrical constraints for a miniaturized transcatheter deployable device. The implemented final design was tested on the bench and in vivo. the mathematical model proved an accurate method to estimate the harvested energy. For three previously recorded heart motions, the model predicted a mean output power of 14.5, 41.9, and 16.9 μW. During an animal experiment, the implanted device harvested a mean output power of 0.78 and 1.7 μW at a heart rate of 84 and 160 bpm, respectively. harvesting kinetic energy from endocardial motions seems feasible. Implanted at an energetically favorable location, such systems might become a welcome alternative to extend the lifetime of cardiac implantable electronic device. the presented endocardial energy harvesting concept has the potential to turn pacemakers into battery- and leadless systems and thereby eliminate two major drawbacks of contemporary systems.

  10. Cone-shaped source characteristics and inductance effect of transient electromagnetic method

    NASA Astrophysics Data System (ADS)

    Yang, Hai-Yan; Li, Feng-Ping; Yue, Jian-Hua; Guo, Fu-Sheng; Liu, Xu-Hua; Zhang, Hua

    2017-03-01

    Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-offtime and a deep "blind zone". This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower "blind zone." Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to

  11. Ballistocardiogram of avian eggs determined by an electromagnetic induction coil.

    PubMed

    Ono, H; Akiyama, R; Sakamoto, Y; Pearson, J T; Tazawa, H

    1997-07-01

    As an avian embryo grows within an eggshell, the whole egg is moved by embryonic activity and also by the embryonic heartbeat. A technical interest in detecting minute biological movements has prompted the development of techniques and systems to measure the cardiogenic ballistic movement of the egg or ballistocardiogram (BCG). In this context, there is interest in using an electromagnetic induction coil (solenoid) as another simple sensor to measure the BCG and examining its possibility for BCG measurement. A small permanent magnet is attached tightly to the surface of an incubated egg, and then the egg with the magnet is placed in a solenoid. Preliminary model analysis is made to design a setup of the egg, magnet and solenoid coupling system. Then, simultaneous measurement with a laser displacement measuring system, developed previously, is made for chicken eggs, indicating that the solenoid detects the minute cardiogenic ballistic movements and that the BCG determined is a measure of the velocity of egg movements.

  12. Physics Almost Saved the President! Electromagnetic Induction and the Assassination of James Garfield: A Teaching Opportunity in Introductory Physics

    ERIC Educational Resources Information Center

    Overduin, James; Molloy, Dana; Selway, Jim

    2014-01-01

    Electromagnetic induction is probably one of the most challenging subjects for students in the introductory physics sequence, especially in algebra-based courses. Yet it is at the heart of many of the devices we rely on today. To help students grasp and retain the concept, we have put together a simple and dramatic classroom demonstration that…

  13. Module Eight: Induction; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers in greater depth electromagnetic induction, its effects, and how it is used to advantage in electrical circuits; and the physical components, called inductors, designed to take advantage of the phenomenon of electromagnetic induction. This module is divided into four lessons: electromagnetism; inductors and flux density, inducing…

  14. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    NASA Astrophysics Data System (ADS)

    Xu, Da; Liu, Xuesong; Fang, Kun; Fang, Hongyuan

    2010-06-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  15. Physics Almost Saved the President! Electromagnetic Induction and the Assassination of James Garfield: A Teaching Opportunity in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Overduin, James; Molloy, Dana; Selway, Jim

    2014-03-01

    Electromagnetic induction is probably one of the most challenging subjects for students in the introductory physics sequence, especially in algebra-based courses. Yet it is at the heart of many of the devices we rely on today. To help students grasp and retain the concept, we have put together a simple and dramatic classroom demonstration that combines sight and sound with a compelling personal story from U.S. history. Other classroom activities dealing with induction have been discussed in this journal, but we believe that this one will be especially likely to attract and retain student interest, particularly in courses geared toward medical, biological, and other non-physics majors.

  16. The calculation of transport phenomena in electromagnetically levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation has been developed for the electromagnetic force field, fluid flow field, and solute concentration field of levitation-melted metal specimens. The governing equations consist of the conventional transport equations combined with the appropriate expressions for the electromagnetic force field. The predictions obtained by solving the governing equations numerically on a digital computer are in good agreement with lifting force and average temperature measurements reported in the literature.

  17. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils.

    PubMed

    Li, Jian; Wu, Dan; Han, Yan

    2016-09-30

    Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent "I-shape" is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.

  18. Geophysical investigation of Red Devil mine using direct-current resistivity and electromagnetic induction, Red Devil, Alaska, August 2010

    USGS Publications Warehouse

    Burton, Bethany L.; Ball, Lyndsay B.

    2011-01-01

    Red Devil Mine, located in southwestern Alaska near the Village of Red Devil, was the state's largest producer of mercury and operated from 1933 to 1971. Throughout the lifespan of the mine, various generations of mills and retort buildings existed on both sides of Red Devil Creek, and the tailings and waste rock were deposited across the site. The mine was located on public Bureau of Land Management property, and the Bureau has begun site remediation by addressing mercury, arsenic, and antimony contamination caused by the minerals associated with the ore deposit (cinnabar, stibnite, realgar, and orpiment). In August 2010, the U.S. Geological Survey completed a geophysical survey at the site using direct-current resistivity and electromagnetic induction surface methods. Eight two-dimensional profiles and one three-dimensional grid of direct-current resistivity data as well as about 5.7 kilometers of electromagnetic induction profile data were acquired across the site. On the basis of the geophysical data and few available soil borings, there is not sufficient electrical or electromagnetic contrast to confidently distinguish between tailings, waste rock, and weathered bedrock. A water table is interpreted along the two-dimensional direct-current resistivity profiles based on correlation with monitoring well water levels and a relatively consistent decrease in resistivity typically at 2-6 meters depth. Three settling ponds used in the last few years of mine operation to capture silt and sand from a flotation ore processing technique possessed conductive values above the interpreted water level but more resistive values below the water level. The cause of the increased resistivity below the water table is unknown, but the increased resistivity may indicate that a secondary mechanism is affecting the resistivity structure under these ponds if the depth of the ponds is expected to extend below the water level. The electromagnetic induction data clearly identified the

  19. The Use of Electromagnetic Induction Techniques for Soil Mapping

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, Jim

    2015-04-01

    Soils have high natural spatial variability. This has been recognized for a long time, and many methods of mapping that spatial variability have been investigated. One technique that has received considerable attention over the last ~30 years is electromagnetic induction (EMI). Particularly when coupled with modern GPS and GIS systems, EMI techniques have allowed the rapid and relatively inexpensive collection of large spatially-related data sets that can be correlated to soil properties that either directly or indirectly influence electrical conductance in the soil. Soil electrical conductivity is directly controlled by soil water content, soluble salt content, clay content and mineralogy, and temperature. A wide range of indirect controls have been identified, such as soil organic matter content and bulk density; both influence water relationships in the soil. EMI techniques work best in areas where there are large changes in one soil property that influences soil electrical conductance, and don't work as well when soil properties that influence electrical conductance are largely homogenous. This presentation will present examples of situations where EMI techniques were successful as well as a couple of examples of situations where EMI was not so useful in mapping the spatial variability of soil properties. Reasons for both the successes and failures will be discussed.

  20. Multi-frequency Electromagnetic Induction Survey for Archaeological Prospection: Approach and Results in Han Hangu Pass and Xishan Yang in China

    NASA Astrophysics Data System (ADS)

    Tang, Panpan; Chen, Fulong; Jiang, Aihui; Zhou, Wei; Wang, Hongchao; Leucci, Giovanni; de Giorgi, Lara; Sileo, Maria; Luo, Rupeng; Lasaponara, Rosa; Masini, Nicola

    2018-04-01

    This study presents the potential of multi-frequency electromagnetic induction (EMI) in archaeology. EMI is currently less employed for archaeological prospection with respect to other geophysical techniques. It is capable of identifying shallow subsurface relics by simultaneously measuring the apparent electrical conductivity (ECa) and apparent magnetic susceptibility (MSa). Moreover, frequency sounding is able to quantify the depths and vertical shapes of buried structures. In this study, EMI surveys with five frequencies were performed at two heritage sites with different geological conditions: Han Hangu Pass characterized by cinnamon soil and Xishan Yang by sandy loams. In the first site, high ECa values were observed with variations in depth correlated to archaeological remains. Moreover, electromagnetic anomalies related to an ancient road and five kiln caves were identified. In the second site, an ancient tomb, indicating extremely low ECa and high MSa, was discovered. Its electromagnetic properties are attributed to the cavity and ferroferric oxides.

  1. Collection, processing, and quality assurance of time-series electromagnetic-induction log datasets, 1995–2016, south Florida

    USGS Publications Warehouse

    Prinos, Scott T.; Valderrama, Robert

    2016-12-13

    Time-series electromagnetic-induction log (TSEMIL) datasets are collected from polyvinyl-chloride cased or uncased monitoring wells to evaluate changes in water conductivity over time. TSEMIL datasets consist of a series of individual electromagnetic-induction logs, generally collected at a frequency of once per month or once per year that have been compiled into a dataset by eliminating small uniform offsets in bulk conductivity between logs probably caused by minor variations in calibration. These offsets are removed by selecting a depth at which no changes are apparent from year to year, and by adjusting individual logs to the median of all logs at the selected depth. Generally, the selected depths are within the freshwater saturated part of the aquifer, well below the water table. TSEMIL datasets can be used to monitor changes in water conductivity throughout the full thickness of an aquifer, without the need for long open-interval wells which have, in some instances, allowed vertical water flow within the well bore that has biased water conductivity profiles. The TSEMIL dataset compilation process enhances the ability to identify small differences between logs that were otherwise obscured by the offsets. As a result of TSEMIL dataset compilation, the root mean squared error of the linear regression between bulk conductivity of the electromagnetic-induction log measurements and the chloride concentration of water samples decreased from 17.4 to 1.7 millisiemens per meter in well G–3611 and from 3.7 to 2.2 millisiemens per meter in well G–3609. The primary use of the TSEMIL datasets in south Florida is to detect temporal changes in bulk conductivity associated with saltwater intrusion in the aquifer; however, other commonly observed changes include (1) variations in bulk conductivity near the water table where water saturation of pore spaces might vary and water temperature might be more variable, and (2) dissipation of conductive water in high-porosity rock

  2. Electromagnetic Induction Rediscovered Using Original Texts

    NASA Astrophysics Data System (ADS)

    Barth Tu, Michael

    Some of Faraday's diary-entries from 1831 have been used frequently as starting point to introduce the phenomenon of electromagnetic induction. This has been done on various levels of knowledge and to pupils of different ages during the last 5 years. I try to let my pupils witness, how Faraday made his discovery, but to show as well, that we cannot infer from his notes, how he arrived at his ideas proper. Reading the original notes (in English), my pupils were expected to take out of it, what Faraday did at his lab, what apparatus he used and what his observations were. Why he did what he did was point of discussion later on. Just here, I expected, that my pupils learn a lot about the properties of electricity, of taking conclusions from experiment, of scientific methodology etc. In addition, we repeated some of Faradays experiments with modern quipment, realizing always to common surprise that the effects observed are extremely faint ones. Depending on knowledge, age and motivation of the group, Lenz's Law was rediscovered in succession. Here I myself try to find out, why Faradays initial mistake as for the direction of the induced current is likely to be overlooked even by the informed modern reader (myself included!). This may become part of a story, why this mistake of Faraday has found serious attention by historians of science only very recently. My approach was connected with group work with English courses, with the reading of more papers by Faraday and two times even with a visit of the Royal Institution at London. In any case, I always tried to put my pupils into the state of knowledge Faraday had at the time of his discovery before this unit, to make the process of discovery as correct as possible. For this claim is somewhat artificial at first glance, it may be an interesting point of discussion.

  3. Spatial relationship between the productivity of cane sugar and soil electrical conductivity measured by electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Siqueira, Glecio; Silva, Jucicléia; Bezerra, Joel; Silva, Enio; Montenegro, Abelardo

    2013-04-01

    The cultivation of sugar cane in Brazil occupies a prominent place in national production chain, because the country is the main world producer of sugar and ethanol. Accordingly, studies are needed that allow an integrated production and technified, and especially that estimates of crops are consistent with the actual production of each region. The objective of this study was to determine the spatial relationship between the productivity of cane sugar and soil electrical conductivity measured by electromagnetic induction. The field experiment was conducted at an agricultural research site located in Goiana municipality, Pernambuco State, north-east of Brazil (Latitude 07 ° 34 '25 "S, Longitude 34 ° 55' 39" W). The surface of the studied field is 6.5 ha, and its mean height 8.5 m a.s.l. This site has been under sugarcane (Saccharum officinarum sp.) monoculture during the last 24 years and it was managed burning the straw each year after harvesting, renewal of plantation was performed every 7 years. Studied the field is located 10 km east from Atlantic Ocean and it is representative of the regional landscape lowlands, whose soils are affected by salinity seawater, sugarcane plantations with the main economical activity. Soil was classified an orthic the Podsol. The productivity of cane sugar and electrical conductivity were measured in 90 sampling points. The productivity of cane sugar was determined in each of the sampling points in plots of 9 m2. The Apparent soil electrical conductivity (ECa, mS m-1) was measured with an electromagnetic induction device EM38-DD (Geonics Limited). The equipment consists of two units of measurement, one in a horizontal dipole (ECa-H) to provide effective measurement distance of 1.5 m approximately and other one in vertical dipole (ECa-V) with an effective measurement depth of approximately 0.75 m. Data were analyzed using descriptive statistics and geostatistical tools. The results showed that productivity in the study area

  4. A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    PubMed Central

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467

  5. A theoretical model to predict both horizontal displacement and vertical displacement for electromagnetic induction-based deep displacement sensors.

    PubMed

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.

  6. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  7. Maxwell's inductions from Faraday's induction law

    NASA Astrophysics Data System (ADS)

    Redžić, D. V.

    2018-03-01

    In article 598 of his Treatise on Electricity and Magnetism (Maxwell 1891 A Treatise on Electricity and Magnetism (Oxford: Clarendon)), Maxwell gives a seminal analysis of Faraday's law of electromagnetic induction. We present a detailed account of the analysis, attempting to reconstruct the missing steps, and discuss some related matters.

  8. A Review of High-Performance Computational Strategies for Modeling and Imaging of Electromagnetic Induction Data

    NASA Astrophysics Data System (ADS)

    Newman, Gregory A.

    2014-01-01

    Many geoscientific applications exploit electrostatic and electromagnetic fields to interrogate and map subsurface electrical resistivity—an important geophysical attribute for characterizing mineral, energy, and water resources. In complex three-dimensional geologies, where many of these resources remain to be found, resistivity mapping requires large-scale modeling and imaging capabilities, as well as the ability to treat significant data volumes, which can easily overwhelm single-core and modest multicore computing hardware. To treat such problems requires large-scale parallel computational resources, necessary for reducing the time to solution to a time frame acceptable to the exploration process. The recognition that significant parallel computing processes must be brought to bear on these problems gives rise to choices that must be made in parallel computing hardware and software. In this review, some of these choices are presented, along with the resulting trade-offs. We also discuss future trends in high-performance computing and the anticipated impact on electromagnetic (EM) geophysics. Topics discussed in this review article include a survey of parallel computing platforms, graphics processing units to multicore CPUs with a fast interconnect, along with effective parallel solvers and associated solver libraries effective for inductive EM modeling and imaging.

  9. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils

    PubMed Central

    Li, Jian; Wu, Dan; Han, Yan

    2016-01-01

    Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation. PMID:27706039

  10. Study on magnetic force of electromagnetic levitation circular knitting machine

    NASA Astrophysics Data System (ADS)

    Wu, X. G.; Zhang, C.; Xu, X. S.; Zhang, J. G.; Yan, N.; Zhang, G. Z.

    2018-06-01

    The structure of the driving coil and the electromagnetic force of the test prototype of electromagnetic-levitation (EL) circular knitting machine are studied. In this paper, the driving coil’s structure and working principle of the EL circular knitting machine are firstly introduced, then the mathematical modelling analysis of the driving electromagnetic force is carried out, and through the Ansoft Maxwell finite element simulation software the coil’s magnetic induction intensity and the needle’s electromagnetic force is simulated, finally an experimental platform is built to measure the coil’s magnetic induction intensity and the needle’s electromagnetic force. The results show that the theoretical analysis, the simulation analysis and the results of the test are very close, which proves the correctness of the proposed model.

  11. Multiphysics analysis of liquid metal annular linear induction pumps: A project overview

    SciTech Connect

    Maidana, Carlos Omar; Nieminen, Juha E.

    Liquid metal-cooled fission reactors are both moderated and cooled by a liquid metal solution. These reactors are typically very compact and they can be used in regular electric power production, for naval and space propulsion systems or in fission surface power systems for planetary exploration. The coupling between the electromagnetics and thermo-fluid mechanical phenomena observed in liquid metal thermo-magnetic systems for nuclear and space applications gives rise to complex engineering magnetohydrodynamics and numerical problems. It is known that electromagnetic pumps have a number of advantages over rotating mechanisms: absence of moving parts, low noise and vibration level, simplicity of flowmore » rate regulation, easy maintenance and so on. However, while developing annular linear induction pumps, we are faced with a significant problem of magnetohydrodynamic instability arising in the device. The complex flow behavior in this type of devices includes a time-varying Lorentz force and pressure pulsation due to the time-varying electromagnetic fields and the induced convective currents that originates from the liquid metal flow, leading to instability problems along the device geometry. The determinations of the geometry and electrical configuration of liquid metal thermo-magnetic devices give rise to a complex inverse magnetohydrodynamic field problem were techniques for global optimization should be used, magnetohydrodynamics instabilities understood –or quantified- and multiphysics models developed and analyzed. Lastly, we present a project overview as well as a few computational models developed to study liquid metal annular linear induction pumps using first principles and the a few results of our multi-physics analysis.« less

  12. Multiphysics analysis of liquid metal annular linear induction pumps: A project overview

    DOE PAGES

    Maidana, Carlos Omar; Nieminen, Juha E.

    2016-03-14

    Liquid metal-cooled fission reactors are both moderated and cooled by a liquid metal solution. These reactors are typically very compact and they can be used in regular electric power production, for naval and space propulsion systems or in fission surface power systems for planetary exploration. The coupling between the electromagnetics and thermo-fluid mechanical phenomena observed in liquid metal thermo-magnetic systems for nuclear and space applications gives rise to complex engineering magnetohydrodynamics and numerical problems. It is known that electromagnetic pumps have a number of advantages over rotating mechanisms: absence of moving parts, low noise and vibration level, simplicity of flowmore » rate regulation, easy maintenance and so on. However, while developing annular linear induction pumps, we are faced with a significant problem of magnetohydrodynamic instability arising in the device. The complex flow behavior in this type of devices includes a time-varying Lorentz force and pressure pulsation due to the time-varying electromagnetic fields and the induced convective currents that originates from the liquid metal flow, leading to instability problems along the device geometry. The determinations of the geometry and electrical configuration of liquid metal thermo-magnetic devices give rise to a complex inverse magnetohydrodynamic field problem were techniques for global optimization should be used, magnetohydrodynamics instabilities understood –or quantified- and multiphysics models developed and analyzed. Lastly, we present a project overview as well as a few computational models developed to study liquid metal annular linear induction pumps using first principles and the a few results of our multi-physics analysis.« less

  13. Electromagnetic-induction logging to monitor changing chloride concentrations

    USGS Publications Warehouse

    Metzger, Loren F.; Izbicki, John A.

    2013-01-01

    Water from the San Joaquin Delta, having chloride concentrations up to 3590 mg/L, has intruded fresh water aquifers underlying Stockton, California. Changes in chloride concentrations at depth within these aquifers were evaluated using sequential electromagnetic (EM) induction logs collected during 2004 through 2007 at seven multiple-well sites as deep as 268 m. Sequential EM logging is useful for identifying changes in groundwater quality through polyvinyl chloride-cased wells in intervals not screened by wells. These unscreened intervals represent more than 90% of the aquifer at the sites studied. Sequential EM logging suggested degrading groundwater quality in numerous thin intervals, typically between 1 and 7 m in thickness, especially in the northern part of the study area. Some of these intervals were unscreened by wells, and would not have been identified by traditional groundwater sample collection. Sequential logging also identified intervals with improving water quality—possibly due to groundwater management practices that have limited pumping and promoted artificial recharge. EM resistivity was correlated with chloride concentrations in sampled wells and in water from core material. Natural gamma log data were used to account for the effect of aquifer lithology on EM resistivity. Results of this study show that a sequential EM logging is useful for identifying and monitoring the movement of high-chloride water, having lower salinities and chloride concentrations than sea water, in aquifer intervals not screened by wells, and that increases in chloride in water from wells in the area are consistent with high-chloride water originating from the San Joaquin Delta rather than from the underlying saline aquifer.

  14. The dissipation of electromagnetic waves in plasmas

    NASA Astrophysics Data System (ADS)

    Basov, N. G.

    The present anthology includes articles concerning the experimental study of the interaction of high power electromagnetic waves with collisionless plasmas and with electrons. Among the topics covered are the nonlinear dissipation of electromagnetic waves in inhomogeneous collisionless plasmas, the collisionless absorption of electromagnetic waves in plasmas and 'slow' nonlinear phenomena, the nonlinear effects of electron plasma waves propagating in an inhomogeneous plasma layer, and secondary-emission microwave discharges having large electron transit angles.

  15. Apparent resistivity for transient electromagnetic induction logging and its correction in radial layer identification

    NASA Astrophysics Data System (ADS)

    Meng, Qingxin; Hu, Xiangyun; Pan, Heping; Xi, Yufei

    2018-04-01

    We propose an algorithm for calculating all-time apparent resistivity from transient electromagnetic induction logging. The algorithm is based on the whole-space transient electric field expression of the uniform model and Halley's optimisation. In trial calculations for uniform models, the all-time algorithm is shown to have high accuracy. We use the finite-difference time-domain method to simulate the transient electromagnetic field in radial two-layer models without wall rock and convert the simulation results to apparent resistivity using the all-time algorithm. The time-varying apparent resistivity reflects the radially layered geoelectrical structure of the models and the apparent resistivity of the earliest time channel follows the true resistivity of the inner layer; however, the apparent resistivity at larger times reflects the comprehensive electrical characteristics of the inner and outer layers. To accurately identify the outer layer resistivity based on the series relationship model of the layered resistance, the apparent resistivity and diffusion depth of the different time channels are approximately replaced by related model parameters; that is, we propose an apparent resistivity correction algorithm. By correcting the time-varying apparent resistivity of radial two-layer models, we show that the correction results reflect the radially layered electrical structure and the corrected resistivities of the larger time channels follow the outer layer resistivity. The transient electromagnetic fields of radially layered models with wall rock are simulated to obtain the 2D time-varying profiles of the apparent resistivity and corrections. The results suggest that the time-varying apparent resistivity and correction results reflect the vertical and radial geoelectrical structures. For models with small wall-rock effect, the correction removes the effect of the low-resistance inner layer on the apparent resistivity of the larger time channels.

  16. Electromagnetic potential vectors and the Lagrangian of a charged particle

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    Maxwell's equations can be shown to imply the existence of two independent three-dimensional potential vectors. A comparison between the potential vectors and the electric and magnetic field vectors, using a spatial Fourier transformation, reveals six independent potential components but only four independent electromagnetic field components for each mode. Although the electromagnetic fields determined by Maxwell's equations give a complete description of all possible classical electromagnetic phenomena, potential vectors contains more information and allow for a description of such quantum mechanical phenomena as the Aharonov-Bohm effect. A new result is that a charged particle Lagrangian written in terms of potential vectors automatically contains a 'spontaneous symmetry breaking' potential.

  17. Ship-borne electromagnetic induction sounding of sea-ice thickness in the southern Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Uto, Shotaro; Toyota, Takenobu; Shimoda, Haruhito; Tateyama, Kazutaka; Shirasawa, Kunio

    Recent observations have revealed that dynamical thickening is dominant in the growth process of sea ice in the southern Sea of Okhotsk. That indicates the importance of understanding the nature of thick deformed ice in this area. The objective of the present paper is to establish a ship-based method for observing the thickness of deformed ice with reasonable accuracy. Since February 2003, one of the authors has engaged in the core sampling using a small basket from the icebreaker Soya. Based on these results, we developed a new model which expressed the internal structure of pack ice in the southern Sea of Okhotsk, as a one-dimensional multilayered structure. Since 2004, the electromagnetic (EM) inductive sounding of sea-ice thickness has been conducted on board Soya. By combining the model and theoretical calculations, a new algorithm was developed for transforming the output of the EM inductive instrument to ice + snow thickness (total thickness). Comparison with total thickness by drillhole observations showed fair agreement. The probability density functions of total thickness in 2004 and 2005 showed some difference, which reflected the difference of fractions of thick deformed ice.

  18. Design, fabrication and characterization of LTCC-based electromagnetic microgenerators

    NASA Astrophysics Data System (ADS)

    Gierczak, M.; Markowski, P.; Dziedzic, A.

    2016-02-01

    Design, manufacturing process and properties of electromagnetic microgenerators fabricated in LTCC (Low Temperature Co-fired Ceramics) technology are presented in this paper. Electromagnetic microgenerators consist of planar coils spatially arranged on several layers of LTCC and of a multipole permanent magnet. Two different patterns of coils with 2-, 8-,10- and 12-layers and outer diameter of 50 mm were designed and fabricated. Silver-based pastes ESL 903-A or DuPont 6145 were used. In order to estimate the inductance of a single spatial coil the Greenhouse (self-inductance) and Hoer (mutual inductance) calculation methods were used. To verify the calculation results a single-layer coil was fabricated for each pattern and its inductance was measured using the precision RLC Meter. Fabricated LTCC microgenerators with embedded coils allow to generate voltage higher than ten volts and the electrical output power of approximately 600 mW at the rotor rotation speed of 12 thousands rpm. The self-made system was used for characterization of LTCC-based electromagnetic microgenerators.

  19. Numerical calculation of primary slot leakage inductance of a Single-sided HTS linear induction motor used for linear metro

    NASA Astrophysics Data System (ADS)

    Li, Dong; Wen, Yinghong; Li, Weili; Fang, Jin; Cao, Junci; Zhang, Xiaochen; Lv, Gang

    2017-03-01

    In the paper, the numerical method calculating asymmetric primary slot leakage inductances of Single-sided High-Temperature Superconducting (HTS) Linear Induction Motor (HTS LIM) is presented. The mathematical and geometric models of three-dimensional nonlinear transient electromagnetic field are established and the boundary conditions are also given. The established model is solved by time-stepping Finite Element Method (FEM). Then, the three-phase asymmetric primary slot leakage inductances under different operation conditions are calculated by using the obtained electromagnetic field distribution. The influences of the special effects such as longitudinal end effects, transversal edge effects, etc. on the primary slot leakage inductance are investigated. The presented numerical method is validated by experiments carried out on a 3.5 kW prototype with copper wires which has the same structures with the HTS LIM.

  20. How Do Pre-Service Teachers Picture Various Electromagnetic Phenomenon? A Qualitative Study of Pre-Service Teachers' Conceptual Understanding of Fundamental Electromagnetic Interaction

    ERIC Educational Resources Information Center

    Beer, Christopher P.

    2010-01-01

    This study analyzes the nature of pre-service teachers' conceptual models of various electromagnetic phenomena, specifically electrical current, electrical resistance, and light/matter interactions. This is achieved through the students answering the three questions on electromagnetism using a free response approach including both verbal and…

  1. Modular Approaches to Earth Science Scientific Computing: 3D Electromagnetic Induction Modeling as an Example

    NASA Astrophysics Data System (ADS)

    Tandon, K.; Egbert, G.; Siripunvaraporn, W.

    2003-12-01

    We are developing a modular system for three-dimensional inversion of electromagnetic (EM) induction data, using an object oriented programming approach. This approach allows us to modify the individual components of the inversion scheme proposed, and also reuse the components for variety of problems in earth science computing howsoever diverse they might be. In particular, the modularity allows us to (a) change modeling codes independently of inversion algorithm details; (b) experiment with new inversion algorithms; and (c) modify the way prior information is imposed in the inversion to test competing hypothesis and techniques required to solve an earth science problem. Our initial code development is for EM induction equations on a staggered grid, using iterative solution techniques in 3D. An example illustrated here is an experiment with the sensitivity of 3D magnetotelluric inversion to uncertainties in the boundary conditions required for regional induction problems. These boundary conditions should reflect the large-scale geoelectric structure of the study area, which is usually poorly constrained. In general for inversion of MT data, one fixes boundary conditions at the edge of the model domain, and adjusts the earth?s conductivity structure within the modeling domain. Allowing for errors in specification of the open boundary values is simple in principle, but no existing inversion codes that we are aware of have this feature. Adding a feature such as this is straightforward within the context of the modular approach. More generally, a modular approach provides an efficient methodology for setting up earth science computing problems to test various ideas. As a concrete illustration relevant to EM induction problems, we investigate the sensitivity of MT data near San Andreas Fault at Parkfield (California) to uncertainties in the regional geoelectric structure.

  2. The History of Electromagnetic Induction Techniques in Soil Survey

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, Jim

    2014-05-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales.

  3. Scattering theory of stochastic electromagnetic light waves.

    PubMed

    Wang, Tao; Zhao, Daomu

    2010-07-15

    We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.

  4. Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to orthopaedic implant infections: In vitro findings.

    PubMed

    Pijls, B G; Sanders, I M J G; Kuijper, E J; Nelissen, R G H H

    2017-05-01

    Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load in vitro ? Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Staphylococcus epidermidis; Staphylococcus aureus; Pseudomonas aeruginosa ; spore-forming Bacillus cereus; and yeast Candida albicans . The cylinders were exposed to incremental target temperatures (35°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C) for up to 3.5 minutes. There was an average linear heating rate of 0.39°C per second up to the target temperature, and thereafter the target temperature was maintained until the end of the experiment. At 60°C and higher (duration 3.5 minutes), there was a 6-log reduction or higher for every micro-organism tested. At 60°C, we found that the shortest duration of effective induction heating was 1.5 minutes. This resulted in a 5-log reduction or higher for every micro-organism tested. Non-contact induction heating of a titanium disk is effective in reducing bacterial load in vitro . These promising results can be further explored as a new treatment modality for infections of metal orthopaedic implants. Cite this article : B. G. Pijls, I. M. J. G. Sanders, E. J. Kuijper, R. G. H. H. Nelissen. Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to orthopaedic implant infections: In vitro findings. Bone Joint Res 2017;6:323-330. DOI: 10.1302/2046-3758.65.BJR-2016-0308.R1.

  5. Seismo-electromagnetic phenomena in the western part of the Eurasia-Nubia plate boundary

    NASA Astrophysics Data System (ADS)

    Gonçalves da Silva, Hugo; Bezzeghoud, Mourad; Biagi, Pier; Namorado Rosa, Rui; Salgueiro da Silva, Manuel; Caldeira, Bento; Heitor Reis, Artur; Borges, José Fernando; Tlemçani, Mouhaydine; Manso, Marco

    2010-05-01

    This paper presents a future research plan that aims to monitor Seismo-electromagnetic (SEM) phenomena in the western part of the Eurasia-Nubia plate boundary (WENP). This region has a significant tectonic activity [1] combined with relatively low electromagnetic noise levels and for that reason presents the possibility to perform high quality SEM measurements. Further, it is known that low-frequency [ultra (ULF), very (VLF), and low-frequencies (LF)] electromagnetic (EM) waves produce more convincing earthquake precursors (compared to higher frequencies) because of less contamination, large skin depth, and low attenuation [2]. Thus, two SEM effects will be considered: ULF electromagnetic field emissions [3], and VLF/LF radio broadcastings [4]. With respect to the ULF measurements, as a start, three ULF sensors are planned to be installed in the South of Iberian Peninsula supported by the existing networks of seismic research stations. Subsequent development of this initial plan could result in the implementation of a lager ULF monitoring network not only in the Iberian Peninsula, but also in the rest of Europe. Possible integration in the SEGMA array is now under consideration. Another perspective is to use a portable station to track seismic events. Regarding the VLF/LF radio broadcastings, a receiver is planned to be mounted in University of Évora. Radio signals from up to 10 transmitters (in these bands) of interest to study the seismic activity in the WENP region will be monitored. Actually, the radio path from the transmitter to the receiver should cross the epicentral area, therefore two possible transmitters are the ones installed in Monaco (France) and Sicily (Italy). Furthermore, the system will integrate the INFREP network and in this context it will not be restricted to WENP region. With the development of these research plans we aim to collect novel SEM data emerging from the seismic activity in the WENP region. We expect to address the time

  6. Advanced high-temperature electromagnetic pump

    NASA Technical Reports Server (NTRS)

    Gahan, J. W.; Powell, A. H.

    1972-01-01

    Three phase helical, electromagnetic induction pump for use as boiler feed pump in potassium Rankine-cycle power system is described. Techniques for fabricating components of pump are discussed. Specifications of pump are analyzed.

  7. Experimenting with wires, batteries, bulbs and the induction coil: Narratives of teaching and learning physics in the electrical investigations of Laura, David, Jamie, myself and the nineteenth century experimenters. Our developments and instruments

    NASA Astrophysics Data System (ADS)

    Cavicchi, Elizabeth Mary

    Physics is conventionally taught as a fixed curriculum which students must master. This thesis changes that: curriculum emerges from what learners try and question in experiments they invent. The thesis narrates: three adult students exploring wires, batteries and bulbs with me as teacher; nineteenth century investigations of electromagnetism; my laboratory work replicating historic instruments. In each case, learning arose through activity with materials. Evidences of this are analyzed within narratives and reflections. I used teaching-research, a method developed by Duckworth from Piaget's clinical interviewing, to research and simultaneously extend students' evolving understandings. What I learned through questioning students informed my next interactions; what they learned extended their experimenting. Similarly, I researched historical accounts interactively: improvising experiments to develop my understandings. Studying my own learning deepened my interpretations of students' learning. My students Laura, David and Jamie experimented by: soldering bulbs to wires, making series and parallel circuits, inserting resistive wire that dimmed bulbs, conducting electricity through salt water They noticed bulb brightness and battery heat, compared electricity's paths, questioned how voltage and current relate. They inferred electricity's effects manifest magnitudes of material properties. They found their experiences while learning were inseparable from what they learned. I researched investigations connected with Cavendish's leather fish, Galvani's frogs, Schweigger's wire spiraled around a compass needle, Henry's electromagnets, Faraday's induction ring, induction devices of Page, Callan, Hearder. Experimentally, I made galvanometers, electromagnets, induction rings, induction coil. I observed effects of electromagnetism, internal resistance, induced sparking. Across these investigations, learning developed with instrumental innovations; confusions were productive

  8. Covariant electromagnetic field lines

    NASA Astrophysics Data System (ADS)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  9. Urban soil exploration through multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar.

    PubMed

    Van De Vijver, Ellen; Van Meirvenne, Marc; Vandenhaute, Laura; Delefortrie, Samuël; De Smedt, Philippe; Saey, Timothy; Seuntjens, Piet

    2015-07-01

    In environmental assessments, the characterization of urban soils relies heavily on invasive investigation, which is often insufficient to capture their full spatial heterogeneity. Non-invasive geophysical techniques enable rapid collection of high-resolution data and provide a cost-effective alternative to investigate soil in a spatially comprehensive way. This paper presents the results of combining multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar to characterize a former garage site contaminated with petroleum hydrocarbons. The sensor combination showed the ability to identify and accurately locate building remains and a high-density soil layer, thus demonstrating the high potential to investigate anthropogenic disturbances of physical nature. In addition, a correspondence was found between an area of lower electrical conductivity and elevated concentrations of petroleum hydrocarbons, suggesting the potential to detect specific chemical disturbances. We conclude that the sensor combination provides valuable information for preliminary assessment of urban soils.

  10. A Double Layer Model of the Electromagnetic and Thermal Processes in Induction Heating of Ferromagnetic Material

    NASA Astrophysics Data System (ADS)

    Gilev, B.; Kraev, G.; Venkov, G. I.

    2007-10-01

    This paper presents the modeling of electromagnetic and heating processes in an inductor, where cylindrical ferromagnetic material has been placed. In the first part the electromagnetic mathematical problem is solved, as a result the power density is obtained. The power density takes part in the heat conduction equation. In the second part the thermal mathematical problem is solved, as a result the alteration of the temperature of the ferromagnetic material during the heating process is obtained. The parameters in both mathematical problems depend on the temperature. Because of that the stitching method is used for their finding. In [3, 4] the same mathematical problems are solved by the finite elements method. Comparing our results to those from [3] shows that they are similar. In contrast to [3, 4] our method allows the continuation of the analysis with the finding of the load power during the heating process. Thus result permits the determination of the load power alteration in the supplying inverter [1]. It is well-known that during the induction hardening it is necessary to maintain constant current amplitude in the load circuit of the inverter. So the next aim of this research is to build up a controller, based on the developed model, which will procure the necessary mode.

  11. Spectral perspective on the electromagnetic activity of cells.

    PubMed

    Kučera, Ondrej; Červinková, Kateřina; Nerudová, Michaela; Cifra, Michal

    2015-01-01

    In this mini-review, we summarize the current hypotheses, theories and experimental evidence concerning the electromagnetic activity of living cells. We systematically classify the bio-electromagnetic phenomena in terms of frequency and we assess their general acceptance in scientific community. We show that the electromagnetic activity of cells is well established in the low frequency range below 1 kHz and on optical wavelengths, while there is only limited evidence for bio-electromagnetic processes in radio- frequency and millimeter-wave ranges. This lack of generally accepted theory or trustful experimental results is the cause for controversy which accompanies this topic. We conclude our review with the discussion of the relevance of the electromagnetic activity of cells to human medicine.

  12. Inductive shearing of drilling pipe

    SciTech Connect

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  13. Demonstration of ROV-based Underwater Electromagnetic Array Technology

    DTIC Science & Technology

    2017-05-25

    Volume Magnetic Source Model that Was Modified to Address EM Propagation through a Conductive Seawater Medium...16  Figure 7. Still Shots of the Integrated ROV- EM System (left) and the EM Sensor (right) Performing Bottom Following...of Defense DVL Doppler Velocity Log E Easting EOD Explosive Ordnance Disposal EM Electromagnetic EMI Electromagnetic Induction EMF

  14. Inductive reasoning 2.0.

    PubMed

    Hayes, Brett K; Heit, Evan

    2018-05-01

    Inductive reasoning entails using existing knowledge to make predictions about novel cases. The first part of this review summarizes key inductive phenomena and critically evaluates theories of induction. We highlight recent theoretical advances, with a special emphasis on the structured statistical approach, the importance of sampling assumptions in Bayesian models, and connectionist modeling. A number of new research directions in this field are identified including comparisons of inductive and deductive reasoning, the identification of common core processes in induction and memory tasks and induction involving category uncertainty. The implications of induction research for areas as diverse as complex decision-making and fear generalization are discussed. This article is categorized under: Psychology > Reasoning and Decision Making Psychology > Learning. © 2017 Wiley Periodicals, Inc.

  15. Non-standard electromagnetic induction sensor configurations: Evaluating sensitivities and applicability

    NASA Astrophysics Data System (ADS)

    Guillemoteau, Julien; Tronicke, Jens

    2015-07-01

    For near surface geophysical surveys, small-fixed offset loop-loop electromagnetic induction (EMI) sensors are usually placed parallel to the ground surface (i.e., both loops are at the same height above ground). In this study, we evaluate the potential of making measurements with a system that is not parallel to the ground; i.e., by positioning the system at different inclinations with respect to ground surface. First, we present the Maxwell theory for inclined magnetic dipoles over a homogeneous half space. By analyzing the sensitivities of such configurations, we show that varying the angle of the system would result in improved imaging capabilities. For example, we show that acquiring data with a vertical system allows detection of a conductive body with a better lateral resolution compared to data acquired using standard horizontal configurations. The synthetic responses are presented for a heterogeneous medium and compared to field data acquired in the historical Park Sanssouci in Potsdam, Germany. After presenting a detailed sensitivity analysis and synthetic examples of such ground conductivity measurements, we suggest a new strategy of acquisition that allows to better estimate the true distribution of electrical conductivity using instruments with a fixed, small offset between the loops. This strategy is evaluated using field data collected at a well-constrained test-site in Horstwalde (Germany). Here, the target buried utility pipes are best imaged using vertical system configurations demonstrating the potential of our approach for typical applications.

  16. Discrimination between preseismic electromagnetic anomalies and solar activity effects

    NASA Astrophysics Data System (ADS)

    Koulouras, Gr; Balasis, G.; Kontakos, K.; Ruzhin, Y.; Avgoustis, G.; Kavouras, D.; Nomicos, C.

    2009-04-01

    Laboratory studies suggest that electromagnetic emissions in a wide frequency spectrum ranging from kHz to very high MHz frequencies are produced by the opening of microcracks, with the MHz radiation appearing earlier than the kHz radiation. Earthquakes are large-scale fracture phenomena in the Earth's heterogeneous crust. Thus, the radiated kHz-MHz electromagnetic emissions are detectable not only at laboratory but also at geological scale. Clear MHz-to-kHz electromagnetic anomalies have been systematically detected over periods ranging from a few days to a few hours prior to recent destructive earthquakes in Greece. We bear in mind that whether electromagnetic precursors to earthquakes exist is an important question not only for earthquake prediction but mainly for understanding the physical processes of earthquake generation. An open question in this field of research is the classification of a detected electromagnetic anomaly as a pre-seismic signal associated to earthquake occurrence. Indeed, electromagnetic fluctuations in the frequency range of MHz are known to related to a few sources, i.e., they might be atmospheric noise (due to lightning), man-made composite noise, solar-terrestrial noise (resulting from the Sun-solar wind-magnetosphere-ionosphere-Earth's surface chain) or cosmic noise, and finally, lithospheric effect, namely pre-seismic activity. We focus on this point. We suggest that if a combination of detected kHz and MHz electromagnetic anomalies satisfies the herein presented set of criteria these anomalies could be considered as candidate precursory phenomena of an impending earthquake.

  17. Electromagnetic Induction with Neodymium Magnets

    NASA Astrophysics Data System (ADS)

    Wood, Deborah; Sebranek, John

    2013-09-01

    In April 1820, Hans Christian Ørsted noticed that the needle of a nearby compass deflected briefly from magnetic north each time the electric current of the battery he was using for an unrelated experiment was turned on or off. Upon further investigation, he showed that an electric current flowing through a wire produces a magnetic field. In 1831 Michael Faraday and Joseph Henry separately expanded on Ørsted's discovery by showing that a changing magnetic field produces an electric current. Heinrich Lenz found in 1833 that an induced current has the opposite direction from the electromagnetic force that produced it. This paper describes an experiment that can help students to develop an understanding of Faraday's law and Lenz's law by studying the emf generated as a magnet drops through a set of coils having increasing numbers of turns.

