Narrow field electromagnetic sensor system and method
McEwan, Thomas E.
1996-01-01
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.
Narrow field electromagnetic sensor system and method
McEwan, T.E.
1996-11-19
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.
Luo, Xiongbiao
2014-06-01
Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model was designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0-10 min(-1). The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. An electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xiongbiao, E-mail: xiongbiao.luo@gmail.com
2014-06-15
Purpose: Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. Methods: The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model wasmore » designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. Results: The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0–10 min{sup −1}. The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. Conclusions: An electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.« less
The state of technology in electromagnetic (RF) sensors (for lightning detection)
NASA Technical Reports Server (NTRS)
Shumpert, T. H.; Honnell, M. A.
1979-01-01
A brief overview of the radio-frequency sensors which were applied to the detection, isolation, and/or identification of the transient electromagnetic energy (sferics) radiated from one or more lightning discharges in the atmosphere is presented. Radio frequency (RF) characteristics of lightning discharges, general RF sensor (antenna) characteristics, sensors and systems previously used for sferic detection, electromagnetic pulse sensors are discussed. References containing extensive bibliographies concerning lightning are presented.
Electromagnetic Environmental Effects System Testing
2013-11-20
battery packs or air turbine power generators. The sensitivity of the entire instrumentation system should be taken into consideration from the sensor ...Electromagnetic Radiation to Ordnance (HERO) sensors , pneumatic switching, and those equipments associated with fiber optic technology. c. Test...Field probes to determine environment -Thermal heating sensors (e.g., FISO or Metricor systems) used to detect bridgewire heating induced by
2016-09-23
Acquisition and Data Analysis). EMI sensors, MetalMapper, man-portable Time-domain Electromagnetic Multi-sensor Towed Array Detection System (TEMTADS...California Department of Toxic Substances Control EM61 EM61-MK2 EMI electromagnetic induction ESTCP Environmental Security Technology Certification...SOP Standard Operating Procedure v TEMTADS Time-domain Electromagnetic Multi-sensor Towed Array Detection System man-portable 2x2 TOI target(s
Schnabel, Ulf H; Hegenloh, Michael; Müller, Hermann J; Zehetleitner, Michael
2013-09-01
Electromagnetic motion-tracking systems have the advantage of capturing the tempo-spatial kinematics of movements independently of the visibility of the sensors. However, they are limited in that they cannot be used in the proximity of electromagnetic field sources, such as computer monitors. This prevents exploiting the tracking potential of the sensor system together with that of computer-generated visual stimulation. Here we present a solution for presenting computer-generated visual stimulation that does not distort the electromagnetic field required for precise motion tracking, by means of a back projection medium. In one experiment, we verify that cathode ray tube monitors, as well as thin-film-transistor monitors, distort electro-magnetic sensor signals even at a distance of 18 cm. Our back projection medium, by contrast, leads to no distortion of the motion-tracking signals even when the sensor is touching the medium. This novel solution permits combining the advantages of electromagnetic motion tracking with computer-generated visual stimulation.
Sensing network for electromagnetic fields generated by seismic activities
NASA Astrophysics Data System (ADS)
Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.
2014-06-01
The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.
Remote sensing of soil moisture using airborne hyperspectral data
USDA-ARS?s Scientific Manuscript database
The Institute for Technology Development (ITD) has developed an airborne hyperspectral sensor system that collects electromagnetic reflectance data of the terrain. The system consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near Infrare...
NASA Technical Reports Server (NTRS)
1982-01-01
Research issues in the area of electromagnetic measurements and signal handling of remotely sensed data are identified. The following seven issues are discussed; platform/sensor system position and velocity, platform/sensor attitudes and attitude rates, optics and antennas, detectors and associated electronics, sensor calibration, signal handling, and system design.
An Improved High-Sensitivity Airborne Transient Electromagnetic Sensor for Deep Penetration
Chen, Shudong; Guo, Shuxu; Wang, Haofeng; He, Miao; Liu, Xiaoyan; Qiu, Yu; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun
2017-01-01
The investigation depth of transient electromagnetic sensors can be effectively increased by reducing the system noise, which is mainly composed of sensor internal noise, electromagnetic interference (EMI), and environmental noise, etc. A high-sensitivity airborne transient electromagnetic (AEM) sensor with low sensor internal noise and good shielding effectiveness is of great importance for deep penetration. In this article, the design and optimization of such an AEM sensor is described in detail. To reduce sensor internal noise, a noise model with both a damping resistor and a preamplifier is established and analyzed. The results indicate that a sensor with a large diameter, low resonant frequency, and low sampling rate will have lower sensor internal noise. To improve the electromagnetic compatibility of the sensor, an electromagnetic shielding model for a central-tapped coil is established and discussed in detail. Previous studies have shown that unclosed shields with multiple layers and center grounding can effectively suppress EMI and eddy currents. According to these studies, an improved differential AEM sensor is constructed with a diameter, resultant effective area, resonant frequency, and normalized equivalent input noise of 1.1 m, 114 m2, 35.6 kHz, and 13.3 nV/m2, respectively. The accuracy of the noise model and the shielding effectiveness of the sensor have been verified experimentally. The results show a good agreement between calculated and measured results for the sensor internal noise. Additionally, over 20 dB shielding effectiveness is achieved in a complex electromagnetic environment. All of these results show a great improvement in sensor internal noise and shielding effectiveness. PMID:28106718
An Electromagnetic/Capacitive Composite Sensor for Testing of Thermal Barrier Coatings
Ren, Yuan; Pan, Mengchun; Chen, Dixiang; Tian, Wugang
2018-01-01
Thermal barrier coatings (TBCs) can significantly reduce the operating temperature of the aeroengine turbine blade substrate, and their testing technology is very urgently demanded. Due to their complex multi-layer structure, it is hard to evaluate TBCs with a single function sensor. In this paper, an electromagnetic/capacitive composite sensor is proposed for the testing of thermal barrier coatings. The dielectric material is tested with planar capacitor, and the metallic material is tested with electromagnetic coils. Then, the comprehensive test and evaluation of thermal barrier coating system can be realized. The sensor is optimized by means of theoretical and simulation analysis, and the interaction between the planar capacitor and the electromagnetic coil is studied. The experimental system is built based on an impedance analyser and multiplex unit to evaluate the performance of the composite sensor. The transimpedances and capacitances are measured under different coating parameters, such as thickness and permittivity of top coating as well as bond layer conductivity. The experimental results agree with the simulation analysis, and the feasibility of the sensor is proved. PMID:29783746
A resonant electromagnetic vibration energy harvester for intelligent wireless sensor systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Jing, E-mail: jingqiu@cqu.edu.cn; Wen, Yumei; Li, Ping
Vibration energy harvesting is now receiving more interest as a means for powering intelligent wireless sensor systems. In this paper, a resonant electromagnetic vibration energy harvester (VEH) employing double cantilever to convert low-frequency vibration energy into electrical energy is presented. The VEH is made up of two cantilever beams, a coil, and magnetic circuits. The electric output performances of the proposed electromagnetic VEH have been investigated. With the enhancement of turns number N, the optimum peak power of electromagnetic VEH increases sharply and the resonance frequency deceases gradually. When the vibration acceleration is 0.5 g, we obtain the optimum output voltagemore » and power of 9.04 V and 50.8 mW at frequency of 14.9 Hz, respectively. In a word, the prototype device was successfully developed and the experimental results exhibit a great enhancement in the output power and bandwidth compared with other traditional electromagnetic VEHs. Remarkably, the proposed resonant electromagnetic VEH have great potential for applying in intelligent wireless sensor systems.« less
Positioning and Microvibration Control by Electromagnets of an Air Spring Vibration Isolation System
NASA Technical Reports Server (NTRS)
Watanabe, Katsuhide; Cui, Weimin; Haga, Takahide; Kanemitsu, Yoichi; Yano, Kenichi
1996-01-01
Active positioning and microvibration control has been attempted by electromagnets equipped in a bellows-type, air-spring vibration isolation system. Performance tests have been carried out to study the effects. The main components of the system's isolation table were four electromagnetic actuators and controllers. The vibration isolation table was also equipped with six acceleration sensors for detecting microvibration of the table. The electromagnetic actuators were equipped with bellows-type air springs for passive support of the weight of the item placed on the table, with electromagnets for active positioning, as well as for microvibration control, and relative displacement sensors. The controller constituted a relative feedback system for positioning control and an absolute feedback system for vibration isolation control. In the performance test, a 1,490 kg load (net weight of 1,820 kg) was placed on the vibration isolation table, and both the positioning and microvibration control were carried out electromagnetically. Test results revealed that the vibration transmission was reduced by 95%.
Computational Electromagnetic Modeling of SansEC(Trade Mark) Sensors
NASA Technical Reports Server (NTRS)
Smith, Laura J.; Dudley, Kenneth L.; Szatkowski, George N.
2011-01-01
This paper describes the preliminary effort to apply computational design tools to aid in the development of an electromagnetic SansEC resonant sensor composite materials damage detection system. The computational methods and models employed on this research problem will evolve in complexity over time and will lead to the development of new computational methods and experimental sensor systems that demonstrate the capability to detect, diagnose, and monitor the damage of composite materials and structures on aerospace vehicles.
Bashashati, Ali; Noureddin, Borna; Ward, Rabab K; Lawrence, Peter D; Birch, Gary E
2006-03-01
A power spectral analysis study was conducted to investigate the effects of using an electromagnetic motion tracking sensor on an electroencephalogram (EEG) recording system. The results showed that the sensors do not generate any consistent frequency component(s) in the power spectrum of the EEG in the frequencies of interest (0.1-55 Hz).
Intraluminal laser atherectomy with ultrasound and electromagnetic guidance
NASA Astrophysics Data System (ADS)
Gregory, Kenton W.; Aretz, H. Thomas; Martinelli, Michael A.; LeDet, Earl G.; Hatch, G. F.; Gregg, Richard E.; Sedlacek, Tomas; Haase, Wayne C.
1991-05-01
The MagellanTM coronary laser atherectomy system is described. It uses high- resolution ultrasound imaging and electromagnetic sensing to provide real-time guidance and control of laser therapy in the coronary arteries. The system consists of a flexible catheter, an electromagnetic navigation antenna, a sensor signal processor and a computer for image processing and display. The small, flexible catheter combines an ultrasound transducer and laser delivery optics, aimed at the artery wall, and an electromagnetic receiving sensor. An extra-corporeal electromagnetic transmit antenna, in combination with catheter sensors, locates the position of the ultrasound and laser beams in the artery. Navigation and ultrasound data are processed electronically to produce real-time, transverse, and axial cross-section images of the artery wall at selected locations. By exploiting the ability of ultrasound to image beneath the surface of artery walls, it is possible to identify candidate treatment sites and perform safe radial laser debulking of atherosclerotic plaque with reduced danger of perforation. The utility of the system in plaque identification and ablation is demonstrated with imaging and experimental results.
An IoT Reader for Wireless Passive Electromagnetic Sensors.
Galindo-Romera, Gabriel; Carnerero-Cano, Javier; Martínez-Martínez, José Juan; Herraiz-Martínez, Francisco Javier
2017-03-28
In the last years, many passive electromagnetic sensors have been reported. Some of these sensors are used for measuring harmful substances. Moreover, the response of these sensors is usually obtained with laboratory equipment. This approach highly increases the total cost and complexity of the sensing system. In this work, a novel low-cost and portable Internet-of-Things (IoT) reader for passive wireless electromagnetic sensors is proposed. The reader is used to interrogate the sensors within a short-range wireless link avoiding the direct contact with the substances under test. The IoT functionalities of the reader allows remote sensing from computers and handheld devices. For that purpose, the proposed design is based on four functional layers: the radiating layer, the RF interface, the IoT mini-computer and the power unit. In this paper a demonstrator of the proposed reader is designed and manufactured. The demonstrator shows, through the remote measurement of different substances, that the proposed system can estimate the dielectric permittivity. It has been demonstrated that a linear approximation with a small error can be extracted from the reader measurements. It is remarkable that the proposed reader can be used with other type of electromagnetic sensors, which transduce the magnitude variations in the frequency domain.
An IoT Reader for Wireless Passive Electromagnetic Sensors
Galindo-Romera, Gabriel; Carnerero-Cano, Javier; Martínez-Martínez, José Juan; Herraiz-Martínez, Francisco Javier
2017-01-01
In the last years, many passive electromagnetic sensors have been reported. Some of these sensors are used for measuring harmful substances. Moreover, the response of these sensors is usually obtained with laboratory equipment. This approach highly increases the total cost and complexity of the sensing system. In this work, a novel low-cost and portable Internet-of-Things (IoT) reader for passive wireless electromagnetic sensors is proposed. The reader is used to interrogate the sensors within a short-range wireless link avoiding the direct contact with the substances under test. The IoT functionalities of the reader allows remote sensing from computers and handheld devices. For that purpose, the proposed design is based on four functional layers: the radiating layer, the RF interface, the IoT mini-computer and the power unit. In this paper a demonstrator of the proposed reader is designed and manufactured. The demonstrator shows, through the remote measurement of different substances, that the proposed system can estimate the dielectric permittivity. It has been demonstrated that a linear approximation with a small error can be extracted from the reader measurements. It is remarkable that the proposed reader can be used with other type of electromagnetic sensors, which transduce the magnitude variations in the frequency domain. PMID:28350356
Electromagnetic induction sensor for dynamic testing of coagulation process.
Wang, Zhe; Yu, Yuanhua; Yu, Zhanjiang; Chen, Qimeng
2018-03-01
With the increasing demand for coagulation POCT for patients in the surgery department or the ICU, rapid coagulation testing techniques and methods have drawn widespread attention from scholars and businessmen. This paper proposes the use of electromagnetic induction sensor probe for detection of dynamic process causing changes in the blood viscosity and density before and after coagulation based on the damped vibration principle, in order to evaluate the coagulation status. Utilizing the dynamic principle, the differential equation of vibration system comprising elastic support and electromagnetic induction device is established through sensor dynamic modeling. The structural parameters of elastic support are optimized, and the circular sheet spring is designed. Furthermore, harmonic response analysis and vibration fatigue coupling analysis are performed on the elastic support of the sensor by considering the natural frequency of the system, and the electromagnetic induction sensor testing device is set up. Using the device and coagulation reagent, the standard curve for coagulation POCT is plotted, and the blood sample application in clinical patients is established, which are methodologically compared with the imported POCT coagulation analyzer. The results show that the sensor designed in this paper has a first-order natural frequency of 11.368 Hz, which can withstand 5.295 × 10 2 million times of compressions and rebounds. Its correlation with the results of SONOCLOT analyzer reaches 0.996, and the reproducibility 0.002. The electromagnetic induction coagulation testing sensor designed has good elasticity and anti-fatigue, which can meet the accuracy requirement of clinical detection. This study provides the core technology for developing the electromagnetic induction POCT instrument for dynamic testing of coagulation process.
Fallback options for airgap sensor fault of an electromagnetic suspension system
NASA Astrophysics Data System (ADS)
Michail, Konstantinos; Zolotas, Argyrios C.; Goodall, Roger M.
2013-06-01
The paper presents a method to recover the performance of an electromagnetic suspension under faulty airgap sensor. The proposed control scheme is a combination of classical control loops, a Kalman Estimator and analytical redundancy (for the airgap signal). In this way redundant airgap sensors are not essential for reliable operation of this system. When the airgap sensor fails the required signal is recovered using a combination of a Kalman estimator and analytical redundancy. The performance of the suspension is optimised using genetic algorithms and some preliminary robustness issues to load and operating airgap variations are discussed. Simulations on a realistic model of such type of suspension illustrate the efficacy of the proposed sensor tolerant control method.
Multimode electromagnetic target discriminator: preliminary data results
NASA Astrophysics Data System (ADS)
Black, Christopher J.; McMichael, Ian T.; Nelson, Carl V.
2004-09-01
This paper describes the Multi-mode Electromagnetic Target Discriminator (METD) sensor and presents preliminary results from recent field experiments. The METD sensor was developed for the US Army RDECOM NVESD by The Johns Hopkins University Applied Physics Laboratory. The METD, based on the technology of the previously developed Electromagnetic Target Discriminator (ETD), is a spatial scanning electromagnetic induction (EMI) sensor that uses both the time-domain (TD) and the frequency-domain (FD) for target detection and classification. Data is collected with a custom data acquisition system and wirelessly transmitted to a base computer. We show that the METD has a high signal-to-noise ratio (SNR), the ability to detect voids created by plastic anti-tank (AT) mines, and is practical for near real-time data processing.
Systems and Methods for RFID-Enabled Pressure Sensing Apparatus
NASA Technical Reports Server (NTRS)
Kennedy, Timothy F. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Fink, Patrick W. (Inventor)
2017-01-01
Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications ("RSSI") of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.
Systems and Methods for RFID-Enabled Dispenser
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Kennedy, Timothy F. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Byerly, Diane (Inventor)
2015-01-01
Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications ("RSSI") of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.
Systems and Methods for RFID-Enabled Pressure Sensing Apparatus
NASA Technical Reports Server (NTRS)
Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Kennedy, Timothy F. (Inventor); Fink, Patrick W. (Inventor)
2016-01-01
Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications ("RSSI") of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.
System and Method for RFID-Enabled Information Collection
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Kennedy, Timothy F. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Byerly, Diane (Inventor)
2016-01-01
Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications ("RSSI") of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.
NASA Astrophysics Data System (ADS)
Liu, Zhilong; Wang, Biao; Tong, Weichao
2015-08-01
This paper designs a solar automatic tracking wireless charging system based on the four quadrant photoelectric sensor. The system track the sun's rays automatically in real time to received the maximum energy and wireless charging to the load through electromagnetic coupling. Four quadrant photoelectric sensor responsive to the solar spectrum, the system could get the current azimuth and elevation angle of the light by calculating the solar energy incident on the sensor profile. System driver the solar panels by the biaxial movement mechanism to rotate and tilt movement until the battery plate and light perpendicular to each other. Maximize the use of solar energy, and does not require external power supply to achieve energy self-sufficiency. Solar energy can be collected for portable devices and load wireless charging by close electromagnetic field coupling. Experimental data show that: Four quadrant photoelectric sensor more sensitive to light angle measurement. when track positioning solar light, Azimuth deviation is less than 0.8°, Elevation angle deviation is less than 0.6°. Use efficiency of a conventional solar cell is only 10% -20%.The system uses a Four quadrant dual-axis tracking to raise the utilization rate of 25% -35%.Wireless charging electromagnetic coupling efficiency reached 60%.
Electronics for a highly segmented electromagnetic calorimeter prototype
NASA Astrophysics Data System (ADS)
Fehlker, D.; Alme, J.; van den Brink, A.; de Haas, A. P.; Nooren, G.-J.; Reicher, M.; Röhrich, D.; Rossewij, M.; Ullaland, K.; Yang, S.
2013-03-01
A prototype of a highly segmented electromagnetic calorimeter has been developed. The detector tower is made of 24 layers of PHASE2/MIMOSA23 silicon sensors sandwiched between tungsten plates, with 4 sensors per layer, a total of 96 MIMOSA sensors, resulting in 39 MPixels for the complete prototype detector tower. The paper focuses on the electronics of this calorimeter prototype. Two detector readout and control systems are used, each containing two Spartan 6 and one Virtex 6 FPGA, running embedded Linux, each system serving 12 detector layers. In 550 ms a total of 4 Gbytes of data is read from the detector, stored in memory on the electronics and then shipped to the DAQ system via Gigabit ethernet.
Electromagnetic sensors for general lightning application
NASA Technical Reports Server (NTRS)
Baum, C. E.; Breen, E. L.; Onell, J. P.; Moore, C. B.; Sower, G. D.
1980-01-01
Electromagnetic sensors for general lightning applications in measuring environment are discussed as well as system response to the environment. This includes electric and magnetic fields, surface current and charge densities, and currents on conductors. Many EMP sensors are directly applicable to lightning measurements, but there are some special cases of lightning measurements involving direct strikes which require special design considerations for the sensors. The sensors and instrumentation used by NMIMT in collecting data on lightning at South Baldy peak in central New Mexico during the 1978 and 1979 lightning seasons are also discussed. The Langmuir Laboratory facilities and details of the underground shielded instrumentation room and recording equipment are presented.
2008-04-01
5 Fluxgate magnetometer ... magnetometer into digital format, and transmitted as a single serial data string to log the Cs and fluxgate magnetometer data. After procurement...Hardware The system hardware comprises an EMI sensor, Cs vapor magnetometer , fluxgate magnetometer , hand-held data acquisition computer, integrated
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement sensitivity of 4 degrees Fahrenheit or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic interference...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement sensitivity of 4 degrees Fahrenheit or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic interference...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements in paragraphs (c)(3)(i) through (vii) of this section. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement...) Shield the temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements in paragraphs (c)(3)(i) through (vii) of this section. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement...) Shield the temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If...
Fiber optics for propulsion control systems
NASA Technical Reports Server (NTRS)
Baumbick, R. J.
1985-01-01
In aircraft systems with digital controls, fiberoptics has advantages over wire systems because of its inherent immunity to electromagnetic noise (EMI) and electromagnetic pulses (EMP). It also offers a weight benefit when metallic conductors are replaced by optical fibers. To take full advantage of the benefits of optical waveguides, passive optical sensors are also being developed to eliminate the need for electrical power to the sensor. Fiberoptics may also be used for controlling actuators on engine and airframe. In this application, the optical fibers, connectors, etc. will be subjected to high temperature and vibrations. This paper discussed the use of fiberoptics in aircraft propulsion systems together with the optical sensors and optically controlled actuators being developed to take full advantage of the benefits which fiberoptics offers. The requirements for sensors and actuators in advanced propulsion systems are identified. The benefits of using fiberoptics in place of conventional wire systems are discussed as well as the environmental conditions under which the optical components must operate.
Fiberoptics for propulsion control system
NASA Technical Reports Server (NTRS)
Baumbick, R. J.
1984-01-01
In aircraft systems with digital controls, fiberoptics has advantages over wire systems because of its inherent immunity to electromagnetic noise (EMI) and electromagnetic pulses (EMP). It also offers a weight benefit when metallic conductors are replaced by optical fibers. To take full advantage of the benefits of optical waveguides, passive optical sensors are also being developed to eliminate the need for electrical power to the sensor. Fiberoptics may also be used for controlling actuators on engine and airframe. In this application, the optical fibers, connectors, etc. will be subjected to high temperature and vibrations. This paper discussed the use of fiberoptics in aircraft propulsion systems together with the optical sensors and optically controlled actuators being developed to take full advantage of the benefits which fiberoptics offers. The requirements for sensors and actuators in advanced propulsion systems are identified. The benefits of using fiberoptics in place of conventional wire systems are discussed as well as the environmental conditions under which the optical components must operate.
Demonstration of ROV-based Underwater Electromagnetic Array Technology
2017-05-25
Volume Magnetic Source Model that Was Modified to Address EM Propagation through a Conductive Seawater Medium...16 Figure 7. Still Shots of the Integrated ROV- EM System (left) and the EM Sensor (right) Performing Bottom Following...of Defense DVL Doppler Velocity Log E Easting EOD Explosive Ordnance Disposal EM Electromagnetic EMI Electromagnetic Induction EMF
Kraus, Jr., Robert H.; Espy, Michelle A.; Matlachov, Andrei; Volegov, Petr
2010-06-01
An apparatus measures electromagnetic signals from a weak signal source. A plurality of primary sensors is placed in functional proximity to the weak signal source with an electromagnetic field isolation surface arranged adjacent the primary sensors and between the weak signal source and sources of ambient noise. A plurality of reference sensors is placed adjacent the electromagnetic field isolation surface and arranged between the electromagnetic isolation surface and sources of ambient noise.
Wang, X G; Shang, X L; Lin, J
2016-05-01
Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically.
On the use of particle filters for electromagnetic tracking in high dose rate brachytherapy.
Götz, Th I; Lahmer, G; Brandt, T; Kallis, K; Strnad, V; Bert, Ch; Hensel, B; Tomé, A M; Lang, E W
2017-09-12
Modern radiotherapy of female breast cancers often employs high dose rate brachytherapy, where a radioactive source is moved inside catheters, implanted in the female breast, according to a prescribed treatment plan. Source localization relative to the patient's anatomy is determined with solenoid sensors whose spatial positions are measured with an electromagnetic tracking system. Precise sensor dwell position determination is of utmost importance to assure irradiation of the cancerous tissue according to the treatment plan. We present a hybrid data analysis system which combines multi-dimensional scaling with particle filters to precisely determine sensor dwell positions in the catheters during subsequent radiation treatment sessions. Both techniques are complemented with empirical mode decomposition for the removal of superimposed breathing artifacts. We show that the hybrid model robustly and reliably determines the spatial positions of all catheters used during the treatment and precisely determines any deviations of actual sensor dwell positions from the treatment plan. The hybrid system only relies on sensor positions measured with an EMT system and relates them to the spatial positions of the implanted catheters as initially determined with a computed x-ray tomography.
Nanomechanical electric and electromagnetic field sensor
Datskos, Panagiotis George; Lavrik, Nickolay
2015-03-24
The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.
Sensors for noncontact vibration diagnostics in rotating machinery
NASA Astrophysics Data System (ADS)
Procházka, Pavel
2016-06-01
The paper deals with electromagnetic sensors for noncontact vibration diagnostics in rotating machinery. The sensors were designed for operational measurements in turbomachinery by means of the tip-timing method. The main properties of eddy-current, Hall effect, induction and magnetoresistive sensors are described and compared. Possible arrangements of the experimental systems for static and dynamic calibration of the sensors are suggested and discussed.
2013-04-01
Measurement Tracking System (SAINT) with an advanced hand-held, time-domain electromagnetic sensor (TEM-HH) and document classification performance at...rejecting 77% of the clutter. 15. SUBJECT TERMS EMI, electromagnetic induction, UXO classification, UXO, IMU, inertial measurement unit, 16. SECURITY...U c. THIS PAGE U UU 19b. TELEPHONE NUMBER (include area code) 919-677-1560 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18
Spectrum-Modulating Fiber-Optic Sensors
NASA Technical Reports Server (NTRS)
Beheim, Glenn; Fritsch, Klaus
1989-01-01
Family of spectrum-modulating fiber-optic sensors undergoing development for use in aircraft-engine control systems. Fiber-optic sensors offer advantages of small size, high bandwidth, immunity to electromagnetic interference, and light weight. Furthermore, they reduce number of locations on aircraft to which electrical power has to be supplied.
