Sample records for electromagnetic induction sensor

  1. Quality Control Methodologies for Advanced EMI Sensor Data Acquisition and Anomaly Classification - Former Southwestern Proving Ground, Arkansas

    DTIC Science & Technology

    2015-07-01

    concentrations. A total of 11.23 acres of dynamic surveys were conducted using MetalMapper advanced electromagnetic induction (EMI) sensor. A total of...centimeter DGM digital geophysical mapping DSB Defense Science Board EE/CA Engineering Evaluation/Cost Analysis EMI electromagnetic induction...performed a live site demonstration project using the Geometrics MetalMapper advanced electromagnetic induction (EMI) sensor at the former

  2. Determining Detection and Classification Potential of Munitions using Advanced EMI Sensors in the Underwater Environment

    DTIC Science & Technology

    2016-11-01

    focuses on characterizing Electromagnetic Induction (EMI) responses in the underwater setting through numerical and experimental studies with the...marine EMI sensing. 15. SUBJECT TERMS Munitions Response, Electromagnetic Induction, Unexploded Ordnance, Classification 16. SECURITY CLASSIFICATION...using Advanced EMI Sensors in the Underwater Environment.” The project focuses on characterizing Electromagnetic Induction (EMI) responses in the

  3. ESTCP Munitions Response Live Site Demonstrations, Former Southwestern Proving Ground, Arkansas Demonstration Report

    DTIC Science & Technology

    2015-07-01

    electromagnetic induction (EMI) sensor. A total of 2,116 targets were selected from the dynamic data for cued investigation, and 1,398 targets were...geophysical mapping DSB Defense Science Board EE/CA Engineering Evaluation/Cost Analysis EMI electromagnetic induction ESTCP Environmental Security...performed a live site demonstration project using the Geometrics MetalMapper advanced electromagnetic induction (EMI) sensor at the former Southwestern

  4. Portable Electromagnetic Induction Sensor with Integrated Positioning

    DTIC Science & Technology

    2013-08-20

    Subsurface electromagnetic induction imaging for unexploded ordnance detection. Journal of Applied Geophysics, 79:38 – 45, 2012. ISSN 09269851. URL http...Portable Electromagnetic Induction Sensor with Integrated Positioning MR-1712 Final Report Submitted to Strategic Environmental Research and...19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Rev. 8–98) Prescribed by ANSI Std. Z39.18 06–25–2013

  5. Electromagnetic induction sensor for dynamic testing of coagulation process.

    PubMed

    Wang, Zhe; Yu, Yuanhua; Yu, Zhanjiang; Chen, Qimeng

    2018-03-01

    With the increasing demand for coagulation POCT for patients in the surgery department or the ICU, rapid coagulation testing techniques and methods have drawn widespread attention from scholars and businessmen. This paper proposes the use of electromagnetic induction sensor probe for detection of dynamic process causing changes in the blood viscosity and density before and after coagulation based on the damped vibration principle, in order to evaluate the coagulation status. Utilizing the dynamic principle, the differential equation of vibration system comprising elastic support and electromagnetic induction device is established through sensor dynamic modeling. The structural parameters of elastic support are optimized, and the circular sheet spring is designed. Furthermore, harmonic response analysis and vibration fatigue coupling analysis are performed on the elastic support of the sensor by considering the natural frequency of the system, and the electromagnetic induction sensor testing device is set up. Using the device and coagulation reagent, the standard curve for coagulation POCT is plotted, and the blood sample application in clinical patients is established, which are methodologically compared with the imported POCT coagulation analyzer. The results show that the sensor designed in this paper has a first-order natural frequency of 11.368 Hz, which can withstand 5.295 × 10 2 million times of compressions and rebounds. Its correlation with the results of SONOCLOT analyzer reaches 0.996, and the reproducibility 0.002. The electromagnetic induction coagulation testing sensor designed has good elasticity and anti-fatigue, which can meet the accuracy requirement of clinical detection. This study provides the core technology for developing the electromagnetic induction POCT instrument for dynamic testing of coagulation process.

  6. Electromagnetic Remote Sensing. Low Frequency Electromagnetics

    DTIC Science & Technology

    1989-01-01

    biased superconducting point - contact quantum devices", J.Appl.Phys. 41, p.1572, 1970. [40] A.Yariv and H.Winsor, "Proposal for detection of magnetic ... magnetics , electromagnetic induc- tion, electrostatics) 2. Nondestructive testing (electromagnetic induction, neutron tomography, x-ray imaging) 3...Detection of submarines from aircraft or ships ( magnetics , electromagnetic induction) 4. Detection of land vehicles using buried sensors ( magnetics

  7. Compact, Low-Noise Magnetic Sensor with Fluxgate (DC) and Induction (AC) Modes of Operation

    DTIC Science & Technology

    2009-07-01

    induction sensor and the fluxgate magnetometer . ......................................... 2 Figure 3.1 - Impulse response of a 4” long coil (#6...Block diagram of the Year 2, Task 2 fluxgate magnetometer . ................................... 6 Figure 3.3 - FIS-prototype magnetic-field...and demonstrated an innovative dual-mode, fluxgate -induction sensor (FIS) that combines a fluxgate magnetometer and an electromagnetic (EM) induction

  8. Advancements in Transmitters and Sensors for Biological Tissue Imaging in Magnetic Induction Tomography

    PubMed Central

    Zakaria, Zulkarnay; Rahim, Ruzairi Abdul; Mansor, Muhammad Saiful Badri; Yaacob, Sazali; Ayub, Nor Muzakkir Nor; Muji, Siti Zarina Mohd.; Rahiman, Mohd Hafiz Fazalul; Aman, Syed Mustafa Kamal Syed

    2012-01-01

    Magnetic Induction Tomography (MIT), which is also known as Electromagnetic Tomography (EMT) or Mutual Inductance Tomography, is among the imaging modalities of interest to many researchers around the world. This noninvasive modality applies an electromagnetic field and is sensitive to all three passive electromagnetic properties of a material that are conductivity, permittivity and permeability. MIT is categorized under the passive imaging family with an electrodeless technique through the use of excitation coils to induce an electromagnetic field in the material, which is then measured at the receiving side by sensors. The aim of this review is to discuss the challenges of the MIT technique and summarize the recent advancements in the transmitters and sensors, with a focus on applications in biological tissue imaging. It is hoped that this review will provide some valuable information on the MIT for those who have interest in this modality. The need of this knowledge may speed up the process of adopted of MIT as a medical imaging technology. PMID:22969341

  9. EM61-MK2 Response of Three Munitions Surrogates

    DTIC Science & Technology

    2009-03-12

    time-domain electromagnetic induction sensors, it produces a pulsed magnetic field (primary field) that induces a secondary field in metallic objects...selected and marked as potential metal targets. This initial list of anomalies is used as input to an analysis step that selects anomalies for digging...response of a metallic object to an Electromagnetic Induction sensor is most simply modeled as an induced dipole moment represented by a magnetic

  10. Summary of sensor evaluation for the Fusion Electromagnetic Induction Experiment (FELIX)

    NASA Astrophysics Data System (ADS)

    Knott, M. J.

    1982-08-01

    As part of the First Wall/Blanket/Shield Engineering Test Program, a test bed called FELIX (fusion electromagnetic induction experiment) is under construction. Its purpose is to test, evaluate, and develop computer codes for the prediction of electromagnetically induced phenomenon in a magnetic environment modeling that of a fusion reaction. Crucial to this process is the sensing and recording of the various induced effects. Sensor evaluation for FELIX reached the point where most sensor types were evaluated and preliminary decisions are being made as to type and quantity for the initial FELIX experiments. These early experiments, the first, flat plate experiment in particular, will be aimed at testing the sensors as well as the pertinent theories involved. The reason for these evaluations, decisions, and proof tests is the harsh electrical and magnetic environment that FELIX presents.

  11. MR 201104: Evaluation of Discrimination Technologies and Classification Results and MR 201157: Demonstration of MetalMapper Static Data Acquisition and Data Analysis

    DTIC Science & Technology

    2016-09-23

    Acquisition and Data Analysis). EMI sensors, MetalMapper, man-portable Time-domain Electromagnetic Multi-sensor Towed Array Detection System (TEMTADS...California Department of Toxic Substances Control EM61 EM61-MK2 EMI electromagnetic induction ESTCP Environmental Security Technology Certification...SOP Standard Operating Procedure v TEMTADS Time-domain Electromagnetic Multi-sensor Towed Array Detection System man-portable 2x2 TOI target(s

  12. Evaluation of Discrimination Technologies and Classification Results Live Site Demonstration: Former Waikoloa Maneuver Area

    DTIC Science & Technology

    2015-06-01

    National Instruments. The National Instruments DAQ is a full-featured PC running Windows 7. The DAQ, electromagnetic transmitter , and batteries for the... electromagnetic induction Environet Environet, Inc. ESTCP Environmental Security Technology Certification Program ftp file transfer protocol FUDS formerly used...capabilities of a currently available advanced electromagnetic induction sensor developed specifically for discrimination on real sites under operational

  13. A theoretical model to predict both horizontal displacement and vertical displacement for electromagnetic induction-based deep displacement sensors.

    PubMed

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.

  14. Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain.

    PubMed

    Wang, X G; Shang, X L; Lin, J

    2016-05-01

    Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically.

  15. Perform MetalMapper Classification Treatability Investigations as Part of Remedial Investigation/Feasibility Studies: Live Site Demonstrations: Pueblo Chemical Depot

    DTIC Science & Technology

    2016-03-14

    DoD Department of Defense EMI electromagnetic induction ESTCP Environmental Security Technology Certification Program ft. foot GPS global...three primary objectives:  Test and validate detection and discrimination capabilities of a currently available advanced electromagnetic induction ... induction (EMI) sensors in dynamic and static data acquisition modes and associated analysis software. To achieve these objectives, a controlled test was

  16. A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    PubMed Central

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467

  17. Modelling of resonant MEMS magnetic field sensor with electromagnetic induction sensing

    NASA Astrophysics Data System (ADS)

    Liu, Song; Xu, Huaying; Xu, Dehui; Xiong, Bin

    2017-06-01

    This paper presents an analytical model of resonant MEMS magnetic field sensor with electromagnetic induction sensing. The resonant structure vibrates in square extensional (SE) mode. By analyzing the vibration amplitude and quality factor of the resonant structure, the magnetic field sensitivity as a function of device structure parameters and encapsulation pressure is established. The developed analytical model has been verified by comparing calculated results with experiment results and the deviation between them is only 10.25%, which shows the feasibility of the proposed device model. The model can provide theoretical guidance for further design optimization of the sensor. Moreover, a quantitative study of the magnetic field sensitivity is conducted with respect to the structure parameters and encapsulation pressure based on the proposed model.

  18. Demonstration of ROV-based Underwater Electromagnetic Array Technology

    DTIC Science & Technology

    2017-05-25

    Volume Magnetic Source Model that Was Modified to Address EM Propagation through a Conductive Seawater Medium...16  Figure 7. Still Shots of the Integrated ROV- EM System (left) and the EM Sensor (right) Performing Bottom Following...of Defense DVL Doppler Velocity Log E Easting EOD Explosive Ordnance Disposal EM Electromagnetic EMI Electromagnetic Induction EMF

  19. An approach to calculating metal particle detection in lubrication oil based on a micro inductive sensor

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Zhang, Hongpeng

    2017-12-01

    A new microfluidic chip is presented to enhance the sensitivity of a micro inductive sensor, and an approach to coil inductance change calculation is introduced for metal particle detection in lubrication oil. Electromagnetic knowledge is used to establish a mathematical model of an inductive sensor for metal particle detection, and the analytic expression of coil inductance change is obtained by a magnetic vector potential. Experimental verification is carried out. The results show that copper particles 50-52 µm in diameter have been detected; the relative errors between the theoretical and experimental values are 7.68% and 10.02% at particle diameters of 108-110 µm and 50-52 µm, respectively. The approach presented here can provide a theoretical basis for an inductive sensor in metal particle detection in oil and other areas of application.

  20. Multimode electromagnetic target discriminator: preliminary data results

    NASA Astrophysics Data System (ADS)

    Black, Christopher J.; McMichael, Ian T.; Nelson, Carl V.

    2004-09-01

    This paper describes the Multi-mode Electromagnetic Target Discriminator (METD) sensor and presents preliminary results from recent field experiments. The METD sensor was developed for the US Army RDECOM NVESD by The Johns Hopkins University Applied Physics Laboratory. The METD, based on the technology of the previously developed Electromagnetic Target Discriminator (ETD), is a spatial scanning electromagnetic induction (EMI) sensor that uses both the time-domain (TD) and the frequency-domain (FD) for target detection and classification. Data is collected with a custom data acquisition system and wirelessly transmitted to a base computer. We show that the METD has a high signal-to-noise ratio (SNR), the ability to detect voids created by plastic anti-tank (AT) mines, and is practical for near real-time data processing.

  1. Sensors for noncontact vibration diagnostics in rotating machinery

    NASA Astrophysics Data System (ADS)

    Procházka, Pavel

    2016-06-01

    The paper deals with electromagnetic sensors for noncontact vibration diagnostics in rotating machinery. The sensors were designed for operational measurements in turbomachinery by means of the tip-timing method. The main properties of eddy-current, Hall effect, induction and magnetoresistive sensors are described and compared. Possible arrangements of the experimental systems for static and dynamic calibration of the sensors are suggested and discussed.

  2. A Novel Tactile Sensor with Electromagnetic Induction and Its Application on Stick-Slip Interaction Detection

    PubMed Central

    Liu, Yanjie; Han, Haijun; Liu, Tao; Yi, Jingang; Li, Qingguo; Inoue, Yoshio

    2016-01-01

    Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems. PMID:27023545

  3. A Novel Angular Acceleration Sensor Based on the Electromagnetic Induction Principle and Investigation of Its Calibration Tests

    PubMed Central

    Zhao, Hao; Feng, Hao

    2013-01-01

    An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor. PMID:23941911

  4. Multi-Sensor Systems Development for UXO Detection and Discrimination: Hand-Held Dual Magnetic/Electromagnetic Induction Sensor

    DTIC Science & Technology

    2008-04-01

    5 Fluxgate magnetometer ... magnetometer into digital format, and transmitted as a single serial data string to log the Cs and fluxgate magnetometer data. After procurement...Hardware The system hardware comprises an EMI sensor, Cs vapor magnetometer , fluxgate magnetometer , hand-held data acquisition computer, integrated

  5. Hand-Held EMI Sensor Combined with Inertial Positioning for Cued UXO Discrimination - APG Standardized UXO Test Site

    DTIC Science & Technology

    2013-04-01

    Measurement Tracking System (SAINT) with an advanced hand-held, time-domain electromagnetic sensor (TEM-HH) and document classification performance at...rejecting 77% of the clutter. 15. SUBJECT TERMS EMI, electromagnetic induction, UXO classification, UXO, IMU, inertial measurement unit, 16. SECURITY...U c. THIS PAGE U UU 19b. TELEPHONE NUMBER (include area code) 919-677-1560 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

  6. Inductive displacement sensors with a notch filter for an active magnetic bearing system.

    PubMed

    Chen, Seng-Chi; Le, Dinh-Kha; Nguyen, Van-Sum

    2014-07-15

    Active magnetic bearing (AMB) systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.

  7. Induction heating apparatus and methods of operation thereof

    DOEpatents

    Richardson, John G.

    2006-08-01

    Methods of operation of an induction melter include providing material within a cooled crucible proximate an inductor. A desired electromagnetic flux skin depth for heating the material within the crucible may be selected, and a frequency of an alternating current for energizing the inductor and for producing the desired skin depth may be selected. The alternating current frequency may be adjusted after energizing the inductor to maintain the desired electromagnetic flux skin depth. The desired skin depth may be substantially maintained as the temperature of the material varies. An induction heating apparatus includes a sensor configured to detect changes in at least one physical characteristic of a material to be heated in a crucible, and a controller configured for selectively varying a frequency of an alternating current for energizing an inductor at least partially in response to changes in the physical characteristic to be detected by the sensor.

  8. Intracerebral hemorrhage (ICH) evaluation with a novel magnetic induction sensor: a preliminary study using the Chinese head model.

    PubMed

    Zhang, Ziyi; Liu, Peiguo; Zhou, Dongming; Zhang, Liang; Lei, Hengdong

    2014-01-01

    Biomedical magnetic induction measurement is a promising method for the detection of intracerebral hemorrhage (ICH), especially in China. Aiming at overcoming the problem of low sensitivity, a magnetic induction sensor is chosen to replace the conventional sensors. It uses a two-arm Archimedean spiral coil as the exciter and a circular coil as the receiver. In order to carry out high-fidelity simulations, the Chinese head model with real anatomical structure is introduced into this novel sensor for the first time. Simulations have been carried out upon early stage ICH measurements. By calculating the state sensitivity and time sensitivity of the perturbation phase of two types of sensors using the electromagnetic software, we conclude that the primary signal received can be largely reduced using the novel sensor, which could effectively increase the time and state sensitivity simultaneously.

  9. Inductive dielectric analyzer

    NASA Astrophysics Data System (ADS)

    Agranovich, Daniel; Polygalov, Eugene; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri

    2017-03-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions.

  10. Pedemis: a portable electromagnetic induction sensor with integrated positioning

    NASA Astrophysics Data System (ADS)

    Barrowes, Benjamin E.; Shubitidze, Fridon; Grzegorczyk, Tomasz M.; Fernández, Pablo; O'Neill, Kevin

    2012-06-01

    Pedemis (PortablE Decoupled Electromagnetic Induction Sensor) is a time-domain handheld electromagnetic induction (EMI) instrument with the intended purpose of improving the detection and classification of UneXploded Ordnance (UXO). Pedemis sports nine coplanar transmitters (the Tx assembly) and nine triaxial receivers held in a fixed geometry with respect to each other (the Rx assembly) but with that Rx assembly physically decoupled from the Tx assembly allowing flexible data acquisition modes and deployment options. The data acquisition (DAQ) electronics consists of the National Instruments (NI) cRIO platform which is much lighter and more energy efficient that prior DAQ platforms. Pedemis has successfully acquired initial data, and inversion of the data acquired during these initial tests has yielded satisfactory polarizabilities of a spherical target. In addition, precise positioning of the Rx assembly has been achieved via position inversion algorithms based solely on the data acquired from the receivers during the "on-time" of the primary field. Pedemis has been designed to be a flexible yet user friendly EMI instrument that can survey, detect and classify targets in a one pass solution. In this paper, the Pedemis instrument is introduced along with its operation protocols, initial data results, and current status.

  11. Magnetic antenna using metallic glass

    NASA Technical Reports Server (NTRS)

    Desch, Michael D. (Inventor); Farrell, William M. (Inventor); Houser, Jeffrey G. (Inventor)

    1996-01-01

    A lightweight search-coil antenna or sensor assembly for detecting magnetic fields and including a multi-turn electromagnetic induction coil wound on a spool type coil form through which is inserted an elongated coil loading member comprised of metallic glass material wrapped around a dielectric rod. The dielectric rod consists of a plastic or a wooden dowel having a length which is relatively larger than its thickness so as to provide a large length-to-diameter ratio. A tri-axial configuration includes a housing in which is located three substantially identical mutually orthogonal electromagnetic induction coil assemblies of the type described above wherein each of the assemblies include an electromagnetic coil wound on a dielectric spool with an elongated metallic glass coil loading member projecting therethrough.

  12. The Detection and Discrimination of Small Munitions using Giant Magnetoresistive (OMR) Sensors

    DTIC Science & Technology

    2010-09-01

    Suffield, Canada. McGlone, D.T., 1998, Magnetometer Comparison Smoke Creek Instruments’ GMR SCIMAG- 01 & Bartington Fluxgate MAG-03MC70, A...a magnetometer and frequency domain or time domain electromagnetic induction sensor. Both the Honeywell and NVE GlvlR sensors studied have si.m ilar...field sensor. In p0ssive mode, the GMR sensor, which has a resolution of Jess than l 0 nT, perfom1ed similarly to a cesium vapor magnetometer . When

  13. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons

    PubMed Central

    Smith, Ray T.; Jjunju, Fred P. M.; Young, Iain S.; Taylor, Stephen

    2016-01-01

    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting’s theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond. PMID:27493580

  14. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons.

    PubMed

    Smith, Ray T; Jjunju, Fred P M; Young, Iain S; Taylor, Stephen; Maher, Simon

    2016-07-01

    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting's theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond.

  15. Multi-Sensor Systems Development for UXO Detection and Discrimination: Man-Portable Dual Magnetic/Electromagnetic Induction Sensor

    DTIC Science & Technology

    2008-02-01

    of the magnetic data to constrain the target depth using joint or cooperative inversions ( Pasion et al. 2002). ERDC/EL TR-08-9 24 Figure 15. EM...baseline ordnance classification test site at Blossom Pt. Naval Research Laboratory. NRL/MR/6110-00-8437, March 20, 1998. Pasion , L., S. Billings, and

  16. Spiral passive electromagnetic sensor (SPES) for smart sensing and de-icing

    NASA Astrophysics Data System (ADS)

    Iervolino, Onorio; Meo, Michele

    2015-04-01

    The objective of this work was to develop a wireless Spiral Passive Electromagnetic Sensor (SPES) to monitor the complex permittivity of a surrounding medium. The sensor is a self-resonating planar pattern of electrically conductive material. Investigation were conducted to demonstrate the capability of the SPES to monitor humidity and temperature gradients, and acting as an ice protection tool. An oscillating signal is used to interrogate remotely the sensor with a single loop antenna or wiring it directly to a spectrum analyser and monitoring the backscattering signal. The excited sensor responds with its own resonant frequency, amplitude and bandwidth that can be correlated to physical quantities to be monitored. Our studies showed the capability of the sensor to monitor temperature and humidity changes in composite materials and uniformly produce induction heating when the conductive path is activated by an external electric power supply that can be used for deicing of aircraft structures.

  17. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils

    PubMed Central

    Li, Jian; Wu, Dan; Han, Yan

    2016-01-01

    Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation. PMID:27706039

  18. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils.

    PubMed

    Li, Jian; Wu, Dan; Han, Yan

    2016-09-30

    Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent "I-shape" is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.

  19. Urban soil exploration through multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar.

    PubMed

    Van De Vijver, Ellen; Van Meirvenne, Marc; Vandenhaute, Laura; Delefortrie, Samuël; De Smedt, Philippe; Saey, Timothy; Seuntjens, Piet

    2015-07-01

    In environmental assessments, the characterization of urban soils relies heavily on invasive investigation, which is often insufficient to capture their full spatial heterogeneity. Non-invasive geophysical techniques enable rapid collection of high-resolution data and provide a cost-effective alternative to investigate soil in a spatially comprehensive way. This paper presents the results of combining multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar to characterize a former garage site contaminated with petroleum hydrocarbons. The sensor combination showed the ability to identify and accurately locate building remains and a high-density soil layer, thus demonstrating the high potential to investigate anthropogenic disturbances of physical nature. In addition, a correspondence was found between an area of lower electrical conductivity and elevated concentrations of petroleum hydrocarbons, suggesting the potential to detect specific chemical disturbances. We conclude that the sensor combination provides valuable information for preliminary assessment of urban soils.

  20. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  1. SAR and thermal response effects of a two-arm Archimedean spiral coil in a magnetic induction sensor on a human head.

    PubMed

    Zhang, Ziyi; Liu, Peiguo; Zhou, Dongming; Zhang, Liang; Ding, Liang

    2015-01-01

    This study investigates the radiation safety of a newly designed magnetic induction sensor. This novel magnetic induction sensor uses a two-arm Archimedean spiral coil (TAASC) as the exciter. A human head model with a real anatomical structure was used to calculate the specific absorption rate (SAR) and temperature change. Computer Simulation Technology (CST) was used to determine the values of the peak 10-g SAR under different operating parameters (current, frequency, horizontal distance between the excitation coil and the receiver coil, vertical distance between the top of the head model and the XOY plane, position of excitation coil, and volume of hemorrhage). Then, the highest response for the SAR and temperature rise was determined. The results showed that this new magnetic induction sensor is safe in the initial state; for safety reasons, the TAASC current should not exceed 4 A. The scalp tissue absorbed most of the electromagnetic energy. The TAASC's SAR/thermal performance was close to that of the circular coil.

  2. Electromagnetic Sensor Arrays for Nondestructive Evaluation and Robot Control.

    DTIC Science & Technology

    1985-10-31

    flux change for its sensitivity. Instead, it measures the magnetic field itself by using the magnetoresistive effect in a thin film of permalloy ( NiFe ...inductive sensor arrays. Besides devices employing high-permeability magnetic films, this survey also included those based on magneto- resistance and the...Survey.......................7 1. Thin-Film Magnetic Head.................7 2. Thin-Film Magnetoresistive Head ............. 10 3. Summary and

  3. Inductive Linear-Position Sensor/Limit-Sensor Units

    NASA Technical Reports Server (NTRS)

    Alhom, Dean; Howard, David; Smith, Dennis; Dutton, Kenneth

    2007-01-01

    A new sensor provides an absolute position measurement. A schematic view of a motorized linear-translation stage that contains, at each end, an electronic unit that functions as both (1) a non-contact sensor that measures the absolute position of the stage and (2) a non-contact equivalent of a limit switch that is tripped when the stage reaches the nominal limit position. The need for such an absolute linear position-sensor/limit-sensor unit arises in the case of a linear-translation stage that is part of a larger system in which the actual stopping position of the stage (relative to the nominal limit position) must be known. Because inertia inevitably causes the stage to run somewhat past the nominal limit position, tripping of a standard limit switch or other limit sensor does not provide the required indication of the actual stopping position. This innovative sensor unit operates on an electromagnetic-induction principle similar to that of linear variable differential transformers (LVDTs)

  4. Electromagnetic Induction E-Sensor for Underwater UXO Detection

    DTIC Science & Technology

    2011-12-01

    EMF Electromotive force FET Field Effect Transitor Hz Hertz ms millisecond nV nanoVolt QFS QUASAR Federal...processing. Statistical discrimination techniques based on model analysis, such as the Time-Domain Three Dipole (TD3D) model, can separate UXO-like objects

  5. Design optimization of an ironless inductive position sensor for the LHC collimators

    NASA Astrophysics Data System (ADS)

    Danisi, A.; Masi, A.; Losito, R.; Perriard, Y.

    2013-09-01

    The Ironless Inductive Position Sensor (I2PS) is an air-cored displacement sensor which has been conceived to be totally immune to external DC/slowly-varying magnetic fields. It can thus be used as a valid alternative to Linear Variable Differential Transformers (LVDTs), which can show a position error in magnetic environments. In addition, since it retains the excellent properties of LVDTs, the I2PS can be used in harsh environments, such as nuclear plants, plasma control and particle accelerators. This paper focuses on the design optimization of the sensor, considering the CERN LHC Collimators as application. In particular, the optimization comes after a complete review of the electromagnetic and thermal modeling of the sensor, as well as the proper choice of the reading technique. The design optimization stage is firmly based on these preliminary steps. Therefore, the paper summarises the sensor's complete development, from its modeling to its actual implementation. A set of experimental measurements demonstrates the sensor's performances to be those expected in the design phase.

  6. Handheld Sensor for UXO Discrimination:

    DTIC Science & Technology

    2006-06-01

    between buried UXO and clutter. This project demonstrated the use of commercially available technology (Geonics EM61-HH handheld metal detector ) for...determine whether each target was UXO or clutter. The Geonics EM61-HH handheld metal detector is a pulsed electromagnetic induction (EMI) sensor. The...processing, the EM61-HH handheld metal detector can 2 be used in a cued identification mode to reliably discriminate between buried UXO and clutter

  7. Near Surface Investigation of Agricultural Soils using a Multi-Frequency Electromagnetic Sensor

    NASA Astrophysics Data System (ADS)

    Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Cheema, M.; Galagedara, L.

    2017-12-01

    Electromagnetic induction (EMI) sensors have been used as precision agricultural tools over decades. They are being used to measure spatiotemporal variability of soil properties and soil stratification in the sense of apparent electrical conductivity (ECa). We mapped the ECa variability by horizontal coplanar (HCP) and by vertical coplanar (VCP) orientation of a multi-frequency EMI sensor and identified its interrelation with physical properties of soil. A broadband, multi-frequency handheld EMI sensor (GEM-2) was used on a loamy sand soil cultivated with silage-corn in western Newfoundland, Canada. Log and line spaced, three frequency ranges (weak, low, and high), based on the factory calibration were tested using HCP and VCP orientation to produce spatiotemporal data of ECa. In parallel, we acquired data on soil moisture content, texture and bulk density. We then assessed the statistical significance of the relationship between ECa and soil physical properties. The test site had three areas of distinct soil properties corresponding to the elevation, in particular. The same spatial variability was also identified by ECa mapping at different frequencies and the two modes of coil orientations. Data analysis suggested that the high range frequency (38 kHz (log-spaced) and 49 kHz (line-spaced)) for both HCP and VCP orientations produced accurate ECa maps, better than the weak and low range frequencies tested. Furthermore, results revealed that the combined effects of soil texture, moisture content and bulk density affect ECameasurements as obtained by both frequencies and two coil orientations. Keywords: Apparent electrical conductivity, Electromagnetic induction, Horizontal coplanar, Soil properties, Vertical coplanar

  8. Exploring soils and ecohydrological structure in small watersheds using electromagnetic induction

    USDA-ARS?s Scientific Manuscript database

    Soil moisture sensors generally strive to use the real permittivity as the basis for estimating soil water content from measured electrical properties of soil. It has been shown that a reasonably good general calibration can be developed for mineral soils on this basis. However, at the low measureme...

  9. Using electromagnetic induction technology to predict volatile fatty acid, source area differences

    USDA-ARS?s Scientific Manuscript database

    Subsurface sampling techniques have been adapted to measure manure accumulation on feedlot surface. Objectives of this study were to determine if sensor data could be used to predict differences in volatile fatty acids (VFA) and other volatiles produced on the feedlot surface three days following a...

  10. Pedemis: A Portable Electromagnetic Induction Sensor with Integrated Positioning

    DTIC Science & Technology

    2012-04-27

    International Society for Optical Engineering 5794(Part I), 346 – 357 (2005). [18] Pasion , L. R., “A unified approach to uxo discrimination using the...B., and O’Neill, K., “Camp butner uxo data inversion and classification using advanced emi models,” (2010). SERDP-MR-1572. [27] Pasion , L., “Uxo

  11. Comparative Demonstration and Evaluation of Classification Technologies: Closed Castner Range, Fort Bliss, Texas

    DTIC Science & Technology

    2017-01-23

    of classification technologies for Munitions Response (MR). This demonstration was designed to evaluate advanced classification methodology at the...advanced electromagnetic induction sensors and static, cued surveys to classify anomalies as either targets of interest (TOI) or non -TOI. Static data...17  5.1  Conceptual Experimental Design

  12. EMI-Sensor Data to Identify Areas of Manure Accumulation on a Feedlot Surface

    USDA-ARS?s Scientific Manuscript database

    A study was initiated to test the validity of using electromagnetic induction (EMI) survey data, a prediction-based sampling strategy and ordinary linear regression modeling to predict spatially variable feedlot surface manure accumulation. A 30 m × 60 m feedlot pen with a central mound was selecte...

  13. ESTCP Pilot Program. Classification Approaches in Munitions Response, San Luis Obispo, California

    DTIC Science & Technology

    2010-05-01

    geology. Electromagnetic induction sensors detect ferrous and nonferrous metallic objects and can be effective in geology that challenges...34  5.3  Metal Mapper...correspond to munitions, but rather to other harmless metallic objects or geology: field experience indicates that often in excess of 90% of objects

  14. Investigation of an EMI sensor for detection of large metallic objects in the presence of metallic clutter

    NASA Astrophysics Data System (ADS)

    Black, Christopher; McMichael, Ian; Riggs, Lloyd

    2005-06-01

    Electromagnetic induction (EMI) sensors and magnetometers have successfully detected surface laid, buried, and visually obscured metallic objects. Potential military activities could require detection of these objects at some distance from a moving vehicle in the presence of metallic clutter. Results show that existing EMI sensors have limited range capabilities and suffer from false alarms due to clutter. This paper presents results of an investigation of an EMI sensor designed for detecting large metallic objects on a moving platform in a high clutter environment. The sensor was developed by the U.S. Army RDECOM CERDEC NVESD in conjunction with the Johns Hopkins University Applied Physics Laboratory.

  15. A solid-state controllable power supply for a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Tripp, John S.

    1991-01-01

    The NASA Langley 6-inch Magnetic Suspension and Balance System (6-in. MSBS) requires an independently controlled bidirectional dc power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance-coupled thyratron-controlled rectifiers as well as ac to dc motor-generator converters, is obsolete, inefficient, and unreliable. A replacement six-phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full-load efficiency is 80 percent compared with 25 percent for the resistance-coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20-kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  16. Demonstration of an Enhanced Vertical Magnetic Gradient System for UXO

    DTIC Science & Technology

    2008-12-01

    fluxgate magnetometers , data recording console, laser altimeter, and acoustic altimeters were tested to ensure proper operation and performance. The VG...Simultaneous Electromagnetic Induction and Magnetometer System WAA wide area assessment ACKNOWLEDGEMENTS We wish to express our sincere...sensors. The benefits of vertical gradient (VG) configurations in magnetometer systems are common knowledge, and these configurations are routinely

  17. An innovative experimental sequence on electromagnetic induction and eddy currents based on video analysis and cheap data acquisition

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Bozzo, G.; Sapia, P.

    2017-11-01

    In this work, we present a coherent sequence of experiments on electromagnetic (EM) induction and eddy currents, appropriate for university undergraduate students, based on a magnet falling through a drilled aluminum disk. The sequence, leveraging on the didactical interplay between the EM and mechanical aspects of the experiments, allows us to exploit the students’ awareness of mechanics to elicit their comprehension of EM phenomena. The proposed experiments feature two kinds of measurements: (i) kinematic measurements (performed by means of high-speed video analysis) give information on the system’s kinematics and, via appropriate numerical data processing, allow us to get dynamic information, in particular on energy dissipation; (ii) induced electromagnetic field (EMF) measurements (by using a homemade multi-coil sensor connected to a cheap data acquisition system) allow us to quantitatively determine the inductive effects of the moving magnet on its neighborhood. The comparison between experimental results and the predictions from an appropriate theoretical model (of the dissipative coupling between the moving magnet and the conducting disk) offers many educational hints on relevant topics related to EM induction, such as Maxwell’s displacement current, magnetic field flux variation, and the conceptual link between induced EMF and induced currents. Moreover, the didactical activity gives students the opportunity to be trained in video analysis, data acquisition and numerical data processing.

  18. A seafloor electromagnetic receiver for marine magnetotellurics and marine controlled-source electromagnetic sounding

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Wei, Wen-Bo; Deng, Ming; Wu, Zhong-Liang; Yu, Gang

    2015-09-01

    In planning and executing marine controlled-source electromagnetic methods, seafloor electromagnetic receivers must overcome the problems of noise, clock drift, and power consumption. To design a receiver that performs well and overcomes the abovementioned problems, we performed forward modeling of the E-field abnormal response and established the receiver's characteristics. We describe the design optimization and the properties of each component, that is, low-noise induction coil sensor, low-noise Ag/AgCl electrode, low-noise chopper amplifier, digital temperature-compensated crystal oscillator module, acoustic telemetry modem, and burn wire system. Finally, we discuss the results of onshore and offshore field tests to show the effectiveness of the developed seafloor electromagnetic receiver and its performance: typical E-field noise of 0.12 nV/m/rt(Hz) at 0.5 Hz, dynamic range higher than 120 dB, clock drift lower than 1 ms/day, and continuous operation of at least 21 days.

  19. Empirical Evaluation of Advanced Electromagnetic Induction Systems - Factors Affecting Classification Effectiveness in Challenging Geologic Environments

    DTIC Science & Technology

    2016-10-01

    Figure 2-2). The array structure is fabricated from PVC and Garolite fiberglass. The array is normally deployed on a set of wheels, resulting in a sensor...Low branches were cleared to 8 feet above ground to reduce obstruction of the RTS prism; large logs and fallen timber were not removed. CH2M also

  20. Superconducting-electromagnetic hybrid bearing using YBCO bulk blocks for passive axial levitation

    NASA Astrophysics Data System (ADS)

    Nicolsky, R.; de Andrade, R., Jr.; Ripper, A.; David, D. F. B.; Santisteban, J. A.; Stephan, R. M.; Gawalek, W.; Habisreuther, T.; Strasser, T.

    2000-06-01

    A superconducting/electromagnetic hybrid bearing has been designed using active radial electromagnetic positioning and a superconducting passive axial levitator. This bearing has been tested for an induction machine with a vertical shaft. The prototype was conceived as a four-pole, two-phase induction machine using specially designed stator windings for delivering torque and radial positioning simultaneously. The radial bearing uses four eddy-current sensors, displaced 90° from each other, for measuring the shaft position and a PID control system for feeding back the currents. The stator windings have been adapted from the ones of a standard induction motor. The superconducting axial bearing has been assembled with commercial NdFeB permanent magnets and a set of seven top-seeded-melt-textured YBCO large-grain cylindrical blocks. The bearing set-up was previously simulated by a finite element method for different permanent magnet-superconductor block configurations. The stiffness of the superconducting axial bearing has been investigated by measuring by a dynamic method the vertical and transversal elastic constants for different field cooling processes. The resulting elastic constants show a linear dependence on the air gap, i.e. the clearance between the permanent magnet assembly and the set of superconducting large-grain blocks, which is dependent on cooling distance.

  1. Analyzing high school students' reasoning about electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Jelicic, Katarina; Planinic, Maja; Planinsic, Gorazd

    2017-06-01

    Electromagnetic induction is an important, yet complex, physics topic that is a part of Croatian high school curriculum. Nine Croatian high school students of different abilities in physics were interviewed using six demonstration experiments from electromagnetism (three of them concerned the topic of electromagnetic induction). Students were asked to observe, describe, and explain the experiments. The analysis of students' explanations indicated the existence of many conceptual and reasoning difficulties with the basic concepts of electromagnetism, and especially with recognizing and explaining the phenomenon of electromagnetic induction. Three student mental models of electromagnetic induction, formed during the interviews, which reoccurred among students, are described and analyzed within the knowledge-in-pieces framework.

  2. Study of ultrasonic sensor that is effective for all direction using an electromagnetic force

    NASA Astrophysics Data System (ADS)

    Iwaya, Kazuki; Murayama, Riichi; Hirayama, Takahiro

    2015-03-01

    Non-destructive inspection using ultrasonic sensors is widely utilized to guarantee the safety of large structures. However, there is the problem that it will take a very long time to complete. Therefore, it was decided to develop a sensor capable of testing a wide range of structures at a high inspection speed. The ultrasonic wave that the ultrasonic sensor can generate must be equally emitted in any direction and the ultrasonic wave returned from any direction be detected. To attain this objective, an electromagnetic acoustic transducer (EMAT) consisting of a circular-shaped magnet and an electric induction coil (EM) has been developed, because it is impossible to fabricate such a special ultrasonic sensor using a commercial-type ultrasonic sensor with a piezoelectric element, and it is convenient to automatically scan over the surface of the structure. First, the detail specifications of the new ultrasonic sensor have been determined by changing many of the parameters, for example, the impedance and the size of the EM coil, the size of the magnet, etc. The performance of the new sensor was then tested under different conditions. Based on the results of the experimental tests, it was demonstrated that the new sensor could generate ultrasonic waves in any direction and detect them from any direction. However, the performance was not high enough to apply the new sensor to a real structure. The new sensor has been improved to increase the performance by adding a new concept.

  3. Contactless Inductive Bubble Detection in a Liquid Metal Flow

    PubMed Central

    Gundrum, Thomas; Büttner, Philipp; Dekdouk, Bachir; Peyton, Anthony; Wondrak, Thomas; Galindo, Vladimir; Eckert, Sven

    2016-01-01

    The detection of bubbles in liquid metals is important for many technical applications. The opaqueness and the high temperature of liquid metals set high demands on the measurement system. The high electrical conductivity of the liquid metal can be exploited for contactless methods based on electromagnetic induction. We will present a measurement system which consists of one excitation coil and a pickup coil system on the opposite sides of the pipe. With this sensor we were able to detect bubbles in a sodium flow inside a stainless steel pipe and bubbles in a column filled with a liquid Gallium alloy. PMID:26751444

  4. ESTCP Pilot Program - Classification Approaches in Munitions Response

    DTIC Science & Technology

    2008-11-17

    Electromagnetic induction sensors detect ferrous and 57 nonferrous metallic objects and can be effective in geology that challenges magnetometers. EM...harmless metallic objects or geology. Application of technology to separate the munitions from other objects, known as classification, offers the potential...detectable signals are excavated. Many of these detections do not correspond to munitions, but rather to other harmless metallic objects or geology, termed

  5. MEMS electromagnetic energy harvesters with multiple resonances

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Gray, Robert

    2014-06-01

    There is going on a flurry of research activity in the development of effcient energy harvesters from all branches of energy conversion. The need for developing self-powered wireless sensors and actuators to be employed in unmanned combat vehicles also seems to grow steadily. These vehicles are inducted into perilous war zones for silent watch missions. Energy management is sometimes carried out using misson-aware energy expenditure strategies. Also, when there is a requirement for constant monitoring of events, the sensors and the subsystems of combat vehicles require energy harvesters that can operate over a discrete set of spot frequencies. This paper attempts to review some of the recent techniques and the energy harvesting devices based on electromagnetic and electromechanical principles. In particular, we shall discuss the design and performance of a MEMS-harvester that exhibits multiple resonances. Frequency response of a simulated electromagnetic harvester is plotted. It has three dominant peaks at three different resonant frequencies. Variation in the load power in the normalized units as a function of load is found, which determines the matched load resistance.

  6. Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review

    PubMed Central

    Yang, Ding-Xin; Hu, Zheng; Zhao, Hong; Hu, Hai-Feng; Sun, Yun-Zhe; Hou, Bao-Jian

    2015-01-01

    The aim of this review was to assess the current viable technologies for wireless power delivery and data transmission through metal barriers. Using such technologies sensors enclosed in hermetical metal containers can be powered and communicate through exterior power sources without penetration of the metal wall for wire feed-throughs. In this review, we first discuss the significant and essential requirements for through-metal-wall power delivery and data transmission and then we: (1) describe three electromagnetic coupling based techniques reported in the literature, which include inductive coupling, capacitive coupling, and magnetic resonance coupling; (2) present a detailed review of wireless ultrasonic through-metal-wall power delivery and/or data transmission methods; (3) compare various ultrasonic through-metal-wall systems in modeling, transducer configuration and communication mode with sensors; (4) summarize the characteristics of electromagnetic-based and ultrasound-based systems, evaluate the challenges and development trends. We conclude that electromagnetic coupling methods are suitable for through thin non-ferromagnetic metal wall power delivery and data transmission at a relatively low data rate; piezoelectric transducer-based ultrasonic systems are particularly advantageous in achieving high power transfer efficiency and high data rates; the combination of more than one single technique may provide a more practical and reliable solution for long term operation. PMID:26694392

  7. Analyzing High School Students' Reasoning about Electromagnetic Induction

    ERIC Educational Resources Information Center

    Jelicic, Katarina; Planinic, Maja; Planinsic, Gorazd

    2017-01-01

    Electromagnetic induction is an important, yet complex, physics topic that is a part of Croatian high school curriculum. Nine Croatian high school students of different abilities in physics were interviewed using six demonstration experiments from electromagnetism (three of them concerned the topic of electromagnetic induction). Students were…

  8. Electromagnetic Induction Rediscovered Using Original Texts.

    ERIC Educational Resources Information Center

    Barth, Michael

    2000-01-01

    Describes a teaching unit on electromagnetic induction using historic texts. Uses some of Faraday's diary entries from 1831 to introduce the phenomenon of electromagnetic induction and teach about the properties of electricity, of taking conclusions from experiment, and scientific methodology. (ASK)

  9. Ballistocardiogram of avian eggs determined by an electromagnetic induction coil.

    PubMed

    Ono, H; Akiyama, R; Sakamoto, Y; Pearson, J T; Tazawa, H

    1997-07-01

    As an avian embryo grows within an eggshell, the whole egg is moved by embryonic activity and also by the embryonic heartbeat. A technical interest in detecting minute biological movements has prompted the development of techniques and systems to measure the cardiogenic ballistic movement of the egg or ballistocardiogram (BCG). In this context, there is interest in using an electromagnetic induction coil (solenoid) as another simple sensor to measure the BCG and examining its possibility for BCG measurement. A small permanent magnet is attached tightly to the surface of an incubated egg, and then the egg with the magnet is placed in a solenoid. Preliminary model analysis is made to design a setup of the egg, magnet and solenoid coupling system. Then, simultaneous measurement with a laser displacement measuring system, developed previously, is made for chicken eggs, indicating that the solenoid detects the minute cardiogenic ballistic movements and that the BCG determined is a measure of the velocity of egg movements.

  10. A New Sensor Based Upon a Rotating-Coil Electromagnetic Induction Concept

    DTIC Science & Technology

    2006-12-01

    of determining the transmitter coil position. The position must be known to produce a reference signal for the synchronous detector described in...schematically shown in Figure 14.3 Figure 14. Block diagram of the lock-in amplifier. This AC to DC conversion is performed by a phase- sensitive ... detector (PSD). It rectifies only the signal of interest while suppressing the noise or interfering signal components that may accompany the signal. To

  11. L-C Measurement Acquisition Method for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, B. Douglas; Shams, Qamar A.; Fox, Robert L.

    2003-01-01

    This paper describes a measurement acquisition method for aerospace systems that eliminates the need for sensors to have physical connection to a power source (i.e., no lead wires) or to data acquisition equipment. Furthermore, the method does not require the sensors to be in proximity to any form of acquisition hardware. Multiple sensors can be interrogated using this method. The sensors consist of a capacitor, C(p), whose capacitance changes with changes to a physical property, p, electrically connected to an inductor, L. The method uses an antenna to broadcast electromagnetic energy that electrically excites one or more inductive-capacitive sensors via Faraday induction. This method facilitates measurements that were not previously possible because there was no practical means of providing power and data acquisition electrical connections to a sensor. Unlike traditional sensors, which measure only a single physical property, the manner in which the sensing element is interrogated simultaneously allows measurement of at least two unrelated physical properties (e.g., displacement rate and fluid level) by using each constituent of the L-C element. The key to using the method for aerospace applications is to increase the distance between the L-C elements and interrogating antenna; develop all key components to be non-obtrusive and to develop sensing elements that can easily be implemented. Techniques that have resulted in increased distance between antenna and sensor will be presented. Fluid-level measurements and pressure measurements using the acquisition method are demonstrated in the paper.

  12. Module Eight: Induction; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers in greater depth electromagnetic induction, its effects, and how it is used to advantage in electrical circuits; and the physical components, called inductors, designed to take advantage of the phenomenon of electromagnetic induction. This module is divided into four lessons: electromagnetism; inductors and flux density, inducing…

  13. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications

    PubMed Central

    2016-01-01

    For wireless sensor node (WSN) applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters' wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V) and rechargeable battery (Nickel-Cadmium, 3.8 V) are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented. PMID:27579343

  14. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications.

    PubMed

    Khan, Farid Ullah

    For wireless sensor node (WSN) applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters' wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V) and rechargeable battery (Nickel-Cadmium, 3.8 V) are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented.

  15. Analysis of Arguments Constructed by First-Year Engineering Students Addressing Electromagnetic Induction Problems

    ERIC Educational Resources Information Center

    Almudi, Jose Manuel; Ceberio, Mikel

    2015-01-01

    This study explored the quality of arguments used by first-year engineering university students enrolled in a traditional physics course dealing with electromagnetic induction and related problem solving where they had to assess whether the electromagnetic induction phenomenon would occur. Their conclusions were analyzed for the relevance of the…

  16. The Search for Electromagnetic Induction (1820-1831). Experiment No. 20.

    ERIC Educational Resources Information Center

    Devons, Samuel

    This paper focuses on the search for electromagnetic induction from 1820 to 1831 and the efforts by Augustin Fresnel's colleague, Andre Marie Ampere, in electric and magnetic induction. Faraday's work is discussed with excerpts from his diary on electromagnetism. A variety of different experiments by researchers including Francoise Jean Arago,…

  17. Electromagnetic receiver with capacitive electrodes and triaxial induction coil for tunnel exploration

    NASA Astrophysics Data System (ADS)

    Kai, Chen; Sheng, Jin; Wang, Shun

    2017-09-01

    A new type of electromagnetic (EM) receiver has been developed by integrating four capacitive electrodes and a triaxial induction coil with an advanced data logger for tunnel exploration. The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of surface-tunnel-borehole EM detection for deep ore deposit mapping. The use of capacitive electrodes enables us to record the electrical field (E-field) signals from hard rock surfaces, which are high-resistance terrains. A compact triaxial induction coil integrates three independent induction coils for narrow-tunnel exploration applications. A low-time-drift-error clock source is developed for tunnel applications where GPS signals are unavailable. The three main components of our tunnel EM receiver are: (1) four capacitive electrodes for measuring the E-field signal without digging in hard rock regions; (2) a triaxial induction coil sensor for audio-frequency magnetotelluric and controlled-source audio-frequency magnetotelluric signal measurements; and (3) a data logger that allows us to record five-component MT signals with low noise levels, low time-drift-error for the clock source, and high dynamic range. The proposed tunnel EM receiver was successfully deployed in a mine that exhibited with typical noise characteristics. [Figure not available: see fulltext. Caption: The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of the surface-tunnel-borehole EM (STBEM) detection for deep ore deposit mapping. The use of a capacitive electrode enables us to record the electrical field (E-field) signals from hard rock surfaces. A compact triaxial induction coil integrated three induction coils, for narrow-tunnel applications.

  18. Joseph Henry’s role in the discovery of electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Smith, Glenn S.

    2017-01-01

    The discovery of electromagnetic induction in the early part of the 19th century is one of the greatest scientific achievements of all time, and it has had tremendous technological consequences. The credit for this discovery rightfully goes to the great English experimental physicist Michael Faraday. However, the American physicist Joseph Henry made some observations comparable to Faraday’s at nearly the same time, and for that reason, Faraday and Henry are often considered to be co-discoverers of some aspects of electromagnetic induction. We examine Henry’s early research on electromagnetism, starting from his efforts to improve the electromagnet, which led directly to his investigations of induction. We describe his earliest experiments on both mutual and self-induction, and pay particular attention to the relationship of Henry’s research to that of Faraday. The approach is one in which the experiments are described and then analysed using modern theory and terminology.

  19. Investigation of an Electromagnetic Induction Sensor

    DTIC Science & Technology

    2011-12-01

    c) (f) Figure 5. Respose plotted on an Argand diagram over the center of a) TS-50 anti-personnel landmines buried 0 to...5 cm deep, b) MAI-75 anti- personnel landmines buried 0 to 5 cm deep, and c) patio stones buried 2.5 to 11 cm deep. Magnitude of the respose at the 21...Figure 6. Respose plotted on an Argand diagram over the center of empty grid locations. II - 377 a) b) c) d) Figure 5. Response of four mines

  20. A Miniaturized Magnetic Induction Sensor Using Geomagnetism for Turn Count of Small-Caliber Ammunition

    PubMed Central

    Yoon, Sang-Hee; Lee, Seok-Woo; Lee, Young-Ho; Oh, Jong-Soo

    2006-01-01

    This paper presents a miniaturized magnetic induction sensor (MMIS), where geomagnetism and high rpm rotation of ammunition are used to detect the turn number of the ammunition for applications to small-caliber turn-counting fuzes. The MMIS, composed of cores and a coil, has a robust structure without moving parts to increase the shock survivability in a gunfire environment of ∼30,000 g's. The MMIS is designed and fabricated on the basis of the simulation results of an electromagnetic analysis tool, Maxwell® 3D. In the experimental study, static MMIS test using a solenoid-coil apparatus and dynamic MMIS test (firing test) have been made. The present MMIS has shown that an induction voltage of 6.5 mVp-p is generated at a magnetic flux density of 0.05 mT and a rotational velocity of 30,000 rpm. From the measured signal, MMIS has shown a signal-to-noise ratio of 44.0 dB, a nonlinearity of 0.59%, a frequency-normalized sensitivity of 0.256±0.010 V/T·Hz and a drift of 0.27% in the temperature range of -30∼+43°C. Firing test has shown that the MMIS can be used as a turn-counting sensor for small-caliber ammunition, verifying the shock survivability of the MMIS in a high-g environment.

  1. Analysis of temperature influence on the informative parameters of single-coil eddy current sensors

    NASA Astrophysics Data System (ADS)

    Borovik, S. Yu.; Kuteynikova, M. M.; Sekisov, Yu. N.; Skobelev, O. P.

    2017-07-01

    This paper describes the study of temperature in the flowing part of a turbine on the informative parameters (equivalent inductances of primary windings of matching transformers) of single-coil eddy-current sensors with a sensitive element in the form of a conductor section, which are used as part of automation systems for testing gas-turbine engines. In this case, the objects of temperature influences are both sensors and controlled turbine blades. The existing model of electromagnetic interaction of a sensitive element with the end part of a controlled blade is used to obtain quantitative estimates of temperature changes of equivalent inductances of sensitive elements and primary windings of matching transformers. This model is also used to determine the corresponding changes of the informative parameter of the sensor in the process of experimental studies of temperature influences on it (in the absence of blades in the sensitive region). This paper also presents transformations in the form of relationships of informative parameters with radial and axial displacements at normal (20 °C) and nominal (1000 °C) temperatures, and their difference is used to determine the families of dominant functions of temperature, which characterize possible temperature errors for any radial and axial displacements in the ranges of their variation.

  2. An Improved High-Sensitivity Airborne Transient Electromagnetic Sensor for Deep Penetration

    PubMed Central

    Chen, Shudong; Guo, Shuxu; Wang, Haofeng; He, Miao; Liu, Xiaoyan; Qiu, Yu; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun

    2017-01-01

    The investigation depth of transient electromagnetic sensors can be effectively increased by reducing the system noise, which is mainly composed of sensor internal noise, electromagnetic interference (EMI), and environmental noise, etc. A high-sensitivity airborne transient electromagnetic (AEM) sensor with low sensor internal noise and good shielding effectiveness is of great importance for deep penetration. In this article, the design and optimization of such an AEM sensor is described in detail. To reduce sensor internal noise, a noise model with both a damping resistor and a preamplifier is established and analyzed. The results indicate that a sensor with a large diameter, low resonant frequency, and low sampling rate will have lower sensor internal noise. To improve the electromagnetic compatibility of the sensor, an electromagnetic shielding model for a central-tapped coil is established and discussed in detail. Previous studies have shown that unclosed shields with multiple layers and center grounding can effectively suppress EMI and eddy currents. According to these studies, an improved differential AEM sensor is constructed with a diameter, resultant effective area, resonant frequency, and normalized equivalent input noise of 1.1 m, 114 m2, 35.6 kHz, and 13.3 nV/m2, respectively. The accuracy of the noise model and the shielding effectiveness of the sensor have been verified experimentally. The results show a good agreement between calculated and measured results for the sensor internal noise. Additionally, over 20 dB shielding effectiveness is achieved in a complex electromagnetic environment. All of these results show a great improvement in sensor internal noise and shielding effectiveness. PMID:28106718

  3. Noise cancellation in magnetoencephalography and electroencephalography with isolated reference sensors

    DOEpatents

    Kraus, Jr., Robert H.; Espy, Michelle A.; Matlachov, Andrei; Volegov, Petr

    2010-06-01

    An apparatus measures electromagnetic signals from a weak signal source. A plurality of primary sensors is placed in functional proximity to the weak signal source with an electromagnetic field isolation surface arranged adjacent the primary sensors and between the weak signal source and sources of ambient noise. A plurality of reference sensors is placed adjacent the electromagnetic field isolation surface and arranged between the electromagnetic isolation surface and sources of ambient noise.

  4. Non-standard electromagnetic induction sensor configurations: Evaluating sensitivities and applicability

    NASA Astrophysics Data System (ADS)

    Guillemoteau, Julien; Tronicke, Jens

    2015-07-01

    For near surface geophysical surveys, small-fixed offset loop-loop electromagnetic induction (EMI) sensors are usually placed parallel to the ground surface (i.e., both loops are at the same height above ground). In this study, we evaluate the potential of making measurements with a system that is not parallel to the ground; i.e., by positioning the system at different inclinations with respect to ground surface. First, we present the Maxwell theory for inclined magnetic dipoles over a homogeneous half space. By analyzing the sensitivities of such configurations, we show that varying the angle of the system would result in improved imaging capabilities. For example, we show that acquiring data with a vertical system allows detection of a conductive body with a better lateral resolution compared to data acquired using standard horizontal configurations. The synthetic responses are presented for a heterogeneous medium and compared to field data acquired in the historical Park Sanssouci in Potsdam, Germany. After presenting a detailed sensitivity analysis and synthetic examples of such ground conductivity measurements, we suggest a new strategy of acquisition that allows to better estimate the true distribution of electrical conductivity using instruments with a fixed, small offset between the loops. This strategy is evaluated using field data collected at a well-constrained test-site in Horstwalde (Germany). Here, the target buried utility pipes are best imaged using vertical system configurations demonstrating the potential of our approach for typical applications.

  5. Electromagnetic packable technology (EMPACT) for detection and characterization of ordnance in post-conflict areas

    NASA Astrophysics Data System (ADS)

    Schultz, Gregory; Miller, Jonathan; Keranen, Joe

    2013-06-01

    Land reclamation efforts in post-conflict regions are often hampered by the presence of Unexploded Ordnance (UXO) or other Explosive Remnants of War (ERW). Surface geophysical methods, such as Electromagnetic Induction (EMI) and magnetometry, are typically applied to screen rehabilitation areas for UXO prior to excavation; however, the prevalence of innocuous magnetic clutter related to indigenous scrap, fragmentation, or geology can severely impede the progress and efficiency of these remediation efforts. Additionally, the variability in surface conditions and local topography necessitates the development of sensor technologies that can be applied to a range of sites including those that prohibit the use of vehicle-mounted or large array systems. We present a man-portable EMI sensor known as the Electromagnetic Packable Technology (EMPACT) system that features a multi-axis sensor configuration in a compact form factor. The system is designed for operation in challenging site conditions and can be used in low ground-standoff modes to detect small and low-metal content objects. The EMPACT acquires high spatial density, multi-axis data that enable high resolution of small objects. This high density data can also be used to provide characterization of target physical features, such as size, material content, and shape. We summarize the development of this system for humanitarian demining operations and present results from preliminary system evaluations against a range of target types. Specifically, we assess the general detection capabilities of the EMPACT system and we evaluate the potential for target classification based on analysis of data and target model features.

  6. University Students' Understanding of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Guisasola, Jenaro; Almudi, Jose M.; Zuza, Kristina

    2013-01-01

    This study examined engineering and physical science students' understanding of the electromagnetic induction (EMI) phenomena. It is assumed that significant knowledge of the EMI theory is a basic prerequisite when students have to think about electromagnetic phenomena. To analyse students' conceptions, we have taken into account the fact that…

  7. The state of technology in electromagnetic (RF) sensors (for lightning detection)

    NASA Technical Reports Server (NTRS)

    Shumpert, T. H.; Honnell, M. A.

    1979-01-01

    A brief overview of the radio-frequency sensors which were applied to the detection, isolation, and/or identification of the transient electromagnetic energy (sferics) radiated from one or more lightning discharges in the atmosphere is presented. Radio frequency (RF) characteristics of lightning discharges, general RF sensor (antenna) characteristics, sensors and systems previously used for sferic detection, electromagnetic pulse sensors are discussed. References containing extensive bibliographies concerning lightning are presented.

  8. Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting.

    PubMed

    Hu, Youfan; Yang, Jin; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin

    2014-07-22

    The recently introduced triboelectric nanogenerator (TENG) and the traditional electromagnetic induction generator (EMIG) are coherently integrated in one structure for energy harvesting and vibration sensing/isolation. The suspended structure is based on two oppositely oriented magnets that are enclosed by hollow cubes surrounded with coils, which oscillates in response to external disturbance and harvests mechanical energy simultaneously from triboelectrification and electromagnetic induction. It extends the previous definition of hybrid cell to harvest the same type of energy with multiple approaches. Both the sliding-mode TENG and contact-mode TENG can be achieved in the same structure. In order to make the TENG and EMIG work together, transformers are used to match the output impedance between these two power sources with very different characteristics. The maximum output power of 7.7 and 1.9 mW on the same load of 5 kΩ was obtained for the TENG and EMIG, respectively, after impedance matching. Benefiting from the rational design, the output signal from the TENG and the EMIG are in phase. They can be added up directly to get an output voltage of 4.6 V and an output current of 2.2 mA in parallel connection. A power management circuit was connected to the hybrid cell, and a regulated voltage of 3.3 V with constant current was achieved. For the first time, a logic operation was carried out on a half-adder circuit by using the hybrid cell working as both the power source and the input digit signals. We also demonstrated that the hybrid cell can serve as a vibration isolator. Further applications as vibration dampers, triggers, and sensors are all promising.

  9. Torque-mixing magnetic resonance spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan T.; Diao, Zhu; Belov, Miro; Burgess, Jacob A.; Compton, Shawn R.; Hiebert, Wayne K.; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory E.; Thomson, Douglas J.; Freeman, Mark R.

    2016-10-01

    An optomechanical platform for magnetic resonance spectroscopy will be presented. The method relies on frequency mixing of orthogonal RF fields to yield a torque amplitude (arising from the transverse component of a precessing dipole moment, in analogy to magnetic resonance detection by electromagnetic induction) on a miniaturized resonant mechanical torsion sensor. In contrast to induction, the method is fully broadband and allows for simultaneous observation of the equilibrium net magnetic moment alongside the associated magnetization dynamics. To illustrate the method, comprehensive electron spin resonance spectra of a mesoscopic, single-crystal YIG disk at room temperature will be presented, along with situations where torque spectroscopy can offer complimentary information to existing magnetic resonance detection techniques. The authors are very grateful for support from NSERC, CRC, AITF, and NINT. Reference: Science 350, 798 (2015).

  10. Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.

    PubMed

    Felt, Wyatt; Chin, Khai Yi; Remy, C David

    2017-09-01

    This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.

  11. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  12. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  13. Magnetoacoustic Sensing of Magnetic Nanoparticles.

    PubMed

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-11

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.

  14. Novel semi-airborne CSEM system for the exploration of mineral resources

    NASA Astrophysics Data System (ADS)

    Nittinger, Christian; Cherevatova, Maria; Becken, Michael; Rochlitz, Raphael; Günther, Thomas; Martin, Tina; Matzander, Ulrich

    2017-04-01

    Within the DESMEX project (Deep Electromagnetic Sounding for Mineral Exploration), a semi-airborne CSEM system for mineral exploration is developed which aims to achieve a penetration depth of 1 km with a large areal coverage. Harmonically Time-varying electrical currents are injected with a grounded transmitter in order to measure the electric field on the ground and induced magnetic fields with highly sensitive magnetic sensors in the air. To measure the magnetic field and its variations, three-axis induction coils (MFS-11e by Metronix) and fluxgate sensors (Bartington FGS-03) are mounted on the platform towed by a helicopter. In addition, there is a SQUID based magnetometer, developed by IPHT and Supracon AG, available for future measurements. We deploy the different magnetometer sensors to cover a broad frequency range of 1-10000Hz. During the flight, the sensors encounter a broad variety of motion/vibration which produces noise in the magnetic field sensors. Therefore, a high accuracy motion tracking system is installed within the bird and a low vibrating system design needs to be considered in the airborne sensor platform. We conducted several flights with different source positions in a test area in Germany, which is already covered by ground based measurements. Based on the data, we discuss possible calibration schemes which are needed to overcome orthogonality and scaling errors in the fluxgate data as well as orientation errors. We apply noise correction schemes to the data and calculate transfer functions between the magnetic field and the source current. First 1-D inversion models based on the estimated transfer functions are calculated and compared to existing conductivity models from DC geoelectrics and helicopter electromagnetic (HEM) measurements.

  15. Radiation and Electromagnetic Induction Data Fusion for Detection of Buried Radioactive Metal Waste - 12282

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Zhiling; Wei, Wei; Turlapaty, Anish

    2012-07-01

    At the United States Army's test sites, fired penetrators made of Depleted Uranium (DU) have been buried under ground and become hazardous waste. Previously, we developed techniques for detecting buried radioactive targets. We also developed approaches for locating buried paramagnetic metal objects by utilizing the electromagnetic induction (EMI) sensor data. In this paper, we apply data fusion techniques to combine results from both the radiation detection and the EMI detection, so that we can further distinguish among DU penetrators, DU oxide, and non- DU metal debris. We develop a two-step fusion approach for the task, and test it with surveymore » data collected on simulation targets. In this work, we explored radiation and EMI data fusion for detecting DU, oxides, and non-DU metals. We developed a two-step fusion approach based on majority voting and a set of decision rules. With this approach, we fuse results from radiation detection based on the RX algorithm and EMI detection based on a 3-step analysis. Our fusion approach has been tested successfully with data collected on simulation targets. In the future, we will need to further verify the effectiveness of this fusion approach with field data. (authors)« less

  16. Overseas testing of a multisensor landmine detection system: results and lessons learned

    NASA Astrophysics Data System (ADS)

    Keranen, Joe G.; Topolosky, Zeke

    2009-05-01

    The Nemesis detection system has been developed to provide an efficient and reliable unmanned, multi-sensor, groundbased platform to detect and mark landmines. The detection system consists of two detection sensor arrays: a Ground Penetrating Synthetic Aperture Radar (GPSAR) developed by Planning Systems, Inc. (PSI) and an electromagnetic induction (EMI) sensor array developed by Minelab Electronics, PTY. Limited. Under direction of the Night Vision and Electronic Sensors Directorate (NVESD), overseas testing was performed at Kampong Chhnang Test Center (KCTC), Cambodia, from May 12-30, 2008. Test objectives included: evaluation of detection performance, demonstration of real-time visualization and alarm generation, and evaluation of system operational efficiency. Testing was performed on five sensor test lanes, each consisting of a unique soil mixture and three off-road lanes which include curves, overgrowth, potholes, and non-uniform lane geometry. In this paper, we outline the test objectives, procedures, results, and lessons learned from overseas testing. We also describe the current state of the system, and plans for future enhancements and modifications including clutter rejection and feature-level fusion.

  17. Agricultural Geophysics

    USDA-ARS?s Scientific Manuscript database

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

  18. Using spread spectrum for AMR magnetic sensor

    NASA Astrophysics Data System (ADS)

    Vala, David

    2016-09-01

    This contribution describe invention of Magnetometer with protection against detection by electronic counter- measure (ECM) registered by Czech patent office as patent no. 305322.1 Magnetic sensors are often part of dual use or security instruments and equipment. For this purpose is very interesting to build sensor with is hidden against electronic countermeasure. In this case is very important level and behavior of electromagnetic noise produced by sensor. And also electromagnetic compatibility of electronic devices is the area which significant grows nowadays too. As the consequence of this growth there is a continuous process of making more strict standards focused on electromagnetic radiation of electronic devices. Sensors technology begins to be a part of these issues due sensors bandwidth increasing and approaching to frequency of radio communication band. Nowadays microcontrollers and similar digital circuits are integrated into sensors devices and it brings new sources of electromagnetic radiation in modern smart sensors.

  19. Investigating Electromagnetic Induction through a Microcomputer-Based Laboratory.

    ERIC Educational Resources Information Center

    Trumper, Ricardo; Gelbman, Moshe

    2000-01-01

    Describes a microcomputer-based laboratory experiment designed for high school students that very accurately analyzes Faraday's law of electromagnetic induction, addressing each variable separately while the others are kept constant. (Author/CCM)

  20. Broadband electromagnetic sensors for aircraft lightning research. [electromagnetic effects of lightning on aircraft digital equipment

    NASA Technical Reports Server (NTRS)

    Trost, T. F.; Zaepfel, K. P.

    1980-01-01

    A set of electromagnetic sensors, or electrically-small antennas, is described. The sensors are designed for installation on an F-106 research aircraft for the measurement of electric and magnetic fields and currents during a lightning strike. The electric and magnetic field sensors mount on the aircraft skin. The current sensor mounts between the nose boom and the fuselage. The sensors are all on the order of 10 cm in size and should produce up to about 100 V for the estimated lightning fields. The basic designs are the same as those developed for nuclear electromagnetic pulse studies. The most important electrical parameters of the sensors are the sensitivity, or equivalent area, and the bandwidth (or rise time). Calibration of sensors with simple geometries is reliably accomplished by a geometric analysis; all the sensors discussed possess geometries for which the sensitivities have been calculated. For the calibration of sensors with more complex geometries and for general testing of all sensors, two transmission lines were constructed to transmit known pulsed fields and currents over the sensors.

  1. Fuel saver based on electromagnetic induction for automotive engine

    NASA Astrophysics Data System (ADS)

    Siregar, Houtman P.; Sibarani, Maradu

    2007-12-01

    In the considered research is designed and analyzed the performance of the fuel saver which is based on electromagnetic induction for automotive diesel engine. The fuel saver which is based on permanent magnet has sold in market and its performance has tested. In comparison to the former fuel saver, in the proposed work is produced fuel saver which is based on electromagnetic induction. The considered research is the continuation of my former work. Performance of the produced fuel saver which is installed in the fuel line of internal combustion engine rig is compared to the performance of the standard internal combustion engine rig Speed of the engine, wire diameter of coil, and number of coil which is coiled in the winding of the the fuel saver are chosen as the testing variables. The considered research has succeeded to design the fuel saver which is based on electromagnetic induction for saving the automotive fuel consumption. Results of the research show that the addition of the fuel saver which is based on electromagnetic induction to the flow of the diesel fuel can significantly save the automative fuel consumption. In addition the designed fuel saver can reduce the opacity of the emission gas.

  2. Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics

    DOEpatents

    Bakhtiari, Sasan; Gopalsami, Nachappa; Raptis, Apostolos C.

    1999-03-23

    A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.

  3. A Brief History of the use of Electromagnetic Induction Techniques in Soil Survey

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, James

    2017-04-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools and increased the amount and types of data that can be gathered with a single pass. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales. The future should witness a greater use of multiple-frequency and multiple-coil EMI sensors and integration with other sensors to assess the spatial variability of soil properties. Data analysis will be improved with advanced processing and presentation systems and more sophisticated geostatistical modeling algorithms will be developed and used to interpolate EMI data, improve the resolution of subsurface features, and assess soil properties.

  4. Sensor fusion approaches for EMI and GPR-based subsurface threat identification

    NASA Astrophysics Data System (ADS)

    Torrione, Peter; Morton, Kenneth, Jr.; Besaw, Lance E.

    2011-06-01

    Despite advances in both electromagnetic induction (EMI) and ground penetrating radar (GPR) sensing and related signal processing, neither sensor alone provides a perfect tool for detecting the myriad of possible buried objects that threaten the lives of Soldiers and civilians. However, while neither GPR nor EMI sensing alone can provide optimal detection across all target types, the two approaches are highly complementary. As a result, many landmine systems seek to make use of both sensing modalities simultaneously and fuse the results from both sensors to improve detection performance for targets with widely varying metal content and GPR responses. Despite this, little work has focused on large-scale comparisons of different approaches to sensor fusion and machine learning for combining data from these highly orthogonal phenomenologies. In this work we explore a wide array of pattern recognition techniques for algorithm development and sensor fusion. Results with the ARA Nemesis landmine detection system suggest that nonlinear and non-parametric classification algorithms provide significant performance benefits for single-sensor algorithm development, and that fusion of multiple algorithms can be performed satisfactorily using basic parametric approaches, such as logistic discriminant classification, for the targets under consideration in our data sets.

  5. Inductive Interference in Rapid Transit Signaling Systems. Volume 3. Data and Test Results.

    DOT National Transportation Integrated Search

    1986-11-01

    This report presents comparative inductive interference data obtained from four U.S. rapid transit systems employing chopper propulsion control, as part of the Rail Transit Electromagnetic Interference/Electromagnetic Compatibility program conducted ...

  6. Electromagnetic braking for Mars spacecraft

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1986-01-01

    Aerobraking concepts are being studied to improve performance and cost effectiveness of propulsion systems for Mars landers and Mars interplanetary spacecraft. Access to megawatt power levels (nuclear power coupled to high-storage inductive or capacitive devices) on a manned Mars interplanetary spacecraft may make feasible electromagnetic braking and lift modulation techniques which were previously impractical. Using pulsed microwave and magnetic field technology, potential plasmadynamic braking and hydromagnetic lift modulation techniques have been identified. Entry corridor modulation to reduce loads and heating, to reduce vertical descent rates, and to expand horizontal and lateral landing ranges are possible benefits. In-depth studies are needed to identify specific design concepts for feasibility assessments. Standing wave/plasma sheath interaction techniques appear to be promising. The techniques may require some tailoring of spacecraft external structures and materials. In addition, rapid response guidance and control systems may require the use of structurally embedded sensors coupled to expert systems or to artificial intelligence systems.

  7. A software solution to dynamically reduce metallic distortions of electromagnetic tracking systems for image-guided surgery.

    PubMed

    Li, Mengfei; Hansen, Christian; Rose, Georg

    2017-09-01

    Electromagnetic tracking systems (EMTS) have achieved a high level of acceptance in clinical settings, e.g., to support tracking of medical instruments in image-guided interventions. However, tracking errors caused by movable metallic medical instruments and electronic devices are a critical problem which prevents the wider application of EMTS for clinical applications. We plan to introduce a method to dynamically reduce tracking errors caused by metallic objects in proximity to the magnetic sensor coil of the EMTS. We propose a method using ramp waveform excitation based on modeling the conductive distorter as a resistance-inductance circuit. Additionally, a fast data acquisition method is presented to speed up the refresh rate. With the current approach, the sensor's positioning mean error is estimated to be 3.4, 1.3 and 0.7 mm, corresponding to a distance between the sensor and center of the transmitter coils' array of up to 200, 150 and 100 mm, respectively. The sensor pose error caused by different medical instruments placed in proximity was reduced by the proposed method to a level lower than 0.5 mm in position and [Formula: see text] in orientation. By applying the newly developed fast data acquisition method, we achieved a system refresh rate up to approximately 12.7 frames per second. Our software-based approach can be integrated into existing medical EMTS seamlessly with no change in hardware. It improves the tracking accuracy of clinical EMTS when there is a metallic object placed near the sensor coil and has the potential to improve the safety and outcome of image-guided interventions.

  8. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  9. The mutual inductance calculation between circular and quadrilateral coils at arbitrary attitudes using a rotation matrix for airborne transient electromagnetic systems

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Wang, Hongyuan; Lin, Jun; Guan, Shanshan; Feng, Xue; Li, Suyi

    2014-12-01

    Performance testing and calibration of airborne transient electromagnetic (ATEM) systems are conducted to obtain the electromagnetic response of ground loops. It is necessary to accurately calculate the mutual inductance between transmitting coils, receiving coils and ground loops to compute the electromagnetic responses. Therefore, based on Neumann's formula and the measured attitudes of the coils, this study deduces the formula for the mutual inductance calculation between circular and quadrilateral coils, circular and circular coils, and quadrilateral and quadrilateral coils using a rotation matrix, and then proposes a method to calculate the mutual inductance between two coils at arbitrary attitudes (roll, pitch, and yaw). Using coil attitude simulated data of an ATEM system, we calculate the mutual inductance of transmitting coils and ground loops at different attitudes, analyze the impact of coil attitudes on mutual inductance, and compare the computational accuracy and speed of the proposed method with those of other methods using the same data. The results show that the relative error of the calculation is smaller and that the speed-up is significant compared to other methods. Moreover, the proposed method is also applicable to the mutual inductance calculation of polygonal and circular coils at arbitrary attitudes and is highly expandable.

  10. Global electromagnetic induction in the moon and planets. [poloidal eddy current transient response

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.

    1973-01-01

    Experiments and analyses concerning electromagnetic induction in the moon and other extraterrestrial bodies are summarized. The theory of classical electromagnetic induction in a sphere is first considered, and this treatment is extended to the case of the moon, where poloidal eddy-current response has been found experimentally to dominate other induction modes. Analysis of lunar poloidal induction yields lunar internal electrical conductivity and temperature profiles. Two poloidal-induction analytical techniques are discussed: a transient-response method applied to time-series magnetometer data, and a harmonic-analysis method applied to data numerically Fourier-transformed to the frequency domain, with emphasis on the former technique. Attention is given to complicating effects of the solar wind interaction with both induced poloidal fields and remanent steady fields. The static magnetization field induction mode is described, from which are calculated bulk magnetic permeability profiles. Magnetic field measurements obtained from the moon and from fly-bys of Venus and Mars are studied to determine the feasibility of extending theoretical and experimental induction techniques to other bodies in the solar system.

  11. Overhauser Geomagnetic Sensor Based on the Dynamic Nuclear Polarization Effect for Magnetic Prospecting

    PubMed Central

    Ge, Jian; Dong, Haobin; Liu, Huan; Yuan, Zhiwen; Dong, He; Zhao, Zhizhuo; Liu, Yonghua; Zhu, Jun; Zhang, Haiyang

    2016-01-01

    Based on the dynamic nuclear polarization (DNP) effect, an alternative design of an Overhauser geomagnetic sensor is presented that enhances the proton polarization and increases the amplitude of the free induction decay (FID) signal. The short-pulse method is adopted to rotate the enhanced proton magnetization into the plane of precession to create an FID signal. To reduce the negative effect of the powerful electromagnetic interference, the design of the anti-interference of the pick-up coil is studied. Furthermore, the radio frequency polarization method based on the capacitive-loaded coaxial cavity is proposed to improve the quality factor of the resonant circuit. In addition, a special test instrument is designed that enables the simultaneous testing of the classical proton precession and the Overhauser sensor. Overall, comparison experiments with and without the free radical of the Overhauser sensors show that the DNP effect does effectively improve the amplitude and quality of the FID signal, and the magnetic sensitivity, resolution and range reach to 10 pT/Hz1/2@1 Hz, 0.0023 nT and 20–100 μT, respectively. PMID:27258283

  12. Ultra-Wideband EMI Sensing: Non-Metallic Target Detection and Automatic Classification of Unexploded Ordnance

    NASA Astrophysics Data System (ADS)

    Sigman, John Brevard

    Buried explosive hazards present a pressing problem worldwide. Millions of acres and thousands of sites are contaminated in the United States alone [1, 2]. There are three categories of explosive hazards: metallic, intermediate-electrical conducting (IEC), and non-conducting targets. Metallic target detection and classification by electromagnetic (EM) signature has been the subject of research for many years. Key to the success of this research is modern multi-static Electromagnetic Induction (EMI) sensors, which are able to measure the wideband EMI response from metallic buried targets. However, no hardware solutions exist which can characterize IEC and non-conducting targets. While high-conducting metallic targets exhibit a quadrature peak response for frequencies in a traditional EMI regime under 100 kHz, the response of intermediate-conducting objects manifests at higher frequencies, between 100 kHz and 15 MHz. In addition to high-quality electromagnetic sensor data and robust electromagnetic models, a classification procedure is required to discriminate Targets of Interest (TOI) from clutter. Currently, costly human experts are used for this task. This expense and effort can be spared by using statistical signal processing and machine learning. This thesis has two main parts. In the first part, we explore using the high frequency EMI (HFEMI) band (100 kHz-15 MHz) for detection of carbon fiber UXO, voids, and of materials with characteristics that may be associated with improvised explosive devices (IED). We constructed an HFEMI sensing instrument, and apply the techniques of metal detection to sensing in a band of frequencies which are the transition between the induction and radar bands. In this transition domain, physical considerations and technological issues arise that cannot be solved via the approaches used in either of the bracketing lower and higher frequency ranges. In the second half of this thesis, we present a procedure for automatic classification of UXO. For maximum generality, our algorithm is robust and can handle sparse training examples of multi-class data. This procedure uses an unsupervised starter, semi-supervised techniques to gather training data, and concludes with supervised learning until all TOI are found. Additionally, an inference method for estimating the number of remaining true positives from a partial Receiver Operating Characteristic (ROC) curve is presented and applied to live-site dig histories.

  13. In vivo measurement of the 3D kinematics of the temporomandibular joint using miniaturized electromagnetic trackers: technical report.

    PubMed

    Baeyens, J-P; Gilomen, H; Erdmann, B; Clijsen, R; Cabri, J; Vissers, D

    2013-04-01

    The aim of this study was to evaluate the use of miniaturized electromagnetic trackers (1 × 0.5 × 0.5 cm) fixed on teeth of the maxilla and mandible to analyse in vivo the 3D kinematics of the temporomandibular joint (TMJ). A third sensor was fixed to the forehead, and a fourth sensor was used as a stylus pointer to detect several anatomical landmarks in order to embed a local frame on the cranium. Temporomandibular opening/closing, chewing, laterotrusion and protrusion were examined. The prime objective within this study was to rigidly attach electromagnetic minisensors on teeth. The key for a successful affixation was the kevlar interface. The distances between the two mandibular affixed sensors and between the two maxillar affixed sensors were overall smaller than 0.033 cm for position and 0.2° for attitude throughout the temporomandibular motions. The relative motions between a forehead sensor and the maxilla affixed sensor are too big to suggest a forehead sensor as an alternative for a maxilla affixed sensor. The technique using miniaturized electromagnetic trackers furthers on the methods using electromagnetic trackers on external appliances. The method allows full range of motion of the TMJ and does not disturb normal TMJ function.

  14. Approach to explosive hazard detection using sensor fusion and multiple kernel learning with downward-looking GPR and EMI sensor data

    NASA Astrophysics Data System (ADS)

    Pinar, Anthony; Masarik, Matthew; Havens, Timothy C.; Burns, Joseph; Thelen, Brian; Becker, John

    2015-05-01

    This paper explores the effectiveness of an anomaly detection algorithm for downward-looking ground penetrating radar (GPR) and electromagnetic inductance (EMI) data. Threat detection with GPR is challenged by high responses to non-target/clutter objects, leading to a large number of false alarms (FAs), and since the responses of target and clutter signatures are so similar, classifier design is not trivial. We suggest a method based on a Run Packing (RP) algorithm to fuse GPR and EMI data into a composite confidence map to improve detection as measured by the area-under-ROC (NAUC) metric. We examine the value of a multiple kernel learning (MKL) support vector machine (SVM) classifier using image features such as histogram of oriented gradients (HOG), local binary patterns (LBP), and local statistics. Experimental results on government furnished data show that use of our proposed fusion and classification methods improves the NAUC when compared with the results from individual sensors and a single kernel SVM classifier.

  15. Wireless and Powerless Sensing Node System Developed for Monitoring Motors.

    PubMed

    Lee, Dasheng

    2008-08-27

    Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program.

  16. Wireless and Powerless Sensing Node System Developed for Monitoring Motors

    PubMed Central

    Lee, Dasheng

    2008-01-01

    Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program. PMID:27873798

  17. Design of inductive sensors for tongue control system for computers and assistive devices.

    PubMed

    Lontis, Eugen R; Struijk, Lotte N S A

    2010-07-01

    The paper introduces a novel design of air-core inductive sensors in printed circuit board (PCB) technology for a tongue control system. The tongue control system provides a quadriplegic person with a keyboard and a joystick type of mouse for interaction with a computer or for control of an assistive device. Activation of inductive sensors was performed with a cylindrical, soft ferromagnetic material (activation unit). Comparative analysis of inductive sensors in PCB technology with existing hand-made inductive sensors was performed with respect to inductance, resistance, and sensitivity to activation when the activation unit was placed in the center of the sensor. Optimisation of the activation unit was performed in a finite element model. PCBs with air-core inductive sensors were manufactured in a 10 layers, 100 microm and 120 microm line width technology. These sensors provided quality signals that could drive the electronics of the hand-made sensors. Furthermore, changing the geometry of the sensors allowed generation of variable signals correlated with the 2D movement of the activation unit at the sensors' surface. PCB technology for inductive sensors allows flexibility in design, automation of production and ease of possible integration with supplying electronics. The basic switch function of the inductive sensor can be extended to two-dimensional movement detection for pointing devices.

  18. Electromagnetic tracking of motion in the proximity of computer generated graphical stimuli: a tutorial.

    PubMed

    Schnabel, Ulf H; Hegenloh, Michael; Müller, Hermann J; Zehetleitner, Michael

    2013-09-01

    Electromagnetic motion-tracking systems have the advantage of capturing the tempo-spatial kinematics of movements independently of the visibility of the sensors. However, they are limited in that they cannot be used in the proximity of electromagnetic field sources, such as computer monitors. This prevents exploiting the tracking potential of the sensor system together with that of computer-generated visual stimulation. Here we present a solution for presenting computer-generated visual stimulation that does not distort the electromagnetic field required for precise motion tracking, by means of a back projection medium. In one experiment, we verify that cathode ray tube monitors, as well as thin-film-transistor monitors, distort electro-magnetic sensor signals even at a distance of 18 cm. Our back projection medium, by contrast, leads to no distortion of the motion-tracking signals even when the sensor is touching the medium. This novel solution permits combining the advantages of electromagnetic motion tracking with computer-generated visual stimulation.

  19. Design, fabrication and characterization of LTCC-based electromagnetic microgenerators

    NASA Astrophysics Data System (ADS)

    Gierczak, M.; Markowski, P.; Dziedzic, A.

    2016-02-01

    Design, manufacturing process and properties of electromagnetic microgenerators fabricated in LTCC (Low Temperature Co-fired Ceramics) technology are presented in this paper. Electromagnetic microgenerators consist of planar coils spatially arranged on several layers of LTCC and of a multipole permanent magnet. Two different patterns of coils with 2-, 8-,10- and 12-layers and outer diameter of 50 mm were designed and fabricated. Silver-based pastes ESL 903-A or DuPont 6145 were used. In order to estimate the inductance of a single spatial coil the Greenhouse (self-inductance) and Hoer (mutual inductance) calculation methods were used. To verify the calculation results a single-layer coil was fabricated for each pattern and its inductance was measured using the precision RLC Meter. Fabricated LTCC microgenerators with embedded coils allow to generate voltage higher than ten volts and the electrical output power of approximately 600 mW at the rotor rotation speed of 12 thousands rpm. The self-made system was used for characterization of LTCC-based electromagnetic microgenerators.

  20. Comparing bulk electrical conductivities spatial series obtained by Time Domain Reflectometry and Electromagnetic Induction sensors

    NASA Astrophysics Data System (ADS)

    Saeed, Ali; Ajeel, Ali; dragonetti, giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    The ability to determine and monitor the effects of salts on soils and plants, are of great importance to agriculture. To control its harmful effects, soil salinity needs to be monitored in space and time. This requires knowledge of its magnitude, temporal dynamics, and spatial variability. Conventional ground survey procedures by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity (σb) directly in the field. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on Electromagnetic Induction (EMI) techniques are non-invasive methods and represent a viable alternative to traditional techniques for soil characterization. The problem is that all these techniques give depth-weighted apparent electrical conductivity (σa) measurements, depending on the specific depth distribution of the σb, as well as on the depth response function of the sensor used. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from EMI. Because of their relatively lower observation window, TDR sensors provide quasi-point values and do not adequately integrate the spatial variability of the chemical concentration distribution in the soil solution (and of the water content) induced by natural soil heterogeneity. Thus, the variability of TDR readings is expected to come from a combination of smaller and larger-scale variations. By contrast, an EMI sensor reading partly smoothes the small-scale variability seen by a TDR probe. As a consequence, the variability revealed by profile-integrated EMI and local (within a given depth interval) TDR readings may have completely different characteristics. In this study, a comparison between the variability patterns of σb revealed by TDR and EMI sensors was carried out. The database came from a field experiment conducted in the Mediterranean Agronomic Institute (MAI) of Valenzano (Bari). The soil was pedologically classified as Colluvic Regosol, consisting of a silty loam with an average depth of 60 cm on a shallow fractured calcareous rock. The experimental field (30m x 15.6 m; for a total area of 468 m2) consisted of three transects of 30 m length and 4.2 width, cultivated with green bean and irrigated with three different salinity levels (1 dS/m, 3dS/m, 6dS/m). Each transect consisted of seven crop rows irrigated by a drip irrigation system (dripper discharge q=2 l/h.). Water salinity was induced by adding CaCl2 to the tap water. All crop-soil measurements were conducted along the middle row at 24 monitoring sites, 1m apart. The spatial and temporal evolution of bulk electrical conductivity (σb) of soil was monitored by i) an Electromagnetic Induction method (EM38-DD) and ii) Time Domain Reflectometry (TDR). Herein we will focus on the methodology we used to elaborate the database of this experiment. Mostly, the data elaboration was devoted to make TDR and EMI data actually comparable. Specifically, we analysed the effect of the different observation windows of TDR and EMI sensors on the different spatial and temporal variability observed in the data series coming from the two sensors. After exploring the different patterns and structures of variability of the original EMI and TDR data series the study assessed the potential of applying a Fourier's analysis to filter the original data series to extract the predominant, high-variance signal after removing the small- scale (high frequency) variance observed in the TDR data series.

  1. The Teaching of Electromagnetic Induction at Sixth Form Level

    ERIC Educational Resources Information Center

    Archenhold, W. F.

    1974-01-01

    Presents some ideas about teaching electromagnetic induction at sixth form level, including educational objectives, learning difficulties, syllabus requirements, selection of unit system, and sequence of material presentation. Suggests the Education Group of the Institute of Physics hold further discussions on these aspects before including the…

  2. Thin-film spectroscopic sensor

    DOEpatents

    Burgess, Jr., Lloyd W.; Goldman, Don S.

    1992-01-01

    There is disclosed an integrated spectrometer for chemical analysis by evanescent electromagnetic radiation absorption in a reaction volume. The spectrometer comprises a noninteractive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device. There is further disclosed a chemical sensor to determine the pressure and concentration of a chemical species in a mixture comprising an interactive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device.

  3. Chapter 9.5: Electromagnetic induction to manage cattle feedlot waste

    USDA-ARS?s Scientific Manuscript database

    This book chapter summarizes results of waste management research that utilized electromagnetic induction (EMI) tools for the purposes of: 1) collection of solid waste from feedlot surfaces to be utilized by crops 2) control and utilization of nutrient laden liquid runoff, and 3) feedlot surface man...

  4. A combined joint diagonalization-MUSIC algorithm for subsurface targets localization

    NASA Astrophysics Data System (ADS)

    Wang, Yinlin; Sigman, John B.; Barrowes, Benjamin E.; O'Neill, Kevin; Shubitidze, Fridon

    2014-06-01

    This paper presents a combined joint diagonalization (JD) and multiple signal classification (MUSIC) algorithm for estimating subsurface objects locations from electromagnetic induction (EMI) sensor data, without solving ill-posed inverse-scattering problems. JD is a numerical technique that finds the common eigenvectors that diagonalize a set of multistatic response (MSR) matrices measured by a time-domain EMI sensor. Eigenvalues from targets of interest (TOI) can be then distinguished automatically from noise-related eigenvalues. Filtering is also carried out in JD to improve the signal-to-noise ratio (SNR) of the data. The MUSIC algorithm utilizes the orthogonality between the signal and noise subspaces in the MSR matrix, which can be separated with information provided by JD. An array of theoreticallycalculated Green's functions are then projected onto the noise subspace, and the location of the target is estimated by the minimum of the projection owing to the orthogonality. This combined method is applied to data from the Time-Domain Electromagnetic Multisensor Towed Array Detection System (TEMTADS). Examples of TEMTADS test stand data and field data collected at Spencer Range, Tennessee are analyzed and presented. Results indicate that due to its noniterative mechanism, the method can be executed fast enough to provide real-time estimation of objects' locations in the field.

  5. A teleoperated system for remote site characterization

    NASA Technical Reports Server (NTRS)

    Sandness, Gerald A.; Richardson, Bradley S.; Pence, Jon

    1994-01-01

    The detection and characterization of buried objects and materials is an important step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. By performing these tasks with remotely controlled sensors, it is possible to obtain improved data quality and consistency as well as enhanced safety for on-site workers. Therefore, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by a radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS).

  6. Development of MEMS wireless wall temperature sensor for combustion studies

    NASA Astrophysics Data System (ADS)

    Lee, Minhyeok; Morimoto, Kenichi; Suzuki, Yuji

    2017-03-01

    In this paper, a MEMS-based wireless wall temperature sensor for application to combustion studies is proposed. The resonant frequency change of an LCR circuit on the sensor is used to detect the temperature change, and is transferred by inductive coupling between the sensor and the read-out coil. Sensitivity analysis has been made to examine the effect of the resistance/capacitance change of the sensor on the resonant frequency shifts. Based on the present analysis, the sensing principle with either TCR (temperature coefficient of resistance) or TCP (temperature coefficient of permittivity) can be determined for better temperature sensitivity. The sensor configuration is designed through an equivalent circuit model, and verified with a 3D electromagnetic simulation. A prototype sensor on a glass substrate is successfully fabricated through MEMS technologies. Performance of the sensor is evaluated in the steady thermal field with the temperature range from 25 °C to 175 °C. The profile of the resonant frequency change is well fitted with a quadratic curve derived from the model analysis. The temperature measurement accuracy of 1.6 °C at 25 °C and 0.87 °C at 175 °C has been obtained at the measurement distance of 0.71 mm. In addition, a similar measurement uncertainty can be achieved with a 52 ms measurement time interval.

  7. Study on magnetic force of electromagnetic levitation circular knitting machine

    NASA Astrophysics Data System (ADS)

    Wu, X. G.; Zhang, C.; Xu, X. S.; Zhang, J. G.; Yan, N.; Zhang, G. Z.

    2018-06-01

    The structure of the driving coil and the electromagnetic force of the test prototype of electromagnetic-levitation (EL) circular knitting machine are studied. In this paper, the driving coil’s structure and working principle of the EL circular knitting machine are firstly introduced, then the mathematical modelling analysis of the driving electromagnetic force is carried out, and through the Ansoft Maxwell finite element simulation software the coil’s magnetic induction intensity and the needle’s electromagnetic force is simulated, finally an experimental platform is built to measure the coil’s magnetic induction intensity and the needle’s electromagnetic force. The results show that the theoretical analysis, the simulation analysis and the results of the test are very close, which proves the correctness of the proposed model.

  8. Thermally emissive sensing materials for chemical spectroscopy analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, Zsolt; Ohodnicki, Paul R.

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to themore » material.« less

  9. Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Fuqiang; Hayat, Tasawar; Zhou, Ping; Tang, Jun

    2017-11-01

    Continuous wave emitting from sinus node of the heart plays an important role in wave propagating among cardiac tissue, while the heart beating can be terminated when the target wave is broken into turbulent states by electromagnetic radiation. In this investigation, local periodical forcing is applied on the media to induce continuous target wave in the improved cardiac model, which the effect of electromagnetic induction is considered by using magnetic flux, then external electromagnetic radiation is imposed on the media. It is found that target wave propagation can be blocked to stand in a local area and the excitability of media is suppressed to approach quiescent but homogeneous state when electromagnetic radiation is imposed on the media. The sampled time series for membrane potentials decrease to quiescent state due to the electromagnetic radiation. It could accounts for the mechanism of abnormality in heart failure exposed to continuous electromagnetic field.

  10. Electromagnetic Propulsion

    NASA Technical Reports Server (NTRS)

    Schafer, Charles

    2000-01-01

    The design and development of an Electromagnetic Propulsion is discussed. Specific Electromagnetic Propulsion Topics discussed include: (1) Technology for Pulse Inductive Thruster (PIT), to design, develop, and test of a multirepetition rate pulsed inductive thruster, Solid-State Switch Technology, and Pulse Driver Network and Architecture; (2) Flight Weight Magnet Survey, to determine/develop light weight high performance magnetic materials for potential application Advanced Space Flight Systems as these systems develop; and (3) Magnetic Flux Compression, to enable rapid/robust/reliable omni-planetary space transportation within realistic development and operational costs constraints.

  11. Effects of Gender and Collaborative Learning Approach on Students' Conceptual Understanding of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Adolphus, Telima; Omeodu, Doris

    2016-01-01

    The study investigates the effect of gender and collaborative learning approach on students' conceptual understanding of electromagnetic induction in Secondary Schools in Nigeria. Three research questions and 2 hypotheses were formulated to guide the research. The research design adopted for this study is the quasi-experimental design. In…

  12. Addressing Students' Difficulties with Faraday's Law: A Guided Problem Solving Approach

    ERIC Educational Resources Information Center

    Zuza, Kristina; Almudí, José-Manuel; Leniz, Ane; Guisasola, Jenaro

    2014-01-01

    In traditional teaching, the fundamental concepts of electromagnetic induction are usually quickly analyzed, spending most of the time solving problems in a more or less rote manner. However, physics education research has shown that the fundamental concepts of the electromagnetic induction theory are barely understood by students. This article…

  13. Introduction to the special section ‘Applications of electromagnetic induction to digital soil mapping’

    USDA-ARS?s Scientific Manuscript database

    Use of electromagnetic induction (EMI) instruments has increased as a tool to map soils because it provides a means of locating suitable sampling sites that provide the basis for mapping the spatial variability of various soil properties either directly or indirectly measured with EMI, including sa...

  14. Effects of Physical Models and Simulations to Understand Daily Life Applications of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Tural, Güner; Tarakçi, Demet

    2017-01-01

    Background: One of the topics students have difficulties in understanding is electromagnetic induction. Active learning methods instead of traditional learning method may be able to help facilitate students' understanding such topics more effectively. Purpose: The study investigated the effectiveness of physical models and simulations on students'…

  15. Electricity and Magnetism

    NASA Astrophysics Data System (ADS)

    Glazebrook, R. T.

    2016-10-01

    1. Electrostatics: fundamental facts; 2. Electricity as a measurable quantity; 3. Measurement of electric force and potential; 4. Condensers; 5. Electrical machines; 6. Measurement of potential and electric force; 7. Magnetic attraction and repulsion; 8. Laws of magnetic force; 9. Experiments with magnets; 10. Magnetic calculations; 11. Magnetic measurements; 12. Terrestrial magnetism; 13. The electric current; 14. Relation between electromagnetic force and current; 15. Measurement of current; 16. Measurement of resistance and electromotive force; 17. Measurement of quantity of electricity, condensers; 18. Thermal activity of a current; 19. The voltaic cell (theory); 20. Electromagnetism; 21. Magnetisation of iron; 22. Electromagnetic instruments; 23. Electromagnetic induction; 24. Applications of electromagnetic induction; 25. Telegraphy and telephony; 26. Electric waves; 27. Transference of electricity through gases: corpuscles and electrons; Answers to examples; Index.

  16. Snow Depth Calibrations for Electromagnetic Induction Investigations at a Former Munitions Waste Disposal Site in Alaska

    NASA Astrophysics Data System (ADS)

    Glaser, D. R., II; Wagner, A. M.; Gelvin, A.; Saari, S.; Staples, A.; Larsen, G.

    2017-12-01

    A US Army legacy munitions waste site was identified adjacent to a river near a small arms range in Alaska. As part of remediation efforts, geophysical studies were conducted to characterize the extent of buried metal debris at the site. Time-domain electromagnetic surveys were completed over the site to meet the regulatory guidance for site cleanup. Time-domain and frequency-domain electromagnetic induction, magnetic gradiometry, and ground penetrating radar subsurface geophysical studies were deployed over soil, water, and snow surface conditions throughout the impacted area. The time-domain electromagnetic induction results acquired during summer months, presented clear indications of trenches located directly perpendicular to and adjacent to the river. However, in the follow up investigation where the snow-pack was greater than one meter, the response amplitude of the metallic debris was dampened and possible targets were missed. This was confirmed by the subsequent magnetic gradiometry survey which identified a suspected extension of one of the trenches through the river on to the seasonal sand bar island. The region is subject to extremely cold temperatures as well as significant snow pack and permafrost soil conditions. The snow presented a negative impact to the accurate assessment of the site by changing the effective investigation depth. To address this we developed an approach using ground penetrating radar data calibrated with physical snow depth measurements to generate continuous estimates of snow depth and spatially correct the electromagnetic induction data to the corresponding regulatory amplitude limit as if the snow were not present. Limitations of the approach as related to the signal floor of the electromagnetic induction response were also assessed.

  17. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  18. Electromagnetic diagnostic system for the Keda Torus eXperiment

    NASA Astrophysics Data System (ADS)

    Tu, Cui; Liu, Adi; Li, Zichao; Tan, Mingsheng; Luo, Bing; You, Wei; Li, Chenguang; Bai, Wei; Fu, Chenshuo; Huang, Fangcheng; Xiao, Bingjia; Shen, Biao; Shi, Tonghui; Chen, Dalong; Mao, Wenzhe; Li, Hong; Xie, Jinglin; Lan, Tao; Ding, Weixing; Xiao, Chijin; Liu, Wandong

    2017-09-01

    A system for electromagnetic measurements was designed and installed on the Keda Torus eXperiment (KTX) reversed field pinch device last year. Although the unique double-C structure of the KTX, which allows the machine to be opened easily without disassembling the poloidal field windings, makes the convenient replacement and modification of the internal inductive coils possible, it can present difficulties in the design of flux coils and magnetic probes at the two vertical gaps. Moreover, the KTX has a composite shell consisting of a 6 mm stainless steel vacuum chamber and a 1.5 mm copper shell, which results in limited space for the installation of saddle sensors. Therefore, the double-C structure and composite shell should be considered, especially during the design and installation of the electromagnetic diagnostic system (EDS). The inner surface of the vacuum vessel includes two types of probes. One type is for the measurement of the global plasma parameters, and the other type is for studying the local behavior of the plasma and operating the new saddle coils. In addition, the probes on the outer surface of the composite shell are used for measurements of eddy currents. Finally, saddle sensors for radial field measurements for feedback control were installed between the conducting shell and the vacuum vessel. The entire system includes approximately 1100 magnetic probes, 14 flux coils, 4 ×26 ×2 saddle sensors, and 16 Rogowski coils. Considering the large number of probes and limited space available in the vacuum vessel, the miniaturization of the probes and optimization of the probe distribution are necessary. In addition, accurate calibration and careful mounting of the probes are also required. The frequency response of the designed magnetic probes is up to 200 kHz, and the resolution is 1 G. The EDS, being spherical and of high precision, is one of the most basic and effective diagnostic tools of the KTX and meets the demands imposed by requirements on basic machine operating information and future studies.

  19. Soil profile water content determination:Spatiotemporal variability of electromagnetic and neutron probe sensors in access tubes

    USDA-ARS?s Scientific Manuscript database

    Since the late 1980s, electromagnetic (EM) sensors for determination on of soil water content from within nonmetallic access tubes have been marketed as replacements for the neutron moisture meter (NMM); however, the accuracy, variability and physical significance of EM sensor field measurements hav...

  20. An Electromagnetic/Capacitive Composite Sensor for Testing of Thermal Barrier Coatings

    PubMed Central

    Ren, Yuan; Pan, Mengchun; Chen, Dixiang; Tian, Wugang

    2018-01-01

    Thermal barrier coatings (TBCs) can significantly reduce the operating temperature of the aeroengine turbine blade substrate, and their testing technology is very urgently demanded. Due to their complex multi-layer structure, it is hard to evaluate TBCs with a single function sensor. In this paper, an electromagnetic/capacitive composite sensor is proposed for the testing of thermal barrier coatings. The dielectric material is tested with planar capacitor, and the metallic material is tested with electromagnetic coils. Then, the comprehensive test and evaluation of thermal barrier coating system can be realized. The sensor is optimized by means of theoretical and simulation analysis, and the interaction between the planar capacitor and the electromagnetic coil is studied. The experimental system is built based on an impedance analyser and multiplex unit to evaluate the performance of the composite sensor. The transimpedances and capacitances are measured under different coating parameters, such as thickness and permittivity of top coating as well as bond layer conductivity. The experimental results agree with the simulation analysis, and the feasibility of the sensor is proved. PMID:29783746

  1. Incorporating advanced EMI technologies in operational munitions characterization surveys

    NASA Astrophysics Data System (ADS)

    Miller, Jonathan S.; Shubiditze, Fridon; Pasion, Leonard; Schultz, Gregory; Chung, Heesoo

    2011-06-01

    The presence of unexploded ordnance (UXO), discarded military munitions (DMM), and munitions constituents (MC) at both active and formerly used defense sites (FUDS) has created a necessity for production-level efforts to remove these munitions and explosives of concern (MEC). Ordnance and explosives (OE) and UXO removal operations typically employ electromagnetic induction (EMI) or magnetometer surveys to identify potential MEC hazards in previously determined areas of interest. A major cost factor in these operations is the significant allocation of resources for the excavation of harmless objects associated with fragmentation, scrap, or geological clutter. Recent advances in classification and discrimination methodologies, as well as the development of sensor technologies that fully exploit physics-based analysis, have demonstrated promise for significantly reducing the false alarm rate due to MEC related clutter. This paper identifies some of the considerations for and the challenges associated with implementing these discrimination methodologies and advanced sensor technologies in production-level surveys. Specifically, we evaluate the implications of deploying an advanced multi-axis EMI sensor at a variety of MEC sites, the discrimination methodologies that leverage the data produced by this sensor, and the potential for productivity increase that could be realized by incorporating this advanced technology as part of production protocol.

  2. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers.

    PubMed

    Luo, Xiongbiao

    2014-06-01

    Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model was designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0-10 min(-1). The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. An electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.

  3. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiongbiao, E-mail: xiongbiao.luo@gmail.com

    2014-06-15

    Purpose: Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. Methods: The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model wasmore » designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. Results: The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0–10 min{sup −1}. The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. Conclusions: An electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.« less

  4. Some Student Conceptions of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Thong, Wai Meng; Gunstone, Richard

    2008-01-01

    Introductory electromagnetism is a central part of undergraduate physics. Although there has been some research into student conceptions of electromagnetism, studies have been sparse and separated. This study sought to explore second year physics students' conceptions of electromagnetism, to investigate to what extent the results from the present…

  5. A Datalogger Demonstration of Electromagnetic Induction with a Falling, Oscillating and Swinging Magnet

    ERIC Educational Resources Information Center

    Wong, Darren; Lee, Paul; Foong, See Kit

    2010-01-01

    We investigate the electromagnetic induction phenomenon for a "falling," "oscillating" and "swinging" magnet and a coil, with the help of a datalogger. For each situation, we discuss the salient aspects of the phenomenon, with the aid of diagrams, and relate the motion of the magnet to its mathematical and graphical representations. Using various…

  6. Using a PC and External Media to Quantitatively Investigate Electromagnetic Induction

    ERIC Educational Resources Information Center

    Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.

    2011-01-01

    In this article we describe an experimental learning path about electromagnetic induction which uses an Atwood machine where one of the two hanging bodies is a cylindrical magnet falling through a plexiglass guide, surrounded either by a coil or by a copper pipe. The first configuration (magnet falling across a coil) allows students to…

  7. Passive wireless antenna sensor for strain and crack sensing—electromagnetic modeling, simulation, and testing

    NASA Astrophysics Data System (ADS)

    Yi, Xiaohua; Cho, Chunhee; Cooper, James; Wang, Yang; Tentzeris, Manos M.; Leon, Roberto T.

    2013-08-01

    This research investigates a passive wireless antenna sensor designed for strain and crack sensing. When the antenna experiences deformation, the antenna shape changes, causing a shift in the electromagnetic resonance frequency of the antenna. A radio frequency identification (RFID) chip is adopted for antenna signal modulation, so that a wireless reader can easily distinguish the backscattered sensor signal from unwanted environmental reflections. The RFID chip captures its operating power from an interrogation electromagnetic wave emitted by the reader, which allows the antenna sensor to be passive (battery-free). This paper first reports the latest simulation results on radiation patterns, surface current density, and electromagnetic field distribution. The simulation results are followed with experimental results on the strain and crack sensing performance of the antenna sensor. Tensile tests show that the wireless antenna sensor can detect small strain changes lower than 20 με, and can perform well at large strains higher than 10 000 με. With a high-gain reader antenna, the wireless interrogation distance can be increased up to 2.1 m. Furthermore, an array of antenna sensors is capable of measuring the strain distribution in close proximity. During emulated crack and fatigue crack tests, the antenna sensor is able to detect the growth of a small crack.

  8. Airborne geophysics for mesoscale observations of polar sea ice in a changing climate

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Haas, C.; Krumpen, T.; Eicken, H.; Mahoney, A. R.

    2016-12-01

    Sea ice thickness is an important geophysical parameter with a significant impact on various processes of the polar energy balance. It is classified as Essential Climate Variable (ECV), however the direct observations of the large ice-covered oceans are limited due to the harsh environmental conditions and logistical constraints. Sea-ice thickness retrieval by the means of satellite remote sensing is an active field of research, but current observational capabilities are not able to capture the small scale variability of sea ice thickness and its evolution in the presence of surface melt. We present an airborne observation system based on a towed electromagnetic induction sensor that delivers long range measurements of sea ice thickness for a wide range of sea ice conditions. The purpose-built sensor equipment can be utilized from helicopters and polar research aircraft in multi-role science missions. While airborne EM induction sounding is used in sea ice research for decades, the future challenge is the development of unmanned aerial vehicle (UAV) platform that meet the requirements for low-level EM sea ice surveys in terms of range and altitude of operations. The use of UAV's could enable repeated sea ice surveys during the the polar night, when manned operations are too dangerous and the observational data base is presently very sparse.

  9. Electromagnetic Environmental Effects System Testing

    DTIC Science & Technology

    2013-11-20

    battery packs or air turbine power generators. The sensitivity of the entire instrumentation system should be taken into consideration from the sensor ...Electromagnetic Radiation to Ordnance (HERO) sensors , pneumatic switching, and those equipments associated with fiber optic technology. c. Test...Field probes to determine environment -Thermal heating sensors (e.g., FISO or Metricor systems) used to detect bridgewire heating induced by

  10. Combining ground penetrating radar and electromagnetic induction for industrial site characterization

    NASA Astrophysics Data System (ADS)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Saey, Timothy; De Smedt, Philippe; Delefortrie, Samuël; Seuntjens, Piet

    2014-05-01

    Industrial sites pose specific challenges to the conventional way of characterizing soil and groundwater properties through borehole drilling and well monitoring. The subsurface of old industrial sites typically exhibits a large heterogeneity resulting from various anthropogenic interventions, such as the dumping of construction and demolition debris and industrial waste. Also larger buried structures such as foundations, utility infrastructure and underground storage tanks are frequently present. Spills and leaks from industrial activities and leaching of buried waste may have caused additional soil and groundwater contamination. Trying to characterize such a spatially heterogeneous medium with a limited number of localized observations is often problematic. The deployment of mobile proximal soil sensors may be a useful tool to fill up the gaps in between the conventional observations, as these enable measuring soil properties in a non-destructive way. However, because the output of most soil sensors is affected by more than one soil property, the application of only one sensor is generally insufficient to discriminate between all contributing factors. To test a multi-sensor approach, we selected a study area which was part of a former manufactured gas plant site located in one of the seaport areas of Belgium. It has a surface area of 3400 m² and was the location of a phosphate production unit that was demolished at the end of the 1980s. Considering the long and complex history of the site we expected to find a typical "industrial" soil. Furthermore, the studied area was located between buildings of the present industry, entailing additional practical challenges such as the presence of active utilities and aboveground obstacles. The area was surveyed using two proximal soil sensors based on two different geophysical methods: ground penetrating radar (GPR), to image contrasts in dielectric permittivity, and electromagnetic induction (EMI), to measure the apparent soil electrical conductivity (ECa) and magnetic susceptibility (MSa). For both methods one of the latest-generation instruments was used. GPR data were collected using a 3d-Radar stepped-frequency system with multi-channel antenna design. For EMI, this was the multi-receiver DUALEM-21S sensor. This sensor contains four different transmitter-receiver coil pair configurations, which allows to record the ECa and MSa for four different soil volumes at the same time, thereby providing information about the vertical variation of these soil properties. Both the EMI and GPR survey were performed in a mobile set-up with real-time georeferencing to obtain a high-resolution coverage of the area. The results of both surveys were validated with conventional site characterization that was conducted for a soil contamination investigation, and ancillary information such as aerial photographs and utility maps. Both methods were compared on their performance in detecting different types of anomalies. We report on the successes and failures with this multi-sensor approach. The authors acknowledge funding by COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar"

  11. Acoustic Nondestructive Evaluation of Aircraft Paneling Using Piezoelectric Sensors

    DTIC Science & Technology

    2012-12-01

    Electromagnetic Materials Team of the U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Clinical Trials Monitoring Branch, for...connected to this clip. This electrical connection ensures single-point grounding, which has been implemented to avoid electromagnetic interference...waveform of each sensor features an electromagnetic pick-up signature that is aligned with the transduced signal but phase shifted by 180. We know to

  12. Classification Demonstration at Former Camp George West Artillery Range, CO

    DTIC Science & Technology

    2013-06-01

    Prescribed by ANSI Std Z39-18 1 1. Introduction Classification using the Man-portable Vector (MPV) advanced electromagnetic sensor was...was left just past the analyst’s threshold. 2 built advanced electromagnetic sensors and associated analysis methods for classification. Following...and program managers in the Services. The physics governing the electromagnetic response of a metal object is well understood and predictable

  13. Induction conductivity and natural gamma logs collected in 15 wells at Camp Stanley Storage Activity, Bexar County, Texas

    USGS Publications Warehouse

    Stanton, Gregory P.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Camp Stanley Storage Activity conducted electromagnetic induction conductivity and natural gamma logging of 15 selected wells on the Camp Stanley Storage Activity, located in northern Bexar County, Texas, during March 28–30, 2005. In late 2004, a helicopter electromagnetic survey was flown of the Camp Stanley Storage Activity as part of a U.S. Geological Survey project to better define subsurface geologic units, the structure, and the catchment area of the Trinity aquifer. The electromagnetic induction conductivity and natural gamma log data in this report were collected to constrain the calculation of resistivity depth sections and to provide subsurface controls for interpretation of the helicopter electromagnetic data collected for the Camp Stanley Storage Activity. Logs were recorded digitally while moving the probe in an upward direction to maintain proper depth control. Logging speed was no greater than 30 feet per minute. During logging, a repeat section of at least 100 feet was recorded to check repeatability of log responses. Several of the wells logged were completed with polyvinyl chloride casing that can be penetrated by electromagnetic induction fields and allows conductivity measurement. However, some wells were constructed with steel centralizers and stainless steel screen that caused spikes on both conductivity and resulting resistivity log curves. These responses are easily recognizable and appear at regular intervals on several logs.

  14. Real Time Quality Control Methods for Cued EMI Data Collection

    DTIC Science & Technology

    2016-03-14

    contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product...This project evaluated the effectiveness of in-field quality control (QC) procedures during cued electromagnetic induction (EMI) data collection. The...electromagnetic induction ESTCP Environmental Security Technology Certification Program hr hour ISO Industry Standard Object IVS Instrument

  15. Science 101: What Causes Electromagnetic Induction?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2013-01-01

    Electromagnetic induction is the technical name for the fact that, when a wire is moved near a magnet or a magnet is moved near a wire, an electric current flows in the wire. Although Bill Robertson honestly admits to not knowing why this happens, he does say that it is possible to get a deeper understanding of what's going on in terms of…

  16. A study to identify research issues in the area of electromagnetic measurements and signal handling of remotely sensed data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research issues in the area of electromagnetic measurements and signal handling of remotely sensed data are identified. The following seven issues are discussed; platform/sensor system position and velocity, platform/sensor attitudes and attitude rates, optics and antennas, detectors and associated electronics, sensor calibration, signal handling, and system design.

  17. An experimental study to investigate the effects of a motion tracking electromagnetic sensor during EEG data acquisition.

    PubMed

    Bashashati, Ali; Noureddin, Borna; Ward, Rabab K; Lawrence, Peter D; Birch, Gary E

    2006-03-01

    A power spectral analysis study was conducted to investigate the effects of using an electromagnetic motion tracking sensor on an electroencephalogram (EEG) recording system. The results showed that the sensors do not generate any consistent frequency component(s) in the power spectrum of the EEG in the frequencies of interest (0.1-55 Hz).

  18. An IoT Reader for Wireless Passive Electromagnetic Sensors.

    PubMed

    Galindo-Romera, Gabriel; Carnerero-Cano, Javier; Martínez-Martínez, José Juan; Herraiz-Martínez, Francisco Javier

    2017-03-28

    In the last years, many passive electromagnetic sensors have been reported. Some of these sensors are used for measuring harmful substances. Moreover, the response of these sensors is usually obtained with laboratory equipment. This approach highly increases the total cost and complexity of the sensing system. In this work, a novel low-cost and portable Internet-of-Things (IoT) reader for passive wireless electromagnetic sensors is proposed. The reader is used to interrogate the sensors within a short-range wireless link avoiding the direct contact with the substances under test. The IoT functionalities of the reader allows remote sensing from computers and handheld devices. For that purpose, the proposed design is based on four functional layers: the radiating layer, the RF interface, the IoT mini-computer and the power unit. In this paper a demonstrator of the proposed reader is designed and manufactured. The demonstrator shows, through the remote measurement of different substances, that the proposed system can estimate the dielectric permittivity. It has been demonstrated that a linear approximation with a small error can be extracted from the reader measurements. It is remarkable that the proposed reader can be used with other type of electromagnetic sensors, which transduce the magnitude variations in the frequency domain.

  19. An IoT Reader for Wireless Passive Electromagnetic Sensors

    PubMed Central

    Galindo-Romera, Gabriel; Carnerero-Cano, Javier; Martínez-Martínez, José Juan; Herraiz-Martínez, Francisco Javier

    2017-01-01

    In the last years, many passive electromagnetic sensors have been reported. Some of these sensors are used for measuring harmful substances. Moreover, the response of these sensors is usually obtained with laboratory equipment. This approach highly increases the total cost and complexity of the sensing system. In this work, a novel low-cost and portable Internet-of-Things (IoT) reader for passive wireless electromagnetic sensors is proposed. The reader is used to interrogate the sensors within a short-range wireless link avoiding the direct contact with the substances under test. The IoT functionalities of the reader allows remote sensing from computers and handheld devices. For that purpose, the proposed design is based on four functional layers: the radiating layer, the RF interface, the IoT mini-computer and the power unit. In this paper a demonstrator of the proposed reader is designed and manufactured. The demonstrator shows, through the remote measurement of different substances, that the proposed system can estimate the dielectric permittivity. It has been demonstrated that a linear approximation with a small error can be extracted from the reader measurements. It is remarkable that the proposed reader can be used with other type of electromagnetic sensors, which transduce the magnitude variations in the frequency domain. PMID:28350356

  20. A high frequency electromagnetic impedance imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systemsmore » for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.« less

  1. The Development of Several Electromagnetic Monitoring Strategies and Algorithms for Validating Pre-Earthquake Electromagnetic Signals

    NASA Astrophysics Data System (ADS)

    Bleier, T. E.; Dunson, J. C.; Roth, S.; Mueller, S.; Lindholm, C.; Heraud, J. A.

    2012-12-01

    QuakeFinder, a private research group in California, reports on the development of a 100+ station network consisting of 3-axis induction magnetometers, and air conductivity sensors to collect and characterize pre-seismic electromagnetic (EM) signals. These signals are combined with daily Infra Red signals collected from the GOES weather satellite infrared (IR) instrument to compare and correlate with the ground EM signals, both from actual earthquakes and boulder stressing experiments. This presentation describes the efforts QuakeFinder has undertaken to automatically detect these pulse patterns using their historical data as a reference, and to develop other discriminative algorithms that can be used with air conductivity sensors, and IR instruments from the GOES satellites. The overall big picture results of the QuakeFinder experiment are presented. In 2007, QuakeFinder discovered the occurrence of strong uni-polar pulses in their magnetometer coil data that increased in tempo dramatically prior to the M5.1 earthquake at Alum Rock, California. Suggestions that these pulses might have been lightning or power-line arcing did not fit with the data actually recorded as was reported in Bleier [2009]. Then a second earthquake occurred near the same site on January 7, 2010 as was reported in Dunson [2011], and the pattern of pulse count increases before the earthquake occurred similarly to the 2007 event. There were fewer pulses, and the magnitude of them was decreased, both consistent with the fact that the earthquake was smaller (M4.0 vs M5.4) and farther away (7Km vs 2km). At the same time similar effects were observed at the QuakeFinder Tacna, Peru site before the May 5th, 2010 M6.2 earthquake and a cluster of several M4-5 earthquakes.

  2. Counterpulse railgun energy recovery circuit

    DOEpatents

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  3. Overpulse railgun energy recovery circuit

    DOEpatents

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  4. Detection of electromagnetic radiation using micromechanical multiple quantum wells structures

    DOEpatents

    Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN

    2007-07-17

    An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.

  5. Remote sensing of soil moisture using airborne hyperspectral data

    USDA-ARS?s Scientific Manuscript database

    The Institute for Technology Development (ITD) has developed an airborne hyperspectral sensor system that collects electromagnetic reflectance data of the terrain. The system consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near Infrare...

  6. Physics Almost Saved the President! Electromagnetic Induction and the Assassination of James Garfield: A Teaching Opportunity in Introductory Physics

    ERIC Educational Resources Information Center

    Overduin, James; Molloy, Dana; Selway, Jim

    2014-01-01

    Electromagnetic induction is probably one of the most challenging subjects for students in the introductory physics sequence, especially in algebra-based courses. Yet it is at the heart of many of the devices we rely on today. To help students grasp and retain the concept, we have put together a simple and dramatic classroom demonstration that…

  7. Inductive shearing of drilling pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  8. Response of Electrical Activity in an Improved Neuron Model under Electromagnetic Radiation and Noise

    PubMed Central

    Zhan, Feibiao; Liu, Shenquan

    2017-01-01

    Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L) model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI) and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons. PMID:29209192

  9. Response of Electrical Activity in an Improved Neuron Model under Electromagnetic Radiation and Noise.

    PubMed

    Zhan, Feibiao; Liu, Shenquan

    2017-01-01

    Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L) model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI) and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons.

  10. Integrating surface and borehole geophysics in ground water studies - an example using electromagnetic soundings in south Florida

    USGS Publications Warehouse

    Paillet, Frederick; Hite, Laura; Carlson, Matthew

    1999-01-01

    Time domain surface electromagnetic soundings, borehole induction logs, and other borehole logging techniques are used to construct a realistic model for the shallow subsurface hydraulic properties of unconsolidated sediments in south Florida. Induction logs are used to calibrate surface induction soundings in units of pore water salinity by correlating water sample specific electrical conductivity with the electrical conductivity of the formation over the sampled interval for a two‐layered aquifer model. Geophysical logs are also used to show that a constant conductivity layer model is appropriate for the south Florida study. Several physically independent log measurements are used to quantify the dependence of formation electrical conductivity on such parameters as salinity, permeability, and clay mineral fraction. The combined interpretation of electromagnetic soundings and induction logs was verified by logging three validation boreholes, confirming quantitative estimates of formation conductivity and thickness in the upper model layer, and qualitative estimates of conductivity in the lower model layer.

  11. The turbulent recirculating flow field in a coreless induction furnace. A comparison of theoretical predictions with measurements

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation for the electromagnetic force field and the fluid flow field in a coreless induction furnace is presented. The fluid flow field was represented by writing the axisymmetric turbulent Navier-Stokes equation, containing the electromagnetic body force term. The electromagnetic body force field was calculated by using a technique of mutual inductances. The kappa-epsilon model was employed for evaluating the turbulent viscosity and the resultant differential equations were solved numerically. Theoretically predicted velocity fields are in reasonably good agreement with the experimental measurements reported by Hunt and Moore; furthermore, the agreement regarding the turbulent intensities are essentially quantitative. These results indicate that the kappa-epsilon model provides a good engineering representation of the turbulent recirculating flows occurring in induction furnaces. At this stage it is not clear whether the discrepancies between measurements and the predictions, which were not very great in any case, are attributable either to the model or to the measurement techniques employed.

  12. If Maxwell had worked between Ampère and Faraday: An historical fable with a pedagogical moral

    NASA Astrophysics Data System (ADS)

    Jammer, Max; Stachel, John

    1980-01-01

    If one drops the Faraday induction term from Maxwell's equations, they become exactly Galilei invariant. This suggests that if Maxwell had worked between Ampère and Faraday, he could have developed this Galilei-invariant electromagnetic theory so that Faraday's discovery would have confronted physicists with the dilemma: give up the Galileian relativity principle for electromagnetism (ether hypothesis), or modify it (special relativity). This suggests a new pedagogical approach to electromagnetic theory, in which the displacement current and the Galileian relativity principle are introduced before the induction term is discussed.

  13. Comments on "J. Singh et al., Performance assessment of factory and field calibrations for electromagnetic sensors in a loam soil [Agric. Water Manage. 196 (2018) 87-98

    USDA-ARS?s Scientific Manuscript database

    The article by Singh et al., (2018) provides a striking example of the wide range of soil water contents reported by several electromagnetic (EM) sensor technologies under field conditions. We commend the authors for taking the initiative to evaluate these sensors in the field and in situations wher...

  14. Moving belt metal detector

    NASA Astrophysics Data System (ADS)

    Nelson, Carl V.; Mendat, Deborah P.; Huynh, Toan B.

    2006-05-01

    The Johns Hopkins University Applied Physics Laboratory (APL) has developed a prototype metal detection survey system that will increase the search speed of conventional technology while maintaining high sensitivity. Higher search speeds will reduce the time to clear roads of landmines and improvised explosive devices (IED) and to locate unexploded ordnance (UXO) at Base Realignment and Closure (BRAC) sites, thus reducing remediation costs. The new survey sensor system is called the moving belt metal detector (MBMD) and operates by both increasing sensor speed over the ground while maintaining adequate sensor dwell time over the target for good signal-to-noise ratio (SNR) and reducing motion-induced sensor noise. The MBMD uses an array of metal detection sensors mounted on a flexible belt similar to a tank track. The belt motion is synchronized with the forward survey speed so individual sensor elements remain stationary relative to the ground. A single pulsed transmitter coil is configured to provide a uniform magnetic field along the length of the receivers in ground contact. Individual time-domain electromagnetic induction (EMI) receivers are designed to sense a single time-gate measurement of the total metal content. Each sensor module consists of a receiver coil, amplifier, digitizing electronics and a low power UHF wireless transmitter. This paper presents the survey system design concepts and metal detection data from various targets at several survey speeds. Although the laboratory prototype is designed to demonstrate metal detection survey speeds up to 10 m/s, higher speeds are achievable with a larger sensor array. In addition, the concept can be adapted to work with other sensor technologies not previously considered for moving platforms.

  15. A resonant electromagnetic vibration energy harvester for intelligent wireless sensor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jing, E-mail: jingqiu@cqu.edu.cn; Wen, Yumei; Li, Ping

    Vibration energy harvesting is now receiving more interest as a means for powering intelligent wireless sensor systems. In this paper, a resonant electromagnetic vibration energy harvester (VEH) employing double cantilever to convert low-frequency vibration energy into electrical energy is presented. The VEH is made up of two cantilever beams, a coil, and magnetic circuits. The electric output performances of the proposed electromagnetic VEH have been investigated. With the enhancement of turns number N, the optimum peak power of electromagnetic VEH increases sharply and the resonance frequency deceases gradually. When the vibration acceleration is 0.5 g, we obtain the optimum output voltagemore » and power of 9.04 V and 50.8 mW at frequency of 14.9 Hz, respectively. In a word, the prototype device was successfully developed and the experimental results exhibit a great enhancement in the output power and bandwidth compared with other traditional electromagnetic VEHs. Remarkably, the proposed resonant electromagnetic VEH have great potential for applying in intelligent wireless sensor systems.« less

  16. Microfabricated sensors for the measurement of electromagnetic fields in biological tissues

    NASA Astrophysics Data System (ADS)

    Monberg, James; Henning, Albert K.

    1995-09-01

    Public awareness of the risks of exposure to electromagnetic radiation has grown over the past ten yeras. The effects of power lines on human and animal health have drawn particular attention. Some longitudinal studies of cancer rates near power lines show a significant correlation, while others show a null result. The studies have suffered from inadequate sensors for the measurement of electromagnetic radiation in vivo. In this work, we describe the design, construction, and testing of electrically passive, microfabricated single-pole antennas and coils. These sensors will be used in vivo to study the effects of electromagnetic radiation on animals. Our testing to date has been limited to in vitro studies of the magnetic field probes. Magnetic field pickup coils were fabricated with up to 100 turns, over a length of up to 1000 micrometers . Measurements were carried out with the sensors in air, and in water of various saline concentrations. Magnetic fields were applied using a Helmholtz coil. Both dc and ac fields were applied. The results indicate that small-area measurements of electromagnetic fields in vitro can be made successfully, provided adequate shielding and amplification are used.

  17. An analysis of how electromagnetic induction and Faraday's law are presented in general physics textbooks, focusing on learning difficulties

    NASA Astrophysics Data System (ADS)

    Guisasola, Jenaro; Zuza, Kristina; Almudi, José-Manuel

    2013-07-01

    Textbooks are a very important tool in the teaching-learning process and influence important aspects of the process. This paper presents an analysis of the chapter on electromagnetic induction and Faraday's law in 19 textbooks on general physics for first-year university courses for scientists and engineers. This analysis was based on criteria formulated from the theoretical framework of electromagnetic induction in classical physics and students' learning difficulties concerning these concepts. The aim of the work presented here is not to compare a textbook against the ideal book, but rather to try and find a series of explanations, examples, questions, etc that provide evidence on how the topic is presented in relation to the criteria above. It concludes that despite many aspects being covered properly, there are others that deserve greater attention.

  18. Landmine detection using two-tapped joint orthogonal matching pursuits

    NASA Astrophysics Data System (ADS)

    Goldberg, Sean; Glenn, Taylor; Wilson, Joseph N.; Gader, Paul D.

    2012-06-01

    Joint Orthogonal Matching Pursuits (JOMP) is used here in the context of landmine detection using data obtained from an electromagnetic induction (EMI) sensor. The response from an object containing metal can be decomposed into a discrete spectrum of relaxation frequencies (DSRF) from which we construct a dictionary. A greedy iterative algorithm is proposed for computing successive residuals of a signal by subtracting away the highest matching dictionary element at each step. The nal condence of a particular signal is a combination of the reciprocal of this residual and the mean of the complex component. A two-tap approach comparing signals on opposite sides of the geometric location of the sensor is examined and found to produce better classication. It is found that using only a single pursuit does a comparable job, reducing complexity and allowing for real-time implementation in automated target recognition systems. JOMP is particularly highlighted in comparison with a previous EMI detection algorithm known as String Match.

  19. 2005 AG20/20 Annual Review

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; McKellip, Rodney D.

    2005-01-01

    Topics covered include: Implementation and Validation of Sensor-Based Site-Specific Crop Management; Enhanced Management of Agricultural Perennial Systems (EMAPS) Using GIS and Remote Sensing; Validation and Application of Geospatial Information for Early Identification of Stress in Wheat; Adapting and Validating Precision Technologies for Cotton Production in the Mid-Southern United States - 2004 Progress Report; Development of a System to Automatically Geo-Rectify Images; Economics of Precision Agriculture Technologies in Cotton Production-AG 2020 Prescription Farming Automation Algorithms; Field Testing a Sensor-Based Applicator for Nitrogen and Phosphorus Application; Early Detection of Citrus Diseases Using Machine Vision and DGPS; Remote Sensing of Citrus Tree Stress Levels and Factors; Spectral-based Nitrogen Sensing for Citrus; Characterization of Tree Canopies; In-field Sensing of Shallow Water Tables and Hydromorphic Soils with an Electromagnetic Induction Profiler; Maintaining the Competitiveness of Tree Fruit Production Through Precision Agriculture; Modeling and Visualizing Terrain and Remote Sensing Data for Research and Education in Precision Agriculture; Thematic Soil Mapping and Crop-Based Strategies for Site-Specific Management; and Crop-Based Strategies for Site-Specific Management.

  20. Nuclear Electromagnetic Pulse Review

    NASA Astrophysics Data System (ADS)

    Dinallo, Michael

    2011-04-01

    Electromagnetic Pulse (EMP) from nuclear detonations have been observed for well over half a century. Beginning in the mid-to-late 1950s, the physics and modeling of EMP has been researched and will continue into the foreseeable future. The EMP environment propagates hundreds of miles from its origins and causes interference for all types of electronic instrumentation. This includes military, municipal and industry based electronic infrastructures such as power generation and distribution, command and control systems, systems used in financial and emergency services, electronic monitoring and communications networks, to mention some key infrastructure elements. Research into EMP has included originating physics, propagation and electromagnetic field coupling analyses and measurement-sensor development. Several methods for calculating EMP induced transient interference (voltage and current induction) will be briefly discussed and protection techniques reviewed. These methods can be mathematically simple or involve challenging boundary value solution techniques. A few illustrative calculations will demonstrate the concern for electronic system operability. Analyses such as the Wunsch-Bell model for electronic upset or damage, and the Singularity Expansion Method (SEM) put forth by Dr. Carl Baum, will facilitate the concern for EMP effects. The SEM determines the voltages and currents induced from transient electromagnetic fields in terms of natural modes of various types of electronic platforms (aerospace vehicles or land-based assets - fixed or mobile). Full-scale facility and laboratory simulation and response measurement approaches will be discussed. The talk will conclude with a discussion of some present research activities.

  1. Spin Pit Application of Image Derotated Holographic Interferometry.

    DTIC Science & Technology

    1980-09-01

    temperatures resulting from induction heating of the test structuore through the interaction of the electromagnets and the magnetic ring. Subsequent...reference beam, and a Tektronix Model 7633 storage oscilloscope. When the laser is fired, a trigger signal from the laser power supply initiates the...rapid induction heating of the test structure due to the interaction of the electromagnets and the magnetic ring was evi(lent with the switch from dc to

  2. Subsurface Electromagnetic Induction Imaging for Unexploded Ordnance Detection

    DTIC Science & Technology

    2012-01-01

    Baum, 1999; Pasion and Oldenburg, 2001). The EMI- response problem has been solved analytically for spheroids (Ao et al., 2002; Barrowes et al., 2004...components. We also have made explicit the fact that the polarizabilities are always positive ( Pasion et al., 2008); we impose this constraint in the...Wiley-Blackwell, Chichester, UK. Pasion , L.R., Oldenburg, D.W., 2001. A discrimination algorithm for UXO using time- domain electromagnetic induction

  3. Finite Element Analysis in the Estimation of Air-Gap Torque and Surface Temperature of Induction Machine

    NASA Astrophysics Data System (ADS)

    Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.

    2017-08-01

    This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.

  4. Numerical calculation of primary slot leakage inductance of a Single-sided HTS linear induction motor used for linear metro

    NASA Astrophysics Data System (ADS)

    Li, Dong; Wen, Yinghong; Li, Weili; Fang, Jin; Cao, Junci; Zhang, Xiaochen; Lv, Gang

    2017-03-01

    In the paper, the numerical method calculating asymmetric primary slot leakage inductances of Single-sided High-Temperature Superconducting (HTS) Linear Induction Motor (HTS LIM) is presented. The mathematical and geometric models of three-dimensional nonlinear transient electromagnetic field are established and the boundary conditions are also given. The established model is solved by time-stepping Finite Element Method (FEM). Then, the three-phase asymmetric primary slot leakage inductances under different operation conditions are calculated by using the obtained electromagnetic field distribution. The influences of the special effects such as longitudinal end effects, transversal edge effects, etc. on the primary slot leakage inductance are investigated. The presented numerical method is validated by experiments carried out on a 3.5 kW prototype with copper wires which has the same structures with the HTS LIM.

  5. Automatic classification of unexploded ordnance applied to Spencer Range live site for 5x5 TEMTADS sensor

    NASA Astrophysics Data System (ADS)

    Sigman, John B.; Barrowes, Benjamin E.; O'Neill, Kevin; Shubitidze, Fridon

    2013-06-01

    This paper details methods for automatic classification of Unexploded Ordnance (UXO) as applied to sensor data from the Spencer Range live site. The Spencer Range is a former military weapons range in Spencer, Tennessee. Electromagnetic Induction (EMI) sensing is carried out using the 5x5 Time-domain Electromagnetic Multi-sensor Towed Array Detection System (5x5 TEMTADS), which has 25 receivers and 25 co-located transmitters. Every transmitter is activated sequentially, each followed by measuring the magnetic field in all 25 receivers, from 100 microseconds to 25 milliseconds. From these data target extrinsic and intrinsic parameters are extracted using the Differential Evolution (DE) algorithm and the Ortho-Normalized Volume Magnetic Source (ONVMS) algorithms, respectively. Namely, the inversion provides x, y, and z locations and a time series of the total ONVMS principal eigenvalues, which are intrinsic properties of the objects. The eigenvalues are fit to a power-decay empirical model, the Pasion-Oldenburg model, providing 3 coefficients (k, b, and g) for each object. The objects are grouped geometrically into variably-sized clusters, in the k-b-g space, using clustering algorithms. Clusters matching a priori characteristics are identified as Targets of Interest (TOI), and larger clusters are automatically subclustered. Ground Truths (GT) at the center of each class are requested, and probability density functions are created for clusters that have centroid TOI using a Gaussian Mixture Model (GMM). The probability functions are applied to all remaining anomalies. All objects of UXO probability higher than a chosen threshold are placed in a ranked dig list. This prioritized list is scored and the results are demonstrated and analyzed.

  6. A field test of electromagnetic geophysical techniques for locating simulated in situ mining leach solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tweeton, D.R.; Hanson, J.C.; Friedel, M.J.

    1994-01-01

    The US Bureau of Mines, The University of Arizona, Sandia National Laboratories, and Zonge Engineering and Research Organization, Inc., conducted cooperative field tests of six electromagnetic (EM) geophysical methods to compare their effectiveness in locating a brine solution simulating in situ leach solution or a high-conductivity plume of contamination. The brine was approximately 160 m below the surface. The testsite was the University's San Xavier experimental mine near Tucson, AZ. Geophysical surveys using surface and surface-borehole, time-domain electromagnetic (TEM) induction; surface controlled-source audiofrequency magnetotellurics (CSAMT); surface-borehole, frequency-domain electromagnetic (FEM) induction; crosshole FEM; and surface magnetic field ellipticity were conducted beforemore » and during brine injection. The surface TEM data showed a broad decrease in resistivity. CSAMT measurements with the conventional orientation did not detect the brine, but measurements with another orientation indicated some decrease in resistivity. The surface-borehole and crosshole methods located a known fracture and other fracture zones inferred from borehole induction logs. Surface magnetic field ellipticity data showed a broad decrease in resistivity at depth following brine injection.« less

  7. High Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Framgos, William

    1999-06-01

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  8. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2002-11-20

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  9. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring, and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex

    2000-06-01

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach (Song et al., 1997). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  10. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2001-06-10

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  11. The History of Electromagnetic Induction Techniques in Soil Survey

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, Jim

    2014-05-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales.

  12. Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light.

    PubMed

    Tan, Jiubin; Lu, Zhengang

    2007-02-05

    This paper presents the experimental study on an inductive mesh composed of contiguous metallic rings fabricated using UV-lithography on quartz glass. Experimental results indicate that, at the same period and linewidth as square mesh, ring mesh has better transmissivity for its higher obscuration ratio, stronger electromagnetic shielding performance for its smaller maximum aperture, and less degradation of imaging quality for its lower ratio and uniform distribution of high order diffraction energy. It is therefore concluded that this kind of ring mesh can be used as high-pass filters to provide electromagnetic shielding of optical transparent elements.

  13. Magneto acoustic emission apparatus for testing materials for embrittlement

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Min, Namkung (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1990-01-01

    A method and apparatus for testing steel components for temper embrittlement uses magneto-acoustic emission to nondestructively evaluate the component. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an ac current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a dc current to the electromagnets, then turning the magnets off and observing the residual magnetic induction.

  14. 40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... range of low scale, for five minutes without adjustment. (7) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... vary as a result of electromagnetic radiation and induction devices normally found in the automotive...

  15. 40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... range of low scale, for five minutes without adjustment. (7) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... vary as a result of electromagnetic radiation and induction devices normally found in the automotive...

  16. 40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... range of low scale, for five minutes without adjustment. (7) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... vary as a result of electromagnetic radiation and induction devices normally found in the automotive...

  17. 40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... range of low scale, for five minutes without adjustment. (7) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... vary as a result of electromagnetic radiation and induction devices normally found in the automotive...

  18. 40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... range of low scale, for five minutes without adjustment. (7) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... vary as a result of electromagnetic radiation and induction devices normally found in the automotive...

  19. Electromagnetic compatibility and safety design of a patient compliance-free, inductive implant charger.

    PubMed

    Theodoridis, Michael P; Mollov, Stefan V

    2014-10-01

    This article presents the design of a domestic, radiofrequency induction charger for implants toward compliance with the Federal Communications Commission safety and electromagnetic compatibility regulations. The suggested arrangement does not impose any patient compliance requirements other than the use of a designated bed for night sleep, and therefore can find a domestic use. The method can be applied to a number of applications; a rechargeable pacemaker is considered as a case study. The presented work has proven that it is possible to realize a fully compliant inductive charging system with minimal patient interaction, and has generated important information for consideration by the designers of inductive charging systems. Experimental results have verified the validity of the theoretical findings.

  20. Apparatus and method for detecting electromagnetic radiation using electron photoemission in a micromechanical sensor

    DOEpatents

    Datskos, Panagiotis G.; Rajic, Slobodan; Datskou, Irene C.; Egert, Charles M.

    2002-01-01

    A micromechanical sensor and method for detecting electromagnetic radiation involve producing photoelectrons from a metal surface in contact with a semiconductor. The photoelectrons are extracted into the semiconductor, which causes photo-induced bending. The resulting bending is measured, and a signal corresponding to the measured bending is generated and processed. A plurality of individual micromechanical sensors can be arranged in a two-dimensional matrix for imaging applications.

  1. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  2. Poynting-vector based method for determining the bearing and location of electromagnetic sources

    DOEpatents

    Simons, David J.; Carrigan, Charles R.; Harben, Philip E.; Kirkendall, Barry A.; Schultz, Craig A.

    2008-10-21

    A method and apparatus is utilized to determine the bearing and/or location of sources, such as, alternating current (A.C.) generators and loads, power lines, transformers and/or radio-frequency (RF) transmitters, emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. When both a source and field sensors (electric and magnetic) are static, a bearing to the electromagnetic source can be obtained. If a single set of electric (E) and magnetic (B) sensors are in motion, multiple measurements permit location of the source. The method can be extended to networks of sensors allowing determination of the location of both stationary and moving sources.

  3. Advanced high-temperature electromagnetic pump

    NASA Technical Reports Server (NTRS)

    Gahan, J. W.; Powell, A. H.

    1972-01-01

    Three phase helical, electromagnetic induction pump for use as boiler feed pump in potassium Rankine-cycle power system is described. Techniques for fabricating components of pump are discussed. Specifications of pump are analyzed.

  4. Vehicle Classification Using the Discrete Fourier Transform with Traffic Inductive Sensors.

    PubMed

    Lamas-Seco, José J; Castro, Paula M; Dapena, Adriana; Vazquez-Araujo, Francisco J

    2015-10-26

    Inductive Loop Detectors (ILDs) are the most commonly used sensors in traffic management systems. This paper shows that some spectral features extracted from the Fourier Transform (FT) of inductive signatures do not depend on the vehicle speed. Such a property is used to propose a novel method for vehicle classification based on only one signature acquired from a sensor single-loop, in contrast to standard methods using two sensor loops. Our proposal will be evaluated by means of real inductive signatures captured with our hardware prototype.

  5. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow

    NASA Astrophysics Data System (ADS)

    Wahhab, H. A. Abdul; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.; Reda, M. N.

    2018-03-01

    In this work, electromagnetic induction technique of measuring void fraction in liquid/gas fuel flow was utilized. In order to improve the electric properties of liquid fuel, an iron oxide Fe3O4 nanoparticles at 3% was blended to enhance the liquid fuel magnetization. Experiments have been conducted for a wide range of liquid and gas superficial velocities. From the experimental results, it was realized that there is an existing linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for excitation coils, regardless of increase or decrease CNG bubbles distribution in liquid fuel flow. Therefore, it was revealed that the utilized method yielded quite reasonable account for measuring the void fraction, showing good agreement with the other available measurement techniques in the two-phase flow, and also with the published literature of the bubbly flow pattern. From the results of the present investigation, it has been proven that the electromagnetic induction is a feasible technique for the actual measurement of void fraction in a Diesel/CNG fuel flow.

  6. Identifying Electromagnetic Attacks against Airports

    NASA Astrophysics Data System (ADS)

    Kreth, A.; Genender, E.; Doering, O.; Garbe, H.

    2012-05-01

    This work presents a new and sophisticated approach to detect and locate the origin of electromagnetic attacks. At the example of an airport, a normal electromagnetic environment is defined, in which electromagnetic attacks shall be identified. After a brief consideration of the capabilities of high power electromagnetic sources to produce high field strength values, this contribution finally presents the approach of a sensor network, realizing the identification of electromagnetic attacks.

  7. Electromagnetic sensors for general lightning application

    NASA Technical Reports Server (NTRS)

    Baum, C. E.; Breen, E. L.; Onell, J. P.; Moore, C. B.; Sower, G. D.

    1980-01-01

    Electromagnetic sensors for general lightning applications in measuring environment are discussed as well as system response to the environment. This includes electric and magnetic fields, surface current and charge densities, and currents on conductors. Many EMP sensors are directly applicable to lightning measurements, but there are some special cases of lightning measurements involving direct strikes which require special design considerations for the sensors. The sensors and instrumentation used by NMIMT in collecting data on lightning at South Baldy peak in central New Mexico during the 1978 and 1979 lightning seasons are also discussed. The Langmuir Laboratory facilities and details of the underground shielded instrumentation room and recording equipment are presented.

  8. Computational Electromagnetic Modeling of SansEC(Trade Mark) Sensors

    NASA Technical Reports Server (NTRS)

    Smith, Laura J.; Dudley, Kenneth L.; Szatkowski, George N.

    2011-01-01

    This paper describes the preliminary effort to apply computational design tools to aid in the development of an electromagnetic SansEC resonant sensor composite materials damage detection system. The computational methods and models employed on this research problem will evolve in complexity over time and will lead to the development of new computational methods and experimental sensor systems that demonstrate the capability to detect, diagnose, and monitor the damage of composite materials and structures on aerospace vehicles.

  9. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen

    2012-01-01

    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  10. Intraluminal laser atherectomy with ultrasound and electromagnetic guidance

    NASA Astrophysics Data System (ADS)

    Gregory, Kenton W.; Aretz, H. Thomas; Martinelli, Michael A.; LeDet, Earl G.; Hatch, G. F.; Gregg, Richard E.; Sedlacek, Tomas; Haase, Wayne C.

    1991-05-01

    The MagellanTM coronary laser atherectomy system is described. It uses high- resolution ultrasound imaging and electromagnetic sensing to provide real-time guidance and control of laser therapy in the coronary arteries. The system consists of a flexible catheter, an electromagnetic navigation antenna, a sensor signal processor and a computer for image processing and display. The small, flexible catheter combines an ultrasound transducer and laser delivery optics, aimed at the artery wall, and an electromagnetic receiving sensor. An extra-corporeal electromagnetic transmit antenna, in combination with catheter sensors, locates the position of the ultrasound and laser beams in the artery. Navigation and ultrasound data are processed electronically to produce real-time, transverse, and axial cross-section images of the artery wall at selected locations. By exploiting the ability of ultrasound to image beneath the surface of artery walls, it is possible to identify candidate treatment sites and perform safe radial laser debulking of atherosclerotic plaque with reduced danger of perforation. The utility of the system in plaque identification and ablation is demonstrated with imaging and experimental results.

  11. Method and apparatus for using magneto-acoustic remanence to determine embrittlement

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Namkung, Min (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1992-01-01

    A method and apparatus for testing steel components for temperature embrittlement uses magneto-acoustic emission to nondestructively evaluate the component are presented. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an AC current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a DC current to the electromagnets and then by turning the magnets off and observing the residual magnetic induction.

  12. Systems and Methods for RFID-Enabled Pressure Sensing Apparatus

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Fink, Patrick W. (Inventor)

    2017-01-01

    Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications ("RSSI") of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.

  13. Systems and Methods for RFID-Enabled Dispenser

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Kennedy, Timothy F. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Byerly, Diane (Inventor)

    2015-01-01

    Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications ("RSSI") of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.

  14. Systems and Methods for RFID-Enabled Pressure Sensing Apparatus

    NASA Technical Reports Server (NTRS)

    Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Kennedy, Timothy F. (Inventor); Fink, Patrick W. (Inventor)

    2016-01-01

    Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications ("RSSI") of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.

  15. System and Method for RFID-Enabled Information Collection

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Kennedy, Timothy F. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Byerly, Diane (Inventor)

    2016-01-01

    Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications ("RSSI") of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.

  16. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  17. Design of a Pressure Sensor Based on Optical Fiber Bragg Grating Lateral Deformation

    PubMed Central

    Urban, Frantisek; Kadlec, Jaroslav; Vlach, Radek; Kuchta, Radek

    2010-01-01

    This paper describes steps involved in the design and realization of a new type of pressure sensor based on the optical fiber Bragg grating. A traditional pressure sensor has very limited usage in heavy industrial environments, particularly in explosive or electromagnetically noisy environments. Utilization of optics in these environments eliminates all surrounding influences. An initial motivation for our development was the research, experimental validation, and realization of a complex smart pressure sensor based on the optical principle. The main benefit of this solution consists of increasing sensitivity, resistance to electromagnetic interference, dimensions, and potential increased accuracy. PMID:22163521

  18. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    PubMed Central

    Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar

    2015-01-01

    We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188

  19. High dynamic range electric field sensor for electromagnetic pulse detection.

    PubMed

    Lin, Che-Yun; Wang, Alan X; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T

    2011-08-29

    We design a high dynamic range electric field sensor based on domain inverted electro-optic (E-O) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices. Experimental results demonstrate effective detection of electric field from 16.7V/m to 750KV/m at a frequency of 1GHz, and spurious free measurement range of 70dB.

  20. Monitoring cure of composite resins using frequency dependent electromagnetic sensing techniques

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D. E.; Hoff, M. S.; Loos, A. C.; Freeman, W. T., Jr.; Eichinger, D. A.

    1988-01-01

    A nondestructive in situ measurement technique has been developed for monitoring and measuring the cure processing properties of composite resins. Frequency dependent electromagnetic sensors (FDEMS) were used to directly measure resin viscosity during cure. The effects of the cure cycle and resin aging on the viscosity during cure were investigated using the sensor. Viscosity measurements obtained using the sensor are compared with the viscosities calculated by the Loos-Springer cure process model. Good overall agreement was obtained except for the aged resin samples.

  1. Differentiation of nonferrous metal particles in lubrication oil using an electrical conductivity measurement-based inductive sensor

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Zhang, Hongpeng; Wang, Man; Chen, Haiquan

    2018-02-01

    A method that measures the electrical conductivity of metal based on monitoring the inductance changes of coils via an inductive sensor is introduced in this work to differentiate metal particles in lubrication oil. Theoretical analysis coupled with experimentation is employed to differentiate varieties of nonferrous metal particles, including copper and aluminum particles, ranging from 860 μm to 880 μm in diameter. The results show that the inductive sensor is capable of the identification and differentiation of nonferrous metal particles in lubrication oil based on the electrical conductivity measurement. The concept demonstrated in this paper can be extended to inductive sensors in metal particle detection and other scientific and industrial applications.

  2. Inductance position sensor for pneumatic cylinder

    NASA Astrophysics Data System (ADS)

    Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan

    2018-04-01

    The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  3. Fallback options for airgap sensor fault of an electromagnetic suspension system

    NASA Astrophysics Data System (ADS)

    Michail, Konstantinos; Zolotas, Argyrios C.; Goodall, Roger M.

    2013-06-01

    The paper presents a method to recover the performance of an electromagnetic suspension under faulty airgap sensor. The proposed control scheme is a combination of classical control loops, a Kalman Estimator and analytical redundancy (for the airgap signal). In this way redundant airgap sensors are not essential for reliable operation of this system. When the airgap sensor fails the required signal is recovered using a combination of a Kalman estimator and analytical redundancy. The performance of the suspension is optimised using genetic algorithms and some preliminary robustness issues to load and operating airgap variations are discussed. Simulations on a realistic model of such type of suspension illustrate the efficacy of the proposed sensor tolerant control method.

  4. A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics.

    PubMed

    Mazin, Benjamin A; Bumble, Bruce; Meeker, Seth R; O'Brien, Kieran; McHugh, Sean; Langman, Eric

    2012-01-16

    Microwave Kinetic Inductance Detectors, or MKIDs, have proven to be a powerful cryogenic detector technology due to their sensitivity and the ease with which they can be multiplexed into large arrays. A MKID is an energy sensor based on a photon-variable superconducting inductance in a lithographed microresonator, and is capable of functioning as a photon detector across the electromagnetic spectrum as well as a particle detector. Here we describe the first successful effort to create a photon-counting, energy-resolving ultraviolet, optical, and near infrared MKID focal plane array. These new Optical Lumped Element (OLE) MKID arrays have significant advantages over semiconductor detectors like charge coupled devices (CCDs). They can count individual photons with essentially no false counts and determine the energy and arrival time of every photon with good quantum efficiency. Their physical pixel size and maximum count rate is well matched with large telescopes. These capabilities enable powerful new astrophysical instruments usable from the ground and space. MKIDs could eventually supplant semiconductor detectors for most astronomical instrumentation, and will be useful for other disciplines such as quantum optics and biological imaging.

  5. Imaging cerebral haemorrhage with magnetic induction tomography: numerical modelling.

    PubMed

    Zolgharni, M; Ledger, P D; Armitage, D W; Holder, D S; Griffiths, H

    2009-06-01

    Magnetic induction tomography (MIT) is a new electromagnetic imaging modality which has the potential to image changes in the electrical conductivity of the brain due to different pathologies. In this study the feasibility of detecting haemorrhagic cerebral stroke with a 16-channel MIT system operating at 10 MHz was investigated. The finite-element method combined with a realistic, multi-layer, head model comprising 12 different tissues, was used for the simulations in the commercial FE package, Comsol Multiphysics. The eddy-current problem was solved and the MIT signals computed for strokes of different volumes occurring at different locations in the brain. The results revealed that a large, peripheral stroke (volume 49 cm(3)) produced phase changes that would be detectable with our currently achievable instrumentation phase noise level (17 m degrees ) in 70 (27%) of the 256 exciter/sensor channel combinations. However, reconstructed images showed that a lower noise level than this, of 1 m degrees , was necessary to obtain good visualization of the strokes. The simulated MIT measurements were compared with those from an independent transmission-line-matrix model in order to give confidence in the results.

  6. Electromagnetic containerless processing requirements and recommended facility concept and capabilities for space lab

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Bloom, H. L.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.

    1974-01-01

    Containerless melting, reaction, and solidification experiments and processes which potentially can lead to new understanding of material science and production of new or improved materials in the weightless space environment are reviewed in terms of planning for spacelab. Most of the experiments and processes discussed are amenable to the employment of electromagnetic position control and electromagnetic induction or electron beam heating and melting. The spectrum of relevant properties of materials, which determine requirements for a space laboratory electromagnetic containerless processing facility are reviewed. Appropriate distributions and associated coil structures are analyzed and compared on the basis of efficiency, for providing the functions of position sensing, control, and induction heating. Several coil systems are found capable of providing these functions. Exchangeable modular coils in appropriate sizes are recommended to achieve the maximum power efficiencies, for a wide range of specimen sizes and resistivities, in order to conserve total facility power.

  7. Advancement of Analysis Method for Electromagnetic Screening Effect of Mountain Tunnel

    NASA Astrophysics Data System (ADS)

    Okutani, Tamio; Nakamura, Nobuyuki; Terada, Natsuki; Fukuda, Mitsuyoshi; Tate, Yutaka; Inada, Satoshi; Itoh, Hidenori; Wakao, Shinji

    In this paper we report advancement of an analysis method for electromagnetic screening effect of mountain tunnel with a multiple conductor circuit model. On A.C. electrified railways it is a great issue to manage the influence of electromagnetic induction caused by feeding circuits. Tunnels are said to have a screening effect to reduce the electromagnetic induction because a large amount of steel is used in the tunnels. But recently the screening effect is less expected because New Austrian Tunneling Method (NATM), in which the amount of steel used is less than in conventional methods, is adopted as the standard tunneling method for constructing mountain tunnels. So we measured and analyzed the actual screening effect of mountain tunnels constructed with NATM. In the process of the analysis we have advanced a method to analyze the screening effect more precisely. In this method we can adequately model tunnel structure as a part of multiple conductor circuit.

  8. Unitary Shaft-Angle and Shaft-Speed Sensor Assemblies

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.; Smith, Dennis A.

    2006-01-01

    The figure depicts a unit that contains a rotary-position or a rotary-speed sensor, plus electronic circuitry necessary for its operation, all enclosed in a single housing with a shaft for coupling to an external rotary machine. This rotation sensor unit is complete: when its shaft is mechanically connected to that of the rotary machine and it is supplied with electric power, it generates an output signal directly indicative of the rotary position or speed, without need for additional processing by other circuitry. The incorporation of all of the necessary excitatory and readout circuitry into the housing (in contradistinction to using externally located excitatory and/or readout circuitry) in a compact arrangement is the major difference between this unit and prior rotation-sensor units. The sensor assembly inside the housing includes excitatory and readout integrated circuits mounted on a circular printed-circuit board. In a typical case in which the angle or speed transducer(s) utilize electromagnetic induction, the assembly also includes another circular printed-circuit board on which the transducer windings are mounted. A sheet of high-magnetic permeability metal ("mu metal") is placed between the winding board and the electronic-circuit board to prevent spurious coupling of excitatory signals from the transducer windings to the readout circuits. The housing and most of the other mechanical hardware can be common to a variety of different sensor designs. Hence, the unit can be configured to generate any of variety of outputs by changing the interior sensor assembly. For example, the sensor assembly could contain an analog tachometer circuit that generates an output proportional (in both magnitude and sign or in magnitude only) to the speed of rotation.

  9. Close-in detection system for the Mine Hunter/Killer program

    NASA Astrophysics Data System (ADS)

    Bishop, Steven S.; Campana, Stephen B.; Lang, David A.; Wiggins, Carl M.

    2000-08-01

    The Close-in Detection (CID) System is the vehicle-mounted multisensor landmine detection system for the Army CECOM Night Vision Electronic Sensors Directorate (NVESD) Mine Hunter/Killer (MH/K) Program. The CID System is being developed by BAE Systems in San Diego, CA. TRW Systems and Information Technology Group in Arlington, VA and a team of specialists for ERIM, E-OIR, SNL, and APL/JHU support NVESD in the development, analysis and testing of the CID and associated signal and data processing. The CID System includes tow down-looking sensor arrays: a ground- penetrating radar (GPR) array, and a set of Electro-Magnetic Induction (EMI) coils for metal detection. These arrays span a 3-meter wide swath in front of a high mobility, multipurpose wheeled vehicle. The system also includes a forward looking IR imaging system mounted on the roof of the vehicle and covering a swath of the road ahead of the vehicle. Signals from each sensor are processed separately to detect and localize objects of interest. Features of candidate objects are integrated in a processor that uses them to discriminates between anti-tank miens and clutter. Mine locations are passed to the neutralization subsystem of MH/K. This paper reviews the design of the sensors and signal processing of the CID system and gives examples and analysis of recent test results at the NVESD mine lanes. The strengths and weaknesses of each sensor are discussed, and the application of multisensor fusion is illustrated.

  10. Spatio-temporal interpolation of soil moisture in 3D+T using automated sensor network data

    NASA Astrophysics Data System (ADS)

    Gasch, C.; Hengl, T.; Magney, T. S.; Brown, D. J.; Gräler, B.

    2014-12-01

    Soil sensor networks provide frequent in situ measurements of dynamic soil properties at fixed locations, producing data in 2- or 3-dimensions and through time (2D+T and 3D+T). Spatio-temporal interpolation of 3D+T point data produces continuous estimates that can then be used for prediction at unsampled times and locations, as input for process models, and can simply aid in visualization of properties through space and time. Regression-kriging with 3D and 2D+T data has successfully been implemented, but currently the field of geostatistics lacks an analytical framework for modeling 3D+T data. Our objective is to develop robust 3D+T models for mapping dynamic soil data that has been collected with high spatial and temporal resolution. For this analysis, we use data collected from a sensor network installed on the R.J. Cook Agronomy Farm (CAF), a 37-ha Long-Term Agro-Ecosystem Research (LTAR) site in Pullman, WA. For five years, the sensors have collected hourly measurements of soil volumetric water content at 42 locations and five depths. The CAF dataset also includes a digital elevation model and derivatives, a soil unit description map, crop rotations, electromagnetic induction surveys, daily meteorological data, and seasonal satellite imagery. The soil-water sensor data, combined with the spatial and temporal covariates, provide an ideal dataset for developing 3D+T models. The presentation will include preliminary results and address main implementation strategies.

  11. The application of magnetic gradiometry and electromagnetic induction at a former radioactive waste disposal site.

    PubMed

    Rucker, Dale Franklin

    2010-04-01

    A former radioactive waste disposal site is surveyed with two non-intrusive geophysical techniques, including magnetic gradiometry and electromagnetic induction. Data were gathered over the site by towing the geophysical equipment mounted to a non-electrically conductive and non-magnetic fibre-glass cart. Magnetic gradiometry, which detects the location of ferromagnetic material, including iron and steel, was used to map the existence of a previously unknown buried pipeline formerly used in the delivery of liquid waste to a number of surface disposal trenches and concrete vaults. The existence of a possible pipeline is reinforced by historical engineering drawing and photographs. The electromagnetic induction (EMI) technique was used to map areas of high and low electrical conductivity, which coincide with the magnetic gradiometry data. The EMI also provided information on areas of high electrical conductivity unrelated to a pipeline network. Both data sets demonstrate the usefulness of surface geophysical surveillance techniques to minimize the risk of exposure in the event of future remediation efforts.

  12. Flow-field differences and electromagnetic-field properties of air and N2 inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Yu, Minghao; Yamada, Kazuhiko; Takahashi, Yusuke; Liu, Kai; Zhao, Tong

    2016-12-01

    A numerical model for simulating air and nitrogen inductively coupled plasmas (ICPs) was developed considering thermochemical nonequilibrium and the third-order electron transport properties. A modified far-field electromagnetic model was introduced and tightly coupled with the flow field equations to describe the Joule heating and inductive discharge phenomena. In total, 11 species and 49 chemical reactions of air, which include 5 species and 8 chemical reactions of nitrogen, were employed to model the chemical reaction process. The internal energy transfers among translational, vibrational, rotational, and electronic energy modes of chemical species were taken into account to study thermal nonequilibrium effects. The low-Reynolds number Abe-Kondoh-Nagano k-ɛ turbulence model was employed to consider the turbulent heat transfer. In this study, the fundamental characteristics of an ICP flow, such as the weak ionization, high temperature but low velocity in the torch, and wide area of the plasma plume, were reproduced by the developed numerical model. The flow field differences between the air and nitrogen ICP flows inside the 10-kW ICP wind tunnel were made clear. The interactions between the electromagnetic and flow fields were also revealed for an inductive discharge.

  13. Maxwell's inductions from Faraday's induction law

    NASA Astrophysics Data System (ADS)

    Redžić, D. V.

    2018-03-01

    In article 598 of his Treatise on Electricity and Magnetism (Maxwell 1891 A Treatise on Electricity and Magnetism (Oxford: Clarendon)), Maxwell gives a seminal analysis of Faraday's law of electromagnetic induction. We present a detailed account of the analysis, attempting to reconstruct the missing steps, and discuss some related matters.

  14. EMPACT 3D: an advanced EMI discrimination sensor for CONUS and OCONUS applications

    NASA Astrophysics Data System (ADS)

    Keranen, Joe; Miller, Jonathan S.; Schultz, Gregory; Sander-Olhoeft, Morgan; Laudato, Stephen

    2018-04-01

    We recently developed a new, man-portable, electromagnetic induction (EMI) sensor designed to detect and classify small, unexploded sub-munitions and discriminate them from non-hazardous debris. The ability to distinguish innocuous metal clutter from potentially hazardous unexploded ordnance (UXO) and other explosive remnants of war (ERW) before excavation can significantly accelerate land reclamation efforts by eliminating time spent removing harmless scrap metal. The EMI sensor employs a multi-axis transmitter and receiver configuration to produce data sufficient for anomaly discrimination. A real-time data inversion routine produces intrinsic and extrinsic anomaly features describing the polarizability, location, and orientation of the anomaly under test. We discuss data acquisition and post-processing software development, and results from laboratory and field tests demonstrating the discrimination capability of the system. Data acquisition and real-time processing emphasize ease-of-use, quality control (QC), and display of discrimination results. Integration of the QC and discrimination methods into the data acquisition software reduces the time required between sensor data collection and the final anomaly discrimination result. The system supports multiple concepts of operations (CONOPs) including: 1) a non-GPS cued configuration in which detected anomalies are discriminated and excavated immediately following the anomaly survey; 2) GPS integration to survey multiple anomalies to produce a prioritized dig list with global anomaly locations; and 3) a dynamic mapping configuration supporting detection followed by discrimination and excavation of targets of interest.

  15. A new EMI system for detection and classification of challenging targets

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    Advanced electromagnetic induction (EMI) sensors currently feature multi-axis illumination of targets and tri-axial vector sensing (e.g., MetalMapper), or exploit multi-static array data acquisition (e.g., TEMTADS). They produce data of high density, quality, and diversity, and have been combined with advanced EMI models to provide superb classification performance relative to the previous generation of single-axis, monostatic sensors. However, these advances yet have to improve significantly our ability to classify small, deep, and otherwise challenging targets. Particularly, recent live-site discrimination studies at Camp Butner, NC and Camp Beale, CA have revealed that it is more challenging to detect and discriminate small munitions (with calibers ranging from 20 mm to 60 mm) than larger ones. In addition, a live-site test at the Massachusetts Military Reservation, MA highlighted the difficulties for current sensors to classify large, deep, and overlapping targets with high confidence. There are two main approaches to overcome these problems: 1) adapt advanced EMI models to the existing systems and 2) improve the detection limits of current sensors by modifying their hardware. In this paper we demonstrate a combined software/hardware approach that will provide extended detection range and spatial resolution to next-generation EMI systems; we analyze and invert EMI data to extract classification features for small and deep targets; and we propose a new system that features a large transmitter coil.

  16. ELECTROMAGNETIC AND ELECTROSTATIC GENERATORS: ANNOTATED BIBLIOGRAPHY.

    DTIC Science & Technology

    generator with split poles, ultrasonic-frequency generator, unipolar generator, single-phase micromotors , synchronous motor, asynchronous motor...asymmetrical rotor, magnetic circuit, dc micromotors , circuit for the automatic control of synchronized induction motors, induction torque micromotors , electric

  17. The QuakeFinder Magnetometer Network - a Platform for Earth and Space Science Research

    NASA Astrophysics Data System (ADS)

    Bleier, T.; Kappler, K. N.; Schneider, D.

    2016-12-01

    QuakeFinder (QF) is a humanitarian research and development project attempting to characterize earth-emitting electromagnetic (EM) signals as potential precursors to earthquakes. Beginning in 2005, QF designed, built, deployed and now maintains an array of 165 remote monitoring stations in 6 countries (US/California, Taiwan, Greece, Indonesia, Peru and Chile). Having amassed approximately 70 TB of data and greater than 140 earthquakes (M4+), QF is focused on the data analysis and signal processing algorithms in our effort to enable a forecasting capability. QF's autonomous stations, located along major fault lines, collect and transmit electromagnetic readings from 3-axis induction magnetometers and positive/negative ion sensors, a geophone, as well as various station health status and local conditions. The induction magnetometers, oriented N-S,E-W and vertically, have a 40 nT range and 1 pT sensitivity. Data is continuously collected at 50 samples/sec (sps), GPS time-stamped and transmitted, primarily through cell phone networks, to our data center in Palo Alto, California. The induction magnetometers routinely detect subtle geomagnetic and ionospheric disturbances as observed worldwide. QF seeks to make available both historic data and the array platform to strategic partners in the EM-related research and operation fields. The QF system will be described in detail with examples of local and regional geomagnetic activity. The stations are robust and will be undergoing a system-level upgrade in the near future. Domestically, QF maintains a 98% `up time' among the 120 stations in California while internationally our metric is typically near 80%. Irregular cell phone reception is chief among the reasons for outages although little data has been lost as the stations can store up to 90 days of data. These data are retrieved by QF personnel or, when communication is reestablished, the QF data ingest process automatically updates the database. Planned station upgrades include a new processor and ARM board with additional data channels, increased robustness in station health monitoring and self-recovery features, induction magnetometers with a deeper frequency range, and possibly the addition of 3-axis flux gate magnetometers to expand the measurement range to 2000 nT.

  18. Inductive interference in rapid transit signaling systems. volume 2. suggested test procedures.

    DOT National Transportation Integrated Search

    1987-03-31

    These suggested test procedures have been prepared in order to develop standard methods of analysis and testing to quantify and resolve issues of electromagnetic compatibility in rail transit operations. Electromagnetic interference, generated by rai...

  19. Assisted of electromagnetic fields in glucose production from cassava stems

    NASA Astrophysics Data System (ADS)

    Lismeri, Lia; Haryati, Sri; Djoni Bustan, M.; Darni, Yuli

    2018-03-01

    Decrease in fossil fuel reserves that led to high price has become major problem in many countries around the world. To acquire the sustainability of energy reserves, the renewable energies obtained from plant biomass will therefore have to play an increasing role in fulfilling energy demand throughout the century. Renewable energy source must be explored by innovative techniques which is safe to the environment and low in energy consumptions. This research conducted to produce glucose from cassava stems assisted by electromagnetic field inductions process. The parameters used in this research were pretreatment solvent, concentration, temperature and electrical currents. The electromagnetic field inductions could be applied to increase glucose productivity with the maximum yield of glucose was 47.43%.

  20. Passive Wearable Skin Patch Sensor Measures Limb Hemodynamics Based on Electromagnetic Resonance.

    PubMed

    Cluff, Kim; Becker, Ryan; Jayakumar, Balakumar; Han, Kiyun; Condon, Ernie; Dudley, Kenneth; Szatkowski, George; Pipinos, Iraklis I; Amick, Ryan Z; Patterson, Jeremy

    2018-04-01

    The objectives of this study were to design and develop an open-circuit electromagnetic resonant skin patch sensor, characterize the fluid volume and resonant frequency relationship, and investigate the sensor's ability to measure limb hemodynamics and pulse volume waveform features. The skin patch was designed from an open-circuit electromagnetic resonant sensor comprised of a single baseline trace of copper configured into a square planar spiral which had a self-resonating response when excited by an external radio frequency sweep. Using a human arm phantom with a realistic vascular network, the sensor's performance to measure limb hemodynamics was evaluated. The sensor was able to measure pulsatile blood flow which registered as shifts in the sensor's resonant frequencies. The time-varying waveform pattern of the resonant frequency displayed a systolic upstroke, a systolic peak, a dicrotic notch, and a diastolic down stroke. The resonant frequency waveform features and peak systolic time were validated against ultrasound pulse wave Doppler. A statistical correlation analysis revealed a strong correlation () between the resonant sensor peak systolic time and the pulse wave Doppler peak systolic time. The sensor was able to detect pulsatile flow, identify hemodynamic waveform features, and measure heart rate with 98% accuracy. The open-circuit resonant sensor design leverages the architecture of a thin planar spiral which is passive (does not require batteries), robust and lightweight (does not have electrical components or electrical connections), and may be able to wirelessly monitor cardiovascular health and limb hemodynamics.

  1. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors

    PubMed Central

    Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2012-01-01

    Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).

  2. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    NASA Astrophysics Data System (ADS)

    Jia, Zhiwei; Yan, Guozheng; Zhu, Bingquan

    2015-04-01

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Zhiwei, E-mail: jiayege@hotmail.com; Yan, Guozheng; Zhu, Bingquan

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome themore » power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.« less

  4. Positioning and Microvibration Control by Electromagnets of an Air Spring Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Watanabe, Katsuhide; Cui, Weimin; Haga, Takahide; Kanemitsu, Yoichi; Yano, Kenichi

    1996-01-01

    Active positioning and microvibration control has been attempted by electromagnets equipped in a bellows-type, air-spring vibration isolation system. Performance tests have been carried out to study the effects. The main components of the system's isolation table were four electromagnetic actuators and controllers. The vibration isolation table was also equipped with six acceleration sensors for detecting microvibration of the table. The electromagnetic actuators were equipped with bellows-type air springs for passive support of the weight of the item placed on the table, with electromagnets for active positioning, as well as for microvibration control, and relative displacement sensors. The controller constituted a relative feedback system for positioning control and an absolute feedback system for vibration isolation control. In the performance test, a 1,490 kg load (net weight of 1,820 kg) was placed on the vibration isolation table, and both the positioning and microvibration control were carried out electromagnetically. Test results revealed that the vibration transmission was reduced by 95%.

  5. Capacitively-coupled inductive sensors for measurements of pulsed currents and pulsed magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, C.A.

    In experiments involving pulsed high magnetic fields the appearance of the full induced voltage at the output terminals of large-area inductive sensors such as diamagnetic loops and Rogowski belts imposes severe requirements on the insulation near the output. Capacitive detection of the inductive-sensor output voltage provides an ideal geometry for high-voltage insulation, and also accomplishes the necessary voltage division. An inductive-shunt current monitor was designed to utilize the capacitive-detection principle. The contruction of this device and its performance are described in this paper.

  6. An electrical bio-chip to transfer and detect electromagnetic stimulation on the cells based on vertically aligned carbon nanotubes.

    PubMed

    Rafizadeh-Tafti, Saeed; Haqiqatkhah, Mohammad Hossein; Saviz, Mehrdad; Janmaleki, Mohsen; Faraji Dana, Reza; Zanganeh, Somayeh; Abdolahad, Mohammad

    2017-01-01

    A highly sensitive impedimetric bio-chip based on vertically aligned multiwall carbon nanotubes (VAMWCNTs), was applied in direct interaction with lung cancer cells. Our tool provided both inducing and monitoring the bioelectrical changes in the cells initiated by electromagnetic (EM) wave stimulation. EM wave of 940MHz frequency with different intensities was used. Here, wave ablation might accumulate electrical charge on the tips of nanotubes penetrated into cell's membrane. The charge might induce ionic exchanges into the cell and cause alterations in electrical states of the membrane. Transmembrane electrostatic/dynamic states would be strongly affected due to such exchanges. Our novel modality was that, the cells' vitality changes caused by charge inductions were electrically detected with the same nanotubes in the architecture of electrodes for impedance measurement. The responses of the sensor were confirmed by electron and florescent microscopy images as well as biological assays. In summation, our method provided an effective biochip for enhancing and detecting external EM stimulation on the cells useful for future diagnostic and therapeutic applications, such as wave-guided drug-resistance breakage. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2004-06-16

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 0.1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002, Tseng et al., 2003). Electric and magnetic sensors are being tested and calibrated on sea water and in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  8. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  9. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher.

    PubMed

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  10. Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing.

    PubMed

    Barca, E; Castrignanò, A; Buttafuoco, G; De Benedetto, D; Passarella, G

    2015-07-01

    Soil survey is generally time-consuming, labor-intensive, and costly. Optimization of sampling scheme allows one to reduce the number of sampling points without decreasing or even increasing the accuracy of investigated attribute. Maps of bulk soil electrical conductivity (EC a ) recorded with electromagnetic induction (EMI) sensors could be effectively used to direct soil sampling design for assessing spatial variability of soil moisture. A protocol, using a field-scale bulk EC a survey, has been applied in an agricultural field in Apulia region (southeastern Italy). Spatial simulated annealing was used as a method to optimize spatial soil sampling scheme taking into account sampling constraints, field boundaries, and preliminary observations. Three optimization criteria were used. the first criterion (minimization of mean of the shortest distances, MMSD) optimizes the spreading of the point observations over the entire field by minimizing the expectation of the distance between an arbitrarily chosen point and its nearest observation; the second criterion (minimization of weighted mean of the shortest distances, MWMSD) is a weighted version of the MMSD, which uses the digital gradient of the grid EC a data as weighting function; and the third criterion (mean of average ordinary kriging variance, MAOKV) minimizes mean kriging estimation variance of the target variable. The last criterion utilizes the variogram model of soil water content estimated in a previous trial. The procedures, or a combination of them, were tested and compared in a real case. Simulated annealing was implemented by the software MSANOS able to define or redesign any sampling scheme by increasing or decreasing the original sampling locations. The output consists of the computed sampling scheme, the convergence time, and the cooling law, which can be an invaluable support to the process of sampling design. The proposed approach has found the optimal solution in a reasonable computation time. The use of bulk EC a gradient as an exhaustive variable, known at any node of an interpolation grid, has allowed the optimization of the sampling scheme, distinguishing among areas with different priority levels.

  11. Preliminary design of a Primary Loop Pump Assembly (PLPA), using electromagnetic pumps

    NASA Technical Reports Server (NTRS)

    Moss, T. A.; Matlin, G.; Donelan, L.; Johnson, J. L.; Rowe, I.

    1972-01-01

    A preliminary design study of flight-type dc conduction-permanent magnetic, ac helical induction, and ac linear induction pumps for circulating 883 K (1130 F) NaK at 9.1 kg/sec (20 lb/sec) is described. Various electromagnetic pump geometrics are evaluated against hydraulic performance, and the effects of multiple windings and numbers of pumps per assembly on overall reliability were determined. The methods used in the electrical-hydraulic, stress, and thermal analysis are discussed, and the high temperature electrical materials selected for the application are listed.

  12. Sea-Ice Thickness Monitoring from Sensor Equipped Inuit Sleds

    NASA Astrophysics Data System (ADS)

    Rodwell, Shane; Jones, Bryn; Wilkinson, Jeremy

    2013-04-01

    A novel instrumentation package capable of measuring sea-ice thickness autonomously has been designed for long-term deployment upon the dog drawn sleds of the indigenous peoples of the Arctic. The device features a range of sensors that have been integrated with an electromagnetic induction device. These include a global positioning system, temperature sensor, tilt meter and accelerometer. Taken together, this system is able to provide accurate (+/-5cm) measurements of ice thickness with spatio-temporal resolution ranging from 1m to 5m every second. Autonomous data transmission capability is provided via GSM, inspired by the fact that many of the coastal communities in Greenland possess modern cell-phone infrastructure, enabling an inexpensive means of data-retrieval. Such data is essential in quantifying the sea-ice mass balance; given that existing satellite based systems are unable to measure ice-thickness directly. Field-campaign results from a prototype device, deployed in the North West of Greenland during three consecutive seasons, have demonstrated successful proof-of-concept when compared to data provided by ice mass balance (IMB) stations provided at fixed positions along the route of the sled. This project highlights not only the use of novel polar technology, but how opportunistic deployment using an existing roving platform (Inuit sledges) can provide economical, yet highly valuable, data for instrumentation development.

  13. Physics Almost Saved the President! Electromagnetic Induction and the Assassination of James Garfield: A Teaching Opportunity in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Overduin, James; Molloy, Dana; Selway, Jim

    2014-03-01

    Electromagnetic induction is probably one of the most challenging subjects for students in the introductory physics sequence, especially in algebra-based courses. Yet it is at the heart of many of the devices we rely on today. To help students grasp and retain the concept, we have put together a simple and dramatic classroom demonstration that combines sight and sound with a compelling personal story from U.S. history. Other classroom activities dealing with induction have been discussed in this journal, but we believe that this one will be especially likely to attract and retain student interest, particularly in courses geared toward medical, biological, and other non-physics majors.

  14. Faraday's first dynamo: A retrospective

    NASA Astrophysics Data System (ADS)

    Smith, Glenn S.

    2013-12-01

    In the early 1830s, Michael Faraday performed his seminal experimental research on electromagnetic induction, in which he created the first electric dynamo—a machine for continuously converting rotational mechanical energy into electrical energy. His machine was a conducting disc, rotating between the poles of a permanent magnet, with the voltage/current obtained from brushes contacting the disc. In his first dynamo, the magnetic field was asymmetric with respect to the axis of the disc. This is to be contrasted with some of his later symmetric designs, which are the ones almost invariably discussed in textbooks on electromagnetism. In this paper, a theoretical analysis is developed for Faraday's first dynamo. From this analysis, the eddy currents in the disc and the open-circuit voltage for arbitrary positioning of the brushes are determined. The approximate analysis is verified by comparing theoretical results with measurements made on an experimental recreation of the dynamo. Quantitative results from the analysis are used to elucidate Faraday's qualitative observations, from which he learned so much about electromagnetic induction. For the asymmetric design, the eddy currents in the disc dissipate energy that makes the dynamo inefficient, prohibiting its use as a practical generator of electric power. Faraday's experiments with his first dynamo provided valuable insight into electromagnetic induction, and this insight was quickly used by others to design practical generators.

  15. AC induction field heating of graphite foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, James W.; Rios, Orlando; Kisner, Roger

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.

  16. Short, multi-needle FDR sensor suitable for measuring soil water content

    USDA-ARS?s Scientific Manuscript database

    Time domain reflectometry (TDR) is a well-established electromagnetic technique used to measure soil water content. TDR sensors have been combined with heat pulse sensors to produce thermo-TDR sensors. Thermo-TDR sensors are restricted to having relatively short needles in order to accurately measur...

  17. Investigating bioremediation of petroleum hydrocarbons through landfarming using apparent electrical conductivity measurements

    NASA Astrophysics Data System (ADS)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Seuntjens, Piet

    2015-04-01

    Bioremediation of soil contaminated with petroleum hydrocarbons through landfarming has been widely applied commercially at large scale. Biodegradation is one of the dominant pollutant removal mechanisms involved in landfarming, but strongly depends on the environmental conditions (e.g. presence of oxygen, moisture content). Conventionally the biodegradation process is monitored by the installation of field monitoring equipment and repeated sample collection and analysis. Because the presence of petroleum hydrocarbons and their degradation products can affect the electrical properties of the soil, proximal soil sensors such as electromagnetic induction (EMI) sensors may provide an alternative to investigate the biodegradation process of these contaminants. We investigated the relation between the EMI-based apparent electrical conductivity (ECa) of a landfarm soil and the presence and degradation status of petroleum hydrocarbons. The 3 ha study area was located in an oil refinery complex contaminated with petroleum hydrocarbons, mainly composed of diesel. At the site, a landfarm was constructed in 1999. The most recent survey of the petroleum hydrocarbon concentrations was conducted between 2011 and 2013. The sampling locations were defined by a grid with a 10 m by 10 m cell size and on each location a sample was taken from four successive soil layers with a thickness of 0.5 m each. Because the survey was carried out in phases using different georeferencing methods, the final dataset suffered from uncertainty in the coordinates of the sampling locations. In September 2013 the landfarm was surveyed for ECa with a multi-receiver electromagnetic induction sensor (DUALEM-21S) using motorized conveyance. The horizontal measurement resolution was 1 m by 0.25 m. On each measurement location the sensor recorded four ECa values representative of measurement depths of 0.5 m, 1.0 m, 1.6 m and 3.2 m. After the basic processing, the ECa measurements were filtered to remove anomalies resulting from small metallic objects. Next, the ECa measurements were interpolated to average values for blocks of 2.5 m by 2.5 m using ordinary block kriging to meet the location uncertainty of the corresponding hydrocarbon concentration observations. Comparison of the block ECa values representative of different depths with the petroleum hydrocarbons concentrations observed in the different landfarm layers suggested a relationship between ECa and the level of biodegradation. Zones with a large ECa corresponded to zones where high microbial degradation activity was expected and vice versa. This indicates that EMI-based ECa surveying can support the monitoring of the bioremediation process in landfarms and subsequent decisions on operating parameters. Furthermore, studying the relationship between ECa and the petroleum hydrocarbon concentrations can improve the understanding of microbial degradation processes.

  18. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-07-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.

  19. Munitions Classification With Portable Advanced Electromagnetic Sensors, Demonstration at the former Camp Beale, CA, Summer 2011

    DTIC Science & Technology

    2012-07-01

    Engineering Service Center, Port Hueneme, CA Robert Kirgan, Army Environmental Command Doug Maddox, US Environmental Protection Agency Doug Murray...FINAL REPORT MUNITIONS CLASSIFICATION WITH PORTABLE ADVANCED ELECTROMAGNETIC SENSORS Demonstration at the former Camp Beale, CA , Summer...if it does not display a currently valid OMB control number. 1. REPORT DATE JUL 2012 2 . REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND

  20. Agricultural Electricity. Electric Motors. Student Manual.

    ERIC Educational Resources Information Center

    Benson, Robert T.

    Addressed to the student, this manual, which includes supplementary diagrams, discusses the following topics and principles: Electromagnetic fields, electromagnets, parts of an electric motor, determining speed of an electric motor, types of electric motors in common use (split-phase, capacitor, repulsion-induction, three-phase), the electric…

  1. Time-lapse monitoring of soil water content using electromagnetic conductivity imaging

    USDA-ARS?s Scientific Manuscript database

    The volumetric soil water content (VWC) is fundamental to agriculture. Unfortunately, the universally accepted thermogravimetric method is labour intensive and time-consuming to use for field-scale monitoring. Electromagnetic (EM) induction instruments have proven to be useful in mapping the spatio-...

  2. Multi-frequency Electromagnetic Induction Survey for Archaeological Prospection: Approach and Results in Han Hangu Pass and Xishan Yang in China

    NASA Astrophysics Data System (ADS)

    Tang, Panpan; Chen, Fulong; Jiang, Aihui; Zhou, Wei; Wang, Hongchao; Leucci, Giovanni; de Giorgi, Lara; Sileo, Maria; Luo, Rupeng; Lasaponara, Rosa; Masini, Nicola

    2018-04-01

    This study presents the potential of multi-frequency electromagnetic induction (EMI) in archaeology. EMI is currently less employed for archaeological prospection with respect to other geophysical techniques. It is capable of identifying shallow subsurface relics by simultaneously measuring the apparent electrical conductivity (ECa) and apparent magnetic susceptibility (MSa). Moreover, frequency sounding is able to quantify the depths and vertical shapes of buried structures. In this study, EMI surveys with five frequencies were performed at two heritage sites with different geological conditions: Han Hangu Pass characterized by cinnamon soil and Xishan Yang by sandy loams. In the first site, high ECa values were observed with variations in depth correlated to archaeological remains. Moreover, electromagnetic anomalies related to an ancient road and five kiln caves were identified. In the second site, an ancient tomb, indicating extremely low ECa and high MSa, was discovered. Its electromagnetic properties are attributed to the cavity and ferroferric oxides.

  3. A Simple and Accurate Analysis of Conductivity Loss in Millimeter-Wave Helical Slow-Wave Structures

    NASA Astrophysics Data System (ADS)

    Datta, S. K.; Kumar, Lalit; Basu, B. N.

    2009-04-01

    Electromagnetic field analysis of a helix slow-wave structure was carried out and a closed form expression was derived for the inductance per unit length of the transmission-line equivalent circuit of the structure, taking into account the actual helix tape dimensions and surface current on the helix over the actual metallic area of the tape. The expression of the inductance per unit length, thus obtained, was used for estimating the increment in the inductance per unit length caused due to penetration of the magnetic flux into the conducting surfaces following Wheeler’s incremental inductance rule, which was subsequently interpreted for the attenuation constant of the propagating structure. The analysis was computationally simple and accurate, and accrues the accuracy of 3D electromagnetic analysis by allowing the use of dispersion characteristics obtainable from any standard electromagnetic modeling. The approach was benchmarked against measurement for two practical structures, and excellent agreement was observed. The analysis was subsequently applied to demonstrate the effects of conductivity on the attenuation constant of a typical broadband millimeter-wave helical slow-wave structure with respect to helix materials and copper plating on the helix, surface finish of the helix, dielectric loading effect and effect of high temperature operation - a comparative study of various such aspects are covered.

  4. Dimension-sensitive optical responses of electromagnetically induced transparency vapor in a waveguide

    NASA Astrophysics Data System (ADS)

    Qi Shen, Jian; He, Sailing

    2006-12-01

    A three-level EIT (electromagnetically induced transparency) vapor is used to manipulate the transparency and absorption properties of the probe light in a waveguide. The most remarkable feature of the present scheme is such that the optical responses resulting from both electromagnetically induced transparency and large spontaneous emission enhancement are very sensitive to the frequency detunings of the probe light as well as to the small changes of the waveguide dimension. The potential applications of the dimension- and dispersion-sensitive EIT responses are discussed, and the sensitivity limits of some waveguide-based sensors, including electric absorption modulator, optical switch, wavelength sensor, and sensitive magnetometer, are analyzed.

  5. Ni-rich precipitates in a lead bismuth eutectic loop

    NASA Astrophysics Data System (ADS)

    Kikuchi, K.; Saito, S.; Hamaguchi, D.; Tezuka, M.

    2010-03-01

    Solidified LBE was sampled from the specimens, electro-magnetic pump, filter, drain valve and oxygen sensor at the JAEA Lead Bismuth Loop-1 (JLBL-1) where the structural material was made of SS316. The concentration of Ni, Fe and Cr in LBE were analyzed by the Inductive Coupled Plasma atomic emission spectrometer. It was concluded that the solution of Ni into LBE was not saturated although the concentration of Fe and Cr almost achieved to the values in the literature. A needle-type structure appeared on the surface of solidified LBE inside the tube specimens. It was found to be Ni-rich precipitates by X-ray analyses (Field Emission Scanning Electron Microscope, FE-SEM). LBE samples collected from a circulating loop after discharging did not show the amount of impurities equivalent to the LBE bulk property.

  6. Fabrication of Compact Superconducting Lowpass Filters for Ultrasensitive Detectors

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Chervenak, James; Chuss, David; Mikula, Vilem; Ray, Christopher; Rostem, Karwan; U-Yen, Kongpop; Wassell, Edward; Wollack, Edward

    2012-01-01

    It is extremely important for current and future far-infrared and sub-millimeter ultrasensitive detectors, which include transition edge sensors (TES) and microwave kinetic inductance detectors, to be adequately filtered from stray electromagnetic radiation in order to achieve their optimal performance. One means of filtering stray radiation is to block leakage associated with electrical connections in the detector environment. Here we discuss a fabrication methodology for realizing non-dissipative planar filters imbedded in the wall of the detector enclosure to limit wave propagation modes up to far-infrared frequencies. Our methodology consists of fabricating a boxed stripline transmission line, in which a superconducting (Nb, Mo, or Al) transmission line is encased in a silicon dioxide dielectric insulator coated with a metallic shell. We report on achieved attenuation and return loss and find that it replicates the simulated data to a high degree.

  7. Influence of Vertical Electromagnetic Brake on the Steel/Slag Interface Behavior in a Slab Mold

    NASA Astrophysics Data System (ADS)

    Li, Zhuang; Wang, Engang; Zhang, Lintao; Xu, Yu; Deng, Anyuan

    2017-10-01

    The steel/slag interface behavior under a new type of electromagnetic brake (EMBr), vertical electromagnetic brake (V-EMBr), was investigated. The influence of the magnetic induction intensity, the submerged entry nozzle (SEN) immersion depth, and the port angle of the SEN are investigated numerically. The effect of magnetic induction intensity on the meniscus fluctuation of molten alloy is further studied by the experiments. The results show that the meniscus fluctuation is depressed as the magnetic induction intensity is increased, especially for the region in the vicinity of the narrow face of the slab mold. This result is validated by the following experiments. For the influence of the SEN immersion depth and the port angle, the results show that the meniscus fluctuation is suppressed as the values of the immersion depth and the port angle are increased (absolute values for the port angle). However, the influence of the immersion depth and the port angle are not as sensitive as those in the other type of EMBr, e.g., EMBr Ruler. The industrial application of V-EMBr could benefit from this result.

  8. Impact of Electromagnetic Field upon Temperature Measurement of Induction Heated Charges

    NASA Astrophysics Data System (ADS)

    Smalcerz, A.; Przylucki, R.

    2013-04-01

    The use of thermoelements is a commonly applied method in industry and engineering. It provides a wide measurement range of temperature, a direct voltage signal from the transducer, low cost of the thermoelement, and its resistance to many unfavorable factors which occur in an industrial environment. Unfortunately, thermoelements may not be resistant to interferences of a strong electromagnetic field because of the nature and design of a transducer. Induction heating is the most commonly used type of heating, at present, for metals. In order to guarantee the correctness of the carried out heating process, it is essential to control the temperature of the heated element. The impact of a strong electromagnetic field upon the thermocouple temperature measurement of the inductively heated elements has been analyzed in this paper. The experiment includes dozens of measurements where the following parameters have been varied: frequency of the current which feeds the heating inductor, power supplied to the heating system, geometry of heat inductor, and the charge material and its geometrical dimensions. Interferences of the power-line frequency have been eliminated in part of the carried out measurements.

  9. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps

    NASA Astrophysics Data System (ADS)

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A.

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  10. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps.

    PubMed

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  11. Fiber-optic proximity sensor

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Hermann, W. A.; Primus, H. C.

    1980-01-01

    Proximity sensor for mechanical hand of remote manipulator incorporates fiber optics to conduct signals between light source and light detector. Fiber optics are not prone to noise from electromagnetic interference and radio-frequency interference as are sensors using long electrical cables.

  12. Coil design considerations for a high-frequency electromagnetic induction sensing instrument

    NASA Astrophysics Data System (ADS)

    Sigman, John B.; Barrowes, Benjamin E.; Wang, Yinlin; Bennett, Hollis J.; Simms, Janet E.; Yule, Donald E.; O'Neill, Kevin; Shubitidze, Fridon

    2016-05-01

    Intermediate electrical conductivity (IEC) materials (101S/m < σ < 104S/m), such as carbon fiber (CF), have recently been used to make smart bombs. In addition, homemade improvised explosive devices (IED) can be produced with low conducting materials (10-4S/m < σ < 1S/m), such as Ammonium Nitrate (AN). To collect unexploded ordnance (UXO) from military training ranges and thwart deadly IEDs, the US military has urgent need for technology capable of detection and identification of subsurface IEC objects. Recent analytical and numerical studies have showed that these targets exhibit characteristic quadrature response peaks at high induction frequencies (100kHz - 15MHz, the High Frequency Electromagnetic Induction (HFEMI) band), and they are not detectable with traditional ultra wideband (UWB) electromagnetic induction (EMI) metal detectors operating between 100Hz - 100kHz. Using the HFEMI band for induction sensing is not so simple as driving existing instruments at higher frequencies, though. At low frequency, EMI systems use more wire turns in transmit and receive coils to boost signal-to-noise ratios (SNR), but at higher frequencies, the transmitter current has non-uniform distribution along the coil length. These non-uniform currents change the spatial distribution of the primary magnetic field and disturb axial symmetry and thwart established approaches for inferring subsurface metallic object properties. This paper discusses engineering tradeoffs for sensing with a broader band of frequencies ever used for EMI sensing, with particular focus on coil geometries.

  13. The Canadian Forces ILDS: a militarily fielded multisensor vehicle-mounted teleoperated landmine detection system

    NASA Astrophysics Data System (ADS)

    McFee, John E.; Russell, Kevin L.; Chesney, Robert H.; Faust, Anthony A.; Das, Yogadhish

    2006-05-01

    The Improved Landmine Detection System (ILDS) is intended to meet Canadian military mine clearance requirements in rear area combat situations and peacekeeping on roads and tracks. The system consists of two teleoperated vehicles and a command vehicle. The teleoperated protection vehicle precedes, clearing antipersonnel mines and magnetic and tilt rod-fuzed antitank mines. It consists of an armoured personnel carrier with a forward looking infrared imager, a finger plow or roller and a magnetic signature duplicator. The teleoperated detection vehicle follows to detect antitank mines. The purpose-built vehicle carries forward looking infrared and visible imagers, a 3 m wide, down-looking sensitive electromagnetic induction detector array and a 3 m wide down-looking ground probing radar, which scan the ground in front of the vehicle. Sensor information is combined using navigation sensors and custom navigation, registration, spatial correspondence and data fusion algorithms. Suspicious targets are then confirmed by a thermal neutron activation detector. The prototype, designed and built by Defence R&D Canada, was completed in October 1997. General Dynamics Canada delivered four production units, based on the prototype concept and technologies, to the Canadian Forces (CF) in 2002. ILDS was deployed in Afghanistan in 2003, making the system the first militarily fielded, teleoperated, multi-sensor vehicle-mounted mine detector and the first with a fielded confirmation sensor. Performance of the prototype in Canadian and independent US trials is summarized and recent results from the production version of the confirmation sensor are discussed. CF operations with ILDS in Afghanistan are described.

  14. Radio frequency tank eigenmode sensor for propellant quantity gauging

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A. (Inventor)

    2013-01-01

    A method for measuring the quantity of fluid in a tank may include the steps of selecting a match between a measured set of electromagnetic eigenfrequencies and a simulated plurality of sets of electromagnetic eigenfrequencies using a matching algorithm, wherein the match is one simulated set of electromagnetic eigenfrequencies from the simulated plurality of sets of electromagnetic eigenfrequencies, and determining the fill level of the tank based upon the match.

  15. Electromagnetic induction pump for pumping liquid metals and other conductive liquids

    DOEpatents

    Smither, R.K.

    1993-05-11

    An electromagnetic induction pump is described in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

  16. Electromagnetic induction pump for pumping liquid metals and other conductive liquids

    DOEpatents

    Smither, Robert K.

    1993-01-01

    An electromagnetic induction pump in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

  17. Infrared signal generation from AC induction field heating of graphite foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, James W.; Rios, Orlando

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam to produce light. An energy conversion device utilizes light energy from the heated graphite foam to perform a light energy consuming function. A device for producing light and a method of converting energy are also disclosed.

  18. Test and evaluation of Japanese GPR-EMI dual sensor systems at Benkovac test site in Croatia

    NASA Astrophysics Data System (ADS)

    Ishikawa, J.; Furuta, K.; Pavković, Nikola

    2007-04-01

    This paper presents an experimental design and the evaluation result of a trial that were carried out from 1 February to 9 March 2006 using real PMA-1A and PMA-2 landmines at the Benkovac test site in Croatia. The objective of the Croatia- Japan joint trial is to evaluate dual sensor systems, which use both ground penetrating radar (GPR) and electromagnetic inductive (EMI) sensors. A comparative trial was also carried out by Croatian deminers using an existing EMI sensor, i.e., a metal detector (MD). The trial aims at evaluating differences in performance between dual sensors and MDs, especially in terms of discrimination of landmines from metal fragments and extension of detectable range in the depth direction. Devices evaluated here are 4 prototypes of anti-personnel landmine detection systems developed under a project of the Japan Science and Technology Agency (JST), the supervising authority of which is the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The prototypes provide operators with subsurface images, and final decision whether a shadow in the image is a real landmine or not is left to the operator. This is similar to the way that medical doctors find cancer by reading CT images. Since operators' pre-knowledge of locations of buried targets significantly influences the test result, three test lanes, which have 3 different kinds of soils, have been designed to be suitable for blind tests. The result showed that the dual sensor systems have a potential to discriminate landmines from metal fragments and that probability of detection for small targets in mineralized soils can be improved by using GPR.

  19. Subcritical Hopf Bifurcation and Stochastic Resonance of Electrical Activities in Neuron under Electromagnetic Induction

    PubMed Central

    Fu, Yu-Xuan; Kang, Yan-Mei; Xie, Yong

    2018-01-01

    The FitzHugh–Nagumo model is improved to consider the effect of the electromagnetic induction on single neuron. On the basis of investigating the Hopf bifurcation behavior of the improved model, stochastic resonance in the stochastic version is captured near the bifurcation point. It is revealed that a weak harmonic oscillation in the electromagnetic disturbance can be amplified through stochastic resonance, and it is the cooperative effect of random transition between the resting state and the large amplitude oscillating state that results in the resonant phenomenon. Using the noise dependence of the mean of interburst intervals, we essentially suggest a biologically feasible clue for detecting weak signal by means of neuron model with subcritical Hopf bifurcation. These observations should be helpful in understanding the influence of the magnetic field to neural electrical activity. PMID:29467642

  20. Subcritical Hopf Bifurcation and Stochastic Resonance of Electrical Activities in Neuron under Electromagnetic Induction.

    PubMed

    Fu, Yu-Xuan; Kang, Yan-Mei; Xie, Yong

    2018-01-01

    The FitzHugh-Nagumo model is improved to consider the effect of the electromagnetic induction on single neuron. On the basis of investigating the Hopf bifurcation behavior of the improved model, stochastic resonance in the stochastic version is captured near the bifurcation point. It is revealed that a weak harmonic oscillation in the electromagnetic disturbance can be amplified through stochastic resonance, and it is the cooperative effect of random transition between the resting state and the large amplitude oscillating state that results in the resonant phenomenon. Using the noise dependence of the mean of interburst intervals, we essentially suggest a biologically feasible clue for detecting weak signal by means of neuron model with subcritical Hopf bifurcation. These observations should be helpful in understanding the influence of the magnetic field to neural electrical activity.

  1. Electromagnetic field analysis and modeling of a relative position detection sensor for high speed maglev trains.

    PubMed

    Xue, Song; He, Ning; Long, Zhiqiang

    2012-01-01

    The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor.

  2. Electromagnetic Field Analysis and Modeling of a Relative Position Detection Sensor for High Speed Maglev Trains

    PubMed Central

    Xue, Song; He, Ning; Long, Zhiqiang

    2012-01-01

    The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor. PMID:22778652

  3. Assessment of multi-frequency electromagnetic induction for determining soil moisture patterns at the hillslope scale

    NASA Astrophysics Data System (ADS)

    Tromp-van Meerveld, H. J.; McDonnell, J. J.

    2009-04-01

    SummaryHillslopes are fundamental landscape units, yet represent a difficult scale for measurements as they are well-beyond our traditional point-scale techniques. Here we present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the hillslope scale. We test the new multi-frequency GEM-300 for spatially distributed soil moisture measurements at the well-instrumented Panola hillslope. EM-based apparent conductivity measurements were linearly related to soil moisture measured with the Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7.290, 9.090, 11.250, and 14.010 kHz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the soil moisture measurements.

  4. Monitoring scale-specific and temporal variation in electromagnetic conductivity images

    USDA-ARS?s Scientific Manuscript database

    In the semi-arid and arid landscapes of southwest USA, irrigation sustains agricultural activity; however, there are increasing demands on water resources. As such spatial temporal variation of soil moisture needs to be monitored. One way to do this is to use electromagnetic (EM) induction instrumen...

  5. Approximate analytical solution for induction heating of solid cylinders

    DOE PAGES

    Jankowski, Todd Andrew; Pawley, Norma Helen; Gonzales, Lindsey Michal; ...

    2015-10-20

    An approximate solution to the mathematical model for induction heating of a solid cylinder in a cylindrical induction coil is presented here. The coupled multiphysics model includes equations describing the electromagnetic field in the heated object, a heat transfer simulation to determine temperature of the heated object, and an AC circuit simulation of the induction heating power supply. A multiple-scale perturbation method is used to solve the multiphysics model. The approximate analytical solution yields simple closed-form expressions for the electromagnetic field and heat generation rate in the solid cylinder, for the equivalent impedance of the associated tank circuit, and formore » the frequency response of a variable frequency power supply driving the tank circuit. The solution developed here is validated by comparing predicted power supply frequency to both experimental measurements and calculated values from finite element analysis for heating of graphite cylinders in an induction furnace. The simple expressions from the analytical solution clearly show the functional dependence of the power supply frequency on the material properties of the load and the geometrical characteristics of the furnace installation. In conclusion, the expressions developed here provide physical insight into observations made during load signature analysis of induction heating.« less

  6. Influence of the aging process on the dealloying activity of an induction salt bath

    NASA Astrophysics Data System (ADS)

    Simonenko, A. N.

    1992-12-01

    The process of dealloying of the surface of high-alloy steels in heating in induction salt baths with a graphite crucible is neutralized by the process of carburizing and electrochemical interaction in a high-frequency electromagnetic field.

  7. Range-gated field disturbance sensor with range-sensitivity compensation

    DOEpatents

    McEwan, T.E.

    1996-05-28

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies. 8 figs.

  8. Range-gated field disturbance sensor with range-sensitivity compensation

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies.

  9. Magnetic Calorimeter Arrays with High Sensor Inductance and Dense Wiring

    NASA Astrophysics Data System (ADS)

    Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Devasia, A. M.; Nagler, P. C.; Smith, S. J.; Yoon, W.

    2018-05-01

    We describe prototype arrays of magnetically coupled microcalorimeters fabricated with an approach scalable to very large format arrays. The superconducting interconnections and sensor coils have sufficiently low inductance in the wiring and sufficiently high inductance in the coils in each pixel, to enable arrays containing greater than 4000 sensors and 100,000 X-ray absorbers to be used in future astrophysics missions such as Lynx. We have used projection lithography to create submicron patterns (e.g., 400 nm lines and spaces) in our niobium sensor coils and wiring, integrated with gold-erbium sensor films and gold X-ray absorbers. Our prototype devices will explore the device physics of metallic magnetic calorimeters as feature sizes are reduced to nanoscale.

  10. Soil water sensor response to bulk electrical conductivity

    USDA-ARS?s Scientific Manuscript database

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  11. Monitoring relative humidity in RPC detectors by use of fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Caponero, M. A.; Polimadei, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Passamonti, L.; Piccolo, D.; Pierluigi, D.; Russo, A.; Felli, F.; Saviano, G.; Vendittozzi, C.

    2013-03-01

    We propose to adopt Fiber Bragg Grating technology to develop an innovative sensor for monitoring relative humidity of the gas fluxed in Resistive Plate Counters. Use of Fiber Bragg Grating as sensing device makes the proposed sensor well suited to develop distributed real-time monitoring systems to be installed on large volume detectors operated in high electromagnetic fields. In fact Fiber Bragg Gratings are fully immune from electromagnetic disturbances and allow simplified wiring by in-series interconnection of tens of them along a single optical fiber. In this paper we present results intended to investigate the feasibility of our proposal.

  12. Electric Field Feature of Moving Magnetic Field

    NASA Astrophysics Data System (ADS)

    Chen, You Jun

    2001-05-01

    A new fundamental relationship of electric field with magnetic field has been inferred from the fundamental experimental laws and theories of classical electromagnetics. It can be described as moving magnetic field has or gives electric feature. When a field with magnetic induction of B moves in the velocity of V, it will show electric field character, the electric field intensity E is E = B x V and the direction of E is in the direction of the vector B x V. It is improper to use the time-varying electromagnetics theories as the fundamental theory of the electromagnetics and group the electromagnetic field into static kind and time-varying kind for the static is relative to motional not only time-varying. The relationship of time variation of magnetic field induction or magnetic flux with electric field caused by magnetic field is fellowship not causality. Thus time-varying magnetic field can cause electric field is not a nature principle. Sometime the time variation of magnetic flux is equal to the negative electromotive force or the time variation of magnetic field induction is equal to the negative curl of electric field caused by magnetic field motion, but not always. And not all motion of magnetic field can cause time variation of magnetic field. Therefore Faraday-Lenz`s law can only be used as mathematics tool to calculate the quantity relation of the electricity with the magnetism in some case like the magnetic field moving in uniform medium. Faraday-Lenz`s law is unsuitable to be used in moving uniform magnetic field or there is magnetic shield. Key word: Motional magnetic field, Magnetic induction, Electric field intensity, Velocity, Faraday-Lenz’s law

  13. Design and test of a simple fast electromagnetic inductive gas valve for planar pulsed inductive plasma thruster

    NASA Astrophysics Data System (ADS)

    Guo, Dawei; Cheng, Mousen; Li, Xiaokang

    2017-10-01

    In support of our planar pulsed inductive plasma thruster research, a fast electromagnetic inductive valve for a gas propellant injection system has been built and tested. A new and important design feature is the use of a conical diaphragm as the action part, which greatly contributes to the virtue of simplicity for adopting the resultant force of the diaphragm deformation as the closing force. An optical transmission technique is adopted to measure the opening and closing characters of the valve while the gas throughput is determined by measuring the pressure change per pulse in a test chamber with a capacitance manometer. The experimental results revealed that the delay time before the valve reaction is less than 40 μs, and the valve pulse width is no longer than 160 μs full width at half maximum. The valve delivers 0-2.5 mg of argon gas per pulse varied by adjusting the drive voltage and gas pressure.

  14. Design and test of a simple fast electromagnetic inductive gas valve for planar pulsed inductive plasma thruster.

    PubMed

    Guo, Dawei; Cheng, Mousen; Li, Xiaokang

    2017-10-01

    In support of our planar pulsed inductive plasma thruster research, a fast electromagnetic inductive valve for a gas propellant injection system has been built and tested. A new and important design feature is the use of a conical diaphragm as the action part, which greatly contributes to the virtue of simplicity for adopting the resultant force of the diaphragm deformation as the closing force. An optical transmission technique is adopted to measure the opening and closing characters of the valve while the gas throughput is determined by measuring the pressure change per pulse in a test chamber with a capacitance manometer. The experimental results revealed that the delay time before the valve reaction is less than 40 μs, and the valve pulse width is no longer than 160 μs full width at half maximum. The valve delivers 0-2.5 mg of argon gas per pulse varied by adjusting the drive voltage and gas pressure.

  15. Frequency domain electromagnetic induction survey in the intertidal zone: Limitations of low-induction-number and depth of exploration

    NASA Astrophysics Data System (ADS)

    Delefortrie, Samuël; Saey, Timothy; Van De Vijver, Ellen; De Smedt, Philippe; Missiaen, Tine; Demerre, Ine; Van Meirvenne, Marc

    2014-01-01

    Subsurface investigation in the Belgian intertidal zone is severely complicated due to high heterogeneity and tides. Near-surface geophysical techniques can offer assistance since they allow fast surveying and collection of high spatial density data and frequency domain electromagnetic induction (EMI) was chosen for archaeological prospection on the Belgian shore. However, in the intertidal zone the effects of extreme salinity compromise validity of low-induction-number (LIN) approximated EMI data. In this paper, the effects of incursion of seawater on multi-receiver EMI data are investigated by means of survey results, field observations, cone penetration tests and in-situ electrical conductivity measurements. The consequences of LIN approximation breakdown were researched. Reduced depth of investigation of the quadrature-phase (Qu) response and a complex interpretation of the in-phase response were confirmed. Nonetheless, a high signal-to-noise ratio of the Qu response and viable data with regard to shallow subsurface investigation were also evidenced, allowing subsurface investigation in the intertidal zone.

  16. A Novel Shape Memory Plate Osteosynthesis for Noninvasive Modulation of Fixation Stiffness in a Rabbit Tibia Osteotomy Model

    PubMed Central

    Müller, Christian W.; Pfeifer, Ronny; Meier, Karen; Decker, Sebastian; Reifenrath, Janin; Gösling, Thomas; Wesling, Volker; Krettek, Christian; Krämer, Manuel

    2015-01-01

    Nickel-titanium shape memory alloy (NiTi-SMA) implants might allow modulating fracture healing, changing their stiffness through alteration of both elastic modulus and cross-sectional shape by employing the shape memory effect (SME). Hypotheses: a novel NiTi-SMA plate stabilizes tibia osteotomies in rabbits. After noninvasive electromagnetic induction heating the alloy exhibits the SME and the plate changes towards higher stiffness (inverse dynamization) resulting in increased fixation stiffness and equal or better bony healing. In 14 rabbits, 1.0 mm tibia osteotomies were fixed with our experimental plate. Animals were randomised for control or induction heating at three weeks postoperatively. Repetitive X-ray imaging and in vivo measurements of bending stiffness were performed. After sacrifice at 8 weeks, macroscopic evaluation, µCT, and post mortem bending tests of the tibiae were carried out. One death and one early implant dislocation occurred. Following electromagnetic induction heating, radiographic and macroscopic changes of the implant proved successful SME activation. All osteotomies healed. In the treatment group, bending stiffness increased over time. Differences between groups were not significant. In conclusion, we demonstrated successful healing of rabbit tibia osteotomies using our novel NiTi-SMA plate. We demonstrated shape-changing SME in-vivo through transcutaneous electromagnetic induction heating. Thus, future orthopaedic implants could be modified without additional surgery. PMID:26167493

  17. Using a PC and external media to quantitatively investigate electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.

    2011-07-01

    In this article we describe an experimental learning path about electromagnetic induction which uses an Atwood machine where one of the two hanging bodies is a cylindrical magnet falling through a plexiglass guide, surrounded either by a coil or by a copper pipe. The first configuration (magnet falling across a coil) allows students to quantitatively study the Faraday-Neumann-Lenz law, while the second configuration (falling through a copper pipe) permits learners to investigate the complex phenomena of induction by quantifying the amount of electric power dissipated through the pipe as a result of Foucault eddy currents, when the magnet travels through the pipe. The magnet's fall acceleration can be set by adjusting the counterweight of the Atwood machine so that both the kinematic quantities associated with it and the electromotive force induced within the coil are continuously and quantitatively monitored (respectively, by a common personal computer (PC) equipped with a webcam and by freely available software that makes it possible to use the audio card to convert the PC into an oscilloscope). Measurements carried out when the various experimental parameters are changed provide a useful framework for a thorough understanding and clarification of the conceptual nodes related to electromagnetic induction. The proposed learning path is under evaluation in various high schools participating in the project 'Lauree Scientifiche' promoted by the Italian Department of Education.

  18. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    NASA Astrophysics Data System (ADS)

    Xu, Da; Liu, Xuesong; Fang, Kun; Fang, Hongyuan

    2010-06-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  19. An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials

    PubMed Central

    Savin, Adriana; Steigmann, Rozina; Bruma, Alina; Šturm, Roman

    2015-01-01

    This paper proposes the study and implementation of a sensor with a metamaterial (MM) lens in electromagnetic nondestructive evaluation (eNDE). Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR) has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than λ/2000. PMID:26151206

  20. A new soil water and bulk eletrical conductivity sensor technology for irrigation and salinity management

    USDA-ARS?s Scientific Manuscript database

    Many soil water sensors, especially those based on electromagnetic (EM) properties of soils, have been shown to be unsuitable in salt-affected or clayey soils. Most available soil water content sensors are of this EM type, particularly the so-called capacitance sensors. They often over estimate and ...

  1. High precision dual-axis tracking solar wireless charging system based on the four quadrant photoelectric sensor

    NASA Astrophysics Data System (ADS)

    Liu, Zhilong; Wang, Biao; Tong, Weichao

    2015-08-01

    This paper designs a solar automatic tracking wireless charging system based on the four quadrant photoelectric sensor. The system track the sun's rays automatically in real time to received the maximum energy and wireless charging to the load through electromagnetic coupling. Four quadrant photoelectric sensor responsive to the solar spectrum, the system could get the current azimuth and elevation angle of the light by calculating the solar energy incident on the sensor profile. System driver the solar panels by the biaxial movement mechanism to rotate and tilt movement until the battery plate and light perpendicular to each other. Maximize the use of solar energy, and does not require external power supply to achieve energy self-sufficiency. Solar energy can be collected for portable devices and load wireless charging by close electromagnetic field coupling. Experimental data show that: Four quadrant photoelectric sensor more sensitive to light angle measurement. when track positioning solar light, Azimuth deviation is less than 0.8°, Elevation angle deviation is less than 0.6°. Use efficiency of a conventional solar cell is only 10% -20%.The system uses a Four quadrant dual-axis tracking to raise the utilization rate of 25% -35%.Wireless charging electromagnetic coupling efficiency reached 60%.

  2. Novel Fiber-Optic Ring Acoustic Emission Sensor

    PubMed Central

    Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-01

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments. PMID:29342858

  3. Novel Fiber-Optic Ring Acoustic Emission Sensor.

    PubMed

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-13

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  4. USSR Report, Electronics and Electrical Engineering, No. 104

    DTIC Science & Technology

    1983-06-13

    shaping of silicon crystals during their growth is a modification of inductive contactless forming of rods and tubes directly from the melt on a...MANUFACTURING TECHNOLOGY Induction Systems for Electromagnetic Shaping of Silicon Crystal During.Growth (L. R. Lev; ELEKTROTEKHNIKA, Feb 83) • • • x...et al.; IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: ELEKTROMEKHANIKA, Dec 82) 18 Basic Design of Linear- Induction Traction Motors for High-Speed

  5. Design of Edible Oil Degradation Tool by Using Electromagnetic Field Absorbtion Principle which was Characterized to Peroxide Number

    NASA Astrophysics Data System (ADS)

    Isnen, M.; Nasution, T. I.; Perangin-angin, B.

    2016-08-01

    The identification of changes in oil quality has been conducted by indicating the change of dielectric constant which was showed by sensor voltage. Sensor was formed from two parallel flats that worked by electromagnetic wave propagation principle. By measuring its amplitude of electromagnetic wave attenuation caused by interaction between edible oil samples and the sensor, dielectric constant could be identified and estimated as well as peroxide number. In this case, the parallel flats were connected to an electric oscillator 700 kHz. Furthermore, sensor system could showed measurable voltage differences for each different samples. The testing carried out to five oil samples after undergoing an oxidation treatment at fix temperature of 235oC for 0, 5, 10, 15 and 20 minutes. Iodometry method testing showed peroxide values about 1.99, 9.95, 5.96, 11.86, and 15.92 meq/kg respectively with rising trend. Besides that, the testing result by sensor system showed voltages values 1.139, 1.147, 1.165, 1.173, and 1.176 volts with rising trend, respectively. It means that the higher sensor voltages showed the higher damage rate of edible oil when the change in sensor voltage was caused by the change in oil dielectric constant in which heating process caused damage in edible oil molecules structure. The more damage of oil structure caused the more difficulties of oil molecules to polarize and it is indicated by smaller dielectric constant. Therefore electric current would be smaller when sensor voltage was higher. On the other side, the higher sensor voltage means the smaller dielectric constant and the higher peroxide number.

  6. Electromagnetic induction imaging of concealed metallic objects by means of resonating circuits

    NASA Astrophysics Data System (ADS)

    Guilizzoni, R.; Watson, J. C.; Bartlett, P. A.; Renzoni, F.

    2016-05-01

    An electromagnetic induction system, suitable for 2D imaging of metallic samples of different electrical conductivities, has been developed. The system is based on a parallel LCR circuit comprising a ferrite-cored coil (7.8 mm x 9.5 mm, L=680 μH at 1 KHz), a variable resistor and capacitor. The working principle of the system is based on eddy current induction inside a metallic sample when this is introduced into the AC magnetic field created by the coil. The inductance of the LCR circuit is modified due to the presence of the sample, to an extent that depends on its conductivity. Such modification is known to increase when the system is operated at its resonant frequency. Characterizing different metals based on their values of conductivity is therefore possible by utilizing a suitable system operated at resonance. Both imaging and material characterization were demonstrated by means of the proposed electromagnetic induction technique. Furthermore, the choice of using a system with an adjustable resonant frequency made it possible to select resonances that allow magnetic-field penetration through conductive screens. Investigations on the possibility of imaging concealed metals by penetrating such shields have been carried out. A penetration depth of δ~3 mm through aluminium (Al) was achieved. This allowed concealed metallic samples- having conductivities ranging from 0.54 to 59.77 MSm-1 and hidden behind 1.5-mm-thick Al shields- to be imaged. Our results demonstrate that the presence of the concealed metallic objects can be revealed. The technique was thus shown to be a promising detection tool for security applications.

  7. Electromagnetic deep-probing (100-1000 kms) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F.

    1983-01-01

    The reconnaissance phase of using satellite observtions to studying electromagnetic induction in the solid earth is summarized. Several points are made: (1) satellite data apparently suffer far less from the effects of near surface lateral heterogeneities in the earth than do ground-based data; (2) zonal ionospheric currents during the recovery phase of major magnetic storms appear to be minimal, at least in the dawn and dusk sectors wher MAGSAT was flown; hence the internal contributions that satellites observe during these times is in fact due primarily to induction in the Earth with little or no contribution from ionospheric currents; and (3) the interpretation of satellite data in terms of primitive electromagnetic response functions, while grossly over-simplified, results in a surprisingly well-resolved radius for an equivalent super-conductor representing the conductivity region of the Earth's interior (5,370 + or - 120 km).

  8. Analysis of Power Supply Heating Effect during High Temperature Experiments Based on the Electromagnetic Steel Teeming Technology

    NASA Astrophysics Data System (ADS)

    He, Ming; Wang, Qiang; Liu, Xin'an; Shi, Chunyang; Liu, Tie; He, Jicheng

    2017-04-01

    For further lowering inclusions and improving the quality of steel, a new electromagnetic steel-teeming technology based on electromagnetic induction heating was proposed. To assess the proposed technology, an experimental platform that imitates the actual production condition of steelmakers was established. High temperature experiments were performed to investigate the melting length of Fe-C alloy under different power and frequency conditions. The heating effect was analyzed, and the method of magnetic shielding to reduce the power loss of power supply was put forward. The results show that when the power is 40 kW and frequency is 25 kHz, the melting length of the Fe-C alloy is 89.2 mm in 120 s, which meets the requirements of steel teeming. In addition, when magnetic shielding material is installed under the induction coil, the power loss is reduced by about 64 %, effectively improving the heating effect of power supply.

  9. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    DOEpatents

    Bell, Zane W.

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  10. High-voltage pulse generator developed for wide-gap spark chambers

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Walschon, E. G.

    1968-01-01

    Low-inductance, high-capacitance Marx pulse generator provides for minimization of internal inductance and suppression of external electromagnetic radiation. The spark gaps of the generator are enclosed in a pressurized nitrogen atmosphere which allows the charging voltage to be varied by changing the nitrogen pressure.

  11. Research on Stabilization Properties of Inductive-Capacitive Transducers Based on Hybrid Electromagnetic Elements

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirllov, R. V.; Konev, A. A.

    2017-01-01

    Some electrical consumers (the charge system of storage capacitor, powerful pulse generators, electrothermal systems, gas-discharge lamps, electric ovens, plasma torches) require constant power consumption, while their resistance changes in the limited range. Current stabilization systems (CSS) with inductive-capacitive transducers (ICT) provide constant power, when the load resistance changes over a wide range and increaseы the efficiency of high-power loads’ power supplies. ICT elements are selected according to the maximum load, which leads to exceeding a predetermined value of capacity. The paper suggests carrying load power by the ICT based on multifunction integrated electromagnetic components (MIEC) to reduce the predetermined capacity of ICT elements and CSS weights and dimensions. The authors developed and patented ICT based on MIEC that reduces the CSS weights and dimensions by reducing components number with the possibility of device’s electric energy transformation and resonance frequency changing. An ICT mathematical model was produced. The model determines the width of the load stabilization range. Electromagnetic processes study model was built with the MIEC integral parameters (full inductance of the electrical lead, total capacity, current of electrical lead). It shows independence of the load current from the load resistance for different ways of MIEC connection.

  12. Sparsity Aware Adaptive Radar Sensor Imaging in Complex Scattering Environments

    DTIC Science & Technology

    2015-06-15

    while meeting the requirement on the peak to average power ratio. Third, we study impact of waveform encoding on nonlinear electromagnetic tomographic...Enyue Lu. Time Domain Electromagnetic Tomography Using Propagation and Backpropagation Method, IEEE International Conference on Image Processing...Received Paper 3.00 4.00 Yuanwei Jin, Chengdon Dong, Enyue Lu. Waveform Encoding for Nonlinear Electromagnetic Tomographic Imaging, IEEE Global

  13. Electromagnetic induced voltage signal to magnetic variation through torquing textured Fe81Ga19 alloy

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Li, Jiheng; Bao, Xiaoqian; Mu, Xing; Gao, Xuexu

    2017-07-01

    The results of a study on the suitability of Fe-Ga alloys for torque sensor applications are presented. A Fe81Ga19 rod with a ⟨100⟩ preferred orientation along the length direction is prepared for the torque shaft and as the electromagnetic induction sensitive element, which is wound with three coils for signal excitation, signal pickup, and applied bias magnetic field, respectively. An apparent decrease in the induced voltage signal (peak voltage) of 3.88 mV is observed as the torque loading is 50 N m in the presence of a sine excitation signal (10 V, 1 kHz) and a bias current of 0.5 A. Meanwhile, a good repeatability and stress sensitivity are obtained, especially in the low torque range. These behaviors stem from the stress induced decrease in the magnetic permeability and the rotation of the arranged magnetic moment. Here, we use the Fe81Ga19 alloy as the shaft material; nevertheless, in practical use, the same effect can be achieved by forming a Fe-Ga layer with large magnetostriction on the surface of the torsion shaft. This work shows the prospect of Fe-Ga alloys for non-contact torque sensing, for the large magnetostriction and high sensitivity of magnetization to stress.

  14. Makeup and uses of a basic magnet laboratory for characterizing high-temperature permanent magnets

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    1991-01-01

    A set of instrumentation for making basic magnetic measurements was assembled in order to characterize high intrinsic coercivity, rare earth permanent magnets with respect to short term demagnetization resistance and long term aging at temperatures up to 300 C. The major specialized components of this set consist of a 13 T peak field, capacitor discharge pulse magnetizer; a 10 in. pole size, variable gap electromagnet; a temperature controlled oven equipped with iron cobalt pole piece extensions and a removable paddle that carries the magnetization and field sensing coils; associated electronic integrators; and sensor standards for field intensity H and magnetic moment M calibration. A 1 cm cubic magnet sample, carried by the paddle, fits snugly between the pole piece extensions within the electrically heated aluminum oven, where fields up to 3.2 T can be applied by the electromagnet at temperatures up to 300 C. A sample set of demagnetization data for the high energy Sm2Co17 type of magnet is given for temperatures up to 300 C. These data are reduced to the temperature dependence of the M-H knee field and of the field for a given magnetic induction swing, and they are interpreted to show the limits of safe operation.

  15. Realistic Subsurface Anomaly Discrimination Using Electromagnetic Induction and an SVM Classifier

    NASA Astrophysics Data System (ADS)

    Pablo Fernández, Juan; Shubitidze, Fridon; Shamatava, Irma; Barrowes, Benjamin E.; O'Neill, Kevin

    2010-12-01

    The environmental research program of the United States military has set up blind tests for detection and discrimination of unexploded ordnance. One such test consists of measurements taken with the EM-63 sensor at Camp Sibert, AL. We review the performance on the test of a procedure that combines a field-potential (HAP) method to locate targets, the normalized surface magnetic source (NSMS) model to characterize them, and a support vector machine (SVM) to classify them. The HAP method infers location from the scattered magnetic field and its associated scalar potential, the latter reconstructed using equivalent sources. NSMS replaces the target with an enclosing spheroid of equivalent radial magnetization whose integral it uses as a discriminator. SVM generalizes from empirical evidence and can be adapted for multiclass discrimination using a voting system. Our method identifies all potentially dangerous targets correctly and has a false-alarm rate of about 5%.

  16. Nanotube Aerogel Sheet Flutter for Actuation, Power Generation, and Infrasound Detection

    PubMed Central

    Kang, Tae June; Kim, Taewoo; Jang, Eui Yun; Im, Hyeongwook; Lepro-Chavez, Xavier; Ovalle-Robles, Raquel; Oh, Jiyoung; Kozlov, Mikhail E.; Baughman, Ray H.; Lee, Hong H.; Kim, Yong Hyup

    2014-01-01

    Electromagnetic induction (EMI) is a mechanism of classical physics that can be utilized to convert mechanical energy to electrical energy or electrical to mechanical energy. This mechanism has not been exploited fully because of lack of a material with a sufficiently low force constant. We here show that carbon nanotube (CNT) aerogel sheets can exploit EMI to provide mechanical actuation at very low applied voltages, to harvest mechanical energy from small air pressure fluctuations, and to detect infrasound at inaudible frequencies below 20 Hz. Using conformal deposition of 100 nm thick aluminum coatings on the nanotubes in the sheets, mechanical actuation can be obtained by applying millivolts, as compared with the thousand volts needed to achieve giant-stroke electrostatic actuation of carbon nanotube aerogel sheets. Device simplicity and performance suggest possible applications as an energy harvester of low energy air fluctuations and as a sensor for infrasound frequencies. PMID:25130708

  17. Accounting for the influence of salt water in the physics required for processing underwater UXO EMI signals

    NASA Astrophysics Data System (ADS)

    Shubitidze, Fridon; Barrowes, Benjamin E.; Shamatava, Irma; Sigman, John; O'Neill, Kevin A.

    2018-05-01

    Processing electromagnetic induction signals from subsurface targets, for purposes of discrimination, requires accurate physical models. To date, successful approaches for on-land cases have entailed advanced modeling of responses by the targets themselves, with quite adequate treatment of instruments as well. Responses from the environment were typically slight and/or were treated very simply. When objects are immersed in saline solutions, however, more sophisticated modeling of the diffusive EMI physics in the environment is required. One needs to account for the response of the environment itself as well as the environment's frequency and time-dependent effects on both primary and secondary fields, from sensors and targets, respectively. Here we explicate the requisite physics and identify its effects quantitatively via analytical, numerical, and experimental investigations. Results provide a path for addressing the quandaries posed by previous underwater measurements and indicate how the environmental physics may be included in more successful processing.

  18. Nanotube aerogel sheet flutter for actuation, power generation, and infrasound detection.

    PubMed

    Kang, Tae June; Kim, Taewoo; Jang, Eui Yun; Im, Hyeongwook; Lepro-Chavez, Xavier; Ovalle-Robles, Raquel; Oh, Jiyoung; Kozlov, Mikhail E; Baughman, Ray H; Lee, Hong H; Kim, Yong Hyup

    2014-08-18

    Electromagnetic induction (EMI) is a mechanism of classical physics that can be utilized to convert mechanical energy to electrical energy or electrical to mechanical energy. This mechanism has not been exploited fully because of lack of a material with a sufficiently low force constant. We here show that carbon nanotube (CNT) aerogel sheets can exploit EMI to provide mechanical actuation at very low applied voltages, to harvest mechanical energy from small air pressure fluctuations, and to detect infrasound at inaudible frequencies below 20 Hz. Using conformal deposition of 100 nm thick aluminum coatings on the nanotubes in the sheets, mechanical actuation can be obtained by applying millivolts, as compared with the thousand volts needed to achieve giant-stroke electrostatic actuation of carbon nanotube aerogel sheets. Device simplicity and performance suggest possible applications as an energy harvester of low energy air fluctuations and as a sensor for infrasound frequencies.

  19. Inductive-capacitive resonant circuit sensors for structural health and environmental monitoring

    NASA Astrophysics Data System (ADS)

    DeRouin, Andrew J.

    Inductive-capacitive (LC) sensors are low-cost, wireless, durable, simple to fabricate and battery-less. Consequently, they are well suited to sensing applications in harsh environments or where large numbers of sensors are needed. Due to their many advantages, LC sensors have been used for sensing a variety of parameters including humidity, temperature, chemical concentrations, pH, stress/pressure, strain, food quality and even biological growth. However, current versions of the LC sensor technology are limited to sensing only one parameter. This work focuses on the development and characterization of two new sensor designs that address this limitation in addition to significantly reducing the overall sensor footprint and thus the sensor unit cost.

  20. Photonic all-silicon microsensor for electromagnetic power in the microwave and millimeter-wave range

    NASA Astrophysics Data System (ADS)

    Rendina, Ivo; Bellucci, Marco; Cocorullo, Giuseppe; Della Corte, Francesco G.; Iodice, Mario

    2000-03-01

    A new type of non-perturbing electromagnetic power sensor for microwaves and millimeter-waves, based on the thermo- optical effect in a silicon interferometric etalon cavity is presented. The incident field power is partially dissipated into the all-silicon metal-less etalon, constituting the sensing element of the detector, so causing its temperature increase. This, in turn, induces the intensity modulation of a probe laser beam reflected by the cavity after a multiple beam interference process. The sensing element is directly connected to an optical fiber for remote interrogation, so avoiding the use of perturbing coaxial cables. The performances of such a new class of non-perturbing and wideband probes, in terms of sensitivity and resolution are discussed in detail. The experimental results concerning the characterization of a preliminary prototype sensor are presented and compared with theoretical data. The dependence of the sensor response on the electromagnetic frequency and on the sensing element characteristics is finally discussed.

  1. Dual resonant frequencies effects on an induction-based oil palm fruit sensor.

    PubMed

    Harun, Noor Hasmiza; Misron, Norhisam; Mohd Sidek, Roslina; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2014-11-19

    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.

  2. Dual Resonant Frequencies Effects on an Induction-Based Oil Palm Fruit Sensor

    PubMed Central

    Harun, Noor Hasmiza; Misron, Norhisam; Sidek, Roslina Mohd; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2014-01-01

    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept. PMID:25414970

  3. Application of induction heating in food processing and cooking: A Review

    USDA-ARS?s Scientific Manuscript database

    Induction heating is an electromagnetic heating technology that has several advantages such as high safety, scalability, and high energy efficiency. It has been applied for a long time in metal processing, medical applications, and cooking. However, the application of this technology in the food pro...

  4. Demonstration of Lenz's Law with an Induction Motor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2005-01-01

    The interaction of a conductor with a time-dependent magnetic field is an important topic of electromagnetic theory. A computerized classroom demonstration shows how the eddy currents induced in the rotor of an induction motor cause its rotation or braking. Both phenomena are directly related to Lenz's law.

  5. Demonstration of LenzÂ's law with an induction motor

    NASA Astrophysics Data System (ADS)

    Kraftmakher, Yaakov

    2005-03-01

    The interaction of a conductor with a time-dependent magnetic field is an important topic of electromagnetic theory. A computerized classroom demonstration shows how the eddy currents induced in the rotor of an induction motor cause its rotation or braking. Both phenomena are directly related to Lenz’s law.

  6. Low-inductance bus lines

    NASA Technical Reports Server (NTRS)

    Kernick, A.

    1977-01-01

    Laminated bus strips and bifilar litz cable connectors for high-power rectifiers, thrisistors, and transistors provide low inductance and eliminate electromagnetic interference in high-power circuits. These techniques offer significant cost advantages because of ease of assembly and consistent high quality of product. Effectiveness makes general usage in static power conversion likely.

  7. Electronics for a highly segmented electromagnetic calorimeter prototype

    NASA Astrophysics Data System (ADS)

    Fehlker, D.; Alme, J.; van den Brink, A.; de Haas, A. P.; Nooren, G.-J.; Reicher, M.; Röhrich, D.; Rossewij, M.; Ullaland, K.; Yang, S.

    2013-03-01

    A prototype of a highly segmented electromagnetic calorimeter has been developed. The detector tower is made of 24 layers of PHASE2/MIMOSA23 silicon sensors sandwiched between tungsten plates, with 4 sensors per layer, a total of 96 MIMOSA sensors, resulting in 39 MPixels for the complete prototype detector tower. The paper focuses on the electronics of this calorimeter prototype. Two detector readout and control systems are used, each containing two Spartan 6 and one Virtex 6 FPGA, running embedded Linux, each system serving 12 detector layers. In 550 ms a total of 4 Gbytes of data is read from the detector, stored in memory on the electronics and then shipped to the DAQ system via Gigabit ethernet.

  8. Spectrum-Modulating Fiber-Optic Sensors

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Fritsch, Klaus

    1989-01-01

    Family of spectrum-modulating fiber-optic sensors undergoing development for use in aircraft-engine control systems. Fiber-optic sensors offer advantages of small size, high bandwidth, immunity to electromagnetic interference, and light weight. Furthermore, they reduce number of locations on aircraft to which electrical power has to be supplied.

  9. The Effects of Wideband Complex Electromagnetic Properties of Soils on Geophysical Sensor Performance

    NASA Astrophysics Data System (ADS)

    North, Ryan Elliot

    Common near-surface geophysical methods such as time domain electromagnetic induction (TDEM) metal detectors and ground penetrating radar (GPR) suffer performance degradation as a function of site specific complex electromagnetic soil properties (permittivity, permeability and conductivity). Knowledge of these soil properties from the kHz to the GHz frequency range can be used to predict and improve sensor performance. A prototype permittivity probe was used to measure the complex permittivity and conductivity of the soil and calculate the GPR velocity and attenuation of the from the in-situ measurements. The prototype probe was capable of accurately predicting the GPR velocities when compared with the GPR measurement and could easily predict the attenuation which is difficult to determine from actual GPR data. Unfortunately the prototype probe here has one primarily deficiency which is the assumption that the soils where it is used are non-magnetic. To illustrate the problems with using this probe in magnetic soils I made soil analogues from commercially available magnetite and crushed silica powder then measured them using a common open ended coaxial probe followed by measurements with coaxial air- line fixture which can also calculate magnetic properties. The calculated permittivities are up to twice as high when measured with the coaxial probe as they are when measured with a coaxial airline fixture which will lead to incorrect estimates of GPR velocity and attenuation. To address the performance issues of metal detectors in magnetically viscous soils I created a magnetically viscous soil analogue that could be used in mine detection training lanes instead of importing soil from sites exhibiting magnetic viscosity. Five commercially available iron oxide nano-powders were tested as additives to create the soil analogues by measuring the magnetic viscosity of these iron oxides with a new prototype instrument and compared them to samples of magnetically viscous soils collected at sites around the world. Three of the iron oxides exhibited comparable magnetic viscosities to the naturally occurring soil samples. One was selected to make a soil analogue by mixing it with crushed silica. The resulting magnetic susceptibilities compared favorably with those of the natural soil samples.

  10. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XI, INTRODUCTION TO ELECTRICAL MAINTENANCE FOR OFF-HIGHWAY VEHICLES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO FAMILIARIZE THE TRAINEE WITH THE FUNDAMENTALS OF ELECTRICITY AND MAGNETISM AS THEY RELATE TO DIESEL POWERED EQUIPMENT. TOPICS ARE (1) FUNDAMENTALS OF ELECTRICITY AND MAGNETISM, (2) ELECTROMAGNETIC FIELDS, (3) MAGNETIC FORCE ON A CONDUCTOR, (4) ELECTROMAGNETIC INDUCTION, (5) OHM'S LAW, (6) METER…

  11. Enhanced inductance in laminated multilayer magnetic planar inductor for sensitive magnetic field detection

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Wen, Yumei; Song, Fapeng; Li, Ping; Yu, Shumin

    2018-04-01

    The authors reported laminated multilayer magnetic planar inductors for sensitive magnetic field detection, which consist of two serially connected sandwich planar inductors (i.e., FeCuNbSiB/micro planar coil/FeCuNbSiB/micro planar coil/FeCuNbSiB). When ac current is applied to coils, the greatly increased inductance by the incorporated high permeability magnetic material and enlarged mutual-inductance among coils significantly improve the sensor sensitivity to the dc magnetic field. The demagnetizing field is also found to affect the performance severely when the shape and the number of magnetic layers vary. The investigation indicates that the proposed laminate can provide an inductance ratio of 665% at the frequency of 1 kHz. By connecting the sensor with a capacitor, the sensor output with varying dc magnetic fields is obtained by tuning the resonant frequency shift. The study indicates that the proposed sensor can provide a sensitivity of about 3.57 kHz/Oe with a resolution of 28 nT between 2 Oe and 60 Oe, which outperforms most of the magnetic sensors with frequency shifting output.

  12. Sensor technology workshop: Structure and goals

    NASA Technical Reports Server (NTRS)

    Wilson, Barbara A.

    1991-01-01

    The Astrotech 21 charter for the second of three workshops is described. The purpose was to identify technology needs in the areas of electromagnetic radiation sensors, and to recommend a plan to develop the required capabilities that are not currently available. The panels chosen for this workshop focused specifically on those technologies needed for the Astrotech 21 Program including: gamma ray and x ray sensors, ultraviolet and visible sensors, direct infrared sensors, and heterodyne submillimeter wave sensors.

  13. Large-area graphene for sensor applications

    NASA Astrophysics Data System (ADS)

    Snow, Eric S.

    2010-04-01

    Graphene represents an important new material with potential Department of Defense sensor applications. At the Naval Research Laboratory we have developed three techniques to produce large-area graphene films. We have used this material to construct chemical and radio-frequency electromagnetic sensors. Here we report the initial results of this effort.

  14. Absolute vs. relative error characterization of electromagnetic tracking accuracy

    NASA Astrophysics Data System (ADS)

    Matinfar, Mohammad; Narayanasamy, Ganesh; Gutierrez, Luis; Chan, Raymond; Jain, Ameet

    2010-02-01

    Electromagnetic (EM) tracking systems are often used for real time navigation of medical tools in an Image Guided Therapy (IGT) system. They are specifically advantageous when the medical device requires tracking within the body of a patient where line of sight constraints prevent the use of conventional optical tracking. EM tracking systems are however very sensitive to electromagnetic field distortions. These distortions, arising from changes in the electromagnetic environment due to the presence of conductive ferromagnetic surgical tools or other medical equipment, limit the accuracy of EM tracking, in some cases potentially rendering tracking data unusable. We present a mapping method for the operating region over which EM tracking sensors are used, allowing for characterization of measurement errors, in turn providing physicians with visual feedback about measurement confidence or reliability of localization estimates. In this instance, we employ a calibration phantom to assess distortion within the operating field of the EM tracker and to display in real time the distribution of measurement errors, as well as the location and extent of the field associated with minimal spatial distortion. The accuracy is assessed relative to successive measurements. Error is computed for a reference point and consecutive measurement errors are displayed relative to the reference in order to characterize the accuracy in near-real-time. In an initial set-up phase, the phantom geometry is calibrated by registering the data from a multitude of EM sensors in a non-ferromagnetic ("clean") EM environment. The registration results in the locations of sensors with respect to each other and defines the geometry of the sensors in the phantom. In a measurement phase, the position and orientation data from all sensors are compared with the known geometry of the sensor spacing, and localization errors (displacement and orientation) are computed. Based on error thresholds provided by the operator, the spatial distribution of localization errors are clustered and dynamically displayed as separate confidence zones within the operating region of the EM tracker space.

  15. Custom modular electromagnetic induction system for shallow electrical conductivity measurements

    NASA Astrophysics Data System (ADS)

    Mester, Achim; Zimmermann, Egon; Tan, Xihe; von Hebel, Christian; van der Kruk, Jan; van Waasen, Stefan

    2017-04-01

    Electromagnetic induction (EMI) is a contactless measurement method that offers fast and easy investigations of the shallow electrical conductivity, e.g. on the field-scale. Available frequency domain EMI systems offer multiple fixed transmitter-receiver (Tx-Rx) pairs with Tx-Rx separations between 0.3 and 4.0 m and investigation depths of up to six meters. Here, we present our custom EMI system that consists of modular sensor units that can either be transmitters or receivers, and a backpack containing the data acquisition system. The prototype system is optimized for frequencies between 5 and 30 kHz and Tx-Rx separations between 0.4 and 2.0 m. Each Tx and Rx signal is digitized separately and stored on a notebook computer. The soil conductivity information is determined after the measurements with advanced digital processing of the data using optimized correction and calibration procedures. The system stores the raw data throughout the entire procedure, which offers many advantages: (1) comprehensive accuracy and error analysis as well as the reproducibility of corrections and calibration procedures; (2) easy customizability of the number of Tx-/Rx-units and their arrangement and frequencies; (3) signals from simultaneously working transmitters can be separated within the received data using orthogonal signals, resulting in additional Tx-Rx pairs and maximized soil information; and (4) later improvements in the post-processing algorithms can be applied to old data sets. Exemplary, here we present an innovative setup with two transmitters and five receivers using orthogonal signals yielding ten Tx-Rx pairs. Note that orthogonal signals enable for redundant Tx-Rx pairs that are useful for verification of the transmitter signals and for data stacking. In contrast to commercial systems, only adjustments in the post-processing were necessary to realize such measurement configurations with flexibly combined Tx and Rx modules. The presented system reaches an accuracy of up to 1 mS/m and was also evaluated by surface measurements with the sensor modules mounted to a sled and moved along a bare soil field transect. Measured data were calibrated for quantitative apparent electrical conductivity using reference data at certain calibration locations. Afterwards, data were inverted for electrical conductivity over depth using a multi-layer inversion showing similar conductivity distributions as the reference data.

  16. Tuned-circuit dual-mode Johnson noise thermometers

    NASA Astrophysics Data System (ADS)

    Shepard, R. L.; Carroll, R. M.; Falter, D. D.; Blalock, T. V.; Roberts, M. J.

    1992-02-01

    Dual-mode Johnson noise and direct current (DC) resistance thermometers can be used in control systems where prompt indications of temperature changes and long-term accuracy are needed. Such a thermometer is being developed for the SP-100 space nuclear electric power system that requires temperature measurement at 1400 K in space for 10 years, of which 7 are expected to be at full reactor power. Several direct coupled and transformer coupled, tuned resistance inductance capacitance (RLC) circuits that produce a single, continuous voltage signal were evaluated for noise temperature measurement. The simple direct coupled RLC circuit selected provides a mean squared noise voltage that depends only on the capacitance used and the temperature of the sensor, and it is independent of the value of or changes in the sensor resistance. These circuits provide a noise signal with long term accuracy but require integrating noise signals for a finite length of time. The four wire resistor for the noise temperature sensor allows simultaneous DC resistance measurements to be made that provide a prompt, continuous temperature indication signal. The DC current mode is employed continuously, and a noise voltage measurement is made periodically to correct the temperature indication. The differential noise voltage preamplifier used substantially reduces electromagnetic interference (EMI) in the system. A sensor has been tested that should provide good performance (+/- 1 percent accuracy) and long-term (10 year) reliability in space environments. Accurate noise temperature measurements were made at temperatures above 1300 K, where significant insulator shunting occurs, even though shunting does affect the dc resistance measurements and makes the system more susceptible to EMI.

  17. DURIP: Piezoresponse Force Microscope (PFM) with Controlled Environment for Characterization of Flexoelectric Nanostructures

    DTIC Science & Technology

    2015-04-21

    seismic sensors , acoustic sensors , electromagnetic sensors and infrared (IR) detectors are among in-need multimodal sensing of vehicles, personnel, weapons... sensors and detectors largely due to the fact that the nature of piezoelectricity renders both active and passive sensing with fast response, low profile...and low power consumption. Acoustic and seismic sensors are used to ascertain the exact target location, speed, direction of motion, and

  18. Linear magnetic bearings

    NASA Technical Reports Server (NTRS)

    Goldowskiy, M. P.

    1984-01-01

    A self regulating, nonfrictional, active magnetic bearing is disclosed which has an elongated cylindrical housing for containing a shaft type armature with quadrature positioned shaft position sensors and equidistantly positioned electromagnets located at one end of the housing. Each set of sensors is responsive to orthogonal displacement of the armature and is used to generate control signals to energize the electromagnets to center the armature. A bumper magnet assembly is located at one end of the housing for dampening any undesired axial movement of the armature or to axially move the armature either continuously or fixedly.

  19. The Harp probe - An in situ Bragg scattering sensor

    NASA Technical Reports Server (NTRS)

    Mollo-Christensen, E.; Huang, N. E.; Long, S. R.; Bliven, L. F.

    1984-01-01

    A wave sensor, consisting of parallel, evenly spaced capacitance wires, whose output is the sum of the water surface deflections at the wires, has been built and tested in a wave tank. The probe output simulates Bragg scattering of electromagnetic waves from a water surface with waves; it can be used to simulate electromagnetic probing of the sea surface by radar. The study establishes that the wave probe, called the 'Harp' for short, will simulate Bragg scattering and that it can also be used to study nonlinear wave processes.

  20. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  1. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    NASA Astrophysics Data System (ADS)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-09-01

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  2. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissuemore » voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.« less

  3. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatara, Gen, E-mail: gen.tatara@riken.jp; Nakabayashi, Noriyuki; Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 Japan

    2014-05-07

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  4. Analysis of field-oriented controlled induction motor drives under sensor faults and an overview of sensorless schemes.

    PubMed

    Arun Dominic, D; Chelliah, Thanga Raj

    2014-09-01

    To obtain high dynamic performance on induction motor drives (IMD), variable voltage and variable frequency operation has to be performed by measuring speed of rotation and stator currents through sensors and fed back them to the controllers. When the sensors are undergone a fault, the stability of control system, may be designed for an industrial process, is disturbed. This paper studies the negative effects on a 12.5 hp induction motor drives when the field oriented control system is subjected to sensor faults. To illustrate the importance of this study mine hoist load diagram is considered as shaft load of the tested machine. The methods to recover the system from sensor faults are discussed. In addition, the various speed sensorless schemes are reviewed comprehensively. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  5. The Safety of Aircraft Exposed to Electromagnetic Fields: HIRF Testing of Aircraft Using Direct Current Injection

    DTIC Science & Technology

    2007-06-01

    massive RF power to the antenna feed points without providing an inductive path to earth. Given all the above challenges, and especially the... circuit theory currents are flowing limited by the three parallel 50 ohm resistances and low inductive reactance. This plateaus at eigencurrent...relative to nett TEM cell input power has been calculated: Figure 86 Expected power output from probe, neglecting probe inductance DSTO-RR-0329

  6. Modeling and simulation of soft sensor design for real-time speed estimation, measurement and control of induction motor.

    PubMed

    Etien, Erik

    2013-05-01

    This paper deals with the design of a speed soft sensor for induction motor. The sensor is based on the physical model of the motor. Because the validation step highlight the fact that the sensor cannot be validated for all the operating points, the model is modified in order to obtain a fully validated sensor in the whole speed range. An original feature of the proposed approach is that the modified model is derived from stability analysis using automatic control theory. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Design and Experimental Verification of a 0.19 V 53 μW 65 nm CMOS Integrated Supply-Sensing Sensor With a Supply-Insensitive Temperature Sensor and an Inductive-Coupling Transmitter for a Self-Powered Bio-sensing System Using a Biofuel Cell.

    PubMed

    Kobayashi, Atsuki; Ikeda, Kei; Ogawa, Yudai; Kai, Hiroyuki; Nishizawa, Matsuhiko; Nakazato, Kazuo; Niitsu, Kiichi

    2017-12-01

    In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation. The timer converts the output voltage from a biofuel cell to frequency. The temperature sensor provides a pulse width modulation (PWM) output that is not dependent on the supply voltage, and the associated inductive-coupling transmitter enables proximity communication. A test chip was fabricated in 65 nm CMOS technology and consumed 53 μW with a supply voltage of 190 mV. The low-voltage-friendly design satisfied the performance targets of each integrated sensor without any trimming. The chips allowed us to successfully demonstrate proximity communication with an asynchronous receiver, and the measurement results show the potential for self-powered operation using biofuel cells. The analysis and experimental verification of the system confirmed their robustness.

  8. Identification and Evaluation of Underground Obstacle Sensor Embodiments for Their Applicability to the Combat Engineers’ Rapid Excavation Mission(s),

    DTIC Science & Technology

    1980-01-01

    November 1976. 11. Ohio State University, Electroscience Laboratory, Electromagnetic Pulse Sounding for Geological Surveying with Application in Rock...Peters, L. and Moffatt, D. L., Electromagnetic Pulse Sounding for Geological Surveying with Application in Rock Mechanics and Rapid Excavation... Electromagnetic Pulse Sounding for Geolog- ical Surveying with Application in Rock Mechanics and Rapid Excava- tion Program, Ohio State University, Report

  9. Tunable resonant sensing means to sense a particular frequency in a high energy charged particle beam and generate a frequency-domain signal in response

    DOEpatents

    Nakamura, Michiyuki; Nolan, Marvin L.

    1988-01-01

    A frequency domain sensing system is disclosed for sensing the position of a high energy beam of charged particles traveling within a housing which comprises a plurality of sensors positioned in the wall of the housing radially around the axis of the beam. Each of the sensors further comprises a first electrode of predetermined shape received in a bore in the housing to define a fixed capacitance and an inductance structure attached to the electrode to provide an inductance for the sensing means which will provide an LC circuit which will resonate at a predetermined frequency known to exist in the beam of charged particles. The sensors are further provided with tuning apparatus associated with the inductance structure to vary the amount of the inductance to thereby tune the sensors to the predetermined frequency prior to transmission of the signal to signal detection circuitry.

  10. Measurement and control systems for an imaging electromagnetic flow metre.

    PubMed

    Zhao, Y Y; Lucas, G; Leeungculsatien, T

    2014-03-01

    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller. © 2013 ISA Published by ISA All rights reserved.

  11. Neodymium Magnets.

    ERIC Educational Resources Information Center

    Wida, Sam

    1992-01-01

    Uses extremely strong neodymium magnets to demonstrate several principles of physics including electromagnetic induction, Lenz's Law, domain theory, demagnetization, the Curie point, and magnetic flux lines. (MDH)

  12. TEM Systems Design: Using Full Maxwell FDTD Modelling to Study the Transient Response of Custom-madeTx and Rx Coils.

    NASA Astrophysics Data System (ADS)

    Chevalier, A.; Rejiba, F.; Schamper, C.; Thiesson, J.; Hovhannissian, G.

    2016-12-01

    From airborne applications to field scale measurements of Transient Electromagnetic Methods(TEM), an accurate knowledge of the sensitivity of the inductive coil sensors (system response) is aprerequisite to interpret the measured transient magnetic flux density into a subsurface distributionof conductivity. The system response is a term that refers to the cumulative effect of inductive andcapacitive couplings (cross-talks) between each component constituting a TEM apparatus and thenearby conductive structures. As a result, the frequency sensitivity of the voltage coil sensor (Rx)along with the emitted current waveform in the current emitting coil (Tx) are controlled by thegeometry and electronic characteristic of the set-up as well as the near surface electromagneticproperties. During the early development of an innovative airborne TEM solutions (French nationalTEMas project), determining the coil geometries and the impedance matching between all parts ofthe transmission link (electronic parts and coils) for various environmental set-ups, has been a majorissue. In this study, we review the required theoretical framework and propose a versatile numericalmethodology to ease the coil design and impedance matching process while extending ourunderstanding of short-time transient that operates from DC to moderately high frequencies (0 to 20Mhz). We used a full Maxwell equations FDTD model along with a semi-analytical 1D modeler to infercoils emitting and receiving properties, for various coil geometries and site-dependent conditions.Results highlight the influence of the environment on the emitting and sensing properties. Theincreasing effects of cross-talks between the Tx and the Rx coils depending on their size is shown.Strategies regarding the impedance adaptation between the electronical components and the coilsensors are then discussed for different geophysical specifications.

  13. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  14. A glimpse beneath Antarctic sea ice: observation of platelet-layer thickness and ice-volume fraction with multi-frequency EM

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Hoppmann, M.; Hunkeler, P. A.; Kalscheuer, T.; Gerdes, R.

    2015-12-01

    In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise and accumulate beneath nearby sea ice to form a several meter thick sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator for ice - ocean interactions. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and sub-ice platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions from platelet-layer conductivities using Archie's Law. The thickness results agreed well with drill-hole validation datasets within the uncertainty range, and the ice-volume fraction also yielded plausible results. Our findings imply that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties. However, we emphasize that the successful application of this technique requires a break with traditional EM sensor calibration strategies due to the need of absolute calibration with respect to a physical forward model.

  15. High speed displacement measurement based on electro-magnetic induction applied to electromagnetically driven ring expansion

    NASA Astrophysics Data System (ADS)

    Han, Xiaotao; Wu, Jiawei; Huang, Lantao; Qiu, Lei; Chen, Qi; Cao, Quanliang; Herlach, Fritz; Li, Liang

    2017-11-01

    Investigating the mechanism of electromagnetic forming (EMF) becomes a hot topic in the field of metal forming. The high speed up to 200 m/s in EMF makes it a real challenge to capture the forming process. To this end, a new method for measuring displacement at high speed based on electromagnetic induction has been developed. Specifically this is used to measure the displacement of an expanding metal ring driven by a pulsed magnetic field; this is one of the basic EMF processes. The new method is simple and practical, and it combines high-speed response with adequate precision. The new measurement system consists of a printed circuit board (PCB) and a Rogowski probe. Eleven coaxial annular detecting probes are arranged in the PCB plate to acquire induced voltage at different positions, and a Rogowski probe is used to measure the current in the driving coil. The displacement of the ring is deduced by analyzing the output voltages of the detecting probes and the Rogowski probe. The feasibility of the method is verified by comparing the results with pictures from a high speed camera taken simultaneously.

  16. 40 CFR 63.4768 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement sensitivity of 4 degrees Fahrenheit or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic interference...

  17. 40 CFR 63.4768 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement sensitivity of 4 degrees Fahrenheit or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic interference...

  18. 40 CFR 63.4168 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements in paragraphs (c)(3)(i) through (vii) of this section. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement...) Shield the temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If...

  19. 40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...

  20. 40 CFR 63.4168 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements in paragraphs (c)(3)(i) through (vii) of this section. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement...) Shield the temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If...

  1. 40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...

  2. 40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...

  3. Speech Adaptation to Kinematic Recording Sensors: Perceptual and Acoustic Findings

    ERIC Educational Resources Information Center

    Dromey, Christopher; Hunter, Elise; Nissen, Shawn L.

    2018-01-01

    Purpose: This study used perceptual and acoustic measures to examine the time course of speech adaptation after the attachment of electromagnetic sensor coils to the tongue, lips, and jaw. Method: Twenty native English speakers read aloud stimulus sentences before the attachment of the sensors, immediately after attachment, and again 5, 10, 15,…

  4. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology.

    PubMed

    Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran

    2017-04-18

    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor's operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene-methanol mixture where various concentrations of toluene were analysed.

  5. Apparatus and method for magnetically unloading a rotor bearing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, Seth Robert

    An apparatus and method for unloading a rotor bearing is described. The apparatus includes an electromagnet for levitating the rotor. In one embodiment, a sensor of the magnetic field near the electromagnet is used to control the current to levitate the rotor. In another embodiment, a method is provided that includes rotating the rotor, increasing the current to levitate the rotor and decrease the gap between electromagnet and rotor, and then reducing the current to levitate the rotor with a minimal amount of electric power to the electromagnet.

  6. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors--Air Gap Effect.

    PubMed

    Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-04-18

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.

  7. Wirelessly Interrogated Position or Displacement Sensors

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2007-01-01

    Two simple position or displacement sensors based on inductance-capacitance resonant circuits have been conceived. These sensors are both powered and interrogated without use of wires and without making contact with other objects. Instead, excitation and interrogation are accomplished by means of a magnetic-field-response recorder. Both of the present position or displacement sensors consist essentially of variable rectangular parallel-plate capacitors electrically connected in series with fixed inductors. Simple inductance-capacitance circuits of the type used in these sensors are inherently robust; their basic mode of operation does not depend on maintenance of specific environmental conditions. Hence, these sensors can be used under such harsh conditions as cryogenic temperatures, high pressures, and radioactivity.

  8. Global simulation of the induction heating TSSG process of SiC for the effects of Marangoni convection, free surface deformation and seed rotation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takuya; Okano, Yasunori; Ujihara, Toru; Dost, Sadik

    2017-07-01

    A global numerical simulation was performed for the induction heating Top-Seeded Solution Growth (TSSG) process of SiC. Analysis included the furnace and growth melt. The effects of interfacial force due to free surface tension gradient, the RF coil-induced electromagnetic body force, buoyancy, melt free surface deformation, and seed rotation were examined. The simulation results showed that the contributions of free surface tension gradient and the electromagnetic body force to the melt flow are significant. Marangoni convection affects the growth process adversely by making the melt flow downward in the region under the seed crystal. This downward flow reduces carbon flux into the seed and consequently lowers growth rate. The effects of free surface deformation and seed rotation, although positive, are not so significant compared with those of free surface tension gradient and the electromagnetic body force. Due to the small size of the melt the contribution of buoyancy is also small.

  9. Modelling natural electromagnetic interference in man-made conductors for space weather applications

    NASA Astrophysics Data System (ADS)

    Trichtchenko, Larisa

    2016-04-01

    Power transmission lines above the ground, cables and pipelines in the ground and under the sea, and in general all man-made long grounded conductors are exposed to the variations of the natural electromagnetic field. The resulting currents in the networks (commonly named geomagnetically induced currents, GIC), are produced by the conductive and/or inductive coupling and can compromise or even disrupt system operations and, in extreme cases, cause power blackouts, railway signalling mis-operation, or interfere with pipeline corrosion protection systems. To properly model the GIC in order to mitigate their impacts it is necessary to know the frequency dependence of the response of these systems to the geomagnetic variations which naturally span a wide frequency range. For that, the general equations of the electromagnetic induction in a multi-layered infinitely long cylinder (representing cable, power line wire, rail or pipeline) embedded in uniform media have been solved utilising methods widely used in geophysics. The derived electromagnetic fields and currents include the effects of the electromagnetic properties of each layer and of the different types of the surrounding media. This exact solution then has been used to examine the electromagnetic response of particular samples of long conducting structures to the external electromagnetic wave for a wide range of frequencies. Because the exact solution has a rather complicated structure, simple approximate analytical formulas have been proposed, analysed and compared with the results from the exact model. These approximate formulas show good coincidence in the frequency range spanning from geomagnetic storms (less than mHz) to pulsations (mHz to Hz) to atmospherics (kHz) and above, and can be recommended for use in space weather applications.

  10. Pulse homodyne field disturbance sensor

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two.

  11. Pulse homodyne field disturbance sensor

    DOEpatents

    McEwan, T.E.

    1997-10-28

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two. 12 figs.

  12. Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to orthopaedic implant infections: In vitro findings.

    PubMed

    Pijls, B G; Sanders, I M J G; Kuijper, E J; Nelissen, R G H H

    2017-05-01

    Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load in vitro ? Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Staphylococcus epidermidis; Staphylococcus aureus; Pseudomonas aeruginosa ; spore-forming Bacillus cereus; and yeast Candida albicans . The cylinders were exposed to incremental target temperatures (35°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C) for up to 3.5 minutes. There was an average linear heating rate of 0.39°C per second up to the target temperature, and thereafter the target temperature was maintained until the end of the experiment. At 60°C and higher (duration 3.5 minutes), there was a 6-log reduction or higher for every micro-organism tested. At 60°C, we found that the shortest duration of effective induction heating was 1.5 minutes. This resulted in a 5-log reduction or higher for every micro-organism tested. Non-contact induction heating of a titanium disk is effective in reducing bacterial load in vitro . These promising results can be further explored as a new treatment modality for infections of metal orthopaedic implants. Cite this article : B. G. Pijls, I. M. J. G. Sanders, E. J. Kuijper, R. G. H. H. Nelissen. Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to orthopaedic implant infections: In vitro findings. Bone Joint Res 2017;6:323-330. DOI: 10.1302/2046-3758.65.BJR-2016-0308.R1. © 2017 Pijls et al.

  13. Overview of Advanced Electromagnetic Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Kamhawi, Hani; Gilland, James H.; Arrington, Lynn A.

    2005-01-01

    NASA Glenn Research Center s Very High Power Electric Propulsion task is sponsored by the Energetics Heritage Project. Electric propulsion technologies currently being investigated under this program include pulsed electromagnetic plasma thrusters, magnetoplasmadynamic thrusters, helicon plasma sources as well as the systems models for high power electromagnetic propulsion devices. An investigation and evaluation of pulsed electromagnetic plasma thruster performance at energy levels up to 700 Joules is underway. On-going magnetoplasmadynamic thruster experiments will investigate applied-field performance characteristics of gas-fed MPDs. Plasma characterization of helicon plasma sources will provide additional insights into the operation of this novel propulsion concept. Systems models have been developed for high power electromagnetic propulsion concepts, such as pulsed inductive thrusters and magnetoplasmadynamic thrusters to enable an evaluation of mission-optimized designs.

  14. Magnetic-Field-Response Measurement-Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a response inflection. The "transmit-receive-compare" of sequential harmonics is repeated until the inflection is identified. The harmonic producing the amplitude inflection is the sensor resonant frequency. Resonant frequency and response amplitude are stored and then correlated to calibration data.

  15. On the relevance of source effects in geomagnetic pulsations for induction soundings

    NASA Astrophysics Data System (ADS)

    Neska, Anne; Tadeusz Reda, Jan; Leszek Neska, Mariusz; Petrovich Sumaruk, Yuri

    2018-03-01

    This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding). The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows) and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  16. Magneto-therapy of human joint cartilage.

    PubMed

    Wierzcholski, Krzysztof; Miszczak, Andrzej

    2017-01-01

    The topic of the present paper concerns the human joint cartilage therapy performed by the magnetic induction field. There is proved the thesis that the applied magnetic field for concrete cartilage illness should depend on the proper relative and concrete values of applied magnetic induction, intensity as well the time of treatment duration. Additionally, very important are frequencies and amplitudes of magnetic field as well as magnetic permeability of the synovial fluid. The research methods used in this paper include: magnetic induction field produced by a new Polish and German magneto electronic devices for the therapy of human joint cartilage diseases, stationary and movable magnetic applicators, magnetic bandage, ferrofluid injections, author's experience gained in Germany research institutes and practical results after measurements and information from patients. The results of this paper concern concrete parameters of time dependent electro-magnetic field administration during the joint cartilage therapy duration and additionally concern the corollaries which are implied from reading values gained on the magnetic induction devices. The main conclusions obtained in this paper are as follows: Time dependent magnetic induction field increases the dynamic viscosity of movable synovial fluid and decreases symptoms of cartilage illness for concrete intensity of magnetic field and concrete field line architecture. The ferrofluid therapy and phospholipids bilayer simultaneously with the administrated external electromagnetic field, increases the dynamic viscosity of movable synovial fluid.

  17. Autonomous Sea-Ice Thickness Survey

    DTIC Science & Technology

    2016-06-01

    to tow an electromagnetic induction meter over sea ice in McMurdo Sound, Antarctica. This proof-of-concept survey aimed to demonstrate improved...EM31 electromagnetic ice-thickness meter along the Pegasus Cut- Off Road near McMurdo Station, Antarctic, on 11 November 2014...supported the GPS antenna (white disk). The orange 200 MHz antenna and smaller 400 MHz antenna (not visible) mounted in front of the black case. The

  18. ALLTEM Multi-Axis Electromagnetic Induction System Demonstration and Validation

    DTIC Science & Technology

    2012-08-01

    threshold T-high higher threshold TMGS Tensor Magnetic Gradiometer System TOI target of interest Tx ALLTEM transmitter USGS U.S. Geological...the Tensor Magnetic Gradiometer System ( TMGS ) and two prototype EMI instruments, the Very Early Time-domain ElectroMagnetic (VETEM) system and the...project one prototype magnetic system, the TMGS , and two prototype EMI instruments, VETEM and the High Frequency Sounder, were evaluated. Subsequent

  19. Velocity damper for electromagnetically levitated materials

    DOEpatents

    Fox, Richard J.

    1994-01-01

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  20. [Pulse-modulated Electromagnetic Radiation of Extremely High Frequencies Protects Cellular DNA against Damaging Effect of Physico-Chemical Factors in vitro].

    PubMed

    Gapeyev, A B; Lukyanova, N A

    2015-01-01

    Using a comet assay technique, we investigated protective effects of. extremely high frequency electromagnetic radiation in combination with the damaging effect of X-ray irradiation, the effect of damaging agents hydrogen peroxide and methyl methanesulfonate on DNA in mouse whole blood leukocytes. It was shown that the preliminary exposure of the cells to low intensity pulse-modulated electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20-min exposure, modulation frequencies of 1 and 16 Hz) caused protective effects decreasing the DNA damage by 20-45%. The efficacy of pulse-modulated electromagnetic radiation depended on the type of genotoxic agent and increased in a row methyl methanesulfonate--X-rays--hydrogen peroxide. Continuous electromagnetic radiation was ineffective. The mechanisms of protective effects may be connected with an induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated electromagnetic radiation.

  1. The design of the Langmuir probe onboard a seismo-electromagnetic satellite

    NASA Astrophysics Data System (ADS)

    Guan, Yi-bing; Wang, Sh-ijin; Liu, Chao; Feng, Yu-bo

    2011-08-01

    The double Langmuir probe, as a payload of a seism-electromagnetic satellite, has been designed for in situ measurements of the parameters of the ionosphere plasma on the 500km altitude orbit to research the electromagnetic coupling between the solid-earth activities and the ionosphere disturbances. The Langmuir probe is comprised of two spherical sensors: the diameter of the smaller one is 1cm and the other one is 5cm. The two sensors are mounted on two parallel booms on the satellite, which are half meter far from each other. The two main ionosphere parameters measured by the Langmuir probe are electron density and electron temperature, which are computed from the I-V curves. The I-V curve is given by a current flow through a sensor in case of a sweep voltage is applied to the sensor. There are three main work models for the Langmuir probe: the normal model, the burst model and the decontamination model. The normal model is for the general measurement of the ionosphere parameters around the globe with 1s time resolution, while the burst model is to measure the ionosphere over the interested areas, like the areas with more earthquake activities, with 0.5s time resolution. The decontamination model would work if the I-V curves shown hysteresis phenomenon, which indicated that the sensors may be contaminated by the outgassing of the satellite. The description of the Langmuir probe instrument and its capabilities is provided.

  2. Electromagnetic interference with cardiac pacemakers and implantable cardioverter-defibrillators from low-frequency electromagnetic fields in vivo.

    PubMed

    Tiikkaja, Maria; Aro, Aapo L; Alanko, Tommi; Lindholm, Harri; Sistonen, Heli; Hartikainen, Juha E K; Toivonen, Lauri; Juutilainen, Jukka; Hietanen, Maila

    2013-03-01

    Electromagnetic interference (EMI) can pose a danger to workers with pacemakers and implantable cardioverter-defibrillators (ICDs). At some workplaces electromagnetic fields are high enough to potentially inflict EMI. The purpose of this in vivo study was to evaluate the susceptibility of pacemakers and ICDs to external electromagnetic fields. Eleven volunteers with a pacemaker and 13 with an ICD were exposed to sine, pulse, ramp, and square waveform magnetic fields with frequencies of 2-200 Hz using Helmholtz coil. The magnetic field flux densities varied to 300 µT. We also tested the occurrence of EMI from an electronic article surveillance (EAS) gate, an induction cooktop, and a metal inert gas (MIG) welding machine. All pacemakers were tested with bipolar settings and three of them also with unipolar sensing configurations. None of the bipolar pacemakers or ICDs tested experienced interference in any of the exposure situations. The three pacemakers with unipolar settings were affected by the highest fields of the Helmholtz coil, and one of them also by the EAS gate and the welding cable. The induction cooktop did not interfere with any of the unipolarly programmed pacemakers. Magnetic fields with intensities as high as those used in this study are rare even in industrial working environments. In most cases, employees can return to work after implantation of a bipolar pacemaker or an ICD, after an appropriate risk assessment. Pacemakers programmed to unipolar configurations can cause danger to their users in environments with high electromagnetic fields, and should be avoided, if possible.

  3. Adaptive marker-free registration using a multiple point strategy for real-time and robust endoscope electromagnetic navigation.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku

    2015-02-01

    Registration of pre-clinical images to physical space is indispensable for computer-assisted endoscopic interventions in operating rooms. Electromagnetically navigated endoscopic interventions are increasingly performed at current diagnoses and treatments. Such interventions use an electromagnetic tracker with a miniature sensor that is usually attached at an endoscope distal tip to real time track endoscope movements in a pre-clinical image space. Spatial alignment between the electromagnetic tracker (or sensor) and pre-clinical images must be performed to navigate the endoscope to target regions. This paper proposes an adaptive marker-free registration method that uses a multiple point selection strategy. This method seeks to address an assumption that the endoscope is operated along the centerline of an intraluminal organ which is easily violated during interventions. We introduce an adaptive strategy that generates multiple points in terms of sensor measurements and endoscope tip center calibration. From these generated points, we adaptively choose the optimal point, which is the closest to its assigned the centerline of the hollow organ, to perform registration. The experimental results demonstrate that our proposed adaptive strategy significantly reduced the target registration error from 5.32 to 2.59 mm in static phantoms validation, as well as from at least 7.58 mm to 4.71 mm in dynamic phantom validation compared to current available methods. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. In vitro validation of a new respiratory ultrasonic plethysmograph.

    PubMed

    Schramel, Johannes; van den Hoven, René; Moens, Yves

    2012-07-01

    The in-vitro validation of a novel Respiratory Ultrasonic Plethysmography (RUP) system designed to detect circumference changes of rib cage and abdominal compartments in large and small animals. Experimental in vitro study. The experimental system includes two compliant fluid-filled rubber tubes functioning as ultrasonic waveguides. Each has an ultrasonic transmitter and a detector at the opposing ends. Sensor length can be individually adapted in the range of 0.15-2 m. Data are downloaded to a computer at a sampling rate of 10 or 100 Hz. Measurements have a resolution of 0.3 mm. Baseline stability, linearity and repeatability were investigated with dedicated experiments. The base line drift was tested measuring a fixed distance for 2 hours continuously and then 18 hours later. A hand-operated horse thorax dummy (elliptically shaped, circumference 1.73 m) was used to compare waveforms of RUP with a respiratory inductive plethysmograph (RIP). The electromagnetic interference was tested by approaching metallic objects. Baseline drift and repeatability (10 repeated steps of 1.6% and 6.6% elongations and contractions) were within ± 0.3 mm. The response of the system for tube stretching up to 11% of total length was linear with a coefficient of determination for linearity of 0.998. In contrast to RIP, electromagnetic interference could not be observed with RUP. The low baseline drift and the lack of electromagnetic interference favours the use of RUP compared to an RIP device when studying the breathing pattern and end expiratory lung volume changes in conscious and anaesthetized animals. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  5. Wireless sensor systems and methods, and methods of monitoring structures

    DOEpatents

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.; Harding, L. Dean; Klingler, Kerry M.

    2007-02-20

    A wireless sensor system includes a passive sensor apparatus configured to be embedded within a concrete structure to monitor infiltration of contaminants into the structure. The sensor apparatus includes charging circuitry and a plurality of sensors respectively configured to measure environmental parameters of the structure which include information related to the infiltration of contaminants into the structure. A reader apparatus is communicatively coupled to the sensor apparatus, the reader apparatus being configured to provide power to the charging circuitry during measurements of the environmental parameters by the sensors. The reader apparatus is configured to independently interrogate individual ones of the sensors to obtain information measured by the individual sensors. The reader apparatus is configured to generate an induction field to energize the sensor apparatus. Information measured by the sensor apparatus is transmitted to the reader apparatus via a response signal that is superimposed on a return induction field generated by the sensor apparatus. Methods of monitoring structural integrity of the structure are also provided.

  6. Spaced-based search coil magnetometers

    NASA Astrophysics Data System (ADS)

    Hospodarsky, George B.

    2016-12-01

    Search coil magnetometers are one of the primary tools used to study the magnetic component of low-frequency electromagnetic waves in space. Their relatively small size, mass, and power consumption, coupled with a good frequency range and sensitivity, make them ideal for spaceflight applications. The basic design of a search coil magnetometer consists of many thousands of turns of wire wound on a high permeability core. When a time-varying magnetic field passes through the coil, a time-varying voltage is induced due to Faraday's law of magnetic induction. The output of the coil is usually attached to a preamplifier, which amplifies the induced voltage and conditions the signal for transmission to the main electronics (usually a low-frequency radio receiver). Search coil magnetometers are usually used in conjunction with electric field antenna to measure electromagnetic plasma waves in the frequency range of a few hertz to a few tens of kilohertzs. Search coil magnetometers are used to determine the properties of waves, such as comparing the relative electric and magnetic field amplitudes of the waves, or to investigate wave propagation parameters, such as Poynting flux and wave normal vectors. On a spinning spacecraft, they are also sometimes used to determine the background magnetic field. This paper presents some of the basic design criteria of search coil magnetometers and discusses design characteristics of sensors flown on a number of spacecraft.

  7. Acquisition and processing of advanced sensor data for ERW and UXO detection and classification

    NASA Astrophysics Data System (ADS)

    Schultz, Gregory M.; Keranen, Joe; Miller, Jonathan S.; Shubitidze, Fridon

    2014-06-01

    The remediation of explosive remnants of war (ERW) and associated unexploded ordnance (UXO) has seen improvements through the injection of modern technological advances and streamlined standard operating procedures. However, reliable and cost-effective detection and geophysical mapping of sites contaminated with UXO such as cluster munitions, abandoned ordnance, and improvised explosive devices rely on the ability to discriminate hazardous items from metallic clutter. In addition to anthropogenic clutter, handheld and vehicle-based metal detector systems are plagued by natural geologic and environmental noise in many post conflict areas. We present new and advanced electromagnetic induction (EMI) technologies including man-portable and towed EMI arrays and associated data processing software. While these systems feature vastly different form factors and transmit-receive configurations, they all exhibit several fundamental traits that enable successful classification of EMI anomalies. Specifically, multidirectional sampling of scattered magnetic fields from targets and corresponding high volume of unique data provide rich information for extracting useful classification features for clutter rejection analysis. The quality of classification features depends largely on the extent to which the data resolve unique physics-based parameters. To date, most of the advanced sensors enable high quality inversion by producing data that are extremely rich in spatial content through multi-angle illumination and multi-point reception.

  8. A Compact Inductive Position Sensor Made by Inkjet Printing Technology on a Flexible Substrate

    PubMed Central

    Jeranče, Nikola; Vasiljević, Dragana; Samardžić, Nataša; Stojanović, Goran

    2012-01-01

    This paper describes the design, simulation and fabrication of an inductive angular position sensor on a flexible substrate. The sensor is composed of meandering silver coils printed on a flexible substrate (Kapton film) using inkjet technology. The flexibility enables that after printing in the plane, the coils could be rolled and put inside each other. By changing the angular position of the internal coil (rotor) related to the external one (stator), the mutual inductance is changed and consequently the impedance. It is possible to determine the angular position from the measured real and imaginary part of the impedance, in our case in the frequency range from 1 MHz to 10 MHz. Experimental results were compared with simulation results obtained by in-house developed software tool, and very good agreement has been achieved. Thanks to the simple design and fabrication, smaller package space requirements and weight, the presented sensor represents a cost-effective alternative to the other sensors currently used in series production applications. PMID:22438710

  9. Closed inductively coupled plasma cell

    DOEpatents

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  10. Synchronization stability and pattern selection in a memristive neuronal network.

    PubMed

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  11. Synchronization stability and pattern selection in a memristive neuronal network

    NASA Astrophysics Data System (ADS)

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  12. Development of CMOS MEMS inductive type tactile sensor with the integration of chrome steel ball force interface

    NASA Astrophysics Data System (ADS)

    Yeh, Sheng-Kai; Chang, Heng-Chung; Fang, Weileun

    2018-04-01

    This study presents an inductive tactile sensor with a chrome steel ball sensing interface based on the commercially available standard complementary metal-oxide-semiconductor (CMOS) process (the TSMC 0.18 µm 1P6M CMOS process). The tactile senor has a deformable polymer layer as the spring of the device and no fragile suspended thin film structures are required. As a tactile force is applied on the chrome steel ball, the polymer would deform. The distance between the chrome steel ball and the sensing coil would changed. Thus, the tactile force can be detected by the inductance change of the sensing coil. In short, the chrome steel ball acts as a tactile bump as well as the sensing interface. Experimental results show that the proposed inductive tactile sensor has a sensing range of 0-1.4 N with a sensitivity of 9.22(%/N) and nonlinearity of 2%. Preliminary wireless sensing test is also demonstrated. Moreover, the influence of the process and material issues on the sensor performances have also been investigated.

  13. A qualitative review for wireless health monitoring system

    NASA Astrophysics Data System (ADS)

    Arshad, Atika; Fadzil Ismail, Ahmad; Khan, Sheroz; Zahirul Alam, A. H. M.; Tasnim, Rumana; Samnan Haider, Syed; Shobaki, Mohammed M.; Shahid, Zeeshan

    2013-12-01

    A proliferating interest has been being observed over the past years in accurate wireless system development in order to monitor incessant human activities in health care centres. Furthermore because of the swelling number of elderly population and the inadequate number of competent staffs for nursing homes there is a big market petition for health care monitoring system. In order to detect human researchers developed different methods namely which include Field Identification technique, Visual Sensor Network, radar detection, e-mobile techniques and so on. An all-encompassing overview of the non-wired human detection application advancement is presented in this paper. Inductive links are used for human detection application while wiring an electronic system has become impractical in recent times. Keeping in mind the shortcomings, an Inductive Intelligent Sensor (IIS) has been proposed as a novel human monitoring system for future implementation. The proposed sensor works towards exploring the signature signals of human body movement and size. This proposed sensor is fundamentally based on inductive loop that senses the presence and a passing human resulting an inductive change.

  14. Capacitively-coupled inductive sensor

    DOEpatents

    Ekdahl, Carl A.

    1984-01-01

    A capacitively coupled inductive shunt current sensor which utilizes capacitive coupling between flanges having an annular inductive channel formed therein. A voltage dividing capacitor is connected between the coupling capacitor and ground to provide immediate capacitive division of the output signal so as to provide a high frequency response of the current pulse to be detected. The present invention can be used in any desired outer conductor such as the outer conductor of a coaxial transmission line, the outer conductor of an electron beam transmission line, etc.

  15. Detailed measurements of shower properties in a high granularity digital electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    van der Kolk, N.

    2018-03-01

    The MAPS (Monolithic Active Pixel Sensors) prototype of the proposed ALICE Forward Calorimeter (FoCal) is the highest granularity electromagnetic calorimeter, with 39 million pixels with a size of 30 × 30 μm2. Particle showers can be studied with unprecedented detail with this prototype. Electromagnetic showers at energies between 2 GeV and 244 GeV have been studied and compared with GEANT4 simulations. Simulation models can be tested in more detail than ever before and the differences observed between FoCal data and GEANT4 simulations illustrate that improvements in electromagnetic models are still possible.

  16. Laser Spiderweb Sensor Used with Portable Handheld Devices

    NASA Technical Reports Server (NTRS)

    Scott, David C. (Inventor); Ksendzov, Alexander (Inventor); George, Warren P. (Inventor); Smith, James A. (Inventor); Steinkraus, Joel M. (Inventor); Hofmann, Douglas C. (Inventor); Aljabri, Abdullah S. (Inventor); Bendig, Rudi M. (Inventor)

    2017-01-01

    A portable spectrometer, including a smart phone case storing a portable spectrometer, wherein the portable spectrometer includes a cavity; a source for emitting electromagnetic radiation that is directed on a sample in the cavity, wherein the electromagnetic radiation is reflected within the cavity to form multiple passes of the electromagnetic radiation through the sample; a detector for detecting the electromagnetic radiation after the electromagnetic radiation has made the multiple passes through the sample in the cavity, the detector outputting a signal in response to the detecting; and a device for communicating the signal to a smart phone, wherein the smart phone executes an application that performs a spectral analysis of the signal.

  17. Magnetic tracking for TomoTherapy systems: gradiometer based methods to filter eddy-current magnetic fields.

    PubMed

    McGary, John E; Xiong, Zubiao; Chen, Ji

    2013-07-01

    TomoTherapy systems lack real-time, tumor tracking. A possible solution is to use electromagnetic markers; however, eddy-current magnetic fields generated in response to a magnetic source can be comparable to the signal, thus degrading the localization accuracy. Therefore, the tracking system must be designed to account for the eddy fields created along the inner bore conducting surfaces. The aim of this work is to investigate localization accuracy using magnetic field gradients to determine feasibility toward TomoTherapy applications. Electromagnetic models are used to simulate magnetic fields created by a source and its simultaneous generation of eddy currents within a conducting cylinder. The source position is calculated using a least-squares fit of simulated sensor data using the dipole equation as the model equation. To account for field gradients across the sensor area (≈ 25 cm(2)), an iterative method is used to estimate the magnetic field at the sensor center. Spatial gradients are calculated with two arrays of uniaxial, paired sensors that form a gradiometer array, where the sensors are considered ideal. Experimental measurements of magnetic fields within the TomoTherapy bore are shown to be 1%-10% less than calculated with the electromagnetic model. Localization results using a 5 × 5 array of gradiometers are, in general, 2-4 times more accurate than a planar array of sensors, depending on the solenoid orientation and position. Simulation results show that the localization accuracy using a gradiometer array is within 1.3 mm over a distance of 20 cm from the array plane. In comparison, localization errors using single array are within 5 mm. The results indicate that the gradiometer method merits further studies and work due to the accuracy achieved with ideal sensors. Future studies should include realistic sensor models and extensive numerical studies to estimate the expected magnetic tracking accuracy within a TomoTherapy system before proceeding with prototype development.

  18. Multisensor fusion for the detection of mines and minelike targets

    NASA Astrophysics Data System (ADS)

    Hanshaw, Terilee

    1995-06-01

    The US Army's Communications and Electronics Command through the auspices of its Night Vision and Electronics Sensors Directorate (CECOM-NVESD) is actively applying multisensor techniques to the detection of mine targets. This multisensor research results from the 'detection activity' with its broad range of operational conditions and targets. Multisensor operation justifies significant attention by yielding high target detection and low false alarm statistics. Furthermore, recent advances in sensor and computing technologies make its practical application realistic and affordable. The mine detection field-of-endeavor has since its WWI baptismal investigated the known spectra for applicable mine observation phenomena. Countless sensors, algorithms, processors, networks, and other techniques have been investigated to determine candidacy for mine detection. CECOM-NVESD efforts have addressed a wide range of sensors spanning the spectrum from gravity field perturbations, magentic field disturbances, seismic sounding, electromagnetic fields, earth penetrating radar imagery, and infrared/visible/ultraviolet surface imaging technologies. Supplementary analysis has considered sensor candidate applicability by testing under field conditions (versus laboratory), in determination of fieldability. As these field conditions directly effect the probability of detection and false alarms, sensor employment and design must be considered. Consequently, as a given sensor's performance is influenced directly by the operational conditions, tradeoffs are necessary. At present, mass produced and fielded mine detection techniques are limited to those incorporating a single sensor/processor methodology such as, pulse induction and megnetometry, as found in hand held detectors. The most sensitive fielded systems can detect minute metal components in small mine targets but result in very high false alarm rates reducing velocity in operation environments. Furthermore, the actual speed of advance for the entire mission (convoy, movement to engagement, etc.) is determined by the level of difficulty presented in clearance or avoidance activities required in response to the potential 'targets' marked throughout a detection activity. Therefore the application of fielded hand held systems to convoy operations in clearly impractical. CECOM-NVESD efforts are presently seeking to overcome these operational limitations by substantially increasing speed of detection while reducing the false alarm rate through the application of multisensor techniques. The CECOM-NVESD application of multisensor techniques through integration/fusion methods will be defined in this paper.

  19. Perform Experiments on LINUS-O and LTX Imploding Liquid Liner Fusion Systems.

    DTIC Science & Technology

    1982-08-27

    EXPERIMENTS .. .. .. ... 3 III. HOMOPOLAR GENERATOR/INDUCTOR POWER SUPPLY EXPERIMENTS. 11 IV. PLASMA SWITCH EXPERIMENTS. .. .. .. .... . ..... 18 V... homopolar generator (HPG) inductive load system. 0 Conduct an electromagnetic pulse (EMP) simulation demonstration using the NRL HPG/inductive storage...suggest solutions to the unstable flow problem, the research was suspended due to the program redirection. -10- IT III. HOMOPOLAR GENERATOR/INDUCTOR POWER

  20. Energy Efficiency of Induction Motors Running Off Frequency Converters with Pulse-Width Voltage Modulation{sup 1}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvetsov, N. K., E-mail: elmash@em.ispu.ru

    2016-11-15

    The results of calculations of the increase in losses in an induction motor with frequency control and different forms of the supply voltage are presented. The calculations were performed by an analytic method based on harmonic analysis of the supply voltage as well as numerical calculation of the electromagnetic processes by the finite-element method.

  1. Acoustic Transducers as Passive Cooperative Targets for Wireless Sensing of the Sub-Surface World: Challenges of Probing with Ground Penetrating RADAR

    PubMed Central

    Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile

    2018-01-01

    Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We solved the problem by replacing the analog ramp generator defining the time base with a fully digital solution, whose time accuracy and stability relies on a quartz oscillator. The resulting stability is acceptable for sub-surface cooperative sensor measurement. PMID:29337914

  2. Acoustic Transducers as Passive Cooperative Targets for Wireless Sensing of the Sub-Surface World: Challenges of Probing with Ground Penetrating RADAR.

    PubMed

    Friedt, Jean-Michel; Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile

    2018-01-16

    Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We solved the problem by replacing the analog ramp generator defining the time base with a fully digital solution, whose time accuracy and stability relies on a quartz oscillator. The resulting stability is acceptable for sub-surface cooperative sensor measurement.

  3. Fiber-Optic/Photoelastic Flow Sensors

    NASA Technical Reports Server (NTRS)

    Wesson, Laurence N.; Cabato, Nellie L.; Brooks, Edward F.

    1995-01-01

    Simple, rugged, lightweight transducers detect periodic vortices. Fiber-optic-coupled transducers developed to measure flows over wide dynamic ranges and over wide temperature ranges in severe environments. Used to measure flows of fuel in advanced aircraft engines. Feasibility of sensors demonstrated in tests of prototype sensor in water flowing at various temperatures and speeds. Particularly attractive for aircraft applications because optical fibers compact and make possible transmission of sensor signals at high rates with immunity from electromagnetic interference at suboptical frequencies. Sensors utilize optical-to-optical conversion via photoelastic effect.

  4. Assessment of Multi-frequency Electromagnetic Induction for Determining Soil Moisture Patterns at the Hillslope Scale

    NASA Astrophysics Data System (ADS)

    Tromp-van Meerveld, I.; McDonnell, J.

    2009-05-01

    We present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the Panola (GA, USA) hillslope. We address the following questions regarding the applicability of EM measurements for hillslope hydrological investigations: (1) Can EM be used for soil moisture measurements in areas with shallow soils?; (2) Can EM represent the temporal and spatial patterns of soil moisture throughout the year?; and (3) can multiple frequencies be used to extract additional information content from the EM approach and explain the depth profile of soil moisture? We found that the apparent conductivity measured with the multi-frequency GEM-300 was linearly related to soil moisture measured with an Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7290, 9090, 11250, and 14010 Hz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition, the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the Aqua-pro soil moisture measurements.

  5. Sub-Audio Magnetics: Miniature Sensor Technology for Simultaneous Magnetic and Electromagnetic Detection of UXO

    DTIC Science & Technology

    2010-07-01

    is comprised of 4 x 40 m lengths of braided copper wire (Figure 29) with a diameter of 15 mm, capable of passing a 500 amp current. In normal...fuel tank and rubber hoses . Sub-Audio Magnetics: Technology for Simultaneous Magnetic and Electromagnetic Detection 77 Figure 31 Quad

  6. Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project.

    PubMed

    Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric; Cottineau, Louis-Marie; Cuomo, Vincenzo; Della Vecchia, Pietro; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric

    2010-01-01

    The ISTIMES project, funded by the European Commission in the frame of a joint Call "ICT and Security" of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project.

  7. Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project

    PubMed Central

    Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric.; Cottineau, Louis-Marie; Cuomo, Vincenzo; Vecchia, Pietro Della; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric

    2010-01-01

    The ISTIMES project, funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project. PMID:22163489

  8. State of the art in acoustic energy harvesting

    NASA Astrophysics Data System (ADS)

    Ullah Khan, Farid; Izhar

    2015-02-01

    For portable and embedded smart, wireless electronic systems, energy harvesting from the ambient energy sources has gained immense interest in recent years. Several ambient energies exist in the environment of wireless sensor nodes (WSNs) that include thermal, solar, vibration and acoustic energy. This paper presents the recent development in the field of acoustic energy harvesters (AEHs). AEHs convert the acoustic energy into useful electrical energy for the operation of autonomous wireless sensors. Mainly, two types of AEHs (electromagnetic and piezoelectric based) have been developed and reported in literature. The power produced by the reported piezoelectric AEHs ranges from 0.68 pW to 30 mW however, the power generation of the developed electromagnetic AEHs is in the range of 1.5-1.96 mW. The overall size of most of the developed piezoelectric and electromagnetic AEHs are quite comparable and in millimeter scale. The resonant frequencies of electromagnetic AEHs are on the lower side (143-470 Hz), than that of piezoelectric AEHs (146 Hz-16.7 kHz).

  9. Closed loop control of the induction heating process using miniature magnetic sensors

    DOEpatents

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2003-05-20

    A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  10. Use of miniature magnetic sensors for real-time control of the induction heating process

    DOEpatents

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2002-01-01

    A method of monitoring the process of induction heating a workpiece. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can also be used to measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  11. Optical Fiber-Based MR-Compatible Sensors for Medical Applications: An Overview

    PubMed Central

    Taffoni, Fabrizio; Formica, Domenico; Saccomandi, Paola; Di Pino, Giovanni; Schena, Emiliano

    2013-01-01

    During last decades, Magnetic Resonance (MR)—compatible sensors based on different techniques have been developed due to growing demand for application in medicine. There are several technological solutions to design MR-compatible sensors, among them, the one based on optical fibers presents several attractive features. The high elasticity and small size allow designing miniaturized fiber optic sensors (FOS) with metrological characteristics (e.g., accuracy, sensitivity, zero drift, and frequency response) adequate for most common medical applications; the immunity from electromagnetic interference and the absence of electrical connection to the patient make FOS suitable to be used in high electromagnetic field and intrinsically safer than conventional technologies. These two features further heightened the potential role of FOS in medicine making them especially attractive for application in MRI. This paper provides an overview of MR-compatible FOS, focusing on the sensors employed for measuring physical parameters in medicine (i.e., temperature, force, torque, strain, and position). The working principles of the most promising FOS are reviewed in terms of their relevant advantages and disadvantages, together with their applications in medicine. PMID:24145918

  12. On the use of particle filters for electromagnetic tracking in high dose rate brachytherapy.

    PubMed

    Götz, Th I; Lahmer, G; Brandt, T; Kallis, K; Strnad, V; Bert, Ch; Hensel, B; Tomé, A M; Lang, E W

    2017-09-12

    Modern radiotherapy of female breast cancers often employs high dose rate brachytherapy, where a radioactive source is moved inside catheters, implanted in the female breast, according to a prescribed treatment plan. Source localization relative to the patient's anatomy is determined with solenoid sensors whose spatial positions are measured with an electromagnetic tracking system. Precise sensor dwell position determination is of utmost importance to assure irradiation of the cancerous tissue according to the treatment plan. We present a hybrid data analysis system which combines multi-dimensional scaling with particle filters to precisely determine sensor dwell positions in the catheters during subsequent radiation treatment sessions. Both techniques are complemented with empirical mode decomposition for the removal of superimposed breathing artifacts. We show that the hybrid model robustly and reliably determines the spatial positions of all catheters used during the treatment and precisely determines any deviations of actual sensor dwell positions from the treatment plan. The hybrid system only relies on sensor positions measured with an EMT system and relates them to the spatial positions of the implanted catheters as initially determined with a computed x-ray tomography.

  13. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology

    PubMed Central

    Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran

    2017-01-01

    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor’s operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene–methanol mixture where various concentrations of toluene were analysed. PMID:28420217

  14. Radiance and atmosphere propagation-based method for the target range estimation

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan

    2012-06-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat system. However, the performance of such active sensor devices is degraded tremendously by jamming signal from the enemy. This paper proposes a simple range estimation method between the target and the sensor. Passive IR sensors measures infrared (IR) light radiance radiating from objects in dierent wavelength and this method shows robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and is attenuated by various factors, in particular the distance between the sensor and the target and atmosphere environment. MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the result from MODTRAN and measured radiance, the target range is estimated. To statistically analyze the performance of proposed method, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao Lower Bound (CRLB) via the probability density function of measured radiance. And we also compare CRLB and the variance of and ML estimation using Monte-Carlo.

  15. Dipole Models for UXO Discrimination at Live Sites

    DTIC Science & Technology

    2017-05-01

    Discriminator CCR Combined Classifier Ranking cm Centimeter(s) EM Electromagnetic EMI Electromagnetic Induction ESTCP Environmental Security Technology...fraction of the anomalies as arising from non-hazardous items that could be safely left in the ground. Of particular note, the contractor EM -61-MK2 cart...use of classification metrics applied to production quality EM - 61 data, it was possible to significantly reduce the number of clutter items excavated

  16. Update on Phelix Pulsed-Power Hydrodynamics Experiments and Modeling

    DTIC Science & Technology

    2013-06-01

    underway to assess the feasibility of using the PHELIX driver as an electromagnetic launcher for planer shock-physics experiments. I. INTRODUCTION...inductance loads. Cylindrical liners or planer flyer plates can achieve km/s velocities and kbar pressures. A schematic of PHELIX is shown in Figure 1. Each...using the PHELIX driver as an electromagnetic launcher for planer shock-physics experiments. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17

  17. Velocity damper for electromagnetically levitated materials

    DOEpatents

    Fox, R.J.

    1994-06-07

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

  18. Practical UXO Classification: Enhanced Data Processing Strategies for Technology Transition - Fort Ord: Dynamic and Cued Metalmapper Processing and Classification

    DTIC Science & Technology

    2017-06-06

    OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for...Geophysical Mapping, Electromagnetic Induction, Instrument Verification Strip, Time Domain Electromagnetic, Unexploded Ordnance 16. SECURITY...Munitions Response QA Quality Assurance QC Quality Control ROC Receiver Operating Characteristic RTK Real- time Kinematic s Second SNR

  19. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect

    PubMed Central

    Bore, Thierry; Wagner, Norman; Delepine Lesoille, Sylvie; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  20. Excitation of surface electromagnetic waves in a graphene-based Bragg grating

    PubMed Central

    Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting

    2012-01-01

    Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc. PMID:23071901

  1. Excitation of surface electromagnetic waves in a graphene-based Bragg grating.

    PubMed

    Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting

    2012-01-01

    Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.

  2. Microshell-tipped optical fibers as sensors of high-pressure pulses in adverse environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin, R.F.; Mayer, F.J.; Maynard, R.L.

    1984-01-01

    An optical-fiber sensor for detecting the arrival of strong pressure pulses was developed. The sensor consists of an optical fiber, tipped with a gas-filled microballoon. They have been used successfully in adverse environments including explosives, ballistics and electromagnetic pulses (EMP). The sensor produces a bright optical pulse caused by the rapid shock-heating of a gas, typically argon or xenon, which is confined in the spherical glass or plastic microballoon. The light pulse is transmitted via the optical fiber to a photo detector, usually a streak camera or photomultiplier tube. The microballoon optical sensor (called an optical pin by analogy tomore » standard electrical pins), was originally developed for diagnosing an explosive, pulsed-power generator. Optical pins are required due to the EMP. The optical pins are economical arrival-time indicators because many channels can be recorded by one streak camera. The generator tests and related experiments, involving projectile velocities and detonation velocities of several kilometers per sec have demonstrated the usefulness of the sensors in explosives and ballistics applications. The technical and cost advantages of this optical pin make it potentially useful for many electromagnetic, explosive, and ballistics applications.« less

  3. Comparing electronic probes for volumetric water content of low-density feathermoss

    USGS Publications Warehouse

    Overduin, P.P.; Yoshikawa, K.; Kane, D.L.; Harden, J.W.

    2005-01-01

    Purpose - Feathermoss is ubiquitous in the boreal forest and across various land-cover types of the arctic and subarctic. A variety of affordable commercial sensors for soil moisture content measurement have recently become available and are in use in such regions, often in conjunction with fire-susceptibility or ecological studies. Few come supplied with calibrations suitable or suggested for soils high in organics. Aims to test seven of these sensors for use in feathermoss, seeking calibrations between sensor output and volumetric water content. Design/methodology/approach - Measurements from seven sensors installed in live, dead and burned feathermoss samples, drying in a controlled manner, were compared to moisture content measurements. Empirical calibrations of sensor output to water content were determined. Findings - Almost all of the sensors tested were suitable for measuring the moss sample water content, and a unique calibration for each sensor for this material is presented. Differences in sensor design lead to changes in sensitivity as a function of volumetric water content, affecting the spatial averaging over the soil measurement volume. Research limitations/implications - The wide range of electromagnetic sensors available include frequency and time domain designs with variations in wave guide and sensor geometry, the location of sensor electronics and operating frequency. Practical implications - This study provides information for extending the use of electromagnetic sensors to feathermoss. Originality/value - A comparison of volumetric water content sensor mechanics and design is of general interest to researchers measuring soil water content. In particular, researchers working in wetlands, boreal forests and tundra regions will be able to apply these results. ?? Emerald Group Publishing Limited.

  4. An overview of landmine detection with emphasis on electromagnetic approaches

    NASA Astrophysics Data System (ADS)

    Das, Yogadhish

    2003-04-01

    Human suffering caused by antipersonnel landmines left over from previous conflicts has only recently received significant public exposure. However, considerable amount of research on how to detect and deal with buried landmines has been carried out at least since the second world war. The research has encompassed a wide range of technologies and large sums of money have been spent. Despite these efforts there is still no operationally satisfactory solution, especially to the detection problem. This lack of success is attributable to the difficulty of the problem and the high degree of effectiveness demanded of any proposed solution. The many landmine detection approaches can be divided into two broad categories: (1)approaches primarily aimed at detecting the casing of the landmine (physical properties of its explosive content may also have some influence) and (2)approaches aimed at directly detecting the explosive contents. Examples of techniques belonging to the first group are electromagnetic induction, ground probing radar and other high frequency electromagnetic techniques, acoustics and other mechanical techniques, and infrared. Trace explosive vapour detection, thermalneutron activation and nuclear quadrupole resonance are examples of the second group. Following a brief introduction to nature of the landmine problem and the many technologies that have been explored to solve it, the presentation will focus on some of the detection approaches based on electromagnetic techniques. In particular, the state of the art in electromagnetic induction detection will be reviewed and required future research and development in this area will be presented.

  5. Evaluation of thin discontinuities in planar conducting materials using the diffraction of electromagnetic field

    NASA Astrophysics Data System (ADS)

    Savin, A.; Novy, F.; Fintova, S.; Steigmann, R.

    2017-08-01

    The current stage of nondestructive evaluation techniques imposes the development of new electromagnetic (EM) methods that are based on high spatial resolution and increased sensitivity. In order to achieve high performance, the work frequencies must be either radifrequencies or microwaves. At these frequencies, at the dielectric/conductor interface, plasmon polaritons can appear, propagating between conductive regions as evanescent waves. In order to use the evanescent wave that can appear even if the slits width is much smaller that the wavwelength of incident EM wave, a sensor with metamaterial (MM) is used. The study of the EM field diffraction against the edge of long thin discontinuity placed under the inspected surface of a conductive plate has been performed using the geometrical optics principles. This type of sensor having the reception coils shielded by a conductive screen with a circular aperture placed in the front of reception coil of emission reception sensor has been developed and “transported” information for obtaining of magnified image of the conductive structures inspected. This work presents a sensor, using MM conical Swiss roll type that allows the propagation of evanescent waves and the electromagnetic images are magnified. The test method can be successfully applied in a variety of applications of maxim importance such as defect/damage detection in materials used in automotive and aviation technologies. Applying this testing method, spatial resolution can be improved.

  6. High-Sensitivity Fiber-Optic Ultrasound Sensors for Medical Imaging Applications

    PubMed Central

    Wen, H.; Wiesler, D.G.; Tveten, A.; Danver, B.; Dandridge, A.

    2010-01-01

    This paper presents several designs of high-sensitivity, compact fiber-optic ultrasound sensors that may be used for medical imaging applications. These sensors translate ultrasonic pulses into strains in single-mode optical fibers, which are measured with fiber-based laser interferometers at high precision. The sensors are simpler and less expensive to make than piezoelectric sensors, and are not susceptible to electromagnetic interference. It is possible to make focal sensors with these designs, and several schemes are discussed. Because of the minimum bending radius of optical fibers, the designs are suitable for single element sensors rather than for arrays. PMID:9691368

  7. Geophysical exploration with audio frequency magnetic fields

    NASA Astrophysics Data System (ADS)

    Labson, V. F.

    1985-12-01

    Experience with the Audio Frequency Magnetic (AFMAG) method has demonstrated that an electromagnetic exploration system using the Earth's natural audiofrequency magnetic fields as an energy source, is capable of mapping subsurface electrical structure in the upper kilometer of the Earth's crust. The limitations are resolved by adapting the tensor analysis and remote reference noise bias removal techniques from the geomagnetic induction and magnetotelluric methods to the computation of the tippers. After a through spectral study of the natural magnetic fields, lightweight magnetic field sensors, capable of measuring the magnetic field throughout the year were designed. A digital acquisition and processing sytem, with the ability to provide audiofrequency tipper results in the field, was then built to complete the apparatus. The new instrumetnation was used in a study of the Mariposa, California site previously mapped with AFMAG. The usefulness of natural magnetic field data in mapping an electrical conductive body was again demonstrated. Several field examples are used to demonstrate that the proposed procedure yields reasonable results.

  8. Experimenting with wires, batteries, bulbs and the induction coil: Narratives of teaching and learning physics in the electrical investigations of Laura, David, Jamie, myself and the nineteenth century experimenters. Our developments and instruments

    NASA Astrophysics Data System (ADS)

    Cavicchi, Elizabeth Mary

    Physics is conventionally taught as a fixed curriculum which students must master. This thesis changes that: curriculum emerges from what learners try and question in experiments they invent. The thesis narrates: three adult students exploring wires, batteries and bulbs with me as teacher; nineteenth century investigations of electromagnetism; my laboratory work replicating historic instruments. In each case, learning arose through activity with materials. Evidences of this are analyzed within narratives and reflections. I used teaching-research, a method developed by Duckworth from Piaget's clinical interviewing, to research and simultaneously extend students' evolving understandings. What I learned through questioning students informed my next interactions; what they learned extended their experimenting. Similarly, I researched historical accounts interactively: improvising experiments to develop my understandings. Studying my own learning deepened my interpretations of students' learning. My students Laura, David and Jamie experimented by: soldering bulbs to wires, making series and parallel circuits, inserting resistive wire that dimmed bulbs, conducting electricity through salt water They noticed bulb brightness and battery heat, compared electricity's paths, questioned how voltage and current relate. They inferred electricity's effects manifest magnitudes of material properties. They found their experiences while learning were inseparable from what they learned. I researched investigations connected with Cavendish's leather fish, Galvani's frogs, Schweigger's wire spiraled around a compass needle, Henry's electromagnets, Faraday's induction ring, induction devices of Page, Callan, Hearder. Experimentally, I made galvanometers, electromagnets, induction rings, induction coil. I observed effects of electromagnetism, internal resistance, induced sparking. Across these investigations, learning developed with instrumental innovations; confusions were productive for further explorations. This thesis has implications for profoundly changing physics instruction. Physics education research seeks to supplant students' 'misconceptions' with correct explanations; by contrast, this thesis shows that students' original thinking provides their beginnings for moving to new understandings. Students and historic experimenters form and reform new, tentative understandings through many engagements with phenomena. As learners' questioning deepens in detail, its inclusiveness broadens. Evolving understandings are unique and consistent with nature. Wonder empowers continued learning. This thesis is a resource to inspire teachers in exploring the many possibilities within their learning, their students' learning, and physical phenomena.

  9. Application of Time Domain Reflectometers in Urban Settings

    EPA Science Inventory

    Time domain reflectometers (TDRs) are sensors that measure the volumetric water content of soils and porous media. The sensors consist of stainless steel rods connected to a circuit board in an epoxy housing. An electromagnetic pulse is propagated along the rods. The time, or per...

  10. Predicting risk of invasive species occurrence - remote-sesning strategies

    USDA-ARS?s Scientific Manuscript database

    Remote sensing is a means to describe characteristics of an area without physically sampling the area. Remote sensors can be mounted on a satellite, plane, or other airborne structure. Remotely sensed data allow for landscape perspectives on management issues. Sensors measure the electromagnetic ene...

  11. Electro-optic voltage sensor head

    DOEpatents

    Crawford, T.M.; Davidson, J.R.; Woods, G.K.

    1999-08-17

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers. 6 figs.

  12. Electro-optic voltage sensor head

    DOEpatents

    Crawford, Thomas M.; Davidson, James R.; Woods, Gregory K.

    1999-01-01

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.

  13. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter

    PubMed Central

    Chowdhury, Amor; Sarjaš, Andrej

    2016-01-01

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation. PMID:27649197

  14. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    PubMed

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  15. Wearable Spiral Passive Electromagnetic Sensor (SPES) glove for sign language recognition of alphabet letters and numbers: a preliminary study

    NASA Astrophysics Data System (ADS)

    Iervolino, Onorio; Meo, Michele

    2017-04-01

    Sign language is a method of communication for deaf-mute people with articulated gestures and postures of hands and fingers to represent alphabet letters or complete words. Recognizing gestures is a difficult task, due to intrapersonal and interpersonal variations in performing them. This paper investigates the use of Spiral Passive Electromagnetic Sensor (SPES) as a motion recognition tool. An instrumented glove integrated with wearable multi-SPES sensors was developed to encode data and provide a unique response for each hand gesture. The device can be used for recognition of gestures; motion control and well-defined gesture sets such as sign languages. Each specific gesture was associated to a unique sensor response. The gloves encode data regarding the gesture directly in the frequency spectrum response of the SPES. The absence of chip or complex electronic circuit make the gloves light and comfortable to wear. Results showed encouraging data to use SPES in wearable applications.

  16. Fiber optics for propulsion control systems

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1985-01-01

    In aircraft systems with digital controls, fiberoptics has advantages over wire systems because of its inherent immunity to electromagnetic noise (EMI) and electromagnetic pulses (EMP). It also offers a weight benefit when metallic conductors are replaced by optical fibers. To take full advantage of the benefits of optical waveguides, passive optical sensors are also being developed to eliminate the need for electrical power to the sensor. Fiberoptics may also be used for controlling actuators on engine and airframe. In this application, the optical fibers, connectors, etc. will be subjected to high temperature and vibrations. This paper discussed the use of fiberoptics in aircraft propulsion systems together with the optical sensors and optically controlled actuators being developed to take full advantage of the benefits which fiberoptics offers. The requirements for sensors and actuators in advanced propulsion systems are identified. The benefits of using fiberoptics in place of conventional wire systems are discussed as well as the environmental conditions under which the optical components must operate.

  17. Fiberoptics for propulsion control system

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1984-01-01

    In aircraft systems with digital controls, fiberoptics has advantages over wire systems because of its inherent immunity to electromagnetic noise (EMI) and electromagnetic pulses (EMP). It also offers a weight benefit when metallic conductors are replaced by optical fibers. To take full advantage of the benefits of optical waveguides, passive optical sensors are also being developed to eliminate the need for electrical power to the sensor. Fiberoptics may also be used for controlling actuators on engine and airframe. In this application, the optical fibers, connectors, etc. will be subjected to high temperature and vibrations. This paper discussed the use of fiberoptics in aircraft propulsion systems together with the optical sensors and optically controlled actuators being developed to take full advantage of the benefits which fiberoptics offers. The requirements for sensors and actuators in advanced propulsion systems are identified. The benefits of using fiberoptics in place of conventional wire systems are discussed as well as the environmental conditions under which the optical components must operate.

  18. A Low Frequency Electromagnetic Sensor for Indirect Measurement of Glucose Concentration: In Vitro Experiments in Different Conductive Solutions

    PubMed Central

    Tura, Andrea; Sbrignadello, Stefano; Cianciavicchia, Domenico; Pacini, Giovanni; Ravazzani, Paolo

    2010-01-01

    In recent years there has been considerable interest in the study of glucose-induced dielectric property variations of human tissues as a possible approach for non-invasive glycaemia monitoring. We have developed an electromagnetic sensor, and we tested in vitro its ability to estimate variations in glucose concentration of different solutions with similarities to blood (sodium chloride and Ringer-lactate solutions), differing though in the lack of any cellular components. The sensor was able to detect the effect of glucose variations over a wide range of concentrations (∼78–5,000 mg/dL), with a sensitivity of ∼0.22 mV/(mg/dL). Our proposed system may thus be useful in a new approach for non-invasive and non-contact glucose monitoring. PMID:22219665

  19. Human-motion energy harvester for autonomous body area sensors

    NASA Astrophysics Data System (ADS)

    Geisler, M.; Boisseau, S.; Perez, M.; Gasnier, P.; Willemin, J.; Ait-Ali, I.; Perraud, S.

    2017-03-01

    This paper reports on a method to optimize an electromagnetic energy harvester converting the low-frequency body motion and aimed at powering wireless body area sensors. This method is based on recorded accelerations, and mechanical and transduction models that enable an efficient joint optimization of the structural parameters. An optimized prototype of 14.8 mmØ × 52 mm, weighting 20 g, has generated up to 4.95 mW in a resistive load when worn at the arm during a run, and 6.57 mW when hand-shaken. Among the inertial electromagnetic energy harvesters reported so far, this one exhibits one of the highest power densities (up to 730 μW cm-3). The energy harvester was finally used to power a bluetooth low energy wireless sensor node with accelerations measurements at 25 Hz.

  20. FEM Modeling of a Magnetoelectric Transducer for Autonomous Micro Sensors in Medical Application

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Talleb, Hakeim; Gensbittel, Aurélie; Ren, Zhuoxiang

    2015-11-01

    In the context of wireless and autonomous sensors, this paper presents the multiphysics modeling of an energy transducer based on magnetoelectric (ME) composite for biomedical applications. The study considers the power requirement of an implanted sensor, the communication distance, the size limit of the device for minimal invasive insertion as well as the electromagnetic exposure restriction of the human body. To minimize the electromagnetic absorption by the human body, the energy source is provided by an external reader emitting low frequency magnetic field. The modeling is carried out with the finite element method by solving simultaneously the multiple physics problems including the electric load of the conditioning circuit. The simulation results show that with the T-L mode of a trilayer laminated ME composite, the transducer can deliver the required energy in respecting different constraints.

  1. Combined Instrumentation Package COMARS+ for the ExoMars Schiaparelli Lander

    NASA Astrophysics Data System (ADS)

    Gülhan, Ali; Thiele, Thomas; Siebe, Frank; Kronen, Rolf

    2018-02-01

    In order to measure aerothermal parameters on the back cover of the ExoMars Schiaparelli lander the instrumentation package COMARS+ was developed by DLR. Consisting of three combined aerothermal sensors, one broadband radiometer sensor and an electronic box the payload provides important data for future missions. The aerothermal sensors called COMARS combine four discrete sensors measuring static pressure, total heat flux, temperature and radiative heat flux at two specific spectral bands. The infrared radiation in a broadband spectral range is measured by the separate broadband radiometer sensor. The electronic box of the payload is used for amplification, conditioning and multiplexing of the sensor signals. The design of the payload was mainly carried out using numerical tools including structural analyses, to simulate the main mechanical loads which occur during launch and stage separation, and thermal analyses to simulate the temperature environment during cruise phase and Mars entry. To validate the design an extensive qualification test campaign was conducted on a set of qualification models. The tests included vibration and shock tests to simulate launch loads and stage separation shocks. Thermal tests under vacuum condition were performed to simulate the thermal environment of the capsule during the different flight phases. Furthermore electromagnetic compatibility tests were conducted to check that the payload is compatible with the electromagnetic environment of the capsule and does not emit electromagnetic energy that could cause electromagnetic interference in other devices. For the sensor heads located on the ExoMars back cover radiation tests were carried out to verify their radiation hardness. Finally the bioburden reduction process was demonstrated on the qualification hardware to show the compliance with the planetary protection requirements. To test the actual heat flux, pressure and infrared radiation measurement under representative conditions, aerothermal tests were performed in an arc-heated wind tunnel facility. After all qualification tests were passed successfully, the acceptance test campaign for the flight hardware at acceptance level included the same tests than the qualification campaign except shock, radiation hardness and aerothermal tests. After passing all acceptance tests, the COMARS+ flight hardware was integrated into the Schiaparelli capsule in January 2015 at the ExoMars integration site at Thales Alenia Space in Turin. Although the landing of Schiaparelli failed, resulting in the loss of most COMARS+ flight data because they were stored on the lander, some data points were directly transmitted to the orbiter at low sampling rate during the entry phase. These data indicate that all COMARS+ sensors delivered useful data until parachute deployment with the exception of the plasma black-out phase. Since measured structure and sensor housing temperatures are far below predicted pre-flight values, a new calibration using COMARS+ spare sensors at temperatures below 0 °C is necessary.

  2. Famous optician: James Clerk Maxwell

    NASA Astrophysics Data System (ADS)

    Haidar, Riad

    2018-04-01

    Mainly known for his unifying theory of electricity, magnetism and induction, James Clerk Maxwell also concluded that light was an electromagnetic wave, and was responsible for the first true colour photograph.

  3. Development of Stiff and Extendible Electromagnetic Sensors for Space Missions

    NASA Astrophysics Data System (ADS)

    Kasaba, Y.; Kumamoto, A.; Ishisaka, K.; Kojima, H.; Higuchi, K.; Watanabe, A.; Watanabe, K.

    2010-05-01

    We developed three types of stiff and extendible electromagnetic sensors in rigid monopole antenna, loop antenna, and Yagi-Uda antenna for future space missions. They are based on carbon fiber reinforced plastic (CFRP) technologies, in order to fulfill severe requirements, i.e. enough stiffness, light mass, compact storage, safe extension, and reasonable test efforts. One of them, rigid monopole antennas, coupled with an inflatable actuator system, was successfully used in the JAXA S-520-23 sounding rocket experiment in September 2007. Applications of those antennas are expected in space plasma missions including the SCOPE program, sounding rocket experiments, planetary radar remote sensing, and landing radio measurements.

  4. High Velocity Linear Induction Launcher with Exit-Edge Compensation for Testing of Aerospace Components

    NASA Technical Reports Server (NTRS)

    Kuznetsov, Stephen; Marriott, Darin

    2008-01-01

    Advances in ultra high speed linear induction electromagnetic launchers over the past decade have focused on magnetic compensation of the exit and entry-edge transient flux wave to produce efficient and compact linear electric machinery. The paper discusses two approaches to edge compensation in long-stator induction catapults with typical end speeds of 150 to 1,500 m/s. In classical linear induction machines, the exit-edge effect is manifest as two auxiliary traveling waves that produce a magnetic drag on the projectile and a loss of magnetic flux over the main surface of the machine. In the new design for the Stator Compensated Induction Machine (SCIM) high velocity launcher, the exit-edge effect is nulled by a dual wavelength machine or alternately the airgap flux is peaked at a location prior to the exit edge. A four (4) stage LIM catapult is presently being constructed for 180 m/s end speed operation using double-sided longitudinal flux machines. Advanced exit and entry edge compensation is being used to maximize system efficiency, and minimize stray heating of the reaction armature. Each stage will output approximately 60 kN of force and produce over 500 G s of acceleration on the armature. The advantage of this design is there is no ablation to the projectile and no sliding contacts, allowing repeated firing of the launcher without maintenance of any sort. The paper shows results of a parametric study for 500 m/s and 1,500 m/s linear induction launchers incorporating two of the latest compensation techniques for an air-core stator primary and an iron-core primary winding. Typical thrust densities for these machines are in the range of 150 kN/sq.m. to 225 kN/sq.m. and these compete favorably with permanent magnet linear synchronous machines. The operational advantages of the high speed SCIM launcher are shown by eliminating the need for pole-angle position sensors as would be required by synchronous systems. The stator power factor is also improved.

  5. The gravitational analog of Faraday's induction law

    NASA Astrophysics Data System (ADS)

    Zile, Daniel; Overduin, James

    2015-04-01

    Michael Faraday, the discoverer of electromagnetic induction, was convinced that there must also be a gravitational analog of this law, and he carried out drop-tower experiments in 1849 to look for the electric current induced in a coil by changes in gravitational flux through the coil. This work, now little remembered, was in some ways the first investigation of what we would now call a unified-field theory. We revisit Faraday's experiments in the light of current knowledge and ask what might be learned if they were to be performed today. We then review the gravitational analog for Faraday's law that arises within the vector (or gravito-electromagnetic) approximation to Einstein's theory of general relativity in the weak-field, low-velocity limit. This law relates spinning masses and induced ``mass currents'' rather than spinning charges and electric currents, but is otherwise remarkably similar to its electromagnetic counterpart. The predicted effects are completely unobservable in everyday settings like those envisioned by Faraday, but are thought to be relevant in astrophysical contexts like the accretion disks around collapsed stars, thus bearing out Faraday's remarkable intuition. Undergraduate student.

  6. Field coupling-induced pattern formation in two-layer neuronal network

    NASA Astrophysics Data System (ADS)

    Qin, Huixin; Wang, Chunni; Cai, Ning; An, Xinlei; Alzahrani, Faris

    2018-07-01

    The exchange of charged ions across membrane can generate fluctuation of membrane potential and also complex effect of electromagnetic induction. Diversity in excitability of neurons induces different modes selection and dynamical responses to external stimuli. Based on a neuron model with electromagnetic induction, which is described by magnetic flux and memristor, a two-layer network is proposed to discuss the pattern control and wave propagation in the network. In each layer, gap junction coupling is applied to connect the neurons, while field coupling is considered between two layers of the network. The field coupling is approached by using coupling of magnetic flux, which is associated with distribution of electromagnetic field. It is found that appropriate intensity of field coupling can enhance wave propagation from one layer to another one, and beautiful spatial patterns are formed. The developed target wave in the second layer shows some difference from target wave triggered in the first layer of the network when two layers are considered by different excitabilities. The potential mechanism could be pacemaker-like driving from the first layer will be encoded by the second layer.

  7. Using finite element modelling and experimental methods to investigate planar coil sensor topologies for inductive measurement of displacement

    NASA Astrophysics Data System (ADS)

    Moreton, Gregory; Meydan, Turgut; Williams, Paul

    2018-04-01

    The usage of planar sensors is widespread due to their non-contact nature and small size profiles, however only a few basic design types are generally considered. In order to develop planar coil designs we have performed extensive finite element modelling (FEM) and experimentation to understand the performance of different planar sensor topologies when used in inductive sensing. We have applied this approach to develop a novel displacement sensor. Models of different topologies with varying pitch values have been analysed using the ANSYS Maxwell FEM package, furthermore the models incorporated a movable soft magnetic amorphous ribbon element. The different models used in the FEM were then constructed and experimentally tested with topologies that included mesh, meander, square coil, and circular coil configurations. The sensors were used to detect the displacement of the amorphous ribbon. A LabView program controlled both the displacement stage and the impedance analyser, the latter capturing the varying inductance values with ribbon displacement. There was good correlation between the FEM models and the experimental data confirming that the methodology described here offers an effective way for developing planar coil based sensors with improved performance.

  8. Development of a Non-Contact, Inductive Depth Sensor for Free-Surface, Liquid-Metal Flows

    NASA Astrophysics Data System (ADS)

    Bruhaug, Gerrit; Kolemen, Egemen; Fischer, Adam; Hvasta, Mike

    2017-10-01

    This paper details a non-contact based, inductive depth measurement system that can sit behind a layer of steel and measure the depth of the liquid metal flowing over the steel. Free-surface liquid metal depth measurement is usually done with invasive sensors that impact the flow of the liquid metal, or complex external sensors that require lasers and precise alignment. Neither of these methods is suitable for the extreme environment encountered in the diverter region of a nuclear fusion reactor, where liquid metal open channel flows are being investigated for future use. A sensor was developed that used the inductive coupling of a coil to liquid metal to measure the height of the liquid metal present. The sensor was built and tested experimentally, and modeled with finite element modeling software to further understand the physics involved. Future work will attempt to integrate the sensor into the Liquid Metal eXperiment (LMX) at the Princeton Plasma Physics Laboratory for more refined testing. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466.

  9. EM Induction Experiment to Determine the Moment of a Magnet

    ERIC Educational Resources Information Center

    Najiya Maryam, K. M.

    2014-01-01

    If we drop a magnet through a coil, an emf is induced in the coil according to Faraday's law of electromagnetic induction. Here, such an experiment is done using expEYES kit. The plot of emf versus time has a specific shape with two peaks. A theoretical analysis of this graph is discussed here for both short and long cylindrical magnets.…

  10. Overpulse railgun energy recovery circuit

    DOEpatents

    Honig, Emanuel M.

    1989-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  11. Counterpulse railgun energy recovery circuit

    DOEpatents

    Honig, Emanuel M.

    1986-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  12. A Comparative Study of the Precision of Carstens and Northern Digital Instruments Electromagnetic Articulographs

    ERIC Educational Resources Information Center

    Savariaux, Christophe; Badin, Pierre; Samson, Adeline; Gerber, Silvain

    2017-01-01

    Purpose: This study compares the precision of the electromagnetic articulographs used in speech research: Northern Digital Instruments' Wave and Carstens' AG200, AG500, and AG501 systems. Method: The fluctuation of distances between 3 pairs of sensors attached to a manually rotated device that can position them inside the measurement volumes was…

  13. Spiral Chip Implantable Radiator and Printed Loop External Receptor for RF Telemetry in Bio-Sensor Systems

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Hall, David G.; Miranda, Felix A.

    2004-01-01

    The paper describes the operation of a patented wireless RF telemetry system, consisting of a bio-MEMS implantable sensor and an external hand held unit, operating over the frequency range of few hundreds of MHz. A MEMS capacitive pressure sensor integrated with a miniature inductor/antenna together constitute the implantable sensor. Signal processing circuits collocated with a printed loop antenna together form the hand held unit, capable of inductively powering and also receiving the telemetry signals from the sensor. The paper in addition, demonstrates a technique to enhance the quality factor and inductance of the inductor in the presence of a lower ground plane and also presents the radiation characteristics of the loop antenna.

  14. Design and field tests of an access-tube soil water sensor

    USDA-ARS?s Scientific Manuscript database

    Accurate soil profile water content monitoring at multiple depths until now, has been possible only using the neutron probe (NP), but with great effort and at infrequent time intervals. Despite the existence of several electromagnetic sensor systems for profile water content measurements, accuracy ...

  15. Fiber-Optic Strain Sensors With Linear Characteristics

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1993-01-01

    Fiber-optic modal domain strain sensors having linear characteristics over wide range of strains proposed. Conceived in effort to improve older fiber-optic strain sensors. Linearity obtained by appropriate choice of design parameters. Pattern of light and dark areas at output end of optical fiber produced by interference between electromagnetic modes in which laser beam propagates in fiber. Photodetector monitors intensity at one point in pattern.

  16. Advances in Classification Methods for Military Munitions Response

    DTIC Science & Technology

    2010-12-01

    Response Herb Nelson Objective of the Course Provide an update on the sensors , methods, and status of the classification of military munitions...advanced EMI sensors 2Advances in Classification - Introduction Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Electromagnetics (EM): Fundamentals and Parameter Extraction Stephen Billings EM Module Outline ● EMI Fundamentals How EMI sensors work and what they measure

  17. Radio Frequency Identification (RFID) Based Corrosion Monitoring Sensors. Part 2: Application and Testing of the Coating Materials

    DTIC Science & Technology

    2014-12-22

    Radio frequency identification ( RFID ) based corrosion monitoring sensors: Part II Application and testing of the coating materials Youliang He1...email: yohe@nrcan.gc.ca Keywords: Corrosion monitoring; Wireless sensor; RFID ; Electromagnetic interference; Coating. Abstract Cost-effective...Radio Frequency Identification ( RFID ) transponders (tags) were investigated for wireless corrosion monitoring by applying a metal-filled conductive

  18. VLF electromagnetic investigations of the crater and central dome of Mount St. Helens, Washington

    USGS Publications Warehouse

    Towle, J.N.

    1983-01-01

    A very low frequency (VLF) electromagnetic induction survey in the crater of Mount St. Helens has identified several electrically conductive structures that appear to be associated with thermal anomalies and ground water within the crater. The most interesting of these conductive structures lies beneath the central dome. It is probably a partial melt of dacite similar to that comprising the June 1981 lobe of the central dome. ?? 1983.

  19. A Magnetic Field Response Recorder: A New Tool for Measurement Acquisition

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2006-01-01

    A magnetic field response recorder was developed to facilitate a measurement acquisition method that uses magnetic fields to power and to interrogate all sensors. Sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic field responses when electrically activated by oscillating magnetic fields. When electrically activated, the sensor's magnetic field response attributes (frequency, amplitude and bandwidth) correspond to the one or more physical states that each sensor measures. The response recorder makes it possible to simultaneously measure two unrelated physical properties using this class of sensors. The recorder is programmable allowing it to analyze one or more response attributes simultaneously. A single sensor design will be used to demonstrate that the acquisition method and the sensor example can be used to for all phases of a component's life from manufacturing to damage that can destroy it.

  20. Eddy-Current Sensors with Asymmetrical Point Spread Function

    PubMed Central

    Gajda, Janusz; Stencel, Marek

    2016-01-01

    This paper concerns a special type of eddy-current sensor in the form of inductive loops. Such sensors are applied in the measuring systems classifying road vehicles. They usually have a rectangular shape with dimensions of 1 × 2 m, and are installed under the surface of the traffic lane. The wide Point Spread Function (PSF) of such sensors causes the information on chassis geometry, contained in the measurement signal, to be strongly averaged. This significantly limits the effectiveness of the vehicle classification. Restoration of the chassis shape, by solving the inverse problem (deconvolution), is also difficult due to the fact that it is ill-conditioned. An original approach to solving this problem is presented in this paper. It is a hardware-based solution and involves the use of inductive loops with an asymmetrical PSF. Laboratory experiments and simulation tests, conducted with models of an inductive loop, confirmed the effectiveness of the proposed solution. In this case, the principle applies that the higher the level of sensor spatial asymmetry, the greater the effectiveness of the deconvolution algorithm. PMID:27782033

  1. Eddy-Current Sensors with Asymmetrical Point Spread Function.

    PubMed

    Gajda, Janusz; Stencel, Marek

    2016-10-04

    This paper concerns a special type of eddy-current sensor in the form of inductive loops. Such sensors are applied in the measuring systems classifying road vehicles. They usually have a rectangular shape with dimensions of 1 × 2 m, and are installed under the surface of the traffic lane. The wide Point Spread Function (PSF) of such sensors causes the information on chassis geometry, contained in the measurement signal, to be strongly averaged. This significantly limits the effectiveness of the vehicle classification. Restoration of the chassis shape, by solving the inverse problem (deconvolution), is also difficult due to the fact that it is ill-conditioned. An original approach to solving this problem is presented in this paper. It is a hardware-based solution and involves the use of inductive loops with an asymmetrical PSF. Laboratory experiments and simulation tests, conducted with models of an inductive loop, confirmed the effectiveness of the proposed solution. In this case, the principle applies that the higher the level of sensor spatial asymmetry, the greater the effectiveness of the deconvolution algorithm.

  2. Inductive System for Reliable Magnesium Level Detection in a Titanium Reduction Reactor

    NASA Astrophysics Data System (ADS)

    Krauter, Nico; Eckert, Sven; Gundrum, Thomas; Stefani, Frank; Wondrak, Thomas; Frick, Peter; Khalilov, Ruslan; Teimurazov, Andrei

    2018-05-01

    The determination of the Magnesium level in a Titanium reduction retort by inductive methods is often hampered by the formation of Titanium sponge rings which disturb the propagation of electromagnetic signals between excitation and receiver coils. We present a new method for the reliable identification of the Magnesium level which explicitly takes into account the presence of sponge rings with unknown geometry and conductivity. The inverse problem is solved by a look-up-table method, based on the solution of the inductive forward problems for several tens of thousands parameter combinations.

  3. Closed inductively coupled plasma cell

    DOEpatents

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  4. Design of Circular, Square, Single, and Multi-layer Induction Coils for Electromagnetic Priming Using Inductance Estimates

    NASA Astrophysics Data System (ADS)

    Fritzsch, Robert; Kennedy, Mark W.; Aune, Ragnhild E.

    2018-02-01

    Special induction coils used for electro magnetic priming of ceramic foam filters in liquid metal filtration have been designed using a combination of analytical and finite element modeling. Relatively simple empirical equations published by Wheeler in 1928 and 1982 have been used during the design process. The equations were found to accurately predict the z-component of the magnetic flux densities of both single- and multi-layer coils as verified both experimentally and by using COMSOL® 5.1 multiphysics simulations.

  5. [Saccharomyces cerevisiae as a model organism for studying the carcinogenicity of non-ionizing electromagnetic fields and radiation].

    PubMed

    Voĭchuk, S I

    2014-01-01

    Medical and biological aspects of the effects of non-ionizing electromagnetic (EM) fields and radiation on human health are the important issues that have arisen as a result of anthropogenic impact on the biosphere. Safe use of man-made sources of non-ionizing electromagnetic fields and radiation in a broad range of frequencies--static, radio-frequency and microwave--is a subject of discussions and speculations. The main problem is the lack of understanding of the mechanism(s) of reception of EMFs by living organisms. In this review we have analyzed the existing literature data regarding the effects of the electromagnetic radiation on the model eukaryotic organism--yeast Saccharomyces cerevisiae. An attempt was made to estimate the probability of induction of carcinogenesis in humans under the influence of magnetic fields and electromagnetic radiation of extremely low frequency, radio frequency and microwave ranges.

  6. Some Student Conceptions of Electromagnetic Induction

    NASA Astrophysics Data System (ADS)

    Thong, Wai Meng; Gunstone, Richard

    2008-01-01

    Introductory electromagnetism is a central part of undergraduate physics. Although there has been some research into student conceptions of electromagnetism, studies have been sparse and separated. This study sought to explore second year physics students’ conceptions of electromagnetism, to investigate to what extent the results from the present study are similar to these results from other studies, and to uncover any new forms of alternative conceptions. Data for this study came from 15 in-depth interviews. Three previously unreported alternative conceptions were identified in the study: 1) induced current varies proportionately with current in solenoid; 2) there must be contact between magnetic flux and the external coil in order for any emf to be induced in the coil; 3) coulombic or electrostatic potential difference is present in an induced electric field. These alternative conceptions were manifested in these students’ explanations of electromagnetic phenomena presented to them during the interviews.

  7. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liangping, Wang; Mo, Li; Juanjuan, Han

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100 ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. Themore » kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 Ω in about 10–20 ns.« less

  8. Looped back fiber mode for reduction of false alarm in leak detection using distributed optical fiber sensor.

    PubMed

    Chelliah, Pandian; Murgesan, Kasinathan; Samvel, Sosamma; Chelamchala, Babu Rao; Tammana, Jayakumar; Nagarajan, Murali; Raj, Baldev

    2010-07-10

    Optical-fiber-based sensors have inherent advantages, such as immunity to electromagnetic interference, compared to the conventional sensors. Distributed optical fiber sensor (DOFS) systems, such as Raman and Brillouin distributed temperature sensors are used for leak detection. The inherent noise of fiber-based systems leads to occasional false alarms. In this paper, a methodology is proposed to overcome this. This uses a looped back fiber mode in DOFS and voting logic is employed to considerably reduce the false alarm rate.

  9. Optical Fiber Grating Hydrogen Sensors: A Review

    PubMed Central

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-01-01

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed. PMID:28287499

  10. Optical Fiber Grating Hydrogen Sensors: A Review.

    PubMed

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-03-12

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.

  11. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement

    NASA Astrophysics Data System (ADS)

    O'Toole, M. D.; Marsh, L. A.; Davidson, J. L.; Tan, Y. M.; Armitage, D. W.; Peyton, A. J.

    2015-03-01

    Biological tissues have a complex impedance, or bio-impedance, profile which changes with respect to frequency. This is caused by dispersion mechanisms which govern how the electromagnetic field interacts with the tissue at the cellular and molecular level. Measuring the bio-impedance spectra of a biological sample can potentially provide insight into the sample’s properties and its cellular structure. This has obvious applications in the medical, pharmaceutical and food-based industrial domains. However, measuring the bio-impedance spectra non-destructively and in a way which is practical at an industrial scale presents substantial challenges. The low conductivity of the sample requires a highly sensitive instrument, while the demands of industrial-scale operation require a fast high-throughput sensor of rugged design. In this paper, we describe a multi-frequency magnetic induction spectroscopy (MIS) system suitable for industrial-scale, non-contact, spectroscopic bio-impedance measurement over a bandwidth of 156 kHz-2.5 MHz. The system sensitivity and performance are investigated using calibration and known reference samples. It is shown to yield rapid and consistently sensitive results with good long-term stability. The system is then used to obtain conductivity spectra of a number of biological test samples, including yeast suspensions of varying concentration and a range of agricultural produce, such as apples, pears, nectarines, kiwis, potatoes, oranges and tomatoes.

  12. Design of access-tube TDR sensor for soil water content: Theory

    USDA-ARS?s Scientific Manuscript database

    The design of a cylindrical access-tube mounted waveguide was developed for in-situ soil water content sensing using time-domain reflectometry (TDR). To optimize the design with respect to sampling volume and losses, we derived the electromagnetic fields produced by a TDR sensor with cylindrical geo...

  13. REMOTE SENSING FOR ENVIRONMENTAL COMPLIANCE MONITORING

    EPA Science Inventory

    I. Remote Sensing Basics
    A. The electromagnetic spectrum demonstrates what we can see both in the visible and beyond the visible part of the spectrum through the use of various types of sensors.
    B. Resolution refers to what a remote sensor can see and how often.
    1. Sp...

  14. Optimal design of a for middle-low-speed maglev trains

    NASA Astrophysics Data System (ADS)

    Xiao, Song; Zhang, Kunlun; Liu, Guoqing; Jing, Yongzhi; Sykulski, Jan K.

    2018-04-01

    A middle-low-speed maglev train is supported by an electromagnetic force between the suspension electromagnet (EM) and the steel rail and is driven by a linear induction motor. The capability of the suspension system has a direct bearing on safety and the technical and economic performance of the train. This paper focuses on the dependence of the electromagnetic force on the structural configuration of the EM with the purpose of improving performance of a conventional EM. Finally, a novel configuration is proposed of a hybrid suspension magnet, which combines permanent magnets and coils, in order to increase the suspension force while reducing the suspension power loss.

  15. Electromagnetic mapping of buried paleochannels in eastern Abu Dhabi Emirate, U.A.E.

    USGS Publications Warehouse

    Fitterman, D.V.; Menges, C.M.; Al Kamali, A.M.; Essa, Jama F.

    1991-01-01

    Transient electromagnetic soundings and terrain conductivity meter measurements were used to map paleochannel geometry in the Al Jaww Plain of eastern Abu Dhabi Emirate, U.A.E. as part of an integrated hydrogeologic study of the Quaternary alluvial aquifer system. Initial interpretation of the data without benefit of well log information was able to map the depth to a conductive clay layer of Tertiary age that forms the base of the aquifer. Comparison of the results with induction logs reveals that a resistive zone exists that was incorporated into the interpretation and its lateral extent mapped with the transient electromagnetic sounding data. ?? 1991.

  16. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve ideas are presented for physics teachers to implement in the laboratory or classroom. Topics covered include electromagnetic induction, microbalance, capacitors, determination of light velocity, and the compound pendulum. Information regarding laboratory equipment is also provided. (PS)

  17. Analyzing planetary transits with a smartphone

    NASA Astrophysics Data System (ADS)

    Barrera-Garrido, Azael

    2015-03-01

    Today's smartphones are getting more sensors than ever as factory-installed accessories. The time when a luxury mobile phone had only vertical and GPS sensors is gone. New smartphones come equipped with multiple sensors for many physical parameters. Smartphones are becoming portable physics laboratory data loggers for a variety of measurements in mechanics, thermodynamics, electromagnetism, and optics. All sorts of possibilities are now open, provided their sensors are calibrated. Many examples using the sensors available in smartphones have been presented, mostly in this column and a few other publications, such as acceleration sensors,1-3 microphones,4,5 camera,6-8 and light sensors.9,10

  18. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment

    PubMed Central

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-01-01

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density. PMID:27775627

  19. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    PubMed

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  20. Effect of Inductive Coil Geometry on the Thrust Efficiency of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil. geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma acceleration processes.

  1. The detection of brain oedema with frequency-dependent phase shift electromagnetic induction.

    PubMed

    González, César A; Rubinsky, Boris

    2006-06-01

    The spectroscopic distribution of inductive phase shift in the brain as a function of the relative volume of oedema was evaluated with theoretical and experimental methods in the frequency range 1 to 8 MHz. The theoretical study employed a simple mathematical model of electromagnetic induction in tissue and brain tissue data available from the literature to calculate the phase shift as a function of oedema in the bulk of the brain. Experimental data were generated from bulk measurements of ex vivo homogenized pig brain tissue mixed with various volumes of physiological saline in a volume sample typical of the human brain. There is good agreement between the analytical and the experimental results. Detectable changes in phase shift begin from a frequency of about 3 MHz to 4 MHz in the tested compositions and volume. The phase shift increases with frequency and fluid content. The results suggest that measuring phase shift in the bulk of the brain has the potential for becoming a robust means for non-contact detection of oedema in the brain.

  2. A new capacitive long-range displacement nanometer sensor with differential sensing structure based on time-grating

    NASA Astrophysics Data System (ADS)

    Yu, Zhicheng; Peng, Kai; Liu, Xiaokang; Pu, Hongji; Chen, Ziran

    2018-05-01

    High-precision displacement sensors, which can measure large displacements with nanometer resolution, are key components in many ultra-precision fabrication machines. In this paper, a new capacitive nanometer displacement sensor with differential sensing structure is proposed for long-range linear displacement measurements based on an approach denoted time grating. Analytical models established using electric field coupling theory and an area integral method indicate that common-mode interference will result in a first-harmonic error in the measurement results. To reduce the common-mode interference, the proposed sensor design employs a differential sensing structure, which adopts a second group of induction electrodes spatially separated from the first group of induction electrodes by a half-pitch length. Experimental results based on a prototype sensor demonstrate that the measurement accuracy and the stability of the sensor are substantially improved after adopting the differential sensing structure. Finally, a prototype sensor achieves a measurement accuracy of  ±200 nm over the full 200 mm measurement range of the sensor.

  3. Inductive passive sensor for intraparenchymal and intraventricular monitoring of intracranial pressure.

    PubMed

    Behfar, Mohammad H; Abada, Emily; Sydanheimo, Lauri; Goldman, Ken; Fleischman, Aaron J; Gupta, Nalin; Ukkonen, Leena; Roy, Shuvo

    2016-08-01

    Accurate measurement of intracranial hypertension is crucial for the management of elevated intracranial pressure (ICP). Catheter-based intraventricular ICP measurement is regarded as the gold standard for accurate ICP monitoring. However, this method is invasive, time-limited, and associated with complications. In this paper, we propose an implantable passive sensor that could be used for continuous intraparenchymal and intraventricular ICP monitoring. Moreover, the sensor can be placed simultaneously along with a cerebrospinal fluid shunt system in order to monitor its function. The sensor consists of a flexible coil which is connected to a miniature pressure sensor via an 8-cm long, ultra-thin coaxial cable. An external orthogonal-coil RF probe communicates with the sensor to detect pressure variation. The performance of the sensor was evaluated in an in vitro model for intraparenchymal and intraventricular ICP monitoring. The findings from this study demonstrate proof-of-concept of intraparenchymal and intraventricular ICP measurement using inductive passive pressure sensors.

  4. An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments.

    PubMed

    Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin

    2015-08-31

    Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively.

  5. An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments

    PubMed Central

    Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin

    2015-01-01

    Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively. PMID:26334279

  6. Inductive sensor performance in partial discharges and noise separation by means of spectral power ratios.

    PubMed

    Ardila-Rey, Jorge Alfredo; Rojas-Moreno, Mónica Victoria; Martínez-Tarifa, Juan Manuel; Robles, Guillermo

    2014-02-19

    Partial discharge (PD) detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges.

  7. Control of electromagnetic stirring by power focusing in large induction crucible furnaces

    NASA Astrophysics Data System (ADS)

    Frizen, V. E.; Sarapulov, F. N.

    2011-12-01

    An approach is proposed for the calculation of the operating conditions of an induction crucible furnace at the final stage of melting with the power focused in various regions of melted metal. The calculation is performed using a model based on the method of detailed magnetic equivalent circuits. The combination of the furnace and a thyristor frequency converter is taken into account in modeling.

  8. Military Applications of Fiber Optics Technology

    DTIC Science & Technology

    1989-05-01

    Research Projects Agency DNA Defense Nuclear Agency EMI Electromagnetic interference EMP Electromagnetic pulse FET Field effect transistor FOFA Follow...Organization SEED Self electro-optic effect device TBM Tactical ballistic missile TOW Tube launched, optically tracked, wire-guided UAV Unmanned aerial vehicle...systems, coupled with novel but effective transducing technology, have set the stage for a powerful class of fiber optic sensors. 8 Optical fibers have

  9. Influences of Electromagnetic Articulography Sensors on Speech Produced by Healthy Adults and Individuals with Aphasia and Apraxia

    ERIC Educational Resources Information Center

    Katz, William F.; Bharadwaj, Sneha V.; Stettler, Monica P.

    2006-01-01

    Purpose: This study examined whether the intraoral transducers used in electromagnetic articulography (EMA) interfere with speech and whether there is an added risk of interference when EMA systems are used to study individuals with aphasia and apraxia. Method: Ten adult talkers (5 individuals with aphasia/apraxia, 5 controls) produced 12 American…

  10. Non-Invasive Electromagnetic Skin Patch Sensor to Measure Intracranial Fluid–Volume Shifts

    PubMed Central

    Griffith, Jacob; Cluff, Kim; Eckerman, Brandon; Aldrich, Jessica; Becker, Ryan; Moore-Jansen, Peer; Patterson, Jeremy

    2018-01-01

    Elevated intracranial fluid volume can drive intracranial pressure increases, which can potentially result in numerous neurological complications or death. This study’s focus was to develop a passive skin patch sensor for the head that would non-invasively measure cranial fluid volume shifts. The sensor consists of a single baseline component configured into a rectangular planar spiral with a self-resonant frequency response when impinged upon by external radio frequency sweeps. Fluid volume changes (10 mL increments) were detected through cranial bone using the sensor on a dry human skull model. Preliminary human tests utilized two sensors to determine feasibility of detecting fluid volume shifts in the complex environment of the human body. The correlation between fluid volume changes and shifts in the first resonance frequency using the dry human skull was classified as a second order polynomial with R2 = 0.97. During preliminary and secondary human tests, a ≈24 MHz and an average of ≈45.07 MHz shifts in the principal resonant frequency were measured respectively, corresponding to the induced cephalad bio-fluid shifts. This electromagnetic resonant sensor may provide a non-invasive method to monitor shifts in fluid volume and assist with medical scenarios including stroke, cerebral hemorrhage, concussion, or monitoring intracranial pressure. PMID:29596338

  11. Study on the Application of an Ultra-High-Frequency Fractal Antenna to Partial Discharge Detection in Switchgears

    PubMed Central

    Yao, Chenguo; Chen, Pan; Huang, Congjian; Chen, Yu; Qiao, Panpan

    2013-01-01

    The ultra-high-frequency (UHF) method is used to analyze the insulation condition of electric equipment by detecting the UHF electromagnetic (EM) waves excited by partial discharge (PD). As part of the UHF detection system, the UHF sensor determines the detection system performance in signal extraction and recognition. In this paper, a UHF antenna sensor with the fractal structure for PD detection in switchgears was designed by means of modeling, simulation and optimization. This sensor, with a flat-plate structure, had two resonance frequencies of 583 MHz and 732 MHz. In the laboratory, four kinds of insulation defect models were positioned in the testing switchgear for typical PD tests. The results show that the sensor could reproduce the electromagnetic waves well. Furthermore, to optimize the installation position of the inner sensor for achieving best detection performance, the precise simulation model of switchgear was developed to study the propagation characteristics of UHF signals in switchgear by finite-difference time-domain (FDTD) method. According to the results of simulation and verification test, the sensor should be positioned at the right side of bottom plate in the front cabinet. This research established the foundation for the further study on the application of UHF technique in switchgear PD online detection. PMID:24351641

  12. Project MANTIS: A MANTle Induction Simulator for coupling geodynamic and electromagnetic modeling

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.

    2009-12-01

    A key component to testing geodynamic hypotheses resulting from the 3D mantle convection simulations is the ability to easily translate the predicted physiochemical state to the model space relevant for an independent geophysical observation, such as earth's seismic, geodetic or electromagnetic response. In this contribution a new parallel code for simulating low-frequency, global-scale electromagnetic induction phenomena is introduced that has the same Earth discretization as the popular CitcomS mantle convection code. Hence, projection of the CitcomS model into the model space of electrical conductivity is greatly simplified, and focuses solely on the node-to-node, physics-based relationship between these Earth parameters without the need for "upscaling", "downscaling", averaging or harmonizing with some other model basis such as spherical harmonics. Preliminary performance tests of the MANTIS code on shared and distributed memory parallel compute platforms shows favorable scaling (>70% efficiency) for up to 500 processors. As with CitcomS, an OpenDX visualization widget (VISMAN) is also provided for 3D rendering and interactive interrogation of model results. Details of the MANTIS code will be briefly discussed here, focusing on compatibility with CitcomS modeling, as will be preliminary results in which the electromagnetic response of a CitcomS model is evaluated. VISMAN rendering of electrical tomography-derived electrical conductivity model overlain by an a 1x1 deg crustal conductivity map. Grey scale represents the log_10 magnitude of conductivity [S/m]. Arrows are horiztonal components of a hypothetical magnetospheric source field used to electromagnetically excite the conductivity model.

  13. Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.

    2011-01-01

    Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration that accompanies the radial compression of the plasma in conical theta pinches.

  14. AC losses in horizontally parallel HTS tapes for possible wireless power transfer applications

    NASA Astrophysics Data System (ADS)

    Shen, Boyang; Geng, Jianzhao; Zhang, Xiuchang; Fu, Lin; Li, Chao; Zhang, Heng; Dong, Qihuan; Ma, Jun; Gawith, James; Coombs, T. A.

    2017-12-01

    This paper presents the concept of using horizontally parallel HTS tapes with AC loss study, and the investigation on possible wireless power transfer (WPT) applications. An example of three parallel HTS tapes was proposed, whose AC loss study was carried out both from experiment using electrical method; and simulation using 2D H-formulation on the FEM platform of COMSOL Multiphysics. The electromagnetic induction around the three parallel tapes was monitored using COMSOL simulation. The electromagnetic induction and AC losses generated by a conventional three turn coil was simulated as well, and then compared to the case of three parallel tapes with the same AC transport current. The analysis demonstrates that HTS parallel tapes could be potentially used into wireless power transfer systems, which could have lower total AC losses than conventional HTS coils.

  15. Inductional Effects in a Halbach Magnet Motion Above Distributed Inductance

    NASA Astrophysics Data System (ADS)

    Tchatchoua, Yves; Conrow, Ary; Kim, Dong; Morgan, Daniel; Majewski, Walerian; Zafar, Zaeema

    2013-03-01

    We experimented with attempts to levitate a linear (bar) Halbach array of five 1'' Nd magnets above a linear inductive track. Next, in order to achieve a control over the relative velocity, we designed a different experiment. In it a large wheel with circumferentially positioned along its rim inducting coils rotates, while the magnet is suspended directly above the rim of the wheel on a force sensor. Faraday's Law with the Lenz's Rule is responsible for the lifting and drag forces on the magnet; the horizontal drag force is measured by another force sensor. Approximating the magnet's linear relative motion over inductors with a motion along a large circle, we may use formulas derived earlier in the literature for linear inductive levitation. We measured lift and drag forces as functions of relative velocity of the Halbach magnet and the inductive ``track,'' in an approximate agreement with the existing theory. We then vary the inductance and shape of the inductive elements to find the most beneficial choice for the lift/drag ratio at the lowest relative speed.

  16. Analytical estimation on divergence and flutter vibrations of symmetrical three-phase induction stator via field-synchronous coordinates

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Wang, Shiyu; Sun, Wenjia; Xiu, Jie

    2017-01-01

    The electromagnetically induced parametric vibration of the symmetrical three-phase induction stator is examined. While it can be analyzed by an approximate analytical or numerical method, more accurate and simple analytical method is desirable. This work proposes a new method based on the field-synchronous coordinates. A mechanical-electromagnetic coupling model is developed under this frame such that a time-invariant governing equation with gyroscopic term can be developed. With the general vibration theory, the eigenvalue is formulated; the transition curves between the stable and unstable regions, and response are all determined as closed-form expressions of basic mechanical-electromagnetic parameters. The dependence of these parameters on the instability behaviors is demonstrated. The results imply that the divergence and flutter instabilities can occur even for symmetrical motors with balanced, constant amplitude and sinusoidal voltage. To verify the analytical predictions, this work also builds up a time-variant model of the same system under the conventional inertial frame. The Floquét theory is employed to predict the parametric instability and the numerical integration is used to obtain the parametric response. The parametric instability and response are both well compared against those under the field-synchronous coordinates. The proposed field-synchronous coordinates allows a quick estimation on the electromagnetically induced vibration. The convenience offered by the body-fixed coordinates is discussed across various fields.

  17. 2D tilting MEMS micro mirror integrating a piezoresistive sensor position feedback

    NASA Astrophysics Data System (ADS)

    Lani, S.; Bayat, D.; Despont, M.

    2015-02-01

    An integrated position sensor for a dual-axis electromagnetic tilting mirror is presented. This tilting mirror is composed of a silicon based mirror directly assembled on a silicon membrane supported by flexible beams. The position sensors are constituted by 4 Wheatstone bridges of piezoresistors which are fabricated by doping locally the flexible beams. A permanent magnet is attached to the membrane and the scanner is mounted above planar coils deposited on a ceramic substrate to achieve electromagnetic actuation. The performances of the piezoresistive sensors are evaluated by measuring the output signal of the piezoresistors as a function of the tilt of the mirror and the temperature. White light interferometry was performed for all measurement to measure the exact tilt angle. The minimum detectable angle with such sensors was 30µrad (around 13bits) in the range of the minimum resolution of the interferometer. The tilt reproducibility was 0.0186%, obtained by measuring the tilt after repeated actuations with a coil current of 50mA during 30 min and the stability over time was 0.05% in 1h without actuation. The maximum measured tilt angle was 6° (mechanical) limited by nonlinearity of the MEMS system.

  18. On the use of particle filters for electromagnetic tracking in high dose rate brachytherapy

    NASA Astrophysics Data System (ADS)

    Götz, Th I.; Lahmer, G.; Brandt, T.; Kallis, K.; Strnad, V.; Bert, Ch; Hensel, B.; Tomé, A. M.; Lang, E. W.

    2017-10-01

    Modern radiotherapy of female breast cancers often employs high dose rate brachytherapy, where a radioactive source is moved inside catheters, implanted in the female breast, according to a prescribed treatment plan. Source localization relative to the patient’s anatomy is determined with solenoid sensors whose spatial positions are measured with an electromagnetic tracking system. Precise sensor dwell position determination is of utmost importance to assure irradiation of the cancerous tissue according to the treatment plan. We present a hybrid data analysis system which combines multi-dimensional scaling with particle filters to precisely determine sensor dwell positions in the catheters during subsequent radiation treatment sessions. Both techniques are complemented with empirical mode decomposition for the removal of superimposed breathing artifacts. We show that the hybrid model robustly and reliably determines the spatial positions of all catheters used during the treatment and precisely determines any deviations of actual sensor dwell positions from the treatment plan. The hybrid system only relies on sensor positions measured with an EMT system and relates them to the spatial positions of the implanted catheters as initially determined with a computed x-ray tomography.

  19. Precision timing detectors with cadmium-telluride sensor

    NASA Astrophysics Data System (ADS)

    Bornheim, A.; Pena, C.; Spiropulu, M.; Xie, S.; Zhang, Z.

    2017-09-01

    Precision timing detectors for high energy physics experiments with temporal resolutions of a few 10 ps are of pivotal importance to master the challenges posed by the highest energy particle accelerators such as the LHC. Calorimetric timing measurements have been a focus of recent research, enabled by exploiting the temporal coherence of electromagnetic showers. Scintillating crystals with high light yield as well as silicon sensors are viable sensitive materials for sampling calorimeters. Silicon sensors have very high efficiency for charged particles. However, their sensitivity to photons, which comprise a large fraction of the electromagnetic shower, is limited. To enhance the efficiency of detecting photons, materials with higher atomic numbers than silicon are preferable. In this paper we present test beam measurements with a Cadmium-Telluride (CdTe) sensor as the active element of a secondary emission calorimeter with focus on the timing performance of the detector. A Schottky type CdTe sensor with an active area of 1cm2 and a thickness of 1 mm is used in an arrangement with tungsten and lead absorbers. Measurements are performed with electron beams in the energy range from 2 GeV to 200 GeV. A timing resolution of 20 ps is achieved under the best conditions.

  20. Separation of Electric Fields Into Potential and Inductive Parts, and Implications for Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.

    2017-12-01

    It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.

Top