  18. Electromagnetic pulsed thermography for natural cracks inspection

    NASA Astrophysics Data System (ADS)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-02-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).

  19. Electromagnetic pulsed thermography for natural cracks inspection

    PubMed Central

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-01-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF). PMID:28169361

  20. Using Electromagnetic Induction Technique to Detect Hydropedological Dynamics: Principles and Applications

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Liao, Kaihua; Doolittle, James; Lin, Henry

    2014-05-01

    Hydropedological dynamics including soil moisture variation, subsurface flow, and spatial distributions of different soil properties are important parameters in ecological, environmental, hydrological, and agricultural modeling and applications. However, technical gap exists in mapping these dynamics at intermediate spatial scale (e.g., farm and catchment scales). At intermediate scales, in-situ monitoring provides detailed data, but is restricted in number and spatial coverage; while remote sensing provides more acceptable spatial coverage, but has comparatively low spatial resolution, limited observation depths, and is greatly influenced by the surface condition and climate. As a non-invasive, fast, and convenient geophysical tool, electromagnetic induction (EMI) measures soil apparent electrical conductivity (ECa) and has great potential to bridge this technical gap. In this presentation, principles of different EMI meters are briefly introduced. Then, case studies of using repeated EMI to detect spatial distributions of subsurface convergent flow, soil moisture dynamics, soil types and their transition zones, and different soil properties are presented. The suitability, effectiveness, and accuracy of EMI are evaluated for mapping different hydropedological dynamics. Lastly, contributions of different hydropedological and terrain properties on soil ECa are quantified under different wetness conditions, seasons, and land use types using Classification and Regression Tree model. Trend removal and residual analysis are then used for further mining of EMI survey data. Based on these analyses, proper EMI survey designs and data processing are proposed.

  1. Gauge invariant fractional electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lazo, Matheus Jatkoske

    2011-09-01

    Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.

  2. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. Copyright © 2016, American Association for the Advancement of Science.

  3. Electromagnetic emission memory phenomena related to LiF ionic crystal deformation

    NASA Astrophysics Data System (ADS)

    Mavromatou, C.; Tombras, G. S.; Ninos, D.; Hadjicontis, V.

    2008-04-01

    During the uniaxial compression of LiF ionic monocrystals, acoustic and electromagnetic emissions (EME) are detected. We observed that when the compression is performed in successive loading, unloading cycles and these emissions are being monitored, no new emissions will occur unless the maximum stress of the previous cycle is exceeded, meaning that the material presents memory characteristics. This is observed not only for the acoustic emission (AE), which is the well known Kaiser effect, but for the EME as well. In other words, the material appears to memorize and reveal the previously maximum stress it suffered while being deformed. The importance of an electromagnetic memory feature of a material can be related to various applications in material science, especially when the detection of AE is not feasible or gives false alert. Such cases may very well be earthquakes' predictive indications, monitoring of mines' stability, imminent landslides, etc.

  4. Electromagnetic Levitation: A Useful Tool in Microgravity Research

    NASA Technical Reports Server (NTRS)

    Szekely, Julian; Schwartz, Elliot; Hyers, Robert

    1995-01-01

    Electromagnetic levitation is one area of the electromagnetic processing of materials that has uses for both fundamental research and practical applications. This technique was successfully used on the Space Shuttle Columbia during the Spacelab IML-2 mission in July 1994 as a platform for accurately measuring the surface tensions of liquid metals and alloys. In this article, we discuss the key transport phenomena associated with electromagnetic levitation, the fundamental relationships associated with thermophysical property measurement that can be made using this technique, reasons for working in microgravity, and some of the results obtained from the microgravity experiments.

  5. Electromagnetic homeostasis and the role of low-amplitude electromagnetic fields on life organization.

    PubMed

    De Ninno, Antonella; Pregnolato, Massimo

    2017-01-01

    The appearance of endogenous electromagnetic fields in biological systems is a widely debated issue in modern science. The electrophysiological fields have very tiny intensities and it can be inferred that they are rapidly decreasing with the distance from the generating structure, vanishing at very short distances. This makes very hard their detection using standard experimental methods. However, the existence of fast-moving charged particles in the macromolecules inside both intracellular and extracellular fluids may envisage the generation of localized electric currents as well as the presence of closed loops, which implies the existence of magnetic fields. Moreover, the whole set of oscillatory frequencies of various substances, enzymes, cell membranes, nucleic acids, bioelectrical phenomena generated by the electrical rhythm of coherent groups of cells, cell-to-cell communication among population of host bacteria, forms the increasingly complex hierarchies of electromagnetic signals of different frequencies which cover the living being and represent a fundamental information network controlling the cell metabolism. From this approach emerges the concept of electromagnetic homeostasis: that is, the capability of the human body to maintain the balance of highly complex electromagnetic interactions within, in spite of the external electromagnetic noisy environment. This concept may have an important impact on the actual definitions of heal and disease.

  6. Overview on the standardization in the field of electromagnetic compatibility

    NASA Astrophysics Data System (ADS)

    Goldberg, Georges

    1989-04-01

    Standardization in the domain of electromagnetic compatibility (EMC) is discussed, with specific reference to the standards of the International Electrotechnical Commission, the Comite International Special des Perturbations Radioelectriques, and the Comite Europeen de Normalisation Electrotechnique. EMC fields considered include radiocommunications, telecommunications, biological effects, and data transmission. Standards are presented for such electromagnetic disturbances as low-frequency, high-frequency, conduction, and radiation phenomena.

  7. Theory of electromagnetic wave propagation in ferromagnetic Rashba conductor

    NASA Astrophysics Data System (ADS)

    Shibata, Junya; Takeuchi, Akihito; Kohno, Hiroshi; Tatara, Gen

    2018-02-01

    We present a comprehensive study of various electromagnetic wave propagation phenomena in a ferromagnetic bulk Rashba conductor from the perspective of quantum mechanical transport. In this system, both the space inversion and time reversal symmetries are broken, as characterized by the Rashba field α and magnetization M, respectively. First, we present a general phenomenological analysis of electromagnetic wave propagation in media with broken space inversion and time reversal symmetries based on the dielectric tensor. The dependence of the dielectric tensor on the wave vector q and M is retained to first order. Then, we calculate the microscopic electromagnetic response of the current and spin of conduction electrons subjected to α and M, based on linear response theory and the Green's function method; the results are used to study the system optical properties. First, it is found that a large α enhances the anisotropic properties of the system and enlarges the frequency range in which the electromagnetic waves have hyperbolic dispersion surfaces and exhibit unusual propagations known as negative refraction and backward waves. Second, we consider the electromagnetic cross-correlation effects (direct and inverse Edelstein effects) on the wave propagation. These effects stem from the lack of space inversion symmetry and yield q-linear off-diagonal components in the dielectric tensor. This induces a Rashba-induced birefringence, in which the polarization vector rotates around the vector (α ×q ) . In the presence of M, which breaks time reversal symmetry, there arises an anomalous Hall effect and the dielectric tensor acquires off-diagonal components linear in M. For α ∥M , these components yield the Faraday effect for the Faraday configuration q ∥M and the Cotton-Mouton effect for the Voigt configuration ( q ⊥M ). When α and M are noncollinear, M- and q-induced optical phenomena are possible, which include nonreciprocal directional dichroism in the

  8. Similarity, Induction, Naming, and Categorization (SINC): Generalization or Inductive Reasoning? Reply to Heit and Hayes (2005)

    ERIC Educational Resources Information Center

    Sloutsky, Vladimir M.; Fisher, Anna V.

    2006-01-01

    This article is a response to E. Heit and B. K. Hayes's comment on the target article "Induction and Categorization in Young Children: A Similarity-Based Model" (V. M. Sloutsky & A. V. Fisher, 2004a). The response discusses points of agreement and disagreement with Heit and Hayes; phenomena predicted by similarity, induction, naming, and…

  9. Inductive Interference in Rapid Transit Signaling Systems. Volume 3. Data and Test Results.

    DOT National Transportation Integrated Search

    1986-11-01

    This report presents comparative inductive interference data obtained from four U.S. rapid transit systems employing chopper propulsion control, as part of the Rail Transit Electromagnetic Interference/Electromagnetic Compatibility program conducted ...

  10. Discrimination between pre-seismic electromagnetic anomalies and solar activity effects

    NASA Astrophysics Data System (ADS)

    Koulouras, G.; Balasis, G.; Kiourktsidis, I.; Nannos, E.; Kontakos, K.; Stonham, J.; Ruzhin, Y.; Eftaxias, K.; Cavouras, D.; Nomicos, C.

    2009-04-01

    Laboratory studies suggest that electromagnetic emissions in a wide frequency spectrum ranging from kilohertz (kHz) to very high megahertz (MHz) frequencies are produced by the opening of microcracks, with the MHz radiation appearing earlier than the kHz radiation. Earthquakes are large-scale fracture phenomena in the Earth's heterogeneous crust. Thus, the radiated kHz-MHz electromagnetic emissions are detectable not only in the laboratory but also at a geological scale. Clear MHz-to-kHz electromagnetic anomalies have been systematically detected over periods ranging from a few days to a few hours prior to recent destructive earthquakes in Greece. We should bear in mind that whether electromagnetic precursors to earthquakes exist is an important question not only for earthquake prediction but mainly for understanding the physical processes of earthquake generation. An open question in this field of research is the classification of a detected electromagnetic anomaly as a pre-seismic signal associated with earthquake occurrence. Indeed, electromagnetic fluctuations in the frequency range of MHz are known to be related to a few sources, including atmospheric noise (due to lightning), man-made composite noise, solar-terrestrial noise (resulting from the Sun-solar wind-magnetosphere-ionosphere-Earth's surface chain) or cosmic noise, and finally, the lithospheric effect, namely pre-seismic activity. We focus on this point in this paper. We suggest that if a combination of detected kHz and MHz electromagnetic anomalies satisfies the set of criteria presented herein, these anomalies could be considered as candidate precursory phenomena of an impending earthquake.

  11. VHF electromagnetic wave propagation

    NASA Astrophysics Data System (ADS)

    Gole, P.

    Theoretical and experimental study of large-scale VHF propagation characteristics is presented. Certain phenomena that are difficult to model, such as the effects of ground near the antenna, are examined from a purely experimental point of view. The characteristics of electromagnetic waves over a spherical surface and through a medium having a certain refractive index, such as is the case for waves propagated over the earth's surface, are analytically described. Two mathematical models are used, one for the case of the receiver being within the radioelectric horizon of the transmitter and the other for when it is not. Propagation phenomena likely to increase the false alarm probability of an air surveillance radar are briefly considered.

  12. Properties of inductive reasoning.

    PubMed

    Heit, E

    2000-12-01

    This paper reviews the main psychological phenomena of inductive reasoning, covering 25 years of experimental and model-based research, in particular addressing four questions. First, what makes a case or event generalizable to other cases? Second, what makes a set of cases generalizable? Third, what makes a property or predicate projectable? Fourth, how do psychological models of induction address these results? The key results in inductive reasoning are outlined, and several recent models, including a new Bayesian account, are evaluated with respect to these results. In addition, future directions for experimental and model-based work are proposed.

  13. Low-inductance bus lines

    NASA Technical Reports Server (NTRS)

    Kernick, A.

    1977-01-01

    Laminated bus strips and bifilar litz cable connectors for high-power rectifiers, thrisistors, and transistors provide low inductance and eliminate electromagnetic interference in high-power circuits. These techniques offer significant cost advantages because of ease of assembly and consistent high quality of product. Effectiveness makes general usage in static power conversion likely.

  14. Inductive dielectric analyzer

    NASA Astrophysics Data System (ADS)

    Agranovich, Daniel; Polygalov, Eugene; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri

    2017-03-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions.

  15. Electromagnetic interference with cardiac pacemakers and implantable cardioverter-defibrillators from low-frequency electromagnetic fields in vivo.

    PubMed

    Tiikkaja, Maria; Aro, Aapo L; Alanko, Tommi; Lindholm, Harri; Sistonen, Heli; Hartikainen, Juha E K; Toivonen, Lauri; Juutilainen, Jukka; Hietanen, Maila

    2013-03-01

    Electromagnetic interference (EMI) can pose a danger to workers with pacemakers and implantable cardioverter-defibrillators (ICDs). At some workplaces electromagnetic fields are high enough to potentially inflict EMI. The purpose of this in vivo study was to evaluate the susceptibility of pacemakers and ICDs to external electromagnetic fields. Eleven volunteers with a pacemaker and 13 with an ICD were exposed to sine, pulse, ramp, and square waveform magnetic fields with frequencies of 2-200 Hz using Helmholtz coil. The magnetic field flux densities varied to 300 µT. We also tested the occurrence of EMI from an electronic article surveillance (EAS) gate, an induction cooktop, and a metal inert gas (MIG) welding machine. All pacemakers were tested with bipolar settings and three of them also with unipolar sensing configurations. None of the bipolar pacemakers or ICDs tested experienced interference in any of the exposure situations. The three pacemakers with unipolar settings were affected by the highest fields of the Helmholtz coil, and one of them also by the EAS gate and the welding cable. The induction cooktop did not interfere with any of the unipolarly programmed pacemakers. Magnetic fields with intensities as high as those used in this study are rare even in industrial working environments. In most cases, employees can return to work after implantation of a bipolar pacemaker or an ICD, after an appropriate risk assessment. Pacemakers programmed to unipolar configurations can cause danger to their users in environments with high electromagnetic fields, and should be avoided, if possible.

  16. Effect of 900 MHz Electromagnetic Radiation on the Induction of ROS in Human Peripheral Blood Mononuclear Cells.

    PubMed

    Kazemi, E; Mortazavi, S M J; Ali-Ghanbari, A; Sharifzadeh, S; Ranjbaran, R; Mostafavi-Pour, Z; Zal, F; Haghani, M

    2015-09-01

    Despite numerous studies over a decade, it still remains controversial about the biological effects of RF EMF emitted by mobile phone telephony. Here we investigated the effect of 900 MHz GSM on the induction of oxidative stress and the level of intracellular reactive oxygen species (ROS) in human mononuclear cells, monocytes and lymphocytes as defence system cells. 6 ml Peripheral Blood samples were obtained from 13 healthy volunteers (21-30 year-old). Each sample was devided into 2 groups: one was exposed RF radiation emitted from a mobile phone simulator for 2 hour and the other used as control group which was not exposed to any fields. After that, mononuclear cells were isolated from peripheral blood by density gradient centrifugation in Ficoll-Paque. The intracellular ROS content in monocytes and lymphocytes was measured by the CM-H2DCFDA fluorescence probe using flowcytometry technique. Our results showed significant increase in  ROS production after exposure in population rich in monocytes. This effect was not significant in population rich in lymphocytes in comparison with non exposed cells. The results obtained in this study clearly showed the oxidative stress induction capability of RF electromagnetic field in the portion of PBMCs mostly in monocytes, like the case of exposure to micro organisms, although the advantages or disadvantages of this effect should be evaluated.

  17. Effect of 900 MHz Electromagnetic Radiation on the Induction of ROS in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kazemi, E.; Mortazavi, S. M. J.; Ali-Ghanbari, A.; Sharifzadeh, S.; Ranjbaran, R.; Mostafavi-pour, Z.; Zal, F.; Haghani, M.

    2015-01-01

    Background Despite numerous studies over a decade, it still remains controversial about the biological effects of RF EMF emitted by mobile phone telephony. Objective Here we investigated the effect of 900 MHz GSM on the induction of oxidative stress and the level of intracellular reactive oxygen species (ROS) in human mononuclear cells, monocytes and lymphocytes as defence system cells. Method 6 ml Peripheral Blood samples were obtained from 13 healthy volunteers (21-30 year-old). Each sample was devided into 2 groups: one was exposed RF radiation emitted from a mobile phone simulator for 2 hour and the other used as control group which was not exposed to any fields. After that, mononuclear cells were isolated from peripheral blood by density gradient centrifugation in Ficoll-Paque. The intracellular ROS content in monocytes and lymphocytes was measured by the CM-H2DCFDA fluorescence probe using flowcytometry technique. Results Our results showed significant increase in  ROS production after exposure in population rich in monocytes. This effect was not significant in population rich in lymphocytes in comparison with non exposed cells. Conclusion The results obtained in this study clearly showed the oxidative stress induction capability of RF electromagnetic field in the portion of PBMCs mostly in monocytes, like the case of exposure to micro organisms, although the advantages or disadvantages of this effect should be evaluated. PMID:26396966

  18. A seafloor electromagnetic receiver for marine magnetotellurics and marine controlled-source electromagnetic sounding

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Wei, Wen-Bo; Deng, Ming; Wu, Zhong-Liang; Yu, Gang

    2015-09-01

    In planning and executing marine controlled-source electromagnetic methods, seafloor electromagnetic receivers must overcome the problems of noise, clock drift, and power consumption. To design a receiver that performs well and overcomes the abovementioned problems, we performed forward modeling of the E-field abnormal response and established the receiver's characteristics. We describe the design optimization and the properties of each component, that is, low-noise induction coil sensor, low-noise Ag/AgCl electrode, low-noise chopper amplifier, digital temperature-compensated crystal oscillator module, acoustic telemetry modem, and burn wire system. Finally, we discuss the results of onshore and offshore field tests to show the effectiveness of the developed seafloor electromagnetic receiver and its performance: typical E-field noise of 0.12 nV/m/rt(Hz) at 0.5 Hz, dynamic range higher than 120 dB, clock drift lower than 1 ms/day, and continuous operation of at least 21 days.

  19. An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency.

    PubMed

    Fan, Yuancheng; Qiao, Tong; Zhang, Fuli; Fu, Quanhong; Dong, Jiajia; Kong, Botao; Li, Hongqiang

    2017-01-16

    Electromagnetically induced transparency (EIT) is a promising technology for the enhancement of light-matter interactions, and recent demonstrations of the EIT analogue realized in artificial micro-structured medium have remarkably reduced the extreme requirement for experimental observation of EIT spectrum. In this paper, we propose to electrically control the EIT-like spectrum in a metamaterial as an electromagnetic modulator. A diode acting as a tunable resistor is loaded in the gap of paired wires to inductively tune the magnetic resonance, which induces remarkable modulation on the EIT-like spectrum through the metamaterial sample. The experimental measurements confirmed that the prediction of electromagnetic modulation in three narrow bands on the EIT-like spectrum, and a modulation contrast of up to 31 dB was achieved on the transmission through the metamaterial. Our results may facilitate the study on active/dynamical technology in translational metamaterials, which connect extraordinary manipulations on the flow of light in metamaterials, e.g., the exotic EIT, and practical applications in industry.

  20. Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements

    NASA Astrophysics Data System (ADS)

    Dragonetti, Giovanna; Comegna, Alessandro; Ajeel, Ali; Piero Deidda, Gian; Lamaddalena, Nicola; Rodriguez, Giuseppe; Vignoli, Giulio; Coppola, Antonio

    2018-02-01

    This paper deals with the issue of monitoring the spatial distribution of bulk electrical conductivity, σb, in the soil root zone by using electromagnetic induction (EMI) sensors under different water and salinity conditions. To deduce the actual distribution of depth-specific σb from EMI apparent electrical conductivity (ECa) measurements, we inverted the data by using a regularized 1-D inversion procedure designed to manage nonlinear multiple EMI-depth responses. The inversion technique is based on the coupling of the damped Gauss-Newton method with truncated generalized singular value decomposition (TGSVD). The ill-posedness of the EMI data inversion is addressed by using a sharp stabilizer term in the objective function. This specific stabilizer promotes the reconstruction of blocky targets, thereby contributing to enhance the spatial resolution of the EMI results in the presence of sharp boundaries (otherwise smeared out after the application of more standard Occam-like regularization strategies searching for smooth solutions). Time-domain reflectometry (TDR) data are used as ground-truth data for calibration of the inversion results. An experimental field was divided into four transects 30 m long and 2.8 m wide, cultivated with green bean, and irrigated with water at two different salinity levels and using two different irrigation volumes. Clearly, this induces different salinity and water contents within the soil profiles. For each transect, 26 regularly spaced monitoring soundings (1 m apart) were selected for the collection of (i) Geonics EM-38 and (ii) Tektronix reflectometer data. Despite the original discrepancies in the EMI and TDR data, we found a significant correlation of the means and standard deviations of the two data series; in particular, after a low-pass spatial filtering of the TDR data. Based on these findings, this paper introduces a novel methodology to calibrate EMI-based electrical conductivities via TDR direct measurements. This

  1. Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching

    NASA Astrophysics Data System (ADS)

    Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang

    2015-03-01

    The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.

  2. Integrating Effective Pedagogies in Science Education with a Design of Alternative Experiments on Electromagnetics

    ERIC Educational Resources Information Center

    Zhou, Shaona; Yeung, Yau-Yuen; Wang, Yanlin; Wang, Xiaojun; Xiao, Hua

    2014-01-01

    Learning electromagnetics often involves dealing with problems with strong mathematical skills or thinking about problems in abstract and multiple spaces. Moreover, many students are often unable to explain some related physical phenomena using the appropriate electromagnetic principles. In this paper, we report on integrating two effective…

  3. Building health: The need for electromagnetic hygiene?

    NASA Astrophysics Data System (ADS)

    Jamieson, Isaac A.; Holdstock, Paul; ApSimon, Helen M.; Bell, J. Nigel B.

    2010-04-01

    Whilst the electromagnetic nature of the built environment has changed considerably over the past century, little thought is at present given to the possible advantages of creating electromagnetic microenvironments that more closely resemble those found in nature and/or developing biologically-friendly technology aligned more closely to its operating principles. This review paper examines how more natural exposures to a variety of electromagnetic phenomena could be re-introduced into the built environment, possible benefits that might arise, and discusses the extent to which there may be tangible benefits obtainable from introducing more rigorous properly considered electromagnetic hygiene measures. Amongst the matters discussed are: the effects of different materials, finishes and electrical items on charge generation (and the effects of excess charge on contaminant deposition); the possible benefits of suitably grounding conductive objects (including humans) in order to reduce excess charge and contaminant deposition; how the presence of vertical electric field regimes, similar to those found in nature, may enhance biological performance; and possible pitfalls to avoid when seeking to introduce appropriate electromagnetic hygiene regimes.

  4. Assisted of electromagnetic fields in glucose production from cassava stems

    NASA Astrophysics Data System (ADS)

    Lismeri, Lia; Haryati, Sri; Djoni Bustan, M.; Darni, Yuli

    2018-03-01

    Decrease in fossil fuel reserves that led to high price has become major problem in many countries around the world. To acquire the sustainability of energy reserves, the renewable energies obtained from plant biomass will therefore have to play an increasing role in fulfilling energy demand throughout the century. Renewable energy source must be explored by innovative techniques which is safe to the environment and low in energy consumptions. This research conducted to produce glucose from cassava stems assisted by electromagnetic field inductions process. The parameters used in this research were pretreatment solvent, concentration, temperature and electrical currents. The electromagnetic field inductions could be applied to increase glucose productivity with the maximum yield of glucose was 47.43%.

  5. Closed inductively coupled plasma cell

    DOEpatents

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  6. Closed inductively coupled plasma cell

    DOEpatents

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  7. Reference Frames and the Physical Gravito-Electromagnetic Analogy

    NASA Astrophysics Data System (ADS)

    Costa, Luis Filipe P. O.; Herdeiro, C. A. R.

    2009-05-01

    The interest on the physical analogies between General Relativity and Electromagnetism has been revived by the recent Gravity Probe-B and the upcoming Lares missions, aiming to measure the so-called gravito-magnetic effects. These effects are presently believed to be at the origin of observed jets in quasars, galactic nuclei, neutron stars and black holes, as well as the precession of black holes' accretion disks. Gravitomagnetism has been studied mainly in a first order approximation ( e.g. [arXiv:gr-qc/0207065]) which, making use of certain similarities between linearized gravity and electromagnetism, applies intuition and well known results from electromagnetic phenomena to the description of the less familiar gravitational ones. However, there is no consensus at present on the limit of validity of such approach. Using a new exact approach based on tidal tensors [Phys. Rev. D 78, 024021 (2008)], we show that the existence of the aforementioned similarities depends crucially on the reference frame. Whereas a stationary observer will find remarkable similarities between the gravitational and electromagnetic interactions, if the fields are not stationary in the observer's rest frame, however, the two interactions differ significantly, so that the gravito-electromagnetic equations commonly found in literature are no longer valid. The tidal tensor formalism allows for a comparison between gravity and electromagnetism in terms of quantities common to both theories (tidal forces), making transparent both the similarities and key differences between the two interactions. It also unveils a new analogy based on exact, covariant, and fully general equations, which allows to extend the intuition from electromagnetism to the understanding of non-linear gravitational phenomena, such as the spin interaction between two celestial bodies, and Hawking's [Phys Rev. Lett. 26, 1344 (1971)] spin-dependent upper bound for the energy released by gravitational radiation when two black

  8. Working principle of an electromagnetic wiping system

    NASA Astrophysics Data System (ADS)

    Ernst, R.; Fautrelle, Y.; Bianchi, A.-M.; Iliescu, M.

    2009-03-01

    In galvanizing lines, the gas knife wiping device works well for controlling the zinc coating thickness up to 2 to 3 m/s strip velocities. But for higher velocities, a strong liquid zinc splash risk forbids the gas pressure increase, which would be necessary to keep the same thickness control efficiency of the knives. That is why a complementary electromagnetic wiping system, whose purpose is to pre-wipe the liquid zinc before the gas knives take over, is presented here. After mentioning different kinds of AC and DC possible electromagnetic solutions, a DC field electromagnetic brake (EMB) system based on the use of permanent magnets is selected for a future experimental implementation. In order to better understand the electromagnetic and fluid mechanics phenomena, an analytical model and then different numerical models are presented here. These models show an interesting wiping effect on the liquid zinc, which seems promising for a future experimental pilot design. Figs 8, Refs 9.

  9. Multimode electromagnetic target discriminator: preliminary data results

    NASA Astrophysics Data System (ADS)

    Black, Christopher J.; McMichael, Ian T.; Nelson, Carl V.

    2004-09-01

    This paper describes the Multi-mode Electromagnetic Target Discriminator (METD) sensor and presents preliminary results from recent field experiments. The METD sensor was developed for the US Army RDECOM NVESD by The Johns Hopkins University Applied Physics Laboratory. The METD, based on the technology of the previously developed Electromagnetic Target Discriminator (ETD), is a spatial scanning electromagnetic induction (EMI) sensor that uses both the time-domain (TD) and the frequency-domain (FD) for target detection and classification. Data is collected with a custom data acquisition system and wirelessly transmitted to a base computer. We show that the METD has a high signal-to-noise ratio (SNR), the ability to detect voids created by plastic anti-tank (AT) mines, and is practical for near real-time data processing.

  10. A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting

    NASA Astrophysics Data System (ADS)

    Košnik, N.; Guštin, A. Z.; Mavrič, B.; Šarler, B.

    2016-03-01

    Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology.

  11. Approximate analytical solution for induction heating of solid cylinders

    DOE PAGES

    Jankowski, Todd Andrew; Pawley, Norma Helen; Gonzales, Lindsey Michal; ...

    2015-10-20

    An approximate solution to the mathematical model for induction heating of a solid cylinder in a cylindrical induction coil is presented here. The coupled multiphysics model includes equations describing the electromagnetic field in the heated object, a heat transfer simulation to determine temperature of the heated object, and an AC circuit simulation of the induction heating power supply. A multiple-scale perturbation method is used to solve the multiphysics model. The approximate analytical solution yields simple closed-form expressions for the electromagnetic field and heat generation rate in the solid cylinder, for the equivalent impedance of the associated tank circuit, and formore » the frequency response of a variable frequency power supply driving the tank circuit. The solution developed here is validated by comparing predicted power supply frequency to both experimental measurements and calculated values from finite element analysis for heating of graphite cylinders in an induction furnace. The simple expressions from the analytical solution clearly show the functional dependence of the power supply frequency on the material properties of the load and the geometrical characteristics of the furnace installation. In conclusion, the expressions developed here provide physical insight into observations made during load signature analysis of induction heating.« less

  12. Electromagnetic induction imaging with a radio-frequency atomic magnetometer

    SciTech Connect

    Deans, Cameron; Marmugi, Luca, E-mail: l.marmugi@ucl.ac.uk; Hussain, Sarah

    2016-03-07

    We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.

  13. Advancement of Analysis Method for Electromagnetic Screening Effect of Mountain Tunnel

    NASA Astrophysics Data System (ADS)

    Okutani, Tamio; Nakamura, Nobuyuki; Terada, Natsuki; Fukuda, Mitsuyoshi; Tate, Yutaka; Inada, Satoshi; Itoh, Hidenori; Wakao, Shinji

    In this paper we report advancement of an analysis method for electromagnetic screening effect of mountain tunnel with a multiple conductor circuit model. On A.C. electrified railways it is a great issue to manage the influence of electromagnetic induction caused by feeding circuits. Tunnels are said to have a screening effect to reduce the electromagnetic induction because a large amount of steel is used in the tunnels. But recently the screening effect is less expected because New Austrian Tunneling Method (NATM), in which the amount of steel used is less than in conventional methods, is adopted as the standard tunneling method for constructing mountain tunnels. So we measured and analyzed the actual screening effect of mountain tunnels constructed with NATM. In the process of the analysis we have advanced a method to analyze the screening effect more precisely. In this method we can adequately model tunnel structure as a part of multiple conductor circuit.

  14. Effect of Inductive Coil Geometry on the Thrust Efficiency of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance

  15. Radiation and Electromagnetic Induction Data Fusion for Detection of Buried Radioactive Metal Waste - 12282

    SciTech Connect

    Long, Zhiling; Wei, Wei; Turlapaty, Anish

    2012-07-01

    At the United States Army's test sites, fired penetrators made of Depleted Uranium (DU) have been buried under ground and become hazardous waste. Previously, we developed techniques for detecting buried radioactive targets. We also developed approaches for locating buried paramagnetic metal objects by utilizing the electromagnetic induction (EMI) sensor data. In this paper, we apply data fusion techniques to combine results from both the radiation detection and the EMI detection, so that we can further distinguish among DU penetrators, DU oxide, and non- DU metal debris. We develop a two-step fusion approach for the task, and test it with surveymore » data collected on simulation targets. In this work, we explored radiation and EMI data fusion for detecting DU, oxides, and non-DU metals. We developed a two-step fusion approach based on majority voting and a set of decision rules. With this approach, we fuse results from radiation detection based on the RX algorithm and EMI detection based on a 3-step analysis. Our fusion approach has been tested successfully with data collected on simulation targets. In the future, we will need to further verify the effectiveness of this fusion approach with field data. (authors)« less

  16. Synthetic electromagnetic knot in a three-dimensional skyrmion

    PubMed Central

    Lee, Wonjae; Gheorghe, Andrei H.; Tiurev, Konstantin; Ollikainen, Tuomas; Möttönen, Mikko; Hall, David S.

    2018-01-01

    Classical electromagnetism and quantum mechanics are both central to the modern understanding of the physical world and its ongoing technological development. Quantum simulations of electromagnetic forces have the potential to provide information about materials and systems that do not have conveniently solvable theoretical descriptions, such as those related to quantum Hall physics, or that have not been physically observed, such as magnetic monopoles. However, quantum simulations that simultaneously implement all of the principal features of classical electromagnetism have thus far proved elusive. We experimentally realize a simulation in which a charged quantum particle interacts with the knotted electromagnetic fields peculiar to a topological model of ball lightning. These phenomena are induced by precise spatiotemporal control of the spin field of an atomic Bose-Einstein condensate, simultaneously creating a Shankar skyrmion—a topological excitation that was theoretically predicted four decades ago but never before observed experimentally. Our results reveal the versatile capabilities of synthetic electromagnetism and provide the first experimental images of topological three-dimensional skyrmions in a quantum system. PMID:29511735

  17. FDTD modelling of induced polarization phenomena in transient electromagnetics

    NASA Astrophysics Data System (ADS)

    Commer, Michael; Petrov, Peter V.; Newman, Gregory A.

    2017-04-01

    The finite-difference time-domain scheme is augmented in order to treat the modelling of transient electromagnetic signals containing induced polarization effects from 3-D distributions of polarizable media. Compared to the non-dispersive problem, the discrete dispersive Maxwell system contains costly convolution operators. Key components to our solution for highly digitized model meshes are Debye decomposition and composite memory variables. We revert to the popular Cole-Cole model of dispersion to describe the frequency-dependent behaviour of electrical conductivity. Its inversely Laplace-transformed Debye decomposition results in a series of time convolutions between electric field and exponential decay functions, with the latter reflecting each Debye constituents' individual relaxation time. These function types in the discrete-time convolution allow for their substitution by memory variables, annihilating the otherwise prohibitive computing demands. Numerical examples demonstrate the efficiency and practicality of our algorithm.

  18. Information Architecture without Internal Theory: An Inductive Design Process.

    ERIC Educational Resources Information Center

    Haverty, Marsha

    2002-01-01

    Suggests that information architecture design is primarily an inductive process, partly because it lacks internal theory and partly because it is an activity that supports emergent phenomena (user experiences) from basic design components. Suggests a resemblance to Constructive Induction, a design process that locates the best representational…

  19. ALLTEM Multi-Axis Electromagnetic Induction System Demonstration and Validation

    DTIC Science & Technology

    2012-08-01

    threshold T-high higher threshold TMGS Tensor Magnetic Gradiometer System TOI target of interest Tx ALLTEM transmitter USGS U.S. Geological...the Tensor Magnetic Gradiometer System ( TMGS ) and two prototype EMI instruments, the Very Early Time-domain ElectroMagnetic (VETEM) system and the...project one prototype magnetic system, the TMGS , and two prototype EMI instruments, VETEM and the High Frequency Sounder, were evaluated. Subsequent

  20. Advancements in Transmitters and Sensors for Biological Tissue Imaging in Magnetic Induction Tomography

    PubMed Central

    Zakaria, Zulkarnay; Rahim, Ruzairi Abdul; Mansor, Muhammad Saiful Badri; Yaacob, Sazali; Ayub, Nor Muzakkir Nor; Muji, Siti Zarina Mohd.; Rahiman, Mohd Hafiz Fazalul; Aman, Syed Mustafa Kamal Syed

    2012-01-01

    Magnetic Induction Tomography (MIT), which is also known as Electromagnetic Tomography (EMT) or Mutual Inductance Tomography, is among the imaging modalities of interest to many researchers around the world. This noninvasive modality applies an electromagnetic field and is sensitive to all three passive electromagnetic properties of a material that are conductivity, permittivity and permeability. MIT is categorized under the passive imaging family with an electrodeless technique through the use of excitation coils to induce an electromagnetic field in the material, which is then measured at the receiving side by sensors. The aim of this review is to discuss the challenges of the MIT technique and summarize the recent advancements in the transmitters and sensors, with a focus on applications in biological tissue imaging. It is hoped that this review will provide some valuable information on the MIT for those who have interest in this modality. The need of this knowledge may speed up the process of adopted of MIT as a medical imaging technology. PMID:22969341

  1. [Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].

    PubMed

    Yuan, Jun; Xiao, Dongping; Jian, Xin

    2010-11-01

    The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.

  2. Measurement and control systems for an imaging electromagnetic flow metre.

    PubMed

    Zhao, Y Y; Lucas, G; Leeungculsatien, T

    2014-03-01

    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller. © 2013 ISA Published by ISA All rights reserved.

  3. Pulsed electromagnetic field affects intrinsic and endoplasmatic reticulum apoptosis induction pathways in MonoMac6 cell line culture.

    PubMed

    Kaszuba-Zwoinska, J; Chorobik, P; Juszczak, K; Zaraska, W; Thor, P J

    2012-10-01

    Current studies were aimed to elucidate influence of pulsed electromagnetic field stimulation on cell viability and apoptosis induction pathways. For the experimental model we have chosen monocytic cell line MonoMac6 and several apoptosis inducers with different mechanism of death induction like puromycin, colchicine, cyclophosphamide, minocycline and hydrogen peroxide. MonoMac6 cell line was grown at density 1x10(5) cells/well in 96-well culture plates. To induce cell death cell cultures were treated with different apoptosis inducers like puromycin, colchicine, cyclophosphamide, minocycline, hydrogen peroxide and at the same time with pulsed electromagnetic field 50 Hz, 45±5 mT (PEMF) for 4 hour per each stimulation, three times, in 24 hours intervals. Afterwards, cells were harvested for flow cytometry analysis of cell viability measured by annexin V-APC labeled and propidium iodide staining. Expression of apoptosis related genes was evaluated by semi quantitative reverse transcription (RT)-PCR assay. NuPAGE Novex Western blot analysis was carried out for apoptosis inducing factor (AIF) abundance in cytosolic and nuclear extracts of MonoMac6 cells. Puromycin, colchicine and minocycline activated cells and simultaneously treated with PEMF have shown out diminished percentage of annexinV positive (AnV+) cells comparing to controls without PEMF stimulation. MonaMac6 cells puromycin/colchicyne and PEMF treated were to a higher extent double stained (AnV+,PI+), which means increased late apoptotic as well as necrotic (PI+) cells, than non-stimulated controls. On the other hand, minocycline activated cells prior to PEMF treatment showed diminished amount of apoptotic and necrotic (annexin V, annexin V and propidium iodide, propidium iodide positive staining) cells. The opposite effect of PEMF on the percentage of annexin V positively stained cells has been achieved after treatment of MonoMac6 culture with cyclophoshamide and hydrogen peroxide. PEMF enhanced early

  4. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  5. Equivalent Electromagnetic Constants for Microwave Application to Composite Materials for the Multi-Scale Problem

    PubMed Central

    Fujisaki, Keisuke; Ikeda, Tomoyuki

    2013-01-01

    To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model) and the homogeneous model (macro-model). However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity. PMID:28788395

  6. Luminous Phenomena - A Scientific Investigation of Anomalous Luminous Atmospheric Phenomena

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2003-12-01

    Anomalous atmospheric luminous phenomena reoccur in several locations of Earth, in the form of multi-color light balls characterized by large dimensions, erratic motion, long duration and a correlated electromagnetic field. The author (an astrophysicist) of this book, which is organized as a selection of some of his technical and popularizing papers and seminars, describes and discusses all the efforts that have been done in 10 years, through several missions and a massive data analysis, in order to obtain some scientific explanation of this kind of anomalies, in particular the Hessdalen anomaly in Norway. The following topics are treated in the book: a) geographic archive of the areas of Earth where such phenomena are known to reoccur most often; b) observational techniques of astrophysical kind that have been used to acquire the data; c) main scientific results obtained so far; d) physical interpretation and natural hypothesis vs. ETV hypothesis; e) historical and chronological issues; f) the importance to brindle new energy sources; g) the importance to keep distance from any kind of "ufology". An unpublished chapter is entirely devoted to a detailed scientific investigation project of light phenomena reoccurring on the Ontario lake; the chosen new-generation multi-wavelength sensing instrumentation that is planned to be used in future missions in that specific area, is described together with scientific rationale and planned procedures. The main results, which were obtained in other areas of the world, such as the Arizona desert, USA and the Sibillini Mountains, Italy, are also briefly mentioned. One chapter is entirely dedicated to the presentation of extensive abstracts of technical papers by the author concerning this specific subject. The book is accompanied with a rich source of bibliographic references.

  7. Compact, Low-Noise Magnetic Sensor with Fluxgate (DC) and Induction (AC) Modes of Operation

    DTIC Science & Technology

    2009-07-01

    induction sensor and the fluxgate magnetometer . ......................................... 2 Figure 3.1 - Impulse response of a 4” long coil (#6...Block diagram of the Year 2, Task 2 fluxgate magnetometer . ................................... 6 Figure 3.3 - FIS-prototype magnetic-field...and demonstrated an innovative dual-mode, fluxgate -induction sensor (FIS) that combines a fluxgate magnetometer and an electromagnetic (EM) induction

  8. A Novel Angular Acceleration Sensor Based on the Electromagnetic Induction Principle and Investigation of Its Calibration Tests

    PubMed Central

    Zhao, Hao; Feng, Hao

    2013-01-01

    An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor. PMID:23941911

  9. Use of electromagnetic induction methods to monitor remediation at the University of Connecticut landfill: 2004–2011

    USGS Publications Warehouse

    Johnson, Carole D.; White, Eric A.; Joesten, Peter K.

    2012-01-01

    Time‐lapse geophysical surveys using frequency‐domain electromagnetics (FDEM) can indirectly measure time‐varying hydrologic parameters such as fluid saturation or solute concentration. Monitoring of these processes provides insight into aquifer properties and the effectiveness of constructed controls (such as leachate interceptor trenches), as well as aquifer responses to natural or induced stresses. At the University of Connecticut landfill, noninvasive, electromagnetic induction (EMI) methods were used to monitor changes in subsurface electrical conductivity that were related to the landfill‐closure activities. After the landfill was closed, EMI methods were used to monitor changes in water saturation and water quality. As part of a long‐term monitoring plan to observe changes associated with closure, redevelopment, and remediation of the former landfill, EMI data were collected to supplement information from groundwater samples collected in wells to the south and north of the landfill. In comparison to single‐point measurements that could have been collected by conventional installation of additional monitoring wells, the EMI methods provided increased spatial coverage, and were less invasive and therefore less destructive to the wetland north of the landfill. To monitor effects of closure activities on the subsurface conductivity, EMI measurements were collected from 2004 to 2011 along discrete transects north and south of the landfill prior to, during, and after the landfill closure. In general, the results indicated an overall decline in subsurface electrical conductivity with time and with distance from the former landfill. This decline in electrical conductivity indicated that the closure and remediation efforts reduced the amount of leachate that originated from the landfill and that entered the drainages to the north and south of the landfill.

  10. Induction plasma tube

    DOEpatents

    Hull, D.E.

    1982-07-02

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  11. Induction plasma tube

    DOEpatents

    Hull, Donald E.

    1984-01-01

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  12. Electromagnetic containerless processing requirements and recommended facility concept and capabilities for space lab

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Bloom, H. L.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.

    1974-01-01

    Containerless melting, reaction, and solidification experiments and processes which potentially can lead to new understanding of material science and production of new or improved materials in the weightless space environment are reviewed in terms of planning for spacelab. Most of the experiments and processes discussed are amenable to the employment of electromagnetic position control and electromagnetic induction or electron beam heating and melting. The spectrum of relevant properties of materials, which determine requirements for a space laboratory electromagnetic containerless processing facility are reviewed. Appropriate distributions and associated coil structures are analyzed and compared on the basis of efficiency, for providing the functions of position sensing, control, and induction heating. Several coil systems are found capable of providing these functions. Exchangeable modular coils in appropriate sizes are recommended to achieve the maximum power efficiencies, for a wide range of specimen sizes and resistivities, in order to conserve total facility power.

  13. A field test of electromagnetic geophysical techniques for locating simulated in situ mining leach solution

    SciTech Connect

    Tweeton, D.R.; Hanson, J.C.; Friedel, M.J.

    1994-01-01

    The US Bureau of Mines, The University of Arizona, Sandia National Laboratories, and Zonge Engineering and Research Organization, Inc., conducted cooperative field tests of six electromagnetic (EM) geophysical methods to compare their effectiveness in locating a brine solution simulating in situ leach solution or a high-conductivity plume of contamination. The brine was approximately 160 m below the surface. The testsite was the University's San Xavier experimental mine near Tucson, AZ. Geophysical surveys using surface and surface-borehole, time-domain electromagnetic (TEM) induction; surface controlled-source audiofrequency magnetotellurics (CSAMT); surface-borehole, frequency-domain electromagnetic (FEM) induction; crosshole FEM; and surface magnetic field ellipticity were conducted beforemore » and during brine injection. The surface TEM data showed a broad decrease in resistivity. CSAMT measurements with the conventional orientation did not detect the brine, but measurements with another orientation indicated some decrease in resistivity. The surface-borehole and crosshole methods located a known fracture and other fracture zones inferred from borehole induction logs. Surface magnetic field ellipticity data showed a broad decrease in resistivity at depth following brine injection.« less

  14. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths

    PubMed Central

    Jiang, Zhi Hao; Turpin, Jeremy P.; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H.

    2015-01-01

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. PMID:26217054

  15. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths.

    PubMed

    Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H

    2015-08-28

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Numerical and Experimental Investigation on the Attenuation of Electromagnetic Waves in Unmagnetized Plasmas Using Inductively Coupled Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Lin, Min; Xu, Haojun; Wei, Xiaolong; Liang, Hua; Song, Huimin; Sun, Quan; Zhang, Yanhua

    2015-10-01

    The attenuation of electromagnetic (EM) waves in unmagnetized plasma generated by an inductively coupled plasma (ICP) actuator has been investigated both theoretically and experimentally. A numerical study is conducted to investigate the propagation of EM waves in multilayer plasma structures which cover a square flat plate. Experimentally, an ICP actuator with dimensions of 20 cm×20 cm×4 cm is designed to produce a steady plasma slab. The attenuation of EM waves in the plasma generated by the ICP actuator is measured by a reflectivity arch test method at incident waves of 2.3 GHz and 10.1 GHz, respectively. A contrastive analysis of calculated and measured results of these incident wave frequencies is presented, which suggests that the experiment accords well with our theory. As expected, the plasma slab generated by the ICP actuator can effectively attenuate the EM waves, which may have great potential application prospects in aircraft stealth. supported by National Natural Science Foundation of China (Nos. 51276197, 11472306 and 11402301)

  17. Transient interaction model of electromagnetic field generated by lightning current pulses and human body

    NASA Astrophysics Data System (ADS)

    Iváncsy, T.; Kiss, I.; Szücs, L.; Tamus, Z. Á.

    2015-10-01

    The lightning current generates time-varying magnetic field near the down- conductor and the down-conductors are mounted on the wall of the buildings where residential places might be situated. It is well known that the rapidly changing magnetic fields can generate dangerous eddy currents in the human body.The higher duration and gradient of the magnetic field can cause potentially life threatening cardiac stimulation. The coupling mechanism between the electromagnetic field and the human body is based on a well-known physical phenomena (e.g. Faradays law of induction). However, the calculation of the induced current is very complicated because the shape of the organs is complex and the determination of the material properties of living tissues is difficult, as well. Our previous study revealed that the cardiac stimulation is independent of the rising time of the lightning current and only the peak of the current counts. In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near down-conductor and human body. Our previous models are based on the quasi stationer field calculations, the new improved model is a transient model. This is because the magnetic field around the down-conductor and in the human body can be determined more precisely, therefore the dangerous currents in the body can be estimated.

  18. Hydrogeological Characterization of the Upper Camp Bird III Rock Glacier in the San Juan Mountains, Colorado Using Electromagnetic Induction

    NASA Astrophysics Data System (ADS)

    Granados-Aguilar, R.; Giardino, J. R.; Everett, M. E.; Pondthai, P.; Ramsey, C. E.; Mmasa, D.; Witek, M.; Rodriguez, R.

    2017-12-01

    Global change is the set of variations in environmental conditions that significantly impact the Earth systems. Climate, sea level, land-use/land-cover, and atmospheric composition changes are the most recognized environmental global changes. Impacts of climatic variability can include decreased rainfall, snowpack, shorter snow seasons, and changes in the timing, frequency, and intensity of precipitation events in some areas of the world, whereas other regions can suffer from the opposite effects leading to events such as landslides, flooding and extraordinary snowfall. The proposed research intends to provide a characterization of the internal structure, including water storages, pathways, and thresholds, as well as an estimation of the volume of ice stored within a rock glacier to evaluate its potential as a freshwater resources. The area of study corresponds to the third level of Camp Bird Mine in Ouray, Colorado. The tongue-shaped active rock glacier of interest, Upper Camp Bird III, has not been previously studied in detail. The predominant lithologies in the study area are Mesozoic and Cenozoic. Orogenic events caused alteration of sedimentary and intrusive igneous rock as mineral rich, hydrothermal fluids deposited economically valuable minerals in the region. Traditional geological and geomorphological mapping techniques will be complemented with the use of unmanned aerial vehicles (UAV). To obtain a detailed representation of the internal structure and determine the boundaries between resistive (rocks, sediment, and ice) and conductive materials (water and ore deposits) of the rock glacier, time-domain and frequency-domain methods will be implemented. The G-TEM by Geonics Ltd. is an innovative controlled-source time-domain electromagnetic induction system. Using the G-TEM, the distribution of electrical conductivity in the subsurface can be mapped in order to characterize the internal structure of the rock glacier from 5-10 m depth and below. The EM

  19. Computational Electronics and Electromagnetics

    SciTech Connect

    DeFord, J.F.

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust areamore » fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.« less

  20. Electromagnetic pulses bone healing booster

    NASA Astrophysics Data System (ADS)

    Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.

    2015-11-01

    Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.

  1. Observation of unidirectional backscattering-immune topological electromagnetic states.

    PubMed

    Wang, Zheng; Chong, Yidong; Joannopoulos, J D; Soljacić, Marin

    2009-10-08

    One of the most striking phenomena in condensed-matter physics is the quantum Hall effect, which arises in two-dimensional electron systems subject to a large magnetic field applied perpendicular to the plane in which the electrons reside. In such circumstances, current is carried by electrons along the edges of the system, in so-called chiral edge states (CESs). These are states that, as a consequence of nontrivial topological properties of the bulk electronic band structure, have a unique directionality and are robust against scattering from disorder. Recently, it was theoretically predicted that electromagnetic analogues of such electronic edge states could be observed in photonic crystals, which are materials having refractive-index variations with a periodicity comparable to the wavelength of the light passing through them. Here we report the experimental realization and observation of such electromagnetic CESs in a magneto-optical photonic crystal fabricated in the microwave regime. We demonstrate that, like their electronic counterparts, electromagnetic CESs can travel in only one direction and are very robust against scattering from disorder; we find that even large metallic scatterers placed in the path of the propagating edge modes do not induce reflections. These modes may enable the production of new classes of electromagnetic device and experiments that would be impossible using conventional reciprocal photonic states alone. Furthermore, our experimental demonstration and study of photonic CESs provides strong support for the generalization and application of topological band theories to classical and bosonic systems, and may lead to the realization and observation of topological phenomena in a generally much more controlled and customizable fashion than is typically possible with electronic systems.

  2. Rethinking Reinforcement: Allocation, Induction, and Contingency

    PubMed Central

    Baum, William M

    2012-01-01

    The concept of reinforcement is at least incomplete and almost certainly incorrect. An alternative way of organizing our understanding of behavior may be built around three concepts: allocation, induction, and correlation. Allocation is the measure of behavior and captures the centrality of choice: All behavior entails choice and consists of choice. Allocation changes as a result of induction and correlation. The term induction covers phenomena such as adjunctive, interim, and terminal behavior—behavior induced in a situation by occurrence of food or another Phylogenetically Important Event (PIE) in that situation. Induction resembles stimulus control in that no one-to-one relation exists between induced behavior and the inducing event. If one allowed that some stimulus control were the result of phylogeny, then induction and stimulus control would be identical, and a PIE would resemble a discriminative stimulus. Much evidence supports the idea that a PIE induces all PIE-related activities. Research also supports the idea that stimuli correlated with PIEs become PIE-related conditional inducers. Contingencies create correlations between “operant” activity (e.g., lever pressing) and PIEs (e.g., food). Once an activity has become PIE-related, the PIE induces it along with other PIE-related activities. Contingencies also constrain possible performances. These constraints specify feedback functions, which explain phenomena such as the higher response rates on ratio schedules in comparison with interval schedules. Allocations that include a lot of operant activity are “selected” only in the sense that they generate more frequent occurrence of the PIE within the constraints of the situation; contingency and induction do the “selecting.” PMID:22287807

  3. Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.

    2011-01-01

    Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration

  4. Induction heating apparatus and methods of operation thereof

    DOEpatents

    Richardson, John G.

    2006-08-01

    Methods of operation of an induction melter include providing material within a cooled crucible proximate an inductor. A desired electromagnetic flux skin depth for heating the material within the crucible may be selected, and a frequency of an alternating current for energizing the inductor and for producing the desired skin depth may be selected. The alternating current frequency may be adjusted after energizing the inductor to maintain the desired electromagnetic flux skin depth. The desired skin depth may be substantially maintained as the temperature of the material varies. An induction heating apparatus includes a sensor configured to detect changes in at least one physical characteristic of a material to be heated in a crucible, and a controller configured for selectively varying a frequency of an alternating current for energizing an inductor at least partially in response to changes in the physical characteristic to be detected by the sensor.

  5. A Novel Tactile Sensor with Electromagnetic Induction and Its Application on Stick-Slip Interaction Detection

    PubMed Central

    Liu, Yanjie; Han, Haijun; Liu, Tao; Yi, Jingang; Li, Qingguo; Inoue, Yoshio

    2016-01-01

    Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems. PMID:27023545

  6. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Peer, J.; Kendl, A.

    2010-06-01

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  7. The turbulent recirculating flow field in a coreless induction furnace. A comparison of theoretical predictions with measurements

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation for the electromagnetic force field and the fluid flow field in a coreless induction furnace is presented. The fluid flow field was represented by writing the axisymmetric turbulent Navier-Stokes equation, containing the electromagnetic body force term. The electromagnetic body force field was calculated by using a technique of mutual inductances. The kappa-epsilon model was employed for evaluating the turbulent viscosity and the resultant differential equations were solved numerically. Theoretically predicted velocity fields are in reasonably good agreement with the experimental measurements reported by Hunt and Moore; furthermore, the agreement regarding the turbulent intensities are essentially quantitative. These results indicate that the kappa-epsilon model provides a good engineering representation of the turbulent recirculating flows occurring in induction furnaces. At this stage it is not clear whether the discrepancies between measurements and the predictions, which were not very great in any case, are attributable either to the model or to the measurement techniques employed.

  8. How do pre-service teachers picture various electromagnetic phenomenon? A qualitative study of pre-service teachers' conceptual understanding of fundamental electromagnetic interaction

    NASA Astrophysics Data System (ADS)

    Beer, Christopher P.

    This study analyzes the nature of pre-service teachers' conceptual models of various electromagnetic phenomena, specifically electrical current, electrical resistance, and light/matter interactions. This is achieved through the students answering the three questions on electromagnetism using a free response approach including both verbal and pictorial representation. The student responses are then analyzed qualitatively and quantitatively utilizing a multi-tiered approach. These analyses include epistemological representation, misconceptions, correct conceptions, and the impact of high school physics exposure on student conceptions. This study is unique in three primary respects; the free response questionnaire approach, a subject group that consists of pre-service teachers, and a primarily female demographic.

  9. Velocity damper for electromagnetically levitated materials

    DOEpatents

    Fox, Richard J.

    1994-01-01

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  10. Overview of Advanced Electromagnetic Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Kamhawi, Hani; Gilland, James H.; Arrington, Lynn A.

    2005-01-01

    NASA Glenn Research Center s Very High Power Electric Propulsion task is sponsored by the Energetics Heritage Project. Electric propulsion technologies currently being investigated under this program include pulsed electromagnetic plasma thrusters, magnetoplasmadynamic thrusters, helicon plasma sources as well as the systems models for high power electromagnetic propulsion devices. An investigation and evaluation of pulsed electromagnetic plasma thruster performance at energy levels up to 700 Joules is underway. On-going magnetoplasmadynamic thruster experiments will investigate applied-field performance characteristics of gas-fed MPDs. Plasma characterization of helicon plasma sources will provide additional insights into the operation of this novel propulsion concept. Systems models have been developed for high power electromagnetic propulsion concepts, such as pulsed inductive thrusters and magnetoplasmadynamic thrusters to enable an evaluation of mission-optimized designs.

  11. Custom modular electromagnetic induction system for shallow electrical conductivity measurements

    NASA Astrophysics Data System (ADS)

    Mester, Achim; Zimmermann, Egon; Tan, Xihe; von Hebel, Christian; van der Kruk, Jan; van Waasen, Stefan

    2017-04-01

    Electromagnetic induction (EMI) is a contactless measurement method that offers fast and easy investigations of the shallow electrical conductivity, e.g. on the field-scale. Available frequency domain EMI systems offer multiple fixed transmitter-receiver (Tx-Rx) pairs with Tx-Rx separations between 0.3 and 4.0 m and investigation depths of up to six meters. Here, we present our custom EMI system that consists of modular sensor units that can either be transmitters or receivers, and a backpack containing the data acquisition system. The prototype system is optimized for frequencies between 5 and 30 kHz and Tx-Rx separations between 0.4 and 2.0 m. Each Tx and Rx signal is digitized separately and stored on a notebook computer. The soil conductivity information is determined after the measurements with advanced digital processing of the data using optimized correction and calibration procedures. The system stores the raw data throughout the entire procedure, which offers many advantages: (1) comprehensive accuracy and error analysis as well as the reproducibility of corrections and calibration procedures; (2) easy customizability of the number of Tx-/Rx-units and their arrangement and frequencies; (3) signals from simultaneously working transmitters can be separated within the received data using orthogonal signals, resulting in additional Tx-Rx pairs and maximized soil information; and (4) later improvements in the post-processing algorithms can be applied to old data sets. Exemplary, here we present an innovative setup with two transmitters and five receivers using orthogonal signals yielding ten Tx-Rx pairs. Note that orthogonal signals enable for redundant Tx-Rx pairs that are useful for verification of the transmitter signals and for data stacking. In contrast to commercial systems, only adjustments in the post-processing were necessary to realize such measurement configurations with flexibly combined Tx and Rx modules. The presented system reaches an accuracy of

  12. An overview of landmine detection with emphasis on electromagnetic approaches

    NASA Astrophysics Data System (ADS)

    Das, Yogadhish

    2003-04-01

    Human suffering caused by antipersonnel landmines left over from previous conflicts has only recently received significant public exposure. However, considerable amount of research on how to detect and deal with buried landmines has been carried out at least since the second world war. The research has encompassed a wide range of technologies and large sums of money have been spent. Despite these efforts there is still no operationally satisfactory solution, especially to the detection problem. This lack of success is attributable to the difficulty of the problem and the high degree of effectiveness demanded of any proposed solution. The many landmine detection approaches can be divided into two broad categories: (1)approaches primarily aimed at detecting the casing of the landmine (physical properties of its explosive content may also have some influence) and (2)approaches aimed at directly detecting the explosive contents. Examples of techniques belonging to the first group are electromagnetic induction, ground probing radar and other high frequency electromagnetic techniques, acoustics and other mechanical techniques, and infrared. Trace explosive vapour detection, thermalneutron activation and nuclear quadrupole resonance are examples of the second group. Following a brief introduction to nature of the landmine problem and the many technologies that have been explored to solve it, the presentation will focus on some of the detection approaches based on electromagnetic techniques. In particular, the state of the art in electromagnetic induction detection will be reviewed and required future research and development in this area will be presented.

  13. EML - an electromagnetic levitator for the International Space Station

    NASA Astrophysics Data System (ADS)

    Seidel, A.; Soellner, W.; Stenzel, C.

    2011-12-01

    Based on a long and successful evolution of electromagnetic levitators for microgravity applications, including facilities for parabolic flights, sounding rocket missions and Spacelab missions, the Electromagnetic Levitator EML provides unique experiment opportunities onboard ISS. With the application of the electromagnetic levitation principle under microgravity conditions the undercooled regime of electrically conductive materials becomes accessible for an extended time which allows the performance of unique studies of nucleation phenomena or phase formation as well as the measurement of a range of thermophysical properties both above the melting temperature and in the undercooled regime. The EML payload is presently being developed by Astrium Space Transportation under contracts to ESA and DLR. The design of the payload allows flexible experiment scenarios individually targeted towards specific experimental needs and samples including live video control of the running experiments and automatic or interactive process control.

  14. Finite Element Analysis in the Estimation of Air-Gap Torque and Surface Temperature of Induction Machine

    NASA Astrophysics Data System (ADS)

    Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.

    2017-08-01

    This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.

  15. Nova Scotia: ``Feu Follet" At Cheticamp, and Also the Phenomena At L'Sitkuk of the Mi'Kmaw, May Be Electromagnetic In Nature.

    NASA Astrophysics Data System (ADS)

    Ochs, Michael Ann; McLeod, Roger D.

    2001-11-01

    There is a strong tradition that ``feu follet" exists at the cemetery associated with the Acadian French at Cheticamp. It is described as a blue light, and may actually be the equivalent of an ascending, positively charged stream of ions in the atmosphere, just like the blue-light column that is often a precursor of a storm's lightning-strike. Similar phenomena are at America's Stonehenge, at a stone serpent effigy site in Ohio, and just north of the Lakes Memphremagog and Magog of Vermont and Canada. At the Bear River L'sitkuk Reservation area, which seems to us to have been a most unsuitable site, was deliberately chosen by the Mi'kmaw for their living area. Was this because certain properties of the electromagnetic field (EMF) are evident to them there, which also seem to be reflected in their legends? We hope to establish that these disparate cultures and their separate worldviews can be confirmed by the presence of particular EMF signatures. *This paper does not represent the views of the United States Environmental Protection Agency.

  16. A gauged finite-element potential formulation for accurate inductive and galvanic modelling of 3-D electromagnetic problems

    NASA Astrophysics Data System (ADS)

    Ansari, S. M.; Farquharson, C. G.; MacLachlan, S. P.

    2017-07-01

    In this paper, a new finite-element solution to the potential formulation of the geophysical electromagnetic (EM) problem that explicitly implements the Coulomb gauge, and that accurately computes the potentials and hence inductive and galvanic components, is proposed. The modelling scheme is based on using unstructured tetrahedral meshes for domain subdivision, which enables both realistic Earth models of complex geometries to be considered and efficient spatially variable refinement of the mesh to be done. For the finite-element discretization edge and nodal elements are used for approximating the vector and scalar potentials respectively. The issue of non-unique, incorrect potentials from the numerical solution of the usual incomplete-gauged potential system is demonstrated for a benchmark model from the literature that uses an electric-type EM source, through investigating the interface continuity conditions for both the normal and tangential components of the potential vectors, and by showing inconsistent results obtained from iterative and direct linear equation solvers. By explicitly introducing the Coulomb gauge condition as an extra equation, and by augmenting the Helmholtz equation with the gradient of a Lagrange multiplier, an explicitly gauged system for the potential formulation is formed. The solution to the discretized form of this system is validated for the above-mentioned example and for another classic example that uses a magnetic EM source. In order to stabilize the iterative solution of the gauged system, a block diagonal pre-conditioning scheme that is based upon the Schur complement of the potential system is used. For all examples, both the iterative and direct solvers produce the same responses for the potentials, demonstrating the uniqueness of the numerical solution for the potentials and fixing the problems with the interface conditions between cells observed for the incomplete-gauged system. These solutions of the gauged system also

  17. Effect of inductive and capacitive coupling on the current–voltage characteristic and electromagnetic radiation from a system of Josephson junctions

    SciTech Connect

    Rahmonov, I. R., E-mail: rahmonov@theor.jinr.ru, E-mail: ilhom-tj@inbox.ru; Shukrinov, Yu. M.; Atanasova, P. Kh.

    We have studied the current–voltage characteristic of a system of long Josephson junctions taking into account the inductive and capacitive coupling. The dependence of the average time derivative of the phase difference on the bias current and spatiotemporal dependences of the phase difference and magnetic field in each junction are considered. The possibility of branching of the current–voltage characteristic in the region of zero field step, which is associated with different numbers of fluxons in individual Josephson junctions, is demonstrated. The current–voltage characteristic of the system of Josephson junctions is compared with the case of a single junction, and itmore » is shown that the observed branching is due to coupling between the junctions. The intensity of electromagnetic radiation associated with motion of fluxons is calculated, and the effect of coupling between junctions on the radiation power is analyzed.« less

  18. Student Understanding of Light as an Electromagnetic Wave: Relating the Formalism to Physical Phenomena.

    ERIC Educational Resources Information Center

    Ambrose, Bradley S.; Heron, Paula R. L.; Vokos, Stamatis; McDermott, Lillian C.

    1999-01-01

    Some serious difficulties that students have in understanding physical optics may be due in part to a lack of understanding of light as an electromagnetic wave. Describes the development and use of tutorials designed to address students' conceptual difficulties. (Contains over 15 references.) (Author/WRM)

  19. Modelling natural electromagnetic interference in man-made conductors for space weather applications

    NASA Astrophysics Data System (ADS)

    Trichtchenko, Larisa

    2016-04-01

    Power transmission lines above the ground, cables and pipelines in the ground and under the sea, and in general all man-made long grounded conductors are exposed to the variations of the natural electromagnetic field. The resulting currents in the networks (commonly named geomagnetically induced currents, GIC), are produced by the conductive and/or inductive coupling and can compromise or even disrupt system operations and, in extreme cases, cause power blackouts, railway signalling mis-operation, or interfere with pipeline corrosion protection systems. To properly model the GIC in order to mitigate their impacts it is necessary to know the frequency dependence of the response of these systems to the geomagnetic variations which naturally span a wide frequency range. For that, the general equations of the electromagnetic induction in a multi-layered infinitely long cylinder (representing cable, power line wire, rail or pipeline) embedded in uniform media have been solved utilising methods widely used in geophysics. The derived electromagnetic fields and currents include the effects of the electromagnetic properties of each layer and of the different types of the surrounding media. This exact solution then has been used to examine the electromagnetic response of particular samples of long conducting structures to the external electromagnetic wave for a wide range of frequencies. Because the exact solution has a rather complicated structure, simple approximate analytical formulas have been proposed, analysed and compared with the results from the exact model. These approximate formulas show good coincidence in the frequency range spanning from geomagnetic storms (less than mHz) to pulsations (mHz to Hz) to atmospherics (kHz) and above, and can be recommended for use in space weather applications.

  20. Time-lapse monitoring of soil water content using electromagnetic conductivity imaging

    USDA-ARS?s Scientific Manuscript database

    The volumetric soil water content (VWC) is fundamental to agriculture. Unfortunately, the universally accepted thermogravimetric method is labour intensive and time-consuming to use for field-scale monitoring. Electromagnetic (EM) induction instruments have proven to be useful in mapping the spatio-...

  1. Induction conductivity and natural gamma logs collected in 15 wells at Camp Stanley Storage Activity, Bexar County, Texas

    USGS Publications Warehouse

    Stanton, Gregory P.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Camp Stanley Storage Activity conducted electromagnetic induction conductivity and natural gamma logging of 15 selected wells on the Camp Stanley Storage Activity, located in northern Bexar County, Texas, during March 28–30, 2005. In late 2004, a helicopter electromagnetic survey was flown of the Camp Stanley Storage Activity as part of a U.S. Geological Survey project to better define subsurface geologic units, the structure, and the catchment area of the Trinity aquifer. The electromagnetic induction conductivity and natural gamma log data in this report were collected to constrain the calculation of resistivity depth sections and to provide subsurface controls for interpretation of the helicopter electromagnetic data collected for the Camp Stanley Storage Activity. Logs were recorded digitally while moving the probe in an upward direction to maintain proper depth control. Logging speed was no greater than 30 feet per minute. During logging, a repeat section of at least 100 feet was recorded to check repeatability of log responses. Several of the wells logged were completed with polyvinyl chloride casing that can be penetrated by electromagnetic induction fields and allows conductivity measurement. However, some wells were constructed with steel centralizers and stainless steel screen that caused spikes on both conductivity and resulting resistivity log curves. These responses are easily recognizable and appear at regular intervals on several logs.

  2. Velocity damper for electromagnetically levitated materials

    DOEpatents

    Fox, R.J.

    1994-06-07

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

  3. Monitoring scale-specific and temporal variation in electromagnetic conductivity images

    USDA-ARS?s Scientific Manuscript database

    In the semi-arid and arid landscapes of southwest USA, irrigation sustains agricultural activity; however, there are increasing demands on water resources. As such spatial temporal variation of soil moisture needs to be monitored. One way to do this is to use electromagnetic (EM) induction instrumen...

  4. Integrating surface and borehole geophysics in ground water studies - an example using electromagnetic soundings in south Florida

    USGS Publications Warehouse

    Paillet, Frederick; Hite, Laura; Carlson, Matthew

    1999-01-01

    Time domain surface electromagnetic soundings, borehole induction logs, and other borehole logging techniques are used to construct a realistic model for the shallow subsurface hydraulic properties of unconsolidated sediments in south Florida. Induction logs are used to calibrate surface induction soundings in units of pore water salinity by correlating water sample specific electrical conductivity with the electrical conductivity of the formation over the sampled interval for a two‐layered aquifer model. Geophysical logs are also used to show that a constant conductivity layer model is appropriate for the south Florida study. Several physically independent log measurements are used to quantify the dependence of formation electrical conductivity on such parameters as salinity, permeability, and clay mineral fraction. The combined interpretation of electromagnetic soundings and induction logs was verified by logging three validation boreholes, confirming quantitative estimates of formation conductivity and thickness in the upper model layer, and qualitative estimates of conductivity in the lower model layer.

  5. Reliability of electromagnetic induction data in near surface application

    NASA Astrophysics Data System (ADS)

    Nüsch, A.; Werban, U.; Sauer, U.; Dietrich, P.

    2012-12-01

    Use of the Electromagnetic Induction method for measuring electrical conductivities is widespread in applied geosciences, since the method is easy to perform and influenced by soil parameters. The vast amount of different applications of EMI measurements for different spatial resolutions as well as for the derivation of different soil parameters necessitates a unified handling of EMI data. So the requirements to the method have been changed from a qualitative overview to a quantitative use of data. A quantitative treatment of the data however is limited by the available instruments, which were made only for qualitative use. Nevertheless the limitations of the method can be expanded by considering a few conditions. In this study, we introduce possibilities for enhancing the quality of EMI data with regards to large scale investigations. In a set of systematic investigations, we show which aspects have to be taken into account when using a commercially available instrument, related to long term stability, comparability and repeatability. In-depth knowledge of the instruments used concerning aspects such as their calibration procedure, long term stability, battery life and thermal behaviour is an essential pre-requisite before starting the measurement process. A further aspect highlighted is quality control during measurements and if necessary a subsequent data correction which is pre-requisite for a quantitative analysis of the data. Quality control during the measurement process is crucial. Before a measurement starts, it is recommended that a short term test is carried out on-site to check environmental noise. Signal to noise ratio is a decisive influencing factor of whether or not the method is applicable at the chosen field site. A measurement needs to be monitored according to possible drifts. This can be achieved with different accuracies and starting from a quality check, with the help of reference lines up to a quantitative control with reference points

  6. High-frequency magnetodielectric response in yttrium iron garnet at room temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Liu, Yuan; Jia, Longfei; Zhang, Baoshan; Yang, Yi; Tang, Dongming

    2018-05-01

    Magnetic and dielectric properties of Yttrium Iron Garnet are measured over a frequency ranging from 0.5 GHz to 10 GHz with a magnetic field applied parallel to the propagation direction of the microwave. At the same time, the magnetodielectric phenomena are detected quantitatively. The maximum amplitude of the magnetodielectric coefficient is acquired at the ferromagnetic resonance frequency, and the value is up to 1.2% with the magnetic field of 1500 Oe applied. The phenomena have been explained by the Faraday's electromagnetic induction of the precession of the magnetic moments in the electromagnetic field at the ferromagnetic resonance frequency.

  7. Modulated wave formation in myocardial cells under electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Takembo, Clovis N.; Mvogo, A.; Ekobena Fouda, H. P.; Kofané, T. C.

    2018-06-01

    We exclusively analyze the onset and condition of formation of modulated waves in a diffusive FitzHugh-Nagumo model for myocardial cell excitations. The cells are connected through gap junction coupling. An additive magnetic flux variable is used to describe the effect of electromagnetic induction, while electromagnetic radiation is imposed on the magnetic flux variable as a periodic forcing. We used the discrete multiple scale expansion and obtained, from the model equations, a single differential-difference amplitude nonlinear equation. We performed the linear stability analysis of this equation and found that instability features are importantly influenced by the induced electromagnetic gain. We present the unstable and stable regions of modulational instability (MI). The resulting analytic predictions are confirmed by numerical experiments of the generic equations. The results reveal that due to MI, an initial steady state that consisted of a plane wave with low amplitude evolves into a modulated localized wave patterns, soliton-like in shape, with features of synchronization. Furthermore, the formation of periodic pulse train with breathing motion presents a disappearing pattern in the presence of electromagnetic radiation. This could provide guidance and better understanding of sudden heart failure exposed to heavily electromagnetic radiation.

  8. Electromagnetic flat sheet forming by spiral type actuator coil

    NASA Astrophysics Data System (ADS)

    Akbar, S.; Aleem, M. A.; Sarwar, M. N.; Zillohu, A. U.; Awan, M. S.; Haider, A.; Ahmad, Z.; Akhtar, S.; Farooque, M.

    2016-08-01

    Focus of present work is to develop a setup for high strain rate electromagnetic forming of thin aluminum sheets (0.5, 1.0, 1.5 and 2.0 mm) and optimization of forming parameters. Flat spiral coil of 99.9% pure Cu strip (2.5x8.0 mm) with self-inductance 11 μH, 13 no. of turns and resultant outer diameter of 130mm has been fabricated and was coupled to a capacitor bank of energy, voltage and capacitance of 9 kJ, 900 V and 22.8 mF, respectively. To optimize the coil design, a commercially available software FEMM-4.2 was used to simulate the electromagnetic field profile generated by the coils of different pitch but same number of turns. Results of electromagnetic field intensity proposed by simulation agree in close proximity with those of theoretical as well as experimental data. The calculation of electromagnetic force and magnetic couplings between the coil and metal sheet are made. Forming parameters were optimized for different sheet thicknesses. Electromagnetic field intensity's profile plays a principal role in forming of typical shapes and patterns in sheets.

  9. Light Phenomena from the Nothing

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2004-11-01

    The most recent results of scientific investigations on anomalous light phenomena, which were carried out in Hessdalen, Norway, are described and discussed. The data acquired so far show that the phenomenon is a plasma form triggered by piezoelectricity and maintained by electrochemical effects that become effective when a plasma concentration interacts with an atmosphere rich of water vapor and aerosols. It is also shown that the electrochemical mechanism able to permit an efficient confinement of the plasma can explain some peculiar kinematic and structural characteristics too, being the light phenomenon formed by clusters of small light balls, which are occasionally ejected from the core. The mechanism, with which amplitude time-variations of pulsating light phenomena occur, is also described. It is finally shown how, however, some peculiar aspects of the phenomenon, in particular the occurrence of some transiently geometric shapes, cannot be explained using a geophysical standard model. One hypothesis concerning quantum fluctuations of the zero point energy, including a possible interaction with a form of "electromagnetic intelligence", is discussed as a possible speculation, which is ventured in order to suggest to all physical scientists working in this field to carry out a more in-depth study of the light phenomenon in its entirety.

  10. [The influence of Naturphilosophie in nineteenth-century science: electromagnetism and energy].

    PubMed

    Silva, Ana Paula Bispo; Silva, Jamily Alves da

    2017-01-01

    Phenomena involving electromagnetism and conservation of energy during the nineteenth century did not fit the reigning Newtonian paradigm. Among scholars, there was the need to explain such facts considering "something more" that had not yet been expressed. Through this explanation, Naturphilosophie, the philosophical branch associated with the German romantic movement of the nineteenth century, seems to offer new ways of understanding the sciences. In this article, we present main aspects of the work of Schelling, the main exponent of Naturphilosophie, and how his assumptions were inserted into the physical sciences to explain electromagnetism and conservation of energy.

  11. On the relevance of source effects in geomagnetic pulsations for induction soundings

    NASA Astrophysics Data System (ADS)

    Neska, Anne; Tadeusz Reda, Jan; Leszek Neska, Mariusz; Petrovich Sumaruk, Yuri

    2018-03-01

    This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding). The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows) and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  12. Electromagnetically induced transparency with noisy lasers

    NASA Astrophysics Data System (ADS)

    Xiao, Yanhong; Wang, Tun; Baryakhtar, Maria; van Camp, Mackenzie; Crescimanno, Michael; Hohensee, Michael; Jiang, Liang; Phillips, David F.; Lukin, Mikhail D.; Yelin, Susanne F.; Walsworth, Ronald L.

    2009-10-01

    We demonstrate and characterize two coherent phenomena that can mitigate the effects of laser phase noise for electromagnetically induced transparency (EIT): a laser-power-broadening-resistant resonance in the transmitted intensity cross correlation between EIT optical fields, and a resonant suppression of the conversion of laser phase noise to intensity noise when one-photon noise dominates over two-photon-detuning noise. Our experimental observations are in good agreement with both an intuitive physical picture and numerical calculations. The results have wide-ranging applications to spectroscopy, atomic clocks, and magnetometers.

  13. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    SciTech Connect

    Tatara, Gen, E-mail: gen.tatara@riken.jp; Nakabayashi, Noriyuki; Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 Japan

    2014-05-07

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  14. Vertical spatial sensitivity and exploration depth of low-induction-number electromagnetic-induction instruments

    USGS Publications Warehouse

    Callegary, J.B.; Ferré, T.P.A.; Groom, R.W.

    2007-01-01

    Vertical spatial sensitivity and effective depth of exploration (d e) of low-induction-number (LIN) instruments over a layered soil were evaluated using a complete numerical solution to Maxwell's equations. Previous studies using approximate mathematical solutions predicted a vertical spatial sensitivity for instruments operating under LIN conditions that, for a given transmitter-receiver coil separation (s), coil orientation, and transmitter frequency, should depend solely on depth below the land surface. When not operating under LIN conditions, vertical spatial sensitivity and de also depend on apparent soil electrical conductivity (??a) and therefore the induction number (??). In this new evaluation, we determined the range of ??a and ?? values for which the LIN conditions hold and how de changes when they do not. Two-layer soil models were simulated with both horizontal (HCP) and vertical (VCP) coplanar coil orientations. Soil layers were given electrical conductivity values ranging from 0.1 to 200 mS m-1. As expected, de decreased as ??a increased. Only the least electrically conductive soil produced the de expected when operating under LIN conditions. For the VCP orientation, this was 1.6s, decreasing to 0.8s in the most electrically conductive soil. For the HCP orientation, de decreased from 0.76s to 0.51s. Differences between this and previous studies are attributed to inadequate representation of skin-depth effect and scattering at interfaces between layers. When using LIN instruments to identify depth to water tables, interfaces between soil layers, and variations in salt or moisture content, it is important to consider the dependence of de on ??a. ?? Soil Science Society of America.

  15. Parameters assessment of the inductively-coupled circuit for wireless power transfer

    NASA Astrophysics Data System (ADS)

    Isaev, Yu N.; Vasileva, O. V.; Budko, A. A.; Lefebvre, S.

    2017-02-01

    In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.

  16. Application of induction heating in food processing and cooking: A Review

    USDA-ARS?s Scientific Manuscript database

    Induction heating is an electromagnetic heating technology that has several advantages such as high safety, scalability, and high energy efficiency. It has been applied for a long time in metal processing, medical applications, and cooking. However, the application of this technology in the food pro...

  17. Mass sensitivity studies for an inductively driven railgun

    NASA Astrophysics Data System (ADS)

    Scanlon, J. J., III; Young, A. F.

    1991-01-01

    Those areas which result in substantial system mass reductions for an HPG (homopolar generator) driven EML (electromagnetic launcher) are identified. Sensitivity studies are performed by varying launch mass, peak acceleration, launcher efficiency, inductance gradient, injection velocity, barrel mass per unit length, fuel tankage and pump estimates, and component energy and power densities. Two major contributors to the system mass are the allowed number of shots per barrel versus the number required for the mission, and the barrel length. The effects of component performance parameters, such as friction coefficient, injection velocity, ablation coefficient, rail resistivity, armature voltage, peak acceleration, and inductance gradient on these two areas, are addressed.

  18. Nuclear Electromagnetic Pulse Review

    NASA Astrophysics Data System (ADS)

    Dinallo, Michael

    2011-04-01

    Electromagnetic Pulse (EMP) from nuclear detonations have been observed for well over half a century. Beginning in the mid-to-late 1950s, the physics and modeling of EMP has been researched and will continue into the foreseeable future. The EMP environment propagates hundreds of miles from its origins and causes interference for all types of electronic instrumentation. This includes military, municipal and industry based electronic infrastructures such as power generation and distribution, command and control systems, systems used in financial and emergency services, electronic monitoring and communications networks, to mention some key infrastructure elements. Research into EMP has included originating physics, propagation and electromagnetic field coupling analyses and measurement-sensor development. Several methods for calculating EMP induced transient interference (voltage and current induction) will be briefly discussed and protection techniques reviewed. These methods can be mathematically simple or involve challenging boundary value solution techniques. A few illustrative calculations will demonstrate the concern for electronic system operability. Analyses such as the Wunsch-Bell model for electronic upset or damage, and the Singularity Expansion Method (SEM) put forth by Dr. Carl Baum, will facilitate the concern for EMP effects. The SEM determines the voltages and currents induced from transient electromagnetic fields in terms of natural modes of various types of electronic platforms (aerospace vehicles or land-based assets - fixed or mobile). Full-scale facility and laboratory simulation and response measurement approaches will be discussed. The talk will conclude with a discussion of some present research activities.

  19. Complex (dusty) plasmas-kinetic studies of strong coupling phenomena

    SciTech Connect

    Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M.

    2012-05-15

    'Dusty plasmas' can be found almost everywhere-in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and-at the fundamental level-in the physics ofmore » strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10{sup -12}to10{sup -9}g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.« less

  20. Electromagnetic Basis of Metabolism and Heredity

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Stolc, Viktor

    2016-01-01

    Living organisms control their cellular biological clocks to maintain functional oscillation of the redox cycle, also called the "metabolic cycle" or "respiratory cycle". Organization of cellular processes requires parallel processing on a synchronized time-base. These clocks coordinate the timing of all biochemical processes in the cell, including energy production, DNA replication, and RNA transcription. When this universal time keeping function is perturbed by exogenous induction of reactive oxygen species (ROS), the rate of metabolism changes. This causes oxidative stress, aging and mutations. Therefore, good temporal coordination of the redox cycle not only actively prevents chemical conflict between the reductive and oxidative partial reactions; it also maintains genome integrity and lifespan. Moreover, this universal biochemical rhythm can be disrupted by ROS induction in vivo. This in turn can be achieved by blocking the electron transport chain either endogenously or exogenously by various metabolites, e.g. hydrogen sulfide (H2S), highly diffusible drugs, and carbon monoxide (CO). Alternatively, the electron transport in vivo can be attenuated via a coherent or interfering transfer of energy from exogenous ultralow frequency (ULF) and extremely low frequency (ELF) electromagnetic (EM) fields, suggesting that-on Earth-such ambient fields are an omnipresent (and probably crucially important) factor for the time-setting basis of universal biochemical reactions in living cells. Our work demonstrated previously un-described evidence for quantum effects in biology by electromagnetic coupling below thermal noise at the universal electron transport chain (ETC) in vivo.

  1. Influence of Vertical Electromagnetic Brake on the Steel/Slag Interface Behavior in a Slab Mold

    NASA Astrophysics Data System (ADS)

    Li, Zhuang; Wang, Engang; Zhang, Lintao; Xu, Yu; Deng, Anyuan

    2017-10-01

    The steel/slag interface behavior under a new type of electromagnetic brake (EMBr), vertical electromagnetic brake (V-EMBr), was investigated. The influence of the magnetic induction intensity, the submerged entry nozzle (SEN) immersion depth, and the port angle of the SEN are investigated numerically. The effect of magnetic induction intensity on the meniscus fluctuation of molten alloy is further studied by the experiments. The results show that the meniscus fluctuation is depressed as the magnetic induction intensity is increased, especially for the region in the vicinity of the narrow face of the slab mold. This result is validated by the following experiments. For the influence of the SEN immersion depth and the port angle, the results show that the meniscus fluctuation is suppressed as the values of the immersion depth and the port angle are increased (absolute values for the port angle). However, the influence of the immersion depth and the port angle are not as sensitive as those in the other type of EMBr, e.g., EMBr Ruler. The industrial application of V-EMBr could benefit from this result.

  2. Emergent Phenomena at Oxide Interfaces

    SciTech Connect

    Hwang, H.Y.

    2012-02-16

    spin operator changes sign with T-operation. (iii) Gauge symmetry (G), which is associated with a change in the phase of the wave-function as {Psi} {yields} e{sup i{theta}}{Psi}. Gauge symmetry is connected to the law of charge conservation, and broken G-symmetry corresponds to superconductivity/superfluidity. To summarize, the interplay among these electronic degrees of freedom produces various forms of symmetry breaking patterns of I, T, and G, leading to novel emergent phenomena, which can appear only by the collective behavior of electrons and cannot be expected from individual electrons. Figure 1 shows this schematically by means of several representative phenomena. From this viewpoint, the interfaces of TMOs offer a unique and important laboratory because I is already broken by the structure itself, and the detailed form of broken I-symmetry can often be designed. Also, two-dimensionality usually enhances the effects of electron correlations by reducing their kinetic energy. These two features of oxide interfaces produce many novel effects and functions that cannot be attained in bulk form. Given that the electromagnetic responses are a major source of the physical properties of solids, and new gauge structures often appear in correlated electronic systems, we put 'emergent electromagnetism' at the center of Fig. 1.« less

  3. Superconducting-electromagnetic hybrid bearing using YBCO bulk blocks for passive axial levitation

    NASA Astrophysics Data System (ADS)

    Nicolsky, R.; de Andrade, R., Jr.; Ripper, A.; David, D. F. B.; Santisteban, J. A.; Stephan, R. M.; Gawalek, W.; Habisreuther, T.; Strasser, T.

    2000-06-01

    A superconducting/electromagnetic hybrid bearing has been designed using active radial electromagnetic positioning and a superconducting passive axial levitator. This bearing has been tested for an induction machine with a vertical shaft. The prototype was conceived as a four-pole, two-phase induction machine using specially designed stator windings for delivering torque and radial positioning simultaneously. The radial bearing uses four eddy-current sensors, displaced 90° from each other, for measuring the shaft position and a PID control system for feeding back the currents. The stator windings have been adapted from the ones of a standard induction motor. The superconducting axial bearing has been assembled with commercial NdFeB permanent magnets and a set of seven top-seeded-melt-textured YBCO large-grain cylindrical blocks. The bearing set-up was previously simulated by a finite element method for different permanent magnet-superconductor block configurations. The stiffness of the superconducting axial bearing has been investigated by measuring by a dynamic method the vertical and transversal elastic constants for different field cooling processes. The resulting elastic constants show a linear dependence on the air gap, i.e. the clearance between the permanent magnet assembly and the set of superconducting large-grain blocks, which is dependent on cooling distance.

  4. Electromagnetic braking revisited with a magnetic point dipole model

    NASA Astrophysics Data System (ADS)

    Land, Sara; McGuire, Patrick; Bumb, Nikhil; Mann, Brian P.; Yellen, Benjamin B.

    2016-04-01

    A theoretical model is developed to predict the trajectory of magnetized spheres falling through a copper pipe. The derive magnetic point dipole model agrees well with the experimental trajectories for NdFeB spherical magnets of varying diameter, which are embedded inside 3D printed shells with fixed outer dimensions. This demonstration of electrodynamic phenomena and Lenz's law serves as a good laboratory exercise for physics, electromagnetics, and dynamics classes at the undergraduate level.

  5. A general theory of DC electromagnetic launchers

    NASA Astrophysics Data System (ADS)

    Engel, Thomas G.; Timpson, Erik J.

    2015-08-01

    The non-linear, transient operation of DC electromagnetic launchers (EMLs) complicates their theoretical understanding and prevents scaling studies and performance comparisons without the aid of detailed numerical models. This paper presents a general theory for DC electromagnetic launchers that has simplified these tasks by identifying critical EML parameters and relationships affecting the EML's voltage, current, and power scaling, as well as its performance and energy conversion efficiency. EML parameters and relationships discussed in this paper include the specific force, the operating mode, the launcher constant, the launcher characteristic velocity, the contact characteristic velocity, the energy conversion efficiency, and the kinetic power and voltage-current scaling relationship. The concepts of the ideal EML, same-scale comparisons, and EML impedance are discussed. This paper defines conditions needed for the EML to operate in the steady-state. A comparison of the general theory with experimental results of several different types of DC (i.e., non-induction) electromagnetic launchers ranging from medium velocity (100's m/s) to high velocity (1000's m/s) is performed. There is good agreement between the general theory and the experimental results.

  6. Preliminary design of a Primary Loop Pump Assembly (PLPA), using electromagnetic pumps

    NASA Technical Reports Server (NTRS)

    Moss, T. A.; Matlin, G.; Donelan, L.; Johnson, J. L.; Rowe, I.

    1972-01-01

    A preliminary design study of flight-type dc conduction-permanent magnetic, ac helical induction, and ac linear induction pumps for circulating 883 K (1130 F) NaK at 9.1 kg/sec (20 lb/sec) is described. Various electromagnetic pump geometrics are evaluated against hydraulic performance, and the effects of multiple windings and numbers of pumps per assembly on overall reliability were determined. The methods used in the electrical-hydraulic, stress, and thermal analysis are discussed, and the high temperature electrical materials selected for the application are listed.

  7. Exploring Divisibility and Summability of 'Photon' Wave Packets in Nonlinear Optical Phenomena

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha; Roychoudhuri, Chandrasekhar

    2009-01-01

    Formulations for second and higher harmonic frequency up and down conversions, as well as multi photon processes directly assume summability and divisibility of photons. Quantum mechanical (QM) interpretations are completely congruent with these assumptions. However, for linear optical phenomena (interference, diffraction, refraction, material dispersion, spectral dispersion, etc.), we have a profound dichotomy. Most optical engineers innovate and analyze all optical instruments by propagating pure classical electromagnetic (EM) fields using Maxwell s equations and gives only lip-service to the concept "indivisible light quanta". Further, irrespective of linearity or nonlinearity of the phenomena, the final results are always registered through some photo-electric or photo-chemical effects. This is mathematically well modeled by a quadratic action (energy absorption) relation. Since QM does not preclude divisibility or summability of photons in nonlinear & multi-photon effects, it cannot have any foundational reason against these same possibilities in linear optical phenomena. It implies that we must carefully revisit the fundamental roots behind all light-matter interaction processes and understand the common origin of "graininess" and "discreteness" of light energy.

  8. The electromagnetic bio-field: clinical experiments and interferences.

    PubMed

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-06-12

    One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.

  9. Influence of the aging process on the dealloying activity of an induction salt bath

    NASA Astrophysics Data System (ADS)

    Simonenko, A. N.

    1992-12-01

    The process of dealloying of the surface of high-alloy steels in heating in induction salt baths with a graphite crucible is neutralized by the process of carburizing and electrochemical interaction in a high-frequency electromagnetic field.

  10. Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity

    USGS Publications Warehouse

    Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.

    2011-01-01

    Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.

  11. Proceedings of the Workshop on an Electromagnetic Positioning System in Space

    NASA Technical Reports Server (NTRS)

    Oran, W. A. (Editor)

    1978-01-01

    A workshop was convened to help determine if sufficient justification existed to proceed with the design of an electromagnetic (EM) positioning device for use in space. Those in attendance included experts in crystal growth, nucleation phenomena, containerless processing techniques, properties of materials, metallurgical techniques, and glass technology. Specific areas mentioned included the study of metallic glasses and investigations of the properties of high temperature materials.

  12. Computational Electromagnetics Application to Small Geometric Anomalies and Associated Ucertainty Evaluation

    DTIC Science & Technology

    2010-02-28

    implemented a fast method to enable the statistical characterization of electromagnetic interference and compatibility (EMI/EMC) phenomena on electrically...higher accuracy is needed, e.g., to compute higher moment statistics . To address this problem, we have developed adaptive stochastic collocation methods ...SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AF OFFICE OF SCIENTIFIC RESEARCH 875 N. RANDOLPH ST. ROOM 3112 ARLINGTON VA 22203 UA

  13. A Brief History of the use of Electromagnetic Induction Techniques in Soil Survey

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, James

    2017-04-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools and increased the amount and types of data that can be gathered with a single pass. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales. The future should witness a greater use of multiple-frequency and multiple-coil EMI sensors and integration with other sensors to assess the spatial variability of soil properties. Data analysis

  14. Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons

    NASA Astrophysics Data System (ADS)

    Chanyal, B. C.

    2017-12-01

    In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.

  15. Multiconfiguration electromagnetic induction survey for paleochannel internal structure imaging: a case study in the alluvial plain of the River Seine, France

    NASA Astrophysics Data System (ADS)

    Rejiba, Fayçal; Schamper, Cyril; Chevalier, Antoine; Deleplancque, Benoit; Hovhannissian, Gaghik; Thiesson, Julien; Weill, Pierre

    2018-01-01

    The La Bassée floodplain area is a large groundwater reservoir controlling most of the water exchanged between local aquifers and hydrographic networks within the Seine River basin (France). Preferential flows depend essentially on the heterogeneity of alluvial plain infilling, whose characteristics are strongly influenced by the presence of mud plugs (paleomeander clayey infilling). These mud plugs strongly contrast with the coarse sand material that composes most of the alluvial plain, and can create permeability barriers to groundwater flows. A detailed knowledge of the global and internal geometry of such paleomeanders can thus lead to a comprehensive understanding of the long-term hydrogeological processes of the alluvial plain. A geophysical survey based on the use of electromagnetic induction was performed on a wide paleomeander, situated close to the city of Nogent-sur-Seine in France. In the present study we assess the advantages of combining several spatial offsets, together with both vertical and horizontal dipole orientations (six apparent conductivities), thereby mapping not only the spatial distribution of the paleomeander derived from lidar data but also its vertical extent and internal variability.

  16. Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses

    SciTech Connect

    Mortazavi, M.; Urzay, J., E-mail: jurzay@stanford.edu; Mani, A.

    2015-06-15

    This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers andmore » induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after

  17. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  18. Assessment of multi-frequency electromagnetic induction for determining soil moisture patterns at the hillslope scale

    NASA Astrophysics Data System (ADS)

    Tromp-van Meerveld, H. J.; McDonnell, J. J.

    2009-04-01

    SummaryHillslopes are fundamental landscape units, yet represent a difficult scale for measurements as they are well-beyond our traditional point-scale techniques. Here we present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the hillslope scale. We test the new multi-frequency GEM-300 for spatially distributed soil moisture measurements at the well-instrumented Panola hillslope. EM-based apparent conductivity measurements were linearly related to soil moisture measured with the Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7.290, 9.090, 11.250, and 14.010 kHz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the soil moisture measurements.

  19. Electromagnetic mapping of buried paleochannels in eastern Abu Dhabi Emirate, U.A.E.

    USGS Publications Warehouse

    Fitterman, D.V.; Menges, C.M.; Al Kamali, A.M.; Essa, Jama F.

    1991-01-01

    Transient electromagnetic soundings and terrain conductivity meter measurements were used to map paleochannel geometry in the Al Jaww Plain of eastern Abu Dhabi Emirate, U.A.E. as part of an integrated hydrogeologic study of the Quaternary alluvial aquifer system. Initial interpretation of the data without benefit of well log information was able to map the depth to a conductive clay layer of Tertiary age that forms the base of the aquifer. Comparison of the results with induction logs reveals that a resistive zone exists that was incorporated into the interpretation and its lateral extent mapped with the transient electromagnetic sounding data. ?? 1991.

  20. Inductive System for Reliable Magnesium Level Detection in a Titanium Reduction Reactor

    NASA Astrophysics Data System (ADS)

    Krauter, Nico; Eckert, Sven; Gundrum, Thomas; Stefani, Frank; Wondrak, Thomas; Frick, Peter; Khalilov, Ruslan; Teimurazov, Andrei

    2018-05-01

    The determination of the Magnesium level in a Titanium reduction retort by inductive methods is often hampered by the formation of Titanium sponge rings which disturb the propagation of electromagnetic signals between excitation and receiver coils. We present a new method for the reliable identification of the Magnesium level which explicitly takes into account the presence of sponge rings with unknown geometry and conductivity. The inverse problem is solved by a look-up-table method, based on the solution of the inductive forward problems for several tens of thousands parameter combinations.

  1. Results from Sandia National Laboratories/Lockheed Martin Electromagnetic Missile Launcher (EMML).

    SciTech Connect

    Lockner, Thomas Ramsbeck; Skurdal, Ben; Gaigler, Randy

    2005-05-01

    Sandia national laboratories (SNL) and lockheed martin MS2 are designing an electromagnetic missile launcher (EMML) for naval applications. The EMML uses an induction coilgun topology with the requirement of launching a 3600 lb. missile up to a velocity of 40 m/s. To demonstrate the feasibility of the electromagnetic propulsion design, a demonstrator launcher was built that consists of approximately 10% of the propulsion coils needed for a tactical design. The demonstrator verified the design by launching a 1430 lb weighted sled to a height of 24 ft in mid-December 2004 (Figure 1). This paper provides the general launcher design, specificmore » pulsed power system component details, system operation, and demonstration results.« less

  2. The electromagnetic bio-field: clinical experiments and interferences

    PubMed Central

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-01-01

    Introduction: One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. Material and methods: The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. Results: The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. Conclusions: The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express. PMID:22802878

  3. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher.

    PubMed

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  4. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  5. Applicator modeling for electromagnetic thermotherapy of cervix cancer.

    PubMed

    Rezaeealam, Behrooz

    2015-03-01

    This report proposes an induction heating coil design that can be used for producing strong magnetic fields around ferromagnetic implants located in the cervix of uterus. The effect of coil design on the uniformity and extent of heat generation ability is inspected. Also, a numerical model of the applicator is developed that includes the ferromagnetic implants, and is coupled to the bioheat transfer model of the body tissue. Then, the ability of the proposed applicator for electromagnetic thermotherapy is investigated.

  6. Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam.

    PubMed

    Liu, Shenggang; Hu, Min; Zhang, Yaxin; Li, Yuebao; Zhong, Renbin

    2009-09-01

    This paper explores the physics of the electromagnetic diffraction radiation of a subwavelength holes array excited by a set of evanescent waves generated by a line charge of electron beam moving parallel to the array. Activated by a uniformly moving line charge, numerous physical phenomena occur such as the diffraction radiation on both sides of the array as well as the electromagnetic penetration or transmission below or above the cut-off through the holes. As a result the subwavelength holes array becomes a radiation array. Making use of the integral equation with relevant Green's functions, an analytical theory for such a radiation system is built up. The results of the numerical calculations based on the theory agree well with that obtained by the computer simulation. The relation among the effective surface plasmon wave, the electromagnetic penetration or transmission of the holes and the diffraction radiation is revealed. The energy dependence of and the influence of the hole thickness on the diffraction radiation and the electromagnetic penetration or transmission are investigated in detail. Therefore, a distinct diffraction radiation phenomenon is discovered.

  7. Weak low-frequency electromagnetic oscillations in water.

    PubMed

    Liboff, A R; Poggi, Claudio; Pratesi, Piero

    2017-01-01

    Recent observations of low-frequency electromagnetic oscillations in water suggest an inductive structural component. Accordingly, we assume a helical basis enabling us to model water as an LC tuned oscillator. A proposed tetrahedral structure consisting of three water molecules and one hydronium ion is incorporated into the Boerdijk-Coxeter tetrahelix to form long water chains that are shown to have resonance frequencies consistent with observation. This model also serves to explain separately reported claims of ion cyclotron resonance of hydronium ions, in that the tetrahelix provides a built-in path for helical proton-hopping.

  8. The gravitational analog of Faraday's induction law

    NASA Astrophysics Data System (ADS)

    Zile, Daniel; Overduin, James

    2015-04-01

    Michael Faraday, the discoverer of electromagnetic induction, was convinced that there must also be a gravitational analog of this law, and he carried out drop-tower experiments in 1849 to look for the electric current induced in a coil by changes in gravitational flux through the coil. This work, now little remembered, was in some ways the first investigation of what we would now call a unified-field theory. We revisit Faraday's experiments in the light of current knowledge and ask what might be learned if they were to be performed today. We then review the gravitational analog for Faraday's law that arises within the vector (or gravito-electromagnetic) approximation to Einstein's theory of general relativity in the weak-field, low-velocity limit. This law relates spinning masses and induced ``mass currents'' rather than spinning charges and electric currents, but is otherwise remarkably similar to its electromagnetic counterpart. The predicted effects are completely unobservable in everyday settings like those envisioned by Faraday, but are thought to be relevant in astrophysical contexts like the accretion disks around collapsed stars, thus bearing out Faraday's remarkable intuition. Undergraduate student.

  9. Teaching wave phenomena via biophysical applications

    NASA Astrophysics Data System (ADS)

    Reich, Daniel; Robbins, Mark; Leheny, Robert; Wonnell, Steven

    2014-03-01

    Over the past several years we have developed a two-semester second-year physics course sequence for students in the biosciences, tailored in part to the needs of undergraduate biophysics majors. One semester, ``Biological Physics,'' is based on the book of that name by P. Nelson. This talk will focus largely on the other semester, ``Wave Phenomena with Biophysical Applications,'' where we provide a novel introduction to the physics of waves, primarily through the study of experimental probes used in the biosciences that depend on the interaction of electromagnetic radiation with matter. Topic covered include: Fourier analysis, sound and hearing, diffraction - culminating in an analysis of x-ray fiber diffraction and its use in the determination of the structure of DNA - geometrical and physical optics, the physics of modern light microscopy, NMR and MRI. Laboratory exercises tailored to this course will also be described.

  10. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT) have been developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters have been flown in space, though only PPTs have been used on operational satellites. The performance of operational PPTs is quite poor, providing only about 8 percent efficiency at about 1000 sec specific impulse. Laboratory PPTs yielding 34 percent efficiency at 5170 sec specific impulse have been demonstrated. Laboratory MPD thrusters have been demonstrated with up to 70 percent efficiency and 7000 sec specific impulse. Recent PIT performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 and 8000 sec.

  11. Response simulation and theoretical calibration of a dual-induction resistivity LWD tool

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Ke, Shi-Zhen; Li, An-Zong; Chen, Peng; Zhu, Jun; Zhang, Wei

    2014-03-01

    In this paper, responses of a new dual-induction resistivity logging-while-drilling (LWD) tool in 3D inhomogeneous formation models are simulated by the vector finite element method (VFEM), the influences of the borehole, invaded zone, surrounding strata, and tool eccentricity are analyzed, and calibration loop parameters and calibration coefficients of the LWD tool are discussed. The results show that the tool has a greater depth of investigation than that of the existing electromagnetic propagation LWD tools and is more sensitive to azimuthal conductivity. Both deep and medium induction responses have linear relationships with the formation conductivity, considering optimal calibration loop parameters and calibration coefficients. Due to the different depths of investigation and resolution, deep induction and medium induction are affected differently by the formation model parameters, thereby having different correction factors. The simulation results can provide theoretical references for the research and interpretation of the dual-induction resistivity LWD tools.

  12. Coupled Structural, Thermal, Phase-Change and Electromagnetic Analysis for Superconductors. Volume 1

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Park, K. C.; Militello, C.; Schuler, J. J.

    1996-01-01

    Described are the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromagnetic subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase-change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling of thermal and mechanical effects, and (4) computer implementation and solution of the superconductivity transition problem. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles, (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The theoretical development is described in two volumes. This volume, Volume 1, describes mostly formulations for specific problems. Volume 2 describes generalization of those formulations.

  13. Plasminogen activator: analysis of enzyme induction by ultraviolet irradiation mapping

    SciTech Connect

    Miskin, R.; Reich, E.; Dixon, K.

    1981-10-01

    Ultraviolet irradiation mapping techniques have previously been used to study the organization of eucaryotic gene classes and transcription units. We used the same method to probe some regulatory phenomena observed in the induction of plasminogen activator (PA) biosynthesis: PA synthesis in chicken embryo fibroblasts is induced by tumor-promoting phorbol esters and by retinoic acid; furthermore, PA induction by phorbol esters is synergistic with transformation, being 10- to 20-fold greater in virus-transformed cells than in normal cells. We found that the ultraviolet irradiation inactivation cross sections for PA induction by phorbol esters and by retinoate differed significantly, suggesting that these agentsmore » induce PA biosynthesis by different mechanisms. On the other hand, the ultraviolet irradiation sensitivity of phorbol ester induction in normal chicken embryo fibroblasts was the same as in transformed cells, indicating that the synergism of transformation and phorbol esters is probably not due to different pathways of PA induction.« less

  14. Induction of depressed mood: a test of opponent-process theory.

    PubMed

    Ranieri, D J; Zeiss, A M

    1984-12-01

    Solomon's (1980) opponent-process theory of acquired motivation has been used to explain many phenomena in which affective or hedonic contrasts appear to exist, but has not been applied to the induction of depressed mood. The purpose of this study, therefore, was to determine whether opponent-process theory can be applied to this area. Velten's (1968) mood-induction procedure was used and subjects were assigned either to a depression-induction condition or to one of two control groups. Self-report measures of depressed mood were taken before, during, and at several points after the mood induction. Results were not totally consistent with a rigorous set of criteria for supporting an opponent-process interpretation. This suggests that the opponent-process model may not be applicable to induced depressed mood. Possible weaknesses in the experimental design, along with implications for opponent-process theory, are discussed.

  15. Control of electronic transport in graphene by electromagnetic dressing

    PubMed Central

    Kristinsson, K.; Kibis, O. V.; Morina, S.; Shelykh, I. A.

    2016-01-01

    We demonstrated theoretically that the renormalization of the electron energy spectrum near the Dirac point of graphene by a strong high-frequency electromagnetic field (dressing field) drastically depends on polarization of the field. Namely, linear polarization results in an anisotropic gapless energy spectrum, whereas circular polarization leads to an isotropic gapped one. As a consequence, the stationary (dc) electronic transport in graphene strongly depends on parameters of the dressing field: A circularly polarized field monotonically decreases the isotropic conductivity of graphene, whereas a linearly polarized one results in both giant anisotropy of conductivity (which can reach thousands of percents) and the oscillating behavior of the conductivity as a function of the field intensity. Since the predicted phenomena can be observed in a graphene layer irradiated by a monochromatic electromagnetic wave, the elaborated theory opens a substantially new way to control electronic properties of graphene with light. PMID:26838371

  16. Control of electronic transport in graphene by electromagnetic dressing.

    PubMed

    Kristinsson, K; Kibis, O V; Morina, S; Shelykh, I A

    2016-02-03

    We demonstrated theoretically that the renormalization of the electron energy spectrum near the Dirac point of graphene by a strong high-frequency electromagnetic field (dressing field) drastically depends on polarization of the field. Namely, linear polarization results in an anisotropic gapless energy spectrum, whereas circular polarization leads to an isotropic gapped one. As a consequence, the stationary (dc) electronic transport in graphene strongly depends on parameters of the dressing field: A circularly polarized field monotonically decreases the isotropic conductivity of graphene, whereas a linearly polarized one results in both giant anisotropy of conductivity (which can reach thousands of percents) and the oscillating behavior of the conductivity as a function of the field intensity. Since the predicted phenomena can be observed in a graphene layer irradiated by a monochromatic electromagnetic wave, the elaborated theory opens a substantially new way to control electronic properties of graphene with light.

  17. Conductivity dependence of seismoelectric wave phenomena in fluid-saturated sediments

    NASA Astrophysics Data System (ADS)

    Block, Gareth I.; Harris, John G.

    2006-01-01

    Seismoelectric phenomena in sediments arise from acoustic wave-induced fluid motion in the pore space, which perturbs the electrostatic equilibrium of the electric double layer on the grain surfaces. Experimental techniques and the apparatus built to study the conductivity dependence of the electrokinetic (EK) effect are described, and outcomes for studies in loose glass microspheres and medium-grain sand are presented. By varying the NaCl concentration in the pore fluid, we measured the conductivity dependence of two kinds of EK behavior: (1) the electric fields generated within the samples by the passage of transmitted acoustic waves and (2) the electromagnetic waves produced at the fluid-sediment interface by the incident acoustic wave. Both phenomena are caused by relative fluid motion in the sediment pores; this feature is characteristic of poroelastic (Biot) media but is not predicted by either viscoelastic fluid or solid models. A model of plane wave reflection from a fluid-sediment interface using EK-Biot theory leads to theoretical predictions that compare well to the experimental data for both loose glass microspheres and medium-grain sand.

  18. An AC-electromagnetic bearing for flywheel energy storage in space

    NASA Technical Reports Server (NTRS)

    Nikolajsen, Jorgen L.

    1993-01-01

    A repulsive type AC-electromagnetic bearing was developed and tested. It was conceived on the basis of the so-called Magnetic River suspension for high-speed trains. The appearance of the bearing is similar to the traditional DC-type electromagnetic bearing but the operating principle is different. The magnets are fed with alternating current instead of direct current and the rotor is fitted with a conducting sleeve (e.g. aluminum) instead of a ferromagnetic sleeve. The repulsion is due to induction of eddy-currents in the conducting sleeve. The bearing is inherently stable and requires no feedback control. It provides support in five degrees of freedom such that a short rotor may be fully supported by a single bearing. These capabilities were demonstrated experimentally. On the down side, the load carrying capacity and the damping obtained so far were quite low compared to the DC-type bearing. Also, significant heating of the conducting sleeve was experienced. The AC-bearing is essentially a modified induction motor and there are strong indications that it can be run both as a motor and as a generator with no commutator requirements. It is therefore considered to be a good candidate for support of energy storage flywheels in space.

  19. Separation of Electric Fields Into Potential and Inductive Parts, and Implications for Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.

    2017-12-01

    It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.

  20. Assessment of Multi-frequency Electromagnetic Induction for Determining Soil Moisture Patterns at the Hillslope Scale

    NASA Astrophysics Data System (ADS)

    Tromp-van Meerveld, I.; McDonnell, J.

    2009-05-01

    We present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the Panola (GA, USA) hillslope. We address the following questions regarding the applicability of EM measurements for hillslope hydrological investigations: (1) Can EM be used for soil moisture measurements in areas with shallow soils?; (2) Can EM represent the temporal and spatial patterns of soil moisture throughout the year?; and (3) can multiple frequencies be used to extract additional information content from the EM approach and explain the depth profile of soil moisture? We found that the apparent conductivity measured with the multi-frequency GEM-300 was linearly related to soil moisture measured with an Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7290, 9090, 11250, and 14010 Hz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition, the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the Aqua

  1. Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials.

    PubMed

    Lu, Xiqun; Shi, Jinhui; Liu, Ran; Guan, Chunying

    2012-07-30

    We propose, design and experimentally demonstrate highly-dispersive electromagnetically induced transparency (EIT) in planar symmetric metamaterials actively switched and controlled by angles of incidence. Full-wave simulation and measurement results show EIT phenomena, trapped-mode excitations and the associated local field enhancement of two symmetric metamaterials consisting of symmetrically split rings (SSR) and a fishscale (FS) metamaterial pattern, respectively, strongly depend on angles of incidence. The FS metamaterial shows much broader spectral splitting than the SSR metamaterial due to the surface current distribution variation.

  2. ‘…a paper …I hold to be great guns’: a commentary on Maxwell (1865) ‘A dynamical theory of the electromagnetic field’

    PubMed Central

    Longair, Malcolm

    2015-01-01

    Maxwell's great paper of 1865 established his dynamical theory of the electromagnetic field. The origins of the paper lay in his earlier papers of 1856, in which he began the mathematical elaboration of Faraday's researches into electromagnetism, and of 1861–1862, in which the displacement current was introduced. These earlier works were based upon mechanical analogies. In the paper of 1865, the focus shifts to the role of the fields themselves as a description of electromagnetic phenomena. The somewhat artificial mechanical models by which he had arrived at his field equations a few years earlier were stripped away. Maxwell's introduction of the concept of fields to explain physical phenomena provided the essential link between the mechanical world of Newtonian physics and the theory of fields, as elaborated by Einstein and others, which lies at the heart of twentieth and twenty-first century physics. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750155

  3. Electromagnetic topology: Characterization of internal electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  4. Design of Circular, Square, Single, and Multi-layer Induction Coils for Electromagnetic Priming Using Inductance Estimates

    NASA Astrophysics Data System (ADS)

    Fritzsch, Robert; Kennedy, Mark W.; Aune, Ragnhild E.

    2018-02-01

    Special induction coils used for electro magnetic priming of ceramic foam filters in liquid metal filtration have been designed using a combination of analytical and finite element modeling. Relatively simple empirical equations published by Wheeler in 1928 and 1982 have been used during the design process. The equations were found to accurately predict the z-component of the magnetic flux densities of both single- and multi-layer coils as verified both experimentally and by using COMSOL® 5.1 multiphysics simulations.

  5. EM Induction Experiment to Determine the Moment of a Magnet

    ERIC Educational Resources Information Center

    Najiya Maryam, K. M.

    2014-01-01

    If we drop a magnet through a coil, an emf is induced in the coil according to Faraday's law of electromagnetic induction. Here, such an experiment is done using expEYES kit. The plot of emf versus time has a specific shape with two peaks. A theoretical analysis of this graph is discussed here for both short and long cylindrical magnets.…

  6. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    SciTech Connect

    Fan, Ren-Hao; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn; Huang, Xian-Rong

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertzmore » ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.« less

  7. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    SciTech Connect

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong

    2015-07-01

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertzmore » ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies.« less

  8. Electromagnetic induction of nanoscale zerovalent iron particles accelerates the degradation of chlorinated dense non-aqueous phase liquid: Proof of concept.

    PubMed

    Phenrat, Tanapon; Kumloet, Itsaraphong

    2016-12-15

    In this study, a novel electromagnetically enhanced treatment concept is proposed for in situ remediation of a source zone of chlorinated dense non-aqueous phase liquid (DNAPL) that is slowly dissolved, causing contaminated groundwater for centuries. Here, we used polystyrene sulfonate (PSS)-modified nanoscale zerovalent iron (NZVI) particles (ferromagnetic) in combination with a low frequency (LF) (150 kHz) AC electromagnetic field (EMF) to accelerate the degradation of the DNAPLs via enhanced dissolution and reductive dechlorination. Trichloroethylene (TCE) and tetrachloroethylene (PCE) were used in a bench-scaled evaluation. The PSS-modified NZVI successfully targeted the DNAPL/water interface, as evidenced by the Pickering emulsion formation. Dechlorination of TCE- and PCE-DNAPL was measured by quantifying the by-product formation (acetylene, ethene, and ethane). Without magnetic induction heating (MIH) by LF EMF, PSS-modified NZVI transformed TCE- and PCE-DNAPL to ethene and ethane at the rate constants of 12.19 × 10 -3 and 1.00 × 10 -3  μmol/h/m 2 , respectively, following pseudo zero-order reactions. However, four MIH cycles of PSS-NZVI increased the temperature up to 87 °C and increased the rate constants of TCE-DNAPL and PCE-DNAPL up to 14.58 and 58.01 times, respectively, in comparison to the dechlorination rate without MIH. Theoretical analysis suggested that the MIH of the PSS-modified NZVI enhanced the dechlorination of TCE- and PCE-DNAPL via the combination of the enhanced thermal dissolution of DNAPL, the effect of increasing the temperature on the rate constant (the Arrhenius equation), and the accelerated NZVI corrosion. Nevertheless, the effect of the Arrhenius equation was dominant. For the first time, this proof-of-concept study reveals the potential for using polyelectrolyte-modified NZVI coupled with LF EMF as a combined remediation technique for increasing the rate and completeness of in situ chlorinated DNAPL source remediation

  9. Study to assess the effects of magnetohydrodynamic electromagnetic pulse on electric power systems, phase 1, volume 3

    NASA Astrophysics Data System (ADS)

    Legro, J. R.; Abi-Samra, N. C.; Tesche, F. M.

    1985-05-01

    In addition to the initial transients designated as fast transient high-altitude EMP (HEMP) and intermediate time EMP, electromagnetic signals are also perceived at times from seconds to hundreds of seconds after a high-altitude nuclear burst. This signal was defined by the term magnetohydrodynamic-electromagnetic pulse (MHD-EMP). The MHD-EMP phenomena was detected in actual weapon tests and predicted from theoretical models. A preliminary research effort to investigate the nature and coupling of the MHD-EMP environments to electric power systems documented the construction of approximate system response network models, and the development of a unified methodology to assess equipment and systematic vulnerability are defined. The MHD-EMP environment is compared to a qualitatively similar natural event, the electromagnetic environment produced by geomagnetic storms.

  10. Endogenous electromagnetic fields in plant leaves: a new hypothesis for vascular pattern formation.

    PubMed

    Pietak, Alexis Mari

    2011-06-01

    Electromagnetic (EM) phenomena have long been implicated in biological development, but few detailed, practical mechanisms have been put forth to connect electromagnetism with morphogenetic processes. This work describes a new hypothesis for plant leaf veination, whereby an endogenous electric field forming as a result of a coherent Frohlich process, and corresponding to an EM resonant mode of the developing leaf structure, is capable of instigating leaf vascularisation. In order to test the feasibility of this hypothesis, a three-dimensional, EM finite-element model (FEM) of a leaf primordium was constructed to determine if suitable resonant modes were physically possible for geometric and physical parameters similar to those of developing leaf tissue. Using the FEM model, resonant EM modes with patterns of relevance to developing leaf vein modalities were detected. On account of the existence of shared geometric signatures in a leaf's vascular pattern and the electric field component of EM resonant modes supported by a developing leaf structure, further theoretical and experimental investigations are warranted. Significantly, this hypothesis is not limited to leaf vascular patterning, but may be applicable to a variety of morphogenetic phenomena in a number of living systems.

  11. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    SciTech Connect

    Liangping, Wang; Mo, Li; Juanjuan, Han

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100 ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. Themore » kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 Ω in about 10–20 ns.« less

  12. Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing.

    PubMed

    Barca, E; Castrignanò, A; Buttafuoco, G; De Benedetto, D; Passarella, G

    2015-07-01

    Soil survey is generally time-consuming, labor-intensive, and costly. Optimization of sampling scheme allows one to reduce the number of sampling points without decreasing or even increasing the accuracy of investigated attribute. Maps of bulk soil electrical conductivity (EC a ) recorded with electromagnetic induction (EMI) sensors could be effectively used to direct soil sampling design for assessing spatial variability of soil moisture. A protocol, using a field-scale bulk EC a survey, has been applied in an agricultural field in Apulia region (southeastern Italy). Spatial simulated annealing was used as a method to optimize spatial soil sampling scheme taking into account sampling constraints, field boundaries, and preliminary observations. Three optimization criteria were used. the first criterion (minimization of mean of the shortest distances, MMSD) optimizes the spreading of the point observations over the entire field by minimizing the expectation of the distance between an arbitrarily chosen point and its nearest observation; the second criterion (minimization of weighted mean of the shortest distances, MWMSD) is a weighted version of the MMSD, which uses the digital gradient of the grid EC a data as weighting function; and the third criterion (mean of average ordinary kriging variance, MAOKV) minimizes mean kriging estimation variance of the target variable. The last criterion utilizes the variogram model of soil water content estimated in a previous trial. The procedures, or a combination of them, were tested and compared in a real case. Simulated annealing was implemented by the software MSANOS able to define or redesign any sampling scheme by increasing or decreasing the original sampling locations. The output consists of the computed sampling scheme, the convergence time, and the cooling law, which can be an invaluable support to the process of sampling design. The proposed approach has found the optimal solution in a reasonable computation time. The

  13. Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity

    USGS Publications Warehouse

    Brosten, Troy R.; Day-Lewis, Frederick D.; Schultz, Gregory M.; Curtis, Gary P.; Lane, John W.

    2011-01-01

    Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of − 0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)–ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~ 0.5 m followed by a gradual correlation loss of 90% at 2.3 m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter–receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0 ± 0.5 m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic

  14. [Saccharomyces cerevisiae as a model organism for studying the carcinogenicity of non-ionizing electromagnetic fields and radiation].

    PubMed

    Voĭchuk, S I

    2014-01-01

    Medical and biological aspects of the effects of non-ionizing electromagnetic (EM) fields and radiation on human health are the important issues that have arisen as a result of anthropogenic impact on the biosphere. Safe use of man-made sources of non-ionizing electromagnetic fields and radiation in a broad range of frequencies--static, radio-frequency and microwave--is a subject of discussions and speculations. The main problem is the lack of understanding of the mechanism(s) of reception of EMFs by living organisms. In this review we have analyzed the existing literature data regarding the effects of the electromagnetic radiation on the model eukaryotic organism--yeast Saccharomyces cerevisiae. An attempt was made to estimate the probability of induction of carcinogenesis in humans under the influence of magnetic fields and electromagnetic radiation of extremely low frequency, radio frequency and microwave ranges.

  15. An approach to calculating metal particle detection in lubrication oil based on a micro inductive sensor

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Zhang, Hongpeng

    2017-12-01

    A new microfluidic chip is presented to enhance the sensitivity of a micro inductive sensor, and an approach to coil inductance change calculation is introduced for metal particle detection in lubrication oil. Electromagnetic knowledge is used to establish a mathematical model of an inductive sensor for metal particle detection, and the analytic expression of coil inductance change is obtained by a magnetic vector potential. Experimental verification is carried out. The results show that copper particles 50-52 µm in diameter have been detected; the relative errors between the theoretical and experimental values are 7.68% and 10.02% at particle diameters of 108-110 µm and 50-52 µm, respectively. The approach presented here can provide a theoretical basis for an inductive sensor in metal particle detection in oil and other areas of application.

  16. Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro.

    PubMed

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment.Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm(2) to 2 mW/cm(2), representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction.

  17. Terahertz Electromagnetic Fields (0.106 THz) Do Not Induce Manifest Genomic Damage In Vitro

    PubMed Central

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment. Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm2 to 2 mW/cm2, representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction. PMID:23029508

  18. Delineation of salt water intrusion through use of electromagnetic-induction logging: A case study in Southern Manhattan Island, New York

    USGS Publications Warehouse

    Stumm, Frederick; Como, Michael D.

    2017-01-01

    Groundwater with chloride concentrations up to 15,000 mg/L has intruded the freshwater aquifer underlying southern Manhattan Island, New York. Historical (1940–1950) chloride concentration data of glacial aquifer wells in the study area indicate the presence of four wedges of saltwater intrusion that may have been caused by industrial pumpage. The limited recharge capability of the aquifer, due to impervious surfaces and the 22.7 million liters per day (mld) of reported industrial pumpage early in the 20th Century was probably the cause for the saltwater intrusion and the persistence of the historical saltwater intrusion wedges over time. Recent drilling of wells provided new information on the hydrogeology and extent of saltwater intrusion of the glacial aquifer overlying bedrock. The new observation wells provided ground-water level, chloride concentration, hydraulic conductivity, and borehole geophysical data of the glacial aquifer. The glacial sediments range in thickness from less than 0.3 m to more than 76.2 m within the study area. A linear relation between Electromagnetic-induction (EM) conductivity log response and measured chloride concentration was determined. Using this relation, chloride concentration was estimated in parts of the glacial aquifer where sampling was not possible. EM logging is an effective tool to monitor changes in saltwater intrusion wedges.

  19. Analysis of Power Supply Heating Effect during High Temperature Experiments Based on the Electromagnetic Steel Teeming Technology

    NASA Astrophysics Data System (ADS)

    He, Ming; Wang, Qiang; Liu, Xin'an; Shi, Chunyang; Liu, Tie; He, Jicheng

    2017-04-01

    For further lowering inclusions and improving the quality of steel, a new electromagnetic steel-teeming technology based on electromagnetic induction heating was proposed. To assess the proposed technology, an experimental platform that imitates the actual production condition of steelmakers was established. High temperature experiments were performed to investigate the melting length of Fe-C alloy under different power and frequency conditions. The heating effect was analyzed, and the method of magnetic shielding to reduce the power loss of power supply was put forward. The results show that when the power is 40 kW and frequency is 25 kHz, the melting length of the Fe-C alloy is 89.2 mm in 120 s, which meets the requirements of steel teeming. In addition, when magnetic shielding material is installed under the induction coil, the power loss is reduced by about 64 %, effectively improving the heating effect of power supply.

  20. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    NASA Astrophysics Data System (ADS)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-09-01

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  1. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    SciTech Connect

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissuemore » voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.« less

  2. Using analog instruments in Tracker video-based experiments to understand the phenomena of electricity and magnetism in physics education

    NASA Astrophysics Data System (ADS)

    Aguilar-Marín, Pablo; Chavez-Bacilio, Mario; Jáuregui-Rosas, Segundo

    2018-05-01

    Tracker is a piece of freeware software, designed to use video recorded images of the motion of objects as input data, and has been mostly applied in physics education to analyse and simulate physical phenomena in mechanics. In this work we report the application of Tracker to the study of experiments in electricity and magnetism using analog instruments for electrical signal measurements. As we are unable to directly video-track the motion of electrons in electric circuits, the angular deflections of the instruments’ pointers were video captured instead. The kinematic variables (angular position as a function of time) had to be related to the electrical ones (voltages and currents as a function of time). Two well-known experiments in physics teaching, the RC circuit for charging and discharging a capacitor and Faraday electromagnetic induction, were chosen to illustrate the procedures. The third experiment analysed and modeled with Tracker was the rather well-known electromagnetic retardation of disk- or cylinder-shaped magnets falling inside non-magnetic metallic pipes. Instead of metallic pipes we used an aluminum plate with an arrangement of a couple of parallelepiped-shaped magnets falling parallel to the plate. In the three cases studied, the experimental and the Tracker simulation results were in very good agreement. These outcomes show that it is possible to exploit the potential of Tracker software in areas other than mechanics, in areas where electrical signals are involved. The experiments are inexpensive and simple to perform, and are suitable for high school and introductory undergraduate courses in electricity, magnetism and electronics. We propose the use of Tracker combined with analog measuring devices to explore further its applications in electricity, magnetism, electronics and in other experimental sciences where electrical signals are involved.

  3. Conductivity gradients as inferred by electromagnetic-induction meter (EM38) readings within a salt-affected wetland in Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Mirck, Jaconette; Schroeder, William

    2018-01-01

    The change from deep-rooted grass and shrub vegetation to annual-cropping dryland farming has contributed to serious soil salinization challenges on the semi-arid North American Great Plains. In some cases, cultivation of the Great Plains has increased the availability of water, causing dominant sulfate salts to travel from the uphill areas to depressions where it will surface when water evaporates at the soil surface. A potential solution could include the replanting of the native deep-rooted vegetation, which requires knowledge of the spatial distribution of soil salinity. This study tested the soil factors influencing electromagnetic-induction meter (EM38) readings of soil salinity distribution around wetlands. The objectives were to: (1) predict growth and survival of Salix dasyclados Wimm. (cv. `India') along a salinity gradient in a small wetland, and (2) investigate whether newly established willows affected water-table fluctuations, which would indicate their phreatophytic nature or their ability to obtain their water supply from the zone of saturation. Results indicated significantly lower salinity values for sampling points with EM38 readings above 175 and 250 mS m-1 for height and survival, respectively. In addition, diurnal fluxes of the water table in areas of good willow growth and lower salinity indicated that cultivar `India' was phreatophytic in these areas and therefore has great potential for being used to combat saline seeps.

  4. Conductivity gradients as inferred by electromagnetic-induction meter (EM38) readings within a salt-affected wetland in Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Mirck, Jaconette; Schroeder, William

    2018-06-01

    The change from deep-rooted grass and shrub vegetation to annual-cropping dryland farming has contributed to serious soil salinization challenges on the semi-arid North American Great Plains. In some cases, cultivation of the Great Plains has increased the availability of water, causing dominant sulfate salts to travel from the uphill areas to depressions where it will surface when water evaporates at the soil surface. A potential solution could include the replanting of the native deep-rooted vegetation, which requires knowledge of the spatial distribution of soil salinity. This study tested the soil factors influencing electromagnetic-induction meter (EM38) readings of soil salinity distribution around wetlands. The objectives were to: (1) predict growth and survival of Salix dasyclados Wimm. (cv. `India') along a salinity gradient in a small wetland, and (2) investigate whether newly established willows affected water-table fluctuations, which would indicate their phreatophytic nature or their ability to obtain their water supply from the zone of saturation. Results indicated significantly lower salinity values for sampling points with EM38 readings above 175 and 250 mS m-1 for height and survival, respectively. In addition, diurnal fluxes of the water table in areas of good willow growth and lower salinity indicated that cultivar `India' was phreatophytic in these areas and therefore has great potential for being used to combat saline seeps.

  5. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    NASA Astrophysics Data System (ADS)

    Uyeda, S.; Nagao, T.; Hattori, K.; Hayakawa, M.; Miyaki, K.; Molchanov, O.; Gladychev, V.; Baransky, L.; Chtchekotov, A.; Fedorov, E.; Pokhotelov, O.; Andreevsky, S.; Rozhnoi, A.; Khabazin, Y.; Gorbatikov, A.; Gordeev, E.; Chebrov, V.; Sinitzin, V.; Lutikov, A.; Yunga, S.; Kosarev, G.; Surkov, V.; Belyaev, G.

    Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity). The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 - 40 Hz) and meteorological recordings, together with seismo-acoustic (∆F = 30 - 1000 Hz) and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 - 30 Hz), three-component electric potential variations ( ∆F < 1.0 Hz), and VLF transmitter's signal perturbations ( ∆F ~ 10 - 40 kHz).

  6. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  7. Some thermodynamic considerations on low frequency electromagnetic waves effects on cancer invasion and metastasis

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto; Ponzetto, Antonio

    2017-02-01

    Cell membranes are the reason of the cell energy transfer. In cells energy transfer, thermo-electro-chemical processes and transports phenomena occur through their membranes. Cells can actively modify their behaviours in relation to any change of their environment. They waste heat into their environment. The analysis of irreversibility related to this wasted heat, to the ions transport and the related cell-environment pH changes represents a new useful approach to the study of the cells behaviour. This analysis allows also the explanation of the effects of electromagnetic fields on the cell behaviour, and to suggest how low intensity electromagnetic fields could represent a useful support to the present anticancer therapies.

  8. MEMS electromagnetic energy harvesters with multiple resonances

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Gray, Robert

    2014-06-01

    There is going on a flurry of research activity in the development of effcient energy harvesters from all branches of energy conversion. The need for developing self-powered wireless sensors and actuators to be employed in unmanned combat vehicles also seems to grow steadily. These vehicles are inducted into perilous war zones for silent watch missions. Energy management is sometimes carried out using misson-aware energy expenditure strategies. Also, when there is a requirement for constant monitoring of events, the sensors and the subsystems of combat vehicles require energy harvesters that can operate over a discrete set of spot frequencies. This paper attempts to review some of the recent techniques and the energy harvesting devices based on electromagnetic and electromechanical principles. In particular, we shall discuss the design and performance of a MEMS-harvester that exhibits multiple resonances. Frequency response of a simulated electromagnetic harvester is plotted. It has three dominant peaks at three different resonant frequencies. Variation in the load power in the normalized units as a function of load is found, which determines the matched load resistance.

  9. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  10. Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept.

    PubMed

    Phenrat, Tanapon; Thongboot, Thippawan; Lowry, Gregory V

    2016-01-19

    This study evaluates the concept of using zerovalent iron (ZVI) powder or nanoscale zerovalent iron (NZVI) particles in combination with a low frequency (150 kHz) AC electromagnetic field (AC EMF) to effectively remove trichloroethylene (TCE) from groundwater and saturated soils. ZVI and NZVI are ferromagnetic, which can induce heat under applied AC EMF. The heat generated by ZVI and NZVI induction can increase the rate of dechlorination, according to Arrhenius' equation, and increase the rate of TCE desorption from TCE-sorbed soil. Both dechlorination and TCE desorption enhance the overall TCE removal rate. We evaluated this novel concept in laboratory batch reactors. We found that both ZVI and NZVI can induce heat under applied AC EMF up to 120 °C in 20 min. Using ZVI and NZVI with AC EMF enhanced dechlorination of dissolved TCE (no soil) up to 4.96-fold. In addition to increasing the temperature by ZVI and NZVI induction heating, AC EMF increased intrinsic ZVI and NZVI reactivity, ostensibly due to accelerated corrosion, as demonstrated by the increased ORP. In a soil-water-TCE system, NZVI together with AC EMF thermally enhanced desorption of TCE from soil and increased the degradation of TCE up to 5.36-fold compared to the absence of AC EMF. For the first time, this study indicates the potential for ZVI and NZVI coupled with AC EMF as a combined remediation technique for increasing the rate and completeness of in situ cleanup of adsorbed phase contaminants.

  11. Feasibility study of a swept frequency electromagnetic probe (SWEEP) using inductive coupling for the determination of subsurface conductivity of the earth and water prospecting in arid regions

    NASA Technical Reports Server (NTRS)

    Latorraca, G. A.; Bannister, L. H.

    1974-01-01

    Techniques developed for electromagnetic probing of the lunar interior, and techniques developed for the generation of high power audio frequencies were combined to make practical a magnetic inductive coupling system for the rapid measurement of ground conductivity profiles which are helpful when prospecting for the presence and quality of subsurface water. A system which involves the measurement of the direction, intensity, and time phase of the magnetic field observed near the surface of the earth at a distance from a horizontal coil energized so as to create a field that penetrates the earth was designed and studied to deduce the conductivity and stratification of the subsurface. Theoretical studies and a rudimentary experiment in an arid region showed that the approach is conceptually valid and that this geophysical prospecting technique can be developed for the economical exploration of subterranean water resources.

  12. A Hamiltonian electromagnetic gyrofluid model

    NASA Astrophysics Data System (ADS)

    Waelbroeck, F. L.; Hazeltine, R. D.; Morrison, P. J.

    2009-11-01

    An isothermal truncation of the electromagnetic gyrofluid model of Snyder and Hammett [Phys. Plasmas 8, 3199 (2001)] is shown to be Hamiltonian. The corresponding noncanonical Lie-Poisson bracket and its Casimir invariants are presented. The model describes the evolution of the density, the electrostatic potential, and the component of the vector potential along a strong background field. This makes it suitable for describing such phenomena as the propagation of kinetic-Alfv'en modons, the nonlinear saturation of drift-tearing modes, and the diamagnetic stabilization of the internal kink. The invariants are used to obtain a set of coupled Grad-Shafranov equations describing equilibria and propagating coherent structures. They also lead to a Lagrangian formulation of the equations of motion that is well suited to solution with the PIC method.

  13. The ringer - An efficient, high repetition rate circuit for electromagnetic launchers

    NASA Astrophysics Data System (ADS)

    Giorgi, D.; Helava, H.; Lindner, K.; Long, J.; Zucker, O.

    1989-01-01

    The Meatgrinder is an efficient, current-multiplying circuit which can be used to optimize the energy transfer to various electromagnetic gun configurations. The authors present a simple variant of the Meatgrinder circuit which permits a first-order current profiling into the gun and recovery of the inductive energy in the barrel at a high repetition rate. The circuit is basically a one-stage Meatgrinder which utilizes the ringing of the energy storage capacitor (less than 40 percent reversal) to perform the opening switch function and a solid-state diode as the crowbar switch between the two mutually coupled inductors. With resonant charging, this results in a completely passive, high-repetiton-rate electromagnetic-gun power supply. Since most of the barrel energy is recovered, a railgun with negligible muzzle flash can be realized.

  14. Comparing bulk electrical conductivities spatial series obtained by Time Domain Reflectometry and Electromagnetic Induction sensors

    NASA Astrophysics Data System (ADS)

    Saeed, Ali; Ajeel, Ali; dragonetti, giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    The ability to determine and monitor the effects of salts on soils and plants, are of great importance to agriculture. To control its harmful effects, soil salinity needs to be monitored in space and time. This requires knowledge of its magnitude, temporal dynamics, and spatial variability. Conventional ground survey procedures by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity (σb) directly in the field. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on Electromagnetic Induction (EMI) techniques are non-invasive methods and represent a viable alternative to traditional techniques for soil characterization. The problem is that all these techniques give depth-weighted apparent electrical conductivity (σa) measurements, depending on the specific depth distribution of the σb, as well as on the depth response function of the sensor used. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from EMI. Because of their relatively lower observation window, TDR sensors provide quasi-point values and do not adequately integrate the spatial variability of the chemical concentration distribution in the soil

  15. Rhythmic entrainment as a musical affect induction mechanism.

    PubMed

    J Trost, W; Labbé, C; Grandjean, D

    2017-02-01

    One especially important feature of metrical music is that it contains periodicities that listeners' bodily rhythms can adapt to. Recent psychological frameworks have introduced the notion of rhythmic entrainment, among other mechanisms, as an emotion induction principle. In this review paper, we discuss rhythmic entrainment as an affect induction mechanism by differentiating four levels of entrainment in humans-perceptual, autonomic physiological, motor, and social-all of which could contribute to a subjective feeling component. We review the theoretical and empirical literature on rhythmic entrainment to music that supports the existence of these different levels of entrainment by describing the phenomena and characterizing the associated underlying brain processes. The goal of this review is to present the theoretical implications and empirical findings about rhythmic entrainment as an important principle at the basis of affect induction via music, since it rests upon the temporal dimension of music, which is a specificity of music as an affective stimulus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Pulse-modulated Electromagnetic Radiation of Extremely High Frequencies Protects Cellular DNA against Damaging Effect of Physico-Chemical Factors in vitro].

    PubMed

    Gapeyev, A B; Lukyanova, N A

    2015-01-01

    Using a comet assay technique, we investigated protective effects of. extremely high frequency electromagnetic radiation in combination with the damaging effect of X-ray irradiation, the effect of damaging agents hydrogen peroxide and methyl methanesulfonate on DNA in mouse whole blood leukocytes. It was shown that the preliminary exposure of the cells to low intensity pulse-modulated electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20-min exposure, modulation frequencies of 1 and 16 Hz) caused protective effects decreasing the DNA damage by 20-45%. The efficacy of pulse-modulated electromagnetic radiation depended on the type of genotoxic agent and increased in a row methyl methanesulfonate--X-rays--hydrogen peroxide. Continuous electromagnetic radiation was ineffective. The mechanisms of protective effects may be connected with an induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated electromagnetic radiation.

  17. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    SciTech Connect

    Munafò, A., E-mail: munafo@illinois.edu; Alfuhaid, S. A., E-mail: alfuhai2@illinois.edu; Panesi, M., E-mail: mpanesi@illinois.edu

    2015-10-07

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled systemmore » of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.« less

  18. Searching for Electrical Properties, Phenomena and Mechanisms in the Construction and Function of Chromosomes

    PubMed Central

    Kanev, Ivan; Mei, Wai-Ning; Mizuno, Akira; DeHaai, Kristi; Sanmann, Jennifer; Hess, Michelle; Starr, Lois; Grove, Jennifer; Dave, Bhavana; Sanger, Warren

    2013-01-01

    Our studies reveal previously unidentified electrical properties of chromosomes: (1) chromosomes are amazingly similar in construction and function to electrical transformers; (2) chromosomes possess in their construction and function, components similar to those of electric generators, conductors, condensers, switches, and other components of electrical circuits; (3) chromosomes demonstrate in nano-scale level electromagnetic interactions, resonance, fusion and other phenomena similar to those described by equations in classical physics. These electrical properties and phenomena provide a possible explanation for unclear and poorly understood mechanisms in clinical genetics including: (a) electrically based mechanisms responsible for breaks, translocations, fusions, and other chromosomal abnormalities associated with cancer, intellectual disability, infertility, pregnancy loss, Down syndrome, and other genetic disorders; (b) electrically based mechanisms involved in crossing over, non-disjunction and other events during meiosis and mitosis; (c) mechanisms demonstrating heterochromatin to be electrically active and genetically important. PMID:24688715

  19. On Electromagnetic Modulation of Flow Instabilities, Mixing and Heat Transfer in Conducting and Magnetized Fluids

    NASA Astrophysics Data System (ADS)

    Kenjeres, S.

    2016-09-01

    In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.

  20. Bio-soliton model that predicts non-thermal electromagnetic frequency bands, that either stabilize or destabilize living cells.

    PubMed

    Geesink, J H; Meijer, D K F

    2017-01-01

    Solitons, as self-reinforcing solitary waves, interact with complex biological phenomena such as cellular self-organization. A soliton model is able to describe a spectrum of electromagnetism modalities that can be applied to understand the physical principles of biological effects in living cells, as caused by endogenous and exogenous electromagnetic fields and is compatible with quantum coherence. A bio-soliton model is proposed, that enables to predict which eigen-frequencies of non-thermal electromagnetic waves are life-sustaining and which are, in contrast, detrimental for living cells. The particular effects are exerted by a range of electromagnetic wave eigen-frequencies of one-tenth of a Hertz till Peta Hertz that show a pattern of 12 bands, and can be positioned on an acoustic reference frequency scale. The model was substantiated by a meta-analysis of 240 published articles of biological electromagnetic experiments, in which a spectrum of non-thermal electromagnetic waves were exposed to living cells and intact organisms. These data support the concept of coherent quantized electromagnetic states in living organisms and the theories of Fröhlich, Davydov and Pang. It is envisioned that a rational control of shape by soliton-waves and related to a morphogenetic field and parametric resonance provides positional information and cues to regulate organism-wide systems properties like anatomy, control of reproduction and repair.

  1. The electrodynamic and hydrodynamic phenomena in magnetically-levitated molten droplets. I - Steady state behavior

    NASA Technical Reports Server (NTRS)

    Zong, Jin-Ho; Li, Benqiang; Szekely, Julian

    1992-01-01

    A mathematical formulation is given and computed results are presented describing the behavior of electromagnetically-levitated metal droplets under the conditions of microgravity. In the formulation the electromagnetic force field is calculated using a modification of the volume integral method and these results are then combined with the FIDAP code to calculate the steady state melt velocities. The specific computational results are presented for the conditions corresponding to the planned IML-2 Space Shuttle experiment, using the TEMPUS device, which has separate 'heating' and 'positioning' coils. While the computed results are necessarily specific to the input conditions, some general conclusions may be drawn from this work. These include the fact that for the planned TEMPUS experiments to positioning coils will produce only a weak melt circulation, while the heating coils are like to produce a mildly turbulent recirculating flow pattern within the samples. The computed results also allow us to assess the effect of sample size, material properties and the applied current on these phenomena.

  2. Improved methods for nightside time domain Lunar Electromagnetic Sounding

    NASA Astrophysics Data System (ADS)

    Fuqua-Haviland, H.; Poppe, A. R.; Fatemi, S.; Delory, G. T.; De Pater, I.

    2017-12-01

    Time Domain Electromagnetic (TDEM) Sounding isolates induced magnetic fields to remotely deduce material properties at depth. The first step of performing TDEM Sounding at the Moon is to fully characterize the dynamic plasma environment, and isolate geophysically induced currents from concurrently present plasma currents. The transfer function method requires a two-point measurement: an upstream reference measuring the pristine solar wind, and one downstream near the Moon. This method was last performed during Apollo assuming the induced fields on the nightside of the Moon expand as in an undisturbed vacuum within the wake cavity [1]. Here we present an approach to isolating induction and performing TDEM with any two point magnetometer measurement at or near the surface of the Moon. Our models include a plasma induction model capturing the kinetic plasma environment within the wake cavity around a conducting Moon, and a geophysical forward model capturing induction in a vacuum. The combination of these two models enable the analysis of magnetometer data within the wake cavity. Plasma hybrid models use the upstream plasma conditions and interplanetary magnetic field (IMF) to capture the wake current systems formed around the Moon. The plasma kinetic equations are solved for ion particles with electrons as a charge-neutralizing fluid. These models accurately capture the large scale lunar wake dynamics for a variety of solar wind conditions: ion density, temperature, solar wind velocity, and IMF orientation [2]. Given the 3D orientation variability coupled with the large range of conditions seen within the lunar plasma environment, we characterize the environment one case at a time. The global electromagnetic induction response of the Moon in a vacuum has been solved numerically for a variety of electrical conductivity models using the finite-element method implemented within the COMSOL software. This model solves for the geophysically induced response in vacuum to

  3. Can we quantify the variability of soil moisture across scales using Electromagnetic Induction ?

    NASA Astrophysics Data System (ADS)

    Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan

    2017-04-01

    Soil moisture is a key variable in many natural processes. Therefore, technological and methodological advancements are of primary importance to provide accurate measurements of spatial and temporal variability of soil moisture. In that context, ElectroMagnetic Induction (EMI) instruments are often cited as a hydrogeophysical method with a large potential, through the measurement of the soil apparent electrical conductivity (ECa). To our knowledge, no studies have evaluated the potential of EMI to characterize variability of soil moisture on both agricultural and forested land covers in a (sub-) tropical environment. These differences in land use could be critical as differences in temperature, transpiration and root water uptake can have significant effect, notably on the electrical conductivity of the pore water. In this study, we used an EMI instrument to carry out a first assessment of the impact of deforestation and agriculture on soil moisture in a subtropical region in the south of Brazil. We selected slopes of different topographies (gentle vs. steep) and contrasting land uses (natural forest vs. agriculture) within two nearby catchments. At selected locations on the slopes, we measured simultaneously ECa using EMI and a depth-weighted average of the soil moisture using TDR probes installed within soil pits. We found that the temporal variability of the soil moisture could not be measured accurately with EMI, probably because of important temporal variations of the pore water electrical conductivity and the relatively small temporal variations in soil moisture content. However, we found that its spatial variability could be effectively quantified using a non-linear relationship, for both intra- and inter-slopes variations. Within slopes, the ECa could explained between 67 and 90% of the variability of the soil moisture, while a single non-linear model for all the slopes could explain 55% of the soil moisture variability. We eventually showed that combining

  4. A Simulation Study on Optimal Design Parameters of 200V Class Induction Range using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Ohchi, Masashi; Furukawa, Tatsuya

    Induction heating has found a new feasibility in domestic appliances. Its application is known as an “induction range” or an “induction heating oven”. Conventional design schemes of them have depended on the experience and insight of designers. In the paper, the authors treat it as an electromagnetic device to investigate the mechanism of power dissipation using the Finite Element Method, where an impressed voltage supply is taken account of and the constant V/f condition is imposed for the constant impressed magnetic flux. Furthermore the authors will examine how to heat an aluminum pan and discuss the optimal frequency of a power supply.

  5. Remote detection of radioactive material using high-power pulsed electromagnetic radiation.

    PubMed

    Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, EunMi

    2017-05-09

    Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material.

  6. Remote detection of radioactive material using high-power pulsed electromagnetic radiation

    PubMed Central

    Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, EunMi

    2017-01-01

    Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material. PMID:28486438

  7. Borehole induction coil transmitter

    DOEpatents

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  8. Combining ground penetrating radar and electromagnetic induction for industrial site characterization

    NASA Astrophysics Data System (ADS)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Saey, Timothy; De Smedt, Philippe; Delefortrie, Samuël; Seuntjens, Piet

    2014-05-01

    Industrial sites pose specific challenges to the conventional way of characterizing soil and groundwater properties through borehole drilling and well monitoring. The subsurface of old industrial sites typically exhibits a large heterogeneity resulting from various anthropogenic interventions, such as the dumping of construction and demolition debris and industrial waste. Also larger buried structures such as foundations, utility infrastructure and underground storage tanks are frequently present. Spills and leaks from industrial activities and leaching of buried waste may have caused additional soil and groundwater contamination. Trying to characterize such a spatially heterogeneous medium with a limited number of localized observations is often problematic. The deployment of mobile proximal soil sensors may be a useful tool to fill up the gaps in between the conventional observations, as these enable measuring soil properties in a non-destructive way. However, because the output of most soil sensors is affected by more than one soil property, the application of only one sensor is generally insufficient to discriminate between all contributing factors. To test a multi-sensor approach, we selected a study area which was part of a former manufactured gas plant site located in one of the seaport areas of Belgium. It has a surface area of 3400 m² and was the location of a phosphate production unit that was demolished at the end of the 1980s. Considering the long and complex history of the site we expected to find a typical "industrial" soil. Furthermore, the studied area was located between buildings of the present industry, entailing additional practical challenges such as the presence of active utilities and aboveground obstacles. The area was surveyed using two proximal soil sensors based on two different geophysical methods: ground penetrating radar (GPR), to image contrasts in dielectric permittivity, and electromagnetic induction (EMI), to measure the apparent

  9. Modelling transport phenomena in a multi-physics context

    SciTech Connect

    Marra, Francesco

    2015-01-22

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. Inmore » the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.« less

  10. Modelling transport phenomena in a multi-physics context

    NASA Astrophysics Data System (ADS)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  11. Effect of electromagnetic radiation on the coils used in aneurysm embolization.

    PubMed

    Lv, Xianli; Wu, Zhongxue; Li, Youxiang

    2014-06-01

    This study evaluated the effects of electromagnetic radiation in our daily lives on the coils used in aneurysm embolization. Faraday's electromagnetic induction principle was applied to analyze the effects of electromagnetic radiation on the coils used in aneurysm embolization. To induce a current of 0.5mA in less than 5 mm platinum coils required to stimulate peripheral nerves, the minimum magnetic field will be 0.86 μT. To induce a current of 0.5 mA in platinum coils by a hair dryer, the minimum aneurysm radius is 2.5 mm (5 mm aneurysm). To induce a current of 0.5 mA in platinum coils by a computer or TV, the minimum aneurysm radius is 8.6 mm (approximate 17 mm aneurysm). The minimum magnetic field is much larger than the flux densities produced by computer and TV, while the minimum aneurysm radius is much larger than most aneurysm sizes to levels produced by computer and TV. At present, the effects of electromagnetic radiation in our daily lives on intracranial coils do not produce a harmful reaction. Patients with coiled aneurysm are advised to avoid using hair dryers. This theory needs to be proved by further detailed complex investigations. Doctors should give patients additional instructions before the procedure, depending on this study.

  12. Effect of Electromagnetic Radiation on the Coils Used in Aneurysm Embolization

    PubMed Central

    Lv, Xianli; Wu, Zhongxue; Li, Youxiang

    2014-01-01

    Summary This study evaluated the effects of electromagnetic radiation in our daily lives on the coils used in aneurysm embolization. Faraday’s electromagnetic induction principle was applied to analyze the effects of electromagnetic radiation on the coils used in aneurysm embolization. To induce a current of 0.5mA in less than 5 mm platinum coils required to stimulate peripheral nerves, the minimum magnetic field will be 0.86 μT. To induce a current of 0.5 mA in platinum coils by a hair dryer, the minimum aneurysm radius is 2.5 mm (5 mm aneurysm). To induce a current of 0.5 mA in platinum coils by a computer or TV, the minimum aneurysm radius is 8.6 mm (approximate 17 mm aneurysm). The minimum magnetic field is much larger than the flux densities produced by computer and TV, while the minimum aneurysm radius is much larger than most aneurysm sizes to levels produced by computer and TV. At present, the effects of electromagnetic radiation in our daily lives on intracranial coils do not produce a harmful reaction. Patients with coiled aneurysm are advised to avoid using hair dryers. This theory needs to be proved by further detailed complex investigations. Doctors should give patients additional instructions before the procedure, depending on this study. PMID:24976203

  13. Experimental verification and optimization of a linear electromagnetic energy harvesting device

    NASA Astrophysics Data System (ADS)

    Mullen, Christopher; Lee, Soobum

    2017-04-01

    Implementation of energy harvesting technology can provide a sustainable, remote power source for soldiers by reducing the battery weight and allowing them to stay in the field for longer periods of time. Among multiple energy conversion principles, electromagnetic induction can scavenge energy from wasted kinematic and vibration energy found from human motion. Hip displacement during human gait acts as a base excitation for an energy harvesting backpack system. The placement of a permanent magnet in this vibration environment results in relative motion of the magnet to the coil of copper wire, which induces an electric current. This current can be saved to a battery or capacitor bank installed on the backpack to be used to power electronic devices. The purpose of this research is to construct a reliable simulation model for an electromagnetic vibration energy harvester and use it for a multi-variable optimization algorithm to identify an optimal coil and magnet layout for highest power output. Key components of the coupled equations of motion such as the magnetic flux density and coil inductance are obtained using ANSYS multi-physics software or by measuring them. These components are fed into a harvester simulation model (e.g. coupled field equations of motion for the backpack harvester) that generates the electrical power output. The developed simulation model is verified with a case study including an experimental test. Then the optimal design parameters in the simulation model (e.g., magnet layout, coil width, outer coil diameter, external load resistance) are identified for maximum power. Results from this study will pave the way for a more efficient energy harvesting backpack while providing better insight into the efficiency of magnet and coil layout for electromagnetic applications.

  14. Electromagnetic deep-probing (100-1000 kms) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F.

    1983-01-01

    The reconnaissance phase of using satellite observtions to studying electromagnetic induction in the solid earth is summarized. Several points are made: (1) satellite data apparently suffer far less from the effects of near surface lateral heterogeneities in the earth than do ground-based data; (2) zonal ionospheric currents during the recovery phase of major magnetic storms appear to be minimal, at least in the dawn and dusk sectors wher MAGSAT was flown; hence the internal contributions that satellites observe during these times is in fact due primarily to induction in the Earth with little or no contribution from ionospheric currents; and (3) the interpretation of satellite data in terms of primitive electromagnetic response functions, while grossly over-simplified, results in a surprisingly well-resolved radius for an equivalent super-conductor representing the conductivity region of the Earth's interior (5,370 + or - 120 km).

  15. Electromagnetic interference reduction using electromagnetic bandgap structures in packages, enclosures, cavities, and antennas

    NASA Astrophysics Data System (ADS)

    Mohajer Iravani, Baharak

    Electromagnetic interference (EMI) is a source of noise problems in electronic devices. The EMI is attributed to coupling between sources of radiation and components placed in the same media such as package or chassis. This coupling can be either through conducting currents or through radiation. The radiation of electromagnetic (EM) fields is supported by surface currents. Thus, minimizing these surface currents is considered a major and critical step to suppress EMI. In this work, we present novel strategies to confine surface currents in different applications including packages, enclosures, cavities, and antennas. The efficiency of present methods of EM noise suppression is limited due to different drawbacks. For example, the traditional use of lossy materials and absorbers suffers from considerable disadvantages including mechanical and thermal reliability leading to limited life time, cost, volume, and weight. In this work, we consider the use of Electromagnetic Band Gap (EBG) structures. These structures are suitable for suppressing surface currents within a frequency band denoted as the bandgap. Their design is straight forward, they are inexpensive to implement, and they do not suffer from the limitations of the previous methods. A new method of EM noise suppression in enclosures and cavity-backed antennas using mushroom-type EBG structures is introduced. The effectiveness of the EBG as an EMI suppresser is demonstrated using numerical simulations and experimental measurements. To allow integration of EBGs in printed circuit boards and packages, novel miniaturized simple planar EBG structures based on use of high-k dielectric material (epsilonr > 100) are proposed. The design consists of meander lines and patches. The inductive meander lines serve to provide current continuity bridges between the capacitive patches. The high-k dielectric material increases the effective capacitive load substantially in comparison to commonly used material with much lower

  16. Electromagnetic Fields

    PubMed Central

    Ishida, Masashi; Takahashi, Kenji A.; Arai, Yuji; Kubo, Toshikazu

    2008-01-01

    Establishing a means to prevent osteonecrosis after corticosteroid administration is an important theme. We asked whether pulsed electromagnetic field stimulation, a noninvasive treatment, could prevent osteonecrosis. Ninety rabbits were divided into four treatment groups: (1) exposure of 10 hours per day to electromagnetic stimulation for 1 week, followed by injection of methylprednisolone (20 mg/kg), and exposure of 10 hours per day to electromagnetism for a further 4 weeks (n = 40); (2) methylprednisolone injection only (n = 40); (3) no treatment (n = 5); and (4) exposure of 10 hours per day to electromagnetism for 5 weeks (n = 5). After 5 weeks, we harvested and histologically examined femurs bilaterally. The frequency of osteonecrosis was lower in the steroid-electromagnetism group (15/40) than in the steroid-only group (26/40). No necrotic lesions were found in the two control groups. We observed no clear effects of electromagnetism on the number, location, extent, and repair of necrotic lesions and intramedullary fat cell size in affected rabbits. Pulsed electromagnetic field stimulation reportedly augments angiogenesis factors and dilates blood vessels; these effects may lower the frequency of osteonecrosis. Exposure to pulsed electromagnetic field stimulation before corticosteroid administration could be an effective means to reduce the risk of osteonecrosis. PMID:18350347

  17. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

    SciTech Connect

    Maidana, Carlos O.; Nieminen, Juha E.

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less

  18. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

    DOE PAGES

    Maidana, Carlos O.; Nieminen, Juha E.

    2017-02-01

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less

  19. Computational Validation of a Two-Dimensional Semi-Empirical Model for Inductive Coupling in a Conical Pulsed Inductive Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2011-01-01

    A two-dimensional semi-empirical model of pulsed inductive thrust efficiency is developed to predict the effect of such a geometry on thrust efficiency. The model includes electromagnetic and gas-dynamic forces but excludes energy conversion from radial motion to axial motion, with the intention of characterizing thrust efficiency loss mechanisms that result from a conical versus a at inductive coil geometry. The range of conical pulsed inductive thruster geometries to which this model can be applied is explored with the use of finite element analysis. A semi-empirical relation for inductance as a function of current sheet radial and axial position is the limiting feature of the model, restricting the applicability as a function of half cone angle to a range from ten degrees to about 60 degrees. The model is nondimensionalized, yielding a set of dimensionless performance scaling parameters. Results of the model indicate that radial current sheet motion changes the axial dynamic impedance parameter at which thrust efficiency is maximized. This shift indicates that when radial current sheet motion is permitted in the model longer characteristic circuit timescales are more efficient, which can be attributed to a lower current sheet axial velocity as the plasma more rapidly decouples from the coil through radial motion. Thrust efficiency is shown to increase monotonically for decreasing values of the radial dynamic impedance parameter. This trend indicates that to maximize the radial decoupling timescale should be long compared to the characteristic circuit timescale.

  20. Control of electromagnetic stirring by power focusing in large induction crucible furnaces

    NASA Astrophysics Data System (ADS)

    Frizen, V. E.; Sarapulov, F. N.

    2011-12-01

    An approach is proposed for the calculation of the operating conditions of an induction crucible furnace at the final stage of melting with the power focused in various regions of melted metal. The calculation is performed using a model based on the method of detailed magnetic equivalent circuits. The combination of the furnace and a thyristor frequency converter is taken into account in modeling.

  1. Mathematical methods of studying physical phenomena

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.

    2013-03-01

    In recent decades, substantial theoretical and experimental progress was achieved in understanding the quantum nature of physical phenomena that serves as the foundation of present and future quantum technologies. Quantum correlations like the entanglement of the states of composite systems, the phenomenon of quantum discord, which captures other aspects of quantum correlations, quantum contextuality and, connected with these phenomena, uncertainty relations for conjugate variables and entropies, like Shannon and Rényi entropies, and the inequalities for spin states, like Bell inequalities, reflect the recently understood quantum properties of micro and macro systems. The mathematical methods needed to describe all quantum phenomena mentioned above were also the subject of intense studies in the end of the last, and beginning of the new, century. In this section of CAMOP 'Mathematical Methods of Studying Physical Phenomena' new results and new trends in the rapidly developing domain of quantum (and classical) physics are presented. Among the particular topics under discussion there are some reviews on the problems of dynamical invariants and their relations with symmetries of the physical systems. In fact, this is a very old problem of both classical and quantum systems, e.g. the systems of parametric oscillators with time-dependent parameters, like Ermakov systems, which have specific constants of motion depending linearly or quadratically on the oscillator positions and momenta. Such dynamical invariants play an important role in studying the dynamical Casimir effect, the essence of the effect being the creation of photons from the vacuum in a cavity with moving boundaries due to the presence of purely quantum fluctuations of the electromagnetic field in the vacuum. It is remarkable that this effect was recently observed experimentally. The other new direction in developing the mathematical approach in physics is quantum tomography that provides a new vision of

  2. Motional Induction by Tsunamis and Ocean Tides: 10 Years of Progress

    NASA Astrophysics Data System (ADS)

    Minami, Takuto

    2017-09-01

    Motional induction is the process by which the motion of conductive seawater in the ambient geomagnetic main field generates electromagnetic (EM) variations, which are observable on land, at the seafloor, and sometimes at satellite altitudes. Recent years have seen notable progress in our understanding of motional induction associated with tsunamis and with ocean tides. New studies of tsunami motional induction were triggered by the 2004 Sumatra earthquake tsunami and further promoted by subsequent events, such as the 2010 Chile earthquake and the 2011 Tohoku earthquake. These events yielded observations of tsunami-generated EM variations from land and seafloor stations. Studies of magnetic fields generated by ocean tides attracted interest when the Swarm satellite constellation enabled researchers to monitor tide-generated magnetic variations from low Earth orbit. Both avenues of research benefited from the advent of sophisticated seafloor instruments, by which we may exploit motional induction for novel applications. For example, seafloor EM measurements can serve as detectors of vector properties of tsunamis, and seafloor EM data related to ocean tides have proved useful for sounding Earth's deep interior. This paper reviews and discusses the progress made in motional induction studies associated with tsunamis and ocean tides during the last decade.

  3. Coupled Structural, Thermal, Phase-change and Electromagnetic Analysis for Superconductors, Volume 2

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Park, K. C.; Militello, C.; Schuler, J. J.

    1996-01-01

    Described are the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromag subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling of thermel and mechanical effects, and (4) computer implementation and solution of the superconductivity transition problem. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles, (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The theoretical development is described in two volumes. Volume 1 describes mostly formulation specific problems. Volume 2 describes generalization of those formulations.

  4. Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating

    NASA Astrophysics Data System (ADS)

    Kislyakova, K. G.; Noack, L.; Johnstone, C. P.; Zaitsev, V. V.; Fossati, L.; Lammer, H.; Khodachenko, M. L.; Odert, P.; Guedel, M.

    2017-10-01

    Low-mass M stars are plentiful in the Universe and often host small, rocky planets detectable with the current instrumentation. Recently, seven small planets have been discovered orbiting the ultracool dwarf TRAPPIST-1 te{Gillon16,Gillon17}. We examine the role of electromagnetic induction heating of these planets, caused by the star's rotation and the planet's orbital motion. If the stellar rotation and magnetic dipole axes are inclined with respect to each other, induction heating can melt the upper mantle and enormously increase volcanic activity, sometimes producing a magma ocean below the planetary surface. We show that induction heating leads the three innermost planets, one of which is in the habitable zone, to either evolve towards a molten mantle planet, or to experience increased outgassing and volcanic activity, while the four outermost planets remain mostly unaffected.

  5. Localized mold heating with the aid of selective induction for injection molding of high aspect ratio micro-features

    NASA Astrophysics Data System (ADS)

    Park, Keun; Lee, Sang-Ik

    2010-03-01

    High-frequency induction is an efficient, non-contact means of heating the surface of an injection mold through electromagnetic induction. Because the procedure allows for the rapid heating and cooling of mold surfaces, it has been recently applied to the injection molding of thin-walled parts or micro/nano-structures. The present study proposes a localized heating method involving the selective use of mold materials to enhance the heating efficiency of high-frequency induction heating. For localized induction heating, a composite injection mold of ferromagnetic material and paramagnetic material is used. The feasibility of the proposed heating method is investigated through numerical analyses in terms of its heating efficiency for localized mold surfaces and in terms of the structural safety of the composite mold. The moldability of high aspect ratio micro-features is then experimentally compared under a variety of induction heating conditions.

  6. Natural time analysis of critical phenomena: The case of pre-fracture electromagnetic emissions

    NASA Astrophysics Data System (ADS)

    Potirakis, S. M.; Karadimitrakis, A.; Eftaxias, K.

    2013-06-01

    Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

  7. Natural time analysis of critical phenomena: the case of pre-fracture electromagnetic emissions.

    PubMed

    Potirakis, S M; Karadimitrakis, A; Eftaxias, K

    2013-06-01

    Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

  8. Use of Permanent Magnets in Electromagnetic Facilities for the Treatment of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Beinerts, Toms; Bojarevičs, Andris; Bucenieks, Imants; Gelfgat, Yuri; Kaldre, Imants

    2016-06-01

    The possibility of applying the electromagnetic induction pump with permanent magnets for the transportation and stirring of aluminum melts in metallurgical furnaces is investigated. The electromagnetic and hydraulic characteristics of the pump have been investigated theoretically and experimentally with regard to its position in the furnace. The results of the experiments performed with a model in a eutectic InGaSn melt are in good agreement with the calculation data. Extrapolation of the experimental results on the physical characteristics of aluminum melts allows recommending such pumps for contactless control of motion and heat/mass transfer in aluminum melts in different technological processes. A high temperature and the aggressive properties of aluminum alloys make it complicated to use different mechanical devices to solve technological problems, such as liquid metal transportation, dosing, stirring, etc. In this case, any device units or elements moving in or contacting with the melt suffer from corrosion polluting the melt. Therefore, of more importance and topicality are contactless electromagnetic methods for processing of molten metals.

  9. Sounding of Europa's interior using multi-frequency electromagnetic induction from a Europa orbiter

    NASA Astrophysics Data System (ADS)

    Khurana, K. K.; Kivelson, M. G.; Russell, C. T.

    2000-12-01

    Magnetic field observations from Galileo have shown that Europa induces a strong response to the varying field of Jupiter's magnetosphere. These observations are consistent with a global conductor located close to the surface. Khurana et al. [1998] and Kivelson et al. [1999] have shown that a moon-wide ocean with a conductivity similar to the Earth's ocean and having a thickness of at least 6 km could produce the observed induction signature. Many other geological and geophysical observations are consistent with this interpretation (See Pappalardo et al. [1999] for further details.). The magnetic induction signature at a single frequency can also be explained with a model in which the conducting layer is thinner (thicker) but has higher (lower) conductivity. The initial work relied on the variations of the time varying field at the synodic rotation period of Jupiter (as seen in the rest frame of the moon) to infer the interior structure of Europa. We have extended the initial analysis by showing that the spectrum of the primary field contains several other important frequencies. We single out one frequency-corresponding to the orbital period of Europa-for further examination. We show that by modeling the induction response at this frequency in addition to the previously used synodic frequency for a range of ocean shell thicknesses and conductivities, the ocean conductivity and the thickness of the ocean at Europa can be determined uniquely. We discuss how the measurements from an orbiting spacecraft can be decomposed into the internal (which is the secondary field) and external (the primary imposed field) components not only for the steady field but also for the varying field.

  10. Integrated induction coil and fluxgate magnetometers for EM analysis and monitoring

    NASA Astrophysics Data System (ADS)

    Hanstein, T.; Strack, K.; Jiang, J.

    2013-12-01

    The concept of a full field array electromagnetic system is an ideal tool to support hydrocarbon and geothermal E & P as well as various engineering monitoring applications. Some of the key questions are defining the reservoir, mapping of the fractures and reservoir depletion monitoring. The reservoirs are all too often relative thin and give an anomalous electromagnetic (EM) response, which is often small in amplitude and challenging for the EM measuring system. A digital fluxgate magnetometer (32-bit) is connected to the KMS magnetotelluric acquisition system with analogue induction coils and electrodes to extend the range of application of a single recording site. Since the noise level is above that of the induction coil for periods shorter than 20 s, the apparent resistivity is biased. For longer periods the apparent resistivity is consistent and eventually better than the induction coil. However, phase and tipper are not biased and agree well with the induction data even for shorter periods. This allows us to develop algorithms that significantly extend the range of application of the fluxgate beyond what was done in the past. The highest frequency of the fluxgate magnetometer is about 180 Hz and the hightest sampling of the FG-board is 4 kHz.The different induction coils and fluxgate magnetometer have intensively been tested in the magnetic chamber and at the field test site near Houston for noise performance by parallel recordings. They show that even in an environment with high cultural noise, the specification can be met. In Northeast China, a 30-day monitoring test with MT was carried out for seismologic applications. Acquisitition schedule included different recordings times and sampling rates. Daily, the data was collected and processed via the internet from either Europe or the US. Even with long recording, we still had to select the time windows for data averaging and coherences are not a good threshhold criteria in this case. During another MT

  11. Electromagnetic liquid pistons for capillarity-based pumping.

    PubMed

    Malouin, Bernard A; Vogel, Michael J; Olles, Joseph D; Cheng, Lili; Hirsa, Amir H

    2011-02-07

    The small scales associated with lab-on-a-chip technologies lend themselves well to capillarity-dominated phenomena. We demonstrate a new capillarity-dominated system where two adjoining ferrofluid droplets can behave as an electronically-controlled oscillator or switch by an appropriate balance of magnetic, capillary, and inertial forces. Their oscillatory motion can be exploited to displace a surrounding liquid (akin to an axial piston pump), forming electromagnetic "liquid pistons." Such ferrofluid pistons can pump a precise volume of liquid via finely tunable amplitudes (cf. pump stroke) or resonant frequencies (cf. pump speed) with no solid moving parts for long-term operation without wear in a small device. Furthermore, the rapid propagation of electromagnetic fields and the favorable scaling of capillary forces with size permit micron sized devices with very fast operating speeds (∼kHz). The pumping dynamics and performance of these liquid pistons is explored, with experimental measurements showing good agreement with a spherical cap model. While these liquid pistons may find numerous applications in micro- and mesoscale fluidic devices (e.g., remotely activated drug delivery), here we demonstrate the use of these liquid pistons in capillarity-dominated systems for chip-level, fast-acting adaptive liquid lenses with nearly perfect spherical interfaces.

  12. Electromagnetic Induction

    ERIC Educational Resources Information Center

    Yochum, Hank; Vinion-Dubiel, Arlene; Granger, Jill; Lindsay, Lynne; Maass, Teresa; Mayhew, Sarah

    2013-01-01

    Engaging children in authentic investigation opens the doors for them to gain deep conceptual understanding in science. As students engage in investigation, they experience the practices employed by scientists and engineers, as highlighted in the Next Generation Science Standards (Achieve Inc. 2013). They also begin to understand the nature of…

  13. Experimental observation of the inductive electric field and related plasma nonuniformity in high frequency capacitive discharge

    SciTech Connect

    Ahn, S. K.; Chang, H. Y.

    To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with themore » theories of electromagnetic effects in large area and/or high frequency capacitive discharges.« less

  14. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  15. VLF electromagnetic investigations of the crater and central dome of Mount St. Helens, Washington

    USGS Publications Warehouse

    Towle, J.N.

    1983-01-01

    A very low frequency (VLF) electromagnetic induction survey in the crater of Mount St. Helens has identified several electrically conductive structures that appear to be associated with thermal anomalies and ground water within the crater. The most interesting of these conductive structures lies beneath the central dome. It is probably a partial melt of dacite similar to that comprising the June 1981 lobe of the central dome. ?? 1983.

  16. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    NASA Astrophysics Data System (ADS)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  17. [Electromagnetic pollution (electrosmog)--potential hazards of our electromagnetic future].

    PubMed

    Nowak, D; Radon, K

    2004-02-26

    The term electromagnetic environment encompasses the totality of all electric, magnetic and electromagnetic fields generated by natural and technical sources. A differentiation is made between low- and high-frequency electromagnetic fields. Typical sources of the former are domestic electricity Exposure to the latter is, for example, associated with the sue of mobile telephones. Studies on the health-related effects of electromagnetic fields are available in particular for the low-frequency range, based on an appropriate estimation of exposure. A number of these studies reveal an association between exposure to this type of electromagnetic fields and the occurrence of infantile leukemia in the highest exposure category. For high-frequency electromagnetic fields the number of epidemiological studies is limited. An increased risk of an accident occurring through the use of a cellular phone while driving has consistently been shown. Against the background of our limited knowledge about possible adverse effects of exposure to mobile phone transmitters, and the inability of the public to influence such exposure, transparency in the communication of the risks involved is of great importance.

  18. Energy Efficiency of Induction Motors Running Off Frequency Converters with Pulse-Width Voltage Modulation{sup 1}

    SciTech Connect

    Shvetsov, N. K., E-mail: elmash@em.ispu.ru

    2016-11-15

    The results of calculations of the increase in losses in an induction motor with frequency control and different forms of the supply voltage are presented. The calculations were performed by an analytic method based on harmonic analysis of the supply voltage as well as numerical calculation of the electromagnetic processes by the finite-element method.

  19. Induction of Oxidation in Living Cells by Time-Varying Electromagnetic Fields

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor

    2015-01-01

    We are studying how biological systems can harness quantum effects of time varying electromagnetic (EM) waves as the time-setting basis for universal biochemical organization via the redox cycle. The effects of extremely weak EM field on the biochemical redox cycle can be monitored through real-time detection of oxidation-induced light emissions of reporter molecules in living cells. It has been shown that EM fields can also induce changes in fluid transport rates through capillaries (approximately 300 microns inner diameter) by generating annular proton gradients. This effect may be relevant to understanding cardiovascular dis-function in spaceflight, beyond the ionosphere. Importantly, we show that these EM effects can be attenuated using an active EM field cancellation device. Central for NASA's Human Research Program is the fact that the absence of ambient EM field in spaceflight can also have a detrimental influence, namely via increased oxidative damage, on DNA replication, which controls heredity.

  20. On recovering distributed IP information from inductive source time domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Kang, Seogi; Oldenburg, Douglas W.

    2016-10-01

    We develop a procedure to invert time domain induced polarization (IP) data for inductive sources. Our approach is based upon the inversion methodology in conventional electrical IP (EIP), which uses a sensitivity function that is independent of time. However, significant modifications are required for inductive source IP (ISIP) because electric fields in the ground do not achieve a steady state. The time-history for these fields needs to be evaluated and then used to define approximate IP currents. The resultant data, either a magnetic field or its derivative, are evaluated through the Biot-Savart law. This forms the desired linear relationship between data and pseudo-chargeability. Our inversion procedure has three steps: (1) Obtain a 3-D background conductivity model. We advocate, where possible, that this be obtained by inverting early-time data that do not suffer significantly from IP effects. (2) Decouple IP responses embedded in the observations by forward modelling the TEM data due to a background conductivity and subtracting these from the observations. (3) Use the linearized sensitivity function to invert data at each time channel and recover pseudo-chargeability. Post-interpretation of the recovered pseudo-chargeabilities at multiple times allows recovery of intrinsic Cole-Cole parameters such as time constant and chargeability. The procedure is applicable to all inductive source survey geometries but we focus upon airborne time domain EM (ATEM) data with a coincident-loop configuration because of the distinctive negative IP signal that is observed over a chargeable body. Several assumptions are adopted to generate our linearized modelling but we systematically test the capability and accuracy of the linearization for ISIP responses arising from different conductivity structures. On test examples we show: (1) our decoupling procedure enhances the ability to extract information about existence and location of chargeable targets directly from the data maps

  1. Experimental setup for the measurement of induction motor cage currents

    NASA Astrophysics Data System (ADS)

    Bottauscio, Oriano; Chiampi, Mario; Donadio, Lorenzo; Zucca, Mauro

    2005-04-01

    An experimental setup for measurement of the currents flowing in the rotor bars of induction motors during synchronous no-load tests is described in the paper. The experimental verification of the high-frequency phenomena in the rotor cage is fundamental for a deep insight of the additional loss estimation by numerical methods. The attention is mainly focused on the analysis and design of the transducers developed for the cage current measurement.

  2. Loss-less propagation, elastic and inelastic interaction of electromagnetic soliton in an anisotropic ferromagnetic nanowire

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, V.; Kavitha, L.; Boopathy, C.; Gopi, D.

    2017-10-01

    Nonlinear interaction of electromagnetic solitons leads to a plethora of interesting physical phenomena in the diverse area of science that include magneto-optics based data storage industry. We investigate the nonlinear magnetization dynamics of a one-dimensional anisotropic ferromagnetic nanowire. The famous Landau-Lifshitz-Gilbert equation (LLG) describes the magnetization dynamics of the ferromagnetic nanowire and the Maxwell's equations govern the propagation dynamics of electromagnetic wave passing through the axis of the nanowire. We perform a uniform expansion of magnetization and magnetic field along the direction of propagation of electromagnetic wave in the framework of reductive perturbation method. The excitation of magnetization of the nanowire is restricted to the normal plane at the lowest order of perturbation and goes out of plane for higher orders. The dynamics of the ferromagnetic nanowire is governed by the modified Korteweg-de Vries (mKdV) equation and the perturbed modified Korteweg-de Vries (pmKdV) equation for the lower and higher values of damping respectively. We invoke the Hirota bilinearization procedure to mKdV and pmKdV equation to construct the multi-soliton solutions, and explicitly analyze the nature of collision phenomena of the co-propagating EM solitons for the above mentioned lower and higher values of Gilbert-damping due to the precessional motion of the ferromagnetic spin. The EM solitons appearing in the higher damping regime exhibit elastic collision thus yielding the fascinating state restoration property, whereas those of lower damping regime exhibit inelastic collision yielding the solitons of suppressed intensity profiles. The propagation of EM soliton in the nanoscale magnetic wire has potential technological applications in optimizing the magnetic storage devices and magneto-electronics.

  3. Aircraft Electromagnetic Compatibility.

    DTIC Science & Technology

    1987-06-01

    Human Exposure to Radio Frequency Electromagnetic Fields , 300 KiloHertz to 100 GigaHertz." 6. ARINC 429-8, "Digital Information Transfer System (DITS...142 V EXECUTIVE SUMMARY The Aircraft Electromagnetic Compatibility guidelines document deals with electromagnetic compatibility in a... electromagnetic interference paths (figure EI. TYPE PATH 400 Hz Electrostatic MagneticCharge Electric Field Transients 5 R d t Coupling 150/i 300o Wire

  4. Enhancement of mesenchymal stem cell chondrogenesis with short-term low intensity pulsed electromagnetic fields.

    PubMed

    Parate, Dinesh; Franco-Obregón, Alfredo; Fröhlich, Jürg; Beyer, Christian; Abbas, Azlina A; Kamarul, Tunku; Hui, James H P; Yang, Zheng

    2017-08-25

    Pulse electromagnetic fields (PEMFs) have been shown to recruit calcium-signaling cascades common to chondrogenesis. Here we document the effects of specified PEMF parameters over mesenchymal stem cells (MSC) chondrogenic differentiation. MSCs undergoing chondrogenesis are preferentially responsive to an electromagnetic efficacy window defined by field amplitude, duration and frequency of exposure. Contrary to conventional practice of administering prolonged and repetitive exposures to PEMFs, optimal chondrogenic outcome is achieved in response to brief (10 minutes), low intensity (2 mT) exposure to 6 ms bursts of magnetic pulses, at 15 Hz, administered only once at the onset of chondrogenic induction. By contrast, repeated exposures diminished chondrogenic outcome and could be attributed to calcium entry after the initial induction. Transient receptor potential (TRP) channels appear to mediate these aspects of PEMF stimulation, serving as a conduit for extracellular calcium. Preventing calcium entry during the repeated PEMF exposure with the co-administration of EGTA or TRP channel antagonists precluded the inhibition of differentiation. This study highlights the intricacies of calcium homeostasis during early chondrogenesis and the constraints that are placed on PEMF-based therapeutic strategies aimed at promoting MSC chondrogenesis. The demonstrated efficacy of our optimized PEMF regimens has clear clinical implications for future regenerative strategies for cartilage.

  5. Design optimization of high frequency transformer with controlled leakage inductance for current fed dual active bridge converter

    NASA Astrophysics Data System (ADS)

    Jung, Tae-Uk; Kim, Myung-Hwan; Yoo, Jin-Hyung

    2018-05-01

    Current fed dual active bridge converters for photovoltaic generation may typically require a given leakage or extra inductance in order to provide proper control of the currents. Therefore, the many researches have been focused on the leakage inductance control of high frequency transformer to integrate an extra inductor. In this paper, an asymmetric winding arrangement to get the controlled leakage inductance for the high frequency transformer is proposed to improve the efficiency of the current fed dual active bridge converter. In order to accurate analysis, a coupled electromagnetic analysis model of transformer connected with high frequency switching circuit is used. A design optimization procedure for high efficiency is also presented using design analysis model, and it is verified by the experimental result.

  6. Utilizing electromagnetic radiation for hair growth: a critical review of phototrichogenesis.

    PubMed

    Kalia, Sunil; Lui, Harvey

    2013-01-01

    Hair loss has a high prevalence in the general population and can have significant medical and psychological sequelae. Pattern hair loss and alopecia areata represent the major reasons patients present to dermatologists in relation to hair loss. Because conventional treatment options are generally incompletely effective, novel methods for hair grown induction are being developed. The role of using electromagnetic radiation, including low-level laser therapy for the management of hair loss through phototrichogenesis, is reviewed in this article. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  7. Low-frequency electrical dosimetry: research agenda of the IEEE International Committee on Electromagnetic Safety.

    PubMed

    Reilly, J Patrick; Hirata, Akimasa

    2016-06-21

    This article treats unsettled issues in the use of numerical models of electrical dosimetry as applied to international limits on human exposure to low-frequency (typically  <  100 kHz) electromagnetic fields and contact current. The perspective in this publication is that of Subcommittee 6 of IEEE-ICES (International Committee on Electromagnetic Safety) Technical Committee 95. The paper discusses 25 issues needing attention, fitting into three general categories: induction models; electrostimulation models; and human exposure limits. Of these, 9 were voted as 'high priority' by members of Subcommittee 6. The list is presented as a research agenda for refinements in numerical modeling with applications to human exposure limits. It is likely that such issues are also important in medical and electrical product safety design applications.

  8. Mapping of Students’ Learning Progression Based on Mental Model in Magnetic Induction Concepts

    NASA Astrophysics Data System (ADS)

    Hamid, R.; Pabunga, D. B.

    2017-09-01

    The progress of student learning in a learning process has not been fully optimally observed by the teacher. The concept being taught is judged only at the end of learning as a product of thinking, and does not assess the mental processes that occur in students’ thinking. Facilitating students’ thinking through new phenomena can reveal students’ variation in thinking as a mental model of a concept, so that students who are assimilative and or accommodative can be identified in achieving their equilibrium of thought as well as an indicator of progressiveness in the students’ thinking stages. This research data is obtained from the written documents and interviews of students who were learned about the concept of magnetic induction through Constructivist Teaching Sequences (CTS) models. The results of this study indicate that facilitating the students’ thinking processes on the concept of magnetic induction contributes to increasing the number of students thinking within the "progressive change" category, and it can be said that the progress of student learning is more progressive after their mental models were facilitated through a new phenomena by teacher.

  9. Electromagnetic studies of global geodynamic processes

    NASA Astrophysics Data System (ADS)

    Tarits, Pascal

    1994-03-01

    The deep electromagnetic sounding (DES) technique is one of the few geophysical methods, along with seismology, gravity, heat flow, which may be use to probe the structure of the Earth's mantle directly. The interpretation of the DESs may provide electrical conductivity profiles down to the upper part of the lower mantle. The electrical conductivity is extremely sensitive to most of the thermodynamic processes we believe are acting in the Earth's mantle (temperature increases, partial melting, phase transition and to a lesser extent pressure). Therefore, in principle, results from DES along with laboratory measurements could be used to constrain models of these processes. The DES technique is reviewed in the light of recent results obtained in a variety of domains: data acquisition and analysis, global induction modeling and data inversion and interpretation. The mechanisms and the importance of surface distortions of the DES data are reviewed and techniques to model them are discussed. The recent results in terms of the conductivity distribution in the mantle from local and global DES are presented and a tentative synthesis is proposed. The geodynamic interpretations of the deep conductivity structures are reviewed. The existence of mantle lateral heterogeneities in conductivity at all scales and depths for which electromagnetic data are available is now well documented. A comparison with global results from seismology is presented.

  10. Characterization of printed planar electromagnetic coils using digital extrusion and roll-to-roll flexographic processes

    NASA Astrophysics Data System (ADS)

    Rickard, Scott

    Electromagnets are a crucial component in a wide range of more complex electrical devices due to their ability to turn electrical energy into mechanical energy and vice versa. The trend for electronics becoming smaller and lighter has led to increased interest in using flat, planar electromagnetic coils, which have been shown to perform better at scaled down sizes. The two-dimensional geometry of a planar electromagnetic coil yields itself to be produced by a roll-to-roll additive manufacturing process. The emergence of the printed electronics field, which uses traditional printing processes to pattern functional inks, has led to new methods of mass-producing basic electrical components. The ability to print a planar electromagnetic coil using printed electronics could rival the traditional subtractive and semi-subtractive PCB process of manufacturing. The ability to print lightweight planar electromagnetic coils on flexible substrates could lead to their inclusion into intelligent packaging applications and could have specific use in actuating devices, transformers, and electromagnetic induction applications such as energy harvesting or wireless charging. In attempts to better understand the limitations of printing planar electromagnetic coils, the effect that the design parameters of the planar coils have on the achievable magnetic field strength were researched. A comparison between prototyping methods of digital extrusion and manufacturing scale flexographic printing are presented, discussing consistency in the printed coils and their performance in generating magnetic fields. A method to predict the performance of these planar coils is introduced to allow for design within required needs of an application. Results from the research include a demonstration of a printed coil being used in a flat speaker design, working off of actuating principles.

  11. Possible application of electromagnetic guns to impact fusion

    NASA Astrophysics Data System (ADS)

    Kostoff, R. N.; Peaslee, A. T., Jr.; Ribe, F. L.

    1982-01-01

    The possible application of electromagnetic guns to impact fusion for the generation of electric power is discussed, and advantages of impact fusion over the more conventional inertial confinement fusion concepts are examined. It is shown that impact fusion can achieve the necessary high yields, of the order of a few gigajoules, which are difficult to achieve with lasers except at unrealistically high target gains. The rail gun accelerator is well adapted to the delivery of some 10-100 megajoules of energy to the fusion target, and the electrical technology involved is relatively simple: inductive storage or rotating machinery and capacitors. It is concluded that the rail gun has the potential of developing into an impact fusion macroparticle accelerator.

  12. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  13. Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain.

    PubMed

    Wang, X G; Shang, X L; Lin, J

    2016-05-01

    Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically.

  14. Luminous Phenomena in the Atmosphere. A New Frontier of New Physics?

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    1999-03-01

    A main geographic list of anomalous atmospheric light phenomena which are reocurring in several areas of the world is presented. In particular, the Norwegian light-phenomenon occurring in Hessdalen, a prototypical event of this class, is described in great detail. Results obtained in 1984 by the Norwegian scientific organization named 'Project Hessdalen' are discussed. Moreover, the present status and future projects of this organization are presented. It is also shown how the philosophy of research of Project Hessdalen can be adapted to the quantitative investigation of similar light phenomena in other parts of the world. Subsequently, the numerical analysis carried out by the author on the Project Hessdalen 1984 data is shown in detail. After illustrating the several physical theories which have been proposed so far to explain the light phenomenon, a strong emphasis is given on the quantitative definition of instrumental prerequisites and measurable physical parameters. A strategy aimed at defining the investigation methodology and instrumented monitoring in Italian areas of recurrence of the light phenomenon, is presented. An introduction is also given on the documented effects of interaction of the electromagnetic field produced by the light phenomenon with the brain electrical activity of people, by suggesting possible biophysical causes.

  15. [National system of protection against electromagnetic fields 0 Hz-300 GHz in the light of current legal regulations].

    PubMed

    Aniołczyk, Halina

    2006-01-01

    Exposure to electromagnetic fields (EMF) occurs when man is exposed to the effect of electric, magnetic and electromagnetic fields and contact currents different from those resulting from physiological processes in the organism or other natural phenomena. In Poland, the system of protection against EMF has been functioning for over 35 years. In 2001, when the Minister of Labor and Social Policy issued the regulation introducing the maximum admissible intensities (MAI) for electromagnetic fields and radiation within the range of 0 Hz-300 GHz, the system was directed mainly towards evaluation of exposure to EMF occurring in the occupational environment. The system is linked via MAI values with human protection in the natural environment. In this paper, the background, principles and the range of the national system of protection against EMF and its monitoring are presented. The project of implementation of EU directives, following Poland's accession to the European Union is also discussed.

  16. Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells

    PubMed Central

    2014-01-01

    Background Extremely low frequency electromagnetic fields aren’t considered as a real carcinogenic agent despite the fact that some studies have showed impairment of the DNA integrity in different cells lines. The aim of this study was evaluation of the late effects of a 100 Hz and 5.6 mT electromagnetic field, applied continuously or discontinuously, on the DNA integrity of Vero cells assessed by alkaline Comet assay and by cell cycle analysis. Normal Vero cells were exposed to extremely low frequency electromagnetic fields (100 Hz, 5.6 mT) for 45 minutes. The Comet assay and cell cycle analysis were performed 48 hours after the treatment. Results Exposed samples presented an increase of the number of cells with high damaged DNA as compared with non-exposed cells. Quantitative evaluation of the comet assay showed a significantly (<0.001) increase of the tail lengths, of the quantity of DNA in tail and of Olive tail moments, respectively. Cell cycle analysis showed an increase of the frequency of the cells in S phase, proving the occurrence of single strand breaks. The most probable mechanism of induction of the registered effects is the production of different types of reactive oxygen species. Conclusions The analysis of the registered comet indices and of cell cycle showed that extremely low frequency electromagnetic field of 100 Hz and 5.6 mT had a genotoxic impact on Vero cells. PMID:24401758

  17. Contactless Inductive Bubble Detection in a Liquid Metal Flow

    PubMed Central

    Gundrum, Thomas; Büttner, Philipp; Dekdouk, Bachir; Peyton, Anthony; Wondrak, Thomas; Galindo, Vladimir; Eckert, Sven

    2016-01-01

    The detection of bubbles in liquid metals is important for many technical applications. The opaqueness and the high temperature of liquid metals set high demands on the measurement system. The high electrical conductivity of the liquid metal can be exploited for contactless methods based on electromagnetic induction. We will present a measurement system which consists of one excitation coil and a pickup coil system on the opposite sides of the pipe. With this sensor we were able to detect bubbles in a sodium flow inside a stainless steel pipe and bubbles in a column filled with a liquid Gallium alloy. PMID:26751444

  18. Transformation and birth processes of the transient luminous phenomena's in the low atmosphere of the Hessdalen valley, Norway.

    NASA Astrophysics Data System (ADS)

    Gitle Hauge, Bjørn; Strand, Erling

    2013-04-01

    Transient louminous phenomenas has been observed in and over the Hessdalen valley for over 100 years. These phenomena's has been nicknamed "Hessdalen phenomenas", HP, and has been under permanent scientific investigation since 1998, when Norwegian, Italian and later French researchers installed different types of monitoring equipment in the valley. The earth's magnetic field, electromagnetic radiation in different bands, radioactive radiation, electrical resistance in the ground, ultrasound, and seismic activity are some of the signals/parameters that has been monitored. The valley has also been surveillanced by radar, optical spectrometers and automatic video recording devices. So far no electromagnetic radiation, except in the optical band, has been detected that can be coupled to the HP. The phenomenon is characterized by its horizontal movement, intense optical radiation when a transformation process occurs, different colours where white/yellow dominates, no sound, high speed, unpredictable flight patterns, seen by radar while optical invisible and often observed with continuous optical spectrum. The phenomena have been seen touching ground, without leaving burning marks and flying in higher altitudes over the valley apparently ignoring wind/weather conditions. The Hessdalen valley is located in the middle of Norway and is famous for its mines with iron, zinc and copper ore. Big deposits of ore still reside inside the valley, and the mountains are penetrated by several mineshafts, some has depth down to 1000m. No exact birthplace has been located and the phenomenon seems to emerge "out of thin air" anywhere in the valley. Any activity coupled to mineshafts has not been observed. In September 2006 a birth and transformation process was observed and several optical spectrums was obtained. The phenomena appear as a big white light possibly not more than some hundred meters above the ground in a desolated area. The phenomenon starts a transformation process

  19. Experience of ALCOA-KOFEM with MHD induction stirrer

    SciTech Connect

    Petho, S.

    1996-10-01

    Every ingot cast shop makes an effort to reduce the costs and to increase the productivity. The MHD stirrer is an adequate tool to achieve a more economical production. The electromagnetic stirrer accelerates the melting rate of the charge, reduces the metal loss and improves the consistency of ingot quality. The Ingot Business Unit of ALCOA-KOFEM operates seven melting furnaces. Each furnace is equipped with a POTOK type MHD induction stirrer in order to achieve a more profitable melting operation. Magnetohydrodynamic stirrers were installed between 1988 and 1990 on melting furnaces ranging in capacity from 25 to 60 tons ofmore » molten metal.« less

  20. Analysis of the impact of modification of cold crucible design on the efficiency of the cold crucible induction furnace

    NASA Astrophysics Data System (ADS)

    Przylucki, R.; Golak, S.; Bulinski, P.; Smolka, J.; Palacz, M.; Siwiec, G.; Lipart, J.; Blacha, L.

    2018-05-01

    The article includes numerical simulation results for two induction furnace with cold crucible (IFCC). Induction furnaces differ in cold crucible design, while the inductor geometry was preserved for both variants. Numerical simulations were conducted as three dimensional one, with coupled analysis of electromagnetic, thermal and fluid dynamics fields. During the experiment, six calculation variants, differ in amount of molten titanium (three different weights of titanium for each type of cold crucible) were considered. Main parameters controlled during the calculations were: electrical efficiency of the IFCC and the meniscus shape of liquid metal.

  1. Dynamic evolution of double Λ five-level atom interacting with one-mode electromagnetic cavity field

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, N. H.; Salah, Ahmed

    2017-12-01

    In this paper, the model describing a double Λ five-level atom interacting with a single mode electromagnetic cavity field in the (off) non-resonate case is studied. We obtained the constants of motion for the considered model. Also, the state vector of the wave function is given by using the Schrödinger equation when the atom is initially prepared in its excited state. The dynamical evolutions for the collapse revivals, the antibunching of photons and the field squeezing phenomena are investigated when the field is considered in a coherent state. The influence of detuning parameters on these phenomena is investigated. We noticed that the atom-field properties are influenced by changing the detuning parameters. The investigation of these aspects by numerical simulations is carried out using the Quantum Toolbox in Python (QuTip).

  2. Electromagnetic cellular interactions.

    PubMed

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Steady induction effects in geomagnetism. Part 1A: Steady motional induction of geomagnetic chaos

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1992-01-01

    Geomagnetic effects of magnetic induction by hypothetically steady fluid motion and steady magnetic flux diffusion near the top of Earth's core are investigated using electromagnetic theory, simple magnetic earth models, and numerical experiments with geomagnetic field models. The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation indicated by broad-scale models of the observed geomagnetic field is examined and solved. In Part 1, the steady surficial core flow estimation problem is solved in the context of the source-free mantle/frozen-flux core model. In the first paper (IA), the theory underlying such estimates is reviewed and some consequences of various kinematic and dynamic flow hypotheses are derived. For a frozen-flux core, fluid downwelling is required to change the mean square normal magnetic flux density averaged over the core-mantle boundary. For surficially geostrophic flow, downwelling implies poleward flow. The solution of the forward steady motional induction problem at the surface of a frozen-flux core is derived and found to be a fine, easily visualized example of deterministic chaos. Geomagnetic effects of statistically steady core surface flow may well dominate secular variation over several decades. Indeed, effects of persistent, if not steady, surficially geostrophic core flow are described which may help explain certain features of the present broad-scale geomagnetic field and perhaps paleomagnetic secular variation.

  4. Coupled structural, thermal, phase-change and electromagnetic analysis for superconductors, volume 1

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Farhat, Charbel; Park, K. C.; Militello, Carmelo; Schuler, James J.

    1993-01-01

    This research program has dealt with the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromagnetic subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase-change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements; (2) finite element modeling of the electromagnetic problem; (3) coupling of thermal and mechanical effects; and (4) computer implementation and solution of the superconductivity transition problem. The research was carried out over the period September 1988 through March 1993. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles; (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements; and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects; and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The grant has fully supported the thesis work of one doctoral student (James Schuler, who started on January 1989 and completed on January 1993), and partly supported another thesis (Carmelo Militello, who started graduate work on January 1988 completing on August 1991). Twenty-three publications have acknowledged full or part support from this grant, with 16 having appeared in archival journals and 3 in edited books or proceedings.

  5. Ultrafast Phenomena XIV

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takayoshi; Okada, Tadashi; Kobayashi, Tetsuro; Nelson, Keith A.; de Silvestri, Sandro

    Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology, and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics . This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.

  6. Neutron detection using the superconducting Nb-based current-biased kinetic inductance detector

    NASA Astrophysics Data System (ADS)

    Shishido, Hiroaki; Yamaguchi, Hiroyuki; Miki, Yuya; Miyajima, Shigeyuki; Oikawa, Kenichi; Harada, Masahide; Hidaka, Mutsuo; Oku, Takayuki; Arai, Masatoshi; Fujimaki, Akira; Ishida, Takekazu

    2017-09-01

    We demonstrate neutron detection using a solid-state 3He-free superconducting current-biased kinetic inductance detector (CB-KID), which consists of a superconducting Nb meander line and 10B neutron absorption layer. The CB-KID is based on the transient process of kinetic inductance of Cooper pairs induced by the nuclear reaction between 10B and neutrons. Therefore, the CB-KID can be operated in a wide superconducting region in the bias current-temperature diagram, as demonstrated in this paper. The transient change of the kinetic inductance induces the electromagnetic wave pulse under a DC bias current. The signal propagates along the meander line toward both sides with opposite polarity, where the signal polarity is dominated by the bias current direction. The full width at half maximum of the signals remains on the order of a few tens of ns, which confirms the high-speed operation of our detectors. We determine the neutron incident position within 1.3 mm accuracy in one dimension using the multichannel CB-KIDs.

  7. Consideration of some fundamental erosion processes encountered in hypervelocity electromagnetic propulsion

    NASA Astrophysics Data System (ADS)

    Buckingham, A. C.; Hawke, R. S.

    1982-09-01

    Experimental and theoretical research was conducted jointly at the Livermore and Los Alamos National laboratories on dc electromagnetic railgun Lorentz accelerators. Pellets weighing a few grams to tens of grams were launched at velocities up to better than 11 km/s. The research is addressed to attaining repeated launches of samples at hypervelocity in target impact experiments. In these experiments, shock-induced pressure in the tens of megabars range are obtained for high pressure equations of state research. Primary energy sources of the order of several hundred kJ to a MJ and induction currents of the order of 1 or more MA are necessary for these launches. Erosion and deformation of the conductor rails and the accelerated sample material are continuing problems. The beating, stress, and erosion resulting from simultaneous imposition of rail induction current, dense plasma (armature) interaction, current distribution, magnetic field stresses and projectile/rail contact friction are examined.

  8. Electromagnetic braking for Mars spacecraft

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1986-01-01

    Aerobraking concepts are being studied to improve performance and cost effectiveness of propulsion systems for Mars landers and Mars interplanetary spacecraft. Access to megawatt power levels (nuclear power coupled to high-storage inductive or capacitive devices) on a manned Mars interplanetary spacecraft may make feasible electromagnetic braking and lift modulation techniques which were previously impractical. Using pulsed microwave and magnetic field technology, potential plasmadynamic braking and hydromagnetic lift modulation techniques have been identified. Entry corridor modulation to reduce loads and heating, to reduce vertical descent rates, and to expand horizontal and lateral landing ranges are possible benefits. In-depth studies are needed to identify specific design concepts for feasibility assessments. Standing wave/plasma sheath interaction techniques appear to be promising. The techniques may require some tailoring of spacecraft external structures and materials. In addition, rapid response guidance and control systems may require the use of structurally embedded sensors coupled to expert systems or to artificial intelligence systems.

  9. Design Optimization of an Electromagnetic Energy Harvester Backpack for Utilization of Human Walking Energy

    NASA Astrophysics Data System (ADS)

    Mullen, Christopher

    Implementation of energy harvesting technology can provide a sustainable, remote power source for soldiers by reducing the battery weight and allowing them to stay in the field for longer periods of time. Among multiple energy conversion principles, electromagnetic induction can scavenge energy from wasted kinematic and vibration energy found from human motion. Hip displacement during human gait acts as a base excitation for an energy harvesting backpack system. The placement of a permanent magnet in this vibration environment results in relative motion of the magnet to the coil of copper wire, which induces an electric current. This current can be saved to a battery or capacitor bank installed on the backpack to be used to power electronic devices. The purpose of this research is to construct a reliable simulation model for an electromagnetic vibration energy harvester and use it for a multi-variable optimization algorithm to identify an optimal coil and magnet layout for highest power output. Key components of the coupled equations of motion such as the magnetic flux density and coil inductance are obtained using ANSYS multi-physics software or by measuring them. These components are fed into a harvester simulation model (e.g. coupled field equations of motion for the backpack harvester) that generates the electrical power output. The developed simulation model is verified with multiple case studies including an experimental test. Then the optimal design parameters in the simulation model (e.g., magnet layout, coil width, outer coil diameter, external load resistance) are identified for maximum power. Results from this study will pave the way for a more efficient energy harvesting backpack while providing better insight into the efficiency of magnet and coil layout for electromagnetic applications.

  10. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets

    NASA Astrophysics Data System (ADS)

    De Marco, M.; Krása, J.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Margarone, D.; Ahmed, H.; Borghesi, M.; Kar, S.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Limpouch, J.; Korn, G.; Weber, S.; Velardi, L.; Delle Side, D.; Nassisi, V.; Ullschmied, J.

    2016-06-01

    A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

  11. Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Pivac, Ivan; Šimić, Boris; Barbir, Frano

    2017-10-01

    Representation of fuel cell processes by equivalent circuit models, involving resistance and capacitance elements representing activation losses on both anode and cathode in series with resistance representing ohmic losses, cannot capture and explain the inductive loop that may show up at low frequencies in Nyquist diagram representation of the electrochemical impedance spectra. In an attempt to explain the cause of the low-frequency inductive loop and correlate it with the processes within the fuel cell electrodes, a novel equivalent circuit model of a Proton Exchange Membrane (PEM) fuel cell has been proposed and experimentally verified here in detail. The model takes into account both the anode and the cathode, and has an additional resonant loop on each side, comprising of a resistance, capacitance and inductance in parallel representing the processes within the catalyst layer. Using these additional circuit elements, more accurate and better fits to experimental impedance data in the wide frequency range at different current densities, cell temperatures, humidity of gases, air flow stoichiometries and backpressures were obtained.

  12. Future Directions of Electromagnetic Methods for Hydrocarbon Applications

    NASA Astrophysics Data System (ADS)

    Strack, K. M.

    2014-01-01

    For hydrocarbon applications, seismic exploration is the workhorse of the industry. Only in the borehole, electromagnetic (EM) methods play a dominant role, as they are mostly used to determine oil reserves and to distinguish water from oil-bearing zones. Throughout the past 60 years, we had several periods with an increased interest in EM. This increased with the success of the marine EM industry and now electromagnetics in general is considered for many new applications. The classic electromagnetic methods are borehole, onshore and offshore, and airborne EM methods. Airborne is covered elsewhere (see Smith, this issue). Marine EM material is readily available from the service company Web sites, and here I will only mention some future technical directions that are visible. The marine EM success is being carried back to the onshore market, fueled by geothermal and unconventional hydrocarbon applications. Oil companies are listening to pro-EM arguments, but still are hesitant to go through the learning exercises as early adopters. In particular, the huge business drivers of shale hydrocarbons and reservoir monitoring will bring markets many times bigger than the entire marine EM market. Additional applications include support for seismic operations, sub-salt, and sub-basalt, all areas where seismic exploration is costly and inefficient. Integration with EM will allow novel seismic methods to be applied. In the borehole, anisotropy measurements, now possible, form the missing link between surface measurements and ground truth. Three-dimensional (3D) induction measurements are readily available from several logging contractors. The trend to logging-while-drilling measurements will continue with many more EM technologies, and the effort of controlling the drill bit while drilling including look-ahead-and-around the drill bit is going on. Overall, the market for electromagnetics is increasing, and a demand for EM capable professionals will continue. The emphasis will

  13. Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.

    2001-01-01

    The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.

  14. Mechanism of Occurring Over-Voltage Phenomena in Distributed Power System on Energization of Transformers

    NASA Astrophysics Data System (ADS)

    Nakachi, Yoshiki; Ueda, Fukashi; Kajikawa, Takuya; Amau, Tooru; Kameyama, Hirokazu; Ito, Hisanori

    This paper verifies the mechanism of occurring over voltage phenomena in the distributed power system on energizing the transformer. This over-voltage, which is observed at the actual distributed power system, with heavy inrush current is found to occur at about 0.1-0.2sec after the energizing and continue for a duration of more than 0.1[sec]. There is a concern that this over-voltage may operate the protection relay and deteriorate the insulation of apparatus. It is basically caused by the resonance between the shunt capacitors and saturated/unsaturated magnetizing inductance of transformer, system inductance. By using analytical formulation of a simple equivalent circuit, its mechanism has been verified through simulations carried out by using EMTP. Moreover, the sympathetic interaction between transformers is prolonged the duration of the over-voltage by the field test data is discussed in this paper.

  15. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  16. Electromagnetic containerless undercooling facility and experiments for the Shuttle

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Flemings, M. C.; Szekely, J.; El-Kaddah, N.; Shiohara, Y.

    1984-01-01

    An electromagnetic furnace is being prepared for flights aboard the Space Shuttle. This apparatus is capable of melting metals and alloys up to 1400 C melting point by induction heating with subsequent solidification of the freely levitated melt without contact with any container. The solidification can be carried out with greatly reduced fields resulting in minimal heating and stirring of the free melt. Sequential specimens can be processed during flight. Several experiments are planned for a series of flights, beginning in 1985 with an undercooling experiment of NiSn alloys. These will be interspersed with detailed studies of fluid flow caused by low and high field levels in order to quantify the corresponding effect upon the solidification process.

  17. Detailed electromagnetic simulation for the structural color of butterfly wings.

    PubMed

    Lee, R Todd; Smith, Glenn S

    2009-07-20

    Many species of butterflies exhibit interesting optical phenomena due to structural color. The physical reason for this color is subwavelength features on the surface of a single scale. The exposed surface of a scale is covered with a ridge structure. The fully three-dimensional, periodic, finite-difference time-domain method is used to create a detailed electromagnetic model of a generic ridge. A novel method for presenting the three-dimensional observed color pattern is developed. Using these tools, the change in color that is a result of varying individual features of the scale is explored. Computational models are developed that are similar to three butterflies: Morpho rhetenor, Troides magellanus, and Ancyluris meliboeus.

  18. What Are Electromagnetic Fields?

    MedlinePlus

    ... Alt+0 Navigation Alt+1 Content Alt+2 Electromagnetic fields (EMF) Menu EMF Home About electromagnetic fields ... Standards EMF publications & information resources Meetings What are electromagnetic fields? Definitions and sources Electric fields are created ...

  19. ELECTROMAGNETIC PHENOMENA WHICH RADIATE FROM THE HUMAN BRAIN DURING INTENSE PSYCHOSENSORIAL ACTIVITY FROM DREAMY, HALLUCINATORY AND TELEPSYCHIC STATES,

    DTIC Science & Technology

    intense psychosensorial activity (oneirism, hallucinations, telepsychism). Oneirism is the peculiar psychic condition that is favorable to dreams ...normal hallucinatory phenomena during the sleep and dream -like stages of the beginning sleep and of the reverie. As hallucinations, are designated as the...whole gamut of subjective metapsychics (cryptesthesia, spontaneous or pragmatic; lucidity: clairvoyance: telepathy ; rhabdomancy; radiesthesia; graphonomy; cartomancy; chiromancy). (Author)

  20. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  1. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  2. On the Transport and Radiative Properties of Plasmas with Small-Scale Electromagnetic Fluctuations

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.

    Plasmas with sub-Larmor-scale ("small-scale") electromagnetic fluctuations are a feature of a wide variety of high-energy-density environments, and are essential to the description of many astrophysical/laboratory plasma phenomena. Radiation from particles, whether they be relativistic or non-relativistic, moving through small-scale electromagnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The radiation, carrying information on the statistical properties of the turbulence, is also intimately related to the particle diffusive transport. We investigate, both theoretically and numerically, the transport of non-relativistic and transrelativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic turbulence---both with and without a mean field component---and its relation to the spectra of radiation simultaneously produced by these particles. Furthermore, the transport of particles through small-scale electromagnetic turbulence---under certain conditions---resembles the random transport of particles---via Coulomb collisions---in collisional plasmas. The pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasi-collisionality", may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, novel, diagnostic tool for the exploration and characterization of small-scale electromagnetic turbulence. Lastly, we speculate upon the manner in which quasi-collisions may affect inertial confinement fusion (ICF), and other laser-plasma experiments. Finally, we show that mildly relativistic jitter radiation, from laser-produced plasmas, may offer insight into the underlying electromagnetic turbulence. Here we investigate the

  3. Nursing phenomena in inpatient psychiatry.

    PubMed

    Frauenfelder, F; Müller-Staub, M; Needham, I; Van Achterberg, T

    2011-04-01

    Little is known about the question if the nursing diagnosis classification of North American Nursing Association-International (NANDA-I) describes the adult inpatient psychiatric nursing care. The present study aimed to identify nursing phenomena mentioned in journal articles about the psychiatric inpatient nursing care and to compare these phenomena with the labels and the definitions of the nursing diagnoses to elucidate how well this classification covers these phenomena. A search of journal articles took place in the databases MedLine, PsychInfo, Cochrane and CINAHL. A qualitative content analysis approach was used to identify nursing phenomena in the articles. Various phenomena were found in the articles. The study demonstrated that NANDA-I describes essential phenomena for the adult inpatient psychiatry on the level of labels and definitions. However, some apparently important nursing phenomena are not covered by the labels or definitions of NANDA-I. Other phenomena are assigned as defining characteristics or as related factors to construct nursing diagnoses. The further development of the classification NANDA-I will strengthen the application in the daily work of psychiatric nurses and enhance the quality of nursing care in the inpatient setting. © 2010 Blackwell Publishing.

  4. Using the Electromagnetic Induction Method to Connect Spatial Vegetation Distributions with Soil Water and Salinity Dynamics on Steppe Grassland

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Li, X.; Wu, H.

    2014-12-01

    In arid and semi-arid areas, plant growth and productivity are obviously affected by soil water and salinity. But it is not easy to acquire the spatial and temporal dynamics of soil water and salinity by traditional field methods because of the heterogeneity in their patterns. Electromagnetic induction (EMI), for its rapid character, can provide a useful way to solve this problem. Grassland dominated by Achnatherum splendens is an important ecosystem near the Qinghai-Lake watershed on the Qinghai-Tibet Plateau in northwestern China. EMI surveys were conducted for electrical conductivity (ECa) at an intermediate habitat scale (a 60×60 m experimental area) of A. splendens steppe for 18 times (one day only for one time) during the 2013 growing season. And twenty sampling points were established for the collection of soil samples for soil water and salinity, which were used for calibration of ECa. In addition, plant species, biomass and spatial patterns of vegetation were also sampled. The results showed that ECa maps exhibited distinctly spatial differences because of variations in soil moisture. And soil water was the main factor to drive salinity patterns, which in turn affected ECa values. Moreover, soil water and salinity could explain 82.8% of ECa changes due to there was a significant correlation (P<0.01) between ECa, soil water and salinity. Furthermore, with higher ECa values closer to A. splendens patches at the experimental site, patterns of ECa images showed clearly temporal stability, which were extremely corresponding with the spatial pattern of vegetation. A. splendens patches that accumulated infiltrating water and salinity and thus changed long-term soil properties, which were considered as "reservoirs" and were deemed responsible for the temporal stability of ECa images. Hence, EMI could be an indicator to locate areas of decreasing or increasing of water and to reveal soil water and salinity dynamics through repeated ECa surveys.

  5. Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems

    SciTech Connect

    Cai, Wei

    Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equationsmore » such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.« less

  6. Mapping patterns of soil properties and soil moisture using electromagnetic induction to investigate the impact of land use changes on soil processes

    NASA Astrophysics Data System (ADS)

    Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan

    2016-04-01

    As highlighted by many authors, classical or geophysical techniques for measuring soil moisture such as destructive soil sampling, neutron probes or Time Domain Reflectometry (TDR) have some major drawbacks. Among other things, they provide point scale information, are often intrusive and time-consuming. ElectroMagnetic Induction (EMI) instruments are often cited as a promising alternative hydrogeophysical methods providing more efficiently soil moisture measurements ranging from hillslope to catchment scale. The overall objective of our research project is to investigate whether a combination of geophysical techniques at various scales can be used to study the impact of land use change on temporal and spatial variations of soil moisture and soil properties. In our work, apparent electrical conductivity (ECa) patterns are obtained with an EM multiconfiguration system. Depth profiles of ECa were subsequently inferred through a calibration-inversion procedure based on TDR data. The obtained spatial patterns of these profiles were linked to soil profile and soil water content distributions. Two catchments with contrasting land use (agriculture vs. natural forest) were selected in a subtropical region in the south of Brazil. On selected slopes within the catchments, combined EMI and TDR measurements were carried out simultaneously, under different atmospheric and soil moisture conditions. Ground-truth data for soil properties were obtained through soil sampling and auger profiles. The comparison of these data provided information about the potential of the EMI technique to deliver qualitative and quantitative information about the variability of soil moisture and soil properties.

  7. Phenomena Associated with EIT Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    We discuss phenomena associated with 'EIT Wave' transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to infer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  8. Phenomena Associated With EIT Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.

    2003-01-01

    We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  9. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line.

    PubMed

    Liu, Chuan; Duan, Weixia; Xu, Shangcheng; Chen, Chunhai; He, Mindi; Zhang, Lei; Yu, Zhengping; Zhou, Zhou

    2013-03-27

    Whether exposure to radiofrequency electromagnetic radiation (RF-EMR) emitted from mobile phones can induce DNA damage in male germ cells remains unclear. In this study, we conducted a 24h intermittent exposure (5 min on and 10 min off) of a mouse spermatocyte-derived GC-2 cell line to 1800 MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rates (SAR) of 1 W/kg, 2 W/kg or 4 W/kg. Subsequently, through the use of formamidopyrimidine DNA glycosylase (FPG) in a modified comet assay, we determined that the extent of DNA migration was significantly increased at a SAR of 4 W/kg. Flow cytometry analysis demonstrated that levels of the DNA adduct 8-oxoguanine (8-oxoG) were also increased at a SAR of 4 W/kg. These increases were concomitant with similar increases in the generation of reactive oxygen species (ROS); these phenomena were mitigated by co-treatment with the antioxidant α-tocopherol. However, no detectable DNA strand breakage was observed by the alkaline comet assay. Taking together, these findings may imply the novel possibility that RF-EMR with insufficient energy for the direct induction of DNA strand breaks may produce genotoxicity through oxidative DNA base damage in male germ cells. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Design and operation of a fast electromagnetic inductive massive gas injection valve for NSTX-U

    NASA Astrophysics Data System (ADS)

    Raman, R.; Jarboe, T. R.; Nelson, B. A.; Gerhardt, S. P.; Lay, W.-S.; Plunkett, G. J.

    2014-11-01

    Results from the operation of an electromagnetic valve, that does not incorporate ferromagnetic materials, are presented. Image currents induced on a conducting disc placed near a pancake solenoid cause it to move away from the solenoid and open the vacuum seal. A new and important design feature is the use of Lip Seals for the sliding piston. The pressure rise in the test chamber is measured directly using a fast time response Baratron gauge. The valve injects over 200 Torr l of nitrogen in less than 3 ms, which remains unchanged at moderate magnetic fields.

  11. Design and operation of a fast electromagnetic inductive massive gas injection valve for NSTX-U.

    PubMed

    Raman, R; Jarboe, T R; Nelson, B A; Gerhardt, S P; Lay, W-S; Plunkett, G J

    2014-11-01

    Results from the operation of an electromagnetic valve, that does not incorporate ferromagnetic materials, are presented. Image currents induced on a conducting disc placed near a pancake solenoid cause it to move away from the solenoid and open the vacuum seal. A new and important design feature is the use of Lip Seals for the sliding piston. The pressure rise in the test chamber is measured directly using a fast time response Baratron gauge. The valve injects over 200 Torr l of nitrogen in less than 3 ms, which remains unchanged at moderate magnetic fields.

  12. Development of induction current acquisition device based on ARM

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Liu, Xiyang; Huang, Wanyu; Yao, Jiang; Yuan, Guiyang; Hui, Luan; Guan, Shanshan

    2018-03-01

    We design an induction current acquisition device based on ARM in order to realize high resolution and high sampling rate of acquisition for the induction current in wire-loop. Considering its characteristics of fast attenuation and small signal amplitude, we use the method of multi-path fusion for noise suppression. In the paper, the design is carried out from three aspects of analog circuit and device selection, independent power supply structure and the electromagnetic interference suppression of high frequency. DMA and ping-pong buffer, as a new data transmission technology, solves real time storage problem of massive data. The performance parameters of ARM acquisition device are tested. The comparison test of ARM acquisition device and cRIO acquisition device is performed at different time constants. The results show that it has 120dB dynamic range, 47kHz bandwidth, 96kHz sampling rate, 5μV the smallest resolution, and its average error value is not more than 4%, which proves the high accuracy and stability of the device.

  13. Near Surface Investigation of Agricultural Soils using a Multi-Frequency Electromagnetic Sensor

    NASA Astrophysics Data System (ADS)

    Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Cheema, M.; Galagedara, L.

    2017-12-01

    Electromagnetic induction (EMI) sensors have been used as precision agricultural tools over decades. They are being used to measure spatiotemporal variability of soil properties and soil stratification in the sense of apparent electrical conductivity (ECa). We mapped the ECa variability by horizontal coplanar (HCP) and by vertical coplanar (VCP) orientation of a multi-frequency EMI sensor and identified its interrelation with physical properties of soil. A broadband, multi-frequency handheld EMI sensor (GEM-2) was used on a loamy sand soil cultivated with silage-corn in western Newfoundland, Canada. Log and line spaced, three frequency ranges (weak, low, and high), based on the factory calibration were tested using HCP and VCP orientation to produce spatiotemporal data of ECa. In parallel, we acquired data on soil moisture content, texture and bulk density. We then assessed the statistical significance of the relationship between ECa and soil physical properties. The test site had three areas of distinct soil properties corresponding to the elevation, in particular. The same spatial variability was also identified by ECa mapping at different frequencies and the two modes of coil orientations. Data analysis suggested that the high range frequency (38 kHz (log-spaced) and 49 kHz (line-spaced)) for both HCP and VCP orientations produced accurate ECa maps, better than the weak and low range frequencies tested. Furthermore, results revealed that the combined effects of soil texture, moisture content and bulk density affect ECameasurements as obtained by both frequencies and two coil orientations. Keywords: Apparent electrical conductivity, Electromagnetic induction, Horizontal coplanar, Soil properties, Vertical coplanar

  14. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves

    NASA Astrophysics Data System (ADS)

    Erofeev, V. I.

    2015-09-01

    The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.

  15. Identifying Electromagnetic Attacks against Airports

    NASA Astrophysics Data System (ADS)

    Kreth, A.; Genender, E.; Doering, O.; Garbe, H.

    2012-05-01

    This work presents a new and sophisticated approach to detect and locate the origin of electromagnetic attacks. At the example of an airport, a normal electromagnetic environment is defined, in which electromagnetic attacks shall be identified. After a brief consideration of the capabilities of high power electromagnetic sources to produce high field strength values, this contribution finally presents the approach of a sensor network, realizing the identification of electromagnetic attacks.

  16. Electromagnetic Interference Tests

    DTIC Science & Technology

    1994-05-31

    for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields (300 kHz - 100 GHz), American National Standards Institute...Respect to Human Exposure to Radio Frequency Electromagnetic Fields (300 kHz - 100 GHz), American National Standards Institute, C95.1-1982, 30 July 1980...II il~l I!I 11 lll i 13. ABSTkACT (Waxlrnun 200woruh) This TOP is a general guideline for electromagnetic interference testing of electronic

  17. A new electromagnetic NDI-technique based on the measurement of source-sample reaction forces

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. L.; Skaugset, R. L.; Shih, W. C. L.

    2001-04-01

    Faraday's law of induction, Lenz's law, the Lorentz force law and Newton's third law, taken together, insure that sources (e.g., coil sources) of time-dependent electromagnetic fields, and nearby "nonmagnetic" electrical conductors (e.g., aluminum), always experience mutually repulsive (source-conductor) forces. This fact forms the basis for a new method for detecting cracks and corrosion in (aging) multi-layer airframes. The presence of cracks or corrosion (e.g., material thinning) in these structures is observed to reduce (second-harmonic) source-conductor reaction forces.

  18. Scaling and characterisation of a 2-DoF velocity amplified electromagnetic vibration energy harvester

    NASA Astrophysics Data System (ADS)

    O’Donoghue, D.; Frizzell, R.; Punch, J.

    2018-07-01

    Vibration energy harvesters (VEHs) offer an alternative to batteries for the autonomous operation of low-power electronics. Understanding the influence of scaling on VEHs is of great importance in the design of reduced scale harvesters. The nonlinear harvesters investigated here employ velocity amplification, a technique used to increase velocity through impacts, to improve the power output of multiple-degree-of-freedom VEHs, compared to linear resonators. Such harvesters, employing electromagnetic induction, are referred to as velocity amplified electromagnetic generators (VAEGs), with gains in power achieved by increasing the relative velocity between the magnet and coil in the transducer. The influence of scaling on a nonlinear 2-DoF VAEG is presented. Due to the increased complexity of VAEGs, compared to linear systems, linear scaling theory cannot be directly applied to VAEGs. Therefore, a detailed nonlinear scaling method is utilised. Experimental and numerical methods are employed. This nonlinear scaling method can be used for analysing the scaling behaviour of all nonlinear electromagnetic VEHs. It is demonstrated that the electromagnetic coupling coefficient degrades more rapidly with scale for systems with larger displacement amplitudes, meaning that systems operating at low frequencies will scale poorly compared to those operating at higher frequencies. The load power of the 2-DoF VAEG is predicted to scale as {P}L\\propto {s}5.51 (s = volume1/3), suggesting that achieving high power densities in a VAEG with low device volume is extremely challenging.

  19. Particle-in-cell simulations of electron beam control using an inductive current divider

    DOE PAGES

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; ...

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I 1) while the outer conductor carries the remainder (I 2) with the injected beam current given by I b=I 1+I 2. The simulations are in agreement with the theory whichmore » predicts that the total force on the beam trajectory is proportional to (I 2-I 1) and the force on the beam envelope is proportional to I b. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.« less

  20. Transport phenomena in environmental engineering

    NASA Astrophysics Data System (ADS)

    Sander, Aleksandra; Kardum, Jasna Prlić; Matijašić, Gordana; Žižek, Krunoslav

    2018-01-01

    A term transport phenomena arises as a second paradigm at the end of 1950s with high awareness that there was a strong need to improve the scoping of chemical engineering science. At that point, engineers became highly aware that it is extremely important to take step forward from pure empirical description and the concept of unit operations only to understand the specific process using phenomenological equations that rely on three elementary physical processes: momentum, energy and mass transport. This conceptual evolution of chemical engineering was first presented with a well-known book of R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot, Transport Phenomena, published in 1960 [1]. What transport phenomena are included in environmental engineering? It is hard to divide those phenomena through different engineering disciplines. The core is the same but the focus changes. Intention of the authors here is to present the transport phenomena that are omnipresent in treatment of various process streams. The focus in this chapter is made on the transport phenomena that permanently occur in mechanical macroprocesses of sedimentation and filtration for separation in solid-liquid particulate systems and on the phenomena of the flow through a fixed and a fluidized bed of particles that are immanent in separation processes in packed columns and in environmental catalysis. The fundamental phenomena for each thermal and equilibrium separation process technology are presented as well. Understanding and mathematical description of underlying transport phenomena result in scoping the separation processes in a way that ChEs should act worldwide.

  1. Intense electromagnetic outbursts from collapsing hypermassive neutron stars

    NASA Astrophysics Data System (ADS)

    Lehner, Luis; Palenzuela, Carlos; Liebling, Steven L.; Thompson, Christopher; Hanna, Chad

    2012-11-01

    We study the gravitational collapse of a magnetized neutron star using a novel numerical approach able to capture both the dynamics of the star and the behavior of the surrounding plasma. In this approach, a fully general relativistic magnetohydrodynamics implementation models the collapse of the star and provides appropriate boundary conditions to a force-free model which describes the stellar exterior. We validate this strategy by comparing with known results for the rotating monopole and aligned rotator solutions and then apply it to study both rotating and nonrotating stellar collapse scenarios and contrast the behavior with what is obtained when employing the electrovacuum approximation outside the star. The nonrotating electrovacuum collapse is shown to agree qualitatively with a Newtonian model of the electromagnetic field outside a collapsing star. We illustrate and discuss a fundamental difference between the force-free and electrovacuum solutions, involving the appearance of large zones of electric-dominated field in the vacuum case. This provides a clear demonstration of how dissipative singularities appear generically in the nonlinear time evolution of force-free fluids. In both the rotating and nonrotating cases, our simulations indicate that the collapse induces a strong electromagnetic transient, which leaves behind an uncharged, unmagnetized Kerr black hole. In the case of submillisecond rotation, the magnetic field experiences strong winding, and the transient carries much more energy. This result has important implications for models of gamma-ray bursts. Even when the neutron star is surrounded by an accretion torus (as in binary merger and collapsar scenarios), a magnetosphere may emerge through a dynamo process operating in a surface shear layer. When this rapidly rotating magnetar collapses to a black hole, the electromagnetic energy released can compete with the later output in a Blandford-Znajek jet. Much less electromagnetic energy is

  2. Origin of the Earth's Electromagnetic Field Based on the Pulsating Mantle Hypothesis (PMH)

    NASA Astrophysics Data System (ADS)

    Gholibeigian, Hassan

    2017-11-01

    In PMH, the Earth's Inner Core's Dislocation (ICD) and Outer Core's Bulge (OCB) phenomena are generated by unbalanced gravitational fields of the Sun and Moon on the Earth. Distance between the Earth's center and inner core's center varies permanently in magnitude and direction inside two hemispheres. Geometrical loci of the inner core's center has the shape of back and force spiral cone in each hemisphere. In other words, the inner core is rotating fast in the outer core inverse of the Earth's rotation a round per day. This mechanism speed up the processes inside the core and generates a Large Scale Forced Convection System (LSFCS) inverse of the Earth's rotation in the core. The LSFCS is the origin of the Earth's electromagnetic field. The LSFCS generates huge mass transfer and momentum of inertia inside the Earth too. The inner core's axis which is the Earth's electromagnetic axis doesn't cross the Earth's geophysical axis and rotates around it per day. The mechanism of this LSFCS has diurnal, monthly and yearly cycles. These cycles are sources of the Earth's electromagnetic field variability. Direction of the variable Earth's magnetic field lines from the South Pole (hemisphere) to the sky and 146 seconds/years apparent solar day length variations can be two observable factors for this mechanism. This dynamic system may occurred inside the other planets like the Sun and the Jupiter.

  3. Electromagnetic fields and their impacts

    NASA Astrophysics Data System (ADS)

    Prša, M. A.; Kasaš-Lažetić, K. K.

    2018-01-01

    The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.

  4. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  5. Optimal electromagnetic energy transmission and real-time dissipation in extended media.

    PubMed

    Glasgow, S; Ware, M

    2014-02-24

    Pulse reshaping effects that give rise to fast and slow light phenomena are inextricably linked to the dynamics of energy exchange between the pulse and the propagation medium. Energy that is dissipated from the pulse can no longer participate in this exchange process, but previous methods of calculating real-time dissipation are not valid for extended propagation media. We present a method for calculating real-time dissipation that is valid for electromagnetic pulse propagation in extended media. This method allows one to divide the energy stored in an extended medium into the portion that can be later transmitted out of the medium, and that portion which must be lost to either dissipation or reflection.

  6. Fabrication of an electromagnetic actuator with the planar coil

    NASA Astrophysics Data System (ADS)

    Jeong, HyunKu; Jeong, OkChan; Yang, Sang S.

    2000-06-01

    This paper first presents the fabrication of an electromagnetic microactuator using an electroplated spiral copper coil on a parylene C diaphragm. The parylene is a bio-compatible material and has a very low Young's modulus less than 2.8 Gpa, which makes the large deflection for the low power consumption. The actuator consists of an electroplated coil on the parylene C diaphragm, a small-size permanent magnet and a core. The diaphragm is actuated by the Lorenz force generated by the current through the coil in the magnetic field of the magnet. The size of the actuator diaphragm is 4 by 4 mm2 and 5 micrometers thick. The resistance and inductance of the copper spiral coil are 2 (Omega) and 11 (mu) H at 100 Hz, respectively. The center deflection of the actuator diaphragm is measured with the laser vibrometer. Whenthe current through the coil is 380 mA, the peak-to-peak deflection of the actuator is 143 micrometers below the resonant frequency of 35 Hz. The mechanical sensitivity of the actuator diaphragm is 900 micrometers /A at 10 Hz and 35 Hz, respectively. An electromagnetic microactuator using the electroplated copper coil on the parylene diaphragm is expected to be useful in making a micropump for the bio-medical use.

  7. Regularized solution of a nonlinear problem in electromagnetic sounding

    NASA Astrophysics Data System (ADS)

    Piero Deidda, Gian; Fenu, Caterina; Rodriguez, Giuseppe

    2014-12-01

    Non destructive investigation of soil properties is crucial when trying to identify inhomogeneities in the ground or the presence of conductive substances. This kind of survey can be addressed with the aid of electromagnetic induction measurements taken with a ground conductivity meter. In this paper, starting from electromagnetic data collected by this device, we reconstruct the electrical conductivity of the soil with respect to depth, with the aid of a regularized damped Gauss-Newton method. We propose an inversion method based on the low-rank approximation of the Jacobian of the function to be inverted, for which we develop exact analytical formulae. The algorithm chooses a relaxation parameter in order to ensure the positivity of the solution and implements various methods for the automatic estimation of the regularization parameter. This leads to a fast and reliable algorithm, which is tested on numerical experiments both on synthetic data sets and on field data. The results show that the algorithm produces reasonable solutions in the case of synthetic data sets, even in the presence of a noise level consistent with real applications, and yields results that are compatible with those obtained by electrical resistivity tomography in the case of field data. Research supported in part by Regione Sardegna grant CRP2_686.

  8. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    NASA Astrophysics Data System (ADS)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  9. Butterfly-valve inductive orientation detector

    NASA Astrophysics Data System (ADS)

    Garrett, Steven

    1980-04-01

    Relative changes of inductance ΔL/L of a single layer coil surrounding a thin electrically conducting disk which can rotate about an axis perpendicular to the coil axis are studied experimentally as a means of measuring angular displacements. ΔL/L is found to be a strong function of disk diameter and is weakly dependent on the ratio of disk thickness to electromagnetic skin depth when this ratio is of the order unity. Values of ΔL/L as a function of disk diameter are given for lead, brass and copper. Detection sensitivities using a resonant tank circuit or an astatic transformer are given in terms of ΔL/L and it is shown that sensitivities of the order of 10-3 to 10-4 deg are practical. Application of this system to the Rayleigh disk and cryogenic environments are emphasized and an expression for the magnetic torque due to detection currents is given.

  10. Electromagnetic Education in India

    ERIC Educational Resources Information Center

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  11. Electromagnetic Spectrum Test and Evaluation Process

    DTIC Science & Technology

    2010-01-01

    HERO , hazards of electromagnetic radiation to ordnance ; HERP, hazards of electromagnetic radiation to personnel; HERF, hazards of electromagnetic ... electromagnetic pulse (EMP); electronic protection; electrostatic dis- charge (ESD); hazards of electromagnetic radi- ation to personnel (HERP), ordnance ...including ordnance containing electrically initiated devices, to be mutually compatible in their intended

  12. Coupling and power transfer efficiency enhancement of modular and array of planar coils using in-plane ring-shaped inner ferrites for inductive heating applications

    NASA Astrophysics Data System (ADS)

    Kilic, V. T.; Unal, E.; Demir, H. V.

    2017-07-01

    We propose and demonstrate a highly effective method of enhancing coupling and power transfer efficiency in inductive heating systems composed of planar coils. The proposed method is based on locating ring-shaped ferrites in the inner side of the coils in the same plane. Measurement results of simple inductive heating systems constructed with either a single or a pair of conventional circular coils show that, with the in-plane inner ferrites, the total dissipated power of the system is increased by over 65%. Also, with three-dimensional full electromagnetic solutions, it is found that power transfer efficiency of the system is increased up to 92% with the inner ferrite placement. The proposed method is promising to be used for efficiency enhancement in inductive heating applications, especially in all-surface induction hobs.

  13. Results of time-domain electromagnetic soundings in Miami-Dade and southern Broward Counties, Florida

    USGS Publications Warehouse

    Fitterman, David V.; Prinos, Scott T.

    2011-01-01

    Time-domain electromagnetic (TEM) soundings were made in Miami-Dade and southern Broward Counties to aid in mapping the landward extent of saltwater in the Biscayne aquifer. A total of 79 soundings were collected in settings ranging from urban to undeveloped land, with some of the former posing problems of land access and interference from anthropogenic features. TEM soundings combined with monitoring-well data were used to determine if the saltwater front had moved since the last time it was mapped, to provide additional spatial coverage where existing monitoring wells were insufficient, and to help interpret a previously collected helicopter electromagnetic (HEM) survey flown in the southernmost portion of the study area. TEM soundings were interpreted as layered resistivity-depth models. Using information from well logs and water-quality data, the resistivity of the freshwater saturated Biscayne aquifer is expected to be above 30 ohm-meters, and the saltwater-saturated aquifer will have resistivities of less than 10 ohm-meters allowing determination of water quality from the TEM interpretations. TEM models from 29 soundings were compared to electromagnetic induction logs collected in nearby monitoring wells. In general, the agreement of these results was very good, giving confidence in the use of the TEM data for mapping saltwater encroachment.

  14. Inductive and electrostatic acceleration in relativistic jet-plasma interactions.

    PubMed

    Ng, Johnny S T; Noble, Robert J

    2006-03-24

    We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma-wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of 2 during the simulation period. Particle acceleration via these mechanisms occurred when the criteria for Weibel instability were satisfied.

  15. Analysis of the mechanical stresses on a squirrel cage induction motor by the finite element method

    SciTech Connect

    Jun, C.H.; Nicolas, A.

    1999-05-01

    The mechanical deformations and stresses have been analyzed by the Finite Element Method (FEM) in 3 dimensions on the rotor bars of a small squirrel cage induction motor. The authors considered the magnetic forces and the centrifugal forces as sources which provoked the deformations and stresses on the rotor bars. The mechanical calculations have been performed after doing the electromagnetic Finite Element modeling on the motor in steady states with various slip conditions.

  16. Linear induction pump

    DOEpatents

    Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.

    1985-03-19

    Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.

  17. Motionally-induced electromagnetic fields generated by idealized ocean currents

    NASA Astrophysics Data System (ADS)

    Tyler, R. H.; Mysak, L. A.

    Using the induction equation, we investigate the generation of electromagnetic fields by the motional electromagnetic induction due to ocean currents. In this paper, solutions are presented for a linear induction equation for the magnetic flux density vector which contains prescribed time-independent ocean current and conductivity fields. Once the magnetic flux density is known, the electric field and electric current density are easily obtained by differentiation. Solutions are given for several examples of idealized flow which include: 1) Vertically and horizontally sheared plane-parallel flow with depth-dependent conductivity; 2) A simple Stommel circulation gyre; and 3) Symmetric gyres. The results indicate that typical ocean current features induce magnetic fields with magnitudes reaching 100's of nT within the water and about 1-10 outside of the water. For the case of a field of gyres, the ocean-induced magnetic fields decay away from the ocean on spatial scales set by the horizontal scale of the ocean feature. At the altitudes of magnetic field satellite surveys, ocean-induced magnetic fields may retain values of a few nT, which are strong enough to be detected. Thus it is concluded that satellite observations of the earth's main magnetic field and, in particular, the observed temporal variations, could be affected by the ocean circulation. Summary and discussion In Section 3, we found exact solutions to the induction equation for idealized flows. The results gave magnitudes of about tens to hundreds of nT for the magnetic fields bH, about 10-5 V/m for the electric fields E, and about 10-5 A/m2 for the electric current density J induced by the ocean currents. These figures are in general agreement with the calculations of Lilley et al. (1993). In Section 4.2 we obtained solutions for the magnetic field above the ocean surface for the case of a Stommel gyre and a field of symmetric gyres. It was found in the last case that ocean gyres with a total transport

  18. Inductive displacement sensors with a notch filter for an active magnetic bearing system.

    PubMed

    Chen, Seng-Chi; Le, Dinh-Kha; Nguyen, Van-Sum

    2014-07-15

    Active magnetic bearing (AMB) systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.

  19. Electromagnetic waves in space: Visualization of E and B, and pedagogical approaches using superposition

    NASA Astrophysics Data System (ADS)

    Heller, Peter

    1997-01-01

    A beam of electromagnetic waves, produced by a "ham" transmitter at a frequency just below 450 MHz, is studied using a pair of antennas, one an electric and the other a magnetic "dipole," each coupled to subminiature lamp bulb. These bulbs become very brightly lit in response to the local time average values of |E|2 and |B|2, respectively. Most strikingly, the interleaving of the electric and magnetic oscillation maxima in a standing wave is seen. This and other aspects of the phenomena are described using an accompanying pedagogical approach which emphasizes the primary idea of wave superposition.

  20. Repeated electromagnetic induction measurements for mapping soil moisture at the field scale: validation with data from a wireless soil moisture monitoring network

    NASA Astrophysics Data System (ADS)

    Martini, Edoardo; Werban, Ulrike; Zacharias, Steffen; Pohle, Marco; Dietrich, Peter; Wollschläger, Ute

    2017-01-01

    Electromagnetic induction (EMI) measurements are widely used for soil mapping, as they allow fast and relatively low-cost surveys of soil apparent electrical conductivity (ECa). Although the use of non-invasive EMI for imaging spatial soil properties is very attractive, the dependence of ECa on several factors challenges any interpretation with respect to individual soil properties or states such as soil moisture (θ). The major aim of this study was to further investigate the potential of repeated EMI measurements to map θ, with particular focus on the temporal variability of the spatial patterns of ECa and θ. To this end, we compared repeated EMI measurements with high-resolution θ data from a wireless soil moisture and soil temperature monitoring network for an extensively managed hillslope area for which soil properties and θ dynamics are known. For the investigated site, (i) ECa showed small temporal variations whereas θ varied from very dry to almost saturation, (ii) temporal changes of the spatial pattern of ECa differed from those of the spatial pattern of θ, and (iii) the ECa-θ relationship varied with time. Results suggest that (i) depending upon site characteristics, stable soil properties can be the major control of ECa measured with EMI, and (ii) for soils with low clay content, the influence of θ on ECa may be confounded by changes of the electrical conductivity of the soil solution. Further, this study discusses the complex interplay between factors controlling ECa and θ, and the use of EMI-based ECa data with respect to hydrological applications.

  1. Electromagnetic pulse scattering by a wedge moving in a free space with relativistic velocity

    NASA Astrophysics Data System (ADS)

    Ciarkowski, Adam

    Recently, increased interest is observed in studying scattering of electromagnetic signals by objects moving with large velocities. The velocities considered can attain relativistic values. Interesting phenomena characteristic of this class of problems were observed, in this number the Doppler shift of equiphase surfaces in the diffracted wave. Apart from new techniques elaborated to attack general scattering problems involving moving objects, specific scaterring problems are also examined. Of special interest are moving scatterers with edges. The simplest scaterrer with this property is a wedge, which in particular case reduces to a half-plane. There is a number of recent works in which diffraction of specific electromagnetic signals by these objects in motion are analyzed. In most cases time-harmonic excitation fields are being assumed. This contribution is concerned with the analysis of 2D scattering of an electromagnetic pulse by a perfectly conducting wedge moving in a free space with relativistic velocity. The exciting field is a pulsed plane-wave signal, with its envelope described by a Dirac delta function. This choice is motivated by the fact that solutions to excitation fields with different envelopes can be obtained from that found here by its integration with an appropriate weight function. In this sense this solution plays a role of a Green function. In our analysis we neglect any dispersion phenomena connected with the surrounding medium. The results herein obtained may be useful in modelling phenomena connected with the space technology. In our analysis we apply the Frame Hopping Method. In particular we first Lorentz transform the pulse signal from the laboratory frame of reference where this field is defined, to the frame where the wedge is at rest. In the latter frame we Fourier transform the resulting field to the complex frequency domain, thus arriving at the problem of time-harmonic diffraction by the wedge at rest. This problem has the exact

  2. High-Altitude Electromagnetic Pulse (HEMP) Testing

    DTIC Science & Technology

    2015-07-09

    Electromagnetic Pulse Horizontal Electromagnetic Pulse Advanced Fast Electromagnetic Pulse Nuclear Weapons Effect Testing and Environments 16. SECURITY... Weapons of Mass Destruction Agency (USANCA). In order to effectively determine criteria compliance, the TO/PE must thoroughly understand the...ELECTROMAGNETIC ENVIRONMENT AND EFFECTS. A.1 The electromagnetic environment produced by a nuclear weapon consists of the ionization of the atmosphere and

  3. Switching Phenomena

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).

  4. Kinetic and spectral descriptions of autoionization phenomena associated with atomic processes in plasmas

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne L.

    2017-06-01

    This investigation has been devoted to the theoretical description and computer modeling of atomic processes giving rise to radiative emission in energetic electron and ion beam interactions and in laboratory plasmas. We are also interested in the effects of directed electron and ion collisions and of anisotropic electric and magnetic fields. In the kinetic-theory description, we treat excitation, de-excitation, ionization, and recombination in electron and ion encounters with partially ionized atomic systems, including the indirect contributions from processes involving autoionizing resonances. These fundamental collisional and electromagnetic interactions also provide particle and photon transport mechanisms. From the spectral perspective, the analysis of atomic radiative emission can reveal detailed information on the physical properties in the plasma environment, such as non-equilibrium electron and charge-state distributions as well as electric and magnetic field distributions. In this investigation, a reduced-density-matrix formulation is developed for the microscopic description of atomic electromagnetic interactions in the presence of environmental (collisional and radiative) relaxation and decoherence processes. Our central objective is a fundamental microscopic description of atomic electromagnetic processes, in which both bound-state and autoionization-resonance phenomena can be treated in a unified and self-consistent manner. The time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix approach are developed in a unified and self-consistent manner. This is necessary for our ultimate goal of a systematic and self-consistent treatment of non-equilibrium (possibly coherent) atomic-state kinetics and high-resolution (possibly overlapping) spectral-line shapes. We thereby propose the introduction of a generalized collisional-radiative atomic-state kinetics model based on a reduced

  5. Generation of electromagnetic energy in a magnetic cumulation generator with the use of inductively coupled circuits with a variable coupling coefficient

    NASA Astrophysics Data System (ADS)

    Gilev, S. D.; Prokopiev, V. S.

    2017-07-01

    A method of generation of electromagnetic energy and magnetic flux in a magnetic cumulation generator is proposed. The method is based on dynamic variation of the circuit coupling coefficient. This circuit is compared with other available circuits of magnetic energy generation with the help of magnetic cumulation (classical magnetic cumulation generator, generator with transformer coupling, and generator with a dynamic transformer). It is demonstrated that the proposed method allows obtaining high values of magnetic energy. The proposed circuit is found to be more effective than the known transformer circuit. Experiments on electromagnetic energy generation are performed, which demonstrate the efficiency of the proposed method.

  6. Information Security due to Electromagnetic Environments

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Hidenori; Seto, Shinji

    Generally, active electronic devices emit slightly unintentional electromagnetic noise. From long ago, electromagnetic emission levels have been regulated from the aspect of electromagnetic compatibility (EMC). Also, it has been known the electromagnetic emissions have been generated from the ON/OFF of signals in the device. Recently, it becomes a topic of conversation on the information security that the ON/OFF on a desired signal in the device can be reproduced or guessed by receiving the electromagnetic emission. For an example, a display image on a personal computer (PC) can be reconstructed by receiving and analyzing the electromagnetic emission. In sum, this fact makes known information leakage due to electromagnetic emission. “TEMPEST" that has been known as a code name originated in the U. S. Department of Defense is to prevent the information leakage caused by electromagnetic emissions. This paper reports the brief summary of the information security due to electromagnetic emissions from information technology equipments.

  7. Mechanical and electromagnetic induction of protection against oxidative stress.

    PubMed

    Di Carlo, A L; White, N C; Litovitz, T A

    2001-01-01

    Cells and tissues can be protected against a potentially lethal stress by first exposing them to a brief dose of the same or different stress. This "pre-conditioning" phenomenon has been documented in many models of protection against oxidative stress, including ischemia/reperfusion and ultraviolet (UV) light exposure. Stimuli which induce this protective response include heat, chemicals, brief ischemia, and electromagnetic (EM) field exposures. We report here that constant mechanical vibration pre-conditions chick embryos, protecting them during subsequent stress from hypoxia or UV light exposure. Continuously mechanically vibrated embryos (60 Hz, 1 g (32 ft/s2), 20 min) exhibited nearly double the survival (67.5%, P < 0.001) after subsequent hypoxia as compared to non-vibrated controls (37.6%). As a second set of experiments, embryos were vibrated and then exposed to UV light stress. Those embryos that were vibrated prior to UV had nearly double the survival 3 h after UV exposure (66%, P < 0.001) as compared to controls (35%). The degree of protection, however, was dependent on the constancy of the vibration amplitude. When vibration was turned on and off at 1-s intervals throughout exposure, no increase in hypoxia protection was noted. For 50 s on/off vibration intervals, however, hypoxia protection comparable to continuous vibration was obtained. In contrast, random, inconstant mechanical vibration did not induce protection against subsequent UV exposure. These data suggest that to be an effective pre-conditioning agent, mechanical vibration must have a degree of temporally constancy (on/off intervals of greater than 1 s). Further experiments in both models (hypoxia and UV) indicated an interaction between vibration and EM field-induced protection. Vibration-induced hypoxia protection was inhibited by superposition of a random EM noise field (previously shown to inhibit EM field-induced protection). In addition, EM field-induced UV protection was inhibited by

  8. Noninvasive inductive stent heating: alternative approach to prevent instent restenosis?

    PubMed

    Floren, Michael G; Günther, Rolf W; Schmitz-Rode, Thomas

    2004-05-01

    To test noninvasive inductive heating of implanted vascular stents as an alternative approach for reduction or prevention of neointimal hyperplasia. Calorimetric pretests were performed to get an orientation on the different parameters of influence for inductive heating of stents. The field strength was set to a maximum of 90 kA/m within a frequency range from 80 kHz to 320 kHz. The electromagnetic field was emitted by a custom-made water-cooled copper winding antenna. A flow model for stent heating was set up to assess the increase in temperature of an expanded 316L stainless steel stent with typical coronary stent dimensions of 3.5 mm diameter and 14.5 mm in length, and in a second setup with 4.5 mm diameter and 13 mm in length, respectively. The stent was located in a bioartificial artery, simulated by a fibrinogen matrix with a defined number of vital cells. The system was exposed to a pulsating perfusion and to an electromagnetic field of 200 kHz over a period of 20 minutes and in a second setup to an electromagnetic field of 300 kHz and increasing intensity up to maximum power-output. Afterward, the artificial vessel was sliced and examined by fluorescence microscopy to evaluate the number and location of damaged cells. The calorimetric tests show an exponential correlation of energy uptake in the stent with an increase in frequency and a constant generator output. At a frequency of 80 kHz, the power uptake accounts for 0.1 W (250 kHz 1.0 W; 320 kHz 1.9 W, respectively). The flow tests confirmed feasibility to elevate the stent temperature from 37 degrees C body temperature to 44 degrees C at 200 kHz within 55 seconds. The temperature increase of the fluid passing the heated vessel region was only marginal (maximum of 0.5 degrees C). Cell necrosis after 20 minutes of treatment was not observed. In a second set-up with 4.5 mm stent diameter, a frequency of 300 kHz and with maximum power output, the stent temperature was increased to 80 degrees C and there was

  9. Dry calibration of electromagnetic flowmeters based on numerical models combining multiple physical phenomena (multiphysics)

    NASA Astrophysics Data System (ADS)

    Fu, X.; Hu, L.; Lee, K. M.; Zou, J.; Ruan, X. D.; Yang, H. Y.

    2010-10-01

    This paper presents a method for dry calibration of an electromagnetic flowmeter (EMF). This method, which determines the voltage induced in the EMF as conductive liquid flows through a magnetic field, numerically solves a coupled set of multiphysical equations with measured boundary conditions for the magnetic, electric, and flow fields in the measuring pipe of the flowmeter. Specifically, this paper details the formulation of dry calibration and an efficient algorithm (that adaptively minimizes the number of measurements and requires only the normal component of the magnetic flux density as boundary conditions on the pipe surface to reconstruct the magnetic field involved) for computing the sensitivity of EMF. Along with an in-depth discussion on factors that could significantly affect the final precision of a dry calibrated EMF, the effects of flow disturbance on measuring errors have been experimentally studied by installing a baffle at the inflow port of the EMF. Results of the dry calibration on an actual EMF were compared against flow-rig calibration; excellent agreements (within 0.3%) between dry calibration and flow-rig tests verify the multiphysical computation of the fields and the robustness of the method. As requiring no actual flow, the dry calibration is particularly useful for calibrating large-diameter EMFs where conventional flow-rig methods are often costly and difficult to implement.

  10. Ultra-high-frequency microwave response from flexible transparent Au electromagnetic metamaterial nanopatterned antenna.

    PubMed

    Liu, Dingxin; Niu, Jiebin; Zhu, Haolin; Zhang, Jianyong

    2018-02-09

    Flexible transparent materials are a hot spot in current research but also a key technical difficulty in industry. They are playing an increasingly important role in flexible transparent display applications such as organic light-emitting diodes, transparent electrodes, and so on. On the other hand, the present research on nanopatterned antennas is mainly concentrated on the optical frequency but rarely on the microwave (such as 3G, 4G, and 5G) and terahertz frequency band communications, where nanopatterned antennas can have many novel applications. To the authors' knowledge, this is the first paper that presents a method for preparing a flexible transparent Au electromagnetic metamaterial nanopatterned antenna. We study its free-space performance at ultra-high frequency and its application in electronic products such as smartphones, tablets, personal computers, and wearable devices (such as smart watches) which have the function of mobile communication. The experimental results showed that the transparency of the antenna designed and fabricated in this work can be as high as 94%, and its efficiency can reach 74.5%-91.9% of antennas commonly seen at present in academia and industry. By adjusting the capacitive and inductive reactance of the nanopatterned antenna's matching circuit, combined with its measured efficiency and 3D electromagnetic simulation results, we speculate on the mechanism of the Au electromagnetic metamaterial nanopatterned antenna with good performance.

  11. Ultra-high-frequency microwave response from flexible transparent Au electromagnetic metamaterial nanopatterned antenna

    NASA Astrophysics Data System (ADS)

    Liu, Dingxin; Niu, Jiebin; Zhu, Haolin; Zhang, Jianyong

    2018-02-01

    Flexible transparent materials are a hot spot in current research but also a key technical difficulty in industry. They are playing an increasingly important role in flexible transparent display applications such as organic light-emitting diodes, transparent electrodes, and so on. On the other hand, the present research on nanopatterned antennas is mainly concentrated on the optical frequency but rarely on the microwave (such as 3G, 4G, and 5G) and terahertz frequency band communications, where nanopatterned antennas can have many novel applications. To the authors’ knowledge, this is the first paper that presents a method for preparing a flexible transparent Au electromagnetic metamaterial nanopatterned antenna. We study its free-space performance at ultra-high frequency and its application in electronic products such as smartphones, tablets, personal computers, and wearable devices (such as smart watches) which have the function of mobile communication. The experimental results showed that the transparency of the antenna designed and fabricated in this work can be as high as 94%, and its efficiency can reach 74.5%-91.9% of antennas commonly seen at present in academia and industry. By adjusting the capacitive and inductive reactance of the nanopatterned antenna’s matching circuit, combined with its measured efficiency and 3D electromagnetic simulation results, we speculate on the mechanism of the Au electromagnetic metamaterial nanopatterned antenna with good performance.

  12. Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics.

    PubMed

    Zhang, Kewei; Wang, Xue; Yang, Ya; Wang, Zhong Lin

    2015-01-01

    We report a hybridized electromagnetic-triboelectric nanogenerator for highly efficient scavenging of biomechanical energy to sustainably power wearable electronics by human walking. Based on the effective conjunction of triboelectrification and electromagnetic induction, the hybridized nanogenerator, with dimensions of 5 cm × 5 cm × 2.5 cm and a light weight of 60 g, integrates a triboelectric nanogenerator (TENG) that can deliver a peak output power of 4.9 mW under a loading resistance of 6 MΩ and an electromagnetic generator (EMG) that can deliver a peak output power of 3.5 mW under a loading resistance of 2 kΩ. The hybridized nanogenerator exhibits a good stability for the output performance and a much better charging performance than that of an individual energy-harvesting unit (TENG or EMG). Furthermore, the hybridized nanogenerator integrated in a commercial shoe has been utilized to harvest biomechanical energy induced by human walking to directly light up tens of light-emitting diodes in the shoe and sustainably power a smart pedometer for reading the data of a walking step, distance, and energy consumption. A wireless pedometer driven by the hybrid nanogenerator can work well to send the walking data to an iPhone under the distance of 25 m. This work pushes forward a significant step toward energy harvesting from human walking and its potential applications in sustainably powering wearable electronics.

  13. Electromagnetic heating of minor planets in the early solar system

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Sonett, C. P.

    1979-01-01

    Electromagnetic processes occurring in the primordial solar system are likely to have significantly affected planetary evolution. In particular, electrical coupling of the kinetic energy of a dense T-Tauri-like solar wind into the interior of the smaller planets could have been a major driver of thermal metamorphism. Accordingly a grid of asteroid models of various sizes and solar distances was constructed using dc transverse magnetic induction theory. Plausible parameterizations with no requirement for a high environmental temperature led to complete melting for Vesta with no melting for Pallas and Ceres. High temperatures were reached in the Pallas model, perhaps implying nonmelting thermal metamorphosis as a cause of its anomalous spectrum. A reversal of this temperature sequence seems implausible, suggesting that the Ceres-Pallas-Vesta dichotomy is a natural outcome of the induction mechanism. Highly localized heating is expected to arise due to an instability in the temperature-controlled current distribution. Localized metamorphosis resulting from this effect may be relevant to the production and evolution of pallasites, the large presumed metal component of S object spectra, and the formation of the lunar magma ocean.

  14. Electromagnetic geophysical observation with controlled source

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Oleg

    2016-04-01

    In the paper the new theoretical and methodical approaches are examined for detailed investigations of the structure and state of the geological medium, and its behavior as a dynamic system in reaction to external man-made influences. To solve this problem it is necessary to use geophysical methods that have sufficient resolution and that are built on more complicated models than layered or layered-block models. One of these methods is the electromagnetic induction frequency-geometrical method with controlled sources. Here we consider new approaches using this method for monitoring rock shock media by means of natural experiments and interpretation of the practical results. That method can be used by oil production in mines, where the same events of non stability can occur. The key ideas of twenty first century geophysics from the point of view of geologist academician A.N. Dmitrievskiy [Dmitrievskiy, 2009] are as follows. "The geophysics of the twenty first century is an understanding that the Earth is a self-developing, self-supporting geo-cybernetic system, in which the role of the driving mechanism is played by the field gradients; the evolution of geological processes is a continuous chain of transformations and the interaction of geophysical fields in the litho- hydro- and atmosphere. The use of geophysical principles of a hierarchical quantum of geophysical space, non-linear effects, and the effects of reradiating geophysical fields will allow the creation of a new geophysics. The research, in which earlier only pure geophysical processes and technologies were considered, nowadays tends to include into consideration geophysical-chemical processes and technologies. This transformation will allow us to solve the problems of forecasting geo-objects and geo-processes in previously unavailable geological-technological conditions." The results obtained allow us to make the following conclusions, according to the key ideas of academician A.N. Dmitrievskiy: the rock

  15. Circuit models and three-dimensional electromagnetic simulations of a 1-MA linear transformer driver stage

    NASA Astrophysics Data System (ADS)

    Rose, D. V.; Miller, C. L.; Welch, D. R.; Clark, R. E.; Madrid, E. A.; Mostrom, C. B.; Stygar, W. A.; Lechien, K. R.; Mazarakis, M. A.; Langston, W. L.; Porter, J. L.; Woodworth, J. R.

    2010-09-01

    A 3D fully electromagnetic (EM) model of the principal pulsed-power components of a high-current linear transformer driver (LTD) has been developed. LTD systems are a relatively new modular and compact pulsed-power technology based on high-energy density capacitors and low-inductance switches located within a linear-induction cavity. We model 1-MA, 100-kV, 100-ns rise-time LTD cavities [A. A. Kim , Phys. Rev. ST Accel. Beams 12, 050402 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050402] which can be used to drive z-pinch and material dynamics experiments. The model simulates the generation and propagation of electromagnetic power from individual capacitors and triggered gas switches to a radially symmetric output line. Multiple cavities, combined to provide voltage addition, drive a water-filled coaxial transmission line. A 3D fully EM model of a single 1-MA 100-kV LTD cavity driving a simple resistive load is presented and compared to electrical measurements. A new model of the current loss through the ferromagnetic cores is developed for use both in circuit representations of an LTD cavity and in the 3D EM simulations. Good agreement between the measured core current, a simple circuit model, and the 3D simulation model is obtained. A 3D EM model of an idealized ten-cavity LTD accelerator is also developed. The model results demonstrate efficient voltage addition when driving a matched impedance load, in good agreement with an idealized circuit model.

  16. Near Space Tracking of the EM Phenomena Associated with the Main Earthquakes

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Taylor, Patrick; Bryant, Nevin; Pulinets, Sergey; Liu, Jann-Yenq; Yang, Kwang-Su

    2004-01-01

    Searching for electromagnetic (EM) phenomena originating in the Earth's crust prior to major earthquakes (M>5) are the object of this exploratory study. We present the idea of a possible relationship between: (1) electro-chemical and thermodynamic processes in the Earth's crust and (2) ionic enhancement of the atmosphere/ionosphere with tectonic stress and earthquake activity. The major source of these signals are proposed to originate from electromagnetic phenomenon which are responsible for these observed pre-seismic processes, such as, enhanced IR emission, also born as thermal anomalies, generation of long wave radiation, light emission caused by ground-to-air electric discharges, Total Electron Content (TEC) ionospheric anomalies and ionospheric plasma variations. The source of these data will include: (i) ionospheric plasma perturbations data from the recently launched DEMETER mission and currently available TEC/GPS network data; (ii) geomagnetic data from ORSTED and CHAMP; (iii) Thermal infra-red (TIR) transients mapped by the polar orbiting (NOAA/AVHRR, MODIS) and (iv) geosynchronous weather satellites measurements of GOES, METEOSAT. This approach requires continues observations and data collecting, in addition to both ground and space based monitoring over selected regions in order to investigate the various techniques for recording possible anomalies. During the space campaign emphasis will be on IR emission, obtained from TIR (thermal infrared) satellites, that records land/sea surface temperature anomalies and changes in the plasma and total electron content (TEC) of the ionosphere that occur over areas of potential earthquake activity.

  17. Numerical simulation of electromagnetic wave attenuation in a nonequilibrium chemically reacting hypervelocity flow

    NASA Astrophysics Data System (ADS)

    Nusca, Michael Joseph, Jr.

    The effects of various gasdynamic phenomena on the attenuation of an electromagnetic wave propagating through the nonequilibrium chemically reacting air flow field generated by an aerodynamic body travelling at high velocity is investigated. The nonequilibrium flow field is assumed to consist of seven species including nitric oxide ions and free electrons. The ionization of oxygen and nitrogen atoms is ignored. The aerodynamic body considered is a blunt wedge. The nonequilibrium chemically reacting flow field around this body is numerically simulated using a computer code based on computational fluid dynamics. The computer code solves the Navier-Stokes equations including mass diffusion and heat transfer, using a time-marching, explicit Runge-Kutta scheme. A nonequilibrium air kinetics model consisting of seven species and twenty-eight reactions as well as an equilibrium air model consisting of the same seven species are used. The body surface boundaries are considered as adiabatic or isothermal walls, as well as fully-catalytic and non-catalytic surfaces. Both laminar and turbulent flows are considered; wall generated flow turbulence is simulated using an algebraic mixing length model. An electromagnetic wave is considered as originating from an antenna within the body and is effected by the free electrons in the chemically reacting flow. Analysis of the electromagnetics is performed separately from the fluid dynamic analysis using a series solution of Maxwell's equations valid for the propagation of a long-wavelength plane electromagnetic wave through a thin (i.e., in comparison to wavelength) inhomogeneous plasma layer. The plasma layer is the chemically reacting shock layer around the body. The Navier-Stokes equations are uncoupled from Maxwell's equations. The results of this computational study demonstrate for the first time and in a systematic fashion, the importance of several parameters including equilibrium chemistry, nonequilibrium chemical kinetics, the

  18. Electromagnetic Meissner-Effect Launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1990-01-01

    Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.

  19. A Linear Electromagnetic Piston Pump

    NASA Astrophysics Data System (ADS)

    Hogan, Paul H.

    Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.

  20. Longitudinal elliptically polarized electromagnetic waves in off-diagonal magnetoelectric split-ring composites.

    PubMed

    Chui, S T; Wang, Weihua; Zhou, L; Lin, Z F

    2009-07-22

    We study the propagation of plane electromagnetic waves through different systems consisting of arrays of split rings of different orientations. Many extraordinary EM phenomena were discovered in such systems, contributed by the off-diagonal magnetoelectric susceptibilities. We find a mode such that the electric field becomes elliptically polarized with a component in the longitudinal direction (i.e. parallel to the wavevector). Even though the group velocity [Formula: see text] and the wavevector k are parallel, in the presence of damping, the Poynting vector does not just get 'broadened', but can possess a component perpendicular to the wavevector. The speed of light can be real even when the product ϵμ is negative. Other novel properties are explored.

  1. Full circuit calculation for electromagnetic pulse transmission in a high current facility

    NASA Astrophysics Data System (ADS)

    Zou, Wenkang; Guo, Fan; Chen, Lin; Song, Shengyi; Wang, Meng; Xie, Weiping; Deng, Jianjun

    2014-11-01

    We describe herein for the first time a full circuit model for electromagnetic pulse transmission in the Primary Test Stand (PTS)—the first TW class pulsed power driver in China. The PTS is designed to generate 8-10 MA current into a z -pinch load in nearly 90 ns rise time for inertial confinement fusion and other high energy density physics research. The PTS facility has four conical magnetic insulation transmission lines, in which electron current loss exists during the establishment of magnetic insulation. At the same time, equivalent resistance of switches and equivalent inductance of pinch changes with time. However, none of these models are included in a commercially developed circuit code so far. Therefore, in order to characterize the electromagnetic transmission process in the PTS, a full circuit model, in which switch resistance, magnetic insulation transmission line current loss and a time-dependent load can be taken into account, was developed. Circuit topology and an equivalent circuit model of the facility were introduced. Pulse transmission calculation of shot 0057 was demonstrated with the corresponding code FAST (full-circuit analysis and simulation tool) by setting controllable parameters the same as in the experiment. Preliminary full circuit simulation results for electromagnetic pulse transmission to the load are presented. Although divergences exist between calculated and experimentally obtained waveforms before the vacuum section, consistency with load current is satisfactory, especially at the rising edge.

  2. Effect of extremely low frequency electromagnetic field on brain histopathology of Caspian Sea Cyprinus carpio.

    PubMed

    Samiee, Farzaneh; Samiee, Keivandokht

    2017-01-01

    There is limited research on the effect of electromagnetic field on aquatic organisms, especially freshwater fish species. This study was conducted to evaluate the effect of extremely low frequency electromagnetic field (ELF-EMF) (50 Hz) exposure on brain histopathology of Cyprinus carpio, one of the important species of Caspian Sea with significant economic value. A total of 200 healthy fish were used in this study. They were classified randomly in two groups: sham-exposed group and experimental group, which were exposed to five different magnetic field intensities (0.1, 1, 3, 5, and 7 mT) at two different exposure times (0.5 and 1 h). Histologic results indicate that exposure of C. carpio to artificial ELF-EMF caused severe histopathological changes in the brain at field intensities ≥3 mT leading to brain necrosis. Field intensity and duration of exposure were key parameters in induction of lesion in the brain. Further studies are needed to elucidate exact mechanism of EMF exposure on the brain.

  3. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOEpatents

    Richter, Tomas

    1998-01-01

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.

  4. Advanced Measurement Devices for the Microgravity Electromagnetic Levitation Facility EML

    NASA Technical Reports Server (NTRS)

    Brillo, Jurgen; Fritze, Holger; Lohofer, Georg; Schulz, Michal; Stenzel, Christian

    2012-01-01

    This paper reports on two advanced measurement devices for the microgravity electromagnetic levitation facility (EML), which is currently under construction for the use onboard the "International Space Station (ISS)": the "Sample Coupling Electronics (SCE)" and the "Oxygen Sensing and Control Unit (OSC)". The SCE measures by a contactless, inductive method the electrical resistivity and the diameter of a spherical levitated metallic droplet by evaluating the voltage and electrical current applied to the levitation coil. The necessity of the OSC comes from the insight that properties like surface tension or, eventually, viscosity cannot seriously be determined by the oscillating drop method in the EML facility without knowing the conditions of the surrounding atmosphere. In the following both measurement devices are explained and laboratory test results are presented.

  5. Models for electromagnetic coupling of lightning onto multiconductor cables in underground cavities

    NASA Astrophysics Data System (ADS)

    Higgins, Matthew Benjamin

    This dissertation documents the measurements, analytical modeling, and numerical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy onto multiconductor cables in an underground cavity. Measurements were performed at the Sago coal mine located near Buckhannon, WV. These transfer functions, coupled with mathematical representations of lightning strokes, are then used to predict electric fields within the mine and induced voltages on a cable that was left abandoned in the sealed area of the Sago mine. If voltages reached high enough levels, electrical arcing could have occurred from the abandoned cable. Electrical arcing is known to be an effective ignition source for explosive gas mixtures. Two coupling mechanisms were measured: direct and indirect drive. Direct coupling results from the injection or induction of lightning current onto metallic conductors such as the conveyors, rails, trolley communications cable, and AC power shields that connect from the outside of the mine to locations deep within the mine. Indirect coupling results from electromagnetic field propagation through the earth as a result of a cloud-to-ground lightning stroke or a long, low-altitude horizontal current channel from a cloud-to-ground stroke. Unlike direct coupling, indirect coupling does not require metallic conductors in a continuous path from the surface to areas internal to the mine. Results from the indirect coupling measurements and analysis are of great concern. The field measurements, modeling, and analysis indicate that significant energy can be coupled directly into the sealed area of the mine. Due to the relatively low frequency content of lightning (< 100 kHz), electromagnetic energy can readily propagate through hundreds of feet of earth. Indirect transfer function measurements compare extremely well with analytical and computational models

  6. Multi-directional electromagnetic vibration energy harvester using circular Halbach array

    NASA Astrophysics Data System (ADS)

    Qiu, Jing; Liu, Xin; Hu, Zhenwen; Chang, Qijie; Gao, Yuan; Yang, Jin; Wen, Jing; Tang, Xiaosheng; Hu, Wei

    2017-05-01

    In this paper, a multi-directional electromagnetic vibration energy harvester (EVEH) using the circular Halbach array (HA) is presented based on the Faraday's law of electromagnetic induction. The circular HA is a specific arrangement of permanent magnets which could concentrate the magnetic field inside the circular array by a certain rule, while reduce the magnetic field outside the circular array to almost zero at the same time. The HA could break through the limitation of the related published vibration energy harvesters that could work in only one single direction. Thus, it could optimize the collecting efficiency. The experimental results show that the presented harvester could generate considerable electric output power in all vibrating directions. An optimal output power is 9.32 mW at a resonant frequency of 15.40 Hz with an acceleration of 0.5 g (with g=9.8 m/s2) across a 700-turn coil in the vibrating direction of 90°, which is 1.53 times than the minimum optimal one in the direction of 45°. The EVEH using the circular HA could work in all directions and generate considerable electric output power, which validates the feasibility of the EVEH that works in all directions and is beneficial for improving the practical application.

  7. New Method for Solving Inductive Electric Fields in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  8. Development of a linear induction motor based artificial muscle system.

    PubMed

    Gruber, A; Arguello, E; Silva, R

    2013-01-01

    We present the design of a linear induction motor based on electromagnetic interactions. The engine is capable of producing a linear movement from electricity. The design consists of stators arranged in parallel, which produce a magnetic field sufficient to displace a plunger along its axial axis. Furthermore, the winding has a shell and cap of ferromagnetic material that amplifies the magnetic field. This produces a force along the length of the motor that is similar to that of skeletal muscle. In principle, the objective is to use the engine in the development of an artificial muscle system for prosthetic applications, but it could have multiple applications, not only in the medical field, but in other industries.

  9. Influence of extremely low frequency electromagnetic fields on growth performance, innate immune response, biochemical parameters and disease resistance in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Nofouzi, Katayoon; Sheikhzadeh, Najmeh; Mohamad-Zadeh Jassur, Davood; Ashrafi-Helan, Javad

    2015-06-01

    The effects of extremely low frequency electromagnetic fields on rainbow trout growth performance, innate immunity and biochemical parameters were studied. Rainbow trout (17-18 g) were exposed to electromagnetic fields (15 Hz) at 0.01, 0.1, 0.5, 5 and 50 µT, for 1 h daily over period of 60 days. Growth performance of fish improved in different treatment groups, especially at 0.1, 0.5, 5 and 50 µT. Immunological parameters, specifically hemagglutinating titer, total antiprotease and α1-antiprotease levels in treatment groups, were also enhanced. Total protein and globulin contents in the serum of fish exposed to 0.1, 0.5, 5 and 50 µT were significantly higher than those in the control group. No significant differences were found in serum enzyme activities, namely aspartate aminotransferase and alanine aminotransferase of fish in all treatment groups. Conversely, alkaline phosphatase level decreased in fish exposed to 0.01 and 50 µT electromagnetic fields. Meanwhile, electromagnetic induction at 0.1, 0.5, 5 and 50 µT enhanced fish protection against Yersinia ruckeri. These results indicated that these specific electromagnetic fields had possible effects on growth performance, nonspecific immunity and disease resistance of rainbow trout.

  10. Necessity of electromagnetic emission network arrangement in Georgia

    NASA Astrophysics Data System (ADS)

    Turazashvili, Ioseb; Kachakhidze, Nino; Machavariani, Kakhaber; Kachakhidze, Manana; Gogoberidze, Vitali; Khazaradze, Giorgi

    2015-04-01

    The field of the tectonic stress has the hierarchical structure. The most characteristic features connected with the regional tectonic elements are determined by the geologic - tectonic data. It is established that in the young folded areas like the Caucasus the field of tectonic stress is characterized by the sharp anisotropy with the predominance of the compression perpendicular to the trend of folding. Spatial location of the main positive and negative geotectonic morphostructures of the Caucasus shows the existence of the wavy tectonic movements in the region. They are caused by the horizontal compression, provoked evidently by advancement of the Arabian lithosphere plate to the North and its re-approach with the Euro-Asian plate. All these cause considerable deformation of the lithosphere of the Caucasian region and its breaking up in separate blocks. This, in its turn, causes the concentration of stress along the boundaries of the blocks and rising of earthquakes focuses there. According to the instrumental data starting from 1899 at about 40 large earthquakes were fixed in the Caucasus. The rate of risks associated with these hazards increases every year in Georgia due to the appearance of new complicated technological construction: oil and gas pipelines large dams and hydropower plants and others. Modern ground-based and satellite methods of viewing enables to reveal those multiple anomalous geophysical phenomena which become evident in the period preceding earthquake and are directly connected with the process of its preparation. Lately special attention is attributed to the electromagnetic emission fixed during large earthquake and has already been successfully detected in Japan, America and Europe. Unfortunately there is no electromagnetic emission detection network in Georgia yet. The presented abstract concerns arrange of EM emission net and begin implementation of this vital task by arrangement of the one relevant station on the fault near Tbilisi

  11. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculationmore » (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).« less

  12. Improved Electromagnetic Brake

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  13. Nondestructive corrosion detection in concrete through integrated heat induction and IR thermography

    NASA Astrophysics Data System (ADS)

    Kwon, Seung-Jun; Xue, Henry; Feng, Maria Q.; Baek, Seunghoon

    2011-04-01

    Steel corrosion in concrete is a main cause of deterioration and early failure of concrete structures. A novel integration of electromagnetic heat induction and infrared (IR) thermography is proposed for nondestructive detection of steel corrosion in concrete, by taking advantage of the difference in thermal characteristics of corroded and non-corroded steel. This paper focuses on experimental investigation of the concept. An inductive heater is developed to remotely heat the steel rebar from concrete surface, which is integrated with an IR camera. Bare rebar and concrete samples with different cover depths are prepared. Each concrete sample is embedded with a single steel rebar in the middle, resulting an identical cover depth from the front and the back surfaces, which enables heat induction from one surface and IR thermogrphay from the other simultaneously. The impressed current method is adopted to induce accelerated corrosion on the rebar. IR video images are recorded during both heating and cooling periods. The test results demonstrate a clear difference in thermal characteristics between corroded and non-corroded samples. The corroded samples show higher rates of heating and cooling as well as a higher peak IR intensity than those of the non-corroded samples. This study demonstrates a potential for nondestructive detection of rebar corrosion in concrete.

  14. Numerical predictions of EML (electromagnetic launcher) system performance

    SciTech Connect

    Schnurr, N.M.; Kerrisk, J.F.; Davidson, R.F.

    1987-01-01

    The performance of an electromagnetic launcher (EML) depends on a large number of parameters, including the characteristics of the power supply, rail geometry, rail and insulator material properties, injection velocity, and projectile mass. EML system performance is frequently limited by structural or thermal effects in the launcher (railgun). A series of computer codes has been developed at the Los Alamos National Laboratory to predict EML system performance and to determine the structural and thermal constraints on barrel design. These codes include FLD, a two-dimensional electrostatic code used to calculate the high-frequency inductance gradient and surface current density distribution for themore » rails; TOPAZRG, a two-dimensional finite-element code that simultaneously analyzes thermal and electromagnetic diffusion in the rails; and LARGE, a code that predicts the performance of the entire EML system. Trhe NIKE2D code, developed at the Lawrence Livermore National Laboratory, is used to perform structural analyses of the rails. These codes have been instrumental in the design of the Lethality Test System (LTS) at Los Alamos, which has an ultimate goal of accelerating a 30-g projectile to a velocity of 15 km/s. The capabilities of the individual codes and the coupling of these codes to perform a comprehensive analysis is discussed in relation to the LTS design. Numerical predictions are compared with experimental data and presented for the LTS prototype tests.« less

  15. The effect of the pulsatile electromagnetic field in children suffering from bronchial asthma.

    PubMed

    Sadlonova, J; Korpas, J; Salat, D; Miko, L; Kudlicka, J

    2003-01-01

    From the bibliography it is well known that pulsatile electromagnetic field has an anti-inflammatory and analgesic effect. It causes vasodilatation, myorelaxation, hyper-production of connective tissue and activation of the cell membrane. Therefore our aim was to study the possible therapeutic effect of pulsatile electromagnetic field in asthmatic children. Forty-two children participating in this study were divided in two groups. The 1st group consisting of 21 children (11 females, 10 males, aged 11.8 +/- 0.4 yr) was treated by pulsatile electromagnetic field and pharmacologically. The 2nd group served as control, consisting also of 21 children (11 females, 10 males, aged 11.7 +/- 0.3 yr) and was treated only pharmacologically. Therapeutic effect of the pulsatile electromagnetic field was assessed on the basis of pulmonary tests performed by means of a Spirometer 100 Handi (Germany). The indexes FVC, IVC, ERV, IRV, FEV1, FEV1/FVC%, MEF75,50,25, PEF, PIF and the changes of the flow-volume loop were also registered. The pulsatile electromagnetic field was applied by means of the device MTU 500H, Therapy System (Brno, Czech Republic) for 5 days, two times daily for 30 minutes (magnetic induction: 3 mT, frequency: 4 Hz as recommended by the manufacturer). The results in children of the 1st group showed an improvement of FVC of about 70 ml, IVC of about 110 ml, FEV1 of about 80 ml, MEF75 of about 30 ml, PEF of about 480 ml, PIF of about 550 ml. The increases of ERV, IRV and FEV1/FVC and decreases of MEF25,50 were statistically insignificant. The results in the 2nd group were less clear. The flow-volume loop showed a mild improvement in 14 children. This improvement in the 2nd group was less significant. The clinical status of children and their mood became better. We believe that the pulsatile electro-magnetotherapy in children suffering from asthma is effective. On the basis of our results we can recommend it as a complementary therapy.

  16. Teaching optical phenomena with Tracker

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  17. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential

    PubMed Central

    Begley, Ryan; Harvey, Alan R.; Hool, Livia; Wallace, Vincent P.

    2017-01-01

    Since regular radio broadcasts started in the 1920s, the exposure to human-made electromagnetic fields has steadily increased. These days we are not only exposed to radio waves but also other frequencies from a variety of sources, mainly from communication and security devices. Considering that nearly all biological systems interact with electromagnetic fields, understanding the affects is essential for safety and technological progress. This paper systematically reviews the role and effects of static and pulsed radio frequencies (100–109 Hz), millimetre waves (MMWs) or gigahertz (109–1011 Hz), and terahertz (1011–1013 Hz) on various biomolecules, cells and tissues. Electromagnetic fields have been shown to affect the activity in cell membranes (sodium versus potassium ion conductivities) and non-selective channels, transmembrane potentials and even the cell cycle. Particular attention is given to millimetre and terahertz radiation due to their increasing utilization and, hence, increasing human exposure. MMWs are known to alter active transport across cell membranes, and it has been reported that terahertz radiation may interfere with DNA and cause genomic instabilities. These and other phenomena are discussed along with the discrepancies and controversies from published studies. PMID:29212756

  18. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential.

    PubMed

    Romanenko, Sergii; Begley, Ryan; Harvey, Alan R; Hool, Livia; Wallace, Vincent P

    2017-12-01

    Since regular radio broadcasts started in the 1920s, the exposure to human-made electromagnetic fields has steadily increased. These days we are not only exposed to radio waves but also other frequencies from a variety of sources, mainly from communication and security devices. Considering that nearly all biological systems interact with electromagnetic fields, understanding the affects is essential for safety and technological progress. This paper systematically reviews the role and effects of static and pulsed radio frequencies (10 0 -10 9 Hz), millimetre waves (MMWs) or gigahertz (10 9 -10 11 Hz), and terahertz (10 11 -10 13 Hz) on various biomolecules, cells and tissues. Electromagnetic fields have been shown to affect the activity in cell membranes (sodium versus potassium ion conductivities) and non-selective channels, transmembrane potentials and even the cell cycle. Particular attention is given to millimetre and terahertz radiation due to their increasing utilization and, hence, increasing human exposure. MMWs are known to alter active transport across cell membranes, and it has been reported that terahertz radiation may interfere with DNA and cause genomic instabilities. These and other phenomena are discussed along with the discrepancies and controversies from published studies. © 2017 The Author(s).

  19. The spatial distribution of VLF transmitters at topside ionosphere and the VLF-induced heating phenomena

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhao, S.; Zhou, C.

    2016-12-01

    Based on the electric field observation at VLF frequency band onboard DEMETER satellite, the spatial distribution was studied about some VLF transmitters at different latitudes on ground, as while the maximal intensity, the attenuation rate and affected areas, including NWC and GBZ with high power, and some transmitters with low radiated power. As while the full wave propagation model is used to simulate the theoretical results at topside ionosphere. The results show that, (1) the intensity of electromagnetic waves at topside ionosphere with 1000kW radiated power is higher as one or two orders of magnitude than those with 500 kW power; (2) at same station, the amplitudes in electric field are larger with high frequency signals than those lower ones at the same station; (3) at same frequency points, the ionospheric background affected strongly the waves penetrating into the ionosphere, for the intensity of same frequency signals differed apparently at different transmitters. Due to the high energy of VLF transmitters, the heating phenomena were also observed extensively at DEMETER satellite. Here the VLF-induced ionospheric heating perturbations were selected and analyzed during the solar minimum years of 2008-2009. There are three main features in VLF heating, (1) the temperature of electron and ion increased, while the electron density and O+ density at topside ionosphere decreased; (2) the low hybrid waves were excited at 10-20kHz; (3) the plasma frequency was emitted at some points around 1.92MHz; (4) the VLF induced heating phenomena were associated closely with the radiated power of transmitters, while the transmitters with power <500kW are hard to cause the ionospheric disturbances directly. Considering the propagation and heating process of VLF electromagnetic wave, these features above were discussed and compared with HF heating processes. By learning for the man-made signals propagating from ground into ionosphere, it is helpful to further understand the

  20. Electromagnetic Compatibility Design of the Computer Circuits

    NASA Astrophysics Data System (ADS)

    Zitai, Hong

    2018-02-01

    Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.

  1. Novel quantitative calibration approach for multi-configuration electromagnetic induction (EMI) systems using data acquired at multiple elevations

    NASA Astrophysics Data System (ADS)

    Tan, Xihe; Mester, Achim; von Hebel, Christian; van der Kruk, Jan; Zimmermann, Egon; Vereecken, Harry; van Waasen, Stefan

    2017-04-01

    Electromagnetic induction (EMI) systems offer a great potential to obtain highly resolved layered electrical conductivity models of the shallow subsurface. State-of-the-art inversion procedures require quantitative calibration of EMI data, especially for short-offset EMI systems where significant data shifts are often observed. These shifts are caused by external influences such as the presence of the operator, zero-leveling procedures, the field setup used to move the EMI system and/or cables close by. Calibrations can be performed by using collocated electrical resistivity measurements or taking soil samples, however, these two methods take a lot of time in the field. To improve the calibration in a fast and concise way, we introduce a novel on-site calibration method using a series of apparent electrical conductivity (ECa) values acquired at multiple elevations for a multi-configuration EMI system. No additional instrument or pre-knowledge of the subsurface is needed to acquire quantitative ECa data. By using this calibration method, we correct each coil configuration, i.e., transmitter and receiver coil separation and the horizontal or vertical coplanar (HCP or VCP) coil orientation with a unique set of calibration parameters. A multi-layer soil structure at the corresponding measurement location is inverted together with the calibration parameters using full-solution Maxwell equations for the forward modelling within the shuffled complex evolution (SCE) algorithm to find the optimum solution under a user-defined parameter space. Synthetic data verified the feasibility for calibrating HCP and VCP measurements of a custom made six-coil EMI system with coil offsets between 0.35 m and 1.8 m for quantitative data inversions. As a next step, we applied the calibration approach on acquired experimental data from a bare soil test field (Selhausen, Germany) for the considered EMI system. The obtained calibration parameters were applied to measurements over a 30 m

  2. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  3. Electromagnetically Operated Counter

    DOEpatents

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  4. Aura phenomena during syncope.

    PubMed

    Benke, T; Hochleitner, M; Bauer, G

    1997-01-01

    We studied the frequency and clinical characteristics of aura phenomena in 60 patients with cardiac and 40 subjects with vasovagal syncopes. The majority (93%) of all syncope patients recalled having experienced an aura. Aura phenomena were similar in both groups and were mostly compound auras comprising epigastric, vertiginous, visual, or somatosensory experiences, but were more detailed in the noncardiac group. The localizing significance of auras preceding a syncope was generally poor. Although hard to distinguish from epileptic auras from their structure and shape, syncope-related auras lacked symptoms that are commonly reported after epileptic seizures such as tastes, smells, déjà vu phenomena, scenic visual perceptions, and speech impairments. A detailed anamnestic exploration of auras seems worthwhile in unexplained disorders of consciousness.

  5. Analytical estimation on divergence and flutter vibrations of symmetrical three-phase induction stator via field-synchronous coordinates

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Wang, Shiyu; Sun, Wenjia; Xiu, Jie

    2017-01-01

    The electromagnetically induced parametric vibration of the symmetrical three-phase induction stator is examined. While it can be analyzed by an approximate analytical or numerical method, more accurate and simple analytical method is desirable. This work proposes a new method based on the field-synchronous coordinates. A mechanical-electromagnetic coupling model is developed under this frame such that a time-invariant governing equation with gyroscopic term can be developed. With the general vibration theory, the eigenvalue is formulated; the transition curves between the stable and unstable regions, and response are all determined as closed-form expressions of basic mechanical-electromagnetic parameters. The dependence of these parameters on the instability behaviors is demonstrated. The results imply that the divergence and flutter instabilities can occur even for symmetrical motors with balanced, constant amplitude and sinusoidal voltage. To verify the analytical predictions, this work also builds up a time-variant model of the same system under the conventional inertial frame. The Floquét theory is employed to predict the parametric instability and the numerical integration is used to obtain the parametric response. The parametric instability and response are both well compared against those under the field-synchronous coordinates. The proposed field-synchronous coordinates allows a quick estimation on the electromagnetically induced vibration. The convenience offered by the body-fixed coordinates is discussed across various fields.

  6. Influence of electromagnetic signal of antibiotics excited by low-frequency pulsed electromagnetic fields on growth of Escherichia coli.

    PubMed

    Ke, Yin-Lung; Chang, Fu-Yu; Chen, Ming-Kun; Li, Shun-Lai; Jang, Ling-Sheng

    2013-01-01

    Energy medicine (EM) provides a new medical choice for patients, and its advantages are the noninvasive detection and nondrug treatment. An electromagnetic signal, a kind of EM, induced from antibiotic coupling with weak, extremely low-frequency pulsed electromagnetic fields (PEMFs) is utilized for investigating the growth speed of Escherichia coli (E. coli). PEMFs are produced by solenoidal coils for coupling the electromagnetic signal of antibiotics (penicillin). The growth retardation rate (GRR) of E. coli is used to investigate the efficacy of the electromagnetic signal of antibiotics. The E. coli is cultivated in the exposure of PEMFs coupling with the electromagnetic signal of antibiotics. The maximum GRR of PEMFs with and without the electromagnetic signal of antibiotics on the growth of E. coli cells in the logarithmic is 17.4 and 9.08%, respectively. The electromagnetic signal of antibiotics is successfully coupled by the electromagnetic signal coupling instrument to affect the growth of E. coli. In addition, the retardation effect on E. coli growth can be improved of by changing the carrier frequency of PEMFs coupling with the electromagnetic signal of antibiotics. GRR caused by the electromagnetic signal of antibiotics can be fixed by a different carrier frequency in a different phase of E. coli growth.

  7. Electromagnetic attachment mechanism

    NASA Technical Reports Server (NTRS)

    Monford, Leo G., Jr. (Inventor)

    1992-01-01

    An electromagnetic attachment mechanism is disclosed for use as an end effector of a remote manipulator system. A pair of electromagnets, each with a U-shaped magnetic core with a pull-in coil and two holding coils, are mounted by a spring suspension system on a base plate of the mechanism housing with end pole pieces adapted to move through openings in the base plate when the attractive force of the electromagnets is exerted on a strike plate of a grapple fixture affixed to a target object. The pole pieces are spaced by an air gap from the strike plate when the mechanism first contacts the grapple fixture. An individual control circuit and power source is provided for the pull-in coil and one holding coil of each electromagnet. A back-up control circuit connected to the two power sources and a third power source is provided for the remaining holding coils. When energized, the pull-in coils overcome the suspension system and air gap and are automatically de-energized when the pole pieces move to grapple and impose a preload force across the grapple interface. A battery backup is a redundant power source for each electromagnet in each individual control circuit and is automatically connected upon failure of the primary source. A centerline mounted camera and video monitor are used in cooperation with a target pattern on the reflective surface of the strike plate to effect targeting and alignment.

  8. ELECTROMAGNETIC APPARATUS FOR MOVING A ROD

    DOEpatents

    Young, J.N.

    1957-08-20

    An electromagnetic device for moving an object in a linear path by increments is described. The device is specifically adapted for moving a neutron absorbing control rod into and out of the core of a reactor and consists essentially of an extension member made of magnetic material connected to one end of the control rod and mechanically flexible to grip the walls of a sleeve member when flexed, a magnetic sleeve member coaxial with and slidable between limit stops along the flexible extension, electromagnetic coils substantially centrally located with respect to the flexible extension to flex the extension member into gripping engagement with the sleeve member when ener gized, moving electromagnets at each end of the sleeve to attract the sleeve when energized, and a second gripping electromagnet positioned along the flexible extension at a distance from the previously mentioned electromagnets for gripping the extension member when energized. In use, the second gripping electromagnet is deenergized, the first gripping electromagnet is energized to fix the extension member in the sleeve, and one of the moving electromagnets is energized to attract the sleeve member toward it, thereby moving the control rod.

  9. Frequency-controls of electromagnetic multi-beam scanning by metasurfaces.

    PubMed

    Li, Yun Bo; Wan, Xiang; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun

    2014-11-05

    We propose a method to control electromagnetic (EM) radiations by holographic metasurfaces, including to producing multi-beam scanning in one dimension (1D) and two dimensions (2D) with the change of frequency. The metasurfaces are composed of subwavelength metallic patches on grounded dielectric substrate. We present a combined theory of holography and leaky wave to realize the multi-beam radiations by exciting the surface interference patterns, which are generated by interference between the excitation source and required radiation waves. As the frequency changes, we show that the main lobes of EM radiation beams could accomplish 1D or 2D scans regularly by using the proposed holographic metasurfaces shaped with different interference patterns. This is the first time to realize 2D scans of antennas by changing the frequency. Full-wave simulations and experimental results validate the proposed theory and confirm the corresponding physical phenomena.

  10. Electromagnetic structure of light nuclei

    DOE PAGES

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  11. Electromagnetic structure of light nuclei

    SciTech Connect

    Pastore, Saori

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  12. The Noise Level Optimization for Induction Magnetometer of SEP System

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Fang, G.

    2011-12-01

    The Surface Electromagnetic Penetration (SEP) System, subsidized by the SinoProbe Plan in China, is designed for 3D conductivity imaging in geophysical mineral exploration, underground water distribution exploration, oil and gas reservoir exploration. Both the Controlled Source Audio Magnetotellurics (CSAMT) method and Magnetotellurics (MT) method can be surveyed by SEP system. In this article, an optimization design is introduced, which can minimize the noise level of the induction magnetometer for SEP system magnetic field's acquisition. The induction magnetometer transfers the rate of the magnetic field's change to voltage signal by induction coil, and amplified it by Low Noise Amplifier The noise parts contributed to the magnetometer are: the coil's thermal noise, the equivalent input voltage and current noise of the pre-amplifier. The coil's thermal noise is decided by coil's DC resistance. The equivalent input voltage and current noise of the pre-amplifier depend on the amplifier's type and DC operation condition. The design here optimized the DC operation point of pre-amplifier, adjusted the DC current source, and realized the minimum of total noise level of magnetometer. The calculation and test results show that: the total noise is about 1pT/√Hz, the thermal noise of coils is 1.7nV/√Hz, the preamplifier equivalent input voltage and current noise is 3nV/ √Hz and 0.1pA/√Hz, the weight of the magnetometer is 4.5kg and meet the requirement of SEP system.

  13. External field characterization using CHAMP satellite data for induction studies

    NASA Astrophysics Data System (ADS)

    Kunagu, Praveen; Chandrasekhar, E.

    2013-06-01

    Knowledge of external inducing source field morphology is essential for precise estimation of electromagnetic (EM) induction response. A better characterization of the external source field of magnetospheric origin can be achieved by decomposing it into outer and inner magnetospheric contributions, which are best represented in Geocentric Solar Magnetospheric (GSM) and Solar Magnetic (SM) reference frames, respectively. Thus we propose a spherical harmonic (SH) model to estimate the outer magnetospheric contribution, following the iterative reweighted least squares approach, using the vector magnetic data of the CHAMP satellite. The data covers almost a complete solar cycle from July 2001 to September 2010, spanning 54,474 orbits. The SH model, developed using orbit-averaged vector magnetic data, reveals the existence of a stable outer magnetospheric contribution of about 7.39 nT. This stable field was removed from the CHAMP data after transforming to SM frame. The residual field in the SM frame acts as a primary source for induction in the Earth. The analysis of this time-series using wavelet transformation showed a dominant 27-day periodicity of the geomagnetic field. Therefore, we calculated the inductive EM C-response function in a least squares sense considering the 27-day period variation as the inducing signal. From the estimated C-response, we have determined that the global depth to the perfect substitute conductor is about 1132 km and its conductivity is around 1.05 S/m.

  14. Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics

    PubMed Central

    Yasir, Kashif Ammar; Liu, Wu-Ming

    2016-01-01

    Cavity-optomechanics, a tool to manipulate mechanical effects of light to couple optical field with other physical objects, is the subject of increasing investigations, especially with regards to electromagnetically induced transparency (EIT). EIT, a result of Fano interference among different atomic transition levels, has acquired a significant importance in many areas of physics, such as atomic physics and quantum optics. However, controllability of such multi-dimensional systems has remained a crucial issue. In this report, we investigate the controllability of EIT and Fano resonances in hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC), trapped inside high-finesse Fabry-Pérot cavity with one vibrational mirror, driven by a single mode optical field and a transverse pump field. The transverse field is used to control the phenomenon of EIT. It is detected that the strength of transverse field is not only efficiently amplifying or attenuating out-going optical mode but also providing an opportunity to enhance the strength of Fano-interactions which leads to the amplification of EIT-window. To observe these phenomena in laboratory, we suggest a certain set of experimental parameters. The results provide a route for tunable manipulation of optical phenomena, like EIT, which could be a significant step in quantum engineering. PMID:26955789

  15. Comparison of Commercial Electromagnetic Interface Test Techniques to NASA Electromagnetic Interference Test Techniques

    NASA Astrophysics Data System (ADS)

    Smith, V.

    2000-11-01

    This report documents the development of analytical techniques required for interpreting and comparing space systems electromagnetic interference test data with commercial electromagnetic interference test data using NASA Specification SSP 30237A "Space Systems Electromagnetic Emission and Susceptibility Requirements for Electromagnetic Compatibility." The PSpice computer simulation results and the laboratory measurements for the test setups under study compare well. The study results, however, indicate that the transfer function required to translate test results of one setup to another is highly dependent on cables and their actual layout in the test setup. Since cables are equipment specific and are not specified in the test standards, developing a transfer function that would cover all cable types (random, twisted, or coaxial), sizes (gauge number and length), and layouts (distance from the ground plane) is not practical.

  16. Comparison of Commercial Electromagnetic Interface Test Techniques to NASA Electromagnetic Interference Test Techniques

    NASA Technical Reports Server (NTRS)

    Smith, V.; Minor, J. L. (Technical Monitor)

    2000-01-01

    This report documents the development of analytical techniques required for interpreting and comparing space systems electromagnetic interference test data with commercial electromagnetic interference test data using NASA Specification SSP 30237A "Space Systems Electromagnetic Emission and Susceptibility Requirements for Electromagnetic Compatibility." The PSpice computer simulation results and the laboratory measurements for the test setups under study compare well. The study results, however, indicate that the transfer function required to translate test results of one setup to another is highly dependent on cables and their actual layout in the test setup. Since cables are equipment specific and are not specified in the test standards, developing a transfer function that would cover all cable types (random, twisted, or coaxial), sizes (gauge number and length), and layouts (distance from the ground plane) is not practical.

  17. Strong permanent magnet-assisted electromagnetic undulator

    DOEpatents

    Halbach, Klaus

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  18. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  19. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOEpatents

    Richter, T.

    1998-06-16

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

  20. Near-Field Inductive-Coupling Link to Power a Three-Dimensional Millimeter-Size Antenna for Brain Implantable Medical Devices.

    PubMed

    Manoufali, Mohamed; Bialkowski, Konstanty; Mohammed, Beadaa Jasem; Mills, Paul C; Abbosh, Amin

    2018-01-01

    Near-field inductive-coupling link can establish a reliable power source to a batteryless implantable medical device based on Faraday's law of induction. In this paper, the design, modeling, and experimental verification of an inductive-coupling link between an off-body loop antenna and a 0.9  three-dimensional (3-D) bowtie brain implantable antenna is presented. To ensure reliability of the design, the implantable antenna is embedded in the cerebral spinal fluid of a realistic human head model. Exposure, temperature, and propagation simulations of the near electromagnetic fields in a frequency-dispersive head model were carried out to comply with the IEEE safety standards. Concertedly, a fabrication process for the implantable antenna is proposed, which can be extended to devise and miniaturize different 3-D geometric shapes. The performance of the proposed inductive link was tested in a biological environment; in vitro measurements of the fabricated prototypes were carried in a pig's head and piglet. The measurements of the link gain demonstrated   in the pig's head and   in piglet. The in vitro measurement results showed that the proposed 3-D implantable antenna is suitable for integration with a miniaturized batteryless brain implantable medical device (BIMD).