Absolute vs. relative error characterization of electromagnetic tracking accuracy
NASA Astrophysics Data System (ADS)
Matinfar, Mohammad; Narayanasamy, Ganesh; Gutierrez, Luis; Chan, Raymond; Jain, Ameet
2010-02-01
Electromagnetic (EM) tracking systems are often used for real time navigation of medical tools in an Image Guided Therapy (IGT) system. They are specifically advantageous when the medical device requires tracking within the body of a patient where line of sight constraints prevent the use of conventional optical tracking. EM tracking systems are however very sensitive to electromagnetic field distortions. These distortions, arising from changes in the electromagnetic environment due to the presence of conductive ferromagnetic surgical tools or other medical equipment, limit the accuracy of EM tracking, in some cases potentially rendering tracking data unusable. We present a mapping method for the operating region over which EM tracking sensors are used, allowing for characterization of measurement errors, in turn providing physicians with visual feedback about measurement confidence or reliability of localization estimates. In this instance, we employ a calibration phantom to assess distortion within the operating field of the EM tracker and to display in real time the distribution of measurement errors, as well as the location and extent of the field associated with minimal spatial distortion. The accuracy is assessed relative to successive measurements. Error is computed for a reference point and consecutive measurement errors are displayed relative to the reference in order to characterize the accuracy in near-real-time. In an initial set-up phase, the phantom geometry is calibrated by registering the data from a multitude of EM sensors in a non-ferromagnetic ("clean") EM environment. The registration results in the locations of sensors with respect to each other and defines the geometry of the sensors in the phantom. In a measurement phase, the position and orientation data from all sensors are compared with the known geometry of the sensor spacing, and localization errors (displacement and orientation) are computed. Based on error thresholds provided by the operator, the spatial distribution of localization errors are clustered and dynamically displayed as separate confidence zones within the operating region of the EM tracker space.
Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric; Cottineau, Louis-Marie; Cuomo, Vincenzo; Della Vecchia, Pietro; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric
2010-01-01
The ISTIMES project, funded by the European Commission in the frame of a joint Call "ICT and Security" of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project.
Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project
Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric.; Cottineau, Louis-Marie; Cuomo, Vincenzo; Vecchia, Pietro Della; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric
2010-01-01
The ISTIMES project, funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project. PMID:22163489
SensInDenT-Noncontact Sensors Integrated Into Dental Treatment Units.
Teichmann, Daniel; Teichmann, Maren; Weitz, Philippe; Wolfart, Stefan; Leonhardt, Steffen; Walter, Marian
2017-02-01
This paper presents the first system design (SensInDenT) for noncontact cardiorespiratory monitoring during dental treatment. The system is integrated into a dental treatment unit, and combines sensors based on electromagnetic, optical, and mechanical coupling at different sensor locations. The measurement principles and circuits are described and a system overview is presented. Furthermore, a first proof of concept is provided by taking measurements in healthy volunteers under laboratory conditions.
Monitoring relative humidity in RPC detectors by use of fiber optic sensors
NASA Astrophysics Data System (ADS)
Caponero, M. A.; Polimadei, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Passamonti, L.; Piccolo, D.; Pierluigi, D.; Russo, A.; Felli, F.; Saviano, G.; Vendittozzi, C.
2013-03-01
We propose to adopt Fiber Bragg Grating technology to develop an innovative sensor for monitoring relative humidity of the gas fluxed in Resistive Plate Counters. Use of Fiber Bragg Grating as sensing device makes the proposed sensor well suited to develop distributed real-time monitoring systems to be installed on large volume detectors operated in high electromagnetic fields. In fact Fiber Bragg Gratings are fully immune from electromagnetic disturbances and allow simplified wiring by in-series interconnection of tens of them along a single optical fiber. In this paper we present results intended to investigate the feasibility of our proposal.
High power microwave hazard facing smart ammunitions
NASA Astrophysics Data System (ADS)
Bohl, J.
1995-03-01
The battle field of the present and even more the one in future will be characterized by the use of weapon systems with a high degree of electronics, computers, and sensors, designed and built to keep not only the man out of the loop. But the higher the technology used for smart weapon systems, the more these systems are endangered by numerous sources of hazard. One of those sources is the threat caused by induced or natural electromagnetic fields. These threat factors can be generated by natural, civil and military environment. In principle there are two main applications which must be considered in military applications: Firstly, weapon systems, that is, high power microwave sources as well as intelligent electromagnetic radiation systems to defeat ammunition on the battle field and secondly, the hardening of the own smart ammunition systems and missiles against the interference sources created by the different types of electromagnetic fields. This report will discuss the possible electromagnetic coupling effects on smart ammunition and missiles and their typical interference caused on the electronics and sensor level. Real time 6-DOF simulations show the flight mission which may be compromised depending on the coupled electromagnetic fields. The German MOD has established a research program where smart ammunitions with different seeker systems are investigated in respect of the coupling effects on smart ammunition caused by high power microwaves. This program considers all available resources and know how in Germany. The systems are investigated by analytical, numerical, and experimental methods with passive and activated missiles.
McGary, John E; Xiong, Zubiao; Chen, Ji
2013-07-01
TomoTherapy systems lack real-time, tumor tracking. A possible solution is to use electromagnetic markers; however, eddy-current magnetic fields generated in response to a magnetic source can be comparable to the signal, thus degrading the localization accuracy. Therefore, the tracking system must be designed to account for the eddy fields created along the inner bore conducting surfaces. The aim of this work is to investigate localization accuracy using magnetic field gradients to determine feasibility toward TomoTherapy applications. Electromagnetic models are used to simulate magnetic fields created by a source and its simultaneous generation of eddy currents within a conducting cylinder. The source position is calculated using a least-squares fit of simulated sensor data using the dipole equation as the model equation. To account for field gradients across the sensor area (≈ 25 cm(2)), an iterative method is used to estimate the magnetic field at the sensor center. Spatial gradients are calculated with two arrays of uniaxial, paired sensors that form a gradiometer array, where the sensors are considered ideal. Experimental measurements of magnetic fields within the TomoTherapy bore are shown to be 1%-10% less than calculated with the electromagnetic model. Localization results using a 5 × 5 array of gradiometers are, in general, 2-4 times more accurate than a planar array of sensors, depending on the solenoid orientation and position. Simulation results show that the localization accuracy using a gradiometer array is within 1.3 mm over a distance of 20 cm from the array plane. In comparison, localization errors using single array are within 5 mm. The results indicate that the gradiometer method merits further studies and work due to the accuracy achieved with ideal sensors. Future studies should include realistic sensor models and extensive numerical studies to estimate the expected magnetic tracking accuracy within a TomoTherapy system before proceeding with prototype development.
NASA Astrophysics Data System (ADS)
Isnen, M.; Nasution, T. I.; Perangin-angin, B.
2016-08-01
The identification of changes in oil quality has been conducted by indicating the change of dielectric constant which was showed by sensor voltage. Sensor was formed from two parallel flats that worked by electromagnetic wave propagation principle. By measuring its amplitude of electromagnetic wave attenuation caused by interaction between edible oil samples and the sensor, dielectric constant could be identified and estimated as well as peroxide number. In this case, the parallel flats were connected to an electric oscillator 700 kHz. Furthermore, sensor system could showed measurable voltage differences for each different samples. The testing carried out to five oil samples after undergoing an oxidation treatment at fix temperature of 235oC for 0, 5, 10, 15 and 20 minutes. Iodometry method testing showed peroxide values about 1.99, 9.95, 5.96, 11.86, and 15.92 meq/kg respectively with rising trend. Besides that, the testing result by sensor system showed voltages values 1.139, 1.147, 1.165, 1.173, and 1.176 volts with rising trend, respectively. It means that the higher sensor voltages showed the higher damage rate of edible oil when the change in sensor voltage was caused by the change in oil dielectric constant in which heating process caused damage in edible oil molecules structure. The more damage of oil structure caused the more difficulties of oil molecules to polarize and it is indicated by smaller dielectric constant. Therefore electric current would be smaller when sensor voltage was higher. On the other side, the higher sensor voltage means the smaller dielectric constant and the higher peroxide number.
40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...
40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...
40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...
On the use of particle filters for electromagnetic tracking in high dose rate brachytherapy
NASA Astrophysics Data System (ADS)
Götz, Th I.; Lahmer, G.; Brandt, T.; Kallis, K.; Strnad, V.; Bert, Ch; Hensel, B.; Tomé, A. M.; Lang, E. W.
2017-10-01
Modern radiotherapy of female breast cancers often employs high dose rate brachytherapy, where a radioactive source is moved inside catheters, implanted in the female breast, according to a prescribed treatment plan. Source localization relative to the patient’s anatomy is determined with solenoid sensors whose spatial positions are measured with an electromagnetic tracking system. Precise sensor dwell position determination is of utmost importance to assure irradiation of the cancerous tissue according to the treatment plan. We present a hybrid data analysis system which combines multi-dimensional scaling with particle filters to precisely determine sensor dwell positions in the catheters during subsequent radiation treatment sessions. Both techniques are complemented with empirical mode decomposition for the removal of superimposed breathing artifacts. We show that the hybrid model robustly and reliably determines the spatial positions of all catheters used during the treatment and precisely determines any deviations of actual sensor dwell positions from the treatment plan. The hybrid system only relies on sensor positions measured with an EMT system and relates them to the spatial positions of the implanted catheters as initially determined with a computed x-ray tomography.
Using spread spectrum for AMR magnetic sensor
NASA Astrophysics Data System (ADS)
Vala, David
2016-09-01
This contribution describe invention of Magnetometer with protection against detection by electronic counter- measure (ECM) registered by Czech patent office as patent no. 305322.1 Magnetic sensors are often part of dual use or security instruments and equipment. For this purpose is very interesting to build sensor with is hidden against electronic countermeasure. In this case is very important level and behavior of electromagnetic noise produced by sensor. And also electromagnetic compatibility of electronic devices is the area which significant grows nowadays too. As the consequence of this growth there is a continuous process of making more strict standards focused on electromagnetic radiation of electronic devices. Sensors technology begins to be a part of these issues due sensors bandwidth increasing and approaching to frequency of radio communication band. Nowadays microcontrollers and similar digital circuits are integrated into sensors devices and it brings new sources of electromagnetic radiation in modern smart sensors.
Xin, Encheng; Ju, Yong; Yuan, Haiwen
2016-01-01
A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density. PMID:27775627
Xin, Encheng; Ju, Yong; Yuan, Haiwen
2016-10-20
A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.
Code of Federal Regulations, 2010 CFR
2010-07-01
... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that... temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If a gas...) of this section. (1) For a thermal oxidizer, install a gas temperature monitor in the firebox of the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that... temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If a gas...) of this section. (1) For a thermal oxidizer, install a gas temperature monitor in the firebox of the...
Chelliah, Pandian; Murgesan, Kasinathan; Samvel, Sosamma; Chelamchala, Babu Rao; Tammana, Jayakumar; Nagarajan, Murali; Raj, Baldev
2010-07-10
Optical-fiber-based sensors have inherent advantages, such as immunity to electromagnetic interference, compared to the conventional sensors. Distributed optical fiber sensor (DOFS) systems, such as Raman and Brillouin distributed temperature sensors are used for leak detection. The inherent noise of fiber-based systems leads to occasional false alarms. In this paper, a methodology is proposed to overcome this. This uses a looped back fiber mode in DOFS and voting logic is employed to considerably reduce the false alarm rate.
NASA Technical Reports Server (NTRS)
Trost, T. F.; Zaepfel, K. P.
1980-01-01
A set of electromagnetic sensors, or electrically-small antennas, is described. The sensors are designed for installation on an F-106 research aircraft for the measurement of electric and magnetic fields and currents during a lightning strike. The electric and magnetic field sensors mount on the aircraft skin. The current sensor mounts between the nose boom and the fuselage. The sensors are all on the order of 10 cm in size and should produce up to about 100 V for the estimated lightning fields. The basic designs are the same as those developed for nuclear electromagnetic pulse studies. The most important electrical parameters of the sensors are the sensitivity, or equivalent area, and the bandwidth (or rise time). Calibration of sensors with simple geometries is reliably accomplished by a geometric analysis; all the sensors discussed possess geometries for which the sensitivities have been calculated. For the calibration of sensors with more complex geometries and for general testing of all sensors, two transmission lines were constructed to transmit known pulsed fields and currents over the sensors.
Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics
Bakhtiari, Sasan; Gopalsami, Nachappa; Raptis, Apostolos C.
1999-03-23
A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.
Analyses of electromagnetic and piezoelectric systems for efficient vibration energy harvesting
NASA Astrophysics Data System (ADS)
Hadas, Z.; Smilek, J.; Rubes, O.
2017-05-01
The paper deals with analyses and evaluation of vibration energy harvesting systems which are based on electromagnetic and piezoelectric physical principles off electro-mechanical conversion. Energy harvesting systems are associated with wireless sensors and a monitoring of engineering objects. The most of engineering objects operate with unwanted mechanical vibrations. However, vibrations could provide an ambient source of energy which is converted into useful electricity. The use of electromagnetic and piezoelectric vibration energy harvesters is analyzed in this paper. Thee evaluated output power is used for a choice of the efficient system with respect to the character of vibrations and thee required power output.
Heterodyne systems and technology, part 1. [conferences
NASA Technical Reports Server (NTRS)
1980-01-01
Various aspects of optical heterodyning are considered. Topics covered heterodyning throughout the electromagnetic spectrum including detectors, local oscillators, tunable diode lasers, astronomical systems, and environmental sensors, with both active and passive systems represented.
Working group organizational meeting
NASA Technical Reports Server (NTRS)
1982-01-01
Scene radiation and atmospheric effects, mathematical pattern recognition and image analysis, information evaluation and utilization, and electromagnetic measurements and signal handling are considered. Research issues in sensors and signals, including radar (SAR) reflectometry, SAR processing speed, registration, including overlay of SAR and optical imagery, entire system radiance calibration, and lack of requirements for both sensors and systems, etc. were discussed.
Radio frequency telemetry system for sensors and actuators
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor); Miranda, Felix A. (Inventor)
2003-01-01
The present invention discloses and teaches apparatus for combining Radio Frequency (RF) technology with novel micro-inductor antennas and signal processing circuits for RF telemetry of real time, measured data, from microelectromechanical system (MEMS) sensors, through electromagnetic coupling with a remote powering/receiving device. Such technology has many applications, but is especially useful in the biomedical area.
Radio Frequency Telemetry System for Sensors and Actuators
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor); Miranda, Felix A. (Inventor)
2003-01-01
The present invention discloses and teaches apparatus for combining Radio Frequency (RF) technology with novel micro-inductor antennas and signal processing circuits for RF telemetry of real time, measured data, from microelectromechanical system (MEMS) sensors, through electromagnetic coupling with a remote poweringheceiving device. Such technology has many applications, but is especially useful in the biomedical area.
Xue, Song; He, Ning; Long, Zhiqiang
2012-01-01
The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor.
Xue, Song; He, Ning; Long, Zhiqiang
2012-01-01
The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor. PMID:22778652
Tsukamoto, S; Hoshino, H; Tamura, T
2008-01-01
This paper describes an indoor behavioral monitoring system for improving the quality of life in ordinary houses. It employs a device that uses weak radio waves for transmitting the obtained data and it is designed such that it can be installed by a user without requiring any technical knowledge or extra constructions. This study focuses on determining the usage statistics of home electric appliances by using an electromagnetic field sensor as a detection device. The usage of the home appliances is determined by measuring the electromagnetic field that can be observed in an area near the appliance. It is assumed that these usage statistics could provide information regarding the indoor behavior of a subject. Since the sensor is not direction sensitive and does not require precise positioning and wiring, it can be easily installed in ordinary houses by the end users. For evaluating the practicability of the sensor unit, several simple tests have been performed. The results indicate that the proposed system could be useful for collecting the usage statistics of home appliances. PMID:19415135
Radiance and atmosphere propagation-based method for the target range estimation
NASA Astrophysics Data System (ADS)
Cho, Hoonkyung; Chun, Joohwan
2012-06-01
Target range estimation is traditionally based on radar and active sonar systems in modern combat system. However, the performance of such active sensor devices is degraded tremendously by jamming signal from the enemy. This paper proposes a simple range estimation method between the target and the sensor. Passive IR sensors measures infrared (IR) light radiance radiating from objects in dierent wavelength and this method shows robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and is attenuated by various factors, in particular the distance between the sensor and the target and atmosphere environment. MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the result from MODTRAN and measured radiance, the target range is estimated. To statistically analyze the performance of proposed method, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao Lower Bound (CRLB) via the probability density function of measured radiance. And we also compare CRLB and the variance of and ML estimation using Monte-Carlo.
Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng
2011-01-01
Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.
Inductive displacement sensors with a notch filter for an active magnetic bearing system.
Chen, Seng-Chi; Le, Dinh-Kha; Nguyen, Van-Sum
2014-07-15
Active magnetic bearing (AMB) systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.
Design and field tests of an access-tube soil water sensor
USDA-ARS?s Scientific Manuscript database
Accurate soil profile water content monitoring at multiple depths until now, has been possible only using the neutron probe (NP), but with great effort and at infrequent time intervals. Despite the existence of several electromagnetic sensor systems for profile water content measurements, accuracy ...
Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review
Yang, Ding-Xin; Hu, Zheng; Zhao, Hong; Hu, Hai-Feng; Sun, Yun-Zhe; Hou, Bao-Jian
2015-01-01
The aim of this review was to assess the current viable technologies for wireless power delivery and data transmission through metal barriers. Using such technologies sensors enclosed in hermetical metal containers can be powered and communicate through exterior power sources without penetration of the metal wall for wire feed-throughs. In this review, we first discuss the significant and essential requirements for through-metal-wall power delivery and data transmission and then we: (1) describe three electromagnetic coupling based techniques reported in the literature, which include inductive coupling, capacitive coupling, and magnetic resonance coupling; (2) present a detailed review of wireless ultrasonic through-metal-wall power delivery and/or data transmission methods; (3) compare various ultrasonic through-metal-wall systems in modeling, transducer configuration and communication mode with sensors; (4) summarize the characteristics of electromagnetic-based and ultrasound-based systems, evaluate the challenges and development trends. We conclude that electromagnetic coupling methods are suitable for through thin non-ferromagnetic metal wall power delivery and data transmission at a relatively low data rate; piezoelectric transducer-based ultrasonic systems are particularly advantageous in achieving high power transfer efficiency and high data rates; the combination of more than one single technique may provide a more practical and reliable solution for long term operation. PMID:26694392
Baeyens, J-P; Gilomen, H; Erdmann, B; Clijsen, R; Cabri, J; Vissers, D
2013-04-01
The aim of this study was to evaluate the use of miniaturized electromagnetic trackers (1 × 0.5 × 0.5 cm) fixed on teeth of the maxilla and mandible to analyse in vivo the 3D kinematics of the temporomandibular joint (TMJ). A third sensor was fixed to the forehead, and a fourth sensor was used as a stylus pointer to detect several anatomical landmarks in order to embed a local frame on the cranium. Temporomandibular opening/closing, chewing, laterotrusion and protrusion were examined. The prime objective within this study was to rigidly attach electromagnetic minisensors on teeth. The key for a successful affixation was the kevlar interface. The distances between the two mandibular affixed sensors and between the two maxillar affixed sensors were overall smaller than 0.033 cm for position and 0.2° for attitude throughout the temporomandibular motions. The relative motions between a forehead sensor and the maxilla affixed sensor are too big to suggest a forehead sensor as an alternative for a maxilla affixed sensor. The technique using miniaturized electromagnetic trackers furthers on the methods using electromagnetic trackers on external appliances. The method allows full range of motion of the TMJ and does not disturb normal TMJ function.
Systems and methods for locating and imaging proppant in an induced fracture
Aldridge, David F.; Bartel, Lewis C.
2016-02-02
Born Scattering Inversion (BSI) systems and methods are disclosed. A BSI system may be incorporated in a well system for accessing natural gas, oil and geothermal reserves in a geologic formation beneath the surface of the Earth. The BSI system may be used to generate a three-dimensional image of a proppant-filled hydraulically-induced fracture in the geologic formation. The BSI system may include computing equipment and sensors for measuring electromagnetic fields in the vicinity of the fracture before and after the fracture is generated, adjusting the parameters of a first Born approximation model of a scattered component of the surface electromagnetic fields using the measured electromagnetic fields, and generating the image of the proppant-filled fracture using the adjusted parameters.
2015-07-01
concentrations. A total of 11.23 acres of dynamic surveys were conducted using MetalMapper advanced electromagnetic induction (EMI) sensor. A total of...centimeter DGM digital geophysical mapping DSB Defense Science Board EE/CA Engineering Evaluation/Cost Analysis EMI electromagnetic induction...performed a live site demonstration project using the Geometrics MetalMapper advanced electromagnetic induction (EMI) sensor at the former
ERIC Educational Resources Information Center
Savariaux, Christophe; Badin, Pierre; Samson, Adeline; Gerber, Silvain
2017-01-01
Purpose: This study compares the precision of the electromagnetic articulographs used in speech research: Northern Digital Instruments' Wave and Carstens' AG200, AG500, and AG501 systems. Method: The fluctuation of distances between 3 pairs of sensors attached to a manually rotated device that can position them inside the measurement volumes was…
Liu, Yanjie; Han, Haijun; Liu, Tao; Yi, Jingang; Li, Qingguo; Inoue, Yoshio
2016-01-01
Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems. PMID:27023545
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don, S; Cormack, R; Viswanathan, A
Purpose: To present a programmable robotic system for the accurate and fast deployment of an electromagnetic (EM) sensor for brachytherapy catheter localization. Methods: A robotic system for deployment of an EM sensor was designed and built. The system was programmed to increment the sensor position at specified time and space intervals. Sensor delivery accuracy was measured in a phantom using the localization of the EM sensor and tested in different environmental conditions. Accuracy was tested by measuring the distance between the physical locations reached by the sensor (measured by the EM tracker) and the intended programmed locations. Results: The systemmore » consisted of a stepper motor connected to drive wheels (that grip the cable to move the sensor) and a series of guides to connect to a brachytherapy transfer tube, all controlled by a programmable Arduino microprocessor. The total cost for parts was <$300. The positional accuracy of the sensor location was within 1 mm of the expected position provided by the motorized guide system. Acquisition speed to localize a brachytherapy catheter with 20 cm of active length was 10 seconds. The current design showed some cable slip and warping depending on environment temperature. Conclusion: The use of EM tracking for the localization of brachytherapy catheters has been previously demonstrated. Efficient data acquisition and artifact reduction requires fast and accurate deployment of an EM sensor in consistent, repeatable patterns, which cannot practically be achieved manually. The design of an inexpensive, programmable robot allowing for the precise deployment of stepping patterns was presented, and a prototype was built. Further engineering is necessary to ensure that the device provides efficient independent localization of brachytherapy catheters. This research was funded by the Kaye Family Award.« less
Chowdhury, Amor; Sarjaš, Andrej
2016-01-01
The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation. PMID:27649197
Chowdhury, Amor; Sarjaš, Andrej
2016-09-15
The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.
The application of remote sensing techniques: Technical and methodological issues
NASA Technical Reports Server (NTRS)
Polcyn, F. C.; Wagner, T. W.
1974-01-01
Capabilities and limitations of modern imaging electromagnetic sensor systems are outlined, and the products of such systems are compared with those of the traditional aerial photographic system. Focus is given to the interface between the rapidly developing remote sensing technology and the information needs of operational agencies, and communication gaps are shown to retard early adoption of the technology by these agencies. An assessment is made of the current status of imaging remote sensors and their potential for the future. Public sources of remote sensor data and several cost comparisons are included.
Optically powered active sensing system for Internet Of Things
NASA Astrophysics Data System (ADS)
Gao, Chen; Wang, Jin; Yin, Long; Yang, Jing; Jiang, Jian; Wan, Hongdan
2014-10-01
Internet Of Things (IOT) drives a significant increase in the extent and type of sensing technology and equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such sensing systems will all require to be powered. Conventionally, electrical powering is supplied by batteries or/and electric power cables. The power supply by batteries usually has a limited lifetime, while the electric power cables are susceptible to electromagnetic interference. In fact, the electromagnetic interference is the key issue limiting the power supply in the strong electromagnetic radiation area and other extreme environments. The novel alternative method of power supply is power over fiber (PoF) technique. As fibers are used as power supply lines instead, the delivery of the power is inherently immune to electromagnetic radiation, and avoids cumbersome shielding of power lines. Such a safer power supply mode would be a promising candidate for applications in IOT. In this work, we built up optically powered active sensing system, supplying uninterrupted power for the remote active sensors and communication modules. Also, we proposed a novel maximum power point tracking technique for photovoltaic power convertors. In our system, the actual output efficiency greater than 40% within 1W laser power. After 1km fiber transmission and opto-electric power conversion, a stable electric power of 210mW was obtained, which is sufficient for operating an active sensing system.
Novel Fiber-Optic Ring Acoustic Emission Sensor
Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao
2018-01-01
Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments. PMID:29342858
Novel Fiber-Optic Ring Acoustic Emission Sensor.
Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao
2018-01-13
Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.
Thin-film spectroscopic sensor
Burgess, Jr., Lloyd W.; Goldman, Don S.
1992-01-01
There is disclosed an integrated spectrometer for chemical analysis by evanescent electromagnetic radiation absorption in a reaction volume. The spectrometer comprises a noninteractive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device. There is further disclosed a chemical sensor to determine the pressure and concentration of a chemical species in a mixture comprising an interactive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device.
Detection of Humans and Light Vehicles Using Acoustic-to-Seismic Coupling
2009-08-31
microphones, video cameras (regular and infrared), magnetic sensors, and active Doppler radar and sonar systems. These sensors could be located at... sonar systems due to dramatic absorption/reflection of electromagnetic/ultrasonic waves [8,9]. 6...engine was turned off, and the car continued moving. This eliminated the engine sound. A PCB microphone, 377B41, with preamplifier , 426A30, and with
Analytical evaluation of ILM sensors. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Kirk, R. J.
1975-01-01
The applicability of various sensing concepts to independent landing monitor systems was analyzed. Microwave landing system MLS accuracy requirements are presented along with a description of MLS airborne equipment. Computer programs developed during the analysis are described and include: a mathematical computer model for use in the performance assessment of reconnaissance sensor systems; a theoretical formulation of electromagnetic scattering to generate data at high incidence angles; atmospheric attenuation of microwaves; and microwave radiometry, programs
Military Applications of Fiber Optics Technology
1989-05-01
Research Projects Agency DNA Defense Nuclear Agency EMI Electromagnetic interference EMP Electromagnetic pulse FET Field effect transistor FOFA Follow...Organization SEED Self electro-optic effect device TBM Tactical ballistic missile TOW Tube launched, optically tracked, wire-guided UAV Unmanned aerial vehicle...systems, coupled with novel but effective transducing technology, have set the stage for a powerful class of fiber optic sensors. 8 Optical fibers have
ERIC Educational Resources Information Center
Katz, William F.; Bharadwaj, Sneha V.; Stettler, Monica P.
2006-01-01
Purpose: This study examined whether the intraoral transducers used in electromagnetic articulography (EMA) interfere with speech and whether there is an added risk of interference when EMA systems are used to study individuals with aphasia and apraxia. Method: Ten adult talkers (5 individuals with aphasia/apraxia, 5 controls) produced 12 American…
The measurement procedure in the SEMONT monitoring system.
Djuric, Nikola; Kljajic, Dragan; Kasas-Lazetic, Karolina; Bajovic, Vera
2014-03-01
The measurement procedure of the open area in situ electric field strength is presented, acquiring the real field data for testing of the Serbian electromagnetic field monitoring network (SEMONT) and its Internet portal. The SEMONT monitoring system introduces an advanced approach of wireless sensor network utilization for the continuous supervision of overall and cumulative level of electromagnetic field over the observed area. The aim of the SEMONT system is to become a useful tool for the national and municipal agencies for the environmental protection, regarding the electromagnetic pollution monitoring and the exposure assessment of the general population. Considering the public concern on the potentially harmful effects of the long-term exposure to electromagnetic radiation, as well as the public transparency principle that is incorporated into the Serbian law on non-ionizing radiation protection, the SEMONT monitoring system is designed for the long-term continuous monitoring, presenting real-time measurement results, and corresponding exposure assessment over the public Internet network.
Range estimation of passive infrared targets through the atmosphere
NASA Astrophysics Data System (ADS)
Cho, Hoonkyung; Chun, Joohwan; Seo, Doochun; Choi, Seokweon
2013-04-01
Target range estimation is traditionally based on radar and active sonar systems in modern combat systems. However, jamming signals tremendously degrade the performance of such active sensor devices. We introduce a simple target range estimation method and the fundamental limits of the proposed method based on the atmosphere propagation model. Since passive infrared (IR) sensors measure IR signals radiating from objects in different wavelengths, this method has robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and various attenuation factors (i.e., the distance between sensor and target and atmosphere environment parameters). MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the results from MODTRAN and atmosphere propagation-based modeling, the target range can be estimated. To analyze the proposed method's performance statistically, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao lower bound (CRLB) via the probability density function of measured radiance. We also compare CRLB and the variance of MLE using Monte-Carlo simulation.
Yao, Chenguo; Chen, Pan; Huang, Congjian; Chen, Yu; Qiao, Panpan
2013-01-01
The ultra-high-frequency (UHF) method is used to analyze the insulation condition of electric equipment by detecting the UHF electromagnetic (EM) waves excited by partial discharge (PD). As part of the UHF detection system, the UHF sensor determines the detection system performance in signal extraction and recognition. In this paper, a UHF antenna sensor with the fractal structure for PD detection in switchgears was designed by means of modeling, simulation and optimization. This sensor, with a flat-plate structure, had two resonance frequencies of 583 MHz and 732 MHz. In the laboratory, four kinds of insulation defect models were positioned in the testing switchgear for typical PD tests. The results show that the sensor could reproduce the electromagnetic waves well. Furthermore, to optimize the installation position of the inner sensor for achieving best detection performance, the precise simulation model of switchgear was developed to study the propagation characteristics of UHF signals in switchgear by finite-difference time-domain (FDTD) method. According to the results of simulation and verification test, the sensor should be positioned at the right side of bottom plate in the front cabinet. This research established the foundation for the further study on the application of UHF technique in switchgear PD online detection. PMID:24351641
Thermally emissive sensing materials for chemical spectroscopy analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, Zsolt; Ohodnicki, Paul R.
A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to themore » material.« less
Methods, Systems and Apparatuses for Radio Frequency Identification
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Ngo, Phong H. (Inventor); Brown, Dewey T. (Inventor); Byerly, Diane (Inventor)
2016-01-01
A system for radio frequency identification (RFID) includes an enclosure defining an interior region interior to the enclosure, and a feed for generating an electromagnetic field in the interior region in response to a signal received from an RFID reader via a radio frequency (RF) transmission line and, in response to the electromagnetic field, receiving a signal from an RFID sensor attached to an item in the interior region. The structure of the enclosure may be conductive and may include a metamaterial portion, an electromagnetically absorbing portion, or a wall extending in the interior region. Related apparatuses and methods for performing RFID are provided.
Methods, Systems and Apparatuses for Radio Frequency Identification
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Ngo, Phong H. (Inventor); Brown, Dewey T. (Inventor); Byerly, Diane (Inventor); Boose, Haley C. (Inventor)
2015-01-01
A system for radio frequency identification (RFID) includes an enclosure defining an interior region interior to the enclosure, and a feed for generating an electromagnetic field in the interior region in response to a signal received from an RFID reader via a radio frequency (RF) transmission line and, in response to the electromagnetic field, receiving a signal from an RFID sensor attached to an item in the interior region. The structure of the enclosure may be conductive and may include a metamaterial portion, an electromagnetically absorbing portion, or a wall extending in the interior region. Related apparatuses and methods for performing RFID are provided.
Methods, Systems and Apparatuses for Radio Frequency Identification
NASA Technical Reports Server (NTRS)
Brown, Dewey T. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Byerly, Diane (Inventor); Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Ngo, Phong H. (Inventor)
2017-01-01
A system for radio frequency identification (RFID) includes an enclosure defining an interior region interior to the enclosure, and a feed for generating an electromagnetic field in the interior region in response to a signal received from an RFID reader via a radio frequency (RF) transmission line and, in response to the electromagnetic field, receiving a signal from an RFID sensor attached to an item in the interior region. The structure of the enclosure may be conductive and may include a metamaterial portion, an electromagnetically absorbing portion, or a wall extending in the interior region. Related apparatuses and methods for performing RFID are provided.
Development of Stiff and Extendible Electromagnetic Sensors for Space Missions
NASA Astrophysics Data System (ADS)
Kasaba, Y.; Kumamoto, A.; Ishisaka, K.; Kojima, H.; Higuchi, K.; Watanabe, A.; Watanabe, K.
2010-05-01
We developed three types of stiff and extendible electromagnetic sensors in rigid monopole antenna, loop antenna, and Yagi-Uda antenna for future space missions. They are based on carbon fiber reinforced plastic (CFRP) technologies, in order to fulfill severe requirements, i.e. enough stiffness, light mass, compact storage, safe extension, and reasonable test efforts. One of them, rigid monopole antennas, coupled with an inflatable actuator system, was successfully used in the JAXA S-520-23 sounding rocket experiment in September 2007. Applications of those antennas are expected in space plasma missions including the SCOPE program, sounding rocket experiments, planetary radar remote sensing, and landing radio measurements.
Spaceborne sensors (1983-2000 AD): A forecast of technology
NASA Technical Reports Server (NTRS)
Kostiuk, T.; Clark, B. P.
1984-01-01
A technical review and forecast of space technology as it applies to spaceborne sensors for future NASA missions is presented. A format for categorization of sensor systems covering the entire electromagnetic spectrum, including particles and fields is developed. Major generic sensor systems are related to their subsystems, components, and to basic research and development. General supporting technologies such as cryogenics, optical design, and data processing electronics are addressed where appropriate. The dependence of many classes of instruments on common components, basic R&D and support technologies is also illustrated. A forecast of important system designs and instrument and component performance parameters is provided for the 1983-2000 AD time frame. Some insight into the scientific and applications capabilities and goals of the sensor systems is also given.
Navy Virginia (SSN-774) Class Attack Submarine Procurement: Background and Issues for Congress
2010-07-08
current and future Virginia Class submarines once they mature—advanced electromagnetic signature reduction (AESR), a conformal acoustic velocity sensor...WAA is a sensor array that is designed to detect the vibrations and acoustic signatures of targets. The Navy has stated that CAVES WAA could save...Active Shaft Grounding System, Circuit D, Ship Service Turbine Generator magnetic levitation bearings / throttle control system, etc.); • Special
NASA Astrophysics Data System (ADS)
Schultz, Gregory; Miller, Jonathan; Keranen, Joe
2013-06-01
Land reclamation efforts in post-conflict regions are often hampered by the presence of Unexploded Ordnance (UXO) or other Explosive Remnants of War (ERW). Surface geophysical methods, such as Electromagnetic Induction (EMI) and magnetometry, are typically applied to screen rehabilitation areas for UXO prior to excavation; however, the prevalence of innocuous magnetic clutter related to indigenous scrap, fragmentation, or geology can severely impede the progress and efficiency of these remediation efforts. Additionally, the variability in surface conditions and local topography necessitates the development of sensor technologies that can be applied to a range of sites including those that prohibit the use of vehicle-mounted or large array systems. We present a man-portable EMI sensor known as the Electromagnetic Packable Technology (EMPACT) system that features a multi-axis sensor configuration in a compact form factor. The system is designed for operation in challenging site conditions and can be used in low ground-standoff modes to detect small and low-metal content objects. The EMPACT acquires high spatial density, multi-axis data that enable high resolution of small objects. This high density data can also be used to provide characterization of target physical features, such as size, material content, and shape. We summarize the development of this system for humanitarian demining operations and present results from preliminary system evaluations against a range of target types. Specifically, we assess the general detection capabilities of the EMPACT system and we evaluate the potential for target classification based on analysis of data and target model features.
Compact orthogonal NMR field sensor
Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL
2009-02-03
A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.
A Low Frequency Electromagnetic Sensor for Underwater Geo-Location
2011-05-01
used a set of commercially available fluxgate magnetometers to measure the magnetic field gradients associated with a magnetic dipole transmitter...insight into the operational capabilities of commercial fluxgate sensors. Figure 42. Applied Physics Systems 1540 magnetometer ...a magnetic field gradient receiver array. Highest quality gradient estimates were achieved with three vector magnetometers equally spaced and
2008-02-01
of the magnetic data to constrain the target depth using joint or cooperative inversions ( Pasion et al. 2002). ERDC/EL TR-08-9 24 Figure 15. EM...baseline ordnance classification test site at Blossom Pt. Naval Research Laboratory. NRL/MR/6110-00-8437, March 20, 1998. Pasion , L., S. Billings, and
USDA-ARS?s Scientific Manuscript database
Since the late 1980s, electromagnetic (EM) sensors for determination on of soil water content from within nonmetallic access tubes have been marketed as replacements for the neutron moisture meter (NMM); however, the accuracy, variability and physical significance of EM sensor field measurements hav...
Fiber optic perimeter system for security in smart city
NASA Astrophysics Data System (ADS)
Cubik, Jakub; Kepak, Stanislav; Nedoma, Jan; Fajkus, Marcel; Zboril, Ondrej; Novak, Martin; Jargus, Jan; Vasinek, Vladimir
2017-10-01
Protection of persons and assets is the key challenge of Smart City safeguards technologies. Conventional security technologies are often outdated and easy to breach. Therefore, new technologies that could complement existing systems or replace them are developed. The use of optical fibers and their subsequent application in sensing is a trend of recent years. This article discusses the use of fiber-optic sensors in perimeter protection. The sensor consists of optical fibers and couplers only and being constructed without wires and metal parts bring many advantages. These include an absence of interference with electromagnetic waves, system presence can be difficult to detect as well as affect its operation. Testing installation of perimeter system was carried out under reinforced concrete structure. Subjects walked over the bridge at different speeds and over the different routes. The task for the system was an absolute detection of all subjects. The proposed system should find application mainly in areas with the presence of volatile substances, strong electromagnetic fields, or in explosive areas.
Theory and experiment research for ultra-low frequency maglev vibration sensor.
Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun
2015-10-01
A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.
Theory and experiment research for ultra-low frequency maglev vibration sensor
NASA Astrophysics Data System (ADS)
Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun
2015-10-01
A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.
Tura, Andrea; Sbrignadello, Stefano; Cianciavicchia, Domenico; Pacini, Giovanni; Ravazzani, Paolo
2010-01-01
In recent years there has been considerable interest in the study of glucose-induced dielectric property variations of human tissues as a possible approach for non-invasive glycaemia monitoring. We have developed an electromagnetic sensor, and we tested in vitro its ability to estimate variations in glucose concentration of different solutions with similarities to blood (sodium chloride and Ringer-lactate solutions), differing though in the lack of any cellular components. The sensor was able to detect the effect of glucose variations over a wide range of concentrations (∼78–5,000 mg/dL), with a sensitivity of ∼0.22 mV/(mg/dL). Our proposed system may thus be useful in a new approach for non-invasive and non-contact glucose monitoring. PMID:22219665
NASA Astrophysics Data System (ADS)
Proto, Monica; Massimo, Bavusi; Francesco, Soldovieri
2010-05-01
The research project "Integrated System for Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing" (ISTIMES), was approved in the 7th Framework Programme, in the Joint Call ICT and Security and started on 1st July 2009. The purpose of ISTIMES project is to design, assess and promote an ICT-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring in order to achieve the critical transport infrastructures more reliable and safe. The transportation sector's components are susceptible to the consequences of natural disasters and can also be attractive as terrorist targets. The sector's size, its physically dispersed and decentralized nature, the many public and private entities involved in its operations, the critical importance of cost considerations, and the inherent requirement of convenient accessibility to its services by all users - make the transportation particularly vulnerable to security and safety threats. As well known, the surface transportation system consists of interconnected infrastructures including highways, transit systems, railroads, airports, waterways, pipelines and ports, and the vehicles, aircraft, and vessels that operate along these networks. Thus, interdependencies exist between transportation and nearly every other sector of the economy and the effective operation of this system is essential to the European economic productivity; therefore, transportation sector protection is of paramount importance since threats to it may impact other industries that rely on it. The system exploits an open network architecture that can accommodate a wide range of sensors, static and mobile, and can be easily scaled up to allow the integration of additional sensors and interfacing with other networks. It relies on heterogeneous state-of-the-art electromagnetic sensors, enabling a self-organizing, self-healing, ad-hoc networking of terrestrial sensors, supported by specific satellite measurements. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. Thus, the proposal will concern also with the development of tools for handling, analysing and processing large data volume (Information Fusion) and then providing information and performing behaviour prediction in a quick, easy and intuitive way (Situation Awareness). The proposal is based on several independent non-invasive imaging technologies based on electromagnetic sensing. Sensor cross validation, synergy and new data fusion and correlation schemes will permit a multi-method, multi-resolution and multi-scale electromagnetic detection and monitoring of surface and subsurface changes of the infrastructure. According to GMES and European Spatial Data Infrastructure (ESDI) initiatives, the system will adopt open architectures and will make efforts to achieve full interoperability. The system will be tested on two very challenging test beds such as: a highway-bridge and a railway tunnel. The system will be based on clear end-user requirements, coming from representative end-users and technological choices will be based on a long term cost-benefit analysis. Then, a dissemination plan was included into the project to encourage a wide range of public institutions and private companies to evaluate and adopt our approach for real-time control and distributed monitoring also in the more general framework of critical and civil infrastructure management and protection. Finally, an exploitation plan will develop for the commercialization of any derived technology, software, or monitoring concepts. ISTIMES project is carried out by an international partnership formed by nine partners coming from seven countries: Tecnologie per le Osservazioni della Terra (TeRN), Elsag Datamat (ED) and Dipartimento della Protezione Civile (DPC) from Italy, Eidgenoessische Materialpruefungs-und Forschungsanstalt (EMPA) from Switzerland, Laboratoire Central des Ponts et Chaussées (LCPC) from France, Lund University (ULUND) from Sweden, Tel Aviv University (TAU) from Israel, Territorial Data Elaboration (TDE) from Romania and Norsk Elektro Optikk (NEO) from Norway.
2016-11-01
focuses on characterizing Electromagnetic Induction (EMI) responses in the underwater setting through numerical and experimental studies with the...marine EMI sensing. 15. SUBJECT TERMS Munitions Response, Electromagnetic Induction, Unexploded Ordnance, Classification 16. SECURITY CLASSIFICATION...using Advanced EMI Sensors in the Underwater Environment.” The project focuses on characterizing Electromagnetic Induction (EMI) responses in the
Wireless monitoring of the biological object state at microwave frequencies: A review
NASA Astrophysics Data System (ADS)
Vendik, I. B.; Vendik, O. G.; Kozlov, D. S.; Munina, I. V.; Pleskachev, V. V.; Rusakov, A. S.; Tural'chuk, P. A.
2016-01-01
Radio-frequency identification systems used for the remote diagnostics of diseases and contactless monitoring and assessment of human health are reviewed. The propagation of electromagnetic waves inside a biological medium and along interfaces between different media, as well as the problem of telemetry data acquisition from implanted systems or system on the human body surface using wireless sensors, is considered. Emphasis is on radio-frequency identification systems that use far-field electromagnetic radiation, since they are necessary in emergency situations to find injured people in hard-to-reach places and assess the state of emergency response workers.
NASA Astrophysics Data System (ADS)
Yi, Xiaohua; Cho, Chunhee; Cooper, James; Wang, Yang; Tentzeris, Manos M.; Leon, Roberto T.
2013-08-01
This research investigates a passive wireless antenna sensor designed for strain and crack sensing. When the antenna experiences deformation, the antenna shape changes, causing a shift in the electromagnetic resonance frequency of the antenna. A radio frequency identification (RFID) chip is adopted for antenna signal modulation, so that a wireless reader can easily distinguish the backscattered sensor signal from unwanted environmental reflections. The RFID chip captures its operating power from an interrogation electromagnetic wave emitted by the reader, which allows the antenna sensor to be passive (battery-free). This paper first reports the latest simulation results on radiation patterns, surface current density, and electromagnetic field distribution. The simulation results are followed with experimental results on the strain and crack sensing performance of the antenna sensor. Tensile tests show that the wireless antenna sensor can detect small strain changes lower than 20 με, and can perform well at large strains higher than 10 000 με. With a high-gain reader antenna, the wireless interrogation distance can be increased up to 2.1 m. Furthermore, an array of antenna sensors is capable of measuring the strain distribution in close proximity. During emulated crack and fatigue crack tests, the antenna sensor is able to detect the growth of a small crack.
The measurement of lightning environmental parameters related to interaction with electronic systems
NASA Technical Reports Server (NTRS)
Baum, C. E.; Breen, E. L.; Pitts, F. L.; Thomas, M. E.; Sower, G. D.
1982-01-01
The measurement of electromagnetic fields and related quantities in a lightning environment is a challenging problem, especially at high frequencies and/or in the immediate vicinity of the lightning arcs and corona. This paper reviews the techniques for accomplishing such measurements in these regimes with examples. These sensors are often the same as for the nuclear electromagnetic pulse (EMP), but significant differences also appear.
Pieralisi, Marco; Di Mattia, Valentina; Petrini, Valerio; De Leo, Alfredo; Manfredi, Giovanni; Russo, Paola; Scalise, Lorenzo; Cerri, Graziano
2017-02-16
Currently, the availability of technology developed to increase the autonomy of visually impaired athletes during sports is limited. The research proposed in this paper (Part I and Part II) focuses on the realization of an electromagnetic system that can guide a blind runner along a race track without the need for a sighted guide. In general, the system is composed of a transmitting unit (widely described in Part I) and a receiving unit, whose components and main features are described in this paper. Special attention is paid to the definition of an electromagnetic model able to faithfully represent the physical mechanisms of interaction between the two units, as well as between the receiving magnetic sensor and the body of the user wearing the device. This theoretical approach allows for an estimation of the signals to be detected, and guides the design of a suitable signal processing board. This technology has been realized, patented, and tested with a blind volunteer with successful results and this paper presents interesting suggestions for further improvements.
Simultaneous localization and calibration for electromagnetic tracking systems.
Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor
2016-06-01
In clinical environments, field distortion can cause significant electromagnetic tracking errors. Therefore, dynamic calibration of electromagnetic tracking systems is essential to compensate for measurement errors. It is proposed to integrate the motion model of the tracked instrument with redundant EM sensor observations and to apply a simultaneous localization and mapping algorithm in order to accurately estimate the pose of the instrument and create a map of the field distortion in real-time. Experiments were conducted in the presence of ferromagnetic and electrically-conductive field distorting objects and results compared with those of a conventional sensor fusion approach. The proposed method reduced the tracking error from 3.94±1.61 mm to 1.82±0.62 mm in the presence of steel, and from 0.31±0.22 mm to 0.11±0.14 mm in the presence of aluminum. With reduced tracking error and independence from external tracking devices or pre-operative calibrations, the approach is promising for reliable EM navigation in various clinical procedures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Pieralisi, Marco; Di Mattia, Valentina; Petrini, Valerio; De Leo, Alfredo; Manfredi, Giovanni; Russo, Paola; Scalise, Lorenzo; Cerri, Graziano
2017-01-01
Currently, the availability of technology developed to increase the autonomy of visually impaired athletes during sports is limited. The research proposed in this paper (Part I and Part II) focuses on the realization of an electromagnetic system that can guide a blind runner along a race track without the need for a sighted guide. In general, the system is composed of a transmitting unit (widely described in Part I) and a receiving unit, whose components and main features are described in this paper. Special attention is paid to the definition of an electromagnetic model able to faithfully represent the physical mechanisms of interaction between the two units, as well as between the receiving magnetic sensor and the body of the user wearing the device. This theoretical approach allows for an estimation of the signals to be detected, and guides the design of a suitable signal processing board. This technology has been realized, patented, and tested with a blind volunteer with successful results and this paper presents interesting suggestions for further improvements. PMID:28212348
Aircraft Lightning Electromagnetic Environment Measurement
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.
2011-01-01
This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.
State of the art in acoustic energy harvesting
NASA Astrophysics Data System (ADS)
Ullah Khan, Farid; Izhar
2015-02-01
For portable and embedded smart, wireless electronic systems, energy harvesting from the ambient energy sources has gained immense interest in recent years. Several ambient energies exist in the environment of wireless sensor nodes (WSNs) that include thermal, solar, vibration and acoustic energy. This paper presents the recent development in the field of acoustic energy harvesters (AEHs). AEHs convert the acoustic energy into useful electrical energy for the operation of autonomous wireless sensors. Mainly, two types of AEHs (electromagnetic and piezoelectric based) have been developed and reported in literature. The power produced by the reported piezoelectric AEHs ranges from 0.68 pW to 30 mW however, the power generation of the developed electromagnetic AEHs is in the range of 1.5-1.96 mW. The overall size of most of the developed piezoelectric and electromagnetic AEHs are quite comparable and in millimeter scale. The resonant frequencies of electromagnetic AEHs are on the lower side (143-470 Hz), than that of piezoelectric AEHs (146 Hz-16.7 kHz).
Exploiting Electric and Magnetic Fields for Underwater Characterization
2011-03-01
geophysical surveys are primarily limited to passive magnetic systems towed from a surface vessel. These systems utilize fluxgate , Overhauser, or atomic... magnetometer sensors, often deployed in arrays towed from the stern of small to moderate-size vessels. Active source electromagnetic methods have been
2015-07-01
electromagnetic induction (EMI) sensor. A total of 2,116 targets were selected from the dynamic data for cued investigation, and 1,398 targets were...geophysical mapping DSB Defense Science Board EE/CA Engineering Evaluation/Cost Analysis EMI electromagnetic induction ESTCP Environmental Security...performed a live site demonstration project using the Geometrics MetalMapper advanced electromagnetic induction (EMI) sensor at the former Southwestern
Acoustic Nondestructive Evaluation of Aircraft Paneling Using Piezoelectric Sensors
2012-12-01
Electromagnetic Materials Team of the U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Clinical Trials Monitoring Branch, for...connected to this clip. This electrical connection ensures single-point grounding, which has been implemented to avoid electromagnetic interference...waveform of each sensor features an electromagnetic pick-up signature that is aligned with the transduced signal but phase shifted by 180. We know to
Classification Demonstration at Former Camp George West Artillery Range, CO
2013-06-01
Prescribed by ANSI Std Z39-18 1 1. Introduction Classification using the Man-portable Vector (MPV) advanced electromagnetic sensor was...was left just past the analyst’s threshold. 2 built advanced electromagnetic sensors and associated analysis methods for classification. Following...and program managers in the Services. The physics governing the electromagnetic response of a metal object is well understood and predictable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Dezhi; Liu, Yixuan, E-mail: xuan61x@163.com; Guo, Zhanshe
A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that themore » lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.« less
NASA Astrophysics Data System (ADS)
Nafis, Christopher; Jensen, Vern; von Jako, Ron
2008-03-01
Electromagnetic (EM) tracking systems have been successfully used for Surgical Navigation in ENT, cranial, and spine applications for several years. Catheter sized micro EM sensors have also been used in tightly controlled cardiac mapping and pulmonary applications. EM systems have the benefit over optical navigation systems of not requiring a line-of-sight between devices. Ferrous metals or conductive materials that are transient within the EM working volume may impact tracking performance. Effective methods for detecting and reporting EM field distortions are generally well known. Distortion compensation can be achieved for objects that have a static spatial relationship to a tracking sensor. New commercially available micro EM tracking systems offer opportunities for expanded image-guided navigation procedures. It is important to know and understand how well these systems perform with different surgical tables and ancillary equipment. By their design and intended use, micro EM sensors will be located at the distal tip of tracked devices and therefore be in closer proximity to the tables. Our goal was to define a simple and portable process that could be used to estimate the EM tracker accuracy, and to vet a large number of popular general surgery and imaging tables that are used in the United States and abroad.
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Markusic, T. E.; Stanojev, B. J.
2007-01-01
Two prototype bismuth propellant feed systems were constructed and operated in conjunction with a propellant vaporizer. One system provided bismuth to a vaporizer using gas pressurization but did not include a means to measure the flow rate. The second system incorporated an electromagnetic pump to provide fine control of the hydrostatic pressure and a new type of in-line flow sensor that was developed for accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of Macor for the main body of both components. Posttest inspections of both components revealed no degradation of the material. The gas pressurization system demonstrated continuous pressure control over a range from zero to 200 torr. In separate proof-of-concept experiments, the electromagnetic pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, producing a pressure rise of 10 kPa at 30 A. Preliminary flow sensor operation indicated a bismuth flow rate of 6 mg/s with an uncertainty of plus or minus 6%. An electronics suite containing a real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.
Portable Electromagnetic Induction Sensor with Integrated Positioning
2013-08-20
Subsurface electromagnetic induction imaging for unexploded ordnance detection. Journal of Applied Geophysics, 79:38 – 45, 2012. ISSN 09269851. URL http...Portable Electromagnetic Induction Sensor with Integrated Positioning MR-1712 Final Report Submitted to Strategic Environmental Research and...19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Rev. 8–98) Prescribed by ANSI Std. Z39.18 06–25–2013
NASA Astrophysics Data System (ADS)
Harney, Robert C.
1997-03-01
A novel methodology offering the potential for resolving two of the significant problems of implementing multisensor target recognition systems, i.e., the rational selection of a specific sensor suite and optimal allocation of requirements among sensors, is presented. Based on a sequence of conjectures (and their supporting arguments) concerning the relationship of extractable information content to recognition performance of a sensor system, a set of heuristics (essentially a reformulation of Johnson's criteria applicable to all sensor and data types) is developed. An approach to quantifying the information content of sensor data is described. Coupling this approach with the widely accepted Johnson's criteria for target recognition capabilities results in a quantitative method for comparing the target recognition ability of diverse sensors (imagers, nonimagers, active, passive, electromagnetic, acoustic, etc.). Extension to describing the performance of multiple sensors is straightforward. The application of the technique to sensor selection and requirements allocation is discussed.
2015-01-01
AFRL-RY-WP-TR-2014-0230 INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND...INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND REFRACTION OF ELECTROMAGNETIC SIGNALS 5a...research is to analyze influence of plasma turbulence on hypersonic sensor systems and NGOTHR applications and to meet the Air Force’s ever-increasing
Detection of electromagnetic radiation using micromechanical multiple quantum wells structures
Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN
2007-07-17
An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.
A fiber Bragg grating acceleration sensor for ground surveillance
NASA Astrophysics Data System (ADS)
Jiang, Shaodong; Zhang, Faxiang; Lv, Jingsheng; Ni, Jiasheng; Wang, Chang
2017-10-01
Ground surveillance system is a kind of intelligent monitoring equipment for detecting and tracking the ground target. This paper presents a fiber Bragg grating (FBG) acceleration sensor for ground surveillance, which has the characteristics of no power supply, anti-electromagnetic interference, easy large-scale networking, and small size. Which make it able to achieve the advantage of the ground surveillance system while avoiding the shortcoming of the electric sensing. The sensor has a double cantilever beam structure with a sensitivity of 1000 pm/g. Field experiment has been carried out on a flood beach to examine the sensor performance. The result shows that the detection distance on the walking of personnel reaches 70m, and the detection distance on the ordinary motor vehicle reaches 200m. The performance of the FBG sensor can satisfy the actual needs of the ground surveillance system.
USDA-ARS?s Scientific Manuscript database
The article by Singh et al., (2018) provides a striking example of the wide range of soil water contents reported by several electromagnetic (EM) sensor technologies under field conditions. We commend the authors for taking the initiative to evaluate these sensors in the field and in situations wher...
Novel semi-airborne CSEM system for the exploration of mineral resources
NASA Astrophysics Data System (ADS)
Nittinger, Christian; Cherevatova, Maria; Becken, Michael; Rochlitz, Raphael; Günther, Thomas; Martin, Tina; Matzander, Ulrich
2017-04-01
Within the DESMEX project (Deep Electromagnetic Sounding for Mineral Exploration), a semi-airborne CSEM system for mineral exploration is developed which aims to achieve a penetration depth of 1 km with a large areal coverage. Harmonically Time-varying electrical currents are injected with a grounded transmitter in order to measure the electric field on the ground and induced magnetic fields with highly sensitive magnetic sensors in the air. To measure the magnetic field and its variations, three-axis induction coils (MFS-11e by Metronix) and fluxgate sensors (Bartington FGS-03) are mounted on the platform towed by a helicopter. In addition, there is a SQUID based magnetometer, developed by IPHT and Supracon AG, available for future measurements. We deploy the different magnetometer sensors to cover a broad frequency range of 1-10000Hz. During the flight, the sensors encounter a broad variety of motion/vibration which produces noise in the magnetic field sensors. Therefore, a high accuracy motion tracking system is installed within the bird and a low vibrating system design needs to be considered in the airborne sensor platform. We conducted several flights with different source positions in a test area in Germany, which is already covered by ground based measurements. Based on the data, we discuss possible calibration schemes which are needed to overcome orthogonality and scaling errors in the fluxgate data as well as orientation errors. We apply noise correction schemes to the data and calculate transfer functions between the magnetic field and the source current. First 1-D inversion models based on the estimated transfer functions are calculated and compared to existing conductivity models from DC geoelectrics and helicopter electromagnetic (HEM) measurements.
Electro-optic voltage sensor for sensing voltage in an E-field
Davidson, James R.; Crawford, Thomas M.; Seifert, Gary D.
2002-03-26
A miniature electro-optic voltage sensor and system capable of accurate operation at high voltages has a sensor body disposed in an E-field. The body receives a source beam of electromagnetic radiation. A polarization beam displacer separates the source light beam into two beams with orthogonal linear polarizations. A wave plate rotates the linear polarization to rotated polarization. A transducer utilizes Pockels electro-optic effect and induces a differential phase shift on the major and minor axes of the rotated polarization in response to the E-field. A prism redirects the beam back through the transducer, wave plate, and polarization beam displacer. The prism also converts the rotated polarization to circular or elliptical polarization. The wave plate rotates the major and minor axes of the circular or elliptical polarization to linear polarization. The polarization beam displacer separates the beam into two beams of orthogonal linear polarization representing the major and minor axes. The system may have a transmitter for producing the beam of electro-magnetic radiation; a detector for converting the two beams into electrical signals; and a signal processor for determining the voltage.
Pyroelectric Ceramics as Temperature Sensors for Energy System Applications
NASA Astrophysics Data System (ADS)
Silva, Jorge Luis
Temperature is continuously monitored in energy systems to ensure safe operation temperatures, increase efficiency and avoid high emissions. Most of energy systems operate at high temperature and harsh environments to achieve higher efficiencies, therefore temperature sensing devices that can operate under these conditions are highly desired. The interest has increased in temperature sensors capable to operate and in harsh environments and temperature sensors capable to transmit thermal information wirelessly. One of the solutions for developing harsh environment sensors is to use ceramic materials, especially functional ceramics such as pyroelectrics. Pyroelectric ceramics could be used to develop active sensors for both temperature and pressure due to their capabilities in coupling energy among mechanical, thermal, and electrical domains. In this study, two different pyroelectric materials were used to develop two different temperature sensors systems. First, a high temperature sensor was developed using a lithium niobate (LiNbO3) pyroelectric ceramic. With its Curie temperature of 1210 °C, lithium niobate is capable to maintain its pyroelectric properties at high temperature making it ideal for temperature sensing at high temperature applications. Lithium niobate has been studied previously in the attempt to use its pyroelectric current as the sensing mechanism to measure temperatures up to 500 °C. Pyroelectric coefficient of lithium niobate is a function of temperature as reported in a previous study, therefore a dynamic technique is utilized to measure the pyroelectric coefficient of the lithium niobate used in this study. The pyroelectric coefficient was successfully measured up to 500 °C with coefficients ranging from -8.5 x 10 -5 C/m2 °C at room temperature to -23.70 x 10 -5 C/m2 °C at 500 °C. The lithium niobate sensor was then tested at higher temperatures: 220 °C, 280 °C, 410 °C and 500 °C with 4.31 %, 2.1 %, 0.4 % and 0.6 % deviation respectively when compared with thermocouple measurements. The second phase of this study focused on developing a wireless temperature sensor with lead zirconate titanate (PZT) as the pyroelectric material. This wireless temperature sensor consists of generating current by the PZT when exposed to a rate of temperature change with time, which was conducted to a built electromagnet to produce a magnetic field. The magnetic field was captured wirelessly with a milligaussmeter at a certain distance. Pyroelectric property of PZT (-40x10-5 C/m2 °C at 25 °C) is higher than that of the lithium niobate (-8.5x10-5 C/m2 °C at 25 °C), which was necessary to be able to generate the necessary pyroelectric current to make magnetic field detectable by the milligaussmeter. The electromagnet body was 3D printed with ABS material and surrounded with winding wire material. Before attempting a wireless temperature measurement, several attempts to measure the magnetic field at different distances away from the electromagnet were done. At the applied heating rates, the milligaussmeter was able to measure magnetic field up to 1.27 cm away from the electromagnet edge. A PZT sensor with a thickness of 0.1 cm was tested for use in the wireless temperature measurement configuration. For more accurate wireless temperature measurements, a similar pyroelectric coefficient measurement technique as used in phase one was done. The pyroelectric coefficient was found to increase from -40x10 -5 C/m2 °C to -71.84x10-5 C/m 2 °C from 25 °C to 122 °C, respectively. The PZT sensor was then tested for wireless temperature measurement at a distance of 1.27 cm at set temperatures of 100 °C, 150 °C, and 200 °C, and showed a maximum 10.47 % deviation when compared to thermocouple reading. In order to increase the distance that the wireless temperature sensor can read, a ferromagnetic material was placed inside the electromagnet. The sensor was tested for wireless temperature measurement at 1.27 cm, 2.54 cm and 3.81 cm with a maximum deviation of 13.4 %.
Earth Science Geostationary Platform Technology
NASA Technical Reports Server (NTRS)
Wright, Robert L. (Editor); Campbell, Thomas G. (Editor)
1989-01-01
The objective of the workshop was to address problems in science and in four technology areas (large space antenna technology, microwave sensor technology, electromagnetics-phased array adaptive systems technology, and optical metrology technology) related to Earth Science Geostationary Platform missions.
Microfabricated sensors for the measurement of electromagnetic fields in biological tissues
NASA Astrophysics Data System (ADS)
Monberg, James; Henning, Albert K.
1995-09-01
Public awareness of the risks of exposure to electromagnetic radiation has grown over the past ten yeras. The effects of power lines on human and animal health have drawn particular attention. Some longitudinal studies of cancer rates near power lines show a significant correlation, while others show a null result. The studies have suffered from inadequate sensors for the measurement of electromagnetic radiation in vivo. In this work, we describe the design, construction, and testing of electrically passive, microfabricated single-pole antennas and coils. These sensors will be used in vivo to study the effects of electromagnetic radiation on animals. Our testing to date has been limited to in vitro studies of the magnetic field probes. Magnetic field pickup coils were fabricated with up to 100 turns, over a length of up to 1000 micrometers . Measurements were carried out with the sensors in air, and in water of various saline concentrations. Magnetic fields were applied using a Helmholtz coil. Both dc and ac fields were applied. The results indicate that small-area measurements of electromagnetic fields in vitro can be made successfully, provided adequate shielding and amplification are used.
Stinton, S K; Siebold, R; Freedberg, H; Jacobs, C; Branch, T P
2016-03-01
The purpose of this study was to: (1) determine whether a robotic tibial rotation device and an electromagnetic tracking system could accurately reproduce the clinical dial test at 30° of knee flexion; (2) compare rotation data captured at the footplates of the robotic device to tibial rotation data measured using an electromagnetic sensor on the proximal tibia. Thirty-two unilateral ACL-reconstructed patients were examined using a robotic tibial rotation device that mimicked the dial test. The data reported in this study is only from the healthy legs of these patients. Torque was applied through footplates and was measured using servomotors. Lower leg motion was measured at the foot using the motors. Tibial motion was also measured through an electromagnetic tracking system and a sensor on the proximal tibia. Load-deformation curves representing rotational motion of the foot and tibia were compared using Pearson's correlation coefficients. Off-axis motions including medial-lateral translation and anterior-posterior translation were also measured using the electromagnetic system. The robotic device and electromagnetic system were able to provide axial rotation data and translational data for the tibia during the dial test. Motion measured at the foot was not correlated to motion of the tibial tubercle in internal rotation or in external rotation. The position of the tibial tubercle was 26.9° ± 11.6° more internally rotated than the foot at torque 0 Nm. Medial-lateral translation and anterior-posterior translation were combined to show the path of the tubercle in the coronal plane during tibial rotation. The information captured during a manual dial test includes both rotation of the tibia and proximal tibia translation. All of this information can be captured using a robotic tibial axial rotation device with an electromagnetic tracking system. The pathway of the tibial tubercle during tibial axial rotation can provide additional information about knee instability without relying on side-to-side comparison between knees. The translation of the proximal tibia is important information that must be considered in addition to axial rotation of the tibia when performing a dial test whether done manually or with a robotic device. Instrumented foot position cannot provide the same information. IV.
An ECT/ERT dual-modality sensor for oil-water two-phase flow measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pitao; Wang, Huaxiang; Sun, Benyuan
2014-04-11
This paper presents a new sensor for ECT/ERT dual-modality system which can simultaneously obtain the permittivity and conductivity of the materials in the pipeline. Quasi-static electromagnetic fields are produced by the inner electrodes array sensor of electrical capacitance tomography (ECT) system. The results of simulation show that the data of permittivity and conductivity can be simultaneously obtained from the same measurement electrode and the fusion of two kinds of data may improve the quality of the reconstructed images. For uniform oil-water mixtures, the performance of designed dual-modality sensor for measuring the various oil fractions has been tested on representative datamore » and the results of experiments show that the designed sensor broadens the measurement range compared to single modality.« less
Development of a polymer based fiberoptic magnetostrictive metal detector system.
Hua, Wei Shu; Hooks, Joshua Rosenberg; Wu, Wen Jong; Wang, Wei Chih
2010-10-01
This paper presents a new metal detector using a fiberoptic magnetostriction sensor. The metal sensor uses a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing material. This polymeric magnetostrictive fiberoptic metal sensor is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is based on disruption of the magnetic flux density across the magnetostriction sensor. In this paper, characteristics of the material being sensed and magnetic properties of the ferromagnetic polymers will be discussed.
Fiber optics for advanced aircraft
NASA Technical Reports Server (NTRS)
Baumbick, Robert J.
1989-01-01
The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.
Fiber optics for advanced aircraft
NASA Technical Reports Server (NTRS)
Baumbick, Robert J.
1988-01-01
The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.
2D tilting MEMS micro mirror integrating a piezoresistive sensor position feedback
NASA Astrophysics Data System (ADS)
Lani, S.; Bayat, D.; Despont, M.
2015-02-01
An integrated position sensor for a dual-axis electromagnetic tilting mirror is presented. This tilting mirror is composed of a silicon based mirror directly assembled on a silicon membrane supported by flexible beams. The position sensors are constituted by 4 Wheatstone bridges of piezoresistors which are fabricated by doping locally the flexible beams. A permanent magnet is attached to the membrane and the scanner is mounted above planar coils deposited on a ceramic substrate to achieve electromagnetic actuation. The performances of the piezoresistive sensors are evaluated by measuring the output signal of the piezoresistors as a function of the tilt of the mirror and the temperature. White light interferometry was performed for all measurement to measure the exact tilt angle. The minimum detectable angle with such sensors was 30µrad (around 13bits) in the range of the minimum resolution of the interferometer. The tilt reproducibility was 0.0186%, obtained by measuring the tilt after repeated actuations with a coil current of 50mA during 30 min and the stability over time was 0.05% in 1h without actuation. The maximum measured tilt angle was 6° (mechanical) limited by nonlinearity of the MEMS system.
Monitoring of Solar Radiation Intensity using Wireless Sensor Network for Plant Growing
NASA Astrophysics Data System (ADS)
Siregar, B.; Fadli, F.; Andayani, U.; Harahap, LA; Fahmi, F.
2017-01-01
Abstract— Plant growth is highly depending on the sunlight, if the consumption of sunlight is enough, it will grow well. The plant will be green because of its chlorophyll and it can perform photosynthesis at maximum; but if the plants get less sunlight, it will make the plants be yellowing. Radiation is electromagnetic waves that are good for plants, so-called visible light. In the electromagnetic wave spectrum the best wavelength range from 400-700 nm for the plant. A monitoring of sun intensity is needed in order to obtain sufficient solar radiation consumption and provide notification if there is a high radiation. In this study, several sensors and devices were combined such as photosynthetic solar radiation sensors, GSM / GPRS and waspmote as a main board or a microcontroller. The test was carried out on at least three occasions; the system has a stable radiation in the morning with an average of 505.51 micrometers. IN this study, we have successfully developed a monitoring tools for solar radiation intensity applied on plant growth by using wireless sensor network.
Datskos, Panagiotis G.; Rajic, Slobodan; Datskou, Irene C.; Egert, Charles M.
2002-01-01
A micromechanical sensor and method for detecting electromagnetic radiation involve producing photoelectrons from a metal surface in contact with a semiconductor. The photoelectrons are extracted into the semiconductor, which causes photo-induced bending. The resulting bending is measured, and a signal corresponding to the measured bending is generated and processed. A plurality of individual micromechanical sensors can be arranged in a two-dimensional matrix for imaging applications.
NASA Astrophysics Data System (ADS)
Boyd, Donald M.
1989-10-01
Development of a Pulsed Electromagnetic Acoustic Transducer (EMAT) through transmission system for acoustic measurements on steel billets up to 1300 C was completed. Laboratory measurements of acoustic velocity were made, and used to determine the average internal temperature of hot stainless and carbon steel billets. Following the success of the laboratory system development, the laboratory EMAT system was subsequently tested successfully at the Baltimore Specialty Steel Co. on a horizontal continuous caster. Details of the sensor system development and the steel plant demonstration results are presented. Future directions for the high temperature pulsed EMAT internal temperature concept are discussed for potential material processing applications.
Demonstration of an Enhanced Vertical Magnetic Gradient System for UXO
2008-12-01
fluxgate magnetometers , data recording console, laser altimeter, and acoustic altimeters were tested to ensure proper operation and performance. The VG...Simultaneous Electromagnetic Induction and Magnetometer System WAA wide area assessment ACKNOWLEDGEMENTS We wish to express our sincere...sensors. The benefits of vertical gradient (VG) configurations in magnetometer systems are common knowledge, and these configurations are routinely
ISTIMES project: status and outcomes
NASA Astrophysics Data System (ADS)
Cuomo, V.; Proto, M.; Soldovieri, F.
2012-04-01
ISTIMES is a project approved in the Seventh Framework Programme of the European Union under the Joint Call FP7-ICT-SEC-2007-1. It has a three years duration and will be completed within June 2012. According to the aims of the proposal, ISTIMES project has designed, assessed and developed a prototypical modular and scalable ICT-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring; the specific application field was the reliability and safety of critical transport infrastructures, even if the modularity of the ISTIMES approach has permitted to extend it successfully to other critical infrastructures as dams. The continuous and fruitful involvement of end users (as Italian Civil Protection) allowed to develop applications focused on users needs. ISTIMES couples current monitoring of infrastructures with a high situational awareness during crises management, providing updated and detailed real and near real time information about the infrastructure status to improve decision support for emergency and disasters stakeholders. The system exploits an open network architecture that can accommodate a wide range of heterogeneous sensors, static and mobile, and can be easily scaled up to allow the integration of additional sensors and interfaces with other networks. It relies on state-of-the-art electromagnetic sensors, enabling a networking of terrestrial sensors, supported by specific satellite and airborne measurements. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance at different temporal and spatial scales, providing indexes and images of the critical transport infrastructures. The project has exploited, assessed and improved many different non-invasive technologies based on electromagnetic sensing as: Optic Fiber Sensors, Synthetic Aperture; Radar (SAR) satellite platform; Hyperspectral Spectroscopy; Infrared Thermography; Ground Penetrating Radar; low-frequency Geophysical Techniques; ground based SAR and optical cameras for the assessment of the dynamical behaviour of the infrastructure. A great effort has been devoted to "transfer" these novel and state-of art technologies from the laboratory experience to actual on field applications by adapting/improving them and developing prototypes for the specific application domain of the monitoring of transport and critical infrastructures. Sensor synergy, data cross correlation and novel concepts of information fusion have permitted to carry out a multi-method, multi-resolution and multi-scale electromagnetic detection and monitoring of the infrastructure, including surface and subsurface aspects. The project has allowed to develop an ICT architecture based on web sensors and serviceoriented- technologies that comply with specific end-user requirements, including interoperability, economical convenience, exportability, efficiency and reliability. The efforts have focussed mainly to the creation of web based interfaces able to control "not standard" sensors, as the ones proposed in the project, and to the standardization necessary to have a full interoperability and modularity of the monitoring system. In addition, the system is able to provide a more easily accessible and transparent scheme for use by different end-users and to integrate the monitoring results and images with other kind of information such as GIS layer and historical datasets relating to the site. The ISTIMES system has been evaluated at two test sites and two test beds. At the two test sites of Montagnole rock-fall station (Chambery, France) and Hydrogeosite Laboratory (Potenza, Italy), the attention was posed to a thorough analysis of the performances of the in situ sensing techniques, by investigating, with good outcomes, also the possibility to correlate and have a synergy from the different sensors. In particular, it is worth noting that the experiment realized at Montagnole is unique, at least at European level, regarding both the high mechanical impact on a real scale elements of civil engineering structure, and also for the exploitation of all sensor techniques set up in a cooperative way. The effectiveness of the overall monitoring system has been assessed by the experiments at real test beds as Sihlhochstrasse bridge, a 1.5 km bridge representing one of the main entrance road to Zurich city (Switzerland), Varco Izzo railway tunnel and Musmeci motorway bridge located in the area of Potenza city in Basilicata region (Italy) affected by a high seismic risk. In particular, for the Musmeci bridge, the main entrance road to Potenza city and a masterpiece of architectural/civil engineering realized by Sergio Musmeci in 60' years, all the sensing technologies involved in the project have been exploited to perform a monitoring/diagnostics; the Musmeci bridge results have been correlated and tested also by the comparison with the sensors mostly used by civil engineers for this kind of infrastructures (Proto et al., 2010). Acknowledgment The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 225663.
Poynting-vector based method for determining the bearing and location of electromagnetic sources
Simons, David J.; Carrigan, Charles R.; Harben, Philip E.; Kirkendall, Barry A.; Schultz, Craig A.
2008-10-21
A method and apparatus is utilized to determine the bearing and/or location of sources, such as, alternating current (A.C.) generators and loads, power lines, transformers and/or radio-frequency (RF) transmitters, emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. When both a source and field sensors (electric and magnetic) are static, a bearing to the electromagnetic source can be obtained. If a single set of electric (E) and magnetic (B) sensors are in motion, multiple measurements permit location of the source. The method can be extended to networks of sensors allowing determination of the location of both stationary and moving sources.
Fiber-Optic Distribution Of Pulsed Power To Multiple Sensors
NASA Technical Reports Server (NTRS)
Kirkham, Harold
1996-01-01
Optoelectronic systems designed according to time-sharing scheme distribute optical power to multiple integrated-circuit-based sensors in fiber-optic networks. Networks combine flexibility of electronic sensing circuits with advantage of electrical isolation afforded by use of optical fibers instead of electrical conductors to transmit both signals and power. Fiber optics resist corrosion and immune to electromagnetic interference. Sensor networks of this type useful in variety of applications; for example, in monitoring strains in aircraft, buildings, and bridges, and in monitoring and controlling shapes of flexible structures.
Summary of sensor evaluation for the Fusion Electromagnetic Induction Experiment (FELIX)
NASA Astrophysics Data System (ADS)
Knott, M. J.
1982-08-01
As part of the First Wall/Blanket/Shield Engineering Test Program, a test bed called FELIX (fusion electromagnetic induction experiment) is under construction. Its purpose is to test, evaluate, and develop computer codes for the prediction of electromagnetically induced phenomenon in a magnetic environment modeling that of a fusion reaction. Crucial to this process is the sensing and recording of the various induced effects. Sensor evaluation for FELIX reached the point where most sensor types were evaluated and preliminary decisions are being made as to type and quantity for the initial FELIX experiments. These early experiments, the first, flat plate experiment in particular, will be aimed at testing the sensors as well as the pertinent theories involved. The reason for these evaluations, decisions, and proof tests is the harsh electrical and magnetic environment that FELIX presents.
A fiber-optic current sensor for aerospace applications
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.
1990-01-01
A robust, accurate, broad-band, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60 Hz terrestrial power systems and in 400 Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology contained in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given.
A fiber-optic current sensor for aerospace applications
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.
1990-01-01
A robust, accurate, broadband, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60-Hz terrestrial power systems and in 400-Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology used in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given.
A fiber-optic current sensor for aerospace applications
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.
1990-01-01
A robust, accurate, broadband, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low- and high-voltage 60-Hz terrestrial power systems and in 400-Hz aircraft systems. It is intrinsically EMI (electromagnetic interference) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a fiber-optic temperature sensor embedded in the sensing head. The authors report on the technology contained in the sensor and also relate the results of precision tests conducted at various temperatures within the wide operating range. The results of early EMI tests are shown.
Calibration of ultra-high frequency (UHF) partial discharge sensors using FDTD method
NASA Astrophysics Data System (ADS)
Ishak, Asnor Mazuan; Ishak, Mohd Taufiq
2018-02-01
Ultra-high frequency (UHF) partial discharge sensors are widely used for conditioning monitoring and defect location in insulation system of high voltage equipment. Designing sensors for specific applications often requires an iterative process of manufacturing, testing and mechanical modifications. This paper demonstrates the use of finite-difference time-domain (FDTD) technique as a tool to predict the frequency response of UHF PD sensors. Using this approach, the design process can be simplified and parametric studies can be conducted in order to assess the influence of component dimensions and material properties on the sensor response. The modelling approach is validated using gigahertz transverse electromagnetic (GTEM) calibration system. The use of a transient excitation source is particularly suitable for modeling using FDTD, which is able to simulate the step response output voltage of the sensor from which the frequency response is obtained using the same post-processing applied to the physical measurement.
Toward Optical Sensors: Review and Applications
NASA Astrophysics Data System (ADS)
Sabri, Naseer; Aljunid, S. A.; Salim, M. S.; Ahmad, R. B.; Kamaruddin, R.
2013-04-01
Recent advances in fiber optics (FOs) and the numerous advantages of light over electronic systems have boosted the utility and demand for optical sensors in various military, industry and social fields. Environmental and atmospheric monitoring, earth and space sciences, industrial chemical processing and biotechnology, law enforcement, digital imaging, scanning, and printing are exemplars of them. The ubiquity of photonic technologies could drive down prices which reduced the cost of optical fibers and lasers. Fiber optic sensors (FOSs) offer a wide spectrum of advantages over traditional sensing systems, such as small size and longer lifetime. Immunity to electromagnetic interference, amenability to multiplexing, and high sensitivity make FOs the sensor technology of choice in several fields, including the healthcare and aerospace sectors. FOSs show reliable and rigid sensing tasks over conventional electrical and electronic sensors. This paper presents an executive review of optical fiber sensors and the most beneficial applications.
Fiber sensors for control and health monitoring system for mining machinery
NASA Astrophysics Data System (ADS)
Claus, Richard O.; Gunther, Michael F.; Greene, Jonathan A.; Tran, Tuan A.; Murphy, Kent A.
1994-05-01
This paper describes initial results of a fiber optic-based sensor during on-site testing performed by FEORC and Fiber and Sensor Technologies at Ingersol-Rand. Advantages of the fiber optic sensor are a demonstrated enhanced survivability, higher sensitivity, smaller size, electromagnetic interference immunity, and reduced risk of explosion. The conventional wire strain gages typically survive only a few minutes attached to the drill steel and drive chain, while the fiber sensors described here have survived over 400 hours and are currently still functioning properly. The tests described include the demonstration of strain energy measurements on the drive chain and drill steel, and displacement measurements of the piston within the drifter. All of the sensors tested can be used as both a laboratory evaluation and testing tools, as well as being an integral part of a proposed control and health monitoring system.
Respiratory rate detection using a wearable electromagnetic generator.
Padasdao, Bryson; Boric-Lubecke, Olga
2011-01-01
Wearable health and fitness monitoring systems are a promising new way of collecting physiological data without inconveniencing patients. Human energy harvesting may be used to power wearable sensors. In this paper, we explore this zero-net energy biosensor concept through sensing and harvesting of respiratory effort. An off the shelf servo motor operation in reverse was used to successfully obtain respiratory rate, while also demonstrating significant harvested power. These are the first reported respiratory rate sensing results using electromagnetic generators.
Electromagnetic tracking in the clinical environment
Yaniv, Ziv; Wilson, Emmanuel; Lindisch, David; Cleary, Kevin
2009-01-01
When choosing an electromagnetic tracking system (EMTS) for image-guided procedures several factors must be taken into consideration. Among others these include the system’s refresh rate, the number of sensors that need to be tracked, the size of the navigated region, the system interaction with the environment, whether the sensors can be embedded into the tools and provide the desired transformation data, and tracking accuracy and robustness. To date, the only factors that have been studied extensively are the accuracy and the susceptibility of EMTSs to distortions caused by ferromagnetic materials. In this paper the authors shift the focus from analysis of system accuracy and stability to the broader set of factors influencing the utility of EMTS in the clinical environment. The authors provide an analysis based on all of the factors specified above, as assessed in three clinical environments. They evaluate two commercial tracking systems, the Aurora system from Northern Digital Inc., and the 3D Guidance system with three different field generators from Ascension Technology Corp. The authors show that these systems are applicable to specific procedures and specific environments, but that currently, no single system configuration provides a comprehensive solution across procedures and environments. PMID:19378748
Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile
2018-01-01
Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We solved the problem by replacing the analog ramp generator defining the time base with a fully digital solution, whose time accuracy and stability relies on a quartz oscillator. The resulting stability is acceptable for sub-surface cooperative sensor measurement. PMID:29337914
Friedt, Jean-Michel; Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile
2018-01-16
Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We solved the problem by replacing the analog ramp generator defining the time base with a fully digital solution, whose time accuracy and stability relies on a quartz oscillator. The resulting stability is acceptable for sub-surface cooperative sensor measurement.
Development of Structural Health Management Technology for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Prosser, W. H.
2003-01-01
As part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, NASA has focused considerable resources on the development of technologies for Structural Health Management (SHM). The motivations for these efforts are to increase the safety and reliability of aerospace structural systems, while at the same time decreasing operating and maintenance costs. Research and development of SHM technologies has been supported under a variety of programs for both aircraft and spacecraft including the Space Launch Initiative, X-33, Next Generation Launch Technology, and Aviation Safety Program. The major focus of much of the research to date has been on the development and testing of sensor technologies. A wide range of sensor technologies are under consideration including fiber-optic sensors, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, most notably being extremely light weight, fiber-optic sensors are one of the leading candidates and have received considerable attention.
Electromagnetic Remote Sensing. Low Frequency Electromagnetics
1989-01-01
biased superconducting point - contact quantum devices", J.Appl.Phys. 41, p.1572, 1970. [40] A.Yariv and H.Winsor, "Proposal for detection of magnetic ... magnetics , electromagnetic induc- tion, electrostatics) 2. Nondestructive testing (electromagnetic induction, neutron tomography, x-ray imaging) 3...Detection of submarines from aircraft or ships ( magnetics , electromagnetic induction) 4. Detection of land vehicles using buried sensors ( magnetics
Identifying Electromagnetic Attacks against Airports
NASA Astrophysics Data System (ADS)
Kreth, A.; Genender, E.; Doering, O.; Garbe, H.
2012-05-01
This work presents a new and sophisticated approach to detect and locate the origin of electromagnetic attacks. At the example of an airport, a normal electromagnetic environment is defined, in which electromagnetic attacks shall be identified. After a brief consideration of the capabilities of high power electromagnetic sources to produce high field strength values, this contribution finally presents the approach of a sensor network, realizing the identification of electromagnetic attacks.
NASA Astrophysics Data System (ADS)
Chen, Kai; Wei, Wen-Bo; Deng, Ming; Wu, Zhong-Liang; Yu, Gang
2015-09-01
In planning and executing marine controlled-source electromagnetic methods, seafloor electromagnetic receivers must overcome the problems of noise, clock drift, and power consumption. To design a receiver that performs well and overcomes the abovementioned problems, we performed forward modeling of the E-field abnormal response and established the receiver's characteristics. We describe the design optimization and the properties of each component, that is, low-noise induction coil sensor, low-noise Ag/AgCl electrode, low-noise chopper amplifier, digital temperature-compensated crystal oscillator module, acoustic telemetry modem, and burn wire system. Finally, we discuss the results of onshore and offshore field tests to show the effectiveness of the developed seafloor electromagnetic receiver and its performance: typical E-field noise of 0.12 nV/m/rt(Hz) at 0.5 Hz, dynamic range higher than 120 dB, clock drift lower than 1 ms/day, and continuous operation of at least 21 days.
Audenaert, E A; Vigneron, L; Van Hoof, T; D'Herde, K; van Maele, G; Oosterlinck, D; Pattyn, C
2011-12-01
There is growing evidence that femoroacetabular impingement (FAI) is a probable risk factor for the development of early osteoarthritis in the nondysplastic hip. As FAI arises with end range of motion activities, measurement errors related to skin movement might be higher than anticipated when using previously reported methods for kinematic evaluation of the hip. We performed an in vitro validation and reliability study of a noninvasive method to define pelvic and femur positions in end range of motion activities of the hip using an electromagnetic tracking device. Motion data, collected from sensors attached to the bone and skin of 11 cadaver hips, were simultaneously obtained and compared in a global reference frame. Motion data were then transposed in the hip joint local coordinate systems. Observer-related variability in locating the anatomical landmarks required to define the local coordinate system and variability of determining the hip joint center was evaluated. Angular root mean square (RMS) differences between the bony and skin sensors averaged 3.2° (SD 3.5°) and 1.8° (SD 2.3°) in the global reference frame for the femur and pelvic sensors, respectively. Angular RMS differences between the bony and skin sensors in the hip joint local coordinate systems ranged at end range of motion and dependent on the motion under investigation from 1.91 to 5.81°. The presented protocol for evaluation of hip motion seems to be suited for the 3-D description of motion relevant to the experimental and clinical evaluation of femoroacetabular impingement.
An Alternative Wearable Tracking System Based on a Low-Power Wide-Area Network.
Fernández-Garcia, Raul; Gil, Ignacio
2017-03-14
This work presents an alternative wearable tracking system based on a low-power wide area network. A complete GPS receiver was integrated with a textile substrate, and the latitude and longitude coordinates were sent to the cloud by means of the SIM-less SIGFOX network. To send the coordinates over SIGFOX protocol, a specific codification algorithm was used and a customized UHF antenna on jeans fabric was designed, simulated and tested. Moreover, to guarantee the compliance to international regulations for human body exposure to electromagnetic radiation, the electromagnetic specific absorption rate of this antenna was analyzed. A specific remote server was developed to decode the latitude and longitude coordinates. Once the coordinates have been decoded, the remote server sends this information to the open source data viewer SENTILO to show the location of the sensor node in a map. The functionality of this system has been demonstrated experimentally. The results guarantee the utility and wearability of the proposed tracking system for the development of sensor nodes and point out that it can be a low cost alternative to other commercial products based on GSM networks.
Kim, Yongdae; Kim, Sangyoo; Park, Kyihwan
2009-04-01
A six-axis active vibration isolation system (AVIS) is developed using voice coil actuators. Point contact configuration is employed to have an easy assembly of eight voice coil actuators to an upper and a base plates. The velocity sensor, using an electromagnetic principle that is commonly used in the vibration control, is investigated since its phase lead characteristic causes an instability problem for a low frequency vibration. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system using the atomic force microscope images.
Functional design for operational earth resources ground data processing
NASA Technical Reports Server (NTRS)
Baldwin, C. J. (Principal Investigator); Bradford, L. H.; Hutson, D. E.; Jugle, D. R.
1972-01-01
The author has identified the following significant results. Study emphasis was on developing a unified concept for the required ground system, capable of handling data from all viable acquisition platforms and sensor groupings envisaged as supporting operational earth survey programs. The platforms considered include both manned and unmanned spacecraft in near earth orbit, and continued use of low and high altitude aircraft. The sensor systems include both imaging and nonimaging devices, operated both passively and actively, from the ultraviolet to the microwave regions of the electromagnetic spectrum.
Döring, Michael; Sommer, Philipp; Rolf, Sascha; Lucas, Johannes; Breithardt, Ole A; Hindricks, Gerhard; Richter, Sergio
2015-02-01
Implantation of cardiac resynchronization therapy (CRT) devices can be challenging, time consuming, and fluoroscopy intense. To facilitate placement of left ventricular (LV) leads, a novel electromagnetic navigation system (MediGuide™, St. Jude Medical, St. Paul, MN, USA) has been developed, displaying real-time 3-D location of sensor-embedded delivery tools superimposed on prerecorded X-ray cine-loops of coronary sinus venograms. We report our experience and advanced progress in the use of this new electromagnetic tracking system to guide LV lead implantation. Between January 2012 and December 2013, 71 consecutive patients (69 ± 9 years, 76% male) were implanted with a CRT device using the new electromagnetic tracking system. Demographics, procedural data, and periprocedural adverse events were gathered. The impact of the operator's experience, optimized workflow, and improved software technology on procedural data were analyzed. LV lead implantation was successfully achieved in all patients without severe adverse events. Total procedure time measured 87 ± 37 minutes and the median total fluoroscopy time (skin-to-skin) was 4.9 (2.5-7.8) minutes with a median dose-area-product of 476 (260-1056) cGy*cm(2) . An additional comparison with conventional CRT device implantations showed a significant reduction in fluoroscopy time from 8.0 (5.8; 11.5) to 4.5 (2.8; 7.3) minutes (P = 0.016) and radiation dose from 603 (330; 969) to 338 (176; 680) cGy*cm(2) , respectively (P = 0.044 ). Use of the new navigation system enables safe and successful LV lead placement with improved orientation and significantly reduced radiation exposure during CRT implantation. © 2014 Wiley Periodicals, Inc.
Novel designs for application specific MEMS pressure sensors.
Fragiacomo, Giulio; Reck, Kasper; Lorenzen, Lasse; Thomsen, Erik V
2010-01-01
In the framework of developing innovative microfabricated pressure sensors, we present here three designs based on different readout principles, each one tailored for a specific application. A touch mode capacitive pressure sensor with high sensitivity (14 pF/bar), low temperature dependence and high capacitive output signal (more than 100 pF) is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0-350 bar) and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free with a sensitivity of 650 KHz/mmHg is described. These sensors will be related with their applications in harsh environment, distributed systems and medical environment, respectively. For many aspects, commercially available sensors, which in vast majority are piezoresistive, are not suited for the applications proposed.
Research on modeling and conduction disturbance simulation of secondary power system in a device
NASA Astrophysics Data System (ADS)
Ding, Xu; Yu, Zhi-Yong; Jin, Rui
2017-06-01
To find electromagnetic interference (EMI) and other problems in the secondary power supply system design quickly and effectively, simulations are carried out under the Saber simulation software platform. The DC/DC converter model with complete performance and electromagnetic characteristics is established by combining parametric modeling with Mast language. By using the method of macro modeling, the hall current sensor and power supply filter model are established respectively based on the function, schematic diagram of the components. Also the simulation of the component model and the whole secondary power supply system are carried out. The simulation results show that the proposed model satisfies the functional requirements of the system and has high accuracy. At the same time, due to the ripple characteristics in the DC/DC converter modeling, it can be used as a conducted interference model to simulate the power bus conducted emission CE102 project under the condition that the simulated load is full, which provides a useful reference for the electromagnetic interference suppression of the system.
Electromagnetic and nuclear radiation detector using micromechanical sensors
Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.
2000-01-01
Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.
Standard module approach to scanning requirements for second-generation airborne FLIRs
NASA Astrophysics Data System (ADS)
Ludwiszewski, Alan P.
1995-05-01
This paper examines the specification requirements for the development of standard module scanning components to be used in conjunction with SADA I and SADA II sensor arrays. System-level design considerations are presented to identify a selection of components that is consistent with optimum use of the SADA technology. A limited-rotation electromagnetic actuator, used in conjunction with an angular position sensor and a digital controller, is shown to have the necessary performance and flexibility to perform the frame scan function for a wide range of airborne systems. System level requirements and specifications for an optional interlace scan system are also provided.
Design of a Pressure Sensor Based on Optical Fiber Bragg Grating Lateral Deformation
Urban, Frantisek; Kadlec, Jaroslav; Vlach, Radek; Kuchta, Radek
2010-01-01
This paper describes steps involved in the design and realization of a new type of pressure sensor based on the optical fiber Bragg grating. A traditional pressure sensor has very limited usage in heavy industrial environments, particularly in explosive or electromagnetically noisy environments. Utilization of optics in these environments eliminates all surrounding influences. An initial motivation for our development was the research, experimental validation, and realization of a complex smart pressure sensor based on the optical principle. The main benefit of this solution consists of increasing sensitivity, resistance to electromagnetic interference, dimensions, and potential increased accuracy. PMID:22163521
Dielectric Sensors Based on Electromagnetic Energy Tunneling
Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar
2015-01-01
We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188
Overseas testing of a multisensor landmine detection system: results and lessons learned
NASA Astrophysics Data System (ADS)
Keranen, Joe G.; Topolosky, Zeke
2009-05-01
The Nemesis detection system has been developed to provide an efficient and reliable unmanned, multi-sensor, groundbased platform to detect and mark landmines. The detection system consists of two detection sensor arrays: a Ground Penetrating Synthetic Aperture Radar (GPSAR) developed by Planning Systems, Inc. (PSI) and an electromagnetic induction (EMI) sensor array developed by Minelab Electronics, PTY. Limited. Under direction of the Night Vision and Electronic Sensors Directorate (NVESD), overseas testing was performed at Kampong Chhnang Test Center (KCTC), Cambodia, from May 12-30, 2008. Test objectives included: evaluation of detection performance, demonstration of real-time visualization and alarm generation, and evaluation of system operational efficiency. Testing was performed on five sensor test lanes, each consisting of a unique soil mixture and three off-road lanes which include curves, overgrowth, potholes, and non-uniform lane geometry. In this paper, we outline the test objectives, procedures, results, and lessons learned from overseas testing. We also describe the current state of the system, and plans for future enhancements and modifications including clutter rejection and feature-level fusion.
High dynamic range electric field sensor for electromagnetic pulse detection.
Lin, Che-Yun; Wang, Alan X; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T
2011-08-29
We design a high dynamic range electric field sensor based on domain inverted electro-optic (E-O) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices. Experimental results demonstrate effective detection of electric field from 16.7V/m to 750KV/m at a frequency of 1GHz, and spurious free measurement range of 70dB.
Monitoring cure of composite resins using frequency dependent electromagnetic sensing techniques
NASA Technical Reports Server (NTRS)
Kranbuehl, D. E.; Hoff, M. S.; Loos, A. C.; Freeman, W. T., Jr.; Eichinger, D. A.
1988-01-01
A nondestructive in situ measurement technique has been developed for monitoring and measuring the cure processing properties of composite resins. Frequency dependent electromagnetic sensors (FDEMS) were used to directly measure resin viscosity during cure. The effects of the cure cycle and resin aging on the viscosity during cure were investigated using the sensor. Viscosity measurements obtained using the sensor are compared with the viscosities calculated by the Loos-Springer cure process model. Good overall agreement was obtained except for the aged resin samples.
Emitter location errors in electronic recognition system
NASA Astrophysics Data System (ADS)
Matuszewski, Jan; Dikta, Anna
2017-04-01
The paper describes some of the problems associated with emitter location calculations. This aspect is the most important part of the series of tasks in the electronic recognition systems. The basic tasks include: detection of emission of electromagnetic signals, tracking (determining the direction of emitter sources), signal analysis in order to classify different emitter types and the identification of the sources of emission of the same type. The paper presents a brief description of the main methods of emitter localization and the basic mathematical formulae for calculating their location. The errors' estimation has been made to determine the emitter location for three different methods and different scenarios of emitters and direction finding (DF) sensors deployment in the electromagnetic environment. The emitter has been established using a special computer program. On the basis of extensive numerical calculations, the evaluation of precise emitter location in the recognition systems for different configuration alignment of bearing devices and emitter was conducted. The calculations which have been made based on the simulated data for different methods of location are presented in the figures and respective tables. The obtained results demonstrate that calculation of the precise emitter location depends on: the number of DF sensors, the distances between emitter and DF sensors, their mutual location in the reconnaissance area and bearing errors. The precise emitter location varies depending on the number of obtained bearings. The higher the number of bearings, the better the accuracy of calculated emitter location in spite of relatively high bearing errors for each DF sensor.
Optical fiber pressure sensors for adaptive wings
NASA Astrophysics Data System (ADS)
Duncan, Paul G.; Jones, Mark E.; Shinpaugh, Kevin A.; Poland, Stephen H.; Murphy, Kent A.; Claus, Richard O.
1997-06-01
Optical fiber pressure sensors have been developed for use on a structurally-adaptive `smart wing'; further details of the design, fabrication and testing of the smart wing concept are presented in companion papers. This paper describes the design, construction, and performance of the pressure sensor and a combined optical and electronic signal processing system implemented to permit the measurement of a large number of sensors distributed over the control surfaces of a wing. Optical fiber pressure sensors were implemented due to anticipated large electromagnetic interference signals within the operational environment. The sensors utilized the principle of the extrinsic Fabry-Perot interferometer (EFPI) already developed for the measurement of strain and temperature. Here, the cavity is created inside a micromachined hollow-core tube with a silicon diaphragm at one end. The operation of the sensor is similar to that of the EFPI strain gage also discussed in several papers at this conference. The limitations placed upon the performance of the digital signal processing system were determined by the required pressure range of the sensors and the cycle time of the control system used to adaptively modify the shape of the wing. Sensor calibration and the results of testing performed are detailed.
Allegany Ballistics Lab: sensor test target system
NASA Astrophysics Data System (ADS)
Eaton, Deran S.
2011-06-01
Leveraging the Naval Surface Warfare Center, Indian Head Division's historical experience in weapon simulation, Naval Sea Systems Command commissioned development of a remote-controlled, digitally programmable Sensor Test Target as part of a modern, outdoor hardware-in-the-loop test system for ordnance-related guidance, navigation and control systems. The overall Target system design invokes a sciences-based, "design of automated experiments" approach meant to close the logistical distance between sensor engineering and developmental T&E in outdoor conditions over useful real world distances. This enables operating modes that employ broad spectrum electromagnetic energy in many a desired combination, variably generated using a Jet Engine Simulator, a multispectral infrared emitter array, optically enhanced incandescent Flare Simulators, Emitter/Detector mounts, and an RF corner reflector kit. As assembled, the recently tested Sensor Test Target prototype being presented can capably provide a full array of useful RF and infrared target source simulations for RDT&E use with developmental and existing sensors. Certain Target technologies are patent pending, with potential spinoffs in aviation, metallurgy and biofuels processing, while others are variations on well-established technology. The Sensor Test Target System is planned for extended installation at Allegany Ballistics Laboratory (Rocket Center, WV).
Interconnection requirements in avionic systems
NASA Astrophysics Data System (ADS)
Vergnolle, Claude; Houssay, Bruno
1991-04-01
The future aircraft generation will have thousand smart electromagnetic sensors distributed allover. Each sensor is connected with fibers links to the main-frame computer in charge of the real time signal''s correlation. Such a computer must be compactly built and massively parallel: it needs the use of 3 D optical free-space interconnect between neighbouring boards and reconfigurable interconnects via holographic backplane. The optical interconnect facilities will be also used to build fault-tolerant computer through large redundancy.
Zhao, Hao; Feng, Hao
2013-01-01
An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor. PMID:23941911
NASA Astrophysics Data System (ADS)
Argenti, M.; Giannini, V.; Averty, R.; Bigagli, L.; Dumoulin, J.
2012-04-01
The EC FP7 ISTIMES project has the goal of realizing an ICT-based system exploiting distributed and local sensors for non destructive electromagnetic monitoring in order to make critical transport infrastructures more reliable and safe. Higher situation awareness thanks to real time and detailed information and images of the controlled infrastructure status allows improving decision capabilities for emergency management stakeholders. Web-enabled sensors and a service-oriented approach are used as core of the architecture providing a sys-tem that adopts open standards (e.g. OGC SWE, OGC CSW etc.) and makes efforts to achieve full interoperability with other GMES and European Spatial Data Infrastructure initiatives as well as compliance with INSPIRE. The system exploits an open easily scalable network architecture to accommodate a wide range of sensors integrated with a set of tools for handling, analyzing and processing large data volumes from different organizations with different data models. Situation Awareness tools are also integrated in the system. Definition of sensor observations and services follows a metadata model based on the ISO 19115 Core set of metadata elements and the O&M model of OGC SWE. The ISTIMES infrastructure is based on an e-Infrastructure for geospatial data sharing, with a Data Cata-log that implements the discovery services for sensor data retrieval, acting as a broker through static connections based on standard SOS and WNS interfaces; a Decision Support component which helps decision makers providing support for data fusion and inference and generation of situation indexes; a Presentation component which implements system-users interaction services for information publication and rendering, by means of a WEB Portal using SOA design principles; A security framework using Shibboleth open source middleware based on the Security Assertion Markup Language supporting Single Sign On (SSO). ACKNOWLEDGEMENT - The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 225663
Lightning Current Measurement with Fiber-Optic Sensor
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.
2014-01-01
A fiber-optic current sensor is successfully developed with many potential applications for electric current measurement. Originally developed for in-flight lightning measurement, the sensor utilizes Faraday Effect in an optical fiber. The Faraday Effect causes linear light polarization in a fiber to rotate when the fiber is exposed to a magnetic field. The polarization change is detected using a reflective polarimetric scheme. Forming fiber loops and applying Ampere's law, measuring the total light rotation results in the determination of the total current enclosed. The sensor is conformable to complex structure geometry. It is also non-conductive and immune to electromagnetic interference, saturation or hysteresis. Installation is non-intrusive, and the sensor can be safely routed through flammable areas. Two similar sensor systems are described in this paper. The first system operates at 1310nm laser wavelength and is capable of measuring approximately 300 A - 300 kA, a 60 dB range. Laboratory validation results of aircraft lighting direct and in-direct effect current amplitudes are reported for this sensor. The second system operates at 1550nm wavelength and can measure about 400 A - 400 kA. Triggered-lightning measurement data are presented for this system. Good results are achieved in all cases.
Neutron radiation effects on Fabry-Perot fiber optic sensors
NASA Astrophysics Data System (ADS)
Liu, Hanying; Talnagi, Joseph; Miller, Don W.
2003-07-01
Nuclear Power Plant operators and Generation IV plant designers are considering advanced data transmission and measurement systems to improve system economics and safety, while concurrently addressing the issue of obsolescence of instrumentation and control systems. Fiber optic sensors have advantages over traditional sensors such as immunity to electromagnetic interference or radio frequency interference, higher sensitivity and accuracy, smaller size and less weight, higher bandwidth and multiplexing capability. A Fabry-Perot fiber optic sensor utilizes a unique interferometric mechanism and data processing technique, and has potential applications in nuclear radiation environments. Three sensors with different gamma irradiation history were irradiated in a mixed neutron/gamma irradiation field, in which the total neutron fluence was 2.6×10 16 neutrons/cm 2 and the total gamma dose was 1.09 MGy. All of them experienced a temperature shift of about 34°F but responded linearly to temperature changes. An annealing phenomenon was observed as the environmental temperature increased, which reduced the offset by approximately 63%.
Portable wireless ultrasonic systems for remote inspection
NASA Astrophysics Data System (ADS)
Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.
2015-03-01
The weight and power storage of conventional wire and active wireless systems limit their applications to composite structures such as wind turbines and aerospace structures. In this paper, a structurally-integrated, inert, wireless guided wave system for rapid composite inspection is demonstrated. The wireless interface is based on electromagnetic coupling between three coils, one of which is physically connected to an ultrasonic piezoelectric transducer and embedded in the structure, while the other two are in a separate probing unit. Compact encapsulated sensor units are designed, built and successfully embedded into carbon fibre composite panel at manufacture. Chirp-based excitation is used to enable single-shot measurements with high signal-to-noise ratios to be obtained. Results from sensors embedded in carbon fibre reinforced composite panel show that signal amplitude obtained by embedding the sensor into composite is almost twice that of a surface-bonded sensor. The promising results indicate that the developed sensor can be potentially used for impact damage in a large composite structure.
Underwater Electromagnetic Sensor Networks—Part I: Link Characterization †
Quintana-Díaz, Gara; Mena-Rodríguez, Pablo; Pérez-Álvarez, Iván; Jiménez, Eugenio; Dorta-Naranjo, Blas-Pablo; Zazo, Santiago; Pérez, Marina; Quevedo, Eduardo; Cardona, Laura; Hernández, J. Joaquín
2017-01-01
Underwater Wireless Sensor Networks (UWSNs) using electromagnetic (EM) technology in marine shallow waters are examined, not just for environmental monitoring but for further interesting applications. Particularly, the use of EM waves is reconsidered in shallow waters due to the benefits offered in this context, where acoustic and optical technologies have serious disadvantages. Sea water scenario is a harsh environment for radiocommunications, and there is no standard model for the underwater EM channel. The high conductivity of sea water, the effect of seabed and the surface make the behaviour of the channel hard to predict. This justifies the need of link characterization as the first step to approach the development of EM underwater sensor networks. To obtain a reliable link model, measurements and simulations are required. The measuring setup for this purpose is explained and described, as well as the procedures used. Several antennas have been designed and tested in low frequency bands. Agreement between attenuation measurements and simulations at different distances was analysed and made possible the validation of simulation setups and the design of different communications layers of the system. This leads to the second step of this work, where data and routing protocols for the sensor network are examined. PMID:28106843
Underwater Electromagnetic Sensor Networks-Part I: Link Characterization.
Quintana-Díaz, Gara; Mena-Rodríguez, Pablo; Pérez-Álvarez, Iván; Jiménez, Eugenio; Dorta-Naranjo, Blas-Pablo; Zazo, Santiago; Pérez, Marina; Quevedo, Eduardo; Cardona, Laura; Hernández, J Joaquín
2017-01-19
Underwater Wireless Sensor Networks (UWSNs) using electromagnetic (EM) technology in marine shallow waters are examined, not just for environmental monitoring but for further interesting applications. Particularly, the use of EM waves is reconsidered in shallow waters due to the benefits offered in this context, where acoustic and optical technologies have serious disadvantages. Sea water scenario is a harsh environment for radiocommunications, and there is no standard model for the underwater EM channel. The high conductivity of sea water, the effect of seabed and the surface make the behaviour of the channel hard to predict. This justifies the need of link characterization as the first step to approach the development of EM underwater sensor networks. To obtain a reliable link model, measurements and simulations are required. The measuring setup for this purpose is explained and described, as well as the procedures used. Several antennas have been designed and tested in low frequency bands. Agreement between attenuation measurements and simulations at different distances was analysed and made possible the validation of simulation setups and the design of different communications layers of the system. This leads to the second step of this work, where data and routing protocols for the sensor network are examined.
Zakaria, Zulkarnay; Rahim, Ruzairi Abdul; Mansor, Muhammad Saiful Badri; Yaacob, Sazali; Ayub, Nor Muzakkir Nor; Muji, Siti Zarina Mohd.; Rahiman, Mohd Hafiz Fazalul; Aman, Syed Mustafa Kamal Syed
2012-01-01
Magnetic Induction Tomography (MIT), which is also known as Electromagnetic Tomography (EMT) or Mutual Inductance Tomography, is among the imaging modalities of interest to many researchers around the world. This noninvasive modality applies an electromagnetic field and is sensitive to all three passive electromagnetic properties of a material that are conductivity, permittivity and permeability. MIT is categorized under the passive imaging family with an electrodeless technique through the use of excitation coils to induce an electromagnetic field in the material, which is then measured at the receiving side by sensors. The aim of this review is to discuss the challenges of the MIT technique and summarize the recent advancements in the transmitters and sensors, with a focus on applications in biological tissue imaging. It is hoped that this review will provide some valuable information on the MIT for those who have interest in this modality. The need of this knowledge may speed up the process of adopted of MIT as a medical imaging technology. PMID:22969341
Wireless and Powerless Sensing Node System Developed for Monitoring Motors.
Lee, Dasheng
2008-08-27
Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program.
Wireless and Powerless Sensing Node System Developed for Monitoring Motors
Lee, Dasheng
2008-01-01
Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program. PMID:27873798
Novel Designs for Application Specific MEMS Pressure Sensors
Fragiacomo, Giulio; Reck, Kasper; Lorenzen, Lasse; Thomsen, Erik V.
2010-01-01
In the framework of developing innovative microfabricated pressure sensors, we present here three designs based on different readout principles, each one tailored for a specific application. A touch mode capacitive pressure sensor with high sensitivity (14 pF/bar), low temperature dependence and high capacitive output signal (more than 100 pF) is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0–350 bar) and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free with a sensitivity of 650 KHz/mmHg is described. These sensors will be related with their applications in harsh environment, distributed systems and medical environment, respectively. For many aspects, commercially available sensors, which in vast majority are piezoresistive, are not suited for the applications proposed. PMID:22163425
NASA Technical Reports Server (NTRS)
Grove, C. H.; Phillips, R. L.; Wojtasinski, R. J.
1975-01-01
A lightning instrumentation system was designed to record current magnitudes of lightning strikes that hit a launch pad service structure at NASA's Kennedy Space Center. The instrumentation system consists of a lightning ground rod with a current sensor coil, an optical transmitter, an optical fiber cable link, a detector receiver, and a recording system. The transmitter is a wideband pulse transformer driving an IR LED emitter. The transmitter operates linearly as a transducer. A low loss fiber bundle provides isolation of the recorder system from the electromagnetic field of the lightning strike. The output of an optical detector receiver module is sampled and recorded in digital format. The significant factors considered in the design were dynamic range, linearity, mechanical configuration, electromagnetic isolation, and temperature compensation.
Li, Mengfei; Hansen, Christian; Rose, Georg
2017-09-01
Electromagnetic tracking systems (EMTS) have achieved a high level of acceptance in clinical settings, e.g., to support tracking of medical instruments in image-guided interventions. However, tracking errors caused by movable metallic medical instruments and electronic devices are a critical problem which prevents the wider application of EMTS for clinical applications. We plan to introduce a method to dynamically reduce tracking errors caused by metallic objects in proximity to the magnetic sensor coil of the EMTS. We propose a method using ramp waveform excitation based on modeling the conductive distorter as a resistance-inductance circuit. Additionally, a fast data acquisition method is presented to speed up the refresh rate. With the current approach, the sensor's positioning mean error is estimated to be 3.4, 1.3 and 0.7 mm, corresponding to a distance between the sensor and center of the transmitter coils' array of up to 200, 150 and 100 mm, respectively. The sensor pose error caused by different medical instruments placed in proximity was reduced by the proposed method to a level lower than 0.5 mm in position and [Formula: see text] in orientation. By applying the newly developed fast data acquisition method, we achieved a system refresh rate up to approximately 12.7 frames per second. Our software-based approach can be integrated into existing medical EMTS seamlessly with no change in hardware. It improves the tracking accuracy of clinical EMTS when there is a metallic object placed near the sensor coil and has the potential to improve the safety and outcome of image-guided interventions.
2011-01-01
stealth features requiring specialised noise and vibra- tion skills and propulsion plants requiring other unique skill sets. Personnel with these...analysis Acoustic, wake , thermal, electromagnetic, and other signature analysis Combat systems and ship control Combat system integration, combat system...to-diagnose flow-induced radiated noise Own-sensor performance degradation Note: Risks can be reduced for given designs using scale models
Passive Wearable Skin Patch Sensor Measures Limb Hemodynamics Based on Electromagnetic Resonance.
Cluff, Kim; Becker, Ryan; Jayakumar, Balakumar; Han, Kiyun; Condon, Ernie; Dudley, Kenneth; Szatkowski, George; Pipinos, Iraklis I; Amick, Ryan Z; Patterson, Jeremy
2018-04-01
The objectives of this study were to design and develop an open-circuit electromagnetic resonant skin patch sensor, characterize the fluid volume and resonant frequency relationship, and investigate the sensor's ability to measure limb hemodynamics and pulse volume waveform features. The skin patch was designed from an open-circuit electromagnetic resonant sensor comprised of a single baseline trace of copper configured into a square planar spiral which had a self-resonating response when excited by an external radio frequency sweep. Using a human arm phantom with a realistic vascular network, the sensor's performance to measure limb hemodynamics was evaluated. The sensor was able to measure pulsatile blood flow which registered as shifts in the sensor's resonant frequencies. The time-varying waveform pattern of the resonant frequency displayed a systolic upstroke, a systolic peak, a dicrotic notch, and a diastolic down stroke. The resonant frequency waveform features and peak systolic time were validated against ultrasound pulse wave Doppler. A statistical correlation analysis revealed a strong correlation () between the resonant sensor peak systolic time and the pulse wave Doppler peak systolic time. The sensor was able to detect pulsatile flow, identify hemodynamic waveform features, and measure heart rate with 98% accuracy. The open-circuit resonant sensor design leverages the architecture of a thin planar spiral which is passive (does not require batteries), robust and lightweight (does not have electrical components or electrical connections), and may be able to wirelessly monitor cardiovascular health and limb hemodynamics.
Ye, X. W.; Su, Y. H.; Han, J. P.
2014-01-01
In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250
Ye, X W; Su, Y H; Han, J P
2014-01-01
In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.
Detection and Classification of UXO Using Unmanned Undersea Electromagnetic Sensing Platforms
NASA Astrophysics Data System (ADS)
Schultz, G.; Keranen, J.; McNinch, J.; Miller, J.
2017-12-01
Important seafloor applications, including mine countermeasures, unexploded ordnance (UXO) surveys, salvage, and underwater hazards, require the detection, geo-registration, and characterization of man-made targets on, or below, the seafloor. Investigations in littoral environments can be time-consuming and expensive due to the challenges of accurately tracking underwater assets, the difficulty of quick or effective site reconnaissance activities, high levels of clutter in nearshore areas, and lack of situational awareness and real-time feedback to operators. Consequently, a high payoff exists for effective methods using sensor and data fusion, feature extraction, and effective payload integration and deployment for improved assessments of littoral infrastructure. We present technology development and demonstration results from multiple technology research, development, and demonstration projects over the last 3 years that have been focused on advancing seafloor target detection, tracking, and classification for specific environmental and defense missions. We focus on challenges overcome in integrating and testing new miniaturized passive magnetic and controlled-source electromagnetic sensors on a variety of remotely and autonomously operated sensing platforms (ROVs, AUVs and bottom crawling systems). In particular, we present aspects of the design, development, and testing of array configurations of miniaturized atomic magnetometers/gradiometers and multi-dimensional electromagnetic (EM) sensor arrays. Results from nearshore (surf zone and marsh in North Carolina) and littoral experiments (bays and reef areas of Florida Gulf and Florida Keys) are presented.
Multi-interface level in oil tanks and applications of optical fiber sensors
NASA Astrophysics Data System (ADS)
Leal-Junior, Arnaldo G.; Marques, Carlos; Frizera, Anselmo; Pontes, Maria José
2018-01-01
On the oil production also involves the production of water, gas and suspended solids, which are separated from the oil on three-phase separators. However, the control strategies of an oil separator are limited due to unavailability of suitable multi-interface level sensors. This paper presents a description of the multi-phase level problem on the oil industry and a review of the current technologies for multi-interface level assessment. Since optical fiber sensors present chemical stability, intrinsic safety, electromagnetic immunity, lightweight and multiplexing capabilities, it can be an alternative for multi-interface level measurement that can overcome some of the limitations of the current technologies. For this reason, Fiber Bragg Gratings (FBGs) based optical fiber sensor system for multi-interface level assessment is proposed, simulated and experimentally assessed. The results show that the proposed sensor system is capable of measuring interface level with a relative error of only 2.38%. Furthermore, the proposed sensor system is also capable of measuring the oil density with an error of 0.8 kg/m3.
A self-calibrating multicomponent force/torque measuring system
NASA Astrophysics Data System (ADS)
Marangoni, Rafael R.; Schleichert, Jan; Rahneberg, Ilko; Hilbrunner, Falko; Fröhlich, Thomas
2018-07-01
A multicomponent self-calibrating force and torque sensor is presented. In this system, the principle of a Kibble balance is adapted for the traceable force and torque measurement in three orthogonal directions. The system has two operating modes: the velocity mode and the force/torque sensing mode. In the velocity mode, the calibration of the sensor is performed, while in the force/torque sensing mode, forces and torques are measured by using the principle of the electromagnetic force compensation. Details about the system are provided, with the main components of the sensor and a description of the operational procedure. A prototype of the system is currently being implemented for measuring forces and torques in a range of ±2 N and ±0.1 N · m respectively. A maximal relative expanded measurement uncertainty (k = 2) of 1 · 10‑4 is expected for the force and torque measurements.
Pun, S H; Gao, Y M; Mou, P A; Mak, P U; Vai, M I; Du, M
2010-01-01
Intra-body communication (IBC) is a new, emerging, short-range and human body based communication methodology. It is a technique to network various devices on human body, by utilizing the conducting properties of human tissues. For currently fast developed Body area network(BAN)/Body sensor network(BSN), IBC is believed to have advantages in power consumption, electromagnetic radiation, interference from external electromagnetic noise, security, and restriction in spectrum resource. In this article, the authors propose an improved mathematical model, which includes both electrical properties and proportion of human tissues, for IBC on a human limb. By solving the mathematical model analytically on four-layer system (skin, fat, muscle, and bone) and conducting in-vivo experiment, a comparison has been conducted.
Advanced end-to-end fiber optic sensing systems for demanding environments
NASA Astrophysics Data System (ADS)
Black, Richard J.; Moslehi, Behzad
2010-09-01
Optical fibers are small-in-diameter, light-in-weight, electromagnetic-interference immune, electrically passive, chemically inert, flexible, embeddable into different materials, and distributed-sensing enabling, and can be temperature and radiation tolerant. With appropriate processing and/or packaging, they can be very robust and well suited to demanding environments. In this paper, we review a range of complete end-to-end fiber optic sensor systems that IFOS has developed comprising not only (1) packaged sensors and mechanisms for integration with demanding environments, but (2) ruggedized sensor interrogators, and (3) intelligent decision aid algorithms software systems. We examine the following examples: " Fiber Bragg Grating (FBG) optical sensors systems supporting arrays of environmentally conditioned multiplexed FBG point sensors on single or multiple optical fibers: In conjunction with advanced signal processing, decision aid algorithms and reasoners, FBG sensor based structural health monitoring (SHM) systems are expected to play an increasing role in extending the life and reducing costs of new generations of aerospace systems. Further, FBG based structural state sensing systems have the potential to considerably enhance the performance of dynamic structures interacting with their environment (including jet aircraft, unmanned aerial vehicles (UAVs), and medical or extravehicular space robots). " Raman based distributed temperature sensing systems: The complete length of optical fiber acts as a very long distributed sensor which may be placed down an oil well or wrapped around a cryogenic tank.
An Alternative Wearable Tracking System Based on a Low-Power Wide-Area Network
Fernández-Garcia, Raul; Gil, Ignacio
2017-01-01
This work presents an alternative wearable tracking system based on a low-power wide area network. A complete GPS receiver was integrated with a textile substrate, and the latitude and longitude coordinates were sent to the cloud by means of the SIM-less SIGFOX network. To send the coordinates over SIGFOX protocol, a specific codification algorithm was used and a customized UHF antenna on jeans fabric was designed, simulated and tested. Moreover, to guarantee the compliance to international regulations for human body exposure to electromagnetic radiation, the electromagnetic specific absorption rate of this antenna was analyzed. A specific remote server was developed to decode the latitude and longitude coordinates. Once the coordinates have been decoded, the remote server sends this information to the open source data viewer SENTILO to show the location of the sensor node in a map. The functionality of this system has been demonstrated experimentally. The results guarantee the utility and wearability of the proposed tracking system for the development of sensor nodes and point out that it can be a low cost alternative to other commercial products based on GSM networks. PMID:28335424
NASA Astrophysics Data System (ADS)
Lee, Wonwoo; Jung, Yonghee; Jung, Hyunseung; Lee, Hojin
2017-02-01
In the past decade, there have been many studies on metamaterial based chemical and biological sensors due to their exotic resonance properties in microwave ranges. However, in spite of their non-destructive and highly sensitive properties, they have suffered from the use of bulky and expensive external measurement systems like a network analyzer for measuring resonance properties in the microwave regime. In this study, to increase accessibility of the metamaterial-based sensors, we propose a novel wireless chemical sensor system based on energy harvesting metamaterials at the microwave frequencies. The proposed metamaterial chemical sensor consists of a single split ring resonator and rectifier circuit to harvest the energy at the specific frequency, so that the chemical composition of the specific solution can be distinguished by the proposed metamaterial sensor by using the resonance property between the source antenna and the metamaterial which induces the variation in the energy harvesting rate of our sensor system. In our experimental setup, we used a 2.4 GHz Wi-Fi system as a source antenna. To verify the chemical sensitivity of the proposed sensor intuitively, we adopted a light emitting diode as an indicator of which luminescence is proportional to the energy harvesting rate determined by the ratio of ethanol and water in their binary mixture. With these results, it can be expected that our metamaterial-based wireless sensor can pave the way to the miniaturized wireless sensor systems and can be applied to not only for the chemical fluidic sensors but also for other dynamic environment sensing systems.
Electromagnetic diagnostic system for the Keda Torus eXperiment
NASA Astrophysics Data System (ADS)
Tu, Cui; Liu, Adi; Li, Zichao; Tan, Mingsheng; Luo, Bing; You, Wei; Li, Chenguang; Bai, Wei; Fu, Chenshuo; Huang, Fangcheng; Xiao, Bingjia; Shen, Biao; Shi, Tonghui; Chen, Dalong; Mao, Wenzhe; Li, Hong; Xie, Jinglin; Lan, Tao; Ding, Weixing; Xiao, Chijin; Liu, Wandong
2017-09-01
A system for electromagnetic measurements was designed and installed on the Keda Torus eXperiment (KTX) reversed field pinch device last year. Although the unique double-C structure of the KTX, which allows the machine to be opened easily without disassembling the poloidal field windings, makes the convenient replacement and modification of the internal inductive coils possible, it can present difficulties in the design of flux coils and magnetic probes at the two vertical gaps. Moreover, the KTX has a composite shell consisting of a 6 mm stainless steel vacuum chamber and a 1.5 mm copper shell, which results in limited space for the installation of saddle sensors. Therefore, the double-C structure and composite shell should be considered, especially during the design and installation of the electromagnetic diagnostic system (EDS). The inner surface of the vacuum vessel includes two types of probes. One type is for the measurement of the global plasma parameters, and the other type is for studying the local behavior of the plasma and operating the new saddle coils. In addition, the probes on the outer surface of the composite shell are used for measurements of eddy currents. Finally, saddle sensors for radial field measurements for feedback control were installed between the conducting shell and the vacuum vessel. The entire system includes approximately 1100 magnetic probes, 14 flux coils, 4 ×26 ×2 saddle sensors, and 16 Rogowski coils. Considering the large number of probes and limited space available in the vacuum vessel, the miniaturization of the probes and optimization of the probe distribution are necessary. In addition, accurate calibration and careful mounting of the probes are also required. The frequency response of the designed magnetic probes is up to 200 kHz, and the resolution is 1 G. The EDS, being spherical and of high precision, is one of the most basic and effective diagnostic tools of the KTX and meets the demands imposed by requirements on basic machine operating information and future studies.
Development of an electromagnetic imaging system for well bore integrity inspection
NASA Astrophysics Data System (ADS)
Plotnikov, Yuri; Wheeler, Frederick W.; Mandal, Sudeep; Climent, Helene C.; Kasten, A. Matthias; Ross, William
2017-02-01
State-of-the-art imaging technologies for monitoring the integrity of oil and gas well bores are typically limited to the inspection of metal casings and cement bond interfaces close to the first casing region. The objective of this study is to develop and evaluate a novel well-integrity inspection system that is capable of providing enhanced information about the flaw structure and topology of hydrocarbon producing well bores. In order to achieve this, we propose the development of a multi-element electromagnetic (EM) inspection tool that can provide information about material loss in the first and second casing structure as well as information about eccentricity between multiple casing strings. Furthermore, the information gathered from the EM inspection tool will be combined with other imaging modalities (e.g. data from an x-ray backscatter imaging device). The independently acquired data are then fused to achieve a comprehensive assessment of integrity with greater accuracy. A test rig composed of several concentric metal casings with various defect structures was assembled and imaged. Initial test results were obtained with a scanning system design that includes a single transmitting coil and several receiving coils mounted on a single rod. A mechanical linear translation stage was used to move the EM sensors in the axial direction during data acquisition. For simplicity, a single receiving coil and repetitive scans were employed to simulate performance of the designed receiving sensor array system. The resulting electromagnetic images enable the detection of the metal defects in the steel pipes. Responses from several sensors were used to assess the location and amount of material loss in the first and second metal pipe as well as the relative eccentric position between these two pipes. The results from EM measurements and x-ray backscatter simulations demonstrate that data fusion from several sensing modalities can provide an enhanced assessment of flaw structures in producing well bores and potentially allow for early detection of anomalies that if undetected might lead to catastrophic failures.
Harnsoongnoen, Supakorn; Wanthong, Anuwat
2017-10-01
Magnetic sensing at microwave frequencies for real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations is reported. The sensing element was designed based on a coplanar waveguide (CPW) loaded with a split ring resonator (SRR), which was fabricated on a DiClad 880 substrate with a thickness of 1.6mm and relative permittivity (ε r ) of 2.2. The magnetic sensor was connected to a Vector Network Analyzer (VNA) and the electromagnetic interaction between the samples and sensor was analyzed. The magnitude of the transmission coefficient (S 21 ) was used as an indicator to detect the solution sample concentrations ranging from 0.04 to 0.20g/ml. The experimental results confirmed that the developed system using microwaves for the real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations gave unique results for each solution type and concentration. Moreover, the proposed sensor has a wide dynamic range, high linearity, fast operation and low-cost. Copyright © 2017 Elsevier Ltd. All rights reserved.
A High-Performance Portable Transient Electro-Magnetic Sensor for Unexploded Ordnance Detection.
Wang, Haofeng; Chen, Shudong; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun
2017-11-17
Portable transient electromagnetic (TEM) systems can be well adapted to various terrains, including mountainous, woodland, and other complex terrains. They are widely used for the detection of unexploded ordnance (UXO). As the core component of the portable TEM system, the sensor is constructed with a transmitting coil and a receiving coil. Based on the primary field of the transmitting coil and internal noise of the receiving coil, the design and testing of such a sensor is described in detail. Results indicate that the primary field of the transmitting coil depends on the diameter, mass, and power of the coil. A higher mass-power product and a larger diameter causes a stronger primary field. Reducing the number of turns and increasing the clamp voltage reduces the switch-off time of the transmitting current effectively. Increasing the cross-section of the wire reduces the power consumption, but greatly increases the coil's weight. The study of the receiving coil shows that the internal noise of the sensor is dominated by the thermal noise of the damping resistor. Reducing the bandwidth of the system and increasing the size of the coil reduces the internal noise effectively. The cross-sectional area and the distance between the sections of the coil have little effect on the internal noise. A less damped state can effectively reduce signal distortion. Finally, a portable TEM sensor with both a transmitting coil (constructed with a diameter, number of turns, and transmitting current of 0.5 m, 30, and 5 A, respectively) and a receiving coil (constructed with a length and resonant frequency of 5.6 cm and 50 kHz, respectively) was built. The agreement between experimental and calculated results confirms the theory used in the sensor design. The responses of an 82 mm mortar shell at different distances were measured and inverted by the differential evolution (DE) algorithm to verify system performance. Results show that the sensor designed in this study can not only detect the 82 mm mortar shell within 1.2 m effectively but also locate the target precisely.
Measurement technology of RF interference current in high current system
NASA Astrophysics Data System (ADS)
Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei
2018-06-01
Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.
Condition monitoring of an electro-magnetic brake using an artificial neural network
NASA Astrophysics Data System (ADS)
Gofran, T.; Neugebauer, P.; Schramm, D.
2017-10-01
This paper presents a data-driven approach to Condition Monitoring of Electromagnetic brakes without use of additional sensors. For safe and efficient operation of electric motor a regular evaluation and replacement of the friction surface of the brake is required. One such evaluation method consists of direct or indirect sensing of the air-gap between pressure plate and magnet. A larger gap is generally indicative of worn surface(s). Traditionally this has been accomplished by the use of additional sensors - making existing systems complex, cost- sensitive and difficult to maintain. In this work a feed-forward Artificial Neural Network (ANN) is learned with the electrical data of the brake by supervised learning method to estimate the air-gap. The ANN model is optimized on the training set and validated using the test set. The experimental results of estimated air-gap with accuracy of over 95% demonstrate the validity of the proposed approach.
NASA Technical Reports Server (NTRS)
Hockney, Richard L. (Inventor); Downer, James R. (Inventor); Eisenhaure, David B. (Inventor); Hawkey, Timothy J. (Inventor); Johnson, Bruce G. (Inventor)
1990-01-01
A magnetic bearing system for enabling translational motion includes a carriage and a shaft for movably supporting the carriage; a first magnetic bearing fixed to one of the carriage and shaft and slidably received in a first channel of the other of the carriage and shaft. The first channel is generally U shaped with two side walls and a back wall. The magnetic bearing includes a pair of spaced magnetic pole pieces, each pole piece having a pair of electromagnetic coils mounted on poles on opposite ends of the pole piece proximate the side walls, and a third electromagnetic coil mounted on a pole of the pole piece proximate the backwall; a motion sensor for sensing translational motion along two axes and rotationally about three axes of the carriage and shaft relative to each other; and a correction circuit responsive to the sensor for generating a correction signal to drive the coils to compensate for any misalignment sensed between the carriage and the shaft.
Short, multi-needle FDR sensor suitable for measuring soil water content
USDA-ARS?s Scientific Manuscript database
Time domain reflectometry (TDR) is a well-established electromagnetic technique used to measure soil water content. TDR sensors have been combined with heat pulse sensors to produce thermo-TDR sensors. Thermo-TDR sensors are restricted to having relatively short needles in order to accurately measur...
Lima, Estevao; Rodrigues, Pedro L; Mota, Paulo; Carvalho, Nuno; Dias, Emanuel; Correia-Pinto, Jorge; Autorino, Riccardo; Vilaça, João L
2017-10-01
Puncture of the renal collecting system represents a challenging step in percutaneous nephrolithotomy (PCNL). Limitations related to the use of standard fluoroscopic-based and ultrasound-based maneuvers have been recognized. To describe the technique and early clinical outcomes of a novel navigation system for percutaneous kidney access. This was a proof-of-concept study (IDEAL phase 1) conducted at a single academic center. Ten PCNL procedures were performed for patients with kidney stones. Flexible ureterorenoscopy was performed to determine the optimal renal calyx for access. An electromagnetic sensor was inserted through the working channel. Then the selected calyx was punctured with a needle with a sensor on the tip guided by real-time three-dimensional images observed on the monitor. The primary endpoints were the accuracy and clinical applicability of the system in clinical use. Secondary endpoints were the time to successful puncture, the number of attempts for successful puncture, and complications. Ten patients were enrolled in the study. The median age was 47.1 yr (30-63), median body mass index was 22.85kg/m 2 (19-28.3), and median stone size was 2.13cm (1.5-2.5cm). All stones were in the renal pelvis. The Guy's stone score was 1 in nine cases and 2 in one case. All 10 punctures of the collecting system were successfully completed at the first attempt without X-ray exposure. The median time to successful puncture starting from insertion of the needle was 20 s (range 15-35). No complications occurred. We describe the first clinical application of a novel navigation system using real-time electromagnetic sensors for percutaneous kidney access. This new technology overcomes the intrinsic limitations of traditional methods of kidney access, allowing safe, precise, fast, and effective puncture of the renal collecting system. We describe a new technology allowing safe and easy puncture of the kidney without radiation exposure. This could significantly facilitate one of the most challenging steps in percutaneous removal of kidney stones. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Simulation Fidelity Issues for Nuclear Survivability Validation Protocols.
1992-11-01
Explosive MILSTAR Military, Strategic and Tactical Relay satellite NTB National Test Bed PORTS Portable Radiation/Redout Testbed for Sensors RV Reentry...Vehicle SDI Strategic Defense Initiative SE System Element SEP System Element Platform SGEMP System Generated Electromagnetic Pulse S/N Signal-to...ELECTRONIC SCIENCES DIV ATTN: ACTL ATTN: CHIEF SCIENTIST ATTN: DDIR ATTN: DEP DIR RESEARCH ATTN: DFOP ATTN: DIR AEROSPACE & STRATEGIC TECH Dist-1 DNA-TR-92
Fiber optic sensor system for entrance areas monitoring
NASA Astrophysics Data System (ADS)
Fajkus, Marcel; Nedoma, Jan; Kepak, Stanislav; Cubik, Jakub; Jargus, Jan; Zboril, Ondřej; Martinek, Radek; Vasinek, Vladimir
2017-10-01
Authors of this article present the fiber-optic system based on fiber Bragg gratings (FBGs) which are used to secure the entrance areas such as buildings, halls, warehouses, etc. The system uses the specially encapsulated sensory array of fiber Bragg gratings which are implemented into the floor or on the floor and allows for monitoring the area of 1 m2 up to 100 m2 depending on the number of FBG sensors. The sensory array is characterized by immunity to electromagnetic interference (EMI), passivity regarding electrical power supply, the possibility of remote evaluation (up to units of km) and high sensitivity. Proposed sensor system has detection capability greater than 99 % and furthermore, provides information about the weight load to an accuracy of +/- 5 kg. The concept has been tested in a real environment within the test polygon for several weeks. As the reference devices, we used the CCTV (Closed Circuit Television).
Krishna, Sanjay [Albuquerque, NM; Hayat, Majeed M [Albuquerque, NM; Tyo, J Scott [Tucson, AZ; Jang, Woo-Yong [Albuquerque, NM
2011-12-06
Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.
Nondestructive testing of moisture separator reheater tubing system using Hall sensor array
NASA Astrophysics Data System (ADS)
Le, Minhhuy; Kim, Jungmin; Kim, Jisoo; Do, Hwa Sik; Lee, Jinyi
2018-01-01
This paper presents a nondestructive testing system for inspecting the moisture separator reheater (MSR) tubing system in a nuclear power plant. The technique is based on partial saturation eddy current testing in which a Hall sensor array is used to measure the radial component of the electromagnetic field distributed in the tubes. A finned MRS tube of ferritic stainless steel (SS439) with artificial, flat-bottom hole-type defects was used in the experiments. The results show that the proposed system has potential applications in the MSR system or ferromagnetic material tubes in general, which could detect the artificial defects of about 20% of the wall thickness (0.24 mm). Furthermore, the defect volume could be quantitatively evaluated.
EM61-MK2 Response of Three Munitions Surrogates
2009-03-12
time-domain electromagnetic induction sensors, it produces a pulsed magnetic field (primary field) that induces a secondary field in metallic objects...selected and marked as potential metal targets. This initial list of anomalies is used as input to an analysis step that selects anomalies for digging...response of a metallic object to an Electromagnetic Induction sensor is most simply modeled as an induced dipole moment represented by a magnetic
2012-07-01
Engineering Service Center, Port Hueneme, CA Robert Kirgan, Army Environmental Command Doug Maddox, US Environmental Protection Agency Doug Murray...FINAL REPORT MUNITIONS CLASSIFICATION WITH PORTABLE ADVANCED ELECTROMAGNETIC SENSORS Demonstration at the former Camp Beale, CA , Summer...if it does not display a currently valid OMB control number. 1. REPORT DATE JUL 2012 2 . REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND
Superconducting Bearings Assisted by Self-sensing AMBs in Liquid Nitrogen
NASA Astrophysics Data System (ADS)
Komori, Mochimitsu; Shiraishi, Chiaki
This paper describes newly developed superconducting magnetic bearings (SMBs) assisted by self-sensing active magnetic bearings (AMBs). The self-sensing AMBs detect the gaps between rotor and electromagnets. The principle of the self-sensing sensors is based on a differential transformer. The sensitivity in liquid nitrogen is almost equal to that in the air. The sensor is found to be useful in liquid nitrogen at 77K(-196°C). Moreover, the sensors are applied to the SMBs. In this paper, dynamics of the SMBs with self-sensing AMBs are discussed. From the results, it is found that the system is useful and promising.
2018-01-01
Partial discharges (PD) measurement provides valuable information for the condition assessment of the insulation status of high-voltage (HV) electrical installations. During the last three decades, several PD sensors and measuring techniques have been developed to perform accurate diagnostics when PD measurements are carried out on-site and on-line. For utilities, the most attractive characteristics of on-line measurements are that once the sensors are installed in the grid, the electrical service is uninterrupted and that electrical systems are tested in real operating conditions. In medium-voltage (MV) and HV installations, one of the critical points where an insulation defect can occur is inside metal-clad switchgears (including the cable terminals connected to them). Thus, this kind of equipment is increasingly being monitored to carry out proper maintenance based on their condition. This paper presents a study concerning the application of different electromagnetic measuring techniques (compliant with IEC 62478 and IEC 60270 standards), together with the use of suitable sensors, which enable the evaluation of the insulation condition mainly in MV switchgears. The main scope is to give a general overview about appropriate types of electromagnetic measuring methods and sensors to be applied, while considering the level of detail and accuracy in the diagnosis and the particular fail-save requirements of the electrical installations where the switchgears are located. PMID:29495601
An electromagnetic noncontacting sensor for thickness measurement in a dispersive medium
NASA Technical Reports Server (NTRS)
Chufo, Robert L.
1994-01-01
This paper describes a general purpose imaging technology developed by the U.S. Bureau of Mines (USBM) that, when fully implemented, will solve the general problem of 'seeing into the earth.' A first-generation radar coal thickness sensor, the RCTS-1, has been developed and field-tested in both underground and highwall mines. The noncontacting electromagnetic technique uses spatial modulation created by moving a simple sensor antenna in a direction along each axis to be measured while the complex reflection coefficient is measured at multiple frequencies over a two-to-one bandwidth. The antenna motion imparts spatial modulation to the data that enables signal processing to solve the problems of media, target, and antenna dispersion. Knowledge of the dielectric constant of the media is not necessary because the electrical properties of the media are determined automatically along with the distance to the target and thickness of each layer of the target. The sensor was developed as a navigation guidance sensor to accurately detect the coal/noncoal interface required for the USBM computer-assisted mining machine program. Other mining applications include the location of rock fractures, water-filled voids, and abandoned gas wells. These hazards can be detected in advance of the mining operation. This initiating technology is being expanded into a full three-dimensional (3-D) imaging system that will have applications in both the underground and surface environment.
Nijkamp, Jasper; Schermers, Bram; Schmitz, Sander; de Jonge, Sofieke; Kuhlmann, Koert; van der Heijden, Ferdinand; Sonke, Jan-Jakob; Ruers, Theo
2016-08-01
To compare the position and orientation accuracy between using one 6-degree of freedom (DOF) electromagnetic (EM) sensor, or the position information of three 5DOF sensors within the scope of tumor tracking. The position accuracy of Northern Digital Inc Aurora 5DOF and 6DOF sensors was determined for a table-top field generator (TTFG) up to a distance of 52 cm. For each sensor 716 positions were measured for 10 s at 15 Hz. Orientation accuracy was determined for each of the orthogonal axis at the TTFG distances of 17, 27, 37 and 47 cm. For the 6DOF sensors, orientation was determined for sensors in-line with the orientation axis, and perpendicular. 5DOF orientation accuracy was determined for a theoretical 4 cm tumor. An optical tracking system was used as reference. Position RMSE and jitter were comparable between the sensors and increasing with distance. Jitter was within 0.1 cm SD within 45 cm distance to the TTFG. Position RMSE was approximately 0.1 cm up to 32 cm distance, increasing to 0.4 cm at 52 cm distance. Orientation accuracy of the 6DOF sensor was within 1[Formula: see text], except when the sensor was in-line with the rotation axis perpendicular to the TTFG plane (4[Formula: see text] errors at 47 cm). Orientation accuracy using 5DOF positions was within 1[Formula: see text] up to 37 cm and 2[Formula: see text] at 47 cm. The position and orientation accuracy of a 6DOF sensor was comparable with a sensor configuration consisting of three 5DOF sensors. To achieve tracking accuracy within 1 mm and 1[Formula: see text], the distance to the TTFG should be limited to approximately 30 cm.
Koenig, S C; Reister, C A; Schaub, J; Swope, R D; Ewert, D; Fanton, J W
1996-01-01
The Physiology Research Branch at Brooks AFB conducts both human and nonhuman primate experiments to determine the effects of microgravity and hypergravity on the cardiovascular system and to identify the particular mechanisms that invoke these responses. Primary investigative efforts in our nonhuman primate model require the determination of total peripheral resistance, systemic arterial compliance, and pressure-volume loop characteristics. These calculations require beat-to-beat measurement of aortic flow. This study evaluated accuracy, linearity, biocompatability, and anatomical features of commercially available electromagnetic (EMF) and transit-time flow measurement techniques. Five rhesus monkeys were instrumented with either EMF (3 subjects) or transit-time (2 subjects) flow sensors encircling the proximal ascending aorta. Cardiac outputs computed from these transducers taken over ranges of 0.5 to 2.0 L/min were compared to values obtained using thermodilution. In vivo experiments demonstrated that the EMF probe produced an average error of 15% (r = .896) and 8.6% average linearity per reading, and the transit-time flow probe produced an average error of 6% (r = .955) and 5.3% average linearity per reading. Postoperative performance and biocompatability of the probes were maintained throughout the study. The transit-time sensors provided the advantages of greater accuracy, smaller size, and lighter weight than the EMF probes. In conclusion, the characteristic features and performance of the transit-time sensors were superior to those of the EMF sensors in this study.
NASA Technical Reports Server (NTRS)
Koenig, S. C.; Reister, C. A.; Schaub, J.; Swope, R. D.; Ewert, D.; Fanton, J. W.; Convertino, V. A. (Principal Investigator)
1996-01-01
The Physiology Research Branch at Brooks AFB conducts both human and nonhuman primate experiments to determine the effects of microgravity and hypergravity on the cardiovascular system and to identify the particular mechanisms that invoke these responses. Primary investigative efforts in our nonhuman primate model require the determination of total peripheral resistance, systemic arterial compliance, and pressure-volume loop characteristics. These calculations require beat-to-beat measurement of aortic flow. This study evaluated accuracy, linearity, biocompatability, and anatomical features of commercially available electromagnetic (EMF) and transit-time flow measurement techniques. Five rhesus monkeys were instrumented with either EMF (3 subjects) or transit-time (2 subjects) flow sensors encircling the proximal ascending aorta. Cardiac outputs computed from these transducers taken over ranges of 0.5 to 2.0 L/min were compared to values obtained using thermodilution. In vivo experiments demonstrated that the EMF probe produced an average error of 15% (r = .896) and 8.6% average linearity per reading, and the transit-time flow probe produced an average error of 6% (r = .955) and 5.3% average linearity per reading. Postoperative performance and biocompatability of the probes were maintained throughout the study. The transit-time sensors provided the advantages of greater accuracy, smaller size, and lighter weight than the EMF probes. In conclusion, the characteristic features and performance of the transit-time sensors were superior to those of the EMF sensors in this study.
Distributive, Non-destructive Real-time System and Method for Snowpack Monitoring
NASA Technical Reports Server (NTRS)
Frolik, Jeff (Inventor); Skalka, Christian (Inventor)
2013-01-01
A ground-based system that provides quasi real-time measurement and collection of snow-water equivalent (SWE) data in remote settings is provided. The disclosed invention is significantly less expensive and easier to deploy than current methods and less susceptible to terrain and snow bridging effects. Embodiments of the invention include remote data recovery solutions. Compared to current infrastructure using existing SWE technology, the disclosed invention allows more SWE sites to be installed for similar cost and effort, in a greater variety of terrain; thus, enabling data collection at improved spatial resolutions. The invention integrates a novel computational architecture with new sensor technologies. The invention's computational architecture is based on wireless sensor networks, comprised of programmable, low-cost, low-powered nodes capable of sophisticated sensor control and remote data communication. The invention also includes measuring attenuation of electromagnetic radiation, an approach that is immune to snow bridging and significantly reduces sensor footprints.
NASA Astrophysics Data System (ADS)
Qi Shen, Jian; He, Sailing
2006-12-01
A three-level EIT (electromagnetically induced transparency) vapor is used to manipulate the transparency and absorption properties of the probe light in a waveguide. The most remarkable feature of the present scheme is such that the optical responses resulting from both electromagnetically induced transparency and large spontaneous emission enhancement are very sensitive to the frequency detunings of the probe light as well as to the small changes of the waveguide dimension. The potential applications of the dimension- and dispersion-sensitive EIT responses are discussed, and the sensitivity limits of some waveguide-based sensors, including electric absorption modulator, optical switch, wavelength sensor, and sensitive magnetometer, are analyzed.
Minimization of nanosatellite low frequency magnetic fields.
Belyayev, S M; Dudkin, F L
2016-03-01
Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accurate than the conventional ones.
Scaling effects in a non-linear electromagnetic energy harvester for wearable sensors
NASA Astrophysics Data System (ADS)
Geisler, M.; Boisseau, S.; Perez, M.; Ait-Ali, I.; Perraud, S.
2016-11-01
In the field of inertial energy harvesters targeting human mechanical energy, the ergonomics of the solutions impose to find the best compromise between dimensions reduction and electrical performance. In this paper, we study the properties of a non-linear electromagnetic generator at different scales, by performing simulations based on an experimentally validated model and real human acceleration recordings. The results display that the output power of the structure is roughly proportional to its scaling factor raised to the power of five, which indicates that this system is more relevant at lengths over a few centimetres.
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Hermann, W. A.; Primus, H. C.
1980-01-01
Proximity sensor for mechanical hand of remote manipulator incorporates fiber optics to conduct signals between light source and light detector. Fiber optics are not prone to noise from electromagnetic interference and radio-frequency interference as are sensors using long electrical cables.
Spiral passive electromagnetic sensor (SPES) for smart sensing and de-icing
NASA Astrophysics Data System (ADS)
Iervolino, Onorio; Meo, Michele
2015-04-01
The objective of this work was to develop a wireless Spiral Passive Electromagnetic Sensor (SPES) to monitor the complex permittivity of a surrounding medium. The sensor is a self-resonating planar pattern of electrically conductive material. Investigation were conducted to demonstrate the capability of the SPES to monitor humidity and temperature gradients, and acting as an ice protection tool. An oscillating signal is used to interrogate remotely the sensor with a single loop antenna or wiring it directly to a spectrum analyser and monitoring the backscattering signal. The excited sensor responds with its own resonant frequency, amplitude and bandwidth that can be correlated to physical quantities to be monitored. Our studies showed the capability of the sensor to monitor temperature and humidity changes in composite materials and uniformly produce induction heating when the conductive path is activated by an external electric power supply that can be used for deicing of aircraft structures.
Shimada, Youichi; Terayama, Yukio
2006-01-01
This report represents the development of the prototype transtibial prosthesis to assist a smooth and comfortable walking for an unilateral amputee. This prosthesis is composed of two air cylinders, solenoid valves, portable and small air tank for compressed air storage, a multiple sensor system and a microprocessor. Two air cylinders are located around the rods to act as antagonistic and agonistic muscles. The system causes flexion and extension of the foot plate jointed at the ankle with compressed air, injected -or discharged via a solenoid or electromagnetic valves. The valves or solenoids are controlled with a microprocessor (Microchip Technology Inc., PIC16F876), the microprocessor generates control signals to the interface circuits for valve opening and closing consistent with the foot position during the walking phase. The control patterns generated in the microprocessor are modified with feedback from the touch sensor, ankle joint angle sensor and the two dimensional acceleration sensor. The primary walking pattern for an individual amputee should be developed through the gait analysis with video.
Ceramic MEMS Designed for Wireless Pressure Monitoring in the Industrial Environment
Pavlin, Marko; Belavic, Darko; Novak, Franc
2012-01-01
This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC) were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing. PMID:22368471
A Non-Invasive Multichannel Hybrid Fiber-Optic Sensor System for Vital Sign Monitoring
Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir; Nazeran, Homer; Siska, Petr
2017-01-01
In this article, we briefly describe the design, construction, and functional verification of a hybrid multichannel fiber-optic sensor system for basic vital sign monitoring. This sensor uses a novel non-invasive measurement probe based on the fiber Bragg grating (FBG). The probe is composed of two FBGs encapsulated inside a polydimethylsiloxane polymer (PDMS). The PDMS is non-reactive to human skin and resistant to electromagnetic waves, UV absorption, and radiation. We emphasize the construction of the probe to be specifically used for basic vital sign monitoring such as body temperature, respiratory rate and heart rate. The proposed sensor system can continuously process incoming signals from up to 128 individuals. We first present the overall design of this novel multichannel sensor and then elaborate on how it has the potential to simplify vital sign monitoring and consequently improve the comfort level of patients in long-term health care facilities, hospitals and clinics. The reference ECG signal was acquired with the use of standard gel electrodes fixed to the monitored person’s chest using a real-time monitoring system for ECG signals with virtual instrumentation. The outcomes of these experiments have unambiguously proved the functionality of the sensor system and will be used to inform our future research in this fast developing and emerging field. PMID:28075341
Structural health monitoring using smart optical fiber sensors
NASA Astrophysics Data System (ADS)
Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.
2001-04-01
This paper describes the potential of a smart monitoring system, incorporating optical fiber sensing techniques, to provide important structural information to designers and users alike. This technology has application in all areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35 m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions and the resulting strain information could be used by engineers to improve the structural design process. The optical strain sensor system comprises of three main components: the sensor network, the opto-electronic data acquisition unit (OFSSS) and the external PC which acts as a data log and display. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electromagnetic interference. The capability of this system has been demonstrated within the maritime environment, but can be adapted for any application.
Implementation of Networking-by-Touch to Small Unit, Network-Enabled Operations
2010-09-01
Monitoring – Telemanipulation ............... 54 5. Entertainment and Educational Applications...................... 55 6. Tactile Displays Embedded...military situational awareness systems, text and graphics applications, medical applications, entertainment and educational applications...25] ) Electromechanical transducer Electromagnetic field sensors Computer driver 21 Now, consider another simple scenario: John loves music
Electro-optic voltage sensor for sensing voltage in an E-field
Woods, G.K.; Renak, T.W.
1999-04-06
A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 18 figs.
Electro-optical voltage sensor head
Woods, Gregory K.
1998-01-01
A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.
Electro-optic voltage sensor for sensing voltage in an E-field
Woods, Gregory K.; Renak, Todd W.
1999-01-01
A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.
Electro-optical voltage sensor head
Woods, G.K.
1998-03-24
A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 6 figs.
Programmable logic controller optical fibre sensor interface module
NASA Astrophysics Data System (ADS)
Allwood, Gary; Wild, Graham; Hinckley, Steven
2011-12-01
Most automated industrial processes use Distributed Control Systems (DCSs) or Programmable Logic Controllers (PLCs) for automated control. PLCs tend to be more common as they have much of the functionality of DCSs, although they are generally cheaper to install and maintain. PLCs in conjunction with a human machine interface form the basis of Supervisory Control And Data Acquisition (SCADA) systems, combined with communication infrastructure and Remote Terminal Units (RTUs). RTU's basically convert different sensor measurands in to digital data that is sent back to the PLC or supervisory system. Optical fibre sensors are becoming more common in industrial processes because of their many advantageous properties. Being small, lightweight, highly sensitive, and immune to electromagnetic interference, means they are an ideal solution for a variety of diverse sensing applications. Here, we have developed a PLC Optical Fibre Sensor Interface Module (OFSIM), in which an optical fibre is connected directly to the OFSIM located next to the PLC. The embedded fibre Bragg grating sensors, are highly sensitive and can detect a number of different measurands such as temperature, pressure and strain without the need for a power supply.
Fiber-optically sensorized composite wing
NASA Astrophysics Data System (ADS)
Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George
2014-04-01
Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.
Georeferencing in Gnss-Challenged Environment: Integrating Uwb and Imu Technologies
NASA Astrophysics Data System (ADS)
Toth, C. K.; Koppanyi, Z.; Navratil, V.; Grejner-Brzezinska, D.
2017-05-01
Acquiring geospatial data in GNSS compromised environments remains a problem in mapping and positioning in general. Urban canyons, heavily vegetated areas, indoor environments represent different levels of GNSS signal availability from weak to no signal reception. Even outdoors, with multiple GNSS systems, with an ever-increasing number of satellites, there are many situations with limited or no access to GNSS signals. Independent navigation sensors, such as IMU can provide high-data rate information but their initial accuracy degrades quickly, as the measurement data drift over time unless positioning fixes are provided from another source. At The Ohio State University's Satellite Positioning and Inertial Navigation (SPIN) Laboratory, as one feasible solution, Ultra- Wideband (UWB) radio units are used to aid positioning and navigating in GNSS compromised environments, including indoor and outdoor scenarios. Here we report about experiences obtained with georeferencing a pushcart based sensor system under canopied areas. The positioning system is based on UWB and IMU sensor integration, and provides sensor platform orientation for an electromagnetic inference (EMI) sensor. Performance evaluation results are provided for various test scenarios, confirming acceptable results for applications where high accuracy is not required.
Augmented Reality-Based Navigation System for Wrist Arthroscopy: Feasibility
Zemirline, Ahmed; Agnus, Vincent; Soler, Luc; Mathoulin, Christophe L.; Liverneaux, Philippe A.; Obdeijn, Miryam
2013-01-01
Purpose In video surgery, and more specifically in arthroscopy, one of the major problems is positioning the camera and instruments within the anatomic environment. The concept of computer-guided video surgery has already been used in ear, nose, and throat (ENT), gynecology, and even in hip arthroscopy. These systems, however, rely on optical or mechanical sensors, which turn out to be restricting and cumbersome. The aim of our study was to develop and evaluate the accuracy of a navigation system based on electromagnetic sensors in video surgery. Methods We used an electromagnetic localization device (Aurora, Northern Digital Inc., Ontario, Canada) to track the movements in space of both the camera and the instruments. We have developed a dedicated application in the Python language, using the VTK library for the graphic display and the OpenCV library for camera calibration. Results A prototype has been designed and evaluated for wrist arthroscopy. It allows display of the theoretical position of instruments onto the arthroscopic view with useful accuracy. Discussion The augmented reality view represents valuable assistance when surgeons want to position the arthroscope or locate their instruments. It makes the maneuver more intuitive, increases comfort, saves time, and enhances concentration. PMID:24436832
Wireless Fidelity Electromagnetic Field Exposure Monitoring With Wearable Body Sensor Networks.
Lecoutere, Jeroen; Thielens, Arno; Agneessens, Sam; Rogier, Hendrik; Joseph, Wout; Puers, Robert
2016-06-01
With the breakthrough of the Internet of Things and the steady increase of wireless applications in the daily environment, the assessment of radio frequency electromagnetic field (RF-EMF) exposure is key in determining possible health effects of exposure to certain levels of RF-EMF. This paper presents the first experimental validation of a novel personal exposimeter system based on a distributed measurement approach to achieve higher measurement quality and lower measurement variability than the commonly used single point measurement approach of existing exposimeters. An important feature of the system is the integration of inertial sensors in order to determine activity and posture during exposure measurements. The system is designed to assess exposure to frequencies within the 389 to 464, 779 to 928 and 2400 to 2483.5 MHz bands using only two transceivers per node. In this study, the 2400 to 2483.5 MHz band is validated. Every node provides antenna diversity for the different bands in order to achieve higher sensitivity at these frequencies. Two AAA batteries power each standalone node and as such determine the node hardware size of this proof of concept (53 mm×25 mm×15 mm) , making it smaller than any other commercially available exposimeter.
Augmented reality-based navigation system for wrist arthroscopy: feasibility.
Zemirline, Ahmed; Agnus, Vincent; Soler, Luc; Mathoulin, Christophe L; Obdeijn, Miryam; Liverneaux, Philippe A
2013-11-01
In video surgery, and more specifically in arthroscopy, one of the major problems is positioning the camera and instruments within the anatomic environment. The concept of computer-guided video surgery has already been used in ear, nose, and throat (ENT), gynecology, and even in hip arthroscopy. These systems, however, rely on optical or mechanical sensors, which turn out to be restricting and cumbersome. The aim of our study was to develop and evaluate the accuracy of a navigation system based on electromagnetic sensors in video surgery. We used an electromagnetic localization device (Aurora, Northern Digital Inc., Ontario, Canada) to track the movements in space of both the camera and the instruments. We have developed a dedicated application in the Python language, using the VTK library for the graphic display and the OpenCV library for camera calibration. A prototype has been designed and evaluated for wrist arthroscopy. It allows display of the theoretical position of instruments onto the arthroscopic view with useful accuracy. The augmented reality view represents valuable assistance when surgeons want to position the arthroscope or locate their instruments. It makes the maneuver more intuitive, increases comfort, saves time, and enhances concentration.
Machine processing for remotely acquired data. [using multivariate statistical analysis
NASA Technical Reports Server (NTRS)
Landgrebe, D. A.
1974-01-01
This paper is a general discussion of earth resources information systems which utilize airborne and spaceborne sensors. It points out that information may be derived by sensing and analyzing the spectral, spatial and temporal variations of electromagnetic fields emanating from the earth surface. After giving an overview system organization, the two broad categories of system types are discussed. These are systems in which high quality imagery is essential and those more numerically oriented. Sensors are also discussed with this categorization of systems in mind. The multispectral approach and pattern recognition are described as an example data analysis procedure for numerically-oriented systems. The steps necessary in using a pattern recognition scheme are described and illustrated with data obtained from aircraft and the Earth Resources Technology Satellite (ERTS-1).
Radio frequency tank eigenmode sensor for propellant quantity gauging
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A. (Inventor)
2013-01-01
A method for measuring the quantity of fluid in a tank may include the steps of selecting a match between a measured set of electromagnetic eigenfrequencies and a simulated plurality of sets of electromagnetic eigenfrequencies using a matching algorithm, wherein the match is one simulated set of electromagnetic eigenfrequencies from the simulated plurality of sets of electromagnetic eigenfrequencies, and determining the fill level of the tank based upon the match.
Posada-Roman, Julio; Garcia-Souto, Jose A.; Rubio-Serrano, Jesus
2012-01-01
A fiber optic interferometric sensor with an intrinsic transducer along a length of the fiber is presented for ultrasound measurements of the acoustic emission from partial discharges inside oil-filled power apparatus. The sensor is designed for high sensitivity measurements in a harsh electromagnetic field environment, with wide temperature changes and immersion in oil. It allows enough sensitivity for the application, for which the acoustic pressure is in the range of units of Pa at a frequency of 150 kHz. In addition, the accessibility to the sensing region is guaranteed by immune fiber-optic cables and the optical phase sensor output. The sensor design is a compact and rugged coil of fiber. In addition to a complete calibration, the in-situ results show that two types of partial discharges are measured through their acoustic emissions with the sensor immersed in oil. PMID:22666058
Nova, Igor; Kallus, Sebastian; Berger, Moritz; Ristow, Oliver; Eisenmann, Urs; Freudlsperger, Christian; Hoffmann, Jürgen; Dickhaus, Hartmut
2017-05-01
Modifications of the temporomandibular joint position after mandible osteotomy are reluctantly accepted in orthognathic surgery. To tackle this problem, we developed a new navigation system using miniaturized electromagnetic sensors. Our imageless navigation approach is therefore optimized to avoid complications of previously proposed optical approaches such as the interference with established surgical procedures and the line of sight problem. High oblique sagittal split osteotomies were performed on 6 plastic skull mandibles in a laboratory under conditions comparable to the operating theatre. The subsequent condyle reposition was guided by an intuitive user interface and performed by electromagnetic navigation. To prove the suitability and accuracy of this novel approach for condyle navigation, the positions of 3 titanium marker screws placed on each of the proximal segments were compared using pre- and postoperative Cone Beam Computed Tomography (CBCT) imaging. Guided by the electromagnetic navigation system, positioning of the condyles was highly accurate in all dimensions. Translational discrepancies up to 0,65 mm and rotations up to 0,38° in mean could be measured postoperatively. There were no statistically significant differences between navigation results and CBCT measurements. The intuitive user interface provides a simple way to precisely restore the initial position and orientation of the proximal mandibular segments. Our electromagnetic navigation system therefore yields a promising approach for orthognathic surgery applications. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Electromagnetic tracking for abdominal interventions in computer aided surgery
Zhang, Hui; Banovac, Filip; Lin, Ralph; Glossop, Neil; Wood, Bradford J.; Lindisch, David; Levy, Elliot; Cleary, Kevin
2014-01-01
Electromagnetic tracking has great potential for assisting physicians in precision placement of instruments during minimally invasive interventions in the abdomen, since electromagnetic tracking is not limited by the line-of-sight restrictions of optical tracking. A new generation of electromagnetic tracking has recently become available, with sensors small enough to be included in the tips of instruments. To fully exploit the potential of this technology, our research group has been developing a computer aided, image-guided system that uses electromagnetic tracking for visualization of the internal anatomy during abdominal interventions. As registration is a critical component in developing an accurate image-guided system, we present three registration techniques: 1) enhanced paired-point registration (time-stamp match registration and dynamic registration); 2) orientation-based registration; and 3) needle shape-based registration. Respiration compensation is another important issue, particularly in the abdomen, where respiratory motion can make precise targeting difficult. To address this problem, we propose reference tracking and affine transformation methods. Finally, we present our prototype navigation system, which integrates the registration, segmentation, path-planning and navigation functions to provide real-time image guidance in the clinical environment. The methods presented here have been tested with a respiratory phantom specially designed by our group and in swine animal studies under approved protocols. Based on these tests, we conclude that our system can provide quick and accurate localization of tracked instruments in abdominal interventions, and that it offers a user friendly display for the physician. PMID:16829506
Civil infrastructure monitoring for IVHS using optical fiber sensors
NASA Astrophysics Data System (ADS)
de Vries, Marten J.; Arya, Vivek; Grinder, C. R.; Murphy, Kent A.; Claus, Richard O.
1995-01-01
8Early deployment of Intelligent Vehicle Highway Systems would necessitate the internal instrumentation of infrastructure for emergency preparedness. Existing quantitative analysis and visual analysis techniques are time consuming, cost prohibitive, and are often unreliable. Fiber optic sensors are rapidly replacing conventional instrumentation because of their small size, light weight, immunity to electromagnetic interference, and extremely high information carrying capability. In this paper research on novel optical fiber sensing techniques for health monitoring of civil infrastructure such as highways and bridges is reported. Design, fabrication, and implementation of fiber optic sensor configurations used for measurements of strain are discussed. Results from field tests conducted to demonstrate the effectiveness of fiber sensors at determining quantitative strain vector components near crack locations in bridges are presented. Emerging applications of fiber sensors for vehicle flow, vehicle speed, and weigh-in-motion measurements are also discussed.
1970-01-01
This 1970 photograph shows Skylab's Infrared Spectrometer Viewfinder Tracking System, a major component of an Earth Resources Experiment Package (EREP). It was designed to evaluate Earth resources sensors for specific regions of the the visible and infrared spectra and assess the value of real time identification of ground sites. The overall purpose of the EREP was to test the use of sensors that operated in the visible, infrared, and microwave portions of the electromagnetic spectrum to monitor and study Earth resources. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.
Toward Reliable and Energy Efficient Wireless Sensing for Space and Extreme Environments
NASA Technical Reports Server (NTRS)
Choi, Baek-Young; Boyd, Darren; Wilkerson, DeLisa
2017-01-01
Reliability is the critical challenge of wireless sensing in space systems operating in extreme environments. Energy efficiency is another concern for battery powered wireless sensors. Considering the physics of wireless communications, we propose an approach called Software-Defined Wireless Communications (SDC) that dynamically decide a reliable channel(s) avoiding unnecessary redundancy of channels, out of multiple distinct electromagnetic frequency bands such as radio and infrared frequencies.We validate the concept with Android and Raspberry Pi sensors and pseudo extreme experiments. SDC can be utilized in many areas beyond space applications.
Sensors Locate Radio Interference
NASA Technical Reports Server (NTRS)
2009-01-01
After receiving a NASA Small Business Innovation Research (SBIR) contract from Kennedy Space Center, Soneticom Inc., based in West Melbourne, Florida, created algorithms for time difference of arrival and radio interferometry, which it used in its Lynx Location System (LLS) to locate electromagnetic interference that can disrupt radio communications. Soneticom is collaborating with the Federal Aviation Administration (FAA) to install and test the LLS at its field test center in New Jersey in preparation for deploying the LLS at commercial airports. The software collects data from each sensor in order to compute the location of the interfering emitter.
Range-gated field disturbance sensor with range-sensitivity compensation
McEwan, T.E.
1996-05-28
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies. 8 figs.
Range-gated field disturbance sensor with range-sensitivity compensation
McEwan, Thomas E.
1996-01-01
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies.
Real-time tracking of liver motion and deformation using a flexible needle
Lei, Peng; Moeslein, Fred; Wood, Bradford J.
2012-01-01
Purpose A real-time 3D image guidance system is needed to facilitate treatment of liver masses using radiofrequency ablation, for example. This study investigates the feasibility and accuracy of using an electromagnetically tracked flexible needle inserted into the liver to track liver motion and deformation. Methods This proof-of-principle study was conducted both ex vivo and in vivo with a CT scanner taking the place of an electromagnetic tracking system as the spatial tracker. Deformations of excised livers were artificially created by altering the shape of the stage on which the excised livers rested. Free breathing or controlled ventilation created deformations of live swine livers. The positions of the needle and test targets were determined through CT scans. The shape of the needle was reconstructed using data simulating multiple embedded electromagnetic sensors. Displacement of liver tissues in the vicinity of the needle was derived from the change in the reconstructed shape of the needle. Results The needle shape was successfully reconstructed with tracking information of two on-needle points. Within 30 mm of the needle, the registration error of implanted test targets was 2.4 ± 1.0 mm ex vivo and 2.8 ± 1.5 mm in vivo. Conclusion A practical approach was developed to measure the motion and deformation of the liver in real time within a region of interest. The approach relies on redesigning the often-used seeker needle to include embedded electromagnetic tracking sensors. With the nonrigid motion and deformation information of the tracked needle, a single- or multimodality 3D image of the intraprocedural liver, now clinically obtained with some delay, can be updated continuously to monitor intraprocedural changes in hepatic anatomy. This capability may be useful in radiofrequency ablation and other percutaneous ablative procedures. PMID:20700662
Aerial Magnetic, Electromagnetic, and Gamma-ray Survey, Berrien County, Michigan
Duval, Joseph S.; Pierce, Herbert A.; Daniels, David L.; Mars, John L.; Webring, Michael W.; Hildenbrand, Thomas G.
2002-01-01
This publication includes maps, grids, and flightline databases of a detailed aerial survey and maps and grids of satellite data in Berrien County, Michigan. The purpose of the survey was to map aquifers in glacial terrains. This was accomplished by using a DIGHEMVRES mufti-coil, mufti-frequency electromagnetic system supplemented by a high sensitivity cesium magnetometer and 256-channel spectrometer. The information from these sensors was processed to produce maps, which display the conductive, magnetic and radioactive properties of the survey area. A GPS electronic navigation system ensured accurate positioning of the geophysical data. This report also includes data from the advanced spaceborne thermal emission and reflection (ASTER) radiometer. ASTER measures thermal emission and reflection data for 14 bands of the spectrum.
Inductive Linear-Position Sensor/Limit-Sensor Units
NASA Technical Reports Server (NTRS)
Alhom, Dean; Howard, David; Smith, Dennis; Dutton, Kenneth
2007-01-01
A new sensor provides an absolute position measurement. A schematic view of a motorized linear-translation stage that contains, at each end, an electronic unit that functions as both (1) a non-contact sensor that measures the absolute position of the stage and (2) a non-contact equivalent of a limit switch that is tripped when the stage reaches the nominal limit position. The need for such an absolute linear position-sensor/limit-sensor unit arises in the case of a linear-translation stage that is part of a larger system in which the actual stopping position of the stage (relative to the nominal limit position) must be known. Because inertia inevitably causes the stage to run somewhat past the nominal limit position, tripping of a standard limit switch or other limit sensor does not provide the required indication of the actual stopping position. This innovative sensor unit operates on an electromagnetic-induction principle similar to that of linear variable differential transformers (LVDTs)
A novel optical fiber displacement sensor of wider measurement range based on neural network
NASA Astrophysics Data System (ADS)
Guo, Yuan; Dai, Xue Feng; Wang, Yu Tian
2006-02-01
By studying on the output characteristics of random type optical fiber sensor and semicircular type optical fiber sensor, the ratio of the two output signals was used as the output signal of the whole system. Then the measurement range was enlarged, the linearity was improved, and the errors of reflective and absorbent changing of target surface are automatically compensated. Meantime, an optical fiber sensor model of correcting static error based on BP artificial neural network(ANN) is set up. So the intrinsic errors such as effects of fluctuations in the light, circuit excursion, the intensity losses in the fiber lines and the additional losses in the receiving fiber caused by bends are eliminated. By discussing in theory and experiment, the error of nonlinear is 2.9%, the measuring range reaches to 5-6mm and the relative accuracy is 2%.And this sensor has such characteristics as no electromagnetic interference, simple construction, high sensitivity, good accuracy and stability. Also the multi-point sensor system can be used to on-line and non-touch monitor in working locales.
Miniature Sensor Probe for O2, CO2, and H2O Monitoring in Portable Life Support Systems
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Chambers, Antja
2013-01-01
A miniature sensor probe, composed of four sensors which monitor the partial pressure of O2, CO2, H2O, and temperature, designed to operate in the portable life support system (PLSS), has been demonstrated. The probe provides an important advantage over existing technology in that it is able to operate reliably while wet. These luminescence-based fiber optic sensors consist of an indicator chemistry immobilized in a polymeric film, whose emission lifetime undergoes a strong change upon a reversible interaction with the target gas. Each sensor includes chemistry specifically sensitive to one target parameter. All four sensors are based on indicator chemistries that include luminescent dyes from the same chemical family, and therefore exhibit similar photochemical properties, which allow performing measurements of all the sensors by a single, compact, low-power optoelectronic unit remotely connected to the sensors by an electromagnetic interference-proof optical fiber cable. For space systems, using these miniature sensor elements with remote optoelectronics provides unmatched design flexibility for measurements in highly constrained volume systems such as the PLSS. A 10 mm diameter and 15 mm length prototype multiparameter probe was designed, fabricated, tested, and demonstrated over a wide operational range of gas concentration, humidity, and temperature relevant to operation in the PLSS. The sensors were evaluated for measurement range, precision, accuracy, and response time in temperatures ranging from 50 aF-150 aF and relative humidity from dry to 100% RH. Operation of the sensors in water condensation conditions was demonstrated wherein the sensors not only tolerated liquid water but actually operated while wet.
Ma, Guo-Ming; Li, Ya-Bo; Mao, Nai-Qiang; Shi, Cheng; Zhang, Bo; Li, Cheng-Rong
2018-01-26
Galloping of overhead transmission lines (OHTLs) may induce conductor breakage and tower collapse, and there is no effective method for long distance distribution on-line galloping monitoring. To overcome the drawbacks of the conventional galloping monitoring systems, such as sensitivity to electromagnetic interference, the need for onsite power, and short lifetimes, a novel optical remote passive measuring system is proposed in the paper. Firstly, to solve the hysteresis and eccentric load problem in tension sensing, and to extent the dynamic response range, an 'S' type elastic element structure with flanges was proposed. Then, a tension experiment was carried out to demonstrate the dynamic response characteristics. Moreover, the designed tension sensor was stretched continuously for 30 min to observe its long time stability. Last but not the least, the sensor was mounted on a 70 m conductor model, and the conductor was oscillated at different frequencies to investigate the dynamic performance of the sensor. The experimental results demonstrate the sensor is suitable for the OHTL galloping detection. Compared with the conventional sensors for OHTL monitoring, the system has many advantages, such as easy installation, no flashover risk, distribution monitoring, better bandwidth, improved accuracy and higher reliability.
Soil water sensor response to bulk electrical conductivity
USDA-ARS?s Scientific Manuscript database
Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...
Application of smart optical fiber sensors for structural load monitoring
NASA Astrophysics Data System (ADS)
Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.
2001-06-01
This paper describes a smart monitoring system, incorporating optical fiber sensing techniques, capable of providing important structural information to designers and users alike. This technology has wide industrial and commercial application in areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions. The resulting strain information can be used by engineers to improve the structural design process. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electro-magnetic interference. The capability of this system has been demonstrated within the maritime and industrial environment, but can be adapted for any application.
A teleoperated system for remote site characterization
NASA Technical Reports Server (NTRS)
Sandness, Gerald A.; Richardson, Bradley S.; Pence, Jon
1994-01-01
The detection and characterization of buried objects and materials is an important step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. By performing these tasks with remotely controlled sensors, it is possible to obtain improved data quality and consistency as well as enhanced safety for on-site workers. Therefore, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by a radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS).
Passive and Self-Powered Autonomous Sensors for Remote Measurements
Sardini, Emilio; Serpelloni, Mauro
2009-01-01
Autonomous sensors play a very important role in the environmental, structural, and medical fields. The use of this kind of systems can be expanded for several applications, for example in implantable devices inside the human body where it is impossible to use wires. Furthermore, they enable measurements in harsh or hermetic environments, such as under extreme heat, cold, humidity or corrosive conditions. The use of batteries as a power supply for these devices represents one solution, but the size, and sometimes the cost and unwanted maintenance burdens of replacement are important drawbacks. In this paper passive and self-powered autonomous sensors for harsh or hermetical environments without batteries are discussed. Their general architectures are presented. Sensing strategies, communication techniques and power management are analyzed. Then, general building blocks of an autonomous sensor are presented and the design guidelines that such a system must follow are given. Furthermore, this paper reports different proposed applications of autonomous sensors applied in harsh or hermetic environments: two examples of passive autonomous sensors that use telemetric communication are proposed, the first one for humidity measurements and the second for high temperatures. Other examples of self-powered autonomous sensors that use a power harvesting system from electromagnetic fields are proposed for temperature measurements and for airflow speeds. PMID:22399949
Passive and self-powered autonomous sensors for remote measurements.
Sardini, Emilio; Serpelloni, Mauro
2009-01-01
Autonomous sensors play a very important role in the environmental, structural, and medical fields. The use of this kind of systems can be expanded for several applications, for example in implantable devices inside the human body where it is impossible to use wires. Furthermore, they enable measurements in harsh or hermetic environments, such as under extreme heat, cold, humidity or corrosive conditions. The use of batteries as a power supply for these devices represents one solution, but the size, and sometimes the cost and unwanted maintenance burdens of replacement are important drawbacks. In this paper passive and self-powered autonomous sensors for harsh or hermetical environments without batteries are discussed. Their general architectures are presented. Sensing strategies, communication techniques and power management are analyzed. Then, general building blocks of an autonomous sensor are presented and the design guidelines that such a system must follow are given. Furthermore, this paper reports different proposed applications of autonomous sensors applied in harsh or hermetic environments: two examples of passive autonomous sensors that use telemetric communication are proposed, the first one for humidity measurements and the second for high temperatures. Other examples of self-powered autonomous sensors that use a power harvesting system from electromagnetic fields are proposed for temperature measurements and for airflow speeds.
Strain and dynamic measurements using fiber optic sensors embedded into graphite/epoxy tubes
NASA Technical Reports Server (NTRS)
Dehart, D. W.; Doederlein, T.; Koury, J.; Rogowski, R. S.; Heyman, J. S.; Holben, M. S., Jr.
1989-01-01
Graphite/epoxy tubes were fabricated with embedded optical fibers to evaluate the feasibility of monitoring strains with a fiber optic technique. Resistance strain gauges were attached to the tubes to measure strain at four locations along the tube for comparison with the fiber optic sensors. Both static and dynamic strain measurements were made with excellent agreement between the embedded fiber optic strain sensor and the strain gauges. Strain measurements of 10(exp -7) can be detected with the optical phase locked loop (OPLL) system using optical fiber. Because of their light weight, compatibility with composites, immunity to electromagnetic interference, and based on the static and dynamic results obtained, fiber optic sensors embedded in composites may be useful as the sensing component of smart structures.
NASA Technical Reports Server (NTRS)
Kranbuehl, D.; Kingsley, P.; Hart, S.; Loos, A.; Hasko, G.; Dexter, B.
1992-01-01
In-situ frequency dependent electromagnetic sensors (FDEMS) and the Loos resin transfer model have been used to select and control the processing properties of an epoxy resin during liquid pressure RTM impregnation and cure. Once correlated with viscosity and degree of cure the FDEMS sensor monitors and the RTM processing model predicts the reaction advancement of the resin, viscosity and the impregnation of the fabric. This provides a direct means for predicting, monitoring, and controlling the liquid RTM process in-situ in the mold throughout the fabrication process and the effects of time, temperature, vacuum and pressure. Most importantly, the FDEMS-sensor model system has been developed to make intelligent decisions, thereby automating the liquid RTM process and removing the need for operator direction.
NASA Technical Reports Server (NTRS)
Tripp, John S.; Daniels, Taumi S.
1990-01-01
The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.
A solid-state controllable power supply for a magnetic suspension wind tunnel
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.; Tripp, John S.
1991-01-01
The NASA Langley 6-inch Magnetic Suspension and Balance System (6-in. MSBS) requires an independently controlled bidirectional dc power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance-coupled thyratron-controlled rectifiers as well as ac to dc motor-generator converters, is obsolete, inefficient, and unreliable. A replacement six-phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full-load efficiency is 80 percent compared with 25 percent for the resistance-coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20-kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malathi, N.; Sahoo, P., E-mail: sahoop@igcar.gov.in; Ananthanarayanan, R.
2015-02-15
An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision,more » sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ∼100 Hz/mm, ∼1 s, and ∼0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control and Safety Rod Drive Mechanism during reactor operation.« less
Zhang, Binbin; Chen, Jun; Jin, Long; Deng, Weili; Zhang, Lei; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin
2016-06-28
Wireless traffic volume detectors play a critical role for measuring the traffic-flow in a real-time for current Intelligent Traffic System. However, as a battery-operated electronic device, regularly replacing battery remains a great challenge, especially in the remote area and wide distribution. Here, we report a self-powered active wireless traffic volume sensor by using a rotating-disk-based hybridized nanogenerator of triboelectric nanogenerator and electromagnetic generator as the sustainable power source. Operated at a rotating rate of 1000 rpm, the device delivered an output power of 17.5 mW, corresponding to a volume power density of 55.7 W/m(3) (Pd = P/V, see Supporting Information for detailed calculation) at a loading resistance of 700 Ω. The hybridized nanogenerator was demonstrated to effectively harvest energy from wind generated by a moving vehicle through the tunnel. And the delivered power is capable of triggering a counter via a wireless transmitter for real-time monitoring the traffic volume in the tunnel. This study further expands the applications of triboelectric nanogenerators for high-performance ambient mechanical energy harvesting and as sustainable power sources for driving wireless traffic volume sensors.
Savin, Adriana; Steigmann, Rozina; Bruma, Alina; Šturm, Roman
2015-01-01
This paper proposes the study and implementation of a sensor with a metamaterial (MM) lens in electromagnetic nondestructive evaluation (eNDE). Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR) has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than λ/2000. PMID:26151206
USDA-ARS?s Scientific Manuscript database
Many soil water sensors, especially those based on electromagnetic (EM) properties of soils, have been shown to be unsuitable in salt-affected or clayey soils. Most available soil water content sensors are of this EM type, particularly the so-called capacitance sensors. They often over estimate and ...
Vashpanov, Yuriy; Choo, Hyunseung; Kim, Dongsoo Stephen
2011-01-01
This paper proposes an adsorption sensitivity control method that uses a wireless network and illumination light intensity in a photo-electromagnetic field (EMF)-based gas sensor for measurements in real time of a wide range of ammonia concentrations. The minimum measurement error for a range of ammonia concentration from 3 to 800 ppm occurs when the gas concentration magnitude corresponds with the optimal intensity of the illumination light. A simulation with LabView-engineered modules for automatic control of a new intelligent computer system was conducted to improve measurement precision over a wide range of gas concentrations. This gas sensor computer system with wireless network technology could be useful in the chemical industry for automatic detection and measurement of hazardous ammonia gas levels in real time. PMID:22346680
System and method for monitoring water content or other dielectric influences in a medium
Cherry, Robert S.; Anderson, Allen A.
2001-01-01
A sensor system is provided that measures water content or other detectable properties in a medium along the entire length of the sensor at any point in time. The sensor system includes an electromagnetic signal generator and a transmission line disposed in a medium to be monitored. Alternatively, the transmission line can be configured for movement across a medium to be monitored, or the transmission line can be fixed relative to a moving medium being monitored. A signal is transmitted along the transmission line at predetermined frequencies, and the signal is returned back along the transmission line and/or into an optional receive line in proximity to the transmission line. The returned signal is processed to generate a one-dimensional data output profile that is a function of a detectable property of the medium. The data output profile can be mapped onto a physical system to generate a two-dimensional or three-dimensional profile if desired. The sensor system is useful in a variety of different applications such as agriculture, horticulture, biofiltration systems for industrial offgases, leak detection in landfills or drum storage facilities at buried waste sites, and in many other applications.
Minimization of nanosatellite low frequency magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyayev, S. M., E-mail: belyayev@isr.lviv.ua; Royal Institute of Technology, Stockholm 11428; Dudkin, F. L.
2016-03-15
Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accuratemore » than the conventional ones.« less
New methods for probing and exploring magnetoelastic properties of amorphous ferromagnetic alloys
NASA Astrophysics Data System (ADS)
Gray, Lindsey J.; Nowak, Kamil; Sydoryk, Ihor; Martin, Catalin; Anderson, Philip M.
2018-05-01
We describe two new methods for investigating and exploring magnetoelastic properties of ribbons of amorphous magnetic alloys. One consists of exciting the ribbon mechanically while detecting the electromagnetic response, and the second method involves the use of a radiofrequency resonator as a contactless technique for measuring magneto-impedance [C. A. Grimes, S. C. Roy, S. Rani, and Q. Cai, Sensors 11, 2809-2844 (2011)]. The electromagnetic response to mechanical vibration is discussed in connection with the possibility of observing Fano resonance in a classical system, and the magneto-impedance is found to be highly sensitive to magnetic domains formation and their dynamics.
Bell, Zane W.
2000-01-01
A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.
Frequency Selective Surface for Structural Health Monitoring
NASA Astrophysics Data System (ADS)
Norlyana Azemi, Saidatul; Mustaffa, Farzana Hazira Wan; Faizal Jamlos, Mohd; Abdullah Al-Hadi, Azremi; Soh, Ping Jack
2018-03-01
Structural health monitoring (SHM) technologies have attained attention to monitor civil structures. SHM sensor systems have been used in various civil structures such as bridges, buildings, tunnels and so on. However the previous sensor for SHM is wired and encounter with problem to cover large areas. Therefore, wireless sensor was introduced for SHM to reduce network connecting problem. Wireless sensors for Structural Health monitoring are new technology and have many advantages to overcome the drawback of conventional and wired sensor. This project proposed passive wireless SHM sensor using frequency selective surface (FSS) as an alternative to conventional sensors. The electromagnetic wave characteristic of FSS will change by geometrical changes of FSS due to mechanical strain or structural failure. The changes feature is used as a sensing function without any connecting wires. Two type of design which are circular ring and square loop along with the transmission and reflection characteristics of SHM using FSS were discussed in this project. A simulation process has shown that incident angle characteristics can be use as a data for SHM application.
NASA Astrophysics Data System (ADS)
Shahini Shamsabadi, Salar
A web-based PAVEment MONitoring system, PAVEMON, is a GIS oriented platform for accommodating, representing, and leveraging data from a multi-modal mobile sensor system. Stated sensor system consists of acoustic, optical, electromagnetic, and GPS sensors and is capable of producing as much as 1 Terabyte of data per day. Multi-channel raw sensor data (microphone, accelerometer, tire pressure sensor, video) and processed results (road profile, crack density, international roughness index, micro texture depth, etc.) are outputs of this sensor system. By correlating the sensor measurements and positioning data collected in tight time synchronization, PAVEMON attaches a spatial component to all the datasets. These spatially indexed outputs are placed into an Oracle database which integrates seamlessly with PAVEMON's web-based system. The web-based system of PAVEMON consists of two major modules: 1) a GIS module for visualizing and spatial analysis of pavement condition information layers, and 2) a decision-support module for managing maintenance and repair (Mℝ) activities and predicting future budget needs. PAVEMON weaves together sensor data with third-party climate and traffic information from the National Oceanic and Atmospheric Administration (NOAA) and Long Term Pavement Performance (LTPP) databases for an organized data driven approach to conduct pavement management activities. PAVEMON deals with heterogeneous and redundant observations by fusing them for jointly-derived higher-confidence results. A prominent example of the fusion algorithms developed within PAVEMON is a data fusion algorithm used for estimating the overall pavement conditions in terms of ASTM's Pavement Condition Index (PCI). PAVEMON predicts PCI by undertaking a statistical fusion approach and selecting a subset of all the sensor measurements. Other fusion algorithms include noise-removal algorithms to remove false negatives in the sensor data in addition to fusion algorithms developed for identifying features on the road. PAVEMON offers an ideal research and monitoring platform for rapid, intelligent and comprehensive evaluation of tomorrow's transportation infrastructure based on up-to-date data from heterogeneous sensor systems.
Sparsity Aware Adaptive Radar Sensor Imaging in Complex Scattering Environments
2015-06-15
while meeting the requirement on the peak to average power ratio. Third, we study impact of waveform encoding on nonlinear electromagnetic tomographic...Enyue Lu. Time Domain Electromagnetic Tomography Using Propagation and Backpropagation Method, IEEE International Conference on Image Processing...Received Paper 3.00 4.00 Yuanwei Jin, Chengdon Dong, Enyue Lu. Waveform Encoding for Nonlinear Electromagnetic Tomographic Imaging, IEEE Global
Electromagnetic braking for Mars spacecraft
NASA Technical Reports Server (NTRS)
Holt, A. C.
1986-01-01
Aerobraking concepts are being studied to improve performance and cost effectiveness of propulsion systems for Mars landers and Mars interplanetary spacecraft. Access to megawatt power levels (nuclear power coupled to high-storage inductive or capacitive devices) on a manned Mars interplanetary spacecraft may make feasible electromagnetic braking and lift modulation techniques which were previously impractical. Using pulsed microwave and magnetic field technology, potential plasmadynamic braking and hydromagnetic lift modulation techniques have been identified. Entry corridor modulation to reduce loads and heating, to reduce vertical descent rates, and to expand horizontal and lateral landing ranges are possible benefits. In-depth studies are needed to identify specific design concepts for feasibility assessments. Standing wave/plasma sheath interaction techniques appear to be promising. The techniques may require some tailoring of spacecraft external structures and materials. In addition, rapid response guidance and control systems may require the use of structurally embedded sensors coupled to expert systems or to artificial intelligence systems.
A Shared-Electrode-Based Hybridized Electromagnetic-Triboelectric Nanogenerator.
Quan, Ting; Wang, Zhong Lin; Yang, Ya
2016-08-03
Integration of electromagnetic generators (EMGs) and triboelectric nanogenerators (TENGs) can increase the total energy conversion efficiency from one mechanical motion by connecting the two devices in parallel after using power management circuits. A critical issue is how to realize the integration of the EMG and TENG in the same current circuits. Here, a hybridized nanogenerator, including an EMG and a TENG with the same set of electrodes, has been utilized to simultaneