Science.gov

Sample records for electromagnetic radiation detectors

  1. Electromagnetic radiation detector

    DOEpatents

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  2. Optical electromagnetic radiation detector

    NASA Astrophysics Data System (ADS)

    Miceli, W. J.; Ludman, J. E.

    1985-08-01

    An optical electromagnetic radiation detector is invented having a probe for receiving nearby electromagnetic radiation. The probe includes a loop antenna connected to a pair of transparent electrodes deposited on the end surfaces of an electro-optic Fabry-Perot interferometer. When the loop antenna picks up the presence of electromagnetic radiation, a voltage will be developed across the crystal of the electro-optic Fabry-Perot interferometer thereby changing the optical length of the interferometer. A beam of light from a remote location is transmitted through an optical fiber onto the Fabry-Perot interferometer. The change in optical length of the Fabry-Perot interferometer alters the intensity of the beam of light as its is reflected from the Fabry-Perot interferometer back through the optical fiber to the remote location. A beamsplitter directs this reflected beam of light onto an intensity detector in order to provide an output indicative of the variations in intensity. The variations in intensity are directly related to the strength of the electromagnetic radiation received by the loop antenna.

  3. Simple dynamic electromagnetic radiation detector

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  4. Resonant tuning fork detector for electromagnetic radiation.

    PubMed

    Pohlkötter, Andreas; Willer, Ulrike; Bauer, Christoph; Schade, Wolfgang

    2009-02-01

    A mechanical quartz microresonator (tuning fork) is used to detect electromagnetic radiation. The detection scheme is based on forces created due to the incident electromagnetic radiation on the piezoelectric tuning fork. A force can be created due to the transfer of the photon momentum of the incident electromagnetic radiation. If the surfaces of the tuning fork are nonuniformly heated, a second force acts on it, the so-called photophoretic force. These processes occur for all wavelengths of the incident radiation, making the detector suitable for sensing of ultraviolet, visible, and mid-infrared light, even THz-radiation. Here the detector is characterized in the visible range; noise analysis is performed for 650 nm and 5.26 microm. A linear power characteristic and the dependence on pulse lengths of the incoming light are shown. Examples for applications for the visible and mid-infrared spectral region are given by 2f and absorption spectroscopy of oxygen and nitric oxide, respectively.

  5. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  6. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  7. COHERENCE PROPERTIES OF ELECTROMAGNETIC RADIATION,

    DTIC Science & Technology

    ELECTROMAGNETIC RADIATION , COHERENT SCATTERING), (*COHERENT SCATTERING, ELECTROMAGNETIC RADIATION ), LIGHT, INTERFERENCE, INTENSITY, STATISTICAL FUNCTIONS, QUANTUM THEORY, BOSONS, INTERFEROMETERS, CHINA

  8. Electromagnetic Radiation Analysis

    DTIC Science & Technology

    1978-04-10

    A methodology is given for determining whether electromagnetic radiation of sufficient strength to cause performance degradation to the test item...exists at the test item location. The results of an electromagnetic radiation effects test are used to identify the radio frequencies and electromagnetic ... radiation levels to which the test item is susceptible. Further, using a test bed, comparisons are made with the representative signal levels to

  9. Semiconductor radiation detector

    DOEpatents

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  10. Electromagnetic Radiation System (EMRS) for Susceptibility Testing.

    DTIC Science & Technology

    ELECTROMAGNETIC COMPATIBILITY, *ELECTROMAGNETIC SUSCEPTIBILITY, COMMUNICATION EQUIPMENT, ELECTRONIC EQUIPMENT, ELECTROMAGNETIC RADIATION , ANTENNAS, ELECTROMAGNETIC INTERFERENCE, RADAR SIGNALS, RADIO SIGNALS, FIELD INTENSITY.

  11. Radiation detector

    DOEpatents

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  12. Radiation detector

    DOEpatents

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  13. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  14. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  15. Tin Can Radiation Detector.

    ERIC Educational Resources Information Center

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  16. RADIATION WAVE DETECTOR

    DOEpatents

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  17. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  18. Conical electromagnetic radiation flux concentrator

    NASA Technical Reports Server (NTRS)

    Miller, E. R.

    1972-01-01

    Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.

  19. STRUCTURAL RESPONSE TO INTENSE ELECTROMAGNETIC RADIATION.

    DTIC Science & Technology

    EXPLODING WIRES, *GLASS, *DAMAGE, ELECTROMAGNETIC RADIATION , ENERGY CONVERSION, ENERGY CONVERSION, ELECTROMAGNETIC RADIATION , ELECTROMAGNETIC ... RADIATION , PLASTICS, PLASMAS(PHYSICS), STRESSES, THERMAL STRESSES, INSTRUMENTATION, ELECTRICAL RESISTANCE, ELECTRIC DISCHARGES, THERMOCOUPLES, MATHEMATICAL ANALYSIS, MATHEMATICAL ANALYSIS.

  20. Underwater radiation detector

    DOEpatents

    Kruse, Lyle W.; McKnight, Richard P.

    1986-01-01

    A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

  1. Radiation Detectors and Art

    NASA Astrophysics Data System (ADS)

    Denker, Andrea

    The use of radiation detectors in the analysis of art objects represents a very special application in a true interdisciplinary field. Radiation detectors employed in this field detect, e.g., x-rays, γ-rays, β particles, and protons. Analyzed materials range from stones, metals, over porcelain to paintings. The available nondestructive and noninvasive analytical methods cover a broad range of techniques. Hence, for the sake of brevity, this chapter will concentrate on few techniques: Proton Induced X-ray Emission (PIXE) and Proton Induced γ-ray Emission (PIGE).

  2. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  3. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  4. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  5. Photovoltaic radiation detector element

    DOEpatents

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  6. Semiconductor radiation detector

    DOEpatents

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.; Vilkelis, Gintas

    2002-01-01

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  7. Handheld CZT radiation detector

    DOEpatents

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  8. Heat Radiators for Electromagnetic Pumps

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Report proposes use of carbon/carbon composite radiators in electromagnetic coolant pumps of nuclear reactors on spacecraft. Carbon/carbon composite materials function well at temperatures in excess of 2,200 K. Aluminum has melting temperature of only 880 K.

  9. Radiation Hazard Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  10. Foam radiators for transition radiation detectors

    NASA Astrophysics Data System (ADS)

    Chernyatin, V.; Dolgoshein, B.; Gavrilenko, I.; Potekhin, M.; Romaniouk, A.; Sosnovtsev, V.

    1993-02-01

    A wide variety of foam radiators, potentially useful in the design of a transition radiation detector, the possible particle identification tool in collider experiments, have been tested in the beam. Various characteristics of these radiators are compared, and the conclusion is reached that certain brands of polyethylene foam are best suited for use in the detector. Comparison is made with a "traditional" radiator, which is a periodic structure of plastic foils.

  11. Compton Sources of Electromagnetic Radiation

    SciTech Connect

    Geoffrey Krafft,Gerd Priebe

    2011-01-01

    When a relativistic electron beam interacts with a high-field laser beam, intense and highly collimated electromagnetic radiation will be generated through Compton scattering. Through relativistic upshifting and the relativistic Doppler effect, highly energetic polarized photons are radiated along the electron beam motion when the electrons interact with the laser light. For example, X-ray radiation can be obtained when optical lasers are scattered from electrons of tens-of-MeV beam energy. Because of the desirable properties of the radiation produced, many groups around the world have been designing, building, and utilizing Compton sources for a wide variety of purposes. In this review article, we discuss the generation and properties of the scattered radiation, the types of Compton source devices that have been constructed to date, and the prospects of radiation sources of this general type. Due to the possibilities of producing hard electromagnetic radiation in a device that is small compared to the alternative storage ring sources, it is foreseen that large numbers of such sources may be constructed in the future.

  12. Nano structural anodes for radiation detectors

    DOEpatents

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  13. THE GENERATION OF THERMOELASTIC STRESS WAVES BY IMPULSIVE ELECTROMAGNETIC RADIATION.

    DTIC Science & Technology

    ELECTROMAGNETIC RADIATION , ABSORPTION), (*STRESSES, ELECTROMAGNETIC RADIATION ), SURFACE PROPERTIES, INTERACTIONS, HEAT TRANSFER, ELASTIC PROPERTIES, ELECTROMAGNETIC PULSES, LASERS, MATHEMATICAL ANALYSIS, BOUNDARY VALUE PROBLEMS, SOLIDS

  14. Anisotropic conducting films for electromagnetic radiation applications

    DOEpatents

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  15. ORDNANCE CORPS VIEWS ELECTROMAGNETIC RADIATION HAZARDS TO WEAPONS SYSTEMS,

    DTIC Science & Technology

    EXPLOSIVES INITIATORS, * ELECTROMAGNETIC RADIATION ), HAZARDS, ELECTROMAGNETIC SHIELDING, RADIOFREQUENCY POWER, ANTENNAS, ATTENUATORS, IMPEDANCE MATCHING, SENSITIVITY, WEAPON SYSTEMS, MODULATION, CIRCUITS, BROADBAND

  16. Method and apparatus for measuring electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Been, J. F. (Inventor)

    1973-01-01

    An apparatus and method are described in which the capacitance of a semiconductor junction subjected to an electromagnetic radiation field is utilized to indicate the intensity or strength of the radiation.

  17. [Mechanisms of electromagnetic radiation damaging male reproduction].

    PubMed

    Xue, Lei; Chen, Hao-Yu; Wang, Shui-Ming

    2012-08-01

    More and more evidence from over 50 years of researches on the effects of electromagnetic radiation on male reproduction show that a certain dose of electromagnetic radiation obviously damages male reproduction, particularly the structure and function of spermatogenic cells. The mechanisms of the injury may be associated with energy dysmetabolism, lipid peroxidation, abnormal expressions of apoptosis-related genes and proteins, and DNA damage.

  18. Electromagnetic modeling and resonant detectors and arrays

    NASA Astrophysics Data System (ADS)

    Choi, K. K.; Sun, J.; DeCuir, E. A.; Olver, K. A.; Wijewarnasuriya, P.

    2015-05-01

    We recently developed a finite element three-dimensional electromagnetic model for quantum efficiency (QE) computation. It is applicable to any arbitrary detector geometry and materials. Using this model, we can accurately account for the open literature experimental results that we have investigated, which include those from GaAs solar cells, GaSb type-II superlattices, and GaAs quantum wells. We applied the model to design a photon trap to increase detector QE. By accumulating and storing incident light in the resonator-QWIP structure, we observed experimental QE as high as 71%. This improvement shows that we are now able to fully determine the optical properties of QWIPs. For example, we can design QWIPs to detect at certain wavelengths with certain bandwidths. To illustrate this capability, we designed QWIPs with its QE spectrum matching well with the transmission spectrum of a medium. We subsequently produced several focal plane arrays according to these designs with 640 × 512 and 1 K × 1 K formats. In this paper, we will compare the modeled QE and the experimental results obtained from single detectors as well as FPAs.

  19. Apparatus for processing electromagnetic radiation and method

    NASA Technical Reports Server (NTRS)

    Gatewood, George D. (Inventor)

    1983-01-01

    Measuring apparatus including a ruled member having alternate transparent and opaque zones. An optical coupler connecting the ruled member with electromagnetic radiation-conversion apparatus. The conversion apparatus may include a photomultiplier and a discriminator. Radiation impinging on the ruled member will, in part, be converted to electrical pulses which correspond to the intensity of the radiation. A method of processing electromagnetic radiation includes providing a member having alternating dark and light zones, establishing movement of the member through the beam of electromagnetic radiation with the dark zones interrupting passage of radiation through the rule, providing an optical coupler to connect a portion of the radiation with a conversion station where the radiation portion is converted into an electrical pulse which is related to the intensity of the radiation received at the conversion station. The electrical pulses may be counted and the digitized signals stored or permanently recorded to produce positional information.

  20. Cadmium telluride photovoltaic radiation detector

    DOEpatents

    Agouridis, Dimitrios C.; Fox, Richard J.

    1981-01-01

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semiconductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  1. Cadmium telluride photovoltaic radiation detector

    DOEpatents

    Agouridis, D.C.; Fox, R.J.

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semi-conductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  2. Portable Radiation Detectors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through a Small Business Innovation Research (SBIR) contract from Kennedy Space Center, General Pneumatics Corporation's Western Research Center satisfied a NASA need for a non-clogging Joule-Thomson cryostat to provide very low temperature cooling for various sensors. This NASA-supported cryostat development played a key part in the development of more portable high-purity geranium gamma-ray detectors. Such are necessary to discern between the radionuclides in medical, fuel, weapon, and waste materials. The outcome of the SBIR project is a cryostat that can cool gamma-ray detectors, without vibration, using compressed gas that can be stored compactly and indefinitely in a standby mode. General Pneumatics also produces custom J-T cryostats for other government, commercial and medical applications.

  3. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  4. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  5. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  6. Flexible composite radiation detector

    DOEpatents

    Cooke, D. Wayne; Bennett, Bryan L.; Muenchausen, Ross E.; Wrobleski, Debra A.; Orler, Edward B.

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  7. Ionizing Radiation Detector

    DOEpatents

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2003-11-18

    A CdZnTe (CZT) crystal provided with a native CdO dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals is disclosed. A two step process is provided for forming the dielectric coating which includes etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water after attaching electrical contacts to the crystal surface.

  8. Radiation detector spectrum simulator

    DOEpatents

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  9. Radiation detector spectrum simulator

    DOEpatents

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  10. Advanced Radiation Detector Development

    SciTech Connect

    The University of Michigan

    1998-07-01

    Since our last progress report, the project at The University of Michigan has continued to concentrate on the development of gamma ray spectrometers fabricated from cadmium zinc telluride (CZT). This material is capable of providing energy resolution that is superior to that of scintillation detectors, while avoiding the necessity for cooling associated with germanium systems. In our past reports, we have described one approach (the coplanar grid electrode) that we have used to partially overcome some of the major limitations on charge collection that is found in samples of CZT. This approach largely eliminates the effect of hole motion in the formation of the output signal, and therefore leads to pulses that depend only on the motion of a single carrier (electrons). Since electrons move much more readily through CZT than do holes, much better energy resolution can be achieved under these conditions. In our past reports, we have described a 1 cm cube CZT spectrometer fitted with coplanar grids that achieved an energy resolution of 1.8% from the entire volume of the crystal. This still represents, to our knowledge, the best energy resolution ever demonstrated in a CZT detector of this size.

  11. Thermopile detector radiation hard readout

    NASA Astrophysics Data System (ADS)

    Gaalema, Stephen; Van Duyne, Stephen; Gates, James L.; Foote, Marc C.

    2010-08-01

    The NASA Jupiter Europa Orbiter (JEO) conceptual payload contains a thermal instrument with six different spectral bands ranging from 8μm to 100μm. The thermal instrument is based on multiple linear arrays of thermopile detectors that are intrinsically radiation hard; however, the thermopile CMOS readout needs to be hardened to tolerate the radiation sources of the JEO mission. Black Forest Engineering is developing a thermopile readout to tolerate the JEO mission radiation sources. The thermal instrument and ROIC process/design techniques are described to meet the JEO mission requirements.

  12. Detection of electromagnetic radiation using nonlinear materials

    DOEpatents

    Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin

    2016-06-14

    An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.

  13. Updating Plasma Scattering of Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Sheffield, J.

    2010-05-01

    The monograph Plasma Scattering of Electromagnetic Radiation was published by Academic Press in 1975. A Russian edition, Atomidzat, came out in 1978. An updated version is being prepared by D. Froula, S. Glenzer. N Luhmann, and J. Sheffield for publication in 2010 by Elsevier. The new version will discuss the broader applications of Thomson scattering, which include the full range of plasmas used in research and industry. The expansion of the field has been made possible by the growing number of powerful radiation sources (from X-rays to microwaves), detectors, and innovative techniques. When the book was published, the highest temperatures in laboratory plasmas were around 2 keV for the electrons. Compare this to today's 25 keV where the relativistic effects are dramatic. The application to low temperature plasmas with Te in the range of 1 - 30+ eV, important in industry, has grown. Important capabilities have been developed in the areas of energetic particle, micro-instability, and high energy density plasma measurements. For the future, we look forward to the use of scattering as a diagnostic on the large new fusion facilities-NIF, LMJ, and ITER.

  14. Porous material for protection from electromagnetic radiation

    SciTech Connect

    Kazmina, Olga E-mail: bdushkina89@mail.ru; Dushkina, Maria E-mail: bdushkina89@mail.ru; Suslyaev, Valentin; Semukhin, Boris

    2014-11-14

    It is shown that the porous glass crystalline material obtained by a low temperature technology can be used not only for thermal insulation, but also for lining of rooms as protective screens decreasing harmful effect of electromagnetic radiation as well as to establish acoustic chambers and rooms with a low level of electromagnetic background. The material interacts with electromagnetic radiation by the most effective way in a high frequency field (above 100 GHz). At the frequency of 260 GHz the value of the transmission coefficient decreases approximately in a factor times in comparison with foam glass.

  15. Direct detector for terahertz radiation

    DOEpatents

    Wanke, Michael C.; Lee, Mark; Shaner, Eric A.; Allen, S. James

    2008-09-02

    A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.

  16. Electromagnetic radiation from beam-plasma instabilities

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Dawson, J. M.

    1983-01-01

    A computer simulation is developed for the generation of electromagnetic radiation in an electron beam-plasma interaction. The plasma is treated as a two-dimensional finite system, and effects of a continuous nonrelativistic beam input are accounted for. Three momentum and three field components are included in the simulation, and an external magnetic field is excluded. EM radiation generation is possible through interaction among Langmuir oscillations, ion-acoustic waves, and the electromagnetic wave, producing radiation perpendicular to the beam. The radiation is located near the plasma frequency, and polarized with the E component parallel to the beam. The scattering of Langmuir waves caused by ion-acoustic fluctuations generates the radiation. Comparison with laboratory data for the three-wave interactions shows good agreement in terms of the radiation levels produced, which are small relative to the plasma thermal energy.

  17. Electromagnetic radiation from beam-plasma instabilities

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Whelan, D. A.

    1982-01-01

    The mechanism by which unstable electrostatic waves of an electron-beam plasma system are converted into observed electromagnetic waves is of great current interest in space plasma physics. Electromagnetic radiation arises from both natural beam-plasma systems, e.g., type III solar bursts and kilometric radiation, and from man-made electron beams injected from rockets and spacecraft. In the present investigation the diagnostic difficulties encountered in space plasmas are overcome by using a large laboratory plasma. A finite diameter (d approximately equal to 0.8 cm) electron beam is injected into a uniform quiescent magnetized afterglow plasma of dimensions large compared with electromagnetic wavelength. Electrostatic waves grow, saturate and decay within the uniform central region of the plasma volume so that linear mode conversion on density gradients can be excluded as a possible generation mechanism for electromagnetic waves.

  18. The Electromagnetic Calorimetry of the PANDA Detector at FAIR

    NASA Astrophysics Data System (ADS)

    Novotny, R. W.; PANDA Collaboration

    2012-12-01

    The PANDA collaboration at FAIR, Germany, will focus on undiscovered charm-meson states and glueballs in antiproton annihilations to study QCD phenomena in the non-perturbative regime. For fixed target experiments at the storage ring HESR a 4π-detector for tracking, particle ID and calorimetry is under development and construction to operate at high annihilation rates up to 20 MHz. The electromagnetic calorimeters are composed of a target spectrometer (EMC) based on PbWO4 crystals and a shashlyk-type sampling calorimeter at the most forward region. The EMC, comprising more than 15,000 crystals, is operated at a temperature of -25°C and read-out via large-area avalanche photo-diodes or vacuum phototriodes/tetrodes. The photo sensor signals are continuously digitized by sampling ADCs. More than 50% of the high quality PWO-II crystals are delivered and tested. The excellent performance with respect to energy, time and position information was determined over a shower energy range from 10 MeV up to 15 GeV by operating several prototype detectors. In addition, the concept of stimulated recovery has been investigated to recover radiation damage on- and off-line during the calorimeter operation. Besides the overall concept of the target spectrometer the response function of the shashlyk spectrometer down to photon energies even below 100 MeV is presented.

  19. Cellular Effects of Electromagnetic Radiation.

    DTIC Science & Technology

    2014-09-26

    cells of characean algae were examined for electrophysiological sequelae to acute electromagnetic field irradiation at 10 mW/cm Carrier frequencies...the low frequency excess noise in single cells of characean algae . J. Microwave Power _Z, 43-46 (1985). E63 A. V. Gokhale and W. F. Pickard, Extremely...A giant cell of a characean alga (normally about 15 mm long and 300 .um in diameter) would be placed in the channel downsteam from the strip, impaled

  20. Radiated fields from an electromagnetic pulse simulator

    NASA Astrophysics Data System (ADS)

    Pelletier, M.; Delisle, G. Y.; Kashyap, S.

    Simulators of electromagnetic pulses allow generation within a limited time of very high-intensity fields such as those produced in a nuclear explosion. These fields can be radiated out of the test zone at a lower but nevertheless significant level; if the intensity of these fields is sufficiently high, damage to humans and electronic equipment can result. An evaluation of the potential danger of these simulator emissions requires knowledge of the amplitude, duration, and the energy of the radiated impulses. A technique is presented for calculating the fields radiated by a parallel-plane electromagnetic pulse simulator. The same method can also be applied to a rhombic type simulator. Sample numerical results are presented along with the calculations of the energy and power density and a discussion of the formation of the field in the frequency domain.

  1. Hybrid anode for semiconductor radiation detectors

    DOEpatents

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  2. [Applications of electromagnetic radiation in medicine].

    PubMed

    Miłowska, Katarzyna; Grabowska, Katarzyna; Gabryelak, Teresa

    2014-05-08

    Recent decades have been devoted to the intense search for the response to questions related to the impact of radiation on the human body. Due to the growing fashion for a healthy lifestyle, increasing numbers of works about the alleged dangers of electromagnetic waves and diseases that they cause appeared. However, the discoveries of 20th century, and knowledge of the properties of electromagnetic radiation have allowed to broaden the horizons of the use of artificial sources of radiation in many fields of science and especially in medicine. The aim of this paper is to show that although excessive radiation or high doses are dangerous to the human body, its careful and controlled use, does not pose a threat, and it is often necessary in therapy. The possibility of using ionizing radiation in radiotherapy, isotope diagnostics or medical imaging, and non-ionizing radiation in the treatment for dermatological disorders and cancers will be presented. The unique properties of synchrotron radiation result in using it on a large scale in the diagnosis of pathological states by imaging methods.

  3. Radiation experience with the CDF silicon detectors

    SciTech Connect

    Husemann, Ulrich; /Rochester U.

    2005-11-01

    The silicon detectors of the CDF experiment at the Tevatron collider are operated in a harsh radiation environment. The lifetime of the silicon detectors is limited by radiation damage, and beam-related incidents are an additional risk. This article describes the impact of beam-related incidents on detector operation and the effects of radiation damage on electronics noise and the silicon sensors. From measurements of the depletion voltage as a function of the integrated luminosity, estimates of the silicon detector lifetime are derived.

  4. Electromagnetic radiation--parameters for risk assessment.

    PubMed

    Israel, M S

    1994-01-01

    The assessment of human exposure to electromagnetic radiation (EMR) under occupational and environmental conditions is one of the most complicated problems of public health science and practice. The problems arise from the very essence of EMR, the conflicting requirements of the measuring instruments, the complexity of electromagnetic waves in the working environment, and the still unknown mechanisms of their biological effects. One of the best ways to develop methods and criteria for exposure assessment of EMR is to determine the electromagnetic field parameters as well as those related to the quantity of energy absorbed by the organism. Definitions have been given mainly regarding tissues' electric and magnetic characteristics, and regarding the energetic parameters of EMR, without description of concrete methods of exposure assessment in different complicated cases of wide-ranging impulsive, non-homogeneous radiation. The best parameters for exposure assessment are the Specific Absorption Rate (SAR), the energetic loading of the human body (the electromagnetic dose W), the time-weighted average (TWA), using time-dependent hygienic norms and standards.

  5. Electromagnetic radiation absorbers and modulators comprising polyaniline

    DOEpatents

    Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid

    1992-01-01

    A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.

  6. Classical electromagnetic radiation of the Dirac electron

    NASA Technical Reports Server (NTRS)

    Lanyi, G.

    1973-01-01

    A wave-function-dependent four-vector potential is added to the Dirac equation in order to achieve conservation of energy and momentum for a Dirac electron and its emitted electromagnetic field. The resultant equation contains solutions which describe transitions between different energy states of the electron. As a consequence it is possible to follow the space-time evolution of such a process. This evolution is shown in the case of the spontaneous emission of an electromagnetic field by an electron bound in a hydrogen-like atom. The intensity of the radiation and the spectral distribution are calculated for transitions between two eigenstates. The theory gives a self-consistent deterministic description of some simple radiation processes without using quantum electrodynamics or the correspondence principle.

  7. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  8. Radiation damage effects on solid state detectors

    NASA Technical Reports Server (NTRS)

    Trainor, J. H.

    1972-01-01

    Totally depleted silicon diodes are discussed which are used as nuclear particle detectors in investigations of galactic and solar cosmic radiation and trapped radiation. A study of radiation and chemical effects on the diodes was conducted. Work on electron and proton irradiation of surface barrier detectors with thicknesses up to 1 mm was completed, and work on lithium-drifted silicon devices with thicknesses of several millimeters was begun.

  9. Propagation of electromagnetic radiation in mitochondria?

    PubMed

    Thar, Roland; Kühl, Michael

    2004-09-21

    Mitochondria are the main source of ultra-weak chemiluminescence generated by reactive oxygen species, which are continuously formed during the mitochondrial oxidative metabolism. Vertebrate cells show typically filamentous mitochondria associated with the microtubules of the cytoskeleton, forming together a continuous network (mitochondrial reticulum). The refractive index of both mitochondria and microtubules is higher than the surrounding cytoplasm, which results that the mitochondrial reticulum can act as an optical waveguide, i.e. electromagnetic radiation can propagate within the network. A detailed analysis of the inner structure of mitochondria shows, that they can be optically modelled as a multi-layer system with alternating indices of refraction. The parameters of this multi-layer system are dependent on the physiologic state of the mitochondria. The effect of the multi-layer system on electromagnetic radiation propagating along the mitochondrial reticulum is analysed by the transfer-matrix method. If induced light emission could take place in mitochondria, the multi-layer system could lead to lasing action like it has been realized in technical distributed feedback laser. Based on former reports about the influence of external illumination on the physiology of mitochondria it is speculated whether there exists some kind of long-range interaction between individual mitochondria mediated by electromagnetic radiation.

  10. Ultra-thin plasma radiation detector

    DOEpatents

    Friedman, Peter S.

    2017-01-24

    A position-sensitive ionizing-radiation counting detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includes a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.

  11. Electron gas grid semiconductor radiation detectors

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  12. Radiation force and balance of electromagnetic momentum

    NASA Astrophysics Data System (ADS)

    Campos, I.; Jiménez, J. L.; Roa-Neri, J. A. E.

    2016-07-01

    Some force densities can be expressed as a divergence of a stress tensor, as is the case with the electromagnetic force density. We have shown elsewhere that from the Maxwell equations several balance equations of electromagnetic momentum can be derived, depending on the form these equations are expressed in terms of fields E, D, B, H, and polarisations P and M. These balance equations imply different force densities and different stress tensors, providing a great flexibility to solve particular problems. Among these force densities we have found some proposed in the past with plausibility arguments, like the Einstein-Laub force density, while other proposed force densities appear as particular or limit cases of these general force densities, like the Helmholtz force density. We calculate the radiation force of an electromagnetic wave incident on a semi-infinite negligibly absorbing material using these balance equations, corroborating in this way that the surface integration of the stress tensor gives the same result that the calculation made through a volume integration of the force density, as done by Bohren. As is usual in applications of Gauss’s theorem, the surface on which the surface integral is to be performed must be chosen judiciously, and due care of discontinuities on the boundary conditions must be taken. Advanced undergraduates and graduate students will find a different approach to new aspects of the interaction of radiation with matter.

  13. Electro-magnetic radiation reflective concentrator

    SciTech Connect

    Johnson, A.L.

    1982-01-26

    A system for concentrating electro-magnetic radiation, such as solar radiation, includes a plurality of reflectors mounted on a common frame and aimed at a radiation absorber that is rigidly coupled to the frame by an intermediate support. The combined frame, reflectors, absorber and intermediate support are coupled to a cantilever beam by means of a suspension assembly located between the absorber and the reflectors. This suspension is at the center of gravity of the combined frame, reflectors, absorber and intermediate support. The cantilever beam is coupled at one end to a main support and at the other to the suspension assembly. This suspension assembly allows the combined frame, reflectors, absorber and intermediate support to pivot relative to the beam about two perpendicular axes.

  14. Resonant-mass detectors of gravitational radiation

    NASA Astrophysics Data System (ADS)

    Michelson, Peter F.; Price, John C.; Taber, Robert C.

    1987-07-01

    A network of second-generation low-temperature gravitational radiation detectors is nearing completion. These detectors, sensitive to mechanical strains of order 10 to the -18th, are possible because of a variety of technical innovations that have been made in cryogenics, low-noise superconducting instrumentation, and vibration isolation techniques. Another five orders of magnitude improvement in energy sensitivity of resonant-mass detectors is possible before the linear amplifier quantum limit is encountered.

  15. Metamaterials for Cherenkov Radiation Based Particle Detectors

    SciTech Connect

    Tyukhtin, A. V.; Schoessow, P.; Kanareykin, A.; Antipov, S.

    2009-01-22

    Measurement of Cherenkov radiation (CR) has long been a useful technique for charged particle detection and beam diagnostics. We are investigating metamaterials engineered to have refractive indices tailored to enhance properties of CR that are useful for particle detectors and that cannot be obtained using conventional media. Cherenkov radiation in dispersive media with a large refractive index differs significantly from the same effect in conventional detector media, like gases or aerogel. The radiation pattern of CR in dispersive metamaterials presents lobes at very large angles with respect to particle motion. Moreover, the frequency and particle velocity dependence of the radiated energy can differ significantly from CR in a conventional dielectric medium.

  16. Electromagnetic field radiation model for lightning strokes to tall structures

    SciTech Connect

    Motoyama, H.; Janischewskyj, W.; Hussein, A.M.; Chisholm, W.A.; Chang, J.S.; Rusan, R.

    1996-07-01

    This paper describes observation and analysis of electromagnetic field radiation from lightning strokes to tall structures. Electromagnetic field waveforms and current waveforms of lightning strokes to the CN Tower have been simultaneously measured since 1991. A new calculation model of electromagnetic field radiation is proposed. The proposed model consists of the lightning current propagation and distribution model and the electromagnetic field radiation model. Electromagnetic fields calculated by the proposed model, based on the observed lightning current at the CN Tower, agree well with the observed fields at 2km north of the tower.

  17. Enhanced radiation detectors using luminescent materials

    DOEpatents

    Vardeny, Zeev V.; Jeglinski, Stefan A.; Lane, Paul A.

    2001-01-01

    A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.

  18. Three-dimensional architecture for solid state radiation detectors

    DOEpatents

    Parker, Sherwood

    1999-01-01

    A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals.

  19. Three-dimensional architecture for solid state radiation detectors

    DOEpatents

    Parker, S.

    1999-03-30

    A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals. 45 figs.

  20. Wafer-fused semiconductor radiation detector

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  1. Processing circuitry for single channel radiation detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2009-01-01

    Processing circuitry is provided for a high voltage operated radiation detector. An event detector utilizes a comparator configured to produce an event signal based on a leading edge threshold value. A preferred event detector does not produce another event signal until a trailing edge threshold value is satisfied. The event signal can be utilized for counting the number of particle hits and also for controlling data collection operation for a peak detect circuit and timer. The leading edge threshold value is programmable such that it can be reprogrammed by a remote computer. A digital high voltage control is preferably operable to monitor and adjust high voltage for the detector.

  2. PAMELA Space Mission: The Transition Radiation Detector

    NASA Astrophysics Data System (ADS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2003-07-01

    PAMELA telescope is a satellite-b orne magnetic spectrometer built to fulfill the primary scientific objectives of detecting antiparticles (antiprotons and positrons) in the cosmic rays, and to measure spectra of particles in cosmic rays. The PAMELA telescope is currently under integration and is composed of: a silicon tracker housed in a permanent magnet, a time of flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD detector is composed of 9 sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD detector characteristics will be described along with its performance studied exposing the detector to particle beams of electrons, pions, muons and protons of different momenta at both CERN-PS and CERN-SPS facilities.

  3. Radiation damage due to electromagnetic showers

    SciTech Connect

    Rakhno, Igor; Mokhov, Nikolai; Striganov, Sergei; /Fermilab

    2008-05-01

    Radiation-induced damage due to atomic displacements is essential to correctly predict the behavior of materials in nuclear reactors and at charged-particle accelerators. Traditionally the damage due to hadrons was of major interest. The recent increased interest in high-energy lepton colliders gave rise to the problem of prediction of radiation damage due to electromagnetic showers in a wide energy range--from a few hundred keV and up to a few hundred GeV. The report describes results of an electron- and positron-induced displacement cross section evaluation. It is based on detailed lepton-nucleus cross sections, realistic nuclear form-factors and a modified Kinchin-Pease damage model. Numerical data on displacement cross sections for various target nuclei is presented.

  4. Large numbers hypothesis. II - Electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Adams, P. J.

    1983-01-01

    This paper develops the theory of electromagnetic radiation in the units covariant formalism incorporating Dirac's large numbers hypothesis (LNH). A direct field-to-particle technique is used to obtain the photon propagation equation which explicitly involves the photon replication rate. This replication rate is fixed uniquely by requiring that the form of a free-photon distribution function be preserved, as required by the 2.7 K cosmic radiation. One finds that with this particular photon replication rate the units covariant formalism developed in Paper I actually predicts that the ratio of photon number to proton number in the universe varies as t to the 1/4, precisely in accord with LNH. The cosmological red-shift law is also derived and it is shown to differ considerably from the standard form of (nu)(R) - const.

  5. Imaging Using Energy Discriminating Radiation Detector Array

    SciTech Connect

    Willson, Paul D.; Clajus, Martin; Tuemer, Tuemay O.; Visser, Gerard; Cajipe, Victoria

    2003-08-26

    Industrial X-ray radiography is often done using a broad band energy source and always a broad band energy detector. There exist several major advantages in the use of narrow band sources and or detectors, one of which is the separation of scattered radiation from primary radiation. ARDEC has developed a large detector array system in which every detector element acts like a multi-channel analyzer. A radiographic image is created from the number of photons detected in each detector element, rather than from the total energy absorbed in the elements. For high energies, 25 KeV to 4 MeV, used in radiography, energy discriminating detectors have been limited to less than 20,000 photons per second per detector element. This rate is much too slow for practical radiography. Our detector system processes over two million events per second per detector pixel, making radiographic imaging practical. This paper expounds on the advantages of the ARDEC radiographic imaging process.

  6. Space radiation dosimetry using bubble detectors.

    PubMed

    Ing, H; Mortimer, A

    1994-10-01

    Bubble detectors--a new development in radiation detection--has only recently been used for radiation measurements in space. One important characteristic of the bubble detector is that it operates on a phenomenon which bears considerable resemblance to biological response. Recent experimental results from irradiating bubble detectors with high-energy heavy ions point to the need to re-examine the methodology used for assessing space radiation and the relevance of conventional quantities such as dose equivalent for space dosimetry. It may be that biological hazard associated with the intensely ionizing events--associated with nuclear fragmentation but delivering relatively small dose equivalent--may be much more important than that associated with lightly ionizing events which comprise the bulk of the conventional radiation dose equivalent.

  7. The potential carcinogenic hazards of electromagnetic radiation: a review.

    PubMed

    Horn, Y

    1995-01-01

    The purpose of this review is to summarize the experience gained thus far on the potential health hazards of electromagnetic radiation. Far less information is available in the medical literature on this kind of radiation than on ionizing radiation, which has been recognized as a health hazard long ago. Increased rates of cancer morbidity and mortality have been noted in populations exposed to ionizing radiation, and international quantitative safety criteria have been established. Electromagnetic radiation (radiofrequency levels between several hundred kilohertz and 300 GHz) is not an infrequent phenomenon. The literature consists mainly of epidemiological studies out of which grew the assumption that this kind of radiation may be carcinogenic. However, only limited data are available on electromagnetic radiation as a potential cancer inducer. A review of the literature does not demonstrate a direct and clear linkage between electromagnetic radiation and the occurrence of malignant tumors, but much more research and clarification are necessary before reaching any conclusions.

  8. Device for calibrating a radiation detector system

    DOEpatents

    McFee, M.C.; Kirkham, T.J.; Johnson, T.H.

    1994-12-27

    A device is disclosed for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a ''shield plate'' or shell, and an opposing ''source plate'' containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects. 3 figures.

  9. Device for calibrating a radiation detector system

    DOEpatents

    Mc Fee, Matthew C.; Kirkham, Tim J.; Johnson, Tippi H.

    1994-01-01

    A device for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a "shield plate" or shell, and an opposing "source plate" containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, heart, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects.

  10. Discriminating electromagnetic radiation based on angle of incidence

    DOEpatents

    Hamam, Rafif E.; Bermel, Peter; Celanovic, Ivan; Soljacic, Marin; Yeng, Adrian Y. X.; Ghebrebrhan, Michael; Joannopoulos, John D.

    2015-06-16

    The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence. In some embodiments, one domain of the photonic material can include an isotropic dielectric function, while another domain of the photonic material can include an anisotropic dielectric function. In some instances, one domain of the photonic material can include an isotropic magnetic permeability, while another domain of the photonic material can include an anisotropic magnetic permeability. In some embodiments, non-photonic materials (e.g., materials with relatively large scale features) can be used to selectively absorb incoming electromagnetic radiation based on angle of incidence.

  11. Electromagnetic Compatibility Testing of Implantable Neurostimulators Exposed to Metal Detectors

    PubMed Central

    Seidman, Seth J; Kainz, Wolfgang; Casamento, Jon; Witters, Donald

    2010-01-01

    This paper presents results of electromagnetic compatibility (EMC) testing of three implantable neurostimulators exposed to the magnetic fields emitted from several walk-through and hand-held metal detectors. The motivation behind this testing comes from numerous adverse event reports involving active implantable medical devices (AIMDs) and security systems that have been received by the Food and Drug Administration (FDA). EMC testing was performed using three neurostimulators exposed to the emissions from 12 walk-through metal detectors (WTMDs) and 32 hand-held metal detectors (HHMDs). Emission measurements were performed on all HHMDs and WTMDs and summary data is presented. Results from the EMC testing indicate possible electromagnetic interference (EMI) between one of the neurostimulators and one WTMD and indicate that EMI between the three neurostimulators and HHMDs is unlikely. The results suggest that worst case situations for EMC testing are hard to predict and testing all major medical device modes and setting parameters are necessary to understand and characterize the EMC of AIMDs. PMID:20448818

  12. Radiation and particle detector and amplifier

    NASA Technical Reports Server (NTRS)

    Schmidt, K. C. (Inventor)

    1973-01-01

    A radiation or charged particle detector is described which incorporates a channel multiplier structure to amplify the detected rays or particles. The channel multiplier structure has a support multiplying element with a longitudinal slot along one side. The element supports a pair of plates positioned contiguous with the slot. The plates funnel the particles or rays to be detected into the slotted aperture and the element, thus creating an effectively wide aperture detector of the windowless type.

  13. Estimation of radiation effects in the front-end electronics of an ILC electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Bartsch, V.; Postranecky, M.; Targett-Adams, C.; Warren, M.; Wing, M.

    2008-08-01

    The front-end electronics of the electromagnetic calorimeter of an International Linear Collider detector are situated in a radiation environment. This requires the effect of the radiation on the performance of the electronics, specifically FPGAs, to be examined. In this paper we study the flux, particle spectra and deposited doses at the front-end electronics of the electromagnetic calorimeter of a detector at the ILC. We also study the occupancy of the electromagnetic calorimeter. These estimates are compared with measurements, e.g. of the radiation damage of FPGAs, done elsewhere. The outcome of the study shows that the radiation doses and the annual flux is low enough to allow today's FPGAs to operate. The Single Event Upset rate, however, lies between 14 min and 12 h depending on the FPGA used and therefore needs to be considered in the design of the data acquisition system of the electromagnetic calorimeter. The occupancy is about 0.002 per bunch train not taking into account the effect of noise which depends on the choice of the detector.

  14. Synchronization behaviors of coupled neurons under electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Fuqiang; Wang, Chunni

    2017-01-01

    Based on an improved neuronal model, in which the effect of magnetic flux is considered during the fluctuation and change of ion concentration in cells, the transition of synchronization is investigated by imposing external electromagnetic radiation on the coupled neurons, and networks, respectively. It is found that the synchronization degree depends on the coupling intensity and the intensity of external electromagnetic radiation. Indeed, appropriate intensity of electromagnetic radiation could be effective to realize intermittent synchronization, while stronger intensity of electromagnetic radiation can induce disorder of coupled neurons and network. Neurons show rhythm synchronization in the electrical activities by increasing the coupling intensity under electromagnetic radiation, and spatial patterns can be formed in the network under smaller factor of synchronization.

  15. Multiple-mode radiation detector

    DOEpatents

    Claus, Liam D.; Derzon, Mark S.; Kay, Randolph R.; Bauer, Todd; Trotter, Douglas Chandler; Henry, Michael David

    2015-08-25

    An apparatus for detecting radiation is provided. In embodiments, at least one sensor medium is provided, of a kind that interacts with radiation to generate photons and/or charge carriers. The apparatus also includes at least one electrode arrangement configured to collect radiation-generated charge from a sensor medium that has been provided. The apparatus also includes at least one photodetector configured to produce an electrical output in response to photons generated by radiation in such a sensor medium, and an electronic circuit configured to produce an output that is jointly responsive to the collected charge and to the photodetector output. At least one such electrode arrangement, at least one such photodetector, and at least one such sensor medium are combined to form an integral unit.

  16. Collectivity and electromagnetic radiation in small systems

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Paquet, Jean-François; Denicol, Gabriel S.; Jeon, Sangyong; Gale, Charles

    2017-01-01

    Collective behavior has been observed in hadronic measurements of high multiplicity proton+lead collisions at the Large Hadron Collider, as well as in (proton, deuteron, helium-3) + gold collisions at the Relativistic Heavy Ion Collider. To better understand the evolution dynamics and the properties of the matter created in these small systems, a systematic study of the soft hadronic observables together with electromagnetic radiation from these collisions is performed by using a hydrodynamic framework. Quantitative agreement is found between theoretical calculations and existing experimental hadronic observables. The validity of the fluid-dynamical description is estimated by calculating Knudsen and inverse Reynolds numbers. Sizeable thermal yields are predicted for low-pT photons. Further predictions of higher-order charged hadron anisotropic flow coefficients and of thermal photon enhancement are proposed.

  17. The Electromagnetic Calorimeter of the future PANDA Detector

    SciTech Connect

    Novotny, Rainer

    2006-10-27

    Experiments with a cooled antiproton beam at the future accelerator facility FAIR at GSI, Darmstadt, will be performed with the 4{pi} detector PANDA comprising a high resolution, compact and fast homogeneous electromagnetic calorimeter to detect photons between 10MeV and 10GeV energy inside a superconducting solenoid (2T). The target calorimeter comprises more than 20,000 PbWO4 crystals of significantly enhanced quality read-out with large area avalanche photodiodes at an operating temperature of -25 degree sign C. The paper describes the quality of PWO-II and illustrates the future performance based on response measurements with high-energy photons.

  18. The High Energy Particle Detector on Board of the China Seismo-Electromagnetic Satellite

    NASA Astrophysics Data System (ADS)

    Sparvoli, Roberta; Palma, Francesco; Panico, Beatrice; Sotgiu, Alessandro; Vitale, Vincenzo

    2016-08-01

    The study of the Van Allen belts temporal stability is among the main objectives of the China Seismo- Electromagnetic Satellite (CSES) space mission, as well as the study of other electromagnetic disturbances with possible seismic origin. In parallel to this, the CSES mission will address issues of heliospheric and magnetospheric physics, by measuring the cosmic radiation around the Earth.The CSES satellite, developed by a Chinese-Italian collaboration, will be launched in the first half of 2017 and inserted into a circular Sun-synchronous orbit with 98° inclination and 500 km altitude. The expected lifetime is 5 years. CSES hosts several instruments on board: 2 magnetometers, an electric field detector, a plasma analyser, a Langmuir probe and a High-Energy Particle Detector (HEPD). The HEPD detector, responsibility of the Italian side of the CSES collaboration, will measure electrons (3 - 100 MeV) and protons (30 - 300 MeV) along CSES orbit. It consists of a segmented layer of plastic scintillators for the trigger and a calorimeter constituted by a tower of plastic scintillator counters and a LYSO plane. The direction of the incident particle is provided by two planes of double-side silicon micro-strip detectors placed in front of the trigger. Topic of this talk is the technical description of the HEPD and its main characteristics.

  19. Low-Power Multi-Aspect Space Radiation Detector System

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  20. Imaging radiation detector with gain

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1984-01-01

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  1. Imaging radiation detector with gain

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1982-07-21

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  2. Radiation damage in barium fluoride detector materials

    SciTech Connect

    Levey, P.W.; Kierstead, J.A.; Woody, C.L.

    1988-01-01

    To develop radiation hard detectors, particularly for high energy physics studies, radiation damage is being studied in BaF/sub 2/, both undoped and doped with La, Ce, Nd, Eu, Gd and Tm. Some dopants reduce radiation damage. In La doped BaF/sub 2/ they reduce the unwanted long lifetime luminescence which interferes with the short-lived fluorescence used to detect particles. Radiation induced coloring is being studied with facilities for making optical measurements before, during and after irradiation with /sup 60/C0 gamma rays. Doses of 10/sup 6/ rad, or less, create only ionization induced charge transfer effects since lattice atom displacement damage is negligible at these doses. All crystals studied exhibit color center formation, between approximately 200 and 800 nm, during irradiation and color center decay after irradiation. Thus only measurements made during irradiation show the total absorption present in a radiation field. Both undoped and La doped BaF/sub 2/ develop damage at minimum detectable levels in the UV---which is important for particle detectors. For particle detector applications these studies must be extended to high dose irradiations with particles energetic enough to cause lattice atom displacement damage. In principle, the reduction in damage provided by dopants could apply to other applications requiring radiation damage resistant materials.

  3. Detectivity of gas leakage based on electromagnetic radiation transfer

    NASA Astrophysics Data System (ADS)

    Long, Yunting; Wang, Lingxue; Li, Jiakun; Zhang, Changxing; Zhang, Bei

    2011-05-01

    Standoff detection of gas leakage is a fundamental need in petrochemical and power industries. The passive gas imaging system using thermal imager has been proven to be efficient to visualize leaking gas which is not visible to the naked eye. The detection probability of gas leakage is the basis for designing a gas imaging system. Supposing the performance parameters of the thermal imager are known, the detectivity based on electromagnetic radiation transfer model to image gas leakage is analyzed. This model takes into consideration a physical analysis of the gas plume spread in the atmosphere-the interaction processes between the gas and its surrounding environment, the temperature of the gas and the background, the background surface emissivity, and also gas concentration, etc. Under a certain environmental conditions, through calculating the radiation reaching to the detector from the camera's optical field of view, we obtain an entity "Gas Equivalent Blackbody Temperature Difference (GEBTD)" which is the radiation difference between the on-plume and off-plume regions. Comparing the GEBTD with the Noise Equivalent Temperature Difference (NETD) of the thermal imager, we can know whether the system can image the gas leakage. At last, an example of detecting CO2 gas by JADE MWIR thermal imager with a narrow band-pass filter is presented.

  4. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    DOEpatents

    Bell, Zane W.

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  5. Neutron responsive self-powered radiation detector

    DOEpatents

    Brown, Donald P.; Cannon, Collins P.

    1978-01-01

    An improved neutron responsive self-powered radiation detector is disclosed in which the neutron absorptive central emitter has a substantially neutron transmissive conductor collector sheath spaced about the emitter and the space between the emitter and collector sheath is evacuated.

  6. Integrator Circuitry for Single Channel Radiation Detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2008-01-01

    Input circuitry is provided for a high voltage operated radiation detector to receive pulses from the detector having a rise time in the range of from about one nanosecond to about ten nanoseconds. An integrator circuit, which utilizes current feedback, receives the incoming charge from the radiation detector and creates voltage by integrating across a small capacitor. The integrator utilizes an amplifier which closely follows the voltage across the capacitor to produce an integrator output pulse with a peak value which may be used to determine the energy which produced the pulse. The pulse width of the output is stretched to approximately 50 to 300 nanoseconds for use by subsequent circuits which may then use amplifiers with lower slew rates.

  7. Radiation detectors: needs and prospects

    SciTech Connect

    Armantrout, G.A.

    1981-01-01

    Important applications for x- and ..gamma..-ray spectroscopy are found in prospecting, materials characterization, environmental monitoring, the life sciences, and nuclear physics. The specific requirements vary for each application with varying degrees of emphasis on either spectrometer resolution, detection efficiency, or both. Since no one spectrometer is ideally suited to this wide range of needs, compromises are usually required. Gas and scintillation spectrometers have reached a level of maturity, and recent interest has concentrated on semiconductor spectrometers. Germanium detectors are showing continuing refinement and are the spectrometers of choice for high resolution applications. The new high-Z semiconductors, such as CdTe and HgI/sub 2/, have shown steady improvement but are limited in both resolution and size and will likely be used only in applications which require their unique properties.

  8. Photon: the minimum dose of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Suntola, Tuomo

    2005-08-01

    A radio engineer can hardly think about smaller amount of electromagnetic radiation than given by a single oscillation cycle of a unit charge in a dipole. When solved from Maxwell's equations for a dipole of one wavelength, the energy of the emitted radiation cycle obtains the form Eλ = 2/3 hf, where the Planck constant h can be expressed in terms of the unit charge, e, the vacuum permeability, μ0, the velocity of light, c, and a numerical factor as h = 1.1049*2π3e2μ0c=6.62607*10-34 [kgm2/s]. A point emitter like an atom can be regarded as a dipole in the fourth dimension. The length of such dipole is measured in the direction of the line element cdt, which in one oscillation cycle means the length of one wavelength. For a dipole in the fourth dimension, three space directions are in the normal plane which eliminates the factor 2/3 from the energy expression thus leading to Planck's equation Eλ = hf for the radiation emitted by a single electron transition in an atom. The expression of the Planck constant obtained from Maxwell's equations leads to a purely numerical expression of the fine structure constant α=1/(1.1049*4π3) = 1/137 and shows that the Planck constant is directly proportional to the velocity of light. When applied to Balmer's formula, the linkage of the Planck constant to the velocity of light shows, that the frequency of an atomic oscillator is directly proportional to the velocity of light. This implies that the velocity of light is observed as constant in local measurements. Such an interpretation makes it possible to convert relativistic spacetime with variable time coordinates into space with variable clock frequencies in universal time, and thus include relativistic phenomena in the framework of quantum mechanics.

  9. Workshop on detectors for synchrotron radiation

    SciTech Connect

    Robinson, Arthur L.

    2000-11-22

    Forefront experiments in many scientific areas for which synchrotron sources provide sufficient flux are nonetheless hindered because detectors cannot collect data fast enough, do not cover sufficiently solid angle, or do no have adequate resolution. Overall, the synchrotron facilities, each of which represents collective investments from funding agencies and user institutions ranging from many hundreds of millions to more than a billion dollars, are effectively significantly underutilized. While this chronic and growing problem plagues facilities around the world, it is particularly acute in the United States, where detector research often has to ride on the coat tails of explicitly science-oriented projects. As a first step toward moving out of this predicament, scientists from the U.S. synchrotron facilities held a national workshop in Washington, DC, on October 30-31, 2000. The Workshop on Detectors for Synchrotron Research aimed to create a national ''roadmap'' for development of synchrotron-radiation detectors.

  10. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  11. Electromagnetic Compatibility Assessment of CCD Detector Acquisition Chains not Synchronized

    NASA Astrophysics Data System (ADS)

    Nicoletto, M.; Boschetti, D.; Ciancetta, E.; Maiorano, E.; Stagnaro, L.

    2016-05-01

    Euclid is a space observatory managed by the European Space Agency; it is the second medium class mission (see Figure 1) in the frame of Cosmic Vision 2015-2025 program.In the frame of this project, the electromagnetic interference between two different and not synchronized Charge Coupled Device (CCD) (see Figure 2) acquisition chains has been evaluated. The key parameter used for this assessment is the electromagnetic noise induced on each other. Taking into account the specificity of the issue, radiation coupling at relative low frequency and in near field conditions, classical approach based on simulations and testing on qualification model cannot be directly applied. Based on that, it has been decided to investigate the issue by test in an incremental way.

  12. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  13. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  14. Amorphous silicon based radiation detectors

    SciTech Connect

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D. ); Fujieda, I.; Street, R.A. )

    1991-07-01

    We describe the characteristics of thin(1 {mu}m) and thick (>30{mu}m) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and {gamma} rays. For x-ray, {gamma} ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs.

  15. The Radiation Assessment Detector (RAD) Investigation

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Zeitlin, C.; Wimmer-Schweingruber, R. F.; Böttcher, S.; Martin, C.; Andrews, J.; Böhm, E.; Brinza, D. E.; Bullock, M. A.; Burmeister, S.; Ehresmann, B.; Epperly, M.; Grinspoon, D.; Köhler, J.; Kortmann, O.; Neal, K.; Peterson, J.; Posner, A.; Rafkin, S.; Seimetz, L.; Smith, K. D.; Tyler, Y.; Weigle, G.; Reitz, G.; Cucinotta, F. A.

    2012-09-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment. RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or "sleep"-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.

  16. Electromechanically cooled germanium radiation detector system

    NASA Astrophysics Data System (ADS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-02-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++ [1], GAMANL [2], GRPANL [3]and MGAU [4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service [5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  17. Alpha-beta radiation detector

    DOEpatents

    Fleming, D.M.; Simmons, K.L.; Froelich, T.J.; Carter, G.L.

    1998-08-18

    The invention is based in part on the discovery that a plastic housing that is lightweight is surprisingly efficient inasmuch as background signals from any gamma radiation are significantly reduced by using a plastic housing instead of a metal housing. A further aspect of the present invention is the profile of the housing as a bi-linear approximation to a parabola resulting in full optical response from any location on the scintillation material to the photomultiplier tube. A yet further aspect of the present invention is that the survey probe is resistant to magnetic fields. A yet further aspect of the present invention is the use of a snap-fit retaining bracket that overcomes the need for multiple screws. 16 figs.

  18. Alpha-beta radiation detector

    DOEpatents

    Fleming, Dale M.; Simmons, Kevin L.; Froelich, Thomas J.; Carter, Gregory L.

    1998-01-01

    The invention is based in part on the discovery that a plastic housing that is lightweight is surprisingly efficient inasmuch as background signals from any gamma radiation are significantly reduced by using a plastic housing instead of a metal housing. A further aspect of the present invention is the profile of the housing as a bi-linear approximation to a parabola resulting in full optical response from any location on the scintillation material to the photomultiplier tube. A yet further aspect of the present invention is that the survey probe is resistant to magnetic fields. A yet further aspect of the present invention is the use of a snap-fit retaining bracket that overcomes the need for multiple screws.

  19. Development of a plasma panel radiation detector

    NASA Astrophysics Data System (ADS)

    Ball, R.; Beene, J. R.; Ben-Moshe, M.; Benhammou, Y.; Bensimon, B.; Chapman, J. W.; Etzion, E.; Ferretti, C.; Friedman, P. S.; Levin, D. S.; Silver, Y.; Varner, R. L.; Weaverdyck, C.; Wetzel, R.; Zhou, B.; Anderson, T.; McKinny, K.; Bentefour, E. H.

    2014-11-01

    This article reports on the development and experimental results of commercial plasma display panels adapted for their potential use as micropattern gas radiation detectors. The plasma panel sensor (PPS) design and materials include glass substrates, metal electrodes and inert gas mixtures which provide a physically robust, hermetically sealed device. Plasma display panels used as detectors were tested with cosmic ray muons, beta rays and gamma rays, protons, and thermal neutrons. The results demonstrated rise times and time resolution of a few nanoseconds, as well as sub-millimeter spatial resolution compatible with the pixel pitch.

  20. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    PubMed

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  1. [Instrumental radiofrequency electromagnetic radiation dosimetry: general principals and modern methodology].

    PubMed

    Perov, S Iu; Kudriashov, Iu B; Rubtsova, N B

    2012-01-01

    The modern experimental radiofrequency electromagnetic field dosimetry approach has been considered. The main principles of specific absorbed rate measurement are analyzed for electromagnetic field biological effect assessment. The general methodology of specific absorbed rate automated dosimetry system applied to establish the compliance of radiation sources with the safety standard requirements (maximum permissible levels and base restrictions) is described.

  2. Gravitational Stokes parameters. [for electromagnetic and gravitational radiation in relativity

    NASA Technical Reports Server (NTRS)

    Anile, A. M.; Breuer, R. A.

    1974-01-01

    The electromagnetic and gravitational Stokes parameters are defined in the general theory of relativity. The general-relativistic equation of radiative transfer for polarized radiation is then derived in terms of the Stokes parameters for both high-frequency electromagnetic and gravitational waves. The concept of Stokes parameters is generalized for the most general class of metric theories of gravity, where six (instead of two) independent states of polarization are present.

  3. First experience of vectorizing electromagnetic physics models for detector simulation

    SciTech Connect

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; Licht, J.de Fine; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.

    2015-12-23

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  4. Geometric calibration of the SND detector electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Korol, A. A.; Melnikova, N. A.

    2017-03-01

    This paper presents the design, implementation and validation of the software alignment procedure used to perform geometric calibration of the electromagnetic calorimeter with respect to the tracking system of the SND detector which is taking data at the VEPP-2000 e+e- collider (BINP, Novosibirsk). This procedure is based on the mathematical model describing the relative calorimeter position. The parameter values are determined by minimizing a χ2 function using the difference between particle directions reconstructed in these two subdetectors for e+e- →e+e- scattering events. The results of the calibration applied to data and MC simulation fit the model well and give an improvement in particle reconstruction. They are used in data reconstruction and MC simulation.

  5. Surface wave chemical detector using optical radiation

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  6. Summary of the SWS Detector Radiation Effects

    NASA Astrophysics Data System (ADS)

    Heras, A. M.; Wieprecht, E.; Nieminen, P.; Feuchtgruber, H.; Lahuis, F.; Leech, K.; Lorente, R.; Morris, P. W.; Salama, A.; Vandenbussche, B.

    We present a study of the space radiation effects on the ISO SWS detectors. Radiation effects were mainly recognised by the presence of glitches in the science data, although in some cases they were also associated with changes in detector responsivity, dark current levels and noise. The glitch rates observed in the science observation window were from 2 to 4 times higher than the value predicted by the CREME96 model for the cosmic ray flux in the period considered. A comparison of the glitch derived energy deposited distributions with the results of ray-tracing simulations (which model primary cosmic ray-induced glitches) showed a good agreement at high energies, but the peak of the observed distributions at the lower deposited energies was not reproduced. Furthermore we found a good correlation between the electron fluxes detected by the GOES-9 spacecraft and the glitch rates in the first measurements after perigee passage. These facts lead us to the conclusion that the contribution to the glitch rates from γ-rays and secondary particles produced by cosmic rays and electrons in the detectors and the shield were as important, at least, as the contribution from primary cosmic rays. The effects of the only intense solar proton event during the ISO mission, on 6 November 1997, on dark currents, dark current noise, responsivity and glitch rates were such that all observations in the revolution were declared failed. The space radiation environment affected the long term behaviour of band 3 Si:As detectors, causing their dark current levels, and in some cases their dark current noise, to increase during the mission. The other SWS detector bands were stable and did not show long-term trends.

  7. Detailed observations of the source of terrestrial narrowband electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1982-01-01

    Detailed observations are presented of a region near the terrestrial plasmapause where narrowband electromagnetic radiation (previously called escaping nonthermal continuum radiation) is being generated. These observations show a direct correspondence between the narrowband radio emissions and electron cyclotron harmonic waves near the upper hybrid resonance frequency. In addition, electromagnetic radiation propagating in the Z-mode is observed in the source region which provides an extremely accurate determination of the electron plasma frequency and, hence, density profile of the source region. The data strongly suggest that electrostatic waves and not Cerenkov radiation are the source of the banded radio emissions and define the coupling which must be described by any viable theory.

  8. Window for radiation detectors and the like

    DOEpatents

    Sparks, C.J. Jr.; Ogle, J.C.

    1975-10-28

    An improved x- and gamma-radiation and particle transparent window for the environment-controlling enclosure of various types of radiation and particle detectors is provided by a special graphite foil of a thickness of from about 0.1 to 1 mil. The graphite must have very parallel hexagonal planes with a mosaic spread no greater than 5$sup 0$ to have the necessary strength in thin sections to support one atmosphere or more of pressure. Such graphite is formed by hot- pressing and annealing pyrolytically deposited graphite and thereafter stripping off layers of sufficient thickness to form the window.

  9. Radiation response issues for infrared detectors

    NASA Technical Reports Server (NTRS)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  10. [Features of control of electromagnetic radiation emitted by personal computers].

    PubMed

    Pal'tsev, Iu P; Buzov, A L; Kol'chugin, Iu I

    1996-01-01

    Measurements of PC electromagnetic irradiation show that the main sources are PC blocks emitting the waves of certain frequencies. Use of wide-range detectors measuring field intensity in assessment of PC electromagnetic irradiation gives unreliable results. More precise measurements by selective devices are required. Thus, it is expedient to introduce a term "spectral density of field intensity" and its maximal allowable level. In this case a frequency spectrum of PC electromagnetic irradiation is divided into 4 ranges, one of which is subjected to calculation of field intensity for each harmonic frequency, and others undergo assessment of spectral density of field intensity.

  11. Effects of electromagnetic radiation on the hemorheology of rats

    NASA Astrophysics Data System (ADS)

    Huang, Zhiwei; Tian, Tian; Xiao, Bo; Li, Wen

    2017-01-01

    The current work examines the effects of electromagnetic radiation on the hemorheology to provide an experimental basis for radiation protection. Electromagnetic radiation was generated by a Helmholtz coil constructed from copper wire. There were six rats altogether: three rats in the experimental group, and three rats in the control group. The rats in the experimental group were continuously exposed to radiation for 10 hours every day, and rats in the control group remained in a normal environment. After 30 days, the characteristics of hemorheology of the two groups were compared. The average plasma viscosity, whole blood high shear velocity, and whole blood low shear viscosity were lower in rats in the experimental group than in rats in the control group, while the whole blood shear viscosity was higher in the experimental group than in the control group. Results suggest that long term exposure to electromagnetic radiation does have certain impacts on the cardiovascular system, deeming it necessary to take preventative measures.

  12. Radiation simulations of the CMS detector

    NASA Astrophysics Data System (ADS)

    Stoddard, Graham J.

    This thesis presents results of recent radiation simulations for the Compact Muon Solenoid detector at the Large Hadron Collider at CERN performed using the Monte Carlo simulation package FLUKA. High statistics simulations with a fine granularity in the detector were carried out using the Condor batch system at the Fermilab LHC Physics Center. In addition, an existing web tool for accessing and displaying simulation data was upgraded. The FLUKA data and previously generated MARS Monte Carlo data can be plotted using 1-D or 2-D plotting functionalities along R and Z, the transverse distance from the beamline and the distance along the beamline, respectively. Comparisons between the data sets have been carried out; the effect of particle transport thresholds in both packages was explored, comparisons with zero magnetic field in the CMS solenoid and full field are made, a model of non-ionizing energy losses is examined, and sensitive areas of interest within the simulation are identified.

  13. [Adaptive changes in the body upon exposure to electromagnetic radiation].

    PubMed

    Zubkova, S M

    1996-01-01

    The chance to use electromagnetic exposures as active adaptogen and the detecting of adaptive changes following them were objects of our studies. The data of experimental and clinical studies significative the dependence of changes on the functional state of organism were seen. Particular attention is paid to the site of exposure and to the advantages in the action of electromagnetic exposures on areas overlaying the endocrine glands and control centers of central nerve system. In these conditions electromagnetic exposures play a part of trigger initiated natural processes of homeostatic regulation in the organism functional systems. It is shown that the course of electromagnetic exposures in wide frequency range until laser radiation (infrared and red) arises adaptive changes of the regulator systems, of the bioenergetic and the biosynthetic processes in myocardium, liver, brain, thymus and other tissues predetermined genetically and secured the power of the adaptive systems. The cross-adaptation effects underlie the electromagnetic exposures medical action.

  14. [Organization of monitoring of electromagnetic radiation in the urban environment].

    PubMed

    Savel'ev, S I; Dvoeglazova, S V; Koz'min, V A; Kochkin, D E; Begishev, M R

    2008-01-01

    The authors describe new current approaches to monitoring the environment, including the sources of electromagnetic radiation and noise. Electronic maps of the area under study are shown to be made, by constructing the isolines or distributing the actual levels of controlled factors. These current approaches to electromagnetic and acoustic monitoring make it possible to automate a process of measurements, to analyze the established situation, and to simplify the risk controlling methodology.

  15. Electromagnetic THz Radiation Modeling by DPSM

    NASA Astrophysics Data System (ADS)

    Rahani, Ehsan Kabiri; Kundu, Tribikram

    2012-03-01

    THz or T-ray imaging and spectroscopy are becoming increasingly popular nondestructive evaluation techniques for damage detection and characterization of materials. In order to understand the interaction between the T-ray electromagnetic waves and dielectric media a reliable model of electromagnetic wave propagation through dielectric materials must be developed. A recently developed semi-analytical method called the distributed point source method (DPSM) is extended to model electromagnetic wave propagation in THz range. Since T-ray signals generated by emitters or sources are close to Gaussian beams, the DPSM modeling is carried out for Gaussian beams generated by finite sized emitters. The DPSM generated results are compared with the analytical and experimental results. T-ray propagation in layered structures in absence of any anomaly and the interaction between the Gaussian beam and the spherical scatterer are also investigated.

  16. Radiation detector having a multiplicity of individual detecting elements

    DOEpatents

    Whetten, Nathan R.; Kelley, John E.

    1985-01-01

    A radiation detector has a plurality of detector collection element arrays immersed in a radiation-to-electron conversion medium. Each array contains a multiplicity of coplanar detector elements radially disposed with respect to one of a plurality of positions which at least one radiation source can assume. Each detector collector array is utilized only when a source is operative at the associated source position, negating the necessity for a multi-element detector to be moved with respect to an object to be examined. A novel housing provides the required containment of a high-pressure gas conversion medium.

  17. Portable radiation detector and mapping system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1995-12-31

    A portable radiation detector and mapping system (RADMAPS) has been developed to detect, locate, and plot nuclear radiation intensities on commercially available digital maps and other images. The field unit records gamma-ray spectra or neutron signals together with positions from a global positioning system (GPS) on flash memory cards. The recorded information is then transferred to a laptop computer for spectral data analyses and then georegistered graphically on maps, photographs, etc. RADMAPS integrates several existing technologies to produce a preprogrammable field unit uniquely suited for each survey, as required. The system records spectra from a NaI(Tl) gamma-ray detector or an enriched {sup 6}Li doped glass neutron scintillator. Standard Geographic Information System (GIS) software installed in a lap-top, complete with CD-ROM supporting digitally imaged maps, permits the characterization of nuclear material in the field when the presence of such material is not otherwise documented. This paper gives the results of a typical site survey of the Savannah River site (SRS) using RADMAPS. The ability to provide rapid field data should be of use in treaty verification, safeguards, decontamination, and nuclear weapons dismantlement.

  18. Biological Effects of Electromagnetic Radiation. Volume II, Number 4.

    DTIC Science & Technology

    1975-12-01

    Electromagnetic Radiation # - A digest of current erature and a forum of communication 1~ ~~~~~~;:~~~~~~Iein:ejnI(T t...unclassified ~ .~~~I4 I~~I~O Security CIas,iac.tioft A - 1140S BiOLOGiCA L. EFFECTS OF ELECTROMAGNETIC RADIATION A Digest of Current Lite rature and a...Forum of Com munication Preparation of This Digest Supported by.~U.S. Army Research Office — Durham ~/ D D C Under Grant No. DAHCO4-74-G-0132 L

  19. Influence of gravitation on the propagation of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Mashhoon, B.

    1975-01-01

    The existence of a general helicity-rotation coupling is demonstrated for electromagnetic waves propagating in the field of a slowly rotating body and in the Goedel universe. This coupling leads to differential focusing of circularly polarized radiation by a gravitational field which is detectable for a rapidly rotating collapsed body. The electromagnetic perturbations and their frequency spectrum are given for the Goedel universe. The spectrum of frequencies is bounded from below by the characteristic rotation frequency of the Goedel universe. If the universe were rotating, the differential focusing effect would be extremely small due to the present upper limit on the anisotropy of the microwave background radiation.

  20. Radiation detector system having heat pipe based cooling

    DOEpatents

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  1. Non-thermal electromagnetic radiation damage to lens epithelium.

    PubMed

    Bormusov, Elvira; P Andley, Usha; Sharon, Naomi; Schächter, Levi; Lahav, Assaf; Dovrat, Ahuva

    2008-05-21

    High frequency microwave electromagnetic radiation from mobile phones and other modern devices has the potential to damage eye tissues, but its effect on the lens epithelium is unknown at present. The objective of this study was to investigate the non-thermal effects of high frequency microwave electromagnetic radiation (1.1GHz, 2.22 mW) on the eye lens epithelium in situ. Bovine lenses were incubated in organ culture at 35°C for 10-15 days. A novel computer-controlled microwave source was used to investigate the effects of microwave radiation on the lenses. 58 lenses were used in this study. The lenses were divided into four groups: (1) Control lenses incubated in organ culture for 10 to15 days. (2) Electromagnetic radiation exposure group treated with 1.1 GHz, 2.22 mW microwave radiation for 90 cycles of 50 minutes irradiation followed by 10 minutes pause and cultured up to 10 days. (3) Electromagnetic radiation exposure group treated as group 2 with 192 cycles of radiation and cultured for 15 days. (4) Lenses exposed to 39.5°C for 2 hours 3 times with 24 hours interval after each treatment beginning on the second day of the culture and cultured for 11 days. During the culture period, lens optical quality was followed daily by a computer-operated scanning laser beam. At the end of the culture period, control and treated lenses were analyzed morphologically and by assessment of the lens epithelial ATPase activity. Exposure to 1.1 GHz, 2.22 mW microwaves caused a reversible decrease in lens optical quality accompanied by irreversible morphological and biochemical damage to the lens epithelial cell layer. The effect of the electromagnetic radiation on the lens epithelium was remarkably different from those of conductive heat. The results of this investigation showed that electromagnetic fields from microwave radiation have a negative impact on the eye lens. The lens damage by electromagnetic fields was distinctly different from that caused by conductive heat.

  2. Dynamics of Cometary Dust Particles in Electromagnetic Radiation Fields

    NASA Astrophysics Data System (ADS)

    Herranen, Joonas; Markkanen, Johannes; Penttilä, Antti; Muinonen, Karri

    2016-10-01

    The formation of cometary dust tails and comae is based on solar radiation pressure. The pressure effects of electromagnetic radiation were originally conceptualized in Kepler's observations of the tails of comets and formulated mathematically by Maxwell in 1873. Today, the dynamics of cometary dust are known to be governed by gravity, electromagnetic forces, drag, solar wind, and solar radiation pressure.Solar radiation pressure has its roots in absorption, emission, and scattering of electromagnetic radiation. Due to modern advances in so-called integral equation methods in electromagnetics, a new approach of studying the effect of radiation pressure on cometary dust dynamics can be constructed. We solve the forces and torques due to radiation pressure for an arbitrarily shaped dust particle using volume integral equation methods.We then present a framework for solving the equations of motion of cometary dust particles due to radiative interactions. The solution is studied in a simplified cometary environment, where the radiative effects are studied at different orbits. The rotational and translational equations of motion are solved directly using a quaternion-based integrator. The rotational and translational equations of motion affect dust particle alignment and concentration. This is seen in the polarization of the coma. Thus, our direct dynamical approach can be used in modelling the observed imaging photo-polarimetry of the coma.In future studies, the integrator can be further extended to an exemplary comet environment, taking into account the drag, and the electric and magnetic fields. This enables us to study the dynamics of a single cometary dust particle based on fundamental physics.Acknowledgments. Research supported, in part, bythe European Research Council (ERC, grant Nr. 320773).

  3. Characterisation of bubble detectors for aircrew and space radiation exposure.

    PubMed

    Green, A R; Bennett, L G I; Lewis, B J; Tume, P; Andrews, H R; Noulty, R A; Ing, H

    2006-01-01

    The Earth's atmosphere acts as a natural radiation shield which protects terrestrial dwellers from the radiation environment encountered in space. In general, the intensity of this radiation field increases with distance from the ground owing to a decrease in the amount of atmospheric shielding. Neutrons form an important component of the radiation field to which the aircrew and spacecrew are exposed. In light of this, the neutron-sensitive bubble detector may be ideal as a portable personal dosemeter at jet altitudes and in space. This paper describes the ground-based characterisation of the bubble detector and the application of the bubble detector for the measurement of aircrew and spacecrew radiation exposure.

  4. Probing Bose-Einstein condensation of excitons with electromagnetic radiation.

    PubMed

    Johnsen, K; Kavoulakis, G M

    2001-01-29

    We examine the absorption spectrum of electromagnetic radiation from excitons, where an exciton in the 1s state absorbs a photon and makes a transition to the 2p state. We demonstrate that the absorption spectrum depends strongly on the quantum degeneracy of the exciton gas, and that it will generally manifest many-body effects. Based on our results we propose that absorption of infrared radiation could resolve recent contradictory experimental results on excitons in Cu(2)O.

  5. Electromagnetic Radiation in the Atmosphere Generated by Excess Negative Charge in a Nuclear-Electromagnetic Cascade

    NASA Astrophysics Data System (ADS)

    Malyshevsky, V. S.; Fomin, G. V.

    2017-01-01

    On the basis of the analytical model "PARMA" (PHITS-based Analytical Radiation Model in the Atmosphere), developed to model particle fluxes of secondary cosmic radiation in the Earth's atmosphere, we have calculated the characteristics of radio waves emitted by excess negative charge in an electromagnetic cascade. The results may be of use in an analysis of experimental data on radio emission of electron-photon showers in the atmosphere.

  6. The HERMES dual-radiator RICH detector

    NASA Astrophysics Data System (ADS)

    Jackson, H. E.

    2003-04-01

    The HERMES experiment emphasizes measurements of semi-inclusive deep-inelastic scattering. Most of the hadrons produced lie between 2 and 10 GeV, a region in which it had not previously been feasible to separate pions, kaons, and protons with standard particle identification (PID) techniques. The recent development of new clear, large, homogeneous and hydrophobic silica aerogel material with a low index of refraction offered the means to apply RICH PID techniques to this difficult momentum region. The HERMES instrument uses two radiators, C 4F 10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. A lightweight spherical mirror constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality provides optical focusing on a photon detector consisting of 1934 photomultiplier tubes (PMT) for each detector half. The PMT array is held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet. Ring reconstruction is accomplished with pattern recognition techniques based on a combination of inverse and direct ray tracing.

  7. Self-powered radiation detector with conductive emitter support

    SciTech Connect

    Bauer, R.F.; Goldstein, N.P.; Playfoot, K.C.

    1981-05-12

    A more reliable self-powered radiation detector structure and method of manufacture is provided by a detector structure in which a relatively ductile centrally disposed conductive emitter wire supports and is in electrical contact with a generally tubular emitter electrode. The detector is fabricated by swaging and the ductile center wire insures that electrical discontinuities of the emitter are minimized.

  8. Space Radiation Detector with Spherical Geometry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2011-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  9. Space Radiation Detector with Spherical Geometry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2012-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  10. Ruggedization of CdZnTe detectors and detector assemblies for radiation detection applications

    NASA Astrophysics Data System (ADS)

    Lu, P. H.; Gomolchuk, P.; Chen, H.; Beitz, D.; Grosser, A. W.

    2015-06-01

    This paper described improvements in the ruggedization of CdZnTe detectors and detector assemblies for use in radiation detection applications. Research included experimenting with various conductive and underfill adhesive material systems suitable for CZT substrates. A detector design with encapsulation patterning was developed to protect detector surfaces and to control spacing between CZT anode and PCB carrier. Robustness of bare detectors was evaluated through temperature cycling and metallization shear testing. Attachment processes using well-chosen adhesives and PCB carrier materials were optimized to improve reliability of detector assemblies, resulted in Improved Attachment Detector Assembly. These detector assemblies were subjected to aggressive temperature cycling, and varying levels of drop/shock and vibration, in accordance with modified JEDEC, ANSI and FedEx testing standards, to assess their ruggedness. Further enhanced detector assembly ruggedization methods were investigated involving adhesive conformal coating, potting and dam filling on detector assemblies, which resulted in the Enhanced Ruggedization Detector Assembly. Large numbers of CZT detectors and detector assemblies with 5 mm and 15 mm thick, over 200 in total, were tested. Their performance was evaluated by exposure to various radioactive sources using comprehensive predefined detector specifications and testing protocols. Detector assemblies from improved attachment and enhanced ruggedization showed stable performances during the harsh environmental condition tests. In conclusion, significant progress has been made in improving the reliability and enhancing the ruggedness of CZT detector assemblies for radiation detection applications deployed in operational environments.

  11. Simulation of radiation environment for the LHeC detector

    NASA Astrophysics Data System (ADS)

    Nayaz, Abdullah; Piliçer, Ercan; Joya, Musa

    2017-02-01

    The detector response and simulation of radiation environment for the Large Hadron electron Collider (LHeC) baseline detector is estimated to predict its performance over the lifetime of the project. In this work, the geometry of the LHeC detector, as reported in LHeC Conceptual Design Report (CDR), built in FLUKA Monte Carlo tool in order to simulate the detector response and radiation environment. For this purpose, events of electrons and protons with high enough energy were sent isotropically from interaction point of the detector. As a result, the detector response and radiation background for the LHeC detector, with different USRBIN code (ENERGY, HADGT20M, ALL-CHAR, ALL-PAR) in FLUKA, are presented.

  12. Pyroelectric detector development for the Radiation Measurement system

    NASA Technical Reports Server (NTRS)

    Hubbard, G. S.; Mcmurray, Robert E., Jr.; Hanel, R. P.; Dominguez, D. E.; Valero, F. P. J.; Baumann, Hilary; Hansen, W. L.; Haller, E. E.

    1993-01-01

    A new class of high detectivity pyroelectric detectors developed for optimization of the radiation measurement system within the framework of the Atmospheric Radiation Measurement program is described. These devices are intended to provide detectivities of up to about 10 exp 11 cm Hz exp 0.5/W with cooling to about 100 K required for the detector focal plane.

  13. Real-time self-networking radiation detector apparatus

    DOEpatents

    Kaplan, Edward; Lemley, James; Tsang, Thomas Y.; Milian, Laurence W.

    2007-06-12

    The present invention is for a radiation detector apparatus for detecting radiation sources present in cargo shipments. The invention includes the features of integrating a bubble detector sensitive to neutrons and a GPS system into a miniaturized package that can wirelessly signal the presence of radioactive material in shipping containers. The bubble density would be read out if such indicated a harmful source.

  14. A large area transition radiation detector for the NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Bassompierre, G.; Bermond, M.; Berthet, M.; Bertozzi, T.; Détraz, C.; Dubois, J.-M.; Dumps, L.; Engster, C.; Fazio, T.; Gaillard, G.; Gaillard, J.-M.; Gouanère, M.; Manola-Poggioli, E.; Mossuz, L.; Mendiburu, J.-P.; Nédélec, P.; Palazzini, E.; Pessard, H.; Petit, P.; Petitpas, P.; Placci, A.; Sillou, D.; Sottile, R.; Valuev, V.; Verkindt, D.; Vey, H.; Wachnik, M.

    1998-02-01

    A transition radiation detector to identify electrons at 90% efficiency with a rejection factor against pions of 10 3 on an area of 2.85 × 2.85 m 2 has been constructed for the NOMAD experiment. Each of its 9 modules includes a 315 plastic foil radiator and a detector plane of 176 vertical straw tubes filled with a xenon-methane gas mixture. Details of the design, construction and operation of the detector are given.

  15. Wire chamber radiation detector with discharge control

    DOEpatents

    Perez-Mendez, Victor; Mulera, Terrence A.

    1984-01-01

    A wire chamber radiation detector (11) has spaced apart parallel electrodes (16) and grids (17, 18, 19) defining an ignition region (21) in which charged particles (12) or other ionizing radiations initiate brief localized avalanche discharges (93) and defining an adjacent memory region (22) in which sustained glow discharges (94) are initiated by the primary discharges (93). Conductors (29, 32) of the grids (18, 19) at each side of the memory section (22) extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles (12) were detected by sequentially transmitting pulses to the conductors (29) of one grid (18) while detecting transmissions of the pulses to the orthogonal conductors (36) of the other grid (19) through glow discharges (94). One of the grids (19) bounding the memory region (22) is defined by an array of conductive elements (32) each of which is connected to the associated readout conductor (36) through a separate resistance (37). The wire chamber (11) avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles (12) have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  16. Electromagnetic radiation due to nonlinear oscillations of a charged drop

    NASA Astrophysics Data System (ADS)

    Shiryaeva, S. O.; Grigor'ev, A. N.; Kolbneva, N. Yu.

    2016-03-01

    The nonlinear oscillations of a spherical charged drop are asymptotically analyzed under the conditions of a multimode initial deformation of its equilibrium shape. It is found that if the spectrum of initially excited modes contains two adjacent modes, the translation mode of oscillations is excited among others. In this case, the center of the drop's charge oscillates about the equilibrium position, generating a dipole electromagnetic radiation. It is shown that the intensity of this radiation is many orders of magnitude higher than the intensity of the drop's radiation, which arises in calculations of the first order of smallness and is related to the drop's charged surface oscillations.

  17. Electromagnetic radiation screening of semiconductor devices for long life applications

    NASA Technical Reports Server (NTRS)

    Hall, T. C.; Brammer, W. G.

    1972-01-01

    A review is presented of the mechanism of interaction of electromagnetic radiation in various spectral ranges, with various semiconductor device defects. Previous work conducted in this area was analyzed as to its pertinence to the current problem. The task was studied of implementing electromagnetic screening methods in the wavelength region determined to be most effective. Both scanning and flooding type stimulation techniques are discussed. While the scanning technique offers a considerably higher yield of useful information, a preliminary investigation utilizing the flooding approach is first recommended because of the ease of implementation, lower cost and ability to provide go-no-go information in semiconductor screening.

  18. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation.

    PubMed

    Bertschinger, G; Endres, C P; Lewen, F; Oosterbeek, J W

    2008-10-01

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30 dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating.

  19. Study on the electromagnetic radiation characteristics of discharging excimer laser system

    NASA Astrophysics Data System (ADS)

    Zhao, Duliang; Liang, Xu; Fang, Xiaodong; Wang, Qingsheng

    2016-10-01

    Excimer laser in condition of high voltage, large current and fast discharge will produce strong electromagnetic pulse radiation and electromagnetic interference on the around electrical equipment. The research on characteristics and distribution of excimer laser electromagnetic radiation could provide important basis for electromagnetic shielding and suppressing electromagnetic interference, and further improving the electromagnetic compatibility of system. Firstly, electromagnetic radiation source is analyzed according to the working principle of excimer laser. The key test points of the electromagnetic radiation, hydrogen thyratron, main discharge circuit and laser outlet, are determined by the mechanical structure and the theory of electromagnetic radiation. Secondly, characteristics of electromagnetic field were tested using a near field probe on the key positions of the vertical direction at 20, 50, and 80 cm, respectively. The main radiation frequencies and the radiation field characteristics in the near field are obtained. The experimental results show that the main radiation frequencies distribute in 47, 65, and 130 MHz for electric field and the main radiation frequencies distribute in 34, 100, and 165 MHz for magnetic field. The intensity of electromagnetic field decreases rapidly with the increase of test distance. The higher the frequency increases, the faster the amplitude attenuate. Finally, several electromagnetic interference suppression measurement methods are proposed from the perspective of electromagnetic compatibility according to the test results.

  20. Multiple Detector Optimization for Hidden Radiation Source Detection

    DTIC Science & Technology

    2015-03-26

    copyright protection in the United States. AFIT-ENP-MS-15-M-082 OPTIMIZATION OF DETECTOR PLACEMENT FOR HIDDEN RADIATION SOURCE DETECTION...AFIT-ENP-MS-15-M-082 OPTIMIZATION OF DETECTOR PLACEMENT FOR HIDDEN RADIATION SOURCE DETECTION Michael E. Morrison, BS Major, USA Committee...process of hidden source detection significantly. The model focused on detection of the full energy peak of a radiation source. Methods to optimize

  1. Feed network and electromagnetic radiation source

    DOEpatents

    Ardavan, Arzhang; Singleton, John; Linehan, Kevin E.; Ardavan, Houshang; Schmidt-Zwiefel, Andrea Caroline

    2017-01-17

    An antenna may include a volume polarization current radiator and a feed network. The volume polarization current radiator, includes a dielectric solid (such as a dielectric strip), and a plurality of closely-spaced excitation elements (24), each excitation element (24) being configured to induce a volume polarization current distribution in the dielectric solid proximate to the excitation element when a voltage is applied to the excitation element. The feed network is coupled to the volume polarization current radiator. The feed network also includes a plurality of passive power divider elements (32) and a plurality of passive delay elements (d1-d6) coupling the first port (30) and the plurality of second ports (108, 109, 164), the plurality of power divider elements (32) and the plurality of phase delay elements (d1-d6) being configured such that a radio-frequency signal that is applied to the first port (30) experiences a progressive change of phase as it is coupled to the plurality of second ports (108, 109, 164) so as to cause the volume polarization current distribution to propagate along the dielectric solid.

  2. Radiation damage studies for the D0 silicon detector

    SciTech Connect

    Lehner, F.; /Zurich U.

    2004-01-01

    We report on irradiation studies performed on spare production silicon detector modules for the current D0 silicon detector. The lifetime expectations due to radiation damage effects of the existing silicon detector are reviewed. A new upgrade project was started with the goal of a complete replacement of the existing silicon detector. In that context, several investigations on the radiation hardness of new prototype silicon microstrip detectors were carried out. The irradiation on different detector types was performed with 10 MeV protons up to fluences of 10{sup 14} p/cm{sup 2} at the J.R. Mcdonald Laboratory at Kansas State University. The flux calibration was carefully checked using different normalization techniques. As a result, we observe roughly 40-50% less radiation damage in silicon for 10 MeV p exposure than it is expected by the predicted NIEL scaling.

  3. Electromagnetic crystal based terahertz thermal radiators and components

    NASA Astrophysics Data System (ADS)

    Wu, Ziran

    This dissertation presents the investigation of thermal radiation from three-dimensional electromagnetic crystals (EMXT), as well as the development of a THz rapid prototyping fabrication technique and its application in THz EMXT components and micro-system fabrication and integration. First, it is proposed that thermal radiation from a 3-D EMXT would be greatly enhanced at the band gap edge frequency due to the redistribution of photon density of states (DOS) within the crystal. A THz thermal radiator could thus be built upon a THz EMXT by utilizing the exceptional emission peak(s) around its band gap frequency. The thermal radiation enhancement effects of various THz EMXT including both silicon and tungsten woodpile structures (WPS) and cubic photonic cavity (CPC) array are explored. The DOS of all three structures are calculated, and their thermal radiation intensities are predicted using Planck's Equation. These calculations show that the DOS of the silicon and tungsten WPS can be enhanced by a factor of 11.8 around 364 GHz and 2.6 around 406 GHz respectively, in comparison to the normal blackbody radiation at same frequencies. An enhancement factor of more than 100 is obtained in calculation from the CPC array. A silicon WPS with a band gap around 200 GHz has been designed and fabricated. Thermal emissivity of the silicon WPS sample is measured with a control blackbody as reference. And enhancements of the emission from the WPS over the control blackbody are observed at several frequencies quite consistent with the theoretical predictions. Second, the practical challenge of THz EMXT component and system fabrication is met by a THz rapid prototyping technique developed by us. Using this technique, the fabrications of several EMXTs with 3D electromagnetic band gaps in the 100-400 GHz range are demonstrated. Characterization of the samples via THz Time-domain Spectroscopy (THz-TDS) shows very good agreement with simulation, confirming the build accuracy of this

  4. Generation of radiation by intense plasma and electromagnetic undulators

    SciTech Connect

    Joshi, C.

    1991-10-01

    We examine the characteristics of the classical radiation emission resulting from the interaction of a relativistic electron beam that propagates perpendicularly through a large amplitude relativistic plasma wave. Such a study is useful for evaluating the feasibility of using relativistic plasma waves as extremely short wavelength undulators for generating short wavelength radiation. The electron trajectories in a plasma wave undulator and in an ac FEL undulator are obtained using perturbation techniques. The spontaneous radiation frequency spectrum and angular distribution emitted by a single electron oscillating in these two undulators are then calculated. The radiation gain of a copropagating electromagnetic wave is calculated. The approximate analytic results for the trajectories, spontaneous radiation and gain are compared with 3-D simulation results. The characteristics of the plasma wave undulator are compared with the ac FEL undulator and linearly polarized magnetic undulator. 50 refs., 26 figs., 3 tabs.

  5. Electromagnetic radiation from linearly and nonlinearly oscillating charge drops

    NASA Astrophysics Data System (ADS)

    Grigor'ev, A. I.; Shiryaeva, S. O.

    2016-12-01

    It has been shown that analytic calculations of the intensity of electromagnetic radiation from an oscillating charged drop in the approximation linear in the oscillation amplitude (small parameter is on the order of 0.1) give only the quadrupole component of the total radiation. The dipole component can only be obtained in calculations using higher-order approximations. Nevertheless, the intensity of the dipole radiation turns out to be substantially higher (by 14-15 orders of magnitude). This is because the decomposition of radiation from a system of charges into multipole components (differing even in the rates of decrease in the potential with the distance) is carried out using the expansion in a substantially smaller parameter, viz., the ratio of the size of the emitting system (in our case, a drop of radius 10 μm) to the distance to the point of observation in the wave zone of the emission of radiation (emitted wavelength) of 100-1000 m. As a result, this second small parameter is on the order of 10-7 to 10-8. On the other hand, in accordance with the field theory, the ratio of intensities of quadrupole and dipole radiations is proportional to the squared ratio of the hydrodynamic velocity of the oscillating surface of a charged drop to the velocity of propagation of an electromagnetic signal in vacuum (velocity of light), which yields a ratio of 10-14 to 10-15.

  6. Large dynamic range radiation detector and methods thereof

    DOEpatents

    Marrs, Roscoe E [Livermore, CA; Madden, Norman W [Sparks, NV

    2012-02-14

    According to one embodiment, a radiation detector comprises a scintillator and a photodiode optically coupled to the scintillator. The radiation detector also includes a bias voltage source electrically coupled to the photodiode, a first detector operatively electrically coupled to the photodiode for generating a signal indicative of a level of a charge at an output of the photodiode, and a second detector operatively electrically coupled to the bias voltage source for generating a signal indicative of an amount of current flowing through the photodiode.

  7. Structures, systems and methods for harvesting energy from electromagnetic radiation

    DOEpatents

    Novack, Steven D [Idaho Falls, ID; Kotter, Dale K [Shelley, ID; Pinhero, Patrick J [Columbia, MO

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  8. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOEpatents

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  9. Calcium protects differentiating neuroblastoma cells during 50 Hz electromagnetic radiation.

    PubMed

    Tonini, R; Baroni, M D; Masala, E; Micheletti, M; Ferroni, A; Mazzanti, M

    2001-11-01

    Despite growing concern about electromagnetic radiation, the interaction between 50- to 60-Hz fields and biological structures remains obscure. Epidemiological studies have failed to prove a significantly correlation between exposure to radiation fields and particular pathologies. We demonstrate that a 50- to 60-Hz magnetic field interacts with cell differentiation through two opposing mechanisms: it antagonizes the shift in cell membrane surface charges that occur during the early phases of differentiation and it modulates hyperpolarizing K channels by increasing intracellular Ca. The simultaneous onset of both mechanisms prevents alterations in cell differentiation. We propose that cells are normally protected against electromagnetic insult. Pathologies may arise, however, if intracellular Ca regulation or K channel activation malfunctions.

  10. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    NASA Technical Reports Server (NTRS)

    Barry, Mamadou Y.

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.

  11. PIC Simulation of Relativistic Electromagnetic Plasma Expansion with Radiation Damping

    NASA Astrophysics Data System (ADS)

    Noguchi, Koichi; Liang, Edison; Wilks, Scott

    2004-11-01

    One of the unsolved problems in astrophysics is the acceleration of nonthermal high-energy particles. Nonthermal radiation is observed from pulsars, blazers, gamma-ray bursts and black holes. Recently, a new mechanism of relativistic nonthermal particle acceleration, called the Diamagnetic Relativistic Pulse Accelerator(DRPA), discovered using multi-dimensional Particle-in-Cell(PIC) simulations. When a plasma-loaded electromagnetic pulse expands relativistically, the self-induced drift current creates ponderomotive trap, which drags only the fast particles in the trap and leave slow ones behind. Here we study the effect of radiation on an electron-positron plasma accelerated by the DRPA, by introducing the radiation force in our 2D PIC code. In the radiation case, particles are accelerated by the EM pulse but decelerated by the radiation reaction simultaneously, whereas particles are accelerated indefinitely in the non-radiation case. We find that even with the radiation dumping the DRPA mechanism remains robust and particles are accelerated to over γ>100. After the simulation reaches the quasi-equilibrium state, kinetic energy becomes constant, and field energy is converted to radiation using particles as the transfer agent. We will also produce sample light waves of the radiation output.

  12. Study of electromagnetic radiation pollution in an Indian city.

    PubMed

    Dhami, A K

    2012-11-01

    Electromagnetic radiation emitted by cell phone towers is a form of environmental pollution and is a new health hazard, especially to children and patients. The present studies were taken to estimate the microwave/RF pollution by measuring radiation power densities near schools and hospitals of Chandigarh city in India. The cell phone radiations were measured using a handheld portable power density meter TES 593 and specific absorption rates were estimated from the measured values. These values of electromagnetic radiation in the environment were compared with the levels at which biological system of humans and animals starts getting affected. The values were also compared with the international exposure limits set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The highest measured power density was 11.48 mW/m(2) which is 1,148% of the biological limit. The results indicated that the exposure levels in the city were below the ICNIRP limit, but much above the biological limit.

  13. The peak electromagnetic power radiated by lightning return strokes

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Guo, C.

    1983-01-01

    Estimates of the peak electromagnetic (EM) power radiated by return strokes have been made by integrating the Poynting vector of measured fields over an imaginary hemispherical surface that is centered on the lightning source, assuming that ground losses are negligible. Values of the peak EM power from first and subsequent strokes have means and standard deviations of 2 + or - 2 x 10 to the 10th and 3 + or - 4 x 10 to the 9th W, respectively. The average EM power that is radiated by subsequent strokes, at the time of the field peak, is about 2 orders of magnitude larger than the optical power that is radiated by these strokes in the wavelength interval from 0.4 to 1.1 micron; hence an upper limit to the radiative efficiency of a subsequent stroke is of the order of 1 percent or less at this time.

  14. The dielectric response to the magnetic field of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shouvik; Mukhopadhyay, Sourabh; Datta, Prasanta Kumar

    2017-04-01

    Light–matter interaction in transparent dielectrics is revisited, including the magnetic force on bound charges in the Lorentz oscillator model. The parameter ranges of incident radiation and the medium on which the magnetic field of the electromagnetic radiation will have a significant effect are traced using Floquet theory. The analysis reveals that the threshold intensity for a significant response of the magnetic field of the radiation at the second harmonic of the incident radiation can be reduced to {10}12 {{W}}{{cm}}-2 for off resonant and even lower for resonant interaction. This phenomenon has already been observed indirectly in experiments [1, 2]. Induced magnetizing current due to the magnetic force is shown to originate from a modified dielectric response, which may be useful in future magneto-optic devices, solar energy harvesting, and studying the ultrafast dynamics in doped dielectrics.

  15. [Emission of electromagnetic radiation from selected computer monitors].

    PubMed

    Zyss, T

    1995-01-01

    The emission of electromagnetic fields from computer monitors was analysed. The data were compared with the permissible exposure level. EM radiation of chromatic monitors is higher than that of monochromatic ones. The radiation of magnetic fraction is insignificant. Both electric and magnetic fractions of EM radiation, 50 cm away from the monitor, are very low and do not exceed permissible values. It was observed that screen filters were effective in suppressing EM emission only at a short (up to 30 cm) distance from the monitor. At a distance of 50 cm they proved to be ineffective. Metallic-net filters were more effective than glass filters in suppressing EM radiation. It seems that EM fields generated by computer monitors are not harmful to computer operators if the distance is kept in safe limits.

  16. Spontaneous emission of electromagnetic radiation in turbulent plasmas

    SciTech Connect

    Ziebell, L. F.; Yoon, P. H.; Simões, F. J. R.; Pavan, J.; Gaelzer, R.

    2014-01-15

    Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.

  17. A fast and compact electromagnetic calorimeter for the PANDA detector at FAIR

    SciTech Connect

    Wilms, Andrea

    2005-10-26

    In this presentation we report on the electromagnetic calorimeter of the 4{pi} detector PANDA to be installed at the antiproton storage ring of the proposed Facility for Antiproton and Ion Research (FAIR). We present details of the R and D work with two scintillator materials, PbWO4 (PWO) and BGO, and the new developed large area avalanche photodiodes (LAAPDs) as detector readout.

  18. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... from the specification packaging in this subchapter and, except when transported by air, from labeling... with a burst pressure of not less than three times the design pressure if the radiation detector...

  19. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... from the specification packaging in this subchapter and, except when transported by air, from labeling... with a burst pressure of not less than three times the design pressure if the radiation detector...

  20. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... from the specification packaging in this subchapter and, except when transported by air, from labeling... with a burst pressure of not less than three times the design pressure if the radiation detector...

  1. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... from the specification packaging in this subchapter and, except when transported by air, from labeling... with a burst pressure of not less than three times the design pressure if the radiation detector...

  2. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... from the specification packaging in this subchapter and, except when transported by air, from labeling... with a burst pressure of not less than three times the design pressure if the radiation detector...

  3. Electromagnetic radiation generated by arcing in low density plasma

    NASA Technical Reports Server (NTRS)

    Vayner, Boris V.; Ferguson, Dale C.; Snyder, David B.; Doreswamy, C. V.

    1996-01-01

    An unavoidable step in the process of space exploration is to use high-power, very large spacecraft launched into Earth orbit. Obviously, the spacecraft will need powerful energy sources. Previous experience has shown that electrical discharges occur on the surfaces of a high-voltage array, and these discharges (arcs) are undesirable in many respects. Moreover, any high voltage conductor will interact with the surrounding plasma, and that interaction may result in electrical discharges between the conductor and plasma (or between two conductors with different potentials, for example, during docking and extravehicular activity). One very important aspect is the generation of electromagnetic radiation by arcing. To prevent the negative influence of electromagnetic noise on the operation of spacecraft systems, it seems necessary to determine the spectra and absolute levels of the radiation, and to determine limitations on the solar array bias voltage that depend on the parameters of LEO plasma and the technical requirements of the spacecraft equipment. This report describes the results of an experimental study and computer simulation of the electromagnetic radiation generated by arcing on spacecraft surfaces. A large set of high quality data was obtained during the Solar Array Module Plasma Interaction Experiment (SAMPIE, flight STS-62) and ground test. These data include the amplitudes of current, pulse forms, duration of each arc, and spectra of plasma waves. A theoretical explanation of the observed features is presented in this report too. The elaborated model allows us to determine the parameters of the electromagnetic noise for different frequency ranges, distances from the arcing site, and distinct kinds of plasma waves.

  4. [Influence of electromagnetic radiation on toxicity of Vipera lebetina obtusa venom].

    PubMed

    Abiev, G A; Babaev, E I; Topchieva, Sh A; Chumburidze, T B; Nemsitsveridze, N G

    2009-11-01

    The aim of the article was to study the effect of electromagnetic radiation on toxicity of Vipera lebetina obtusa venom. It was found that mice intoxicated with snake venom, with moderate to high exposure to electromagnetic radiation and mice intoxicated with venom, which had not been exposed to the radiation showed the same symptoms of intoxication and death. At the same time, the longevity of mice intoxicated with venom exposed to electromagnetic radiation was higher. The longevity of mice in control group was 25+/-5 min. The longevity of mice intoxicated with exposed to electromagnetic radiation snake venom was from 29 to 60 min. The research showed that the longevity of mice intoxicated with snake venom rose with the level of electromagnetic radiation intensity the snake was exposed to. Accordingly, snake venom, with exposure to high intensity electromagnetic radiation is less toxic.

  5. Diamond radiation detectors I. Detector properties for IIa diamond

    SciTech Connect

    Kania, D.R.

    1997-05-16

    The detector properties and carrier dynamics of type IIa diamonds are reasonably well understood. The trends in the electron and hole mobilities have been characterized as a function of temperature, impurity content, electric field and carrier density. The carrier lifetimes are coupled through the nitrogen impurity. This leaves us with typical samples with collection distances of 20 to 50 micrometers. The detailed dynamics of the carriers can be modeled using a rate equation analysis. Much progress has been made in understanding the detector properties of diamond, but continued progress has been limited by the geologic processes used to make the material, for example sample size and no synthesis control. CVD diamond promises to eliminate these restrictions.

  6. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J. J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J. P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J. P.; Schüssler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, T.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-05-01

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  7. GSM base station electromagnetic radiation and oxidative stress in rats.

    PubMed

    Yurekli, Ali Ihsan; Ozkan, Mehmed; Kalkan, Tunaya; Saybasili, Hale; Tuncel, Handan; Atukeren, Pinar; Gumustas, Koray; Seker, Selim

    2006-01-01

    The ever increasing use of cellular phones and the increasing number of associated base stations are becoming a widespread source of nonionizing electromagnetic radiation. Some biological effects are likely to occur even at low-level EM fields. In this study, a gigahertz transverse electromagnetic (GTEM) cell was used as an exposure environment for plane wave conditions of far-field free space EM field propagation at the GSM base transceiver station (BTS) frequency of 945 MHz, and effects on oxidative stress in rats were investigated. When EM fields at a power density of 3.67 W/m2 (specific absorption rate = 11.3 mW/kg), which is well below current exposure limits, were applied, MDA (malondialdehyde) level was found to increase and GSH (reduced glutathione) concentration was found to decrease significantly (p < 0.0001). Additionally, there was a less significant (p = 0.0190) increase in SOD (superoxide dismutase) activity under EM exposure.

  8. Purely radiating and nonradiating scalar, electromagnetic and weak gravitational sources

    NASA Astrophysics Data System (ADS)

    Marengo, Edwin A.; Ziolkowski, Richard W.

    2000-03-01

    It has been known for some time that localized sources to the scalar wave equation and Maxwell's equations exist which do not radiate. Such sources, referred to as non-radiating (NR) sources, generate vanishing fields outside their spatial support which prevents them from interacting with nearby objects by means of their fields. Work on NR sources dates back to Sommerfeld, Herglotz, Hertz, Ehrenfest and Schott who studied these objects in connection with electron and atom models. NR sources have also appeared extensively in inverse source/scattering theories as members of the null space of the source-to-field mapping. In this presentation, we provide a new description of scalar, vector or tensor NR sources and of a complementary class of sources, namely, sources that lack a NR part, i.e., `purely radiating' sources. We show that the class of square-integrable localized purely radiating scalar, electromagnetic or weak gravitational sources is exactly the class of solutions - within the source's support - of the homogeneous form of the associated partial differential equation relating the sources to their fields, i.e., purely radiating sources are themselves fields. As a consequence of this result, NR sources are shown to be inseparable components of a broad class of physically relevant sources, thereby having a physical significance that transcends their use in wave-theoretic inversion models. Localized NR sources are characterized in connection with the concept of reciprocity as non-interactors. The role of NR sources in absorption of radiation and energy storage is addressed. The general theoretical results are illustrated with the aid of a one-dimensional (1D) electromagnetic example corresponding to a transmission line system (equivalently, a 1D plane wave system) with uniformly distributed sources/loads.

  9. Development of bulk GaAs room temperature radiation detectors

    SciTech Connect

    McGregor, D.S.; Knoll, G.F. . Dept. of Nuclear Engineering); Eisen, Y. . Soreq Nuclear Research Center); Brake, R. )

    1992-10-01

    This paper reports on GaAs, a wide band gap semiconductor with potential use as a room temperature radiation detector. Various configurations of Schottky diode detectors were fabricated with bulk crystals of liquid encapsulated Czochralski (LEC) semi-insulating undoped GaAs material. Basic detector construction utilized one Ti/Au Schottky contact and one Au/Ge/Ni alloyed ohmic contact. Pulsed X-ray analysis indicated pulse decay times dependent on bias voltage. Pulse height analysis disclosed non-uniform electric field distributions across the detectors tentatively explained as a consequence of native deep level donors (EL2) in the crystal.

  10. Proton-induced radiation damage in germanium detectors

    SciTech Connect

    Bruckner, J.; Korfer, M.; Wanke, H. , Mainz ); Schroeder, A.N.F. ); Figes, D.; Dragovitsch, P. ); Englert, P.A.J. ); Starr, R.; Trombka, J.I. . Goddard Space Flight Center); Taylor, I. ); Drake, D.M.; Shunk, E.R. )

    1991-04-01

    High-purity germanium (HPGe) detectors will be used in future space missions for gamma-ray measurements and will be subject to interactions with energetic particles. To simulate this process several large-volume n-type HPGe detectors were incrementally exposed to a particle fluence of up to 10{sub 8} protons cm{sup {minus}2} (proton energy: 1.5 GeV) at different operating temperatures (90 to 120 K) to induce radiation damage. Basic scientific as well as engineering data on detector performance were collected. During the incremental irradiation, the peak shape produced by the detectors showed a significant change from a Gaussian shape to a broad complex structure. After the irradiation all detectors were thoroughly characterized by measuring many parameters. To remove the accumulated radiation damage the detectors were stepwise annealed at temperatures T {le} 110{degrees}C while staying specially designed cryostats. This paper shows that n-type HPGe detectors can be used in charged particles environments as high-energy resolution devices until a certain level of radiation damage is accumulated and that the damage can be removed at moderate annealing temperatures and the detector returned to operating condition.

  11. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  12. Sky Localization and Electromagnetic Follow-up with Third-Generation Detectors

    NASA Astrophysics Data System (ADS)

    Anand, Shreya; Singer, Leo; Miller, Cole

    2017-01-01

    We present a preliminary investigation of the potential of third-generation gravitational-wave (GW) detectors for multi-messenger astronomy, from the standpoint of electromagnetic follow-up and identification of host galaxies. Using approximate sky localization inferred from GW observations, we intend to plan their electromagnetic follow-up in order to pinpoint the host galaxies. This involves simulating GW data, matching it with electromagnetic observations, and converting it into a sky-map used to chart locations of host galaxies of known sources. We aim to understand whether there are identifiable trends for host galaxies of transients in order to address whether a strategy that focuses on individual host galaxies is more optimal than one that locates them based on a statistical trend. Our project also concerns the configuration and calibration of a next generation detector network. Questions we focus on include: at what redshift will sky localization accuracy be limited by detector calibration? Using different combinations of detectors, what sky localization can be achieved? Our research motivates why third generation GW detector networks are crucial in enhancing signals detected and in providing insight into the sources and their physical environments. University of Maryland-College Park.

  13. Nuclear radiation-warning detector that measures impedance

    DOEpatents

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  14. Scattering of electromagnetic radiation by a metal nanoparticle

    NASA Astrophysics Data System (ADS)

    Kuznetsova, I. A.; Lebedev, M. E.; Yushkanov, A. A.

    2014-04-01

    The scattering cross section of electromagnetic radiation by a small spherical metal particle has been calculated in the framework of the standard kinetic theory in a dipole approximation. The calculation has been performed for relatively small (˜10 nm) particles, which allows the skin effect to be ignored. A mechanism of mixed specular-diffuse reflection of conduction electrons from the particle surface is considered. It is established that, at certain angles of scattering, the mechanism of magnetic-dipole scattering becomes dominating. The influence of kinetic effects on the differential scattering cross section is analyzed.

  15. Detection of electromagnetic radiation using micromechanical multiple quantum wells structures

    DOEpatents

    Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN

    2007-07-17

    An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.

  16. Recent progress in the development of transition radiation detectors

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Hartmann, G.; Prince, T.; Mueller, D.

    1978-01-01

    Transition-radiation detectors have been used in several recent cosmic-ray experiments for particle identification at energies E/mc-squared of at least about 1000. In order to optimize the design of such detectors and to use them for energy measurements over a broad energy range, it is necessary to study the details of the transition-radiation process. Experimental results are presented which test the theoretical predictions more precisely and at higher energies than in previous experiments. The dependence of the interference pattern in the frequency spectrum on the radiator dimensions is studied, and the total transition-radiation yield generated by electrons in various radiators is measured over a very wide energy range, from 5 to 300 GeV. The significance of the individual experimental parameters in the design of transition radiation detectors is reviewed, and the characteristics of transition-radiation detectors capable of measuring particle energies over the range E/mc-squared from about 300 to 100,000 are discussed.

  17. Incident position detector for radiation beam

    SciTech Connect

    Koumura, N.; Niwa, Y.; Ogino, Y.; Ohwada, M.; Tanaka, K.

    1983-05-17

    Disclosed is a device for detecting an incident position of radiation beam, particularly, its center or center of gravity. The detecting device is provided with a scanning type radiation beam sensing device having a plurality of radiation sensing elements in a linear arrangement, and the sensing device is disposed in such a manner that its radiation receiving surface may be substantially coincided with an incident surface of the radiation beam to be detected. When reading an output from the sensing device, the time sequential output signals from the sensing device are split into predetermined sections, and the signal quantities among the sections are compared. In this way, the position of the center or the center of gravity of the radiation beam on the incident surface is detected with the position corresponding to a split point of the signals as the reference.

  18. Modernization of radiation detectors thickness gauge

    NASA Astrophysics Data System (ADS)

    Artemyev, I. B.; Artemiev, B. V.; Vladimirov, Yu L.; Vladimirov, L. V.

    2017-02-01

    Currently, there is a tendency in the industry by refusing isotopic radiation sources in favor of the X-ray machines. This is due to several factors, main among them radiation safety and maintenance problems, movement and disposal of gamma-ray sources. Compared to the gamma ray-source these devices have a number of disadvantages. The spectral energy distribution and therefore change in the spectrum as the radiation passes through the controlled material. Instability of radiation compared with gamma sources. All this complicates the use of X-ray sources for the materials thickness measurement with different chemical compositions.

  19. Use of a superconductive gradiometer in an ultrasensitive electromagnetic metal detector

    SciTech Connect

    Czipott, P.V.; Podney, W.N.

    1989-03-01

    The authors present a new instrument that we call an electromagnetic gradiometer. It uses a SQUID sensor as the receiver in an active, electromagnetic detector of nonferrous as well as ferrous objects. The gradiometer pickup loops sit in the center of magnet coils that generate a time-varying magnetic field inducing eddy currents in conductive bodies. The gradiometer measures the secondary magnetic field of the eddy currents. The SQUID's sensitivity at frequencies below 1 kHz makes electromagnetic metal detectors practical in the marine environment, where the electrical conductivity of seawater precludes conventional systems. The authors describe a prototype system that attains a detection range of 10 m in seawater for targets 50 cm in diameter. It operates at frequencies from 1 Hz to a few hundred Hz. Uses of the electromagnetic gradiometer include locating naval mines and undersea treasure. The system's response to seawater enables application to airborne electromagnetic bathymetry. On land, its sensitivity to crustal conductivity contrasts suits it to mineral exploration.

  20. Electromagnetic radiation from a kicked sheet of charge

    NASA Astrophysics Data System (ADS)

    Peters, P. C.

    1986-03-01

    The plane-wave electromagnetic fields for a kicked sheet of charge are found and then compared with the fields obtained by superimposing the radiation fields of the individual charges in the plane. Unlike the case of the oscillating sheet of charge discussed in The Feynman Lectures on Physics, Vol. I [R. P. Feynman et al. (Addison-Wesley, Reading, MA, 1963)], the plane-wave fields of the kicked sheet differ from the fields obtained by superposition of the individual radiation fields. The resolution of this problem requires consideration of relativistic effects even though the velocity of the sheet after the kick may be as small as desired. The relation between the solution for the kicked sheet and solution for the oscillating sheet is discussed, and it is shown how the two solutions are consistent if all contributions to the fields are taken into account.

  1. Geometrical Effects on the Electromagnetic Radiation from Lightning Return Strokes

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; Smith, D. A.; LeVine, D. M.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    The morphological difference between the electromagnetic radiation-field waveforms of "first" and "subsequent" return strokes in cloud-to-ground lightning flashes is well known and can be used to identify the formation of new channels to ground. This difference is generally believed due to the existence of branches on first-stroke channels, whereas subsequent strokes re-illuminate only the main channel of a previous stroke; but experimental evidence for this hypothesis is relatively weak. It has been argued for the influence of channel geometry on the fine structure of radiation from subsequent return strokes by comparing the field-change waveforms recorded at the same station from strokes within the same flash and between different flashes of both natural and triggered lightning. The present paper introduces new evidence for both of these hypotheses from a comparison of waveforms between sensors in different directions from the same stroke.

  2. The HERMES dual-radiator ring imaging Cherenkov detector

    NASA Astrophysics Data System (ADS)

    Akopov, N.; Aschenauer, E. C.; Bailey, K.; Bernreuther, S.; Bianchi, N.; Capitani, G. P.; Carter, P.; Cisbani, E.; De Leo, R.; De Sanctis, E.; De Schepper, D.; Djordjadze, V.; Filippone, B. W.; Frullani, S.; Garibaldi, F.; Hansen, J.-O.; Hommez, B.; Iodice, M.; Jackson, H. E.; Jung, P.; Kaiser, R.; Kanesaka, J.; Kowalczyk, R.; Lagamba, L.; Maas, A.; Muccifora, V.; Nappi, E.; Negodaeva, K.; Nowak, W.-D.; O'Connor, T.; O'Neill, T. G.; Potterveld, D. H.; Ryckbosch, D.; Sakemi, Y.; Sato, F.; Schwind, A.; Shibata, T.-A.; Suetsugu, K.; Thomas, E.; Tytgat, M.; Urciuoli, G. M.; Van de Kerckhove, K.; Van de Vyver, R.; Yoneyama, S.; Zohrabian, H.; Zhang, L. F.

    2002-03-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C 4F 10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  3. Radiation hardness of three-dimensional polycrystalline diamond detectors

    SciTech Connect

    Lagomarsino, Stefano Sciortino, Silvio; Bellini, Marco; Corsi, Chiara; Cindro, Vladimir; Kanxheri, Keida; Servoli, Leonello; Morozzi, Arianna; Passeri, Daniele; Schmidt, Christian J.

    2015-05-11

    The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.

  4. Three-axis asymmetric radiation detector system

    DOEpatents

    Martini, Mario Pierangelo; Gedcke, Dale A.; Raudorf, Thomas W.; Sangsingkeow, Pat

    2000-01-01

    A three-axis radiation detection system whose inner and outer electrodes are shaped and positioned so that the shortest path between any point on the inner electrode and the outer electrode is a different length whereby the rise time of a pulse derived from a detected radiation event can uniquely define the azimuthal and radial position of that event, and the outer electrode is divided into a plurality of segments in the longitudinal axial direction for locating the axial location of a radiation detection event occurring in the diode.

  5. Design of compact electromagnetic impulse radiating antenna for melanoma treatment.

    PubMed

    Arockiasamy, Petrishia; Mohan, Sasikala

    2016-01-01

    Cancer therapy is one of the several new applications which use nanosecond and subnanosecond high voltage pulses. New treatment based on electromagnetic (EM) fields have been developed as non-surgical and minimally invasive treatments of tumors. In particular, subnanosecond pulses can introduce important non-thermal changes in cell biology, especially the permeabilization of the cell membrane. The motivation behind this work is to launch intense subnanosecond pulses to the target (tumors) non-invasively. This works focuses on the design of a compact intense pulsed EM radiating antenna. In tense EM waves radiated at the first focal point of the Prolate Spheroidal Reflector (PSR) are focused at the second focal point where the target (tumor) is present. Two antennas with PSR but fed with different compact wave radiator are designed to focus pulsed field at the second focal point. The PSR with modified bicone antenna feed and PSR with elliptically tapered horn antenna feed are designed. The design parameters and radiation performance are discussed.

  6. Low dose radiation damage effects in silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  7. Radiation detectors as surveillance monitors for IAEA safeguards

    SciTech Connect

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development.

  8. R&D for Better Nuclear Security: Radiation Detector Materials

    SciTech Connect

    Kammeraad, J E

    2009-04-02

    I am going to talk about the need for better materials for radiation detectors. I believe that government investment in this area can enable transformational technology change that could impact domestic nuclear security and also national nuclear security in some very positive and powerful ways. I'm not going to give you a lecture on how radiation detectors work, but I am going to tell you a bit about today's off-the-shelf technology and why it is not sufficient, what we need, and what security benefit you could get from improvements. I think we're at a critical point in time for some very impactful investments. In particular I'm going to focus on the use of gamma-ray radiation detectors at ports of entry. Not long before DHS was formed, Congress decreed that counter measures against the delivery of radiological and nuclear threats would be put in place at US ports of entry, under the authority of US Customs (later Customs and Border Protection in DHS). This included the screening of all cars and trucks passing through a port of entry. Existing off-the-shelf radiation detectors had to be selected for this purpose. Plans were made to make the most of the available technologies, but there are some inherent limitations of these detectors, plus the operational setting can bring out other limitations.

  9. Risks of carcinogenesis from electromagnetic radiation of mobile telephony devices.

    PubMed

    Yakymenko, I; Sidorik, E

    2010-07-01

    Intensive implementation of mobile telephony technology in everyday human life during last two decades has given a possibility for epidemiological estimation of long-term effects of chronic exposure of human organism to low-intensive microwave (MW) radiation. Latest epidemiological data reveal a significant increase in risk of development of some types of tumors in chronic (over 10 years) users of mobile phone. It was detected a significant increase in incidence of brain tumors (glioma, acoustic neuroma, meningioma), parotid gland tumor, seminoma in long-term users of mobile phone, especially in cases of ipsilateral use (case-control odds ratios from 1.3 up to 6.1). Two epidemiological studies have indicated a significant increase of cancer incidence in people living close to the mobile telephony base station as compared with the population from distant area. These data raise a question of adequacy of modern safety limits of electromagnetic radiation (EMR) exposure for humans. For today the limits were based solely on the conception of thermal mechanism of biological effects of RF/MW radiation. Meantime the latest experimental data indicate the significant metabolic changes in living cell under the low-intensive (non-thermal) EMR exposure. Among reproducible biological effects of low-intensive MWs are reactive oxygen species overproduction, heat shock proteins expression, DNA damages, apoptosis. The lack of generally accepted mechanism of biological effects of low-intensive non-ionizing radiation doesn't permit to disregard the obvious epidemiological and experimental data of its biological activity. Practical steps must be done for reasonable limitation of excessive EMR exposure, along with the implementation of new safety limits of mobile telephony devices radiation, and new technological decisions, which would take out the source of radiation from human brain.

  10. Effect of temperature on silicon PIN photodiode radiation detectors

    NASA Astrophysics Data System (ADS)

    Kim, Han Soo; Jeong, Manhee; Kim, Young Soo; Ha, Jang Ho; Cho, Seong Yeon

    2014-03-01

    One of the noise sources of a semiconductor radiation detector is thermal noise, which degrades the performance, such as the energy resolution and unexpected random pulse signals. In this study, PIN photodiode radiation detectors, with different active areas were designed and fabricated for an experimental comparison of the energy resolutions for different temperatures and capacitances by using a Ba-133 calibration gamma-ray source. The experimental temperature was approximately in the range from -7 to 24 °C and was controlled by using a peltier device. The design considerations and the electrical characteristics, such as the I-V and the C-V characteristics, are also addressed.

  11. [Recent data from the literature on the biological and pathologic effects of electromagnetic radiation, radio waves and stray currents].

    PubMed

    Orbach-Arbouys, S; Abgrall, S; Bravo-Cuellar, A

    1999-12-01

    Electromagnetic radiation is present in increasing amounts in our environment, and its potential effects on human (and animal) health has been investigated. It remains unclear whether the risk of acute childhood leukemia is associated with cumulative exposure to magnetic fields. An association with brain cancer and colon cancer has been suggested in electrical company workers. The radars used by police departments may increase the incidence of cancer. Electromagnetic radiation may play a role in a number of disorders such as depression and memory loss. It has been established that cell phones interfere with pacemakers only if direct contact occurs and have no effect if held in their normal position. Interferences have been reported between pacemakers and shop-lifting detectors.

  12. Scattering of Electromagnetic Radiation by Apertures: II. Oblique Incidence on the Slotted Plane for Parallel Polarization,

    DTIC Science & Technology

    The report is the second in a series of investigations into the diffraction of electromagnetic radiation by apertures in conducting screens. Herein...is presented a technique for obtaining the fields everywhere for plane electromagnetic radiation incident obliquely on a slotted conducting plane. The

  13. Computational Electromagnetic Studies for Low-Frequency Compensation of the Reflector Impulse-radiating Antenna

    DTIC Science & Technology

    2015-03-26

    COMPUTATIONAL ELECTROMAGNETIC STUDIES FOR LOW-FREQUENCY COMPENSATION OF THE REFLECTOR IMPULSE-RADIATING ANTENNA THESIS Casey E. Fillmore, Capt, USAF... ELECTROMAGNETIC STUDIES FOR LOW-FREQUENCY COMPENSATION OF THE REFLECTOR IMPULSE-RADIATING ANTENNA THESIS Presented to the Faculty Department of Electrical and...2015 DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-011 COMPUTATIONAL ELECTROMAGNETIC STUDIES FOR LOW

  14. Semiconductor radiation detector with internal gain

    DOEpatents

    Iwanczyk, Jan; Patt, Bradley E.; Vilkelis, Gintas

    2003-04-01

    An avalanche drift photodetector (ADP) incorporates extremely low capacitance of a silicon drift photodetector (SDP) and internal gain that mitigates the surface leakage current noise of an avalanche photodetector (APD). The ADP can be coupled with scintillators such as CsI(Tl), NaI(Tl), LSO or others to form large volume scintillation type gamma ray detectors for gamma ray spectroscopy, photon counting, gamma ray counting, etc. Arrays of the ADPs can be used to replace the photomultiplier tubes (PMTs) used in conjunction with scintillation crystals in conventional gamma cameras for nuclear medical imaging.

  15. Thermal electromagnetic radiation in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Rapp, R.; van Hees, H.

    2016-08-01

    We review the potential of precise measurements of electromagnetic probes in relativistic heavy-ion collisions for the theoretical understanding of strongly interacting matter. The penetrating nature of photons and dileptons implies that they can carry undistorted information about the hot and dense regions of the fireballs formed in these reactions and thus provide a unique opportunity to measure the electromagnetic spectral function of QCD matter as a function of both invariant mass and momentum. In particular we report on recent progress on how the medium modifications of the (dominant) isovector part of the vector current correlator ( ρ channel) can shed light on the mechanism of chiral symmetry restoration in the hot and/or dense environment. In addition, thermal dilepton radiation enables novel access to a) the fireball lifetime through the dilepton yield in the low invariant-mass window 0.3 GeV ≤ M ≤ 0.7 GeV, and b) the early temperatures of the fireball through the slope of the invariant-mass spectrum in the intermediate-mass region (1.5 GeV < M < 2.5 GeV). The investigation of the pertinent excitation function suggests that the beam energies provided by the NICA and FAIR projects are in a promising range for a potential discovery of the onset of a first-order phase transition, as signaled by a non-monotonous behavior of both low-mass yields and temperature slopes.

  16. Radiation hardness study of Silicon Detectors for the CMS High Granularity Calorimeter (HGCAL)

    NASA Astrophysics Data System (ADS)

    Currás, E.; Mannelli, M.; Moll, M.; Nourbakhsh, S.; Steinbrueck, G.; Vila, I.

    2017-02-01

    The high luminosity LHC (HL-LHC or Phase-II) is expected to increase the instantaneous luminosity of the LHC by a factor of about five, delivering 0~25 fb ‑1 per year between 2025 and 2035. Under these conditions the performance degradation of detectors due to integrated radiation dose/fluence will need to be addressed. The CMS collaboration is planning to upgrade many detector components, including the forward calorimeters. The replacement for the existing endcap preshower, electromagnetic and hadronic calorimeters is called the High Granularity Calorimeter (HGCAL) and it will be realized as a sampling calorimeter, including 40 layers of silicon detectors totalling 600 m2. The sensors will be realized as pad detectors with cell size between 0.5 and 1.0 cm2 and an active thickness between 100 μm and 300 μm depending on their location in the endcaps. The thinner sensors will be used in the highest radiation environment. For an integrated luminosity of 3000 fb ‑1, the electromagnetic calorimeter will have to sustain a maximum integrated dose of 1.5 MGy and neutron fluences of 1.0×1016 neq/cm2. A tolerance study after neutron irradiation of 300 μm, 200 μm, 100 μm and 50 μm n-on-p and p-on-n silicon pads irradiated to fluences up to 1.6×1016 neq/cm2 is presented. The main properties of these diodes have been studied before and after irradiation: leakage current, capacitance, charge collection efficiency with laser and sensitivity to minimum ionizing particles with radioactive source (90Sr). The results show a good performance even after the most extreme irradiation.

  17. A metasurface for conversion of electromagnetic radiation to DC

    NASA Astrophysics Data System (ADS)

    El Badawe, Mohamed; Almoneef, Thamer S.; Ramahi, Omar M.

    2017-03-01

    We present a metasurface electromagnetic energy harvester based on electrically small resonators. An array of 8 × 8 cross resonators was designed to operate at 3GHz. Unlike earlier designs of metasurface harvesters where each resonator was connected to a single rectifier or load, in this work the received power by all resonators is channeled to a single rectifier which in turn channels the DC energy to a single 50 Ω resistive load. The critical advantage of the proposed structure is maximizing power density per diode which maximizes the diode turn-on time. We show through simulation and measurements that the proposed metasurface harvester provides Radiation to DC conversion efficiency of more than 40%.

  18. Electromagnetic radiation trapped in the magnetosphere above the plasma frequency

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Shaw, R. R.

    1973-01-01

    An electromagnetic noise band is frequently observed in the outer magnetosphere by the Imp 6 spacecraft at frequencies from about 5 to 20 kHz. This noise band generally extends throughout the region from near the plasmapause boundary to near the magnetopause boundary. The noise typically has a broadband field strength of about 5 microvolts/meter. The noise band often has a sharp lower cutoff frequency at about 5 to 10 kHz, and this cutoff has been identified as the local electron plasma frequency. Since the plasma frequency in the plasmasphere and solar wind is usually above 20 kHz, it is concluded that this noise must be trapped in the low-density region between the plasmapause and magnetopause boundaries. The noise bands often contain a harmonic frequency structure which suggests that the radiation is associated with harmonics of the electron cyclotron frequency.

  19. Research on radiation detectors, boiling transients, and organic lubricants

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The accomplishments of a space projects research facility are presented. The subjects discussed are: (1) a study of radiation resistant semiconductor devices, (2) synthesis of high temperature organic lubricants, (3) departure from phase equilibrium during boiling transients, (4) effects of neutron irradiation on defect state in tungsten, and (5) determination of photon response function of NE-213 liquid scintillation detectors.

  20. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  1. Mercuric iodide single crystals for nuclear radiation detectors

    SciTech Connect

    Li, W.; Li, Z.; Zhu, S.; Yin, S.; Zhao, B.; Chen, G.; Yin, S.; Yuan, H.; Xu, H.

    1996-06-01

    Large size HgI{sub 2} single crystals were grown using the Modified Temperature Oscillation Method (MTOM) with low dislocation densities in a relatively stable temperature environment. Radiation detectors were fabricated from the single crystals which showed good energy resolution with small polarization. Applications have been found in geological explorations, marine mineral analysis, environment pollution monitoring, industrial material quality assurance, and space explorations.

  2. Evaluation of a digital optical ionizing radiation particle track detector

    SciTech Connect

    Hunter, S.R.

    1987-06-01

    An ionizing radiation particle track detector is outlined which can, in principle, determine the three-dimensional spatial distribution of all the secondary electrons produced by the passage of ionizing radiation through a low-pressure (0.1 to 10 kPa) gas. The electrons in the particle track are excited by the presence of a high-frequency AC electric field, and two digital cameras image the optical radiation produced in electronic excitation collisions of the surroundings gas by the electrons. The specific requirements of the detector for neutron dosimetry and microdosimetry are outlined (i.e., operating conditions of the digital cameras, high voltage fields, gas mixtures, etc.) along with an estimate of the resolution and sensitivity achievable with this technique. The proposed detector is shown to compare favorable with other methods for obtaining the details of the track structure, particularly in the quality of the information obtainable about the particle track and the comparative simplicity and adaptability of the detector for measuring the secondary electron track structure for many forms of ionizing radiation over a wide range of energies.

  3. On Linsley Effect and Electromagnetic Radiation from Large EAS

    NASA Astrophysics Data System (ADS)

    Deb, Manab Jyoti

    The aim of the present work was to study the following aspects of EAS : i) Detection and determination of air showers parameters by measuring the particle densities. ii) Measurement of inclination of shower axis by recording arrival time distribution of shower front particles. iii) Measurement of FWHM of pulses photographed and study of Linsley effect. iv) Characteristics of Cherenkov radiation from air showers. v) Characteristics of low frequency (120 KHz) radio signal from showers. The experiments based on the above investigations were carried out at the Cosmic Ray Research Laboratory, Gauhati University, India, since September 91 to March, 1994. Electromagnetic radiation both optical Cherenkov radiation and radio frequency (120 KHz) as well as pulses associated with extensive air showers (EAS) of energy ranging from 1.5 X 1015ev to 2.1 X 10 18ev and zenith angles 15° < 0 < 60° were selected for the present analysis. The lateral distribution of Cherenkov pulses were assumed to have an exponential form fitted with an exponential law with an exponent reflecting the depth of shower maxima (Xm). The variation of rise time (FWHM) with core distance (R) was studied from pulses photographed. The high field associated with low frequency radio signal (120KHz) and its variation with primary energy (Ep), core distance and zenith angle (0) were observed. The thesis consists of the following five chapters: 1. INTRODUCTION - This chapter contains a brief history of cosmic rays, its composition, development of EAS, emission of electromagnetic radiation from EAS, a brief introduction to the present work including review of the earlier works and aim of the experiment. 2. THEORY - This chapter mainly reviews the theories and numerical calculations. 3. EXPERIMENTAL SET-UP - This chapter describes in detail the instrumentation developed, working principle, calibration etc. 4. DATA COLLECTION AND ANALYSIS - This chapter includes data collection, selection of data for required

  4. Two-dimensional position sensitive radiation detectors

    DOEpatents

    Mihalczo, J.T.

    1994-02-22

    Nuclear reaction detectors capable of position sensitivity with submillimeter resolution in two dimensions are each provided by placing arrays of scintillation or wavelength shifting optical fibers formed of a plurality of such optical fibers in a side-by-side relationship in X and Y directions with a layer of nuclear reactive material operatively associated with surface regions of the optical fiber arrays. Each nuclear reaction occurring in the layer of nuclear reactive material produces energetic particles for simultaneously providing a light pulse in a single optical fiber in the X oriented array and in a single optical fiber in the Y oriented array. These pulses of light are transmitted to a signal producing circuit for providing signals indicative of the X-Y coordinates of each nuclear event. 6 figures.

  5. Two-dimensional position sensitive radiation detectors

    DOEpatents

    Mihalczo, John T.

    1994-01-01

    Nuclear reaction detectors capable of position sensitivity with submillimeter resolution in two dimensions are each provided by placing arrays of scintillation or wave length shifting optical fibers formed of a plurality of such optical fibers in a side-by-side relationship in X and Y directions with a layer of nuclear reactive material operatively associated with surface regions of the optical fiber arrays. Each nuclear reaction occurring in the layer of nuclear reactive material produces energetic particles for simultaneously providing a light pulse in a single optical fiber in the X oriented array and in a single optical fiber in the Y oriented array. These pulses of light are transmitted to a signal producing circuit for providing signals indicative of the X-Y coordinates of each nuclear event.

  6. [Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].

    PubMed

    Yuan, Jun; Xiao, Dongping; Jian, Xin

    2010-11-01

    The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.

  7. Study on the performance of electromagnetic particle detectors of LHAASO-KM2A

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongquan; Hou, Chao; Cao, Zhen; Chang, Jingfan; Feng, Cunfeng; Hanapia, Erlan; Gong, Guanghua; Liu, Jia; Lv, Hongkui; Sheng, Xiangdong; Zhang, Shaoru; Zhu, Chengguang

    2017-02-01

    The electromagnetic particle detectors (EDs) for one square kilometer detector array (KM2A) of large high altitude air shower observation (LHAASO) are designed to measure the densities and arrival times of secondary particles in extensive air showers (EASs). ED is a type of plastic scintillator detector with an active area of 1 m2. This study investigates the design and performance of prototype ED. Approximately 20 photoelectrons are collected by the 1st dynode of a photomultiplier tube (PMT). The prototype ED exhibited good detection efficiency and time resolution. The detection for the wide dynamic particle density varying from 1 to 10 000 particles/m2 is realized with the design of the PMT divider for the readout of both the anode and 6th dynode.

  8. Electromagnetic induction detector for capillary electrophoresis and its application in pharmaceutical analysis.

    PubMed

    Yang, Xiu-Juan; Chen, Zuan-Guang; Liu, Cui; Li, Ou-Lian

    2010-10-15

    A new electromagnetic induction detector for capillary electrophoresis and its application are described. The detector is consisted of an inductor, a resistor, a high-frequency signal generator and a high-frequency millivoltmeter. The conditions affecting the response of the detector, including dimension of the magnetic ring, position of the capillary, number of coil turns, frequency, excitation voltage and value of the resistor were examined and optimized. The feasibility of the proposed detector was evaluated by detection of inorganic ions and separation of amino aids. Its quantification applicability was investigated by determination of aspirin and paracetamol in pharmaceutical preparation (Akafen powder). The primary factors affecting separation efficiency, which include variety of buffer, buffer concentration, injection time and injection height and separation voltage, were researched. Experimental results demonstrated that this new detector showed a well-defined correlation between sample concentrations and responses (r=0.997-0.999), with detection limits of 30 μmol L(-1) for aspirin and 10 μmol L(-1) for paracetamol, as well as good reproducibility and stability. Compared with currently available detection techniques, this new detector has several advantages, such as simple construction, no complicated elements, ease of assembly and operation, and potential for universal applications. It can be an alternative to the traditional methods in the quality control of the pharmaceutical preparations.

  9. Multi-directional radiation detector using photographic film

    NASA Astrophysics Data System (ADS)

    Junet, L. K.; Majid, Z. A. Abdul; Sapuan, A. H.; Sayed, I. S.; Pauzi, N. F.

    2014-11-01

    Ionising radiation has always been part of our surrounding and people are continuously exposed to it. Ionising radiation is harmful to human health, thus it is vital to monitor the radiation. To monitor radiation, there are three main points that should be observed cautiously, which are energy, quantity, and direction of the radiation sources. A three dimensional (3D) dosimeter is an example of a radiation detector that provide these three main points. This dosimeter is able to record the radiation dose distribution in 3D. Applying the concept of dose detection distribution, study has been done to design a multi-directional radiation detector of different filter thicknesses. This is obtained by designing a cylinder shaped aluminum filter with several layers of different thickness. Black and white photographic material is used as a radiation-sensitive material and a PVC material has been used as the enclosure. The device is then exposed to a radiation source with different exposure factors. For exposure factor 70 kVp, 16 mAs; the results have shown that optical density (OD) value at 135° is 1.86 higher compared with an OD value at 315° which is 0.71 as the 135° area received more radiation compare to 315° region. Furthermore, with an evidence of different angle of film give different value of OD shows that this device has a multidirectional ability. Materials used to develop this device are widely available in the market, thus reducing the cost of development and making it suitable for commercialisation.

  10. Examination results of the Three Mile Island radiation detector HP-R-212

    SciTech Connect

    Mueller, G M

    1984-01-01

    Area radiation detector HP-R-212 was removed from the Three Mile Island containment building on November 13, 1981. The detector apparently started to fail during November 1979 and by the first part of December 1979 the detector readings had degraded from 1 R/h to 20 mR/h. This report discusses the cause of ailure, detector radiation measurement characteristics, and our estimates of the total gamma radiation dose received by the detector electronics.

  11. Radiation damage effects in Si materials and detectors and rad-hard Si detectors for SLHC

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2009-03-01

    Silicon sensors, widely used in high energy and nuclear physics experiments, suffer severe radiation damage that leads to degradations in sensor performance. These degradations include significant increases in leakage current, bulk resistivity, space charge concentration, and free carrier trapping. For LHC applications, where the total fluence is in the order of 1 × 1015 neq/cm2 for 10 years, the increase in space charge concentration has been the main problem since it can significantly increase the sensor full depletion voltage, causing either breakdown if operated at high biases or charge collection loss if operated at lower biases than full depletion. For LHC Upgrade, or the SLHC, however, whit an increased total fluence up to 1 × 1016 neq/cm2, the main limiting factor for Si detector operation is the severe trapping of free carriers by radiation-induced defect levels. Several new approaches have been developed to make Si detector more radiation hard/tolerant to such ultra-high radiation, including 3D Si detectors, Current-Injected-Diodes (CID) detectors, and Elevated temperature annealing.

  12. Interaction of Charged Particles with Ultra Strong Electromagnetic Waves in the Radiation Dominant Regime

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J.; Tajima, T.

    2004-10-01

    The plasma particle interaction with a relativistically intense electromagnetic wave under the conditions when the radiation reaction effects are dominant is considered. We analyze the radiation damping effects on the electron motion inside the circularly polarized planar wave and inside a subcycle crossed-field electromagnetic pulse. We consider the ion acceleration due to the radiation pressure action on a thin plasma slab. The results of 2D and 3D PIC simulations are presented.

  13. Device for detachably securing a collimator to a radiation detector

    SciTech Connect

    Hanz, G.J.; Jung, G.; Pflaum, M.

    1986-12-16

    A device is described for detachably securing a collimator to a radiation detector, comprising: (a) a first annular groove means secured to the radiation detector; (b) a second annular groove means secured to the collimator; (c) a split ring having a first and second ring ends, the ring being received in the first annular groove means; and (d) a ring diameter control system, including (d1) a first lever system having two ends; (d2) a second lever system having two ends; and (d3) a rotating hub being rotatably secured to the detector head; wherein the first lever system is rotatably mounted with one end linked to the first ring end and with the other end linked to the rotating hub. The second lever system is rotatably mounted with one end linked to the second ring end and with the other end linked to the rotating hub, such that rotation of the rotating hub moves the first and second lever systems in opposite directions thereby moving the first and second ring ends between a first position, in which the split ring is positioned only in the first annular groove means, and a second position, in which the split ring is located in both the first annular groove means and the second annular groove means, thus attaching the collimator to the radiation detector.

  14. Polarization of low-frequency electromagnetic radiation in the lobes of Jupiter's magnetotail

    NASA Technical Reports Server (NTRS)

    Moses, S. L.; Kennel, C. F.; Coroniti, F. V.; Scarf, F. L.; Kurth, W. S.

    1987-01-01

    The plasma wave instruments on the Voyager spacecraft have detected intense electromagnetic radiation within the lobes of Jupiter's magnetic tail down to the lowest frequency of the detector (10 Hz). During a yaw maneuver performed by Voyager 1 in the lobe of the Jovian magnetotail, a modulation appeared in the amplitudes of waves detected in the 10-, 17.8- and 31.1-Hz channels of the plasma wave analyzer, well below the local electron cyclotron frequency of 260 Hz. The lowest amplitudes occurred when the antenna axis was most nearly parallel to the magnetic field. Wave amplitudes in the 56.2-Hz and higher frequency channels remained nearly constant during the maneuver. From the cold-plasma theory of electromagnetic waves, it is concluded that the plasma frequency was between the 56.2- and 31.1-Hz channels where the parallel-polarized component of the spectrum cuts off. This implies a tail-lobe density between 0.000032 and 0.000015/cu cm. The left-hand cutoff frequency would then be below 10 Hz, consistent with either the Z-mode (L, X) or whistlers (R-mode) in the modulated channels.

  15. Diamond based detectors for high temperature, high radiation environments

    NASA Astrophysics Data System (ADS)

    Metcalfe, A.; Fern, G. R.; Hobson, P. R.; Smith, D. R.; Lefeuvre, G.; Saenger, R.

    2017-01-01

    Single crystal CVD diamond has many desirable properties as a radiation detector; exceptional radiation hardness and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry and transmission mode applications), wide bandgap (high temperature operation with low noise and solar blind), an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. This combination of radiation hardness, temperature tolerance and ability to detect mixed radiation types with a single sensor makes diamond particularly attractive as a detector material for harsh environments such as nuclear power station monitoring (fission and fusion) and oil well logging. Effective exploitation of these properties requires the development of a metallisation scheme to give contacts that remain stable over extended periods at elevated temperatures (up to 250°C in this instance). Due to the cost of the primary detector material, computational modelling is essential to best utilise the available processing methods for optimising sensor response through geometry and conversion media configurations and to fully interpret experimental data. Monte Carlo simulations of our diamond based sensor have been developed, using MCNP6 and FLUKA2011, assessing the sensor performance in terms of spectral response and overall efficiency as a function of the detector and converter geometry. Sensors with varying metallisation schemes for high temperature operation have been fabricated at Brunel University London and by Micron Semiconductor Limited. These sensors have been tested under a varied set of conditions including irradiation with fast neutrons and alpha particles at high temperatures. The presented study indicates that viable metallisation schemes for high temperature contacts have been successfully developed and the modelling results, supported by preliminary experimental data from partners, indicate that the simulations provide a reasonable representation of

  16. Living Organisms Coupling to Electromagnetic Radiation Below Thermal Noise

    NASA Astrophysics Data System (ADS)

    Stolc, Viktor; Freund, Friedemann

    2013-04-01

    Ultralow frequency (ULF) and extremely low frequency (ELF) electromagnetic (EM) radiation is part of the natural environment. Prior to major earthquakes the local ULF and global ELF radiation field is often markedly perturbed. This has detrimental effects on living organisms. We are studying the mechanism of these effects on the biochemical, cellular and organismal levels. The transfer of electrons along the Electron Transfer Chain (ETC) controls the universal reduction-oxidation reactions that are essential for fundamental biochemical processes in living cells. In order for these processes to work properly, the ETC has to maintain some form of synchronization, or coherence with all biochemical reactions in the living cells, including energy production, RNA transcription, and DNA replication. As a consequence of this synchronization, harmful chemical conflict between the reductive and the oxidative partial reactions can be minimized or avoided. At the same time we note that the synchronization allows for a transfer of energy, coherent or interfering, via coupling to the natural ambient EM field. Extremely weak high frequency EM fields, well below the thermal noise level, tuned in frequency to the electron spins of certain steps in the ETC, have already been shown to cause aberrant cell growth and disorientation among plants and animals with respect to the magnetic and gravity vectors. We investigate EM fields over a much wider frequency range, including ULF known to be generated deep in the Earth prior to major earthquakes locally, and ELF known to be fed by lightning discharges, traveling around the globe in the cavity formed between the Earth's surface and the ionosphere. This ULF/ELF radiation can control the timing of the biochemical redox cycle and thereby have a universal effect on physiology of organisms. The timing can even have a detrimental influence, via increased oxidative damage, on the DNA replication, which controls heredity.

  17. Studies of high temperature superconductors as radiation detectors

    NASA Astrophysics Data System (ADS)

    Qiu, A.; Bhattarai, A. R.; Dahlberg, E. D.; Khan, M. Asif; Moloni, K.; van Hove, James M.

    1992-12-01

    Both DyBaCuO (DBCO) and YBaCuO (YBCO) films deposited on a variety of substrates have been investigated for their applicability as detectors of high frequency radiation. Both 10 GHz and infrared radiation (IR) were used as the high frequency radiation source. The measurements consisted of monitoring the temperature dependent resistance of superconducting films both in the presence and absence of radiation. This investigation shows that because the superconducting transition temperature is sensitive to the magnitude of the current in the film, the temperature dependence of the bolometric response is slightly tunable. In addition, effects of radiation on the current voltage characteristics below T superconducting were studied. This study found that films in this regime could also serve as radiation detectors. The substrates used included MgO, SiO, LaAlO(subscript 3), and SrTiO(subscript 3). The results obtained were independent of the substrate except for the width of the resistive transition. Disorder in the films as characterized by the resistive transition, affected the microwave more than the IR response.

  18. [Effect of decimeter polarized electromagnetic radiation on germinating capacity of seeds].

    PubMed

    Polevik, N D

    2013-01-01

    The effect of a polarization structure of electromagnetic radiation on the germinating capacity of seeds of such weeds as Green foxtail (Setaria viridis) and Green amaranth (Amaranthus retroflexus) has been studied. Seeds have been exposed to impulse electromagnetic radiation in a frequency of 896 MHz with linear, elliptical right-handed and elliptical left-handed polarizations at different power flux density levels. It is determined that the effect of the right-handed polarized electromagnetic radiation increases and the influence of the left-handed polarized one reduces the germinating capacity of seeds compared to the effect of the linearly polarized electromagnetic radiation. It is shown that the seeds have an amplitude polarization selectivity as evinced by the major effect of the right-handed polarized radiation on seeds. An electrodynamic model as the right-handed elliptically polarized antenna with the given quantity of the ellipticity of polarization is suggested to use in description of this selectivity.

  19. Multipurpose High Sensitivity Radiation Detector: Terradex

    NASA Astrophysics Data System (ADS)

    Alpat, Behcet; Aisa, Damiano; Bizzarri, Marco; Blasko, Sandor; Esposito, Gennaro; Farnesini, Lucio; Fiori, Emmanuel; Papi, Andrea; Postolache, Vasile; Renzi, Francesca; Ionica, Romeo; Manolescu, Florentina; Ozkorucuklu, Suat; Denizli, Haluk; Tapan, Ilhan; Pilicer, Ercan; Egidi, Felice; Moretti, Cesare; Dicola, Luca

    2007-05-01

    Terradex project aims to realise an accurate and programmable multiparametric tool which will measure relevant physical quantities such as observation time, energy and type of all decay products of three naturally occurring decay chains of uranium and thorium series present in nature as well as the decay products of man-made radioactivity. The measurements described in this work are based on the performance tests of the first version of an instrument that is designed to provide high counting accuracy, by introducing self-triggering, delayed time-coincidence technique, of products of a given decay chain. In order to qualify the technique and to calibrate the Terradex, a 222Rn source is used. The continuous and accurate monitoring of radon concentration in air is realised by observing the alpha and beta particles produced by the decay of 222Rn and its daughters and tag each of them with a precise occurrence time. The validity of delayed coincident technique by using the state of the art electronics with application of novel data sampling and analysis methods are discussed. The flexibility of sampling protocols and the advantages of online calibration capability to achieve the highest level of precision in natural and man-made radiation measurements are also described.

  20. Influence of electromagnetic radiation produced by mobile phone on some biophysical blood properties in rats.

    PubMed

    El-Bediwi, Abu Bakr; Saad, Mohamed; El-kott, Attall F; Eid, Eman

    2013-04-01

    Effects of electromagnetic radiation produced by mobile phone on blood viscosity, plasma viscosity, hemolysis, Osmotic fragility, and blood components of rats have been investigated. Experimental results show that there are significant change on blood components and its viscosity which affects on a blood circulation due to many body problems. Red blood cells, White blood cells, and Platelets are broken after exposure to electromagnetic radiation produced by mobile phone. Also blood viscosity and plasma viscosity values are increased but Osmotic fragility value decreased after exposure to electromagnetic radiation produced by mobile phone.

  1. Spin-down of Pulsars, and Their Electromagnetic and Gravitational Wave Radiations

    NASA Astrophysics Data System (ADS)

    Yue-zhu, Zhang; Yan-yan, Fu; Yi-huan, Wei; Cheng-min, Zhang; Shao-hua, Yu; Yuan-yue, Pan; Yuan-qi, Guo; De-hua, Wang

    2016-04-01

    Pulsars posses extremely strong magnetic fields, and their magnetic axis does not coincide with their rotation axis, this causes the pulsars to emit electromagnetic radiations. Pulsars rely on their rotational energy to compensate for the energy loss caused by the electromagnetic radiation, which leads to the gradually decelerated spin of pulsars. According to the theoretical deduction, we have calculated the initial period of the Crab Nebula pulsar, and derived the period evolution of the pulsar at any time in the future under the effect of the electromagnetic radiation. Considered the possible existence of quadrupole moment in the mass distribution of a pulsar, the gravitational wave radiation will also make the pulsar spin down, hence the variation of spin period of the Crab pulsar under the effect of gravitational wave radiation is further analyzed. Finally, combining the two kinds of radiation mechanisms, the evolution of spin period of the Crab pulsar under the joint action of these two kinds of radiation mechanisms is analyzed.

  2. Radiation hardness and precision timing study of silicon detectors for the CMS High Granularity Calorimeter (HGC)

    NASA Astrophysics Data System (ADS)

    Currás, Esteban; Fernández, Marcos; Gallrapp, Christian; Gray, Lindsey; Mannelli, Marcello; Meridiani, Paolo; Moll, Michael; Nourbakhsh, Shervin; Scharf, Christian; Silva, Pedro; Steinbrueck, Georg; Fatis, Tommaso Tabarelli de; Vila, Iván

    2017-02-01

    The high luminosity upgraded LHC or Phase-II is expected to increase the instantaneous luminosity by a factor of 10 beyond the LHC's design value, expecting to deliver 250 fb-1 per year for a further 10 years of operation. Under these conditions the performance degradation due to integrated radiation dose will need to be addressed. The CMS collaboration is planning to upgrade the forward calorimeters. The replacement is called the High Granularity Calorimeter (HGC) and it will be realized as a sampling calorimeter with layers of silicon detectors interleaved. The sensors will be realized as pad detectors with sizes of less that ∼1.0 cm2 and an active thickness between 100 and 300 μm depending on the position, respectively, the expected radiation levels. For an integrated luminosity of 3000 fb-1, the electromagnetic calorimetry will sustain integrated doses of 1.5 MGy (150 Mrads) and neutron fluences up to 1016 neq/cm2. A radiation tolerance study after neutron irradiation of 300, 200, and 100 μm n-on-p and p-on-n silicon pads irradiated to fluences up to 1.6×1016 neq/cm2 is presented. The properties of these diodes studied before and after irradiation were leakage current, capacitance, charge collection efficiency, annealing effects and timing capability. The results of these measurements validate these sensors as candidates for the HGC system.

  3. Charge transport properties of CdMnTe radiation detectors

    SciTech Connect

    Kim K.; Rafiel, R.; Boardman, M.; Reinhard, I.; Sarbutt, A.; Watt, G.; Watt, C.; Uxa, S.; Prokopovich, D.A.; Belas, E.; Bolotnikov, A.E.; James, R.B.

    2012-04-11

    Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe)radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading chargecollection is reduced with increasing values of bias voltage. The electron transit time was determined from time of flight measurements. From the dependence of drift velocity on applied electric field the electron mobility was found to be n = (718 55) cm2/Vs at room temperature.

  4. Modelling radiation loads to detectors in a SNAP mission.

    PubMed

    Mokhov, N V; Rakhno, I L; Striganov, S I; Peterson, T J

    2005-01-01

    In order to investigate the degradation of optical detectors of the Supernova Acceleration Project (SNAP) space mission because of irradiation, a three-dimensional model of the satellite has been developed. A realistic radiation environment at the satellite orbit, including both galactic cosmic rays and cosmic ray trapped in radiation belts, has been taken into account. The modelling has been performed with the MARS14 Monte Carlo code. In a current design, the main contribution to dose accumulated in the photo-detectors is shown to be due to trapped protons. The contribution of primary alpha particles is estimated. Predicted performance degradation for the photodetector for a four-year space mission is 40% and this can be reduced further by means of shielding optimisation.

  5. Radiation Tolerance of Aluminum Microwave Kinetic Inductance Detector

    NASA Astrophysics Data System (ADS)

    Karatsu, K.; Dominjon, A.; Fujino, T.; Funaki, T.; Hazumi, M.; Irie, F.; Ishino, H.; Kida, Y.; Matsumura, T.; Mizukami, K.; Naruse, M.; Nitta, T.; Noguchi, T.; Oka, N.; Sekiguchi, S.; Sekimoto, Y.; Sekine, M.; Shu, S.; Yamada, Y.; Yamashita, T.

    2016-08-01

    Microwave kinetic inductance detector (MKID) is one of the candidates of focal plane detector for future satellite missions such as LiteBIRD. For the space use of MKIDs, the radiation tolerance is one of the challenges to be characterized prior to the launch. Aluminum (Al) MKIDs with 50 nm thickness on silicon substrate and on sapphire substrate were irradiated with a proton beam of 160 MeV at the heavy ion medical accelerator in Chiba. The total water-equivalent absorbed dose was ˜ 10 krad which should simulate the worst radiation absorption of 5 years observation at the Lagrange point L2. We measured characteristics of these MKIDs before and after the irradiation. We found no significant changes on resonator quality factor, responsivity, and recombination time of quasi-particles. The change on electrical noise equivalent power was also evaluated, and no significant increase was found at the noise level of O(10^{-18}) W/√{ Hz }.

  6. The transition radiation detector of the PAMELA space mission

    NASA Astrophysics Data System (ADS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2004-04-01

    PAMELA space mission objective is to flight a satellite-borne magnetic spectrometer built to fulfill the primary scientific goals of detecting antiparticles (antiprotons and positrons) and to measure spectra of particles in cosmic rays. The PAMELA telescope is composed of: a silicon tracker housed in a permanent magnet, a time-of-flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD is composed of nine sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD characteristics will be described along with its performances studied at both CERN-PS and CERN-SPS facilities, using electrons, pions, muons and protons of different momenta.

  7. Cadmium selenide: a promising novel room temperature radiation detector

    SciTech Connect

    Burger, A.; Schieber, M.; Shilo, I.

    1983-02-01

    Large single crystals of CdSe weighing about 30g were grown by the vertical unseeded vapor growth technique at a linear growth rate of 5mm/day and a temperature gradient of 10/sup 0/C/cm. Crystal perfection and homogeneity were evaluated by Laue X-ray diffraction, etch pit density, SEM and microprobe analysis methods. The dark resistivity of the as-grown and the heat treated crystal was about 1..cap omega..cm and 10/sup 12/..cap omega..cm respectively. Slices were used to fabricate room temperature detectors for nuclear radiation energy. The detectors showed high efficiency and stability as a function of time for radiation sources from 10KeV to 660KeV.

  8. Modeling radiation loads to detectors in a SNAP mission

    SciTech Connect

    Nikolai V. Mokhov et al.

    2004-05-12

    In order to investigate degradation of optical detectors of the Supernova Acceleration Project (SNAP) space mission due to irradiation, a three-dimensional model of the satellite has been developed. Realistic radiation environment at the satellite orbit, including both galactic and trapped in radiation belts cosmic rays, has been taken into account. The modeling has been performed with the MARS14 Monte Carlo code. In a current design, the main contribution to dose accumulated in the photodetectors is shown to be due to trapped protons. A contribution of primary {alpha}-particles is estimated. Predicted performance degradation for the photo-detector for a 4-year space mission is 40% and can be reduced further by means of shielding optimization.

  9. Experiences with radiation portal detectors for international rail transport

    NASA Astrophysics Data System (ADS)

    Stromswold, D. C.; McCormick, K.; Todd, L.; Ashbaker, E. D.; Evans, J. C.

    2006-08-01

    Radiation detectors monitored trains at two international borders to evaluate the performance of NaI(Tl) and plastic (polyvinyltoluene: PVT) gamma-ray detectors to characterize rail cargo. The detectors included a prototype NaI(Tl) radiation-portal-monitor panel having four large detectors (10-cm × 10-cm × 41-cm) and a PVT panel with a 41 cm × 173 cm × 3.8-cm detector. Spectral data from the NaI(Tl) and PVT detectors were recorded. Of particular emphasis was the identification of naturally occurring radioactive material (NORM) and the resultant frequency of nuisance alarms. For rail monitoring, the difficulty in stopping trains to perform secondary inspection on alarming cars creates a need for reliable identification of NORM during initial screening. Approximately 30 trains were monitored, and the commodities in individual railcars were ascertained from manifest information. At one test site, the trains carried inter-modal containers that had been unloaded from ships, and at the other site, the trains contained bulk cargo in tanker cars and hopper cars or individual items in boxcars or flatbeds. NORM encountered included potash, liquefied petroleum gas, fireworks, televisions, and clay-based products (e.g., pottery). Analysis of the spectral data included the use of the template-fitting portion of the program GADRAS developed at Sandia National Laboratories. For most of the NORM, the NaI(Tl) data produced a correct identification of the radionuclides present in the railcars. The same analysis was also used for PVT data in which the spectral information (no peaks but only gradual spectral changes including Compton edges) was limited. However, the PVT analysis provided correct identification of 40K and 226Ra in many cases.

  10. Experiences with radiation portal detectors for international rail transport

    SciTech Connect

    Stromswold, David C.; McCormick, Kathleen R.; Todd, Lindsay C.; Ashbaker, Eric D.; Evans, J. C.

    2006-08-30

    Radiation detectors monitored trains at two international borders to evaluate the performance of NaI(Tl) and plastic (polyvinyltoluene: PVT) gamma-ray detectors to characterize rail cargo. The detectors included a prototype NaI(Tl) radiation-portal-monitor panel having four large detectors (10-cm × 10-cm × 41-cm) and a PVT panel with a 41 cm × 173 cm × 3.8-cm detector. Spectral data from the NaI(Tl) and PVT detectors were recorded. Of particular emphasis was the identification of naturally occurring radioactive material (NORM) and the resultant frequency of nuisance alarms. For rail monitoring, the difficulty in stopping trains to perform secondary inspection on alarming cars creates a need for reliable identification of NORM during initial screening. Approximately 30 trains were monitored, and the commodities in individual railcars were ascertained from manifest information. At one test site the trains carried inter-modal containers that had been unloaded from ships, and at the other site the trains contained bulk cargo or individual items in boxcars or flatbeds. NORM encountered included potash, liquefied petroleum gas, fireworks, televisions, and clay-based products (e.g., pottery). Analysis of the spectral data included the use of the template-fitting program GADRAS/FitToDB from Sandia National Laboratories. For much of the NORM the NaI(Tl) data produced a correct identification of the radionuclides present in the railcars. The same analysis was also used for PVT data in which the spectral information (no peaks but only gradual spectral changes including Compton edges) was limited. However, the PVT analysis provided correct identification of 40K and 226Ra in many cases.

  11. Calibration of the active radiation detector for Spacelab-One

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The flight models of the active radiation detector (ARD) for the ENV-01 environmental monitor were calibrated using gamma radiation. Measured sensitivities of the ion chambers were 6.1 + or - 0.3 micron rad per count for ARD S/N1, and 10.4 + or - 0.5 micron rad per count for ARD S/N2. Both were linear over the measured range 0.10 to 500 m/rad hour. The particle counters (proportional counters) were set to respond to approximately 85% of minimum ionizing particles of unit charge passing through them. These counters were also calibrated in the gamma field.

  12. A precision synchrotron radiation detector using phosphorescent screens

    SciTech Connect

    Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J. ); Butler, J. ); Wormser, G. . Lab. de l'Accelerateur Lineaire); Levi, M.; Rouse, F. )

    1990-01-01

    A precision detector to measure synchrotron radiation beam positions has been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 {mu}m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. 3 refs., 5 figs., 1 tab.

  13. The electromagnetic radiation from semiconductor minerals in orebody

    NASA Astrophysics Data System (ADS)

    Ozawa, M.; Nagahama, H.; Muto, J.; Nagase, T.

    2013-12-01

    In complex ore deposits composing semiconductor minerals, electromagnetic radiation in the radio frequency (30 kHz ~ 3 MHz) is induced by propagation of elastic waves [1]. Semiconductor minerals are divided into n- or p-type. When each p-type and n-type is joined, the resulting junction (p-n junction) has the rectifying property. Many natural orebodies show this property, but it has not been evaluated qualitatively. A lot of p-n junctions exist as which connect in parallel and in series in the orebody [2]. They can be regarded as a single p-n junction at large scale. Hence elucidating the electric property of micro p-n junction is required to understand the semiconductor properties of orebody. To discuss the electromagnetic emission from semiconductor minerals in the orebody associated with tectonic process, we measure the electric property of the semiconductor pyrite. Composition and electric properties of natural semiconductor minerals are heterogeneous due to the presence of impurities and defects. Therefore, it is needed to clarify the properties at each microscopic region. In this research, we apply electroetching method and SEM analysis to acquire composition characteristics and use an indentation probe to reveal microscopic electric properties. Sample of pyrite is from Waga-Sennin mine, Akita prefecture, Japan. The area of cross section is 1.4 cm2 with thickness of 0.38 mm2. In the electrolytic etching, the surface of samples showed etching figures and zonal structures with widths of about 10 -100 μm. According to the SEM analysis, Pb inclusions were observed to be precipitated parallel to crystallographic planes. The heterogeneous change in electric properties of each area was observed to be as etching figure. Thermal probing method clarified that the regions of n-p type differences were also coincidence well to etching figure patterns. P-type regions showed a higher solubility than n-type regions. At p-n junction regions, rectifying property was observed

  14. The effects of radiofrequency electromagnetic radiation on sperm function.

    PubMed

    Houston, B J; Nixon, B; King, B V; De Iuliis, G N; Aitken, R J

    2016-12-01

    Mobile phone usage has become an integral part of our lives. However, the effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted by these devices on biological systems and specifically the reproductive systems are currently under active debate. A fundamental hindrance to the current debate is that there is no clear mechanism of how such non-ionising radiation influences biological systems. Therefore, we explored the documented impacts of RF-EMR on the male reproductive system and considered any common observations that could provide insights on a potential mechanism. Among a total of 27 studies investigating the effects of RF-EMR on the male reproductive system, negative consequences of exposure were reported in 21. Within these 21 studies, 11 of the 15 that investigated sperm motility reported significant declines, 7 of 7 that measured the production of reactive oxygen species (ROS) documented elevated levels and 4 of 5 studies that probed for DNA damage highlighted increased damage due to RF-EMR exposure. Associated with this, RF-EMR treatment reduced the antioxidant levels in 6 of 6 studies that discussed this phenomenon, whereas consequences of RF-EMR were successfully ameliorated with the supplementation of antioxidants in all 3 studies that carried out these experiments. In light of this, we envisage a two-step mechanism whereby RF-EMR is able to induce mitochondrial dysfunction leading to elevated ROS production. A continued focus on research, which aims to shed light on the biological effects of RF-EMR will allow us to test and assess this proposed mechanism in a variety of cell types.

  15. New electronics of the spectrometric channel for the SND detector electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Achasov, M. N.; Aulchenko, V. M.; Bogdanchikov, A. G.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Koshuba, S. V.; Kovrizhin, D. P.; Serednyakov, S. I.; Surin, I. K.; Tekut`ev, A. I.; Usov, Yu. V.

    2016-07-01

    The Spherical Neutral Detector (SND) is intended for study of electron-positron annihilation at the VEPP-2000 e+e- collider (BINP, Novosibirsk) in the center-of-mass energy region below 2 GeV. The main part of the detector is a three-layer electromagnetic calorimeter based on NaI(Tl) crystals. The physics program of the SND experiment includes a high statistics study of neutron-antineutron production near threshold, for which time measurements in the calorimeter are required. In this paper we describe new shaping and digitizing calorimeter electronics, which allow to reach a time resolution of about 1 ns for 100 MeV signal and an amplitude resolution of about 250 keV.

  16. Study of Electromagnetic Interactions with the MicroBooNE Detector

    NASA Astrophysics Data System (ADS)

    Caratelli, David; MicroBooNE Collaboration

    2017-01-01

    MicroBooNE is an experiment which employs the Liquid Argon Time Projection Chamber (LArTPC) detector technology to study neutrinos produced with the Fermilab Booster Neutrino Beam. As for any accelerator-based detector interested in studying neutrino oscillations, it is essential to be able to identify and reconstruct the kinematic properties of electrons and photons produced in μν and νe interactions. We report current progress in reconstructing electron and photon electromagnetic (EM) showers using data from the MicroBooNE LArTPC. These studies cover EM showers in the tens to hundreds of MeV energy range; they lay the foundation for MicroBooNE's investigation of the excess of low-energy EM events reported by MiniBooNE, and are of interest to the wider LArTPC neutrino community.

  17. Cardiovascular risk in operators under radiofrequency electromagnetic radiation.

    PubMed

    Vangelova, Katia; Deyanov, Christo; Israel, Mishel

    2006-03-01

    The aim of the study was to assess the long-term effects of radiofrequency electromagnetic radiation (EMR) on the cardiovascular system. Two groups of exposed operators (49 broadcasting (BC) station and 61 TV station operators) and a control group of 110 radiorelay station operators, matched by sex and age, with similar job characteristics except for the radiofrequency EMR were studied. The EMR exposure was assessed and the time-weighted average (TWA) was calculated. The cardiovascular risk factors arterial pressure, lipid profile, body mass index, waist/hip ratio, smoking, and family history of cardiovascular disease were followed. The systolic and diastolic blood pressure (SBP and DBP), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly higher in the two exposed groups. It was found that the radiofrequency EMR exposure was associated with greater chance of becoming hypertensive and dyslipidemic. The stepwise multiple regression equations showed that the SBP and TWA predicted the high TC and high LDL-C, while the TC, age and abdominal obesity were predictors for high SBP and DBP. In conclusion, our data show that the radiofrequency EMR contributes to adverse effects on the cardiovascular system.

  18. Rock Burst Monitoring by Integrated Microseismic and Electromagnetic Radiation Methods

    NASA Astrophysics Data System (ADS)

    Li, Xuelong; Wang, Enyuan; Li, Zhonghui; Liu, Zhentang; Song, Dazhao; Qiu, Liming

    2016-11-01

    For this study, microseismic (MS) and electromagnetic radiation (EMR) monitoring systems were installed in a coal mine to monitor rock bursts. The MS system monitors coal or rock mass ruptures in the whole mine, whereas the EMR equipment monitors the coal or rock stress in a small area. By analysing the MS energy, number of MS events, and EMR intensity with respect to rock bursts, it has been shown that the energy and number of MS events present a "quiet period" 1-3 days before the rock burst. The data also show that the EMR intensity reaches a peak before the rock burst and this EMR intensity peak generally corresponds to the MS "quiet period". There is a positive correlation between stress and EMR intensity. Buckling failure of coal or rock depends on the rheological properties and occurs after the peak stress in the high-stress concentration areas in deep mines. The MS "quiet period" before the rock burst is caused by the heterogeneity of the coal and rock structures, the transfer of high stress into internal areas, locked patches, and self-organized criticality near the stress peak. This study increases our understanding of coal and rock instability in deep mines. Combining MS and EMR to monitor rock burst could improve prediction accuracy.

  19. Simple classical model for Fano statistics in radiation detectors

    NASA Astrophysics Data System (ADS)

    Jordan, David V.; Renholds, Andrea S.; Jaffe, John E.; Anderson, Kevin K.; René Corrales, L.; Peurrung, Anthony J.

    2008-02-01

    A simple classical model that captures the essential statistics of energy partitioning processes involved in the creation of information carriers (ICs) in radiation detectors is presented. The model pictures IC formation from a fixed amount of deposited energy in terms of the statistically analogous process of successively sampling water from a large, finite-volume container ("bathtub") with a small dipping implement ("shot or whiskey glass"). The model exhibits sub-Poisson variance in the distribution of the number of ICs generated (the "Fano effect"). Elementary statistical analysis of the model clarifies the role of energy conservation in producing the Fano effect and yields Fano's prescription for computing the relative variance of the IC number distribution in terms of the mean and variance of the underlying, single-IC energy distribution. The partitioning model is applied to the development of the impact ionization cascade in semiconductor radiation detectors. It is shown that, in tandem with simple assumptions regarding the distribution of energies required to create an (electron, hole) pair, the model yields an energy-independent Fano factor of 0.083, in accord with the lower end of the range of literature values reported for silicon and high-purity germanium. The utility of this simple picture as a diagnostic tool for guiding or constraining more detailed, "microscopic" physical models of detector material response to ionizing radiation is discussed.

  20. Electromagnetic noise studies in a silicon strip detector, used as part of a luminosity monitor at LEP

    NASA Astrophysics Data System (ADS)

    Ødegaard, Trygve; Tafjord, Harald; Buran, Torleiv

    1995-02-01

    As part of the luminosity monitor, SAT, in the DELPHI [1] experiment at CERN's Large Electron Positron collider, a tracking detector constructed from silicon strip detector elements was installed in front of an electromagnetic calorimeter. The luminosity was measured by counting the number of Bhabha events at the interaction point of the electron and the positron beans. The tracking detector reconstructs from the interaction point and the calorimeter measures the corresponding particles' energies. The SAT Tracker [2] consists of 504 silicon strip detectors. The strips are DC-coupled to CMOS VLSI-chips, baptized Balder [3,4]. The chip performs amplification, zero-suppression, digitalisation, and multiplexing. The requirements of good space resolution and high efficiency put strong requirements on noise control. A short description of the geometry and the relevant circuit layout is given. We describe the efforts made to minimise the electromagnetic noise in the detector and present some numbers of the noise level using various techniques.

  1. Radiation Testing of IR Detectors for WFC3

    NASA Astrophysics Data System (ADS)

    Hill, R. J.; Waczynski, A.; Johnson, S. D.; Marshall, P.; Marshall, C.; Foltz, R.; Kimble, R. A.

    2005-12-01

    The near-IR channel of Wide Field Camera 3, an instrument being developed for installation onto the Hubble Space Telescope, employs a Rockwell Scientific Company 1K x 1K HgCdTe detector array hybridized to a Hawaii-1R multiplexer. Radiation testing of test detectors showed that the WFC3 detectors do not exhibit a post-SAA glow of the sort seen in the NICMOS detectors. However, an anomalously high background was observed during the irradiation in the proton beam. This background goes away promptly when the beam is turned off. Subsequent testing and analysis revealed that the background arises due to emission of photons from within the CdZnTe detector substrate at the blue transmission edge of the substrate material. Further testing of devices with the substrate removed show no excess background signal. These results lead to a recommendation that the CdZnTe substrate material should be removed for space applications which require the ability to detect faint objects.

  2. Features of electromagnetic radiation time-and-frequency fluctuation intensity distributions from human brain structures.

    PubMed

    Kublanov, V S; Gasilov, V L; Kazakov, Y E

    2000-01-01

    Time-and-frequency fluctuation intensity distributions' analysis is made of the electromagnetic radiation obtained from deep human brain structures. The role of monitoring the distribution changes due to various cerebral circulation disorders is explained.

  3. Gauge Invariant Formulation of the Interaction of Electromagnetic Radiation and Matter

    ERIC Educational Resources Information Center

    Kobe, Donald H.; Smirl, Arthur L.

    1978-01-01

    Presents a discussion in Perturbation theory in quantum mechanics for the interaction of electromagnetic radiation with matter. Advocates the use of electric dipole interaction whenever it can be used as compared to the vector potential interaction. (GA)

  4. Generation of high-power electromagnetic radiation by a beam-driven plasma antenna

    NASA Astrophysics Data System (ADS)

    Annenkov, V. V.; Volchok, E. P.; Timofeev, I. V.

    2016-04-01

    In this paper we study how efficiently electromagnetic radiation can be generated by a relativistic electron beam with a gigawatt power level during its injection into a thin magnetized plasma. It is shown that, if the transverse beam and plasma size is compared with the radiation wavelength and the plasma density is modulated along the magnetic field, such a beam-plasma system can radiate electromagnetic waves via the antenna mechanism. We propose a theoretical model describing generation of electromagnetic waves by this plasma antenna and calculate its main radiation characteristics. In the two-dimensional case theoretical predictions on the radiation efficiency are shown to be confirmed by the results of particle-in-cell simulations, and the three-dimensional variant of this theory is used to estimate the peak power of sub-terahertz radiation that can be achieved in beam-plasma experiments in mirror traps.

  5. [Influence of Detector Radiation Damage on CR Mammography Quality Control].

    PubMed

    Moriwaki, Atsumi; Ishii, Mie; Terazono, Shiho; Arao, Keiko; Ishii, Rie; Sanada, Taizo; Yoshida, Akira

    2016-05-01

    Recently, radiation damage to the detector apparatus employed in computed radiography (CR) mammography has become problematic. The CR system and the imaging plate (IP) applied to quality control (QC) program were also used in clinical mammography in our hospital, and the IP to which radiation damage has occurred was used for approximately 5 years (approximately 13,000 exposures). We considered using previously acquired QC image data, which is stored in a server, to investigate the influence of radiation damage to an IP. The mammography unit employed in this study was a phase contrast mammography (PCM) Mermaid (KONICA MINOLTA) system. The QC image was made newly, and it was output in the film, and thereafter the optical density of the step-phantom image was measured. An input (digital value)-output (optical density) conversion curve was plotted using the obtained data. The digital values were then converted to optical density values using a reference optical density vs. digital value curve. When a high radiation dose was applied directly, radiation damage occurred at a position on the IP where no object was present. Daily QC for mammography is conducted using an American College of Radiology (ACR) accreditation phantom and acrylic disc, and an environmental background density measurement is performed as one of the management indexes. In this study, the radiation damage sustained by the acrylic disc was shown to differ from that of the background. Thus, it was revealed that QC results are influenced by radiation damage.

  6. Study on electromagnetic radiation and mechanical characteristics of coal during an SHPB test

    NASA Astrophysics Data System (ADS)

    Chengwu, Li; Qifei, Wang; Pingyang, Lyu

    2016-06-01

    Dynamic loads provided by a Split Hopkinson pressure bar are applied in the impact failure experiment on coal with an impact velocity of 4.174-17.652 m s-1. The mechanical property characteristics of coal and an electromagnetic radiation signal can be detected and measured during the experiment. The variation of coal stress, strain, incident energy, dissipated energy and other mechanical parameters are analyzed by the unidimensional stress wave theory. It suggests that with an increase of the impact velocity, the mechanical parameters and electromagnetic radiation increased significantly and the dissipated energy of the coal sample has a high discrete growing trend during the failure process of coal impact. Combined with the received energy of the electromagnetic radiation signal, the relationship between these mechanical parameters and electromagnetic radiation during the failure process of coal burst could be analyzed by the grey correlation model. The results show that the descending order of the gray correlation degree between the mechanical characteristics and electromagnetic radiation energy are impact velocity, maximum stress, the average stress, incident energy, the average strain, maximum strain, the average strain rate and dissipation energy. Due to the correlation degree, the impact velocity and incident energy are relatively large, and the main factor affecting the electromagnetic radiation energy of coal is the energy magnitude. While the relationship between extreme stress and the radiation energy change trend is closed, the stress state of coal has a greater impact on electromagnetic radiation than the strain and destruction which can deepen the research of the coal-rock dynamic disaster electromagnetic monitoring technique.

  7. Effects of low-intensity ultrahigh frequency electromagnetic radiation on inflammatory processes.

    PubMed

    Lushnikov, K V; Shumilina, Yu V; Yakushina, V S; Gapeev, A B; Sadovnikov, V B; Chemeris, N K

    2004-04-01

    Low-intensity ultrahigh frequency electromagnetic radiation (42 GHz, 100 microW/cm(2)) reduces the severity of inflammation and inhibits production of active oxygen forms by inflammatory exudate neutrophils only in mice with inflammatory process. These data suggest that some therapeutic effects of electromagnetic radiation can be explained by its antiinflammatory effect which is realized via modulation of functional activity of neutrophils in the focus of inflammation.

  8. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, W.H.; Berliner, R.R.

    1994-09-13

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation. 2 figs.

  9. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, William H.; Berliner, Ronald R.

    1994-01-01

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation.

  10. Performance prospects for the CMS electromagnetic calorimeter barrel avalanche photodiodes for LHC phase I and phase II: Radiation hardness and longevity

    NASA Astrophysics Data System (ADS)

    Addesa, F.; Cavallari, F.

    2015-07-01

    The electromagnetic calorimeter of the Compact Muon Solenoid (CMS) experiment at the LHC is a hermetic, fine-grained, homogeneous calorimeter, comprising 75,848 lead tungstate scintillating crystals. Avalanche photodiodes produced by Hamamatsu are used as sensors for the electromagnetic barrel calorimeter. These devices were tested for radiation hardness assuming an integrated luminosity of 500 fb-1, which corresponds to a neutron fluence of 2- 4 ×1013 n /cm2, depending on the detector location. Beginning in 2022, a new phase of the LHC is foreseen to exploit the full potential of the accelerator, which will deliver 3000 fb-1 of integrated luminosity. Irradiation studies up to a fluence of 1.5 ×1014 n /cm2 have been performed to qualify the avalanche photodiodes for radiation hardness. We present measurements of gain, quantum efficiency and noise, and discuss the implications for the CMS electromagnetic barrel calorimeter performance.

  11. Field Testing of a Portable Radiation Detector and Mapping System

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1998-03-01

    Researchers at the Savannah River Site (SRS) have developed a man- portable radiation detector and mapping system (RADMAPS) which integrates the accumulation of radiation information with precise ground locations. RADMAPS provides field personnel with the ability to detect, locate, and characterize nuclear material at a site or facility by analyzing the gamma or neutron spectra and correlating them with position. the man-portable field unit records gamma or neutron count rate information and its location, along with date and time, using an embedded Global Positioning System (GPS). RADMAPS is an advancement in data fusion, integrating several off-the-shelf technologies with new computer software resulting in a system that is simple to deploy and provides information useful to field personnel in an easily understandable form. Decisions on subsequent actions can be made in the field to efficiently use available field resources. The technologies employed in this system include: recording GPS, radiation detection (typically scintillation detectors), pulse height analysis, analog-to-digital converters, removable solid-state (Flash or SRAM) memory cards, Geographic Information System (GIS) software and personal computers with CD-ROM supporting digital base maps. RADMAPS includes several field deployable data acquisition systems designed to simultaneously record radiation and geographic positions. This paper summarizes the capabilities of RADMAPS and some of the results of field tests performed with the system.

  12. Expanding the use of real-time electromagnetic tracking in radiation oncology.

    PubMed

    Shah, Amish P; Kupelian, Patrick A; Willoughby, Twyla R; Meeks, Sanford L

    2011-11-15

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery.

  13. Novel semiconductor radiation detector based on mercurous halides

    NASA Astrophysics Data System (ADS)

    Chen, Henry; Kim, Joo-Soo; Amarasinghe, Proyanthi; Palosz, Withold; Jin, Feng; Trivedi, Sudhir; Burger, Arnold; Marsh, Jarrod C.; Litz, Marc S.; Wiejewarnasuriya, Priyalal S.; Gupta, Neelam; Jensen, Janet; Jensen, James

    2015-08-01

    The three most important desirable features in the search for room temperature semiconductor detector (RTSD) candidate as an alternative material to current commercially off-the-shelf (COTS) material for gamma and/or thermal neutron detection are: low cost, high performance and long term stability. This is especially important for pager form application in homeland security. Despite years of research, no RTSD candidate so far can satisfy the above 3 features simultaneously. In this work, we show that mercurous halide materials Hg2X2 (X= I, Cl, Br) is a new class of innovative compound semiconductors that is capable of delivering breakthrough advances to COTS radiation detector materials. These materials are much easier to grow thicker and larger volume crystals. They can detect gamma and potentially neutron radiation making it possible to detect two types of radiation with just one crystal material. The materials have wider bandgaps (compared to COTS) meaning higher resistivity and lower leakage current, making this new technology more compatible with available microelectronics. The materials also have higher atomic number and density leading to higher stopping power and better detector sensitivity/efficiency. They are not hazardous so there are no environmental and health concerns during manufacturing and are more stable making them more practical for commercial deployment. Focus will be on Hg2I2. Material characterization and detector performance will be presented and discussed. Initial results show that an energy resolution better than 2% @ 59.6 keV gamma from Am-241 and near 1% @ 662 keV from Cs-137 source can be achieved at room temperature.

  14. [Adaptation reactions of rat blood exposed to low intensity electromagnetic radiation].

    PubMed

    Krylov, V N; Deriugina, A V

    2010-06-01

    It is carried out research of action low-intensive electromagnetic radiations--low-intensive laser radiation and radiations of the highest frequency on normal animals and at modelling the stress-reaction, caused by introduction of adrenaline. Absence of effects of system of blood is noted at action low-intensive electromagnetic radiations on normal an organism and them correction action on alteration an organism, shown in restoration of the broken parameters--leukocyte the blood count, electrophoretic mobility of erythrocytes and phospholipide's structure of their membranes.

  15. [Effect of extremely low frequency electromagnetic radiation and ultra-violet radiation on aggregation of thymocytes and erythrocytes].

    PubMed

    Roshchupkin, D I; Kramarenko, G G; Anosov, A K

    1996-01-01

    Electromagnetic radiation of superhigh frequencies (46.12 and 46.19 GHz, 0.3-1 mV/cm2) at an incident dose of about 12 kJ/m2 enhances the ability of isolated rabbit thymocytes for aggregation interaction with homologous erythrocytes. In the case of 46.19 GHz frequency, the stimulatory effect disappears as radiation dose in increased. A radiation of 46.12 GHz stimulates thymocytes also at high radiation doses. Superhigh-frequency radiation enhances the sensitivity of thymocytes to the damaging effect of UV radiation.

  16. A Micro-Cantilever Based Photoacoustic Detector of Terahertz Radiation for Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Glauvitz, Nathan E.; Coutu, Ronald A. Coutu, Jr.; Kistler, Michael N.; Hamilton, Ryan F.; Petkie, Douglas T.; Medvedev, Ivan R.

    2013-06-01

    In this paper we describe a novel photoacoustic detector that can detect radiation in the Terahertz/sub-millimeter (THz/smm) spectral range, is immune to the effect of standing waves, and potentially can have spectral response that is independent of the absorption path length, thus offering crucial advantages for acquisition of THz/smm molecular spectra. The photoacoustic effect occurs when the energy from electromagnetic waves is absorbed by molecules and collisionally transferred into translational energy, thus resulting in local heating induced by the radiation. If radiation produced by the source is modulated, an acoustic wave results which can be detected by a pressure sensitive device such as a microphone or a cantilever. This transduction of the THz signal into a photoacoustic wave is what makes this approach insensitive to the detrimental standing waves associated with traditional THz sensors and allows for a significant reduction in the size of the absorption cell. A Microelectromechanical system (MEMS) cantilever pressure sensor was designed, modeled, fabricated, and tested for sensing the photoacoustic response of gases to THz/smm radiation. Here we present our manufacturing, experimental set-up and most recent spectroscopic results, which demonstrate the capabilities of this spectroscopic technique.

  17. PERDaix -Proton Electron Radiation Detector Aix-la-Chapelle

    NASA Astrophysics Data System (ADS)

    Schug, David; Schael, Stefan; Yearwood Roper, Gregorio; Bachlechner, Andreas; Beischer, Bastian; Deckenhoff, Mirco; Greim, Roman; Jenniches, Laura; Kucirek, Philipp; Lewke, Ronja; Mai, Carsten; Schug, David; Shchutska, Lesya; Tholen, Heiner; Ulrich, Jascha; Wienkenhoever, Jens; Zimmermann, Nikolas

    For the purpose of understanding recent cosmic ray measurements in the energy region below 10 GeV it is important to obtain good knowledge of the charge-sign dependent modulation caused by interplanetary magnetic fields. Existing three-dimensional time-dependent models of the heliosphere can be constrained further using series of measurements of the low-energy cosmic ray fluxes over the course of a solar cycle. Following the measurements of the positron fraction from AESOP in 2006 and 2009, we present a new light-weighted spectrometer which is under construction in Aachen for measuring helium, proton, positron and electron fluxes. The detector is designed to measure in the energy range between 0.5 GeV and 5 GeV and identify helium, protons, electrons and positrons. The detector consists of a spectrometer made up of a permanent magnet and a scintillating fiber tracking detector, a transition radiation detector and a time of flight system with a total weight of approximately 30kg. We applied successfully for a flight on a stratosphere balloon in late 2010 as part of the German-Swedish Balloon-Borne Experiments for University Students (BEXUS) Program.

  18. SENTIRAD—An innovative personal radiation detector based on a scintillation detector and a silicon photomultiplier

    NASA Astrophysics Data System (ADS)

    Osovizky, A.; Ginzburg, D.; Manor, A.; Seif, R.; Ghelman, M.; Cohen-Zada, I.; Ellenbogen, M.; Bronfenmakher, V.; Pushkarsky, V.; Gonen, E.; Mazor, T.; Cohen, Y.

    2011-10-01

    The alarming personal radiation detector (PRD) is a device intended for Homeland Security (HLS) applications. This portable device is designed to be worn or carried by security personnel to detect photon-emitting radioactive materials for the purpose of crime prevention. PRD is required to meet the scope of specifications defined by various HLS standards for radiation detection. It is mandatory that the device be sensitive and simultaneously small, pocket-sized, of robust mechanical design and carriable on the user's body. To serve these specialized purposes and requirements, we developed the SENTIRAD, a new radiation detector designed to meet the performance criteria established for counterterrorist applications. SENTIRAD is the first commercially available PRD based on a CsI(Tl) scintillation crystal that is optically coupled with a silicon photomultiplier (SiPM) serving as a light sensor. The rapidly developing technology of SiPM, a multipixel semiconductor photodiode that operates in Geiger mode, has been thoroughly investigated in previous studies. This paper presents the design considerations, constraints and radiological performance relating to the SENTIRAD radiation sensor.

  19. The electromagnetic calorimeter for the T2K near detector ND280

    NASA Astrophysics Data System (ADS)

    Allan, D.; Andreopoulos, C.; Angelsen, C.; Barker, G. J.; Barr, G.; Bentham, S.; Bertram, I.; Boyd, S.; Briggs, K.; Calland, R. G.; Carroll, J.; Cartwright, S. L.; Carver, A.; Chavez, C.; Christodoulou, G.; Coleman, J.; Cooke, P.; Davies, G.; Densham, C.; Di Lodovico, F.; Dobson, J.; Duboyski, T.; Durkin, T.; Evans, D. L.; Finch, A.; Fitton, M.; Gannaway, F. C.; Grant, A.; Grant, N.; Grenwood, S.; Guzowski, P.; Hadley, D.; Haigh, M.; Harrison, P. F.; Hatzikoutelis, A.; Haycock, T. D. J.; Hyndman, A.; Ilic, J.; Ives, S.; Kaboth, A. C.; Kasey, V.; Kellet, L.; Khaleeq, M.; Kogan, G.; Kormos, L. L.; Lawe, M.; Lawson, T. B.; Lister, C.; Litchfield, R. P.; Lockwood, M.; Malek, M.; Maryon, T.; Masliah, P.; Mavrokoridis, K.; McCauley, N.; Mercer, I.; Metelko, C.; Morgan, B.; Morris, J.; Muir, A.; Murdoch, M.; Nicholls, T.; Noy, M.; O'Keeffe, H. M.; Owen, R. A.; Payne, D.; Pearce, G. F.; Perkin, J. D.; Poplawska, E.; Preece, R.; Qian, W.; Ratoff, P.; Raufer, T.; Raymond, M.; Reeves, M.; Richards, D.; Rooney, M.; Sacco, R.; Sadler, S.; Schaack, P.; Scott, M.; Scully, D. I.; Short, S.; Siyad, M.; Smith, R.; Still, B.; Sutcliffe, P.; Taylor, I. J.; Terri, R.; Thompson, L. F.; Thorley, A.; Thorpe, M.; Timis, C.; Touramanis, C.; Uchida, M. A.; Uchida, Y.; Vacheret, A.; Van Schalkwyk, J. F.; Veledar, O.; Waldron, A. V.; Ward, M. A.; Ward, G. P.; Wark, D.; Wascko, M. O.; Weber, A.; West, N.; Whitehead, L. H.; Wilkinson, C.; Wilson, J. R.

    2013-10-01

    The T2K experiment studies oscillations of an off-axis muon neutrino beam between the J-PARC accelerator complex and the Super-Kamiokande detector. Special emphasis is placed on measuring the mixing angle θ13 by observing νe appearance via the sub-dominant νμ → νe oscillation and searching for CP violation in the lepton sector. The experiment includes a sophisticated, off-axis, near detector, the ND280, situated 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to understand better neutrino interactions at the energy scale below a few GeV. The data collected with the ND280 are used to study charged- and neutral-current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. A key element of the near detector is the ND280 electromagnetic calorimeter (ECal), consisting of active scintillator bars sandwiched between lead sheets and read out with multi-pixel photon counters (MPPCs). The ECal is vital to the reconstruction of neutral particles, and the identification of charged particle species. The ECal surrounds the Pi-0 detector (PØD) and the tracking region of the ND280, and is enclosed in the former UA1/NOMAD dipole magnet. This paper describes the design, construction and assembly of the ECal, as well as the materials from which it is composed. The electronic and data acquisition (DAQ) systems are discussed, and performance of the ECal modules, as deduced from measurements with particle beams, cosmic rays, the calibration system, and T2K data, is described.

  20. [The assessment of modulated radiofrequence electromagnetic radiation on cognitive function in rats of different ages].

    PubMed

    Priakhin, E A; Triapitsyna, G A; Andreev, S S; Kolomiets, I A; Polevik, N D; Akleev, A V

    2007-01-01

    The modulated radiofrequence electromagnetic radiation influence on cognitive function of male uninbred Wister rat exposed at the age of sexual maturation (2 months) and at the age of morphofunctional maturity (3.5 months) was examined. Animals were subjected to pulse electromagnetic radiation (925 MHz) modulated as a GSM standard with the power density 1.2 mW/cm2 for 10 minutes every day for 12 days. At day 8 of exposure the cognitive function were examined with the Morris water maze. In the result of investigation it was determines that modulated radiofrequence electromagnetic radiation at the sexual maturation age did not affect the spatial learning and improve the visual orientation performance. Modulated radiofrequence electromagnetic exposure of animals at the sex maturity age did not affect the visual performance and improve the spatial performance of male rats.

  1. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    NASA Technical Reports Server (NTRS)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  2. Porous Silicon-Based Quantum Dot Broad Spectrum Radiation Detector

    PubMed Central

    Urdaneta, M.; Stepanov, P.; Weinberg, I. N.; Pala, I. R.; Brock, S.

    2013-01-01

    Silicon is a convenient and inexpensive platform for radiation detection, but has low stopping power for x-rays and gamma-rays with high energy (e.g., 100 keV, as used in computed tomography and digital radiography, or 1 MeV, as desired for detection of nuclear materials). We have effectively increased the stopping power of silicon detectors by producing a layer of porous or micro-machined silicon, and infusing this layer with semiconductor quantum dots made of electron-dense materials. Results of prototype detectors show sensitivity to infrared, visible light, and x-rays, with dark current of less than 1 nA/mm2. PMID:24432047

  3. Prototype of readout electronics for the LHAASO KM2A electromagnetic particle detectors

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Chang, Jing-Fan; Wang, Zheng; Fan, Lei

    2016-07-01

    The KM2A (one kilometer square extensive air shower array) is the largest detector array in the LHAASO (Large High Altitude Air Shower Observatory) project. The KM2A consists of 5242 EDs (Electromagnetic particle Detectors) and 1221 MDs (Muon Detectors). The EDs are distributed and exposed in the wild. Two channels, anode and dynode, are employed for the PMT (photomultiplier tube) signal readout. The readout electronics designed in this paper aims at accurate charge and arrival time measurement of the PMT signals, which cover a large amplitude range from 20 P.E. (photoelectrons) to 2 × 105 P.E. By using a “trigger-less” architecture, we digitize signals close to the PMTs. All digitized data is transmitted to DAQ (Data Acquisition) via a simplified White Rabbit protocol. Compared with traditional high energy experiments, high precision of time measurement over such a large area and suppression of temperature effects in the wild become the key techniques. Experiments show that the design has fulfilled the requirements in this project. Supported by National Natural Science Foundation of China (11375210) and the Knowledge Innovation Fund of IHEP, Beijing

  4. The correlated characteristics of micro-seismic and electromagnetic radiation signals on a deep blasting workface

    NASA Astrophysics Data System (ADS)

    Li, Chengwu; Sun, Xiaoyuan; Wang, Chuan; Xu, Xiaomeng; Xie, Beijing; Li, Jing

    2016-12-01

    To date, both micro-seismic (MS) and electromagnetic radiation (EMR) techniques are used as normal, daily safety monitoring tools for coal or rock dynamic disasters in China. In previous studies, these two non-destructive techniques are usually analyzed independently; few works have been done to characterize the correlation or difference between them. This paper aims to analyze the correlated features of the MS and EMR signals obtained from a field site test on a deep blasting workface in Pingdingshan 10# coal colliery. The de-noised signals are firstly compared for their associated features, both in time synchronization and energy correlation, and then the mechanism for the correlated response is also investigated. The results show that: (1) MS and EMR signals have a higher time-synchronization and energy correlation. (2) The EMR signal in a blasting operation is a local signal, near to the location of the detectors. (3) The two orthogonal layout magnetic antennas (along the roadway and vertical to the coal wall) can detect a single pulse signal and group-occurring cluster signals. These two kinds of EMR signals result from coal crack evolution and resistance-capacitance (RC) oscillation circuits respectively, which are triggered by seismic longitudinal waves. (4) The seismic transverse wave, especially for the low frequency component of it, makes a rubbing friction effect on coal, producing a low-frequency electromagnetic oscillation signal. Affected by the power and propagation direction of the energy, the signal can only be captured by the antenna in the vertical direction of the coal wall.

  5. IceCube: A Cubic Kilometer Radiation Detector

    SciTech Connect

    IceCube Collaboration; Klein, Spencer R; Klein, S.R.

    2008-06-01

    IceCube is a 1 km{sup 3} neutrino detector now being built at the Amudsen-Scott South Pole Station. It consists of 4800 Digital Optical Modules (DOMs) which detect Cherenkov radiation from the charged particles produced in neutrino interactions. IceCube will observe astrophysical neutrinos with energies above about 100 GeV. IceCube will be able to separate {nu}{sub {mu}}, {nu}{sub t}, and {nu}{sub {tau}} interactions because of their different topologies. IceCube construction is currently 50% complete.

  6. Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation

    NASA Technical Reports Server (NTRS)

    Cwik, T.; Lou, J.; Katz, D.

    1997-01-01

    In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.

  7. Generation of ordinary mode electromagnetic radiation near the upper hybrid frequency in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Okuda, H.

    1984-01-01

    It is shown by means of plasma numerical simulations that long-wavelength ordinary mode electromagnetic radiation can be generated from short-wavelength electrostatic waves near the upper hybrid resonance frequency in an inhomogeneous plasma. A possible relation of this process to nonthermal continuum radiation in the magnetosphere is discussed.

  8. Localization of non-stationary sources of electromagnetic radiation with the aid of phasometry

    NASA Technical Reports Server (NTRS)

    Mersov, G. A.

    1978-01-01

    The possibility of localizing sources of electromagnetic radiation by measurement of the time of passage of the radiation or the measurement of its phase at various points of cosmic space, at which are located satellite observatories is examined. Algorithms are proposed for localization using two, three, and four astronomical observatories. The precision of the localization and several partial results of practical significance are deduced.

  9. Radiation characteristics of electromagnetic eigenmodes at the corrugated interface of a left-handed material.

    PubMed

    Cuevas, Mauro; Depine, Ricardo A

    2009-08-28

    We study the radiation characteristics of electromagnetic surface waves at a periodically corrugated interface between a conventional and a negatively refracting (or left-handed) material. In this case, and contrary to the surface plasmon polariton in a metallic grating, surface plasmon polaritons may radiate on both sides of the rough interface along which they propagate. We find novel radiation regimes which provide an indirect demonstration of other unusual phenomena characteristic of electromagnetic wave propagation in left-handed materials, such as negative refraction or backward wave propagation.

  10. GEM detectors development for radiation environment: neutron tests and simulations

    NASA Astrophysics Data System (ADS)

    Chernyshova, Maryna; Jednoróg, Sławomir; Malinowski, Karol; Czarski, Tomasz; Ziółkowski, Adam; Bieńkowska, Barbara; Prokopowicz, Rafał; Łaszyńska, Ewa; Kowalska-Strzeciwilk, Ewa; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Wojeński, Andrzej; Krawczyk, Rafał D.; Linczuk, Paweł; Potrykus, Paweł; Bajdel, Barcel

    2016-09-01

    One of the requests from the ongoing ITER-Like Wall Project is to have diagnostics for Soft X-Ray (SXR) monitoring in tokamak. Such diagnostics should be focused on tungsten emission measurements, as an increased attention is currently paid to tungsten due to a fact that it became a main candidate for the plasma facing material in ITER and future fusion reactor. In addition, such diagnostics should be able to withstand harsh radiation environment at tokamak during its operation. The presented work is related to the development of such diagnostics based on Gas Electron Multiplier (GEM) technology. More specifically, an influence of neutron radiation on performance of the GEM detectors is studied both experimentally and through computer simulations. The neutron induced radioactivity (after neutron source exposure) was found to be not pronounced comparing to an impact of other secondary neutron reaction products (during the exposure).

  11. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Robertson, J. B.; Boer, K. W.; Hadley, H. C., Jr. (Inventor)

    1974-01-01

    An infrared radiation detector including a cadmium sulfide platelet having a cathode formed on one of its ends and an anode formed on its other end is presented. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when based in the negative differential conductivity region. A negative potential is applied to the cathode such that a high-field domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet.

  12. Gravitational wave radiation by LIGO-type detectors and its reciprocity relation with the detector's fundamental quantum limited sensitivity

    NASA Astrophysics Data System (ADS)

    Pang, Belinda; Ma, Yiqiu; Miao, Haixing; Chen, Yanbei

    2017-01-01

    We relate the radiation of gravitational waves (GW) by a light interferometer with cavity arms (such as LIGO) to its quantum limited sensitivity as a detector of GW's, thereby demonstrating a reciprocity relation between the interferometer's function as a detector and emitter. We derive the pairwise interactions among the cavity optical field, the cavity end mirror, and the gravitational perturbation from the action principle. We quantize these degrees of freedom to calculate the GW's generated by a quantum object. We find that the rate of gravitational wave generation is related to the so-called quantum Cramer Rao bound of the detector, which is a general result from linear measurement theory that gives the fundamental limit to a detector's sensitivity. We show that increasing the maximal sensitivity for the interferometer also increases its GW radiation. This finding may point towards a new paradigm for improving detector sensitivity by maximizing GW radiator.

  13. [Fluorescence used to investigate the sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation].

    PubMed

    Xi, Gang; Yang, Yun-Jing; Lu, Hong

    2009-07-01

    A system for studying biological effect of radio frequency electromagnetic field was developed. The system can form an area where electromagnetic wave with large frequency range is well distributed. The strength of electromagnetic wave was measured easily. Electromagnetic wave in the system did not have effect on environment. The sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation of 300 MHz under power density of 5 mW x cm(-2) was studied by the spectral analysis method of fluorescence of 8-anilino-1-naphthalene-sulfonic acid (ANS) and the changes in chlorophyll a (Chla) fluorescence parameters of spinach chloroplast membrane. The result showed that the position of spectrum of ANS fluorescence of spinach chloroplast membrane did not change, but the intensity of ANS fluorescence was obviously increased under the action of electromagnetic radiation with power density of 1-5 mW x cm(-2). There was an increase in the intensity of ANS fluorescence with the increase in electromagnetic radiation. The increase of ANS fluorescence of spinach chloroplast membrane showed that low level electromagnetic field induced the decrease in fluidity of chloroplast membrane compared with control experiment. The cause of the change in the fluidity could be related to the polarization of chloroplast membrane under the electromagnetic field. The analysis of Chla fluorescence parameters of spinach chloroplast membrane indicated that low level electromagnetic field of 300 MHz made the fluorescence parameters F0 and F(VI/)F(V) decrease, and F(V)/Fo, Fv/F(m) and deltaF(V)/T increase. It was showed that low level electromagnetic field caused the change of non-active center of photosystem II of spinach chloroplast membrane to active center and the increase in potential active and photochemical efficiency of PSII, and promoted the transmit process of electron in photosynthesis of chloroplast membrane of photosynthesis cell in spinach leaf. The study confirmed

  14. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, J.H.; Lavietes, A.D.

    1998-05-26

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs.

  15. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, James H.; Lavietes, Anthony D.

    1998-05-29

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.

  16. Methodology for Assessing Radiation Detectors Used by Emergency Responders

    SciTech Connect

    Piotr Wasiolek; April Simpson

    2008-03-01

    The threat of weapons of mass destruction terrorism resulted in the U.S. Department of Homeland Security deploying large quantities of radiation detectors throughout the emergency responder community. However, emergency responders specific needs were not always met by standard health physics instrumentation used in radiation facilities. Several American National Standards Institute standards were developed and approved to evaluate the technical capabilities of detection equipment. Establishing technical capability is a critical step, but it is equally important to emergency responders that the instruments are easy to operate and can withstand the rugged situations they encounter. The System Assessment and Validation for Emergency Responders (SAVER) Program (managed by the U.S. Department of Homeland Security, Office of Grants and Training, Systems Support Division) focuses predominantly on the usability, ergonomics, readability, and other features of the detectors, rather than performance controlled by industry standards and the manufacturers. National Security Technologies, LLC, as a SAVER Technical Agent, conducts equipment evaluations using active emergency responders who are familiar with the detection equipment and knowledgeable of situations encountered in the field, which provides more relevant data to emergency responders.

  17. Laser system for testing radiation imaging detector circuits

    NASA Astrophysics Data System (ADS)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  18. Transition radiation detectors: state of art and new developments

    NASA Astrophysics Data System (ADS)

    Mazziotta, M. N.; Brigida, M.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Mirizzi, N.; Rainò, S.; Spinelli, P.

    2005-08-01

    Transition radiation (TR) is emitted whenever a fast particle (γ > 1000) crosses the boundaries of a periodic structure. Since the prediction of this effect, many studies and tests have been accomplished to understand both the features of this radiation and the eventual practical applications. Nowadays. the main application of TR is particle identification in accelerator physics and astrophysics. Particle identification is one of the most challenging aspect of the experiments performed in these fields. In fact the experimental problems arisen in the recent accelerator physics pose stringent constraints on the detectors due to the high rates, severe background conditions, event final state complexity. On the other hand, the cosmic ray physics requires in some cases simple but refined and reliable devices to be used in outer space or otherwise huge and stable apparata for surface and underground laboratories. After a brief presentation of the TR phenomenon produced by ultrarelativistic particles and relative detectors, the state of the art of this particle identification technique relative to the more recent TRDs will be discussed.

  19. Room temperature aluminum antimonide radiation detector and methods thereof

    DOEpatents

    Lordi, Vincenzo; Wu, Kuang Jen J.; Aberg, Daniel; Erhart, Paul; Coombs, III, Arthur W; Sturm, Benjamin W

    2015-03-03

    In one embodiment, a method for producing a high-purity single crystal of aluminum antimonide (AlSb) includes providing a growing environment with which to grow a crystal, growing a single crystal of AlSb in the growing environment which comprises hydrogen (H.sub.2) gas to reduce oxide formation and subsequent incorporation of oxygen impurities in the crystal, and adding a controlled amount of at least one impurity to the growing environment to effectively incorporate at least one dopant into the crystal. In another embodiment, a high energy radiation detector includes a single high-purity crystal of AlSb, a supporting structure for the crystal, and logic for interpreting signals obtained from the crystal which is operable as a radiation detector at a temperature of about 25.degree. C. In one embodiment, a high-purity single crystal of AlSb includes AlSb and at least one dopant selected from a group consisting of selenium (Se), tellurium (Te), and tin (Sn).

  20. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation

    PubMed Central

    Wu, Juan; Ma, Jun

    2017-01-01

    As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected. PMID:28358824

  1. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation.

    PubMed

    Wu, Juan; Xu, Yong; Ma, Jun

    2017-01-01

    As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected.

  2. On the continuous spectrum electromagnetic radiation in electron-fullerene collision

    SciTech Connect

    Amusia, M.Y.

    1995-08-01

    It is demonstrated that the electromagnetic radiation spectrum in electron-fullerene collisions is dominated by a huge maximum of multielectron nature, similar to that already predicted and observed in photoabsorption. Due to coherence, the intensity of this radiation is much stronger than the sum of the intensities of isolated atoms. Experimental detection of such radiation would be of great importance for understanding the mechanism of its formation and for investigating fullerene structures. A paper describing these results was published.

  3. Metronidazole as a protector of cells from electromagnetic radiation of extremely high frequencies

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel E.; Malinina, Ulia A.; Popyhova, Era B.; Rogacheva, Svetlana M.; Somov, Alexander U.

    2006-08-01

    It is well known that weak electromagnetic fields of extremely high frequencies cause significant modification of the functional status of biological objects of different levels of organization. The aim of the work was to study the combinatory effect of metronidazole - the drug form of 1-(2'hydroxiethil)-2-methil-5-nitroimidazole - and electromagnetic radiation of extremely high frequencies (52...75 GHz) on the hemolytic stability of erythrocytes and hemotaxis activity of Infusoria Paramecium caudatum.

  4. Stored electromagnetic energy and quality factor of radiating structures

    PubMed Central

    Jelinek, Lukas; Vandenbosch, Guy A. E.

    2016-01-01

    This paper deals with the old yet unsolved problem of defining and evaluating the stored electromagnetic energy—a quantity essential for calculating the quality factor, which reflects the intrinsic bandwidth of the considered electromagnetic system. A novel paradigm is proposed to determine the stored energy in the time domain leading to the method, which exhibits positive semi-definiteness and coordinate independence, i.e. two key properties actually not met by the contemporary approaches. The proposed technique is compared with an up-to-date frequency domain method that is extensively used in practice. Both concepts are discussed and compared on the basis of examples of varying complexity. PMID:27274693

  5. Radiation of electromagnetic waves by a dipole in an external uniform electrostatic field

    NASA Astrophysics Data System (ADS)

    Manaenkov, S. I.

    2017-01-01

    Exact solution for the electromagnetic field densities E and H of a dipole of uniformly accelerated point-charges with identical masses is discussed. It is shown that, for any fixed time t and a large distance R between the center of the dipole and the fieldpoint, | E| R -4, | H| R -5, while for large c| t| R, | E| | H| 1/ R as in spherical electromagnetic waves. Nevertheless, any irreversible radiation of electromagnetic waves is absent since the wave zone does not exist.

  6. Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine.

    PubMed

    Sivachenko, I B; Medvedev, D S; Molodtsova, I D; Panteleev, S S; Sokolov, A Yu; Lyubashina, O A

    2016-02-01

    Effects of millimeter-wave electromagnetic radiation (40 GHz frequency, 0.01 mW power) on the spontaneous fi ring of convergent neurons of the spinal trigeminal nucleus and their responses to electrical stimulation of the dura mater were studied in neurophysiological experiments on rats. Irradiation of the area of cutaneous receptive fields of spinal trigeminal nucleus reversibly inhibited both spontaneous discharges and activity induced by electrical stimulation of the dura mater. The second and third exposures to electromagnetic radiation with an interval of 10 min were ineffective. These results suggest that suppression of neuronal excitability in the spinal trigeminal ganglion can be a mechanism of the anti-migraine effects of electromagnetic radiation observed in clinical practice.

  7. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect

    Sanjoy Mukhopadhyay

    2007-08-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER{trademark}, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack{trademark} that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  8. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect

    Sanjoy Mukhopadhyay

    2007-08-31

    Recently, the U.S. Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS’s requirements in terms of sensitivity, resolution, response time and reach back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron’s identiFINDER™, which primarily uses sodium iodide crystals (3.18-cm x 2.54-cm cylinders) as gamma detector, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack™ that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity (comparable to that of a 7.62-cm x 7.62-cm sodium iodide crystal at low gamma energy ranging from 30 keV to 3,000 keV), better resolution (< 3.0 percent at 662 keV), faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets

  9. Field-deployable gamma-radiation detectors for DHS use

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy

    2007-09-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS' requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER TM, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack TM that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field1. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant spectral data and

  10. Polarization of Electromagnetic Radiation a Resource for Predicting Soil Moisture

    DTIC Science & Technology

    2005-07-25

    7]. Hayt, W. (1958). Engineering electromagnetics. Mcgraw-Hill Book Company,INC, London. [8]. Musil , J . & Zacek, F. (1986). Studies...standards for landscape architecture. McGraw-Hill Publishing Company, Washington D. C. [2]. McKelvey, J . & Grotch, H. (1978). Physics for science and...6]. Thuery, J . (1992). Microwaves: Industrial, scientific and medical applications. Artech House, Inc. Norwood, Massachusetts

  11. Improved detector for the measurement of gamma radiation

    NASA Astrophysics Data System (ADS)

    Zelt, F. B.

    1985-07-01

    The present invention lies in the field of gamma ray spectrometry of geologic deposits and other materials, such as building materials (cement, asphalt, etc.) More specifically, the invention is an improved device for the gamma ray spetcrometery of gelogical deposits as a tool for petroleum exploration, geologic research and monitoring of radio-active materials such as in uranium mill tailings and the like. Improvement consists in enlarging the area of the receptor face and without any necessarily substantial increase in the volume of the receptor crystal over the current cylindrical shapes. The invention also provides, as a corollary of the increase in area receptor crystal face, a reduction in the weight of the amount of material necessary to provide effective shielding of the crystal from atmospheric radiation and radiation from deposits not under examination. The area of the receptor crystal face is increased by forming the crystal as a truncated cone with the shielding shaped as a hollow frustrum of a cone. A photomultiplier device is secured to the smaller face of the crystal. The improved detector shape can also be used in scintillometers which measure total gamma radiation.

  12. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.

    1996-01-01

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  13. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, S.; Kross, B.J.; Zorn, C.J.; Majewski, L.A.

    1996-10-22

    An optimized examination system and method based on the Reverse Geometry X-Ray{trademark} (RGX{trademark}) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs.

  14. Modeling of the propagation of low-frequency electromagnetic radiation in the Earth’s magnetosphere

    SciTech Connect

    Lebedev, N. V. Rudenko, V. V.

    2015-06-15

    A numerical algorithm for solving the set of differential equations describing the propagation of low-frequency electromagnetic radiation in the magnetospheric plasma, including in the presence of geomagnetic waveguides in the form of large-scale plasma density inhomogeneities stretched along the Earth’s magnetic field, has been developed. Calculations of three-dimensional ray trajectories in the magnetosphere and geomagnetic waveguide with allowance for radiation polarization have revealed characteristic tendencies in the behavior of electromagnetic parameters along the ray trajectory. The results of calculations can be used for magnetospheric plasma diagnostics.

  15. Communications system using a mirror kept in outer space by electromagnetic radiation pressure

    DOEpatents

    Csonka, Paul L.

    1981-01-01

    A method and system are described for transmitting electromagnetic radiation by using a communications mirror located between about 100 kilometers and about 200 kilometers above ground. The communications mirror is kept aloft above the atmosphere by the pressure of the electromagnetic radiation which it reflects, and which is beamed at the communications mirror by a suitably constructed transmitting antenna on the ground. The communications mirror will reflect communications, such as radio, radar, or television waves up to about 1,100 kilometers away when the communications mirror is located at a height of about 100 kilometers.

  16. Radiation reaction from electromagnetic fields in the neighborhood of a point charge

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2017-03-01

    From the expression for the electromagnetic field in the neighborhood of a point charge, we determine the rate of electromagnetic momentum flow, calculated using the Maxwell stress tensor, across a surface surrounding the charge. From that we derive for a "point" charge the radiation reaction formula, which turns out to be proportional to the first time-derivative of the acceleration of the charge, identical to the expression for the self-force, hitherto obtained in the literature from the detailed mutual interaction between constituents of a small charged sphere. We then use relativistic transformations to arrive at a generalized formula for radiation reaction for a point charge undergoing relativistic motion.

  17. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  18. [Application of low-intensity and ultrahigh frequency electromagnetic radiation in modern pediatric practice].

    PubMed

    Azov, N A; Azova, E A

    2009-01-01

    The use of an Amfit-0,2/10-01 apparatus generating low-intensity ultrahigh frequency (UHF) electromagnetic radiation improved efficiency of therapy of sick children. This treatment allowed to reduce the frequency of intake of anesthetics in the post-operative period, correct metabolic disorders in children with type 1 diabetes mellitus, reduce severity of diabetic nephropathy and polyneuropathy, prevent formation of fresh foci of lipoid necrobiosis. The results of the study indicate that the use of low-intensity UHF electromagnetic radiation may be recommended for more extensive introduction into practical clinical work of pediatric endocrinologists and surgeons.

  19. Multiple cell radiation detector system, and method, and submersible sonde

    DOEpatents

    Johnson, Larry O.; McIsaac, Charles V.; Lawrence, Robert S.; Grafwallner, Ervin G.

    2002-01-01

    A multiple cell radiation detector includes a central cell having a first cylindrical wall providing a stopping power less than an upper threshold; an anode wire suspended along a cylindrical axis of the central cell; a second cell having a second cylindrical wall providing a stopping power greater than a lower threshold, the second cylindrical wall being mounted coaxially outside of the first cylindrical wall; a first end cap forming a gas-tight seal at first ends of the first and second cylindrical walls; a second end cap forming a gas-tight seal at second ends of the first and second cylindrical walls; and a first group of anode wires suspended between the first and second cylindrical walls.

  20. BOBCAT Personal Radiation Detector Field Test and Evaluation Campaign

    SciTech Connect

    Chris Hodge

    2008-03-01

    Following the success of the Anole test of portable detection system, the U.S. Department of Homeland Security (DHS) Domestic Nuclear Detection Office organized a test and evaluation campaign for personal radiation detectors (PRDs), also known as “Pagers.” This test, “Bobcat,” was conducted from July 17 to August 8, 2006, at the Nevada Test Site. The Bobcat test was designed to evaluate the performance of PRDs under various operational scenarios, such as pedestrian surveying, mobile surveying, cargo container screening, and pedestrian chokepoint monitoring. Under these testing scenarios, many operational characteristics of the PRDs, such as gamma and neutron sensitivities, positive detection and false alarm rates, response delay times, minimum detectable activities, and source localization errors, were analyzed. This paper will present the design, execution, and methodologies used to test this equipment for the DHS.

  1. Personal Radiation Detector Field Test and Evaluation Campaign

    SciTech Connect

    Chris A. Hodge, Ding Yuan, Raymond P. Keegan, Michael A. Krstich

    2007-07-09

    Following the success of the Anole test of portable detection system, the U.S. Department of Homeland Security (DHS) Domestic Nuclear Detection Office organized a test and evaluation campaign for personal radiation detectors (PRDs), also known as 'Pagers'. This test, 'Bobcat', was conducted from July 17 to August 8, 2006, at the Nevada Test Site. The Bobcat test was designed to evaluate the performance of PRDs under various operational scenarios, such as pedestrian surveying, mobile surveying, cargo container screening, and pedestrian chokepoint monitoring. Under these testing scenarios, many operational characteristics of the PRDs, such as gamma and neutron sensitivities, positive detection and false alarm rates, response delay times, minimum detectable activities, and source localization errors, were analyzed. This paper will present the design, execution, and methodologies used to test this equipment for the DHS.

  2. Electrical delay line multiplexing for pulsed mode radiation detectors

    NASA Astrophysics Data System (ADS)

    Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S.

    2015-04-01

    Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ∼243 ps FWHM to ∼272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is flexible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors.

  3. Electrical delay line multiplexing for pulsed mode radiation detectors.

    PubMed

    Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S

    2015-04-07

    Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ∼243 ps FWHM to ∼272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is flexible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors.

  4. Electrical delay line multiplexing for pulsed mode radiation detectors

    PubMed Central

    Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S.

    2015-01-01

    Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ~ 243 ps FWHM to ~272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is exible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors. PMID:25768002

  5. Improved gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  6. Gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  7. Compensation for radiation damage of SOI pixel detector via tunneling

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Arai, Y.; Fujita, Y.; Hamasaki, R.; Ikegami, Y.; Kurachi, I.; Miyoshi, T.; Nishimura, R.; Tauchi, K.; Tsuboyama, T.

    2016-09-01

    We are developing a method for removing holes trapped in the oxide layer of a silicon-on-insulator (SOI) monolithic pixel detector after irradiation. Radiation that passes through the detector generates positive charge by trapped holes in the buried oxide layer (BOX) underneath the MOSFET. The positive potential caused by these trapped holes modifies the characteristics of the MOSFET of the signal readout circuit. In order to compensate for the effect of the positive potential, we tried to recombine the trapped holes with electrons via Fowler-Nordheim (FN) tunneling. By applying high voltage to the buried p-well (BPW) under the oxide layer with the MOSFET fixed at 0 V, electrons are injected into the BOX by FN tunneling. X-rays cause a negative shift in the threshold voltage Vth of the MOSFET. We can successfully recover Vth close to its pre-irradiation level after applying VBPW ≥ 120 V. However, the drain leakage current increased after applying VBPW; we find that this can be suppressed by applying a negative voltage to the BPW.

  8. Development of high temperature, radiation hard detectors based on diamond

    NASA Astrophysics Data System (ADS)

    Metcalfe, Alex; Fern, George R.; Hobson, Peter R.; Ireland, Terry; Salimian, Ali; Silver, Jack; Smith, David R.; Lefeuvre, Gwenaelle; Saenger, Richard

    2017-02-01

    Single crystal CVD diamond has many desirable properties compared to current, well developed, detector materials; exceptional radiation, chemical and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry), wide bandgap and an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. However effective exploitation of these properties requires development of a suitable metallisation scheme to give stable contacts for high temperature applications. To best utilise available processing techniques to optimise sensor response through geometry and conversion media configurations, a reliable model is required. This must assess the performance in terms of spectral response and overall efficiency as a function of detector and converter geometry. The same is also required for proper interpretation of experimental data. Sensors have been fabricated with varying metallisation schemes indented to permit high temperature operation; Present test results indicate that viable fabrication schemes for high temperature contacts have been developed and present modelling results, supported by preliminary data from partners indicate simulations provide a useful representation of response.

  9. A Study of Electromagnetic Radiation of Corona Discharge Near 500-Kv Electric Installations

    SciTech Connect

    Korzhov, A. V.; Okrainskaya, I. S.; Sidorov, A. I.; Kufel'd, V. D.

    2004-01-15

    Data on the spectral composition and intensity of electromagnetic radiation of corona discharge are obtained in an experimental study performed on the outdoor switchgear of the Shagol 500-kV substation of the Chelyabinsk Enterprise of Trunk Transmission Grids and under a 500-kV Shagol - Kozyrevo overhead transmission line. The electromagnetic environment on the territory of the 500-kV outdoor switchgear is shown to be determined by narrow-band radiations (harmonics of the frequency of electric supply) and wide-band radiations due to corona discharges of high-voltage sources. This means that the personnel experience the action of a commercial-frequency electric field and electromagnetic radiation of a quite wide range, which is not allowed for by the existing guidelines. It is recommended to continue the study in cooperation with medical institutions in order to create guidelines that would allow for the joint action of commercial-frequency electric field and electromagnetic radiation and for the voltage in the line, the current load, the meteorological situation, and other factors.

  10. Comparative Response of Microchannel Plate and Channel Electron Multiplier Detectors to Penetrating Radiation in Space

    DOE PAGES

    Funsten, Herbert O.; Harper, Ronnie W.; Dors, Eric E.; ...

    2015-10-02

    Channel electron multiplier (CEM) and microchannel plate (MCP) detectors are routinely used in space instrumentation for measurement of space plasmas. Here, our goal is to understand the relative sensitivities of these detectors to penetrating radiation in space, which can generate background counts and shorten detector lifetime. We use 662 keV γ-rays as a proxy for penetrating radiation such as γ-rays, cosmic rays, and high-energy electrons and protons that are ubiquitous in the space environment. We find that MCP detectors are ~20 times more sensitive to 662 keV γ-rays than CEM detectors. This is attributed to the larger total area ofmore » multiplication channels in an MCP detector that is sensitive to electronic excitation and ionization resulting from the interaction of penetrating radiation with the detector material. In contrast to the CEM detector, whose quantum efficiency εγ for 662 keVγ -rays is found to be 0.00175 and largely independent of detector bias, the quantum efficiency of the MCP detector is strongly dependent on the detector bias, with a power law index of 5.5. Lastly, background counts in MCP detectors from penetrating radiation can be reduced using MCP geometries with higher pitch and smaller channel diameter.« less

  11. Comparative Response of Microchannel Plate and Channel Electron Multiplier Detectors to Penetrating Radiation in Space

    SciTech Connect

    Funsten, Herbert O.; Harper, Ronnie W.; Dors, Eric E.; Janzen, Paul A.; Larsen, Brian A.; MacDonald, Elizabeth A.; Poston, David I.; Ritzau, Stephen M.; Skoug, Ruth M.; Zurbuchen, Thomas H.

    2015-10-02

    Channel electron multiplier (CEM) and microchannel plate (MCP) detectors are routinely used in space instrumentation for measurement of space plasmas. Here, our goal is to understand the relative sensitivities of these detectors to penetrating radiation in space, which can generate background counts and shorten detector lifetime. We use 662 keV γ-rays as a proxy for penetrating radiation such as γ-rays, cosmic rays, and high-energy electrons and protons that are ubiquitous in the space environment. We find that MCP detectors are ~20 times more sensitive to 662 keV γ-rays than CEM detectors. This is attributed to the larger total area of multiplication channels in an MCP detector that is sensitive to electronic excitation and ionization resulting from the interaction of penetrating radiation with the detector material. In contrast to the CEM detector, whose quantum efficiency εγ for 662 keVγ -rays is found to be 0.00175 and largely independent of detector bias, the quantum efficiency of the MCP detector is strongly dependent on the detector bias, with a power law index of 5.5. Lastly, background counts in MCP detectors from penetrating radiation can be reduced using MCP geometries with higher pitch and smaller channel diameter.

  12. Device for conversion of electromagnetic radiation into electrical current

    DOEpatents

    Blakeslee, A. Eugene; Mitchell, Kim W.

    1981-01-01

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  13. Device for conversion of electromagnetic radiation into electrical current

    DOEpatents

    Blakeslee, A.E.; Mitchell, K.W.

    1980-03-25

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  14. Biological Effects of Nonionizing Electromagnetic Radiation. Volume V, Number 1.

    DTIC Science & Technology

    1980-09-01

    measured by unique fluorescent probes and a one-of-a-kind time-correlated laser fluorimeter; ously shown to be affected by ELF EMF, Phtsan and 3...Michaelson. S. M. (Sch. Medicine and Dentistry . tremely Low Frequency Electromagnetic Fields. Pro- Univ. Rochester. Rochester, NY 14627). In: Biological...A pulsed-light- tion partners. The nonlinear dielectric response of emitting diode transmits light through optical fibers the perturbed systems was

  15. Radiation detector device for rejecting and excluding incomplete charge collection events

    SciTech Connect

    Bolotnikov, Aleksey E.; De Geronimo, Gianluigi; Vernon, Emerson; Yang, Ge; Camarda, Giuseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B.

    2016-05-10

    A radiation detector device is provided that is capable of distinguishing between full charge collection (FCC) events and incomplete charge collection (ICC) events based upon a correlation value comparison algorithm that compares correlation values calculated for individually sensed radiation detection events with a calibrated FCC event correlation function. The calibrated FCC event correlation function serves as a reference curve utilized by a correlation value comparison algorithm to determine whether a sensed radiation detection event fits the profile of the FCC event correlation function within the noise tolerances of the radiation detector device. If the radiation detection event is determined to be an ICC event, then the spectrum for the ICC event is rejected and excluded from inclusion in the radiation detector device spectral analyses. The radiation detector device also can calculate a performance factor to determine the efficacy of distinguishing between FCC and ICC events.

  16. [Impact of various millimeter-range electromagnetic radiation schedules on immunological parameters in patients with respiratory sarcoidosis].

    PubMed

    Borisov, S B; Shpykov, A S; Terent'eva, N A

    2007-01-01

    The paper analyzes the impact of various millimeter-range electromagnetic radiation schedules on immunological parameters in 152 patients with new-onset respiratory sarcoidosis. It shows that the immunomodulatory effect of millimeter-range therapy depends on the treatment regimen chosen. There is evidence for the advantages of millimeter-range noise electromagnetic radiation.

  17. [Study on effects of bioelectric parameters of rats in electromagnetic radiation of HV transmission line].

    PubMed

    Zhang, Anying; Pang, Xiaofeng; Yuan, Ping

    2007-02-01

    With the development of economy and coming of information era, the chance of exposure to electromagnetic fields with various frequencies has been increased for every human. The effects of electromagnetic radiattion on human being's health are versatile. To study the effects of bioelctronic parameters of rats in the electromagnetic radiations of HV transmission line, EEG, ECG and CMAP were measured in rats exposed to simulating high-voltage transmission line electromagnetic radiation for over one year. Brain tissues were studied by Fourier transform infrared spectroscopy. The results showed that no significant difference between exposed group and control group in EEG; however the FT-infrared spectra of brain tissues were different; the ECG of the exposed animals was considerably altered. Significant slowing of heart rate was observed in those rates exposed to EMFs; the latent period of CMAP in exposed group were not different compared with those of control group however there was a significant difference in wave amplitude of CMAP between the exposed group and control group. All results indicated that there must be some effects on bioelectric parameters of rats exposed to electromagnetic radiation of high-voltage transmission line for a long time.

  18. Derivation of the blackbody radiation spectrum from the equivalence principle in classical physics with classical electromagnetic zero-point radiation

    SciTech Connect

    Boyer, T.H.

    1984-03-15

    A derivation of Planck's spectrum including zero-point radiation is given within classical physics from recent results involving the thermal effects of acceleration through classical electromagnetic zero-point radiation. A harmonic electric-dipole oscillator undergoing a uniform acceleration a through classical electromagnetic zero-point radiation responds as would the same oscillator in an inertial frame when not in zero-point radiation but in a different spectrum of random classical radiation. Since the equivalence principle tells us that the oscillator supported in a gravitational field g = -a will respond in the same way, we see that in a gravitational field we can construct a perpetual-motion machine based on this different spectrum unless the different spectrum corresponds to that of thermal equilibrium at a finite temperature. Therefore, assuming the absence of perpetual-motion machines of the first kind in a gravitational field, we conclude that the response of an oscillator accelerating through classical zero-point radiation must be that of a thermal system. This then determines the blackbody radiation spectrum in an inertial frame which turns out to be exactly Planck's spectrum including zero-point radiation.

  19. The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach

    ERIC Educational Resources Information Center

    Likar, A.; Razpet, N.

    2009-01-01

    The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…

  20. Food collection and response to pheromones in an ant species exposed to electromagnetic radiation.

    PubMed

    Cammaerts, Marie-Claire; Rachidi, Zoheir; Bellens, François; De Doncker, Philippe

    2013-09-01

    We used the ant species Myrmica sabuleti as a model to study the impact of electromagnetic waves on social insects' response to their pheromones and their food collection. We quantified M. sabuleti workers' response to their trail, area marking and alarm pheromone under normal conditions. Then, we quantified the same responses while under the influence of electromagnetic waves. Under such an influence, ants followed trails for only short distances, no longer arrived at marked areas and no longer orientated themselves to a source of alarm pheromone. Also when exposed to electromagnetic waves, ants became unable to return to their nest and recruit congeners; therefore, the number of ants collecting food increases only slightly and slowly. After 180 h of exposure, their colonies deteriorated. Electromagnetic radiation obviously affects social insects' behavior and physiology.

  1. Wire-chamber radiation detector with discharge control

    DOEpatents

    Perez-Mendez, V.; Mulera, T.A.

    1982-03-29

    A wire chamber; radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or; near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  2. ON DISCOVERING ELECTROMAGNETIC EMISSION FROM NEUTRON STAR MERGERS: THE EARLY YEARS OF TWO GRAVITATIONAL WAVE DETECTORS

    SciTech Connect

    Kasliwal, Mansi M.; Nissanke, Samaya

    2014-07-01

    We present the first simulation addressing the prospects of finding an electromagnetic (EM) counterpart to gravitational wave (GW) detections during the early years of only two advanced detectors. The perils of such a search may have appeared insurmountable when considering the coarse ring-shaped GW localizations spanning thousands of square degrees using time-of-arrival information alone. Leveraging the amplitude and phase information of the predicted GW signal narrows the localization to arcs with a median area of only a few hundred square degrees, thereby making an EM search tractable. Based on the locations and orientations of the two LIGO detectors, we find that the GW sensitivity is limited to only two of the four sky quadrants. Thus, the rates of GW events with two interferometers is only ≈40% of the rate with three interferometers of similar sensitivity. Another important implication of the sky quadrant bias is that EM observatories in North America and Southern Africa would be able to systematically respond to GW triggers several hours sooner than Russia and Chile. Given the larger sky areas and the relative proximity of detected mergers, 1 m class telescopes with very wide-field cameras are well-positioned for the challenge of finding an EM counterpart. Identification of the EM counterpart amidst the larger numbers of false positives further underscores the importance of building a comprehensive catalog of foreground stellar sources, background active galactic nucleus and potential host galaxies in the local universe. This initial study is based on a small sample of 17 detected mergers; future works will expand this sample.

  3. Review of studies on modulating enzyme activity by low intensity electromagnetic radiation.

    PubMed

    Vojisavljevic, Vuk; Pirogova, Elena; Cosic, Irena

    2010-01-01

    This paper is a compilation of our findings on non-thermal effects of electromagnetic radiation (EMR) at the molecular level. The outcomes of our studies revealed that that enzymes' activity can be modulated by external electromagnetic fields (EMFs) of selected frequencies. Here, we discuss the possibility of modulating protein activity using visible and infrared light based on the concepts of protein activation outlined in the resonant recognition model (RRM), and by low intensity microwaves. The theoretical basis behind the RRM model expounds a potential interaction mechanism between electromagnetic radiation and proteins as well as protein-protein interactions. Possibility of modulating protein activity by external EMR is experimentally validated by irradiation of the L-lactate Dehydrogenase enzyme.

  4. Point-source idealization in classical field theories. II. Mechanical energy losses from electromagnetic radiation reaction

    NASA Astrophysics Data System (ADS)

    Kates, Ronald E.; Rosenblum, Arnold

    1982-05-01

    This paper compares the mechanical energy losses due to electromagnetic radiation reaction on a two-particle, slow-motion system, as calculated from (1) the method of matched asymptotic expansions and (2) the Lorentz-Dirac equation, which assumes point sources. The matching derivation of the preceding paper avoided the assumption of a δ-function source by using Reissner-Nordström matching zones. Despite the differing mathematical assumptions of the two methods, their results are in agreement with each other and with the electromagnetic-field energy losses calculated by the evaluation of flux integrals. Our purpose is eventually to analyze Rosenblum's use of point sources as a possible cause of disagreement between the analogous calculations of gravitational radiation on a slow-motion system of two bodies. We begin with the simpler electromagnetic problem.

  5. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2004-04-27

    A radiation detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  6. Magnetic field instability of a plasma in a beam of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.

    1980-04-01

    A beam of electromagnetic radiation can generate magnetic fields in plasmas. It is shown that those fields grow significantly when the incident radiation is sufficiently strong. We obtain expressions for the characteristic time of the growth of the fields as well as for their spatial distribution and point out a possible mechanism, which can lead to the formation of a quasi-stationary state. The maximum value of the magnetic field strength is estimated.

  7. Effects of Electromagnetic Radiation from Smartphones on Learning Ability and Hippocampal Progenitor Cell Proliferation in Mice

    PubMed Central

    Choi, Yu-Jin; Choi, Yun-Sik

    2015-01-01

    Objectives Nonionizing radiation is emitted from electronic devices, such as smartphones. In this study, we intended to elucidate the effect of electromagnetic radiation from smartphones on spatial working memory and progenitor cell proliferation in the hippocampus. Methods Both male and female mice were randomly separated into two groups (radiated and control) and the radiated group was exposed to electromagnetic radiation for 9 weeks and 11 weeks for male and female mice, respectively. Spatial working memory was examined with a Y maze, and proliferation of hippocampal progenitor cells were examined by 5-bromo-2′-deoxyuridine administration and immunohistochemical detection. Results When spatial working memory on a Y maze was examined in the 9th week, there was no significant difference in the spontaneous alternation score on the Y maze between the two groups. In addition, there was no significant difference in hippocampal progenitor cell proliferation. However, immunoreactivity to glial fibrillary acidic protein was increased in exposed animals. Next, to test the effect of recovery following chronic radiation exposure, the remaining female mice were further exposed to electromagnetic radiation for 2 more weeks (total 11 weeks), and spontaneous alternation was tested 4 weeks later. In this experiment, although there was no significant difference in the spontaneous alternation scores, the number of arm entry was significantly increased. Conclusion These data indicate that although chronic electromagnetic radiation does not affect spatial working memory and hippocampal progenitor cell proliferation it can mediate astrocyte activation in the hippocampus and delayed hyperactivity-like behavior. PMID:26981337

  8. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats.

    PubMed

    Mohammed, Haitham S; Fahmy, Heba M; Radwan, Nasr M; Elsayed, Anwar A

    2013-03-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested.

  9. Quantum radiation of Maxwell’s electromagnetic field in nonstationary Kerr-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Ibungochouba Singh, T.; Ablu Meitei, I.; Yugindro Singh, K.

    2016-03-01

    Quantum radiation properties of nonstationary Kerr-de Sitter (KdS) black hole is investigated using the method of generalized tortoise coordinate transformation. The locations of horizons and the temperature of the thermal radiation as well as the maximum energy of the nonthermal radiation are derived. It is found that the surface gravity and the Hawking temperature depend on both time and different angles. An extra coupling effect is obtained in the thermal radiation spectrum of Maxwell’s electromagnetic field equations which is absent in the thermal radiation spectrum of scalar particles. Further, the chemical potential derived from the thermal radiation spectrum of scalar particle has been found to be equal to the highest energy of the negative energy state of the scalar particle in the nonthermal radiation for KdS black hole. It is also shown that the generalized tortoise coordinate transformation produces a constant term in the expression of the surface gravity and Hawking temperature.

  10. Electromagnetic Radiation from Vortex Flow in Type-II Superconductors

    SciTech Connect

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2006-11-10

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, {omega}{sub 0}=2{pi}v/a, up to a superconducting gap, {delta}/({Dirac_h}/2{pi}). Here v is the velocity of the vortex lattice and a is the intervortex spacing. We compute radiation power and show that this effect can be used for the generation of terahertz radiation and for characterization of moving vortex lattices.

  11. Electromagnetic Radiation Hazards Testing for Non-Ionizing Radio Frequency Transmitting Equipment

    DTIC Science & Technology

    2012-12-19

    Ordnance (HERO), Personnel ( HERP ), and Fuel (HERF) protection guidance for intentional non-ionizing Radio Frequency (RF) transmitting equipment as...Effects HERO RADHAZ HERF HERP RF 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...Hazards of Electromagnetic Radiation to Ordnance (HERO), Personnel ( HERP ), and Fuel (HERF) protection guidance for intentional non-ionizing Radio

  12. On the possibility to use semiconductive hybrid pixel detectors for study of radiation belt of the Earth.

    NASA Astrophysics Data System (ADS)

    Guskov, A.; Shelkov, G.; Smolyanskiy, P.; Zhemchugov, A.

    2016-02-01

    The scientific apparatus GAMMA-400 designed for study of electromagnetic and hadron components of cosmic rays will be launched to an elliptic orbit with the apogee of about 300 000 km and the perigee of about 500 km. Such a configuration of the orbit allows it to cross periodically the radiation belt and the outer part of magnetosphere. We discuss the possibility to use hybrid pixel detecters based on the Timepix chip and semiconductive sensors on board the GAMMA-400 apparatus. Due to high granularity of the sensor (pixel size is 55 mum) and possibility to measure independently an energy deposition in each pixel, such compact and lightweight detector could be a unique instrument for study of spatial, energy and time structure of electron and proton components of the radiation belt.

  13. Effects of solar electromagnetic radiation on the terrestrial environment.

    NASA Astrophysics Data System (ADS)

    Dickinson, R. E.

    Contents: Atmospheric structure and composition (thermosphere, stratosphere and mesosphere structure and chemistry, tropospheric chemistry). The climate system (current questions, introduction to simple climate models, trapping of thermal radiation by atmospheric constituents, thermal feedback by clouds and water vapor, anthropogenic modulation of trace gases important for climate, atmospheric and oceanic circulation and the seasons, primitive climate, the carbon cycle and the faint-early-Sun). Solar radiation drives the biosphere (origins of photosynthesis, photosynthesis in action, harvesting the sunlight, net primary productivity).

  14. On the Transport and Radiative Properties of Plasmas with Small-Scale Electromagnetic Fluctuations

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.

    Plasmas with sub-Larmor-scale ("small-scale") electromagnetic fluctuations are a feature of a wide variety of high-energy-density environments, and are essential to the description of many astrophysical/laboratory plasma phenomena. Radiation from particles, whether they be relativistic or non-relativistic, moving through small-scale electromagnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The radiation, carrying information on the statistical properties of the turbulence, is also intimately related to the particle diffusive transport. We investigate, both theoretically and numerically, the transport of non-relativistic and transrelativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic turbulence---both with and without a mean field component---and its relation to the spectra of radiation simultaneously produced by these particles. Furthermore, the transport of particles through small-scale electromagnetic turbulence---under certain conditions---resembles the random transport of particles---via Coulomb collisions---in collisional plasmas. The pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasi-collisionality", may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, novel, diagnostic tool for the exploration and characterization of small-scale electromagnetic turbulence. Lastly, we speculate upon the manner in which quasi-collisions may affect inertial confinement fusion (ICF), and other laser-plasma experiments. Finally, we show that mildly relativistic jitter radiation, from laser-produced plasmas, may offer insight into the underlying electromagnetic turbulence. Here we investigate the

  15. Study Regarding Electromagnetic Radiation Exposure Generated By Mobile Phone

    SciTech Connect

    Marica, Lucia; Moraru, Luminita

    2011-12-26

    Number of mobile phone users reached to 5 billion subscribers in 2010 [ABI Research, 2010]. A large number of studies illustrated the public concern about adverse effects of mobile phone radiation and possible health hazards. Position of mobile phone use in close proximity to the head leads the main radiation between the hand and the head. Many investigations studying the possible effects of mobile phone exposure, founded no measurable effects of short-term mobile phone radiation, and there was no evidence for the ability to perceive mobile phone EMF in the general population. In this study, field radiation measurements were performed on different brand and different models of mobile phones in active mode, using an EMF RF Radiation Field Strength Power Meter 1 MHz-8 GHz. The study was effectuated on both the 2G and 3G generations phones connected to the providers operating in the frequency range 450 MHz-1800 MHz. There were recorded values in outgoing call and SMS mode, incoming call and SMS mode. Results were compared with ICNIRP guidelines for exposure to general public.

  16. Study Regarding Electromagnetic Radiation Exposure Generated By Mobile Phone

    NASA Astrophysics Data System (ADS)

    Marica, Lucia; Moraru, Luminita

    2011-12-01

    Number of mobile phone users reached to 5 billion subscribers in 2010 [ABI Research, 2010]. A large number of studies illustrated the public concern about adverse effects of mobile phone radiation and possible health hazards. Position of mobile phone use in close proximity to the head leads the main radiation between the hand and the head. Many investigations studying the possible effects of mobile phone exposure, founded no measurable effects of short-term mobile phone radiation, and there was no evidence for the ability to perceive mobile phone EMF in the general population. In this study, field radiation measurements were performed on different brand and different models of mobile phones in active mode, using an EMF RF Radiation Field Strength Power Meter 1 MHz-8 GHz. The study was effectuated on both the 2G and 3G generations phones connected to the providers operating in the frequency range 450 MHz-1800 MHz. There were recorded values in outgoing call and SMS mode, incoming call and SMS mode. Results were compared with ICNIRP guidelines for exposure to general public.

  17. Plural-wavelength flame detector that discriminates between direct and reflected radiation

    NASA Technical Reports Server (NTRS)

    Hall, Gregory H. (Inventor); Barnes, Heidi L. (Inventor); Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor); Smith, Harvey S. (Inventor)

    1997-01-01

    A flame detector employs a plurality of wavelength selective radiation detectors and a digital signal processor programmed to analyze each of the detector signals, and determine whether radiation is received directly from a small flame source that warrants generation of an alarm. The processor's algorithm employs a normalized cross-correlation analysis of the detector signals to discriminate between radiation received directly from a flame and radiation received from a reflection of a flame to insure that reflections will not trigger an alarm. In addition, the algorithm employs a Fast Fourier Transform (FFT) frequency spectrum analysis of one of the detector signals to discriminate between flames of different sizes. In a specific application, the detector incorporates two infrared (IR) detectors and one ultraviolet (UV) detector for discriminating between a directly sensed small hydrogen flame, and reflections from a large hydrogen flame. The signals generated by each of the detectors are sampled and digitized for analysis by the digital signal processor, preferably 250 times a second. A sliding time window of approximately 30 seconds of detector data is created using FIFO memories.

  18. Radiation Protection of New Lightweight Electromagnetic Interference Shielding Materials Determined

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Weight savings as high as 80 percent could be achieved by simply switching from aluminum electromagnetic interference (EMI) shielding covers for spacecraft power systems to EMI covers made from intercalated graphite fiber composites. Because EMI covers typically make up about one-fifth of the power system mass, this change would decrease the mass of a spacecraft power system by more than 15 percent. Intercalated graphite fibers are made by diffusing guest atoms or molecules, such as bromine, between the carbon planes of the graphite fibers. The resulting bromine-intercalated fibers have mechanical and thermal properties nearly identical to pristine graphite fibers, but their resistivity is lower by a factor of 5, giving them better electrical conductivity than stainless steel and making these composites suitable for EMI shielding.

  19. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M.; Trompier, François; Ambrozova, Iva; Kubancak, Jan; Matthiä, Daniel; Ploc, Ondrej; Santen, Nicole; Wirtz, Michael

    2016-05-01

    Space weather can strongly affect the complex radiation field at aviation altitudes. The assessment of the corresponding radiation exposure of aircrew and passengers has been a challenging task as well as a legal obligation in the European Union for many years. The response of several radiation measuring instruments operated by different European research groups during joint measuring flights was investigated in the framework of the CONCORD (COmparisoN of COsmic Radiation Detectors) campaign in the radiation field at aviation altitudes. This cooperation offered the opportunity to measure under the same space weather conditions and contributed to an independent quality control among the participating groups. The CONCORD flight campaign was performed with the twin-jet research aircraft Dassault Falcon 20E operated by the flight facility Oberpfaffenhofen of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR). Dose rates were measured at four positions in the atmosphere in European airspace for about one hour at each position in order to obtain acceptable counting statistics. The analysis of the space weather situation during the measuring flights demonstrates that short-term solar activity did not affect the results which show a very good agreement between the readings of the instruments of the different institutes.

  20. Immunologic and hematopoietic alterations by 2,450-MHz electromagnetic radiation.

    PubMed

    Huang, A T; Mold, N G

    1980-01-01

    A biphasic modulation of responsiveness of spleen lymphocytes to mitogens was observed in mice exposed to 2,450-MHz radiation at power densities of 5-15 mW/cm2 over various periods ranging between one and 17 days. This modulated phenomenon may be explained on the basis of 1) suppression of lymphocyte response to microwave-activated macrophages which persists throughout the entire course of radiation, and 2) concurrent progressive direct stimulation of lymphocytes which culminates around day 9 of exposure. Tumor cytotoxicity of killer lymphocytes from mice exposed to five or nine days of radiation did not appear different from sham controls. The highly proliferative hematopoietic marrow cells were sensitive to microwave radiation. Nine days of exposure to radiation (15 mW/cm2) reduced the colony-forming units of myeloid and erythroid series by 50%. This observation may offer a new and more sensitive assay for studying biological effects of electromagnetic radiation.

  1. Electromagnetic fields radiated from a lightning return stroke - Application of an exact solution to Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Meneghini, R.

    1978-01-01

    A solution is presented for the electromagnetic fields radiated by an arbitrarily oriented current filament over a conducting ground plane in the case where the current propagates along the filament at the speed of light, and this solution is interpreted in terms of radiation from lightning return strokes. The solution is exact in the fullest sense; no mathematical approximations are made, and the governing differential equations and boundary conditions are satisfied. The solution has the additional attribute of being specified in closed form in terms of elementary functions. This solution is discussed from the point of view of deducing lightning current wave forms from measurements of the electromagnetic fields and understanding the effects of channel tortuosity on the radiated fields. In addition, it is compared with two approximate solutions, the traditional moment approximation and the Fraunhofer approximation, and a set of criteria describing their applicability are presented and interpreted.

  2. Effects of GSM-Frequency Electromagnetic Radiation on Some Physiological and Biochemical Parameters in Rats.

    PubMed

    Khirazova, E E; Baizhumanov, A A; Trofimova, L K; Deev, L I; Maslova, M V; Sokolova, N A; Kudryashova, N Yu

    2012-10-01

    Single exposure of white outbred rats to electromagnetic radiation with a frequency 905 MHz (GSM frequency) for 2 h increased anxiety, reduced locomotor, orientation, and exploration activities in females and orientation and exploration activities in males. Glucocorticoid levels and antioxidant system activity increased in both males and females. In addition to acute effects, delayed effects of radiation were observed in both males and females 1 day after the exposure. These results demonstrated significant effect of GSM-range radiation on the behavior and activity of stress-realizing and stress-limiting systems of the body.

  3. On the Long-Range Detection of Radioactivity Using Electromagnetic Radiation

    SciTech Connect

    Peurrung, Anthony J. )

    2001-12-01

    A series of recent publications (1-9) has provided experimental evidence that radiation fields can be detected well beyond the 10-100 meter limit that holds for conventional (direct) approaches to radiation detection. The techniques that are claimed to provide this capability rely upon the alteration of atmospheric electrostatic parameters, and measurement of these changes using remote electromagnetic interrogation. This paper examines the physics that underlies these proposed new approaches to radiation detection. If found to be viable for applications, the proposed techniques would be highly significant as they directly address a variety of problems in national security and environmental monitoring.

  4. Electromagnetic radiation from a plasma slab during the development of Weibel instability

    SciTech Connect

    Vagin, K. Yu.; Romanov, A. Yu.; Uryupin, S. A.

    2012-01-15

    Electromagnetic radiation from an anisotropic plasma slab formed by ionization of matter in the field of a high-power femtosecond pulse is studied. It is shown that the growth of initial field perturbations in the course of Weibel instability is accompanied by the generation of nonmonochromatic radiation with a characteristic frequency on the order of the instability growth rate. It is found that perturbations with characteristic scale lengths less than or on the order of the ratio of the speed of light to the Langmuir frequency are excited and radiated most efficiently, provided that the slab is thicker than this ratio.

  5. Effect of Electromagnetic Radiation on the Coils Used in Aneurysm Embolization

    PubMed Central

    Lv, Xianli; Wu, Zhongxue; Li, Youxiang

    2014-01-01

    Summary This study evaluated the effects of electromagnetic radiation in our daily lives on the coils used in aneurysm embolization. Faraday’s electromagnetic induction principle was applied to analyze the effects of electromagnetic radiation on the coils used in aneurysm embolization. To induce a current of 0.5mA in less than 5 mm platinum coils required to stimulate peripheral nerves, the minimum magnetic field will be 0.86 μT. To induce a current of 0.5 mA in platinum coils by a hair dryer, the minimum aneurysm radius is 2.5 mm (5 mm aneurysm). To induce a current of 0.5 mA in platinum coils by a computer or TV, the minimum aneurysm radius is 8.6 mm (approximate 17 mm aneurysm). The minimum magnetic field is much larger than the flux densities produced by computer and TV, while the minimum aneurysm radius is much larger than most aneurysm sizes to levels produced by computer and TV. At present, the effects of electromagnetic radiation in our daily lives on intracranial coils do not produce a harmful reaction. Patients with coiled aneurysm are advised to avoid using hair dryers. This theory needs to be proved by further detailed complex investigations. Doctors should give patients additional instructions before the procedure, depending on this study. PMID:24976203

  6. Effect of electromagnetic radiation on the coils used in aneurysm embolization.

    PubMed

    Lv, Xianli; Wu, Zhongxue; Li, Youxiang

    2014-06-01

    This study evaluated the effects of electromagnetic radiation in our daily lives on the coils used in aneurysm embolization. Faraday's electromagnetic induction principle was applied to analyze the effects of electromagnetic radiation on the coils used in aneurysm embolization. To induce a current of 0.5mA in less than 5 mm platinum coils required to stimulate peripheral nerves, the minimum magnetic field will be 0.86 μT. To induce a current of 0.5 mA in platinum coils by a hair dryer, the minimum aneurysm radius is 2.5 mm (5 mm aneurysm). To induce a current of 0.5 mA in platinum coils by a computer or TV, the minimum aneurysm radius is 8.6 mm (approximate 17 mm aneurysm). The minimum magnetic field is much larger than the flux densities produced by computer and TV, while the minimum aneurysm radius is much larger than most aneurysm sizes to levels produced by computer and TV. At present, the effects of electromagnetic radiation in our daily lives on intracranial coils do not produce a harmful reaction. Patients with coiled aneurysm are advised to avoid using hair dryers. This theory needs to be proved by further detailed complex investigations. Doctors should give patients additional instructions before the procedure, depending on this study.

  7. Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila.

    PubMed

    Lee, Kyu-Sun; Choi, Jong-Soon; Hong, Sae-Yong; Son, Tae-Ho; Yu, Kweon

    2008-07-01

    Mobile phones are widely used in the modern world. However, biological effects of electromagnetic radiation produced by mobile phones are largely unknown. In this report, we show biological effects of the mobile phone 835 MHz electromagnetic field (EMF) in the Drosophila model system. When flies were exposed to the specific absorption rate (SAR) 1.6 W/kg, which is the proposed exposure limit by the American National Standards Institute (ANSI), more than 90% of the flies were viable even after the 30 h exposure. However, in the SAR 4.0 W/kg strong EMF exposure, viability dropped from the 12 h exposure. These EMF exposures triggered stress response and increased the production of reactive oxygen species. The EMF exposures also activated extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling, but not p38 kinase signaling. Interestingly, SAR 1.6 W/kg activated mainly ERK signaling and expression of an anti-apoptotic gene, whereas SAR 4.0 W/kg strongly activated JNK signaling and expression of apoptotic genes. In addition, SAR 4.0 W/kg amplified the number of apoptotic cells in the fly brain. These findings demonstrate that the exposure limit on electromagnetic radiation proposed by ANSI triggered ERK-survival signaling but the strong electromagnetic radiation activated JNK-apoptotic signaling in Drosophila.

  8. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.

  9. Electromagnetic Radiofrequency Radiation Emitted from GSM Mobile Phones Decreases the Accuracy of Home Blood Glucose Monitors.

    PubMed

    Mortazavi, Smj; Gholampour, M; Haghani, M; Mortazavi, G; Mortazavi, Ar

    2014-09-01

    Mobile phones are two-way radios that emit electromagnetic radiation in microwave range. As the number of mobile phone users has reached 6 billion, the bioeffects of exposure to mobile phone radiation and mobile phone electromagnetic interference with electronic equipment have received more attention, globally. As self-monitoring of blood glucose can be a beneficial part of diabetes control, home blood glucose testing kits are very popular. The main goal of this study was to investigate if radiofrequency radiation emitted from a common GSM mobile phone can alter the accuracy of home blood glucose monitors. Forty five female nondiabetic students aged 17-20 years old participated in this study. For Control-EMF group (30 students), blood glucose concentration for each individual was measured in presence and absence of radiofrequency radiation emitted by a common GSM mobile phone (HTC touch, Diamond 2) while the phone was ringing. For Control- Repeat group (15 students), two repeated measurements were performed for each participant in the absence of electromagnetic fields. The magnitude of the changes between glucose levels in two repeated measurements (|ΔC|) in Control-Repeat group was 1.07 ± 0.88 mg/dl while this magnitude for Control-EMF group was 7.53 ± 4.76 mg/dl (P < 0.001, two-tailed test). To the best of our knowledge, this is the first study to assess the electromagnetic interference in home blood glucose monitors. It can be concluded that electromagnetic interference from mobile phones has an adverse effect on the accuracy of home blood glucose monitors. We suggest that mobile phones should be used at least 50 cm away from home blood glucose monitors.

  10. Experimental investigation of the radiation shielding of a MCP detector in the radiation environment near Europa

    NASA Astrophysics Data System (ADS)

    Tulej, Marek; Wurz, Peter; Meyer, Stefan; Lasi, Davide; Lüthi, Matthias; Galli, André; Piazza, Daniele; Desorgher, Laurent; Hajdas, Wojciech; Reggiani, Davide; Karlsson, Stefan; Kalla, Leif

    2016-04-01

    The Neutral Ion Mass spectrometer (NIM) is one of the six instruments in the Particle Environmental Package (PEP) designed for the JUICE mission of ESA to the Jupiter system. NIM will conduct detailed measurements of chemical composition of Jovian moon exospheres and is equipped with a sensitive MCP ion detector. To maintain high sensitivity of the NIM instrument, background signals arising from the presence of a large background of penetrating radiation (mostly high-energy electrons and protons) in Jupiter's magnetosphere have to be minimised. We investigate the performance of a layered-Z radiation shield, an Al-Ta-Al sandwich, as a potential shielding against high-energy electrons. The experimental investigations were performed at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The facility delivers a particle beam containing e,  and  with an adjustable momentum ranging from 17.5 to 345 MeV/c. The measurements of the induced radiation background generated during the interaction of primary particles with Al-Ta-Al sandwich were conducted by beam diagnostic methods and a MCP detector. Diagnostic methods provided for the characterisation of the beam parameters (beam geometry, flux and intensity) and identification of individual particles in the primary beam and in the flux of secondary particles. The MCP detector measurements provided information on the effects of radiation and the results of these measurements define the performance of the shielding material in reducing the background arising from penetrating radiation. In parallel, we performed modelling studies using GEANT 4 and GRASS methods to identify products of the interaction and predict their fluxes and particle rates at the MCP detector. Combination of the experiment and modelling studies yields detailed characterisation of the radiation effects produced by the interaction of the incident e- in the

  11. Some results of test beam studies of Transition Radiation Detector prototypes at CERN

    NASA Astrophysics Data System (ADS)

    Tikhomirov, V. O.; Brooks, T.; Joos, M.; Rembser, C.; Celebi, E.; Gurbuz, S.; Cetin, S. A.; Konovalov, S. P.; Zhukov, K.; Fillipov, K. A.; Romaniouk, A.; Smirnov, S. Yu; Teterin, P. E.; Vorobev, K. A.; Boldyrev, A. S.; Maevsky, A.; Derendarz, D.

    2017-01-01

    Operating conditions and challenging demands of present and future accelerator experiments result in new requirements on detector systems. There are many ongoing activities aimed to develop new technologies and to improve the properties of detectors based on existing technologies. Our work is dedicated to development of Transition Radiation Detectors (TRD) suitable for different applications. In this paper results obtained in beam tests at SPS accelerator at CERN with the TRD prototype based on straw technology are presented. TRD performance was studied as a function of thickness of the transition radiation radiator and working gas mixture pressure.

  12. Apparatuses and method for converting electromagnetic radiation to direct current

    DOEpatents

    Kotter, Dale K; Novack, Steven D

    2014-09-30

    An energy conversion device may include a first antenna and a second antenna configured to generate an AC current responsive to incident radiation, at least one stripline, and a rectifier coupled with the at least one stripline along a length of the at least one stripline. An energy conversion device may also include an array of nanoantennas configured to generate an AC current in response to receiving incident radiation. Each nanoantenna of the array includes a pair of resonant elements, and a shared rectifier operably coupled to the pair of resonant elements, the shared rectifier configured to convert the AC current to a DC current. The energy conversion device may further include a bus structure operably coupled with the array of nanoantennas and configured to receive the DC current from the array of nanoantennas and transmit the DC current away from the array of nanoantennas.

  13. Electromagnetic Radiation in the Plasma Environment Around the Shuttle

    NASA Technical Reports Server (NTRS)

    Vayner, Boris V.; Ferguson, Dale C.

    1995-01-01

    As part of the SAMPIE (The Solar Array Module Plasma Interaction Experiment) program, the Langmuir probe (LP) was employed to measure plasma characteristics during the flight STS-62. The whole set of data could be divided into two parts: (1) low frequency sweeps to determine voltage-current characteristics and to find electron temperature and number density; (2) high frequency turbulence (HFT dwells) data caused by electromagnetic noise around the shuttle. The broadband noise was observed at frequencies 250-20,000 Hz. Measurements were performed in ram conditions; thus, it seems reasonable to believe that the influence of spacecraft operations on plasma parameters was minimized. The average spectrum of fluctuations is in agreement with theoretical predictions. According to purposes of SAMPIE, the samples of solar cells were placed in the cargo bay of the shuttle, and high negative bias voltages were applied to them to initiate arcing between these cells and surrounding plasma. The arcing onset was registered by special counters, and data were obtained that included the amplitudes of current, duration of each arc, and the number of arcs per one experiment. The LP data were analyzed for two different situations: with arcing and without arcing. Electrostatic noise spectra for both situations and theoretical explanation of the observed features are presented in this report.

  14. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    SciTech Connect

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  15. Charged Particle Induced Radiation damage of Germanium Detectors in Space: Two Mars Observer Gamma-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Bruekner, J.; Koenen, M.; Evans, L. G.; Starr, R.; Bailey, S. H.; Boynton W. V.

    1997-01-01

    The Mars Observer Gamma-Ray Spectrometer (MO GRS) was designed to measure gamma-rays emitted by the Martian surface. This gamma-ray emission is induced by energetic cosmic-ray particles penetrating the Martian surface and producing many secondary particles and gamma rays. The MO GRS consisted of an high-purity germanium (HPGe) detector with a passive cooler. Since radiation damage due to permanent bombardment of energetic cosmic ray particles (with energies up to several GeV) was expected for the MO GRS HPGe crystal, studies on radiation damage effects of HPGe crystals were carried on earth. One of the HPGe crystals (paradoxically called FLIGHT) was similar to the MO GRS crystal. Both detectors, MO GRS and FLIGHT, contained closed-end coaxial n-type HPGe crystals and had the same geometrical dimensions (5.6 x 5.6 cm). Many other parameters, such as HV and operation temperature, differed in space and on earth, which made it somewhat difficult to directly compare the performance of both detector systems. But among other detectors, detector FLIGHT provided many useful data to better understand radiation damage effects.

  16. Dynamic Electrothermal Model of a Sputtered Thermopile Thermal Radiation Detector for Earth Radiation Budget Applications

    NASA Technical Reports Server (NTRS)

    Weckmann, Stephanie

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) is a program sponsored by the National Aeronautics and Space Administration (NASA) aimed at evaluating the global energy balance. Current scanning radiometers used for CERES consist of thin-film thermistor bolometers viewing the Earth through a Cassegrain telescope. The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently studying a new sensor concept to replace the current bolometer: a thermopile thermal radiation detector. This next-generation detector would consist of a thermal sensor array made of thermocouple junction pairs, or thermopiles. The objective of the current research is to perform a thermal analysis of the thermopile. Numerical thermal models are particularly suited to solve problems for which temperature is the dominant mechanism of the operation of the device (through the thermoelectric effect), as well as for complex geometries composed of numerous different materials. Feasibility and design specifications are studied by developing a dynamic electrothermal model of the thermopile using the finite element method. A commercial finite element-modeling package, ALGOR, is used.

  17. Status of radiation damage measurements in room temperature semiconductor radiation detectors

    SciTech Connect

    Franks, L.A.; James, R.B.

    1998-04-01

    The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI{sub 2}) is reviewed for the purpose of determining their applicability to space applications. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 10{sup 10} p/cm{sup 2} and significant bulk leakage after 10{sup 12} p/cm{sup 2}. CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5 {times} 10{sup 9} p/cm{sup 2} in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from moderated fission spectrum neutrons after fluences up to 10{sup 10} n/cm{sup 2}, although activation was evident. CT detectors show resolution losses after fluences of 3 {times} 10{sup 9} p/cm{sup 2} at 33 MeV for chlorine-doped detectors. Indium doped material may be more resistant. Neutron exposures (8 MeV) caused resolution losses after fluences of 2 {times} 10{sup 10} n/cm{sup 2}. Mercuric iodide has been studied with intermediate energy protons (10 to 33 MeV) at fluences up to 10{sup 12} p/cm{sup 2} and with 1.5 GeV protons at fluences up to 1.2 {times} 10{sup 8} p/cm{sup 2}. Neutron exposures at 8 MeV have been reported at fluences up to 10{sup 15} n/cm{sup 2}. No radiation damage was found under these irradiation conditions.

  18. Asymmetric devices based on carbon nanotubes as detectors of sub-THz radiation

    NASA Astrophysics Data System (ADS)

    Gayduchenko, I. A.; Fedorov, G. E.; Stepanova, T. S.; Titova, N.; Voronov, B. M.; But, D.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.

    2016-08-01

    Demand for efficient terahertz (THz) radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. In this work, we systematically investigate the response of asymmetric carbon nanodevices to sub-terahertz radiation using different sensing elements: from dense carbon nanotube (CNT) network to individual CNT. We conclude that the detectors based on individual CNTs both semiconducting and quasi-metallic demonstrate much stronger response in sub-THz region than detectors based on disordered CNT networks at room temperature. We also demonstrate the possibility of using asymmetric detectors based on CNT for imaging in the THz range at room temperature. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.

  19. Compression of laser radiation in plasmas using electromagnetic cascading

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serguei

    2005-10-01

    We theoretically suggest an approach to generation of trains of few-femtosecond electromagnetic (EM) pulses in rarefied plasmas. The technique is based on the near-resonant laser beat wave excitation of electron plasma wave (EPW). The EPW modifies the refractive index of plasma thus inducing the periodic phase modulation of the driving laser (the modulation period being equal to the beat period). In spectral terms, the phase modulation is expressed as an EM cascading with the laser bandwidth proportional to the product of the plasma length, laser wavelength, and electron density perturbation in the EPW. In the case of beat wave downshifted from the Langmuir plasma frequency the longer-wavelength spectral components are advanced in time with respect to the shorter-wavelength ones near the center of each laser beat note. The anomalous group velocity dispersion of plasma compresses so chirped beat notes to a few-laser-pulse duration thus creating a train of sharp EM spikes with the beat wave periodicity. Depending on the plasma and laser parameters, chirping and compression can be implemented either concurrently in the same, or sequentially in different plasmas. Evolution of the laser beat wave and electron density perturbations is described in time and in two spatial dimensions (2D) in a weakly relativistic approximation. Using the compression effect, we demonstrate that the relativistic bi-stability regime of the EPW excitation [G. Shvets, Phys. Rev. Lett. 93, 195004 (2004)] can be achieved with the initially sub-threshold beat wave pulse. The effects of 2D evolution such as the relativistic self-focusing and cascade focusing are also addressed. We conjecture that this technique could be used for increasing the local power of sub- picosecond petawatt laser beams.

  20. Radiation damage studies for the SDC electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Fazely, A. R.; Gunasingha, R.; Imlay, R. L.; Khosravi, E. S.; Lim, Jit-Ning; Lyndon, C.; McMills, G.; McNeil, R. R.; Metcalf, W. J.; Courtney, J. C.; Tashakkori, R.; Vegara, B. J.

    1993-01-01

    We report the results from a year long study aimed at radiation resistance and optical performance of scintillator tile with green wave shifter fiber readout. A careful investigation of several rad-hard plastic scintillators from Bicron and Kuraray, studies indicate that for a specific rad-hard Bicron scintillator, it is possible to build a tile/fiber EM calorimeter that can operate in the design luminosity of SSC. This calorimeter with excellent optical response would only have a light loss of about 5% after being exposed to 1 Mrad.

  1. Effect of electromagnetic radiations on neurodegenerative diseases- technological revolution as a curse in disguise.

    PubMed

    Hasan, Gulam M; Sheikh, Ishfaq A; Karim, Sajjad; Haque, Absarul; Kamal, Mohammad A; Chaudhary, Adeel G; Azhar, Essam; Mirza, Zeenat

    2014-01-01

    In the present developed world, all of us are flooded with electromagnetic radiations (EMR) emanating from generation and transmission of electricity, domestic appliances and industrial equipments, to telecommunications and broadcasting. We have been exposed to EMR for last many decades; however their recent steady increase from artificial sources has been reported as millions of antennas and satellites irradiate the global population round the clock, year round. Needless to say, these are so integral to modern life that interaction with them on a daily basis is seemingly inevitable; hence, the EMR exposure load has increased to a point where their health effects are becoming a major concern. Delicate and sensitive electrical system of human body is affected by consistent penetration of electromagnetic frequencies causing DNA breakages and chromosomal aberrations. Technological innovations came with Pandora's Box of hazardous consequences including neurodegenerative disorders, hearing disabilities, diabetes, congenital abnormalities, infertility, cardiovascular diseases and cancer to name few, all on a sharp rise. Electromagnetic non-ionizing radiations pose considerable health threat with prolonged exposure. Mobile phones are usually held near to the brain and manifest progressive structural or functional alterations in neurons leading to neurodegenerative diseases and neuronal death. This has provoked awareness among both the general public and scientific community and international bodies acknowledge that further systematic research is needed. The aim of the present review was to have an insight in whether and how cumulative electro-magnetic field exposure is a risk factor for neurodegenerative disorders.

  2. Geometrical Effects on the Electromagnetic Radiation from Lightning Return Strokes

    NASA Technical Reports Server (NTRS)

    Willett, John C.; Smith, David A.; LeVine, David M.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Los Alamos National Laboratory (LANL) Sferic Array has recorded electric-field-change waveforms simultaneously at several stations surrounding the ground-strike points of numerous return strokes in cloud-to-ground lightning flashes. Such data are available from the five-station sub-networks in both Florida and New Mexico. With these data it has been possible for the first time to compare the waveforms radiated in different directions by a given stroke. Such comparisons are of interest to assess both the effects of channel geometry on the fine structure of subsequent-stroke radiation fields and the role of branches in the more jagged appearance of first-stroke waveforms. This paper presents multiple-station, time-domain waveforms with a 200 Hz to 500 kHz pass-band from both first and subsequent return strokes at ranges generally between 100 and 200 km. The differences among waveforms of the same stroke received at stations in different directions from the lightning channel are often obvious. These differences are illustrated and interpreted in the context of channel tortuosity and branches.

  3. Radiation tolerance studies of neutron irradiated double sided silicon microstrip detectors

    NASA Astrophysics Data System (ADS)

    Singla, M.; Larionov, P.; Balog, T.; Heuser, J.; Malygina, H.; Momot, I.; Sorokin, I.; Sturm, C.

    2016-07-01

    Radiation tolerance studies were made on double-sided silicon microstrip detectors for the Silicon Tracking System of the Compressed Baryonic Matter experiment at FAIR. The prototype detectors from two different vendors were irradiated to twice the highest expected fluence (1 ×1014 1 MeVneqcm-2) in the CBM experimental runs of several years. Test results from these prototype detectors both before and after irradiations have been discussed.

  4. [The application of low-intensity electromagnetic radiation under immobilization stress conditions (an experimental study)].

    PubMed

    Korolev, Iu N; Bobrovnitskiĭ, I P; Nikoulina, L A; Mikhaĭlik, L V; Geniatulina, M S; Bobkova, A S

    2014-01-01

    The experiments carried out on outbred male white rats with the use of optical, electron-microscopic, biochemical, and radioimmunological methods have demonstrated that the application of low-intensity electromagnetic radiation (LI-EMR) with a flow density of 1 mcW/cm2 and a frequency of around 1,000 MHz both in the primary prophylaxis regime and as the therapeuticpreventive modality arrested the development of post-stress disorders in the rat testicles, liver, and thymus; moreover, it promoted activation of the adaptive, preventive, and compensatory processes. The data obtained provide a rationale for the application of low-intensity electromagnetic radiation to protect the organism from negative effects of stressful factors.

  5. Electromagnetic Radiation from QCD Matter: Theory Overview. The XXVth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Shen, Chun

    2016-12-01

    Recent theory developments in electromagnetic radiation from relativistic heavy-ion collisions are reviewed. Electromagnetic observables can serve as a thermometer, a viscometer, and tomographic probes to the collision system. The current status of the "direct photon flow puzzle" is highlighted.

  6. Monitoring dynamic reactions of red blood cells to UHF electromagnetic waves radiation using a novel micro-imaging technology.

    PubMed

    Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong

    2012-12-01

    Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.

  7. Terahertz spectroscopy with a holographic Fourier transform spectrometer plus array detector using coherent synchrotron radiation

    SciTech Connect

    Nikolay I. Agladz, John Klopf, Gwyn Williams, Albert J. Sievers

    2010-06-01

    By use of coherent terahertz synchrotron radiation, we experimentally tested a holographic Fourier transform spectrometer coupled to an array detector to determine its viability as a spectral device. Somewhat surprisingly, the overall performance strongly depends on the absorptivity of the birefringent lithium tantalate pixels in the array detector.

  8. DIRC, the internally reflecting ring imaging Cerenkov detector for BABAR: Properties of the quartz radiators

    SciTech Connect

    Schwiening, Jochen

    1998-02-01

    A description of DIRC, a particle identification detector for the BABAR experiment at the Standard Linear Collider B Factory is given. It is the barrel region of the detector and its name is an acronym for detection of internally reflected Cherenkov radiation. It is a Cherenkov ring imaging device which utilizes totally internally reflected Cherenkov light in the visible and ultraviolet regions.

  9. Radiation detection system using semiconductor detector with differential carrier trapping and mobility

    DOEpatents

    Whited, Richard C.

    1981-01-01

    A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI.sub.2, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

  10. Apparatus and method for detecting electromagnetic radiation using electron photoemission in a micromechanical sensor

    DOEpatents

    Datskos, Panagiotis G.; Rajic, Slobodan; Datskou, Irene C.; Egert, Charles M.

    2002-01-01

    A micromechanical sensor and method for detecting electromagnetic radiation involve producing photoelectrons from a metal surface in contact with a semiconductor. The photoelectrons are extracted into the semiconductor, which causes photo-induced bending. The resulting bending is measured, and a signal corresponding to the measured bending is generated and processed. A plurality of individual micromechanical sensors can be arranged in a two-dimensional matrix for imaging applications.

  11. Utilizing electromagnetic radiation for hair growth: a critical review of phototrichogenesis.

    PubMed

    Kalia, Sunil; Lui, Harvey

    2013-01-01

    Hair loss has a high prevalence in the general population and can have significant medical and psychological sequelae. Pattern hair loss and alopecia areata represent the major reasons patients present to dermatologists in relation to hair loss. Because conventional treatment options are generally incompletely effective, novel methods for hair grown induction are being developed. The role of using electromagnetic radiation, including low-level laser therapy for the management of hair loss through phototrichogenesis, is reviewed in this article.

  12. Preparation and characterization of a novel ionizing electromagnetic radiation shielding material: Hematite filled polyester based composites

    NASA Astrophysics Data System (ADS)

    Eren Belgin, E.; Aycik, G. A.; Kalemtas, A.; Pelit, A.; Dilek, D. A.; Kavak, M. T.

    2015-10-01

    Isophthalic polyester (PES) based and natural mineral (hematite) filled composites were prepared and characterized for ionizing electromagnetic radiation shielding applications. Density evaluation and microscopic studies of the composites were carried out. Shielding performances of the composites were investigated for three different IEMR energy regions as low, intermediate and high. The mass attenuation coefficient of the prepared composites reached 98% of the elemental lead. In addition, the studied composites were superior to lead by virtue of their non-toxic nature.

  13. An Accurate Method to Compute the Parasitic Electromagnetic Radiations of Real Solar Panels

    NASA Astrophysics Data System (ADS)

    Andreiu, G.; Panh, J.; Reineix, A.; Pelissou, P.; Girard, C.; Delannoy, P.; Romeuf, X.; Schmitt, D.

    2012-05-01

    The methodology [1] able to compute the parasitic electromagnetic (EM) radiations of a solar panel is highly improved in this paper to model real solar panels. Thus, honeycomb composite panels, triple junction solar cells and serie or shunt regulation system can now be taken into account. After a brief summary of the methodology, the improvements are detailed. Finally, some encouraging frequency and time-domain results of magnetic field emitted by a real solar panel are presented.

  14. Maxwell electromagnetic theory, Planck's radiation law, and Bose—Einstein statistics

    NASA Astrophysics Data System (ADS)

    França, H. M.; Maia, A.; Malta, C. P.

    1996-08-01

    We give an example in which it is possible to understand quantum statistics using classical concepts. This is done by studying the interaction of chargedmatter oscillators with the thermal and zeropoint electromagnetic fields characteristic of quantum electrodynamics and classical stochastic electrodynamics. Planck's formula for the spectral distribution and the elements of energy hw are interpreted without resorting to discontinuities. We also show the aspects in which our model calculation complement other derivations of blackbody radiation spectrum without quantum assumptions.

  15. Radiation of de-excited electrons at large times in a strong electromagnetic plane wave

    SciTech Connect

    Kazinski, P.O.

    2013-12-15

    The late time asymptotics of the physical solutions to the Lorentz–Dirac equation in the electromagnetic external fields of simple configurations–the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave–are found. The solutions to the Landau–Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime. -- Highlights: •Late time asymptotics of the solutions to the Lorentz–Dirac equation are studied. •General properties of the total radiation power of electrons are established. •The total radiation power equals a half the rest energy divided by the proper-time. •Spectral densities of radiation formed on the late time asymptotics are derived. •Possible experimental verification of the results is proposed.

  16. [Saccharomyces cerevisiae as a model organism for studying the carcinogenicity of non-ionizing electromagnetic fields and radiation].

    PubMed

    Voĭchuk, S I

    2014-01-01

    Medical and biological aspects of the effects of non-ionizing electromagnetic (EM) fields and radiation on human health are the important issues that have arisen as a result of anthropogenic impact on the biosphere. Safe use of man-made sources of non-ionizing electromagnetic fields and radiation in a broad range of frequencies--static, radio-frequency and microwave--is a subject of discussions and speculations. The main problem is the lack of understanding of the mechanism(s) of reception of EMFs by living organisms. In this review we have analyzed the existing literature data regarding the effects of the electromagnetic radiation on the model eukaryotic organism--yeast Saccharomyces cerevisiae. An attempt was made to estimate the probability of induction of carcinogenesis in humans under the influence of magnetic fields and electromagnetic radiation of extremely low frequency, radio frequency and microwave ranges.

  17. University Physics Students' Use of Models in Explanations of Phenomena Involving Interaction between Metals and Electromagnetic Radiation.

    ERIC Educational Resources Information Center

    Redfors, Andreas; Ryder, Jim

    2001-01-01

    Examines third year university physics students' use of models when explaining familiar phenomena involving interaction between metals and electromagnetic radiation. Concludes that few students use a single model consistently. (Contains 27 references.) (DDR)

  18. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter

    SciTech Connect

    Litzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L.

    2013-08-15

    Purpose: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter.Methods: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3 × 6 cm{sup 2} radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study.Results: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053 ± 0.036, 0

  19. Rockburst disaster prediction of isolated coal pillar by electromagnetic radiation based on frictional effect.

    PubMed

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster.

  20. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  1. Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators.

    PubMed

    Wang, Ting; Zhang, Yusheng; Hong, Zhi; Han, Zhanghua

    2014-09-08

    We propose the use of radiative and subradiant resonators coupled to a metal-insulator-metal waveguide to represent the three-level energy diagram in conventional atomic systems and demonstrate a new realization of on-chip plasmonic analogue of electromagnetically-induced transparency (EIT) in integrated plasmonics. The radiative resonator is achieved with the help of aperture-coupling while evanescent coupling is relied for the subradiant resonator. Numerical simulation results demonstrate well-pronounced intermediate transmission peak through the bus waveguide and also show that the EIT effect can be easily controlled by the relative position of the two Fabry-Perot resonators.

  2. Effect of electromagnetic pulse transverse inhomogeneity on ion acceleration by radiation pressure

    SciTech Connect

    Lezhnin, K. V.; Kamenets, F. F.; Beskin, V. S.; Kando, M.; Esirkepov, T. Zh.; Bulanov, S. V.

    2015-03-15

    During ion acceleration by radiation pressure, a transverse inhomogeneity of an electromagnetic pulse leads to an off-axis displacement of the irradiated target, limiting the achievable ion energy. This effect is analytically described within the framework of a thin foil target model and with particle-in-cell simulations showing that the maximum energy of the accelerated ions decreases as the displacement from the axis of the target's initial position increases. The results obtained can be applied to the optimization of ion acceleration by the laser radiation pressure with mass-limited targets.

  3. Organic liquid scintillation detector shape and volume impact on radiation portal monitors

    NASA Astrophysics Data System (ADS)

    Paff, Marc G.; Clarke, Shaun D.; Pozzi, Sara A.

    2016-07-01

    We have developed and tested a radiation portal monitor using organic liquid scintillation detectors. In order to optimize our system designs, neutron measurements were carried out with three organic liquid scintillation detectors of different shapes and sizes, along with a 3He radiation portal monitor (RPM) as a reference. The three liquids tested were a 7.62 cm diameter by 7.62 cm length cylindrical active volume organic liquid scintillation detector, a 12.7 cm diameter by 12.7 cm length cylindrical active volume organic liquid scintillation detector, and a 25 cm by 25 cm by 10 cm "paddle" shaped organic liquid scintillation detector. Background and Cf-252 neutron measurements were recorded to allow for a comparison of neutron intrinsic efficiencies as well as receiver operating characteristics (ROC) curves between detectors. The 12.7 cm diameter cylindrical active volume organic liquid scintillation detector exhibited the highest intrinsic neutron efficiency (54%) of all three liquid scintillators. An ROC curve analysis for a heavily moderated Cf-252 measurement showed that using the 12.7 cm diameter by 12.7 cm length cylindrical active volume Eljen EJ309 organic liquid scintillation detector would result in the fewest needed detector units in order to achieve a near 100% positive neutron alarm rate while maintaining a better than 1 in 10,000 false alarm rate on natural neutron background. A small number of organic liquid scintillation detectors could therefore be a valid alternative to 3He in some RPM applications.

  4. The spectral-angular and polarization characteristics of radiation from an electron beam traversing an inhomogeneous electromagnetic wave

    SciTech Connect

    Koltsov, A.V.; Serov, A.V.

    1995-12-31

    The generation of frequency harmonics of a radiation when the electron beam traverse the inhomogeneous electromagnetic wave was investigated. The electromagnetic wave are linearly polarized. The plane beam of particles enters the wave at right angle with respect to the direction of propogation of the wave and the vector E of the wave. The spartial distribution of radiation from the higher harmonics and the power density contours are caculated.

  5. Optimal optoacoustic detector design

    NASA Technical Reports Server (NTRS)

    Rosengren, L.-G.

    1975-01-01

    Optoacoustic detectors are used to measure pressure changes occurring in enclosed gases, liquids, or solids being excited by intensity or frequency modulated electromagnetic radiation. Radiation absorption spectra, collisional relaxation rates, substance compositions, and reactions can be determined from the time behavior of these pressure changes. Very successful measurements of gaseous air pollutants have, for instance, been performed by using detectors of this type together with different lasers. The measuring instrument consisting of radiation source, modulator, optoacoustic detector, etc. is often called spectrophone. In the present paper, a thorough optoacoustic detector optimization analysis based upon a review of its theory of operation is introduced. New quantitative rules and suggestions explaining how to design detectors with maximal pressure responsivity and over-all sensitivity and minimal background signal are presented.

  6. Development of CdZnTe radiation detectors

    NASA Astrophysics Data System (ADS)

    Bolotnikov, Aleksey; Camarda, Giuseppe; Hossain, Anwar; Kim, Ki Hyun; Yang, Ge; Gul, Rubi; Cui, Yonggang; James, Ralph B.

    2011-08-01

    Cadmium Zinc Telluride (CdZnTe or CZT) is a very attractive material for room-temperature semiconductor detectors because of its wide band-gap and high atomic number. Despite these advantages, CZT still presents some material limitations and poor hole mobility. In the past decade most of the efforts developing CZT detectors focused on designing different electrode configurations, mainly to minimize the deleterious effect due to the poor hole mobility. A few different electrode geometries were designed and fabricated, such as pixelated anodes and Frisch-grid detectors developed at Brookhaven National Lab (BNL). However, crystal defects in CZT materials still limit the yield of detector-grade crystals, and, in general, dominate the detector's performance. In the past few years, our group's research extended to characterizing the CZT materials at the micro-scale, and to correlating crystal defects with the detector's performance. We built a set of unique tools for this purpose, including infrared (IR) transmission microscopy, X-ray micro-scale mapping using synchrotron light source, X-ray transmission- and reflection- topography, current deep level transient spectroscopy (I-DLTS), and photoluminescence measurements. Our most recent work on CZT detectors was directed towards detailing various crystal defects, studying the internal electrical field, and delineating the effects of thermal annealing on improving the material properties. In this paper, we report our most recent results.

  7. PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring

    SciTech Connect

    Fallu-Labruyere, A.; Micou, C.; Schulcz, F.; Fellinger, J.

    2015-07-01

    PRD3000{sup TM} is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, have emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)

  8. Developments in gas detectors for synchrotron x-ray radiation

    SciTech Connect

    Fischer, J.; Radeka, V.; Smith, G.C.

    1985-09-01

    New results on the physical limitations to position resolution in gas detectors for x-rays (approx. =3 to 20 keV) due to the range of photoelectrons and Auger electrons are discussed. These results were obtained with a small gap detector in which position readout was accomplished by using a very low noise centroid finding technique. A description is given of position sensitive detectors for medium rates (a few x 10/sup 5/ photons per second), using delay line readout, and for very high rates (approx. =10/sup 8/ photons per second), using fast signal shaping on the output of each anode wire.

  9. Role of electrode metallization in performance of semi-insulating GaAs radiation detectors

    NASA Astrophysics Data System (ADS)

    Dubecký, František; Boháček, Pavol; Sekáčová, Mária; Zaťko, Bohumír; Lalinský, Tibor; Linhart, Vladimír; Šagátová-Perd'ochová, Andrea; Mudroň, Ján; Pospíšil, Stanislav

    2007-06-01

    In the present work, a comparative study of semi-insulating (SI) GaAs radiation detectors with different blocking (Schottky) and ohmic contact metallization is presented. The detectors fabricated from "detector-grade" bulk SI GaAs are characterized by current-voltage measurements and their detection performance is evaluated from pulse-height spectra of 241Am and 57Co γ-sources. Observed results are evaluated and discussed. Importance of the optimized electrodes technology of SI GaAs detector with good performance is demonstrated.

  10. Methods for radiation detection and characterization using a multiple detector probe

    DOEpatents

    Akers, Douglas William; Roybal, Lyle Gene

    2014-11-04

    Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured.

  11. Space radiation dosimetry: An optically stimulated luminescence radiation detector for low-Earth orbit

    NASA Astrophysics Data System (ADS)

    Gaza, Ramona

    Scope and method of study. The purpose of this study was to investigate Al2O3:C as a potential optically stimulated luminescence (OSL) radiation detector for Low-Earth Orbit. The OSL response of Al2O3:C was characterized in terms of its luminescence efficiency for a variety of heavy charged particles (HCPs) with features similar to those found in space. The HCP irradiations were performed using the HIMAC accelerator at Chiba (Japan), the proton facility at Loma Linda (CA) and the NSRL facility at Brookhaven (NY). The OSL curves were further investigated to obtain information about the 'mean efficiency' and 'mean LET', parameters that needed to assess the absorbed dose and the dose equivalent. This analysis was applied for simulated mixed radiation fields (ICCHIBAN) and actual space radiation exposures (i.e., STS-105, BRADOS, and TRACER). In parallel, the thermoluminescence response of dosimetry materials LiF:Mg,Ti and CaF2:Tm was also studied. Findings and conclusions. The OSL efficiency of Al2O 3:C exposed to HCPs was found to decrease with increasing linear energy transfer (LET) for the investigated LET range (i.e., from 0.4 keV/mum to 459 keV/mum). For simulated mixed radiation fields with a strong low-LET component, the results indicated that the OSL calibration methods (i.e., tau-method and R-method) can be used with good accuracy to obtain information about the absorbed dose and the dose equivalent. Nevertheless, for mixed fields with a strong high-LET component these methods will give larger errors when estimating the absorbed dose and the dose equivalent. For actual space radiation exposures, the results indicated that different materials/calibration methods (i.e., the LiF:Mg,Ti/HTR-method and the CaF2:Tm/peak 5 + 6/peak 3-method) give different results in terms of 'mean efficiency' and 'mean LET'. This was explained by suggesting that none of the above calibration methods can give information about the true average LET of the incident radiation, but rather

  12. Evidence of Dopant Type-Inversion and Other Radiation Damage Effects of the CDF Silicon Detectors

    SciTech Connect

    Martinez-Ballarin, Roberto

    2010-06-01

    The aim of this document is to study the effect of radiation damage on the silicon sensors. The reflection of the effect of radiation can be observed in two fundamental parameters of the detector: the bias current and the bias voltage. The leakage current directly affects the noise, while the bias voltage is required to collect the maximum signal deposited by the charged particle.

  13. Low radioactivity material for use in mounting radiation detectors

    NASA Technical Reports Server (NTRS)

    Fong, Marshall; Metzger, Albert E.; Fox, Richard L.

    1988-01-01

    Two materials, sapphire and synthetic quartz, have been found for use in Ge detector mounting assemblies. These materials combine desirable mechanical, thermal, and electrical properties with the radioactive cleanliness required to detect minimal amounts of K, Th, and U.

  14. Study of counting characteristics of porous dielectric detectors of radiations

    NASA Astrophysics Data System (ADS)

    Lorikyan, M. P.

    2003-12-01

    Multiwire and microstrip porous detectors have been developed and investigated for DC operation. The multiwire porous detector consists of anode wires, an Al cathode and a gap between them filled with porous CsI. The microstrip porous detector consists of an insulating plate covered with metallic strips, micromesh cathode and a gap between them filled with porous CsI. For some time after being manufactured, these detectors' performances are non-stable and they have poor spatial resolution. However, after being kept in vacuum for a certain time, they spontaneously acquire stability and spatial resolution better than 100 μm and have detection efficiencies of 100% and 70% for heavily ionizing α-particles and 5.9 keV X-rays, respectively. The MWPDD performs stably at an intensity of heavily ionizing α-particles of 711 cts/(cm 2 s).

  15. Radiation Resistance Study of Semi-Insulating GaAs-Based Radiation Detectors to Extremely High Gamma Doses

    NASA Astrophysics Data System (ADS)

    Ly Anh, T.; Perd'ochová, A.; Nečas, V.; Pavlicová, V.

    2006-01-01

    In our previous paper [V. Nečas et al.: Nucl. Inst. and Meth. A 458 (2001) 348-351] we reported on the study on radiation stability of semi-insulating (SI) LEG GaAs detectors to doses of photons from 60Co up to 19.2 kGy. Later we presented a study, which covered radiation hardness to the same doses on the base of detector material itself, where strong dependence has been proved [T. Ly Anh et al., Proceedings of the XII th International Conference on Semiconducting and Insulating Materials (SIMC-XII-2002). Smolenice Castle, Slovakia (2002) 292-295 (0-7803-7418-5)]. In this paper we present both the key electrical and detection characteristics of SI GaAs radiation detectors prepared using substrates from four various supplies and two different types of contacts, which were exposed to several gamma doses from 60Co up to the integral dose of about 1 MGy. The obtained results show that SI LEG GaAs detectors provide good spectroscopic performances and even their slight improvement after low to middle gamma irradiation doses (3 -10 kGy) was observed. Further dose exposure caused the degradation of detection properties with an extreme and following improvement depending on detector material properties. SI GaAs detector still retains its working capabilities even after very high doses applied, up to 1 MGy.

  16. Effect of electromagnetic radiations from mobile phone base stations on general health and salivary function

    PubMed Central

    Singh, Kushpal; Nagaraj, Anup; Yousuf, Asif; Ganta, Shravani; Pareek, Sonia; Vishnani, Preeti

    2016-01-01

    Objective: Cell phones use electromagnetic, nonionizing radiations in the microwave range, which some believe may be harmful to human health. The present study aimed to determine the effect of electromagnetic radiations (EMRs) on unstimulated/stimulated salivary flow rate and other health-related problems between the general populations residing in proximity to and far away from mobile phone base stations. Materials and Methods: A total of four mobile base stations were randomly selected from four zones of Jaipur, Rajasthan, India. Twenty individuals who were residing in proximity to the selected mobile phone towers were taken as the case group and the other 20 individuals (control group) who were living nearly 1 km away in the periphery were selected for salivary analysis. Questions related to sleep disturbances were measured using Pittsburgh Sleep Quality Index (PSQI) and other health problems were included in the questionnaire. Chi-square test was used for statistical analysis. Results: It was unveiled that a majority of the subjects who were residing near the mobile base station complained of sleep disturbances, headache, dizziness, irritability, concentration difficulties, and hypertension. A majority of the study subjects had significantly lesser stimulated salivary secretion (P < 0.01) as compared to the control subjects. Conclusions: The effects of prolonged exposure to EMRs from mobile phone base stations on the health and well-being of the general population cannot be ruled out. Further studies are warranted to evaluate the effect of electromagnetic fields (EMFs) on general health and more specifically on oral health. PMID:27011934

  17. Out of time: a possible link between mirror neurons, autism and electromagnetic radiation.

    PubMed

    Thornton, Ian M

    2006-01-01

    Recent evidence suggests a link between autism and the human mirror neuron system. In this paper, I argue that temporal disruption from the environment may play an important role in the observed mirror neuron dysfunction, leading in turn to the pattern of deficits associated with autism. I suggest that the developing nervous system of an infant may be particularly prone to temporal noise that can interfere with the initial calibration of brain networks such as the mirror neuron system. The most likely source of temporal noise in the environment is artificially generated electromagnetic radiation. To date, there has been little evidence that electromagnetic radiation poses a direct biological hazard. It is clear, however, that time-varying electromagnetic waves have the potential to temporally modulate the nervous system, particularly when populations of neurons are required to act together. This modulation may be completely harmless for the fully developed nervous system of an adult. For an infant, this same temporal disruption might act to severely delay or disrupt vital calibration processes.

  18. Performance test of pipe-shaped radiation shields for cryogenic interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Sakakibara, Yusuke; Kimura, Nobuhiro; Akutsu, Tomotada; Suzuki, Toshikazu; Kuroda, Kazuaki

    2015-08-01

    One of the most important challenges in cryogenic interferometric gravitational wave detectors is to reduce the undesirable thermal radiation coming through holes in the radiation shield, which are necessary for the laser beam to pass through. For this purpose, pipe-shaped radiation shields called duct shields are used. Here, we have manufactured duct shields for KAGRA in Japan, one of the cryogenic interferometric gravitational wave detectors, and measured the thermal radiation coming through the duct shields. The measured result was found to be consistent with the calculation result that the duct shield can reduce the thermal radiation to less than 1%. This fact confirmed that the amount of thermal radiation coming through the duct shields was smaller than KAGRA’s requirement.

  19. Radiating Fröhlich system as a model of cellular electromagnetism.

    PubMed

    Šrobár, Fedor

    2015-01-01

    Oscillating polar entities inside the biological cells, most notably microtubules, are bound to emit electromagnetic radiation. This phenomenon is described by Fröhlich kinetic equations expressing, in terms of quantum occupancy numbers of each discrete collective oscillatory mode, the balance between incoming metabolic energy flow and losses due to linear and non-linear interactions with the thermal environs of the oscillators. Hitherto, radiation losses have not been introduced as part of the balance; it was assumed that they were proportional to the modal occupation numbers. It is demonstrated that this formulation is incorrect and the radiation losses must be taken into account in the kinetic equations explicitly. Results of a numerical study of kinetic equations, enlarged in this sense, are presented for the case of three coupled oscillators which was shown to evince the essential attributes of the Fröhlich systems. Oscillator eigenfrequencies were chosen, alternatively, to fall into the MHz and the THz frequency domains. It was found that large radiation levels destroy the main hallmark of the Fröhlich systems, the energy condensation in the lowest frequency mode. The system then functions as a convertor of metabolic energy into radiation. At more moderate radiation levels, both energy condensation and significant radiation can coexist. Possible consequences for the cell physiology are suggested.

  20. General description of electromagnetic radiation processes based on instantaneous charge acceleration in ''endpoints''

    SciTech Connect

    James, Clancy W.; Falcke, Heino; Huege, Tim; Ludwig, Marianne

    2011-11-15

    We present a methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation - the 'endpoint formulation' - combines numerous results developed in the literature in relation to radiation arising from particle acceleration using a complete, and completely general, treatment. We do this by describing particle motion via a series of discrete, instantaneous acceleration events, or 'endpoints', with each such event being treated as a source of emission. This method implicitly allows for particle creation and destruction, and is suited to direct numerical implementation in either the time or frequency domains. In this paper we demonstrate the complete generality of our method for calculating the radiated field from charged particle acceleration, and show how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits. Using this formulation, we are immediately able to answer outstanding questions regarding the phenomenology of radio emission from ultra-high-energy particle interactions in both the earth's atmosphere and the moon. In particular, our formulation makes it apparent that the dominant emission component of the Askaryan effect (coherent radio-wave radiation from high-energy particle cascades in dense media) comes from coherent 'bremsstrahlung' from particle acceleration, rather than coherent Vavilov-Cherenkov radiation.

  1. Radiation hard silicon particle detectors for HL-LHC-RD50 status report

    NASA Astrophysics Data System (ADS)

    Terzo, S.

    2017-02-01

    It is foreseen to significantly increase the luminosity of the LHC by upgrading towards the HL-LHC (High Luminosity LHC). The Phase-II-Upgrade scheduled for 2024 will mean unprecedented radiation levels, way beyond the limits of the silicon trackers currently employed. All-silicon central trackers are being studied in ATLAS, CMS and LHCb, with extremely radiation hard silicon sensors to be employed on the innermost layers. Within the RD50 Collaboration, a massive R&D program is underway across experimental boundaries to develop silicon sensors with sufficient radiation tolerance. We will present results of several detector technologies and silicon materials at radiation levels corresponding to HL-LHC fluences. Based on these results, we will give recommendations for the silicon detectors to be used at the different radii of tracking systems in the LHC detector upgrades. In order to complement the measurements, we also perform detailed simulation studies of the sensors.

  2. A low radiation optical system with lens positioned inside of the infrared detector Dewar

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Zhen, Zheng; Wang, Yingrui; Li, Juan; Ou, Wen; Li, Ang; Xiong, Jian

    2016-10-01

    For the far distance and weak signal detecting, low background noise is essential. Because the spatial noise of infrared system is mostly determined by spontaneous thermal radiation, it is the most directly method to achieve low spatial noise by refrigerating optics. This paper introduced a low radiation optical system with lens positioned inside of the infrared detector Dewar. The system includes two parts: the two mirror Cassegrain system working at room temperature which images the intermediate focus (IF) and the lens positioned inside of infrared detector Dewar which image the IF to focal plane. The working temperature inside of the infrared detector Dewar is 80K, the cryogenic lens contain three pieces lens whose total weight is below 5g. In view of engineering application, the low radiation optical system, the stray light analysis, cryogenic optics mounting and system testing were discussed. Calculations indicate that the equivalent blackbody radiation temperature (EBRT) is less than 180K.

  3. Simulation of ion beam induced current in radiation detectors and microelectronic devices.

    SciTech Connect

    Vizkelethy, Gyorgy

    2009-10-01

    Ionizing radiation is known to cause Single Event Effects (SEE) in a variety of electronic devices. The mechanism that leads to these SEEs is current induced by the radiation in these devices. While this phenomenon is detrimental in ICs, this is the basic mechanism behind the operation of semiconductor radiation detectors. To be able to predict SEEs in ICs and detector responses we need to be able to simulate the radiation induced current as the function of time. There are analytical models, which work for very simple detector configurations, but fail for anything more complex. On the other end, TCAD programs can simulate this process in microelectronic devices, but these TCAD codes costs hundreds of thousands of dollars and they require huge computing resources. In addition, in certain cases they fail to predict the correct behavior. A simulation model based on the Gunn theorem was developed and used with the COMSOL Multiphysics framework.

  4. Simulation of ion beam induced current in radiation detectors and microelectronic devices.

    SciTech Connect

    Vizkelethy, Gyorgy

    2010-07-01

    Ionizing radiation is known to cause Single Event Effects (SEE) in a variety of electronic devices. The mechanism that leads to these SEEs is current induced by the radiation in these devices. While this phenomenon is detrimental in ICs, this is the basic mechanism behind the operation of semiconductor radiation detectors. To be able to predict SEEs in ICs and detector responses we need to be able to simulate the radiation induced current as the function of time. There are analytical models, which work for very simple detector configurations, but fail for anything more complex. On the other end, TCAD programs can simulate this process in microelectronic devices, but these TCAD codes costs hundreds of thousands of dollars and they require huge computing resources. In addition, in certain cases they fail to predict the correct behavior. A simulation model based on the Gunn theorem was developed and used with the COMSOL Multiphysics framework.

  5. A program in detector development for the US synchrotron radiation community

    SciTech Connect

    Thompson, A.; Mills, D.; Naday, S.; Gruner, S.; Siddons, P.; Arthur, J.; Wehlitz, R.; Padmore, H.

    2001-07-14

    There is a clear gulf between the capabilities of modern synchrotrons to deliver high photon fluxes, and the capabilities of detectors to measure the resulting photon, electron or ion signals. While a huge investment has been made in storage ring technology, there has not to date been a commensurate investment in detector systems. With appropriate detector technology, gains in data rates could be 3 to 4 orders of magnitude in some cases. The US community working in detector technology is under-funded and fragmented and works without the long term funding commitment required for development of the most advanced detector systems. It is becoming apparent that the US is falling behind its international competitors in provision of state-of-the-art detector technology for cutting edge synchrotron radiation based experiments.

  6. The Schrödinger Equation, the Zero-Point Electromagnetic Radiation, and the Photoelectric Effect

    NASA Astrophysics Data System (ADS)

    França, H. M.; Kamimura, A.; Barreto, G. A.

    2016-04-01

    A Schrödinger type equation for a mathematical probability amplitude Ψ( x, t) is derived from the generalized phase space Liouville equation valid for the motion of a microscopic particle, with mass M and charge e, moving in a potential V( x). The particle phase space probability density is denoted Q( x, p, t), and the entire system is immersed in the "vacuum" zero-point electromagnetic radiation. We show, in the first part of the paper, that the generalized Liouville equation is reduced to a simpler Liouville equation in the equilibrium limit where the small radiative corrections cancel each other approximately. This leads us to a simpler Liouville equation that will facilitate the calculations in the second part of the paper. Within this second part, we address ourselves to the following task: Since the Schrödinger equation depends on hbar , and the zero-point electromagnetic spectral distribution, given by ρ 0{(ω )} = hbar ω 3/2 π 2 c3, also depends on hbar , it is interesting to verify the possible dynamical connection between ρ 0( ω) and the Schrödinger equation. We shall prove that the Planck's constant, present in the momentum operator of the Schrödinger equation, is deeply related with the ubiquitous zero-point electromagnetic radiation with spectral distribution ρ 0( ω). For simplicity, we do not use the hypothesis of the existence of the L. de Broglie matter-waves. The implications of our study for the standard interpretation of the photoelectric effect are discussed by considering the main characteristics of the phenomenon. We also mention, briefly, the effects of the zero-point radiation in the tunneling phenomenon and the Compton's effect.

  7. Radiofrequency electromagnetic radiation from cell phone causes defective testicular function in male Wistar rats.

    PubMed

    Oyewopo, A O; Olaniyi, S K; Oyewopo, C I; Jimoh, A T

    2017-03-06

    Cell phones have become an integral part of everyday life. As cell phone usage has become more widespread, concerns have increased regarding the harmful effects of radiofrequency electromagnetic radiation from these devices. The current study was undertaken to investigate the effects of the emitted radiation by cell phones on testicular histomorphometry and biochemical analyses. Adult male Wistar rats weighing 180-200 g were randomly allotted to control, group A (switched off mode exposure), group B (1-hr exposure), group C (2-hr exposure) and group D (3-hr exposure). The animals were exposed to radiofrequency electromagnetic radiation of cell phone for a period of 28 days. Histomorphometry, biochemical and histological investigations were carried out. The histomorphometric parameters showed no significant change (p < .05) in the levels of germinal epithelial diameter in all the experimental groups compared with the control group. There was no significant change (p < .05) in cross-sectional diameter of all the experimental groups compared with the control group. Group D rats showed a significant decrease (p ˂ .05) in lumen diameter compared with group B rats. There was an uneven distribution of germinal epithelial cells in groups B, C and D. However, there was degeneration of the epithelia cells in group D when compared to the control and group B rats. Sera levels of malondialdehyde (MDA) and superoxide dismutase (SOD), which are markers of reactive oxygen species, significantly increased (MDA) and decreased (SOD), respectively, in all the experimental groups compared with the control group. Also sera levels of gonadotropic hormones (FSH, LH and testosterone) significantly decreased (p < .05) in groups C and D compared with the control group. The study demonstrates that chronic exposure to radiofrequency electromagnetic radiation of cell phone leads to defective testicular function that is associated with increased oxidative stress and decreased

  8. Subluminal and superluminal terahertz radiation in metamaterials with electromagnetically induced transparency.

    PubMed

    Bai, Zhengyang; Hang, Chao; Huang, Guoxiang

    2013-07-29

    We propose a scheme to design a new type of optical metamaterial that can mimic the functionality of four-state atomic systems of N-type energy-level configuration with electromagnetically induced transparency (EIT). We show that in such metamaterial a transition from a single EIT to a double EIT of terahertz radiation may be easily achieved by actively tuning the intensity of the infrared pump field or passively tuning the geometrical parameters of resonator structures. In addition, the group velocity of the terahertz radiation can be varied from subluminal to superluminal by changing the pump field intensity. The scheme suggested here may be used to construct chip-scale slow and fast light devices and to realize rapidly responded switching of terahertz radiation at room temperature.

  9. On the electromagnetic fields, Poynting vector, and peak power radiated by lightning return strokes

    NASA Technical Reports Server (NTRS)

    Krider, E. P.

    1992-01-01

    The initial radiation fields, Poynting vector, and total electromagnetic power that a vertical return stroke radiates into the upper half space have been computed when the speed of the stroke, nu, is a significant fraction of the speed of light, c, assuming that at large distances and early times the source is an infinitesimal dipole. The initial current is also assumed to satisfy the transmission-line model with a constant nu and to be perpendicular to an infinite, perfectly conducting ground. The effect of a large nu is to increase the radiation fields by a factor of (1-beta-sq cos-sq theta) exp -1, where beta = nu/c and theta is measured from the vertical, and the Poynting vector by a factor of (1-beta-sq cos-sq theta) exp -2.

  10. Health risks associated with residential exposure to extremely low frequency electromagnetic radiation

    SciTech Connect

    Lamarine, R.J.; Narad, R.A. )

    1992-10-01

    Extremely low frequency electromagnetic radiation has received considerable attention recently as a possible threat to the health of persons living near high tension electric power lines, distribution substations, and even in close proximity to common household electric appliances. Results of epidemiological and laboratory research are examined to assess risks associated with magnetic fields generated by extremely low frequency electromagnetic sources. Health risks associated with such fields include a wide variety of ills ranging from disruption of normal circadian rhythms to childhood cancers. Risk assessment has been particularly difficult to determine in light of an ostensible lack of a dose-response relationship. Current media sensation fueled in part by an equivocal position adopted by the United States Environmental Protection Agency has contributed to the controversy. Recommendations for prudent avoidance of possible dangers are presented along with policy implications concerning health risks associated with magnetic fields.32 references.

  11. Health risks associated with residential exposure to extremely low frequency electromagnetic radiation.

    PubMed

    Lamarine, R J; Narad, R A

    1992-10-01

    Extremely low frequency electromagnetic radiation has received considerable attention recently as a possible threat to the health of persons living near high tension electric power lines, distribution substations, and even in close proximity to common household electric appliances. Results of epidemiological and laboratory research are examined to assess risks associated with magnetic fields generated by extremely low frequency electromagnetic sources. Health risks associated with such fields include a wide variety of ills ranging from disruption of normal circadian rhythms to childhood cancers. Risk assessment has been particularly difficult to determine in light of an ostensible lack of a dose-response relationship. Current media sensation fueled in part by an equivocal position adopted by the United States Environmental Protection Agency has contributed to the controversy. Recommendations for prudent avoidance of possible dangers are presented along with policy implications concerning health risks associated with magnetic fields.

  12. Electromagnetics

    DTIC Science & Technology

    2012-03-07

    Radiation Patterns Predicted and measured Beam Steering integration to Shadow Harvest Sensor Pod Lockheed Martin and OSU 29 DISTRIBUTION A...spatial filtering system, with an appropriate phase mask, can produce an Airy beam 18 DISTRIBUTION A: Approved for public release; distribution is...ES) arrays attain 7 dB realizable gain, 5 dB higher than any previous ES antenna . • Can be used to replace much larger Yagi antennas . • Paves

  13. Radiation Hard AlGaN Detectors and Imager

    SciTech Connect

    2012-05-01

    Radiation hardness of AlGaN photodiodes was tested using a 65 MeV proton beam with a total proton fluence of 3x10{sup 12} protons/cm{sup 2}. AlGaN Deep UV Photodiode have extremely high radiation hardness. These new devices have mission critical applications in high energy density physics (HEDP) and space explorations. These new devices satisfy radiation hardness requirements by NIF. NSTec is developing next generation AlGaN optoelectronics and imagers.

  14. Technical Note: Response measurement for select radiation detectors in magnetic fields

    SciTech Connect

    Reynolds, M.; Fallone, B. G.; Rathee, S.

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear accelerator–magnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  15. The electromagnetic radiation from simple sources in the presence of a homogeneous dielectric sphere

    NASA Technical Reports Server (NTRS)

    Mason, V. B.

    1973-01-01

    In this research, the effect of a homogeneous dielectric sphere on the electromagnetic radiation from simple sources is treated as a boundary value problem, and the solution is obtained by the technique of dyadic Green's functions. Exact representations of the electric fields in the various regions due to a source located inside, outside, or on the surface of a dielectric sphere are formulated. Particular attention is given to the effect of sphere size, source location, dielectric constant, and dielectric loss on the radiation patterns and directivity of small spheres (less than 5 wavelengths in diameter) using the Huygens' source excitation. The computed results are found to closely agree with those measured for waveguide-excited plexiglas spheres. Radiation patterns for an extended Huygens' source and for curved electric dipoles located on the sphere's surface are also presented. The resonance phenomenon associated with the dielectric sphere is studied in terms of the modal representation of the radiated fields. It is found that when the sphere is excited at certain frequencies, much of the energy is radiated into the sidelobes. The addition of a moderate amount of dielectric loss, however, quickly attenuates this resonance effect. A computer program which may be used to calculate the directivity and radiation pattern of a Huygens' source located inside or on the surface of a lossy dielectric sphere is listed.

  16. The effect of non ionising electromagnetic radiation on RAAF personnel during World War II.

    PubMed

    Flaherty, J A

    1994-05-01

    Did exposure to non ionising electromagnetic radiation during World War II in the short term have a stimulating effect on the anterior pituitary gland, and in turn on the gonads of both sexes, since the figures obtained appeared to affect the sexes equally? Is it that the long-term effect of microwave radiation on personnel is to cause adenoma and carcinoma? Is this long-term effect similar to the long-term effect of X-rays on infants, children and adolescents? According to Harrison's Principles of Internal Medicine 1980 (page 1710): "X-rays to the head and neck in infancy, childhood or adolescence is associated with a high incidence of thyroid disease later in life. Nodular disease is found to be particularly common on 20% of patients at risk, and may not be apparent until 30 years or more after exposure. One-third of the nodular type are found to be carcinomatous." The effect of non ionising electromagnetic and microwave radiation on those who work in these fields certainly needs much more investigation. What will be the long-term effect of using micro-ovens on the rising generation?

  17. Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits.

    PubMed

    Irmak, M Kemal; Fadillioğlu, Ersin; Güleç, Mukaddes; Erdoğan, Hasan; Yağmurca, Murat; Akyol, Omer

    2002-12-01

    The number of reports on the effects induced by electromagnetic radiation (EMR) in various cellular systems is still increasing. Until now no satisfactory mechanism has been proposed to explain the biological effects of this radiation. Oxygen free radicals may play a role in mechanisms of adverse effects of EMR. This study was undertaken to investigate the influence of electromagnetic radiation of a digital GSM mobile telephone (900 MHz) on oxidant and antioxidant levels in rabbits. Adenosine deaminase, xanthine oxidase, catalase, myeloperoxidase, superoxide dismutase (SOD) and glutathione peroxidase activities as well as nitric oxide (NO) and malondialdehyde levels were measured in sera and brains of EMR-exposed and sham-exposed rabbits. Serum SOD activity increased, and serum NO levels decreased in EMR-exposed animals compared to the sham group. Other parameters were not changed in either group. This finding may indicate the possible role of increased oxidative stress in the pathophysiology of adverse effect of EMR. Decreased NO levels may also suggest a probable role of NO in the adverse effect.

  18. High-frequency electromagnetic radiation injury to the upper extremity: local and systemic effects.

    PubMed

    Ciano, M; Burlin, J R; Pardoe, R; Mills, R L; Hentz, V R

    1981-08-01

    Industrial use of radiofrequency and microwave energy sources (nonionizing, high-frequency electromagnetic radiation) is a growing and widespread phenomenon, with projected risks of exposure to more than 20 million workers in the United States. A description of the nature of this form of electromagnetic energy is given, with emphasis on the variability of energy absorption by humans. The current state of biological research is reviewed, and a summary of the known effects of radiofrequency and microwave radiation exposure on animals and humans provided. These known effects appear to be principally thermal, similar to conventional electrical burn injuries, but with some unique systemic expression. Derangements of cardiovascular, gastrointestinal, endocrine, hematological, ophthalmological, and behavioral functions are well described in animal experimentation. Two patients are presented--one a young woman exposed to a high-density radiofrequency field in an industrial setting, leading to necrosis of the entire hand and wrist as well as to a constellation of systemic effects, and one an older woman exposed to excessive microwave radiation from a malfunctioning microwave oven, leading to chronic hand pain and paresthesias resembling median nerve entrapment at the carpus. The prevalence of potential exposure in certain industries is noted and recommendations for follow-up care of workers exposed to this form of trauma are delineated.

  19. High-frequency electromagnetic radiation injury to the upper extremity: local and systemic effects

    SciTech Connect

    Ciano, M.; Burlin, J.R.; Pardoe, R.; Mills, R.L.; Hentz, V.R.

    1981-01-01

    Industrial use of radiofrequency and microwave energy sources (nonionizing, high-frequency electromagnetic radiation) is a growing and widespread phenomenon, with projected risks of exposure to more than 20 million workers in the United States. A description of the nature of this form of electromagnetic energy is given, with emphasis on the variability of energy absorption by humans. The current state of biological research is reviewed, and a summary of the known effects of radiofrequency and microwave radiation exposure on animals and humans provided. These known effects appear to be principally thermal, similar to conventional electrical burn injuries, but with some unique systemic expression. Derangements of cardiovascular, gastrointestinal, endocrine, hematological, ophthalmological, and behavioral functions are well described in animal experimentation. Two patients are presented--one a young woman exposed to a high-density radiofrequency field in an industrial setting, leading to necrosis of the entire hand and wrist as well as to a constellation of systemic effects, and one an older woman exposed to excessive microwave radiation from a malfunctioning microwave oven, leading to chronic hand pain and paresthesias resembling median nerve entrapment at the carpus. The prevalence of potential exposure in certain industries is noted and recommendations for follow-up care of workers exposed to this form of trauma are delineated.

  20. Active noise canceling system for mechanically cooled germanium radiation detectors

    SciTech Connect

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  1. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Boer, K. W.; Hadley, H. C.; Robertson, J. B.

    1972-01-01

    New and highly sensitive method of detecting infrared irradiation makes possible solid state infrared detector which is more sensitive near room temperature than usual photoconductive low band gap semiconductor devices. Reconfiguration of high field domains in cadmium sulphide crystals provides basis for discovery.

  2. Fabrication process development for high-purity germanium radiation detectors with amorphous semiconductor contacts

    NASA Astrophysics Data System (ADS)

    Looker, Quinn

    High-purity germanium (HPGe) radiation detectors are well established as a valuable tool in nuclear science, astrophysics, and nuclear security applications. HPGe detectors excel in gamma-ray spectroscopy, offering excellent energy resolution with large detector sizes for high radiation detection efficiency. Although a robust fabrication process has been developed, improvement is needed, especially in developing electrical contact and surface passivation technology for position-sensitive detectors. A systematic study is needed to understand how the detector fabrication process impacts detector performance and reliability. In order to provide position sensitivity, the electrical contacts are segmented to form multiple electrodes. This segmentation creates new challenges in the fabrication process and warrants consideration of additional detector effects related to the segmentation. A key area of development is the creation of the electrical contacts in a way that enables reliable operation, provides low electronic noise, and allows fine segmentation of electrodes, giving position sensitivity for radiation interactions in the detector. Amorphous semiconductor contacts have great potential to facilitate new HPGe detector designs by providing a thin, high-resistivity surface coating that is the basis for electrical contacts that block both electrons and holes and can easily be finely segmented. Additionally, amorphous semiconductor coatings form a suitable passivation layer to protect the HPGe crystal surface from contamination. This versatility allows a simple fabrication process for fully passivated, finely segmented detectors. However, the fabrication process for detectors with amorphous semiconductors is not as highly developed as for conventional technologies. The amorphous semiconductor layer properties can vary widely based on how they are created and these can translate into varying performance of HPGe detectors with these contacts. Some key challenges include

  3. Radiation Hard Silicon Particle Detectors for Phase-II LHC Trackers

    NASA Astrophysics Data System (ADS)

    Oblakowska-Mucha, A.

    2017-02-01

    The major LHC upgrade is planned after ten years of accelerator operation. It is foreseen to significantly increase the luminosity of the current machine up to 1035 cm‑2s‑1 and operate as the upcoming High Luminosity LHC (HL-LHC) . The major detectors upgrade, called the Phase-II Upgrade, is also planned, a main reason being the aging processes caused by severe particle radiation. Within the RD50 Collaboration, a large Research and Development program has been underway to develop silicon sensors with sufficient radiation tolerance for HL-LHC trackers. In this summary, several results obtained during the testing of the devices after irradiation to HL-LHC levels are presented. Among the studied structures, one can find advanced sensors types like 3D silicon detectors, High-Voltage CMOS technologies, or sensors with intrinsic gain (LGAD). Based on these results, the RD50 Collaboration gives recommendation for the silicon detectors to be used in the detector upgrade.

  4. Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction.

    PubMed

    Coquillat, Dominique; Marczewski, Jacek; Kopyt, Pawel; Dyakonova, Nina; Giffard, Benoit; Knap, Wojciech

    2016-01-11

    Phenomena of the radiation coupling to the field effect transistors based terahertz (THz) detectors are studied. We show that in the case of planar metal antennas a significant portion of incoming radiation, instead of being coupled to the transistors, is coupled to an antenna substrate leading to responsivity losses and/or cross-talk effects in the field effect based THz detector arrays. Experimental and theoretical investigations of the responsivity versus substrate thickness are performed. They clearly show how to minimize the losses by the detector/ array substrate thinning. In conclusion simple quantitative rules of losses minimization by choosing a proper substrate thickness of field effect transistor THz detectors are presented for common materials (Si, GaAs, InP, GaN) used in semiconductor technologies.

  5. Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation

    DOEpatents

    Buican, Tudor N.; Martin, John C.

    1990-01-01

    An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.

  6. Leaky unstable modes and electromagnetic radiation amplification by an anisotropic plasma slab

    SciTech Connect

    Vagin, K. Yu. Uryupin, S. A.

    2015-09-15

    The interaction between electromagnetic radiation and a photoionized plasma slab with an anisotropic electron velocity distribution is studied. It is shown that the fields of leaky modes are amplified due to the development of aperiodic instability in the slab, which leads to an increase in both the reflected and transmitted fields. The transmitted field can significantly increase only if the slab thickness does not exceed the ratio of the speed of light to the electron plasma frequency, whereas there is no upper bound on the slab thickness for the reflected signal to be amplified.

  7. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    DOEpatents

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  8. The electromagnetic radiation and scanning characteristics of circular ferrite disc loaded with metallic discs

    NASA Astrophysics Data System (ADS)

    Vishvakarma, B. R.; Ali, A. A. M.

    A ferrite-disk antenna has been developed in which the scanning of the beam is achieved electromagnetically. The antenna consists of a ferrite disk loaded by metallic disks at the top and the bottom; scanning is achieved by changing the biasing magnetic field. The scanning mechanism is explained using the concept of surface waves. The equivalence principle is used to characterize the radiation, in which surface electric density distribution in the metallic disks and polarization current inside the ferrite volume are considered. The current densities in the proposed antenna are quantified using exact field solutions obtained from the Helmhotz and Maxwell equations.

  9. Solution of electromagnetic scattering and radiation problems using a spectral domain approach - A review

    NASA Technical Reports Server (NTRS)

    Mittra, R.; Ko, W. L.; Rahmat-Samii, Y.

    1979-01-01

    This paper presents a brief review of some recent developments on the use of the spectral-domain approach for deriving high-frequency solutions to electromagnetics scattering and radiation problems. The spectral approach is not only useful for interpreting the well-known Keller formulas based on the geometrical theory of diffraction (GTD), it can also be employed for verifying the accuracy of GTD and other asymptotic solutions and systematically improving the results when such improvements are needed. The problem of plane wave diffraction by a finite screen or a strip is presented as an example of the application of the spectral-domain approach.

  10. A method to model fuze-performance. Part 3: Diffraction of electromagnetic radiation by an edge

    NASA Astrophysics Data System (ADS)

    Vogel, M. H.

    1989-01-01

    The methods to calculate diffraction of electromagnetic radiation by a wedge, and especially monostatic reflection from the sharp edge of a half-plane. The derived Physical Optics is suited for smooth (perfectly conducting) surfaces. The method of Incremental Length Diffraction Coefficients (ILDC) is chosen because it is suited for edges of finite length and can easily be added to the method of Physical Optics. Experiments show that in many cases the addition of such a method to Physical Optics does not lead to better results than the use of Physical Optics alone.

  11. Characterization of a novel two dimensional diode array the ''magic plate'' as a radiation detector for radiation therapy treatment

    SciTech Connect

    Wong, J. H. D.; Fuduli, I.; Carolan, M.; Petasecca, M.; Lerch, M. L. F.; Perevertaylo, V. L.; Metcalfe, P.; Rosenfeld, A. B.

    2012-05-15

    Purpose: Intensity modulated radiation therapy (IMRT) utilizes the technology of multileaf collimators to deliver highly modulated and complex radiation treatment. Dosimetric verification of the IMRT treatment requires the verification of the delivered dose distribution. Two dimensional ion chamber or diode arrays are gaining popularity as a dosimeter of choice due to their real time feedback compared to film dosimetry. This paper describes the characterization of a novel 2D diode array, which has been named the ''magic plate'' (MP). It was designed to function as a 2D transmission detector as well as a planar detector for dose distribution measurements in a solid water phantom for the dosimetric verification of IMRT treatment delivery. Methods: The prototype MP is an 11 x 11 detector array based on thin (50 {mu}m) epitaxial diode technology mounted on a 0.6 mm thick Kapton substrate using a proprietary ''drop-in'' technology developed by the Centre for Medical Radiation Physics, University of Wollongong. A full characterization of the detector was performed, including radiation damage study, dose per pulse effect, percent depth dose comparison with CC13 ion chamber and build up characteristics with a parallel plane ion chamber measurements, dose linearity, energy response and angular response. Results: Postirradiated magic plate diodes showed a reproducibility of 2.1%. The MP dose per pulse response decreased at higher dose rates while at lower dose rates the MP appears to be dose rate independent. The depth dose measurement of the MP agrees with ion chamber depth dose measurements to within 0.7% while dose linearity was excellent. MP showed angular response dependency due to the anisotropy of the silicon diode with the maximum variation in angular response of 10.8% at gantry angle 180 deg. Angular dependence was within 3.5% for the gantry angles {+-} 75 deg. The field size dependence of the MP at isocenter agrees with ion chamber measurement to within 1.1%. In

  12. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    SciTech Connect

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H.; Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W.; Cherniatin, V.; Dolgoshein, B.; Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K.

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  13. SiC detectors for radiation sources characterization and fast plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Cannavò, A.; Torrisi, L.

    2016-09-01

    Semiconductor detectors based on SiC have been investigated to characterize the radiations (photons and particles) emitted from different sources, such as radioactive sources, electron guns, X-ray tubes and laser-generated plasmas. Detectors show high response velocity, low leakage current, high energy gap and high radiation hardness. Their high detection efficiency permits to use the detectors in spectroscopic mode and in time-of-flight (TOF) approach, generally employed to monitor low and high radiation fluxes, respectively. Using the laser start signal, they permit to study the properties of the generated plasma in vacuum by measuring accurately the particle velocity and energy using pulsed lasers at low and high intensities. Possible applications will be reported and discussed.

  14. Review on the characteristics of radiation detectors for dosimetry and imaging

    NASA Astrophysics Data System (ADS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  15. [Changes in physico-chemical parameters of homeopathic remedies ferrum metallicum CH6 and ferrum metallicum CH30 after exposure to high frequency electromagnetic radiation of low intensity].

    PubMed

    Mendez, N M

    2005-01-01

    It is considered the microwaves electromagnetic radiation do not affect the materials, alive or not, when used in low power. In high power, the interaction effects would be the material warming (thermal effect). However, in the last years, the studies about electromagnetic radiation with low power (non thermal effect) in the human being have been increasing. It was found out the electromagnetic radiation, even with low power, can affect the living organisms and biosubstratum. In the present work the influence of electromagnetic radiation (2.45 GHz 500 W/cm2), on physical and chemical parameters of the homeopathic pharmaceutics products in shown.

  16. METHODOLOGY FOR ASSESSING THE HAZARDS OF ELECTROMAGNETIC RADIATION TO ORDNANCE: STATISTICAL TOLERANCE LIMIT CALCULATIONS WITH AND WITHOUT CENSORING OF THE DATA,

    DTIC Science & Technology

    MATHEMATICAL PREDICTION, PROBABILITY, MATHEMATICAL MODELS, MODEL TESTS, ELECTROMAGNETIC RADIATION , AIRCRAFT ANTENNAS, FLIGHT DECKS, RADIOFREQUENCY, RADIO FIELDS, RADIO BEAMS, RANGE(DISTANCE), EXPLOSIVES INITIATORS.

  17. METHODOLOGY FOR ASSESSING THE HAZARD OF ELECTROMAGNETIC RADIATION TO ORDNANCE: CONSTRUCTION OF MATHEMATICAL MODELS REQUIRED IN A PROBABILITY APPROACH--GROUND PLANE NUMBER ONE EXAMPLE,

    DTIC Science & Technology

    MATHEMATICAL PREDICTION, PROBABILITY, AIRCRAFT ANTENNAS, ELECTROMAGNETIC RADIATION , FLIGHT DECKS, EXPLOSIVES INITIATORS, SHIPBOARD, ANGLE OF ATTACK, VOLTAGE, RADIOFREQUENCY, RANGE(DISTANCE), HANGARS.

  18. The urban decline of the house sparrow (Passer domesticus): a possible link with electromagnetic radiation.

    PubMed

    Balmori, Alfonso; Hallberg, Orjan

    2007-01-01

    During recent decades, there has been a marked decline of the house sparrow (Passer domesticus) population in the United Kingdom and in several western European countries. The aims of this study were to determine whether the population is also declining in Spain and to evaluate the hypothesis that electromagnetic radiation (microwaves) from phone antennae is correlated with the decline in the sparrow population. Between October 2002 and May 2006, point transect sampling was performed at 30 points during 40 visits to Valladolid, Spain. At each point, we carried out counts of sparrows and measured the mean electric field strength (radiofrequencies and microwaves: 1 MHz-3 GHz range). Significant declines (P = 0.0037) were observed in the mean bird density over time, and significantly low bird density was observed in areas with high electric field strength. The logarithmic regression of the mean bird density vs. field strength groups (considering field strength in 0.1 V/m increments) was R = -0.87 (P = 0.0001). The results of this article support the hypothesis that electromagnetic signals are associated with the observed decline in the sparrow population. We conclude that electromagnetic pollution may be responsible, either by itself or in combination with other factors, for the observed decline of the species in European cities during recent years. The appearently strong dependence between bird density and field strength according to this work could be used for a more controlled study to test the hypothesis.

  19. High-energy cosmic-ray electrons - A new measurement using transition-radiation detectors

    NASA Technical Reports Server (NTRS)

    Hartmann, G.; Mueller, D.; Prince, T.

    1977-01-01

    A new detector for cosmic-ray electrons, consisting of a combination of a transition-radiation detector and a shower detector, has been constructed, calibrated at accelerator beams, and exposed in a balloon flight under 5 g/sq cm of atmosphere. The design of this instrument and the methods of data analysis are described. Preliminary results in the energy range 9-300 GeV are presented. The energy spectrum of electrons is found to be significantly steeper than that of protons, consistent with a long escape lifetime of cosmic rays in the galaxy.

  20. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.

    PubMed

    Vinokurov, Nikolay A; Jeong, Young Uk

    2013-02-08

    We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.

  1. The CBM RICH detector

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höohne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.

    2016-05-01

    The CBM RICH detector will use CO2 as radiator gas, focussing glass mirrors with Al+MgF2 reflective and protective coating and Hamamatsu H12700 MAPMTs as photon detectors. The detector will serve for electron to pion separation up to momenta of 8 GeV/c and thus enable in CBM the measurement of electromagnetic radiation from the early and dense fireball in A+A collisions at SIS 100. In this article, the current status of the CBM RICH development will be presented including new measurements of the radiation hardness of the H12700 MAPMT and WLS coatings with p-terphenyl, the new concept for the readout electronics, and optimizations ongoing with respect to the mirror mount structure and overall geometry. Prior to the usage in CBM, part of the already ordered MAPMTs will be used to upgrade the HADES RICH detector for a new measurement campaign at SIS 18 from 2018-2020.

  2. Development of passive radiation detectors of improved sensitivity

    NASA Technical Reports Server (NTRS)

    Chakrabarty, M. R.

    1986-01-01

    The future development of a solid track high energy particle detector is discussed. The goal is to improve the sensitivity and lower the threshold of the detector. One most widely used material for such purpose is a plastic commercially known as CR-39. A scheme is presented which involves changing the formula of the monomer, diethylene glycol-bis-allyl carbonate. This is to be accomplished by substituting some heteroatoms for H and substituting sulfur atoms for oxygen in the ether linkages. Use of a new plasticizer to make the etched surface clearer than what has been accomplished as of today is suggested. Possible improvement in acquiring better tracks and increasing the ratio of V sub T/V sub B was planned. This is to be accomplished by changing the composition of the etchants, etching time, and etching temperature.

  3. GLOBAL ELECTROMAGNETIC RADIATION POLLUTION: RISK ASSESSMENT FROM FIELD MEASUREMENTS AND ANIMAL EXPERIMENTS

    NASA Astrophysics Data System (ADS)

    Fragkopoulou, A. F.; Margaritis, L. H.

    2009-12-01

    The extended use of wireless technology throughout the globe in almost all developed and non-developed countries has forced a large number of scientists to get involved in the investigation of the effects. The major issue is that unlike other forms of radiation exposure, this “non-ionizing electromagnetic radiation” was not present throughout the evolution of life in earth and therefore there are no adaptive mechanisms evolved. All organisms are vulnerable to the possible effects of radiation depending on the actual exposure level. “Safety limits” on the power density have been proposed but ongoing research has shown that these limits are not really safe for humans, not mentioning the entire population of living creatures on earth. The so called “Electrosmog Pollution” originating from the numerous radio and TV stations, communication satellite emission, but most importantly from mobile phone mast antennas, are of major concern, because it is gradually increasing at exponential rate. Therefore the key question is, do living organisms react upon their exposure to fields of non ionizing electromagnetic radiation? To have this question answered extensive research is being performed in various laboratories. One approach of our research includes field measurements within houses and classrooms, since a considerable proportion of the population in each country is exposed to the radiation coming from the nearby mast stations, in order to make a risk assessment. The measurements showed that in many cases the actual radiation present was potentially harmful. In other words, although the measured values were below the national safety levels, nevertheless they were above the levels of other countries. Therefore it has been suggested that a new cellular network should be constructed in order to minimize radiation levels in living areas and schools. Our experimental work is focusing on the elucidation of the effects of non-ionizing EMFs on mice exposed to mobile

  4. Analytical/Experimental Investigation of Corpuscular Radiation Detectors

    DTIC Science & Technology

    1985-09-15

    exchange of charged intermediate vector bosons but he could only speculate that neutral vector bosons might also contribute. Today we know from high energy...large value of the neutral-current cross section due to coherence indicates a detector would be relatively light and suggests the possibility of a...more PC (best IBM compatible with STD bus). An important element in the UBC program is possibility to use facilities of Canadian Meson Factory - Triumf

  5. Radiation Hard Plastic Scintillators for a New Generation of Particle Detectors

    NASA Astrophysics Data System (ADS)

    Dettmann, M.; Herrig, V.; Maldonis, J.; Neuhaus, J.; Shrestha, D.; Rajbhandari, P.; Thune, Z.; Been, M.; Martinez-Szewczyk, M.; Khristenko, V.; Onel, Y.; Akgun, U.

    2017-03-01

    The radiation hardness of specific scintillating materials used in particle physics experiments is one of the main focuses of research in detector development. This report summarizes the preparation methods, light yield characterization and radiation damage tests of a plastic scintillator with a polysiloxane base and pTP and bis-MSB dopants. The scintillator is shown to be a promising candidate for particle detectors with its intense light output around 400 nm and very little scintillation or transmission loss after proton irradiation of 4 × 105 Gy.

  6. Characterization of Silicon Photomultiplier Detectors using Cosmic Radiation

    NASA Astrophysics Data System (ADS)

    Zavala, Favian; Castro, Juan; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    The silicon photomultiplier light detector has gained a lot of attention lately in fields such as particle physics, astrophysics, and medical physics. Its popularity stems from its lower cost, compact size, insensitivity to magnetic fields, and its excellent ability to distinguish a quantized number of photons. They are normally operated at room temperature and biased above their breakdown voltages. As such, they may also exhibit properties that may hinder their optimal operation which include a thermally induced high dark count rate, after pulse effects, and cross talk from photons in nearby pixels. At this poster session, we describe our data analysis and our endeavor to characterize the multipixel photon counter (MPPC) detectors from Hamamatsu under different bias voltages and temperature conditions. Particularly, we describe our setup which uses cosmic rays to induce scintillation light delivered to the detector by wavelength shifting optical fibers and the use of a fast 1 GHz waveform sampler, the domino ring sampler (DRS4) digitizer board. Department of Education grant number P031S90007.

  7. Effects of electromagnetic radiation from a cellular telephone on epidermal Merkel cells.

    PubMed

    Irmak, M Kemal; Oztas, Emin; Yagmurca, Murat; Fadillioglu, Ersin; Bakir, Bilal

    2003-02-01

    The number of reports on the effects induced by electromagnetic radiation (EMR) from cellular telephones in various cellular systems is still increasing. Until now, no satisfactory mechanism has been proposed to explain the biological effects of this radiation except a role suggested for mast cells. Merkel cells may also play a role in the mechanisms of biological effects of EMR. This study was undertaken to investigate the influence of EMR from a cellular telephone (900 MHz) on Merkel cells in rats. A group of rats was exposed to a cellular telephone in speech position for 30 min. Another group of rats was sham-exposed under the same environmental conditions for 30 min. Exposure led to significantly higher exocytotic activity in Merkel cells compared with the sham exposure group. This finding may indicate the possible role of Merkel cells in the pathophysiology of the effects of EMR.

  8. [Detection of endotoxins of Gram-negative bacteria on the basis of electromagnetic radiation frequency spectrum].

    PubMed

    Likhoded, V G; Kuleshova, N V; Sergieva, N V; Konev, Iu V; Trubnikova, I A; Sudzhian, E V

    2007-01-01

    Method of Gram-negative bacteria endotoxins detection on the basis of their own spectrum of electromagnetic radiation frequency was developed. Frequency spectrum typical for chemotype Re glycolipid, which is a part of lypopolysaccharides in the majority of Gram-negative bacteria, was used. Two devices--"Mini- Expert-DT" (manufactured by IMEDIS, Moscow) and "Bicom" (manufactured by Regumed, Germany)--were used as generators of electromagnetic radiation. Detection of endotoxin using these devices was performed by electropuncture vegetative resonance test. Immunoenzyme reaction with antibodies to chemotype Re glycolipid was used during analysis of preparations for assessment of resonance-frequency method specificity. The study showed that resonance-frequency method can detect lypopolysaccharides of different enterobacteria in quantities up to 0.1 pg as well as bacteria which contain lypopolysaccharides. At the same time, this method does not detect such bacteria as Staphylococcus aureus, Bifidobacterium spp., Lactobacillus spp., and Candida albicans. The method does not require preliminary processing of blood samples and can be used for diagnostics of endotoxinemia, and detection of endotoxins in blood samples or injection solutions.

  9. Fielding a current idea: exploring the public health impact of electromagnetic radiation.

    PubMed

    Genuis, Stephen J

    2008-02-01

    Several publications in the scientific literature have raised concern about the individual and public health impact of adverse non-ionizing radiation (a-NIR) from electromagnetic field (EMF) exposure emanating from certain power, electrical and wireless devices commonly found in the home, workplace, school and community. Despite the many challenges in establishing irrefutable scientific proof of harm and the various gaps in elucidating the precise mechanisms of harm, epidemiological analyses continue to suggest considerable potential for injury and affliction as a result of a-NIR exposure. As environmental health has not been emphasized in medical education, some clinicians are not fully aware of possible EMF-related health problems and, as a result, manifestations of a-NIR may remain misdiagnosed and ineffectually managed. It is important for physicians and public health officials to be aware of the fundamental science and clinical implications of EMF exposure. A review of the scientific literature relating to the link between electromagnetic radiation and human health, several public health recommendations, and four case histories are presented for consideration.

  10. Exposure to non-ionizing electromagnetic radiation from mobile telephony and the association with psychiatric symptoms.

    PubMed

    Silva, Denize Francisca da; Barros, Warley Rocha; Almeida, Maria da Conceição Chagas de; Rêgo, Marco Antônio Vasconcelos

    2015-10-01

    The aim of this study was to investigate the association between exposure to non-ionizing electromagnetic radiation from mobile phone base stations and psychiatric symptoms. In a cross-sectional study in Salvador, Bahia State, Brazil, 440 individuals were interviewed. Psychiatric complaints and diagnoses were the dependent variables and distance from the individual's residence to the base station was considered the main independent variable. Hierarchical logistic regression analysis was conducted to assess confounding. An association was observed between psychiatric symptoms and residential proximity to the base station and different forms of mobile phone use (making calls with weak signal coverage, keeping the mobile phone close to the body, having two or more chips, and never turning off the phone while sleeping), and with the use of other electronic devices. The study concluded that exposure to electromagnetic radiation from mobile phone base stations and other electronic devices was associated with psychiatric symptoms, independently of gender, schooling, and smoking status. The adoption of precautionary measures to reduce such exposure is recommended.

  11. Extremely Low Frequency (ELF) communications program: Non-ionizing electromagnetic radiation literature evaluation and assessment, 1986-1987 literature review

    NASA Astrophysics Data System (ADS)

    1987-11-01

    This report deals with the evaluation and assessment of literature concerned with the bioeffects of Extremely Low Frequency Electromagnetic Radiation. The report covers the period from November 1986 to October 1987. The objective of this program is to conduct a thorough and comprehensive review and evaluation, of the published professional literature containing scientific information pertaining to biological effects, including but not limited to human health effects of nonionizing electromagnetic radiation, germane to the Extremely Low Frequency (ELF) Communication Program of the United States Navy. The published professional literature reviewed, evaluated and assessed includes books, research reports, and articles and papers in peer-reviewed journals that discuss and/or describe biological and health effects of nonionizing electromagnetic radiation in the frequency range of 1-300 Hz. In some instances documents discussing effects of frequencies above 300 Hz were also reviewed. The review and evaluation included both domestic and international literature published in English or other foreign languages.

  12. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    SciTech Connect

    Harrison, Richard Karl; Howell, Stephen Wayne; Martin, Jeffrey B.; Hamilton, Allister B.

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  13. RADIATION HARDNESS / TOLERANCE OF SI SENSORS / DETECTORS FOR NUCLEAR AND HIGH ENERGY PHYSICS EXPERIMENTS.

    SciTech Connect

    LI,Z.

    2002-09-09

    Silicon sensors, widely used in high energy and nuclear physics experiments, suffer severe radiation damage that leads to degradations in sensor performance. These degradations include significant increases in leakage current, bulk resistivity, and space charge concentration. The increase in space charge concentration is particularly damaging since it can significantly increase the sensor full depletion voltage, causing either breakdown if operated at high biases or charge collection loss if operated at lower biases than full depletion. Several strategies can be used to make Si detectors more radiation had tolerant to particle radiations. In this paper, the main radiation induced degradations in Si detectors will be reviewed. The details and specifics of the new engineering strategies: material/impurity/defect engineering (MIDE); device structure engineering (DSE); and device operational mode engineering (DOME) will be given.

  14. Physical design and Monte Carlo simulations of a space radiation detector onboard the SJ-10 satellite

    NASA Astrophysics Data System (ADS)

    Liu, Ya-Qing; Wang, Huan-Yu; Cui, Xing-Zhu; Peng, Wen-Xi; Fan, Rui-Rui; Liang, Xiao-Hua; Gao, Ming; Zhang, Yun-Long; Zhang, Cheng-Mo; Zhang, Jia-Yu; Yang, Jia-Wei; Wang, Jin-Zhou; Zhang, Fei; Dong, Yi-Fan; Guo, Dong-Ya; Zhou, Da-Wei

    2015-01-01

    A radiation gene box (RGB) onboard the SJ-10 satellite is a device carrying mice and drosophila cells to determine the biological effects of space radiation environment. The shielded fluxes of different radioactive sources were calculated and the linear energy transfers of γ-rays, electrons, protons and α-particles in the tissue were acquired using A-150 tissue-equivalent plastic. Then, a conceptual model of a space radiation instrument employing three semiconductor sub-detectors for deriving the charged and uncharged radiation environment of the RGB was designed. The energy depositions in the three sub-detectors were classified into 15 channels (bins) in an algorithm derived from the Monte Carlo method. The physical feasibility of the conceptual instrument was also verified by Monte Carlo simulations.

  15. Possible standoff detection of ionizing radiation using high-power THz electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Nusinovich, Gregory S.; Sprangle, Phillip; Romero-Talamas, Carlos A.; Rodgers, John; Pu, Ruifeng; Kashyn, Dmytro G.; Antonsen, Thomas M., Jr.; Granatstein, Victor L.

    2012-06-01

    Recently, a new method of remote detection of concealed radioactive materials was proposed. This method is based on focusing high-power short wavelength electromagnetic radiation in a small volume where the wave electric field exceeds the breakdown threshold. In the presence of free electrons caused by ionizing radiation, in this volume an avalanche discharge can then be initiated. When the wavelength is short enough, the probability of having even one free electron in this small volume in the absence of additional sources of ionization is low. Hence, a high breakdown rate will indicate that in the vicinity of this volume there are some materials causing ionization of air. To prove this concept a 0.67 THz gyrotron delivering 200-300 kW power in 10 microsecond pulses is under development. This method of standoff detection of concealed sources of ionizing radiation requires a wide range of studies, viz., evaluation of possible range, THz power and pulse duration, production of free electrons in air by gamma rays penetrating through container walls, statistical delay time in initiation of the breakdown in the case of low electron density, temporal evolution of plasma structure in the breakdown and scattering of THz radiation from small plasma objects. Most of these issues are discussed in the paper.

  16. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  17. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  18. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-02-07

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  19. Radiation detectors and sources enhanced with micro/nanotechnology

    NASA Astrophysics Data System (ADS)

    Whitney, Chad Michael

    The ongoing threat of nuclear terrorism presents major challenges to maintaining national security. Currently, only a small percentage of the cargo containers that enter America are searched for fissionable bomb making materials. This work reports on a multi-channel radiation detection platform enabled with nanoparticles that is capable of detecting and discriminating all types of radiation emitted from fissionable bomb making materials. Typical Geiger counters are limited to detecting only beta and gamma radiation. The micro-Geiger counter reported here detects all species of radiation including beta particles, gamma/X-rays, alpha particles, and neutrons. The multi-species detecting micro-Geiger counter contains a hermetically sealed and electrically biased fill gas. Impinging radiation interacts with tailored nanoparticles to release secondary charged particles that ionize the fill gas. The ionized particles collect on respectively biased electrodes resulting in a characteristic electrical pulse. Pulse height spectroscopy and radiation energy binning techniques can then be used to analyze the pulses to determine the specific radiation isotope. The ideal voltage range of operation for energy discrimination was found to be in the proportional region at 1000VDC. In this region, specific pulse heights for different radiation species resulted. The amplification region strength which determines the device sensitivity to radiation energy can be tuned with the electrode separation distance. Considerable improvements in count rates were achieved by using the charge conversion nanoparticles with the highest cross sections for particular radiation species. The addition of tungsten nanoparticles to the microGeiger counter enabled the device to be four times more efficient at detecting low level beta particles with a dose rate of 3.2uR/hr (micro-Roentgen per hour) and just under three times more efficient than an off the shelf Geiger counter. The addition of lead

  20. [Assessment of parameters of digital X-ray detectors by the method of exposure of the working area of the detector to uniform X-ray radiation].

    PubMed

    Mazurov, A I

    2007-01-01

    It is shown that the main parameters determining the imaging quality of digital X-ray image detectors can be assessed by the method of exposure of the working area of the detector to uniform X-ray radiation. This method makes unnecessary the expert evaluation and measurements using high-precision test objects. It can be used in clinical practice for effective monitoring of the quality of digital X-ray detectors.

  1. Interaction of electromagnetic radiation in the 20-200 GHz frequency range with arrays of carbon nanotubes with ferromagnetic nanoparticles.

    PubMed

    Atdayev, Agylych; Danilyuk, Alexander L; Prischepa, Serghej L

    2015-01-01

    The interaction of electromagnetic radiation with a magnetic nanocomposite based on carbon nanotubes (CNT) is considered within the model of distributed random nanoparticles with a core-shell morphology. The approach is based on a system composed of a CNT conducting resistive matrix, ferromagnetic inductive nanoparticles and the capacitive interface between the CNT matrix and the nanoparticles, which form resonance resistive-inductive-capacitive circuits. It is shown that the influence of the resonant circuits leads to the emergence of specific resonances, namely peaks and valleys in the frequency dependence of the permeability of the nanocomposite, and in the frequency dependence of the reflection and transmission of electromagnetic radiation.

  2. [Status quo of the researches on the biological effect of electromagnetic radiation on the testis and epididymal sperm].

    PubMed

    Gao, Xiao-fang; Wang, Shui-ming; Peng, Rui-yun

    2007-09-01

    The testis is highly sensitive to electromagnetic radiation. Sperm is the passer of male genetic material and electromagnetic radiation may cause structural and functional injury to the testis, including motility reduction, abnormality increase and ultrastructural alteration of epididymal sperm. Energy metabolism disorder in spermatogenic cells, enhancement of lipid peroxidation in the testis, excessive expression of inflammatory factors and abnormality of genetic transcription may be responsible for injury to the testis and epididymal sperm. This paper reviews the progress made in this field and the preventive measures against the injury.

  3. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2003-03-04

    A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having

  4. A Determination of the Risk of Intentional and Unintentional Electromagnetic Radiation Emitters Degrading Installed Components in Closed Electromagnetic Environments

    DTIC Science & Technology

    2015-06-01

    transfer can be advantageous in various applications. Exposing sensitive electronic components to a time-varying electromagnetic field increases the...risk of an electronic upset in those components that will degrade the functionality of installed systems. This risk determination should provide a...applications. Exposing sensitive electronic components to a time-varying electromagnetic field increases the risk of an electronic upset in those

  5. Preliminary Results from an Investigation into Nanostructured Nuclear Radiation Detectors for Non-Proliferation Applications

    SciTech Connect

    ,

    2012-10-01

    In recent years, the concept of embedding composite scintillators consisting of nanosized inorganic crystals in an organic matrix has been actively pursued. Nanocomposite detectors have the potential to meet many of the homeland security, non-proliferation, and border and cargo-screening needs of the nation and, by virtue of their superior nuclear identification capability over plastic, at roughly the same cost as plastic, have the potential to replace all plastic detectors. Nanocomposites clearly have the potential of being a gamma ray detection material that would be sensitive yet less expensive and easier to produce on a large scale than growing large, whole crystals of similar sensitivity. These detectors would have a broad energy range and a sufficient energy resolution to perform isotopic identification. The material can also be fabricated on an industrial scale, further reducing cost. This investigation focused on designing and fabricating prototype core/shell and quantum dot (QD) detectors. Fourteen core/shell and four QD detectors, all with the basic consistency of a mixture of nanoparticles in a polymer matrix with different densities of nanoparticles, were prepared. Nanoparticles with sizes <10 nm were fabricated, embedded in a polystyrene matrix, and the resultant scintillators’ radiation detector properties were characterized. This work also attempted to extend the gamma energy response on both low- and high-energy regimes by demonstrating the ability to detect low-energy and high-energy gamma rays. Preliminary results of this investigation are consistent with a significant response of these materials to nuclear radiation.

  6. Radiation hardness of semiconductor avalanche detectors for calorimeters in future HEP experiments

    NASA Astrophysics Data System (ADS)

    Kushpil, V.; Mikhaylov, V.; Kugler, A.; Kushpil, S.; Ladygin, V. P.; Svoboda, O.; Tlustý, P.

    2016-02-01

    During the last years, semiconductor avalanche detectors are being widely used as the replacement of classical PMTs in calorimeters for many HEP experiments. In this report, basic selection criteria for replacement of PMTs by solid state devices and specific problems in the investigation of detectors radiation hardness are discussed. The design and performance of the hadron calorimeters developed for the future high energy nuclear physics experiments at FAIR, NICA, and CERN are discussed. The Projectile Spectator Detector (PSD) for the CBM experiment at the future FAIR facility, the Forward Calorimeter for the NA61 experiment at CERN and the Multi Purpose Detector at the future NICA facility are reviewed. Moreover, new methods of data analysis and results interpretation for radiation experiments are described. Specific problems of development of detectors control systems and possibilities of reliability improvement of multi-channel detectors systems are shortly overviewed. All experimental material is based on the investigation of SiPM and MPPC at the neutron source in NPI Rez.

  7. Using Ionizing Radiation Detectors. Module 11. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on using ionizing radiation detectors. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming and telling the function…

  8. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    SciTech Connect

    B. A. Brunett; J. C. Lund; J. M. Van Scyoc; N. R. Hilton; E. Y. Lee; R. B. James

    1999-01-01

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors.

  9. [The use of a detector of the extremely weak radiation as a variometer of gravitation field].

    PubMed

    Gorshkov, E S; Bondarenko, E G; Shapovalov, S N; Sokolovskiĭ, V V; Troshichev, O A

    2001-01-01

    It was shown that the detector of extremely weak radiation with selectively increased sensitivity to the nonelectromagnetic, including the gravitational component of the spectrum of active physical fields can be used as the basis for constructing a variometer of gravitational field of a new type.

  10. Mixed ionic-electronic conductor-based radiation detectors and methods of fabrication

    DOEpatents

    Conway, Adam; Beck, Patrick R; Graff, Robert T; Nelson, Art; Nikolic, Rebecca J; Payne, Stephen A; Voss, Lars; Kim, Hadong

    2015-04-07

    A method of fabricating a mixed ionic-electronic conductor (e.g. TlBr)-based radiation detector having halide-treated surfaces and associated methods of fabrication, which controls polarization of the mixed ionic-electronic MIEC material to improve stability and operational lifetime.

  11. Silicon field-effect transistors as radiation detectors for the Sub-THz range

    SciTech Connect

    But, D. B. Golenkov, O. G.; Sakhno, N. V.; Sizov, F. F.; Korinets, S. V.; Gumenjuk-Sichevska, J. V.; Reva, V. P.; Bunchuk, S. G.

    2012-05-15

    The nonresonance response of silicon metal-oxide-semiconductor field-effect transistors (Si-MOSFETs) with a long channel (1-20 {mu}m) to radiation in the frequency range 43-135 GHz is studied. The transistors are fabricated by the standard CMOS technology with 1-{mu}m design rules. The volt-watt sensitivity and the noise equivalent power (NEP) for such detectors are estimated with the calculated effective area of the detecting element taken into account. It is shown that such transistors can operate at room temperature as broadband direct detectors of sub-THz radiation. In the 4-5 mm range of wavelengths, the volt-watt sensitivity can be as high as tens of kV/W and the NEP can amount to 10{sup -11} - 10{sup -12}W/{radical}Hz . The parameters of detectors under study can be improved by the optimization of planar antennas.

  12. Comparison of cosmic rays radiation detectors on-board commercial jet aircraft.

    PubMed

    Kubančák, Ján; Ambrožová, Iva; Brabcová, Kateřina Pachnerová; Jakůbek, Jan; Kyselová, Dagmar; Ploc, Ondřej; Bemš, Július; Štěpán, Václav; Uchihori, Yukio

    2015-06-01

    Aircrew members and passengers are exposed to increased rates of cosmic radiation on-board commercial jet aircraft. The annual effective doses of crew members often exceed limits for public, thus it is recommended to monitor them. In general, the doses are estimated via various computer codes and in some countries also verified by measurements. This paper describes a comparison of three cosmic rays detectors, namely of the (a) HAWK Tissue Equivalent Proportional Counter; (b) Liulin semiconductor energy deposit spectrometer and (c) TIMEPIX silicon semiconductor pixel detector, exposed to radiation fields on-board commercial Czech Airlines company jet aircraft. Measurements were performed during passenger flights from Prague to Madrid, Oslo, Tbilisi, Yekaterinburg and Almaty, and back in July and August 2011. For all flights, energy deposit spectra and absorbed doses are presented. Measured absorbed dose and dose equivalent are compared with the EPCARD code calculations. Finally, the advantages and disadvantages of all detectors are discussed.

  13. Electromagnetic radiation and health risks: Cell phones and microwave radiation in New Zealand

    SciTech Connect

    Smith, I.

    1996-07-01

    Presently the public is concerned over the proliferation of cellphone repeater sites around the cities of New Zealand and whether they pose a risk to health. The debate continued for some weeks over the proposal to erect a cellphone repeater in a school yard. The issues that came out of that debate are profiled in this paper -- environmental health professionals need to be able to communicate well-judged advice to their employers. Cellular phone networks use relatively low-powered transmitters to restrict coverage to a circumscribed locality and thereby enable particular carrier frequencies to be used simultaneously at different cell sites in the same general area. Compared with TV and radio broadcasting, the radiation power levels near cell sites are therefore relatively small. Broadcast transmission antennae are designed to confine the radiation so that it doesn`t go in directions where it is not required or not wanted.

  14. Digital configurable instrument for emulation of signals from radiation detectors

    SciTech Connect

    Abba, A.; Caponio, F.; Geraci, A.

    2014-01-15

    The paper presents a digital instrument characterized by a specially designed architecture that is able to emulate in real time signals from a generic radiation detection system. The instrument is not a pulse generator of recorded shapes but a synthesizer of random pulses compliant to programmable statistics for height and starting time of events. Completely programmable procedures for emulation of noise, disturbances, and reference level variation are implemented.

  15. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use

    NASA Astrophysics Data System (ADS)

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent

    2016-06-01

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  16. Calibration of modified Liulin detector for cosmic radiation measurements on-board aircraft.

    PubMed

    Kyselová, D; Ambrožová, I; Krist, P; Kubančák, J; Uchihori, Y; Kitamura, H; Ploc, O

    2015-06-01

    The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them. Aircrew dosimetry is usually performed using special computer programs mostly based on results of Monte Carlo simulations. Contemporary, detectors are used mostly for validation of these computer codes, verification of effective dose calculations and for research purposes. One of such detectors is active silicon semiconductor deposited energy spectrometer Liulin. Output quantities of measurement with the Liulin detector are the absorbed dose in silicon D and the ambient dose equivalent H*(10); to determine it, two calibrations are necessary. The purpose of this work was to develop a calibration methodology that can be used to convert signal from the detector to D independently on calibration performed at Heavy Ion Medical Accelerator facility in Chiba, Japan.

  17. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use.

    PubMed

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent

    2016-06-01

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  18. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  19. Cosmic radiation measurements on the Foton-M4 satellite by passive detectors

    NASA Astrophysics Data System (ADS)

    Strádi, Andrea; Pálfalvi, József K.; Szabó, Julianna; Pázmándi, Tamás; Ivanova, Olga A.; Shurshakov, Vyacheslav A.

    2017-02-01

    The Russian Foton spacecraft was designed to deliver scientific experiments to low Earth orbit and return them safely to the ground for further analysis. During the 44-d Foton-M4 satellite mission in 2014 several passive cosmic ray detectors were exposed outside (in a single holder) and inside (in 4 locations) the recoverable capsule to study the radiation field. The applied thermoluminescent detectors (TLDs) are more sensitive to the particles with LET under 10 keV μm-1, while the solid state nuclear track detectors (SSNTDs) measure the particles having LET over this value. According to our measurements the average internal absorbed dose rate varied between 374-562 μGy/day for low LET radiation and 40-52 μGy/day for high LET radiation. Outside the capsule the dose rate was much higher, 1078 μGy/day for low LET radiation and 75 μGy/day for high LET radiation. Within the paper the obtained absorbed dose rates has been compared to those measured on the previous Foton-M flights, during the Bion-M1 mission and in the Columbus module of the International Space Station.

  20. Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration

    PubMed Central

    Narici, Livio; Berger, Thomas; Matthiä, Daniel; Reitz, Günther

    2015-01-01

    A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation. PMID:26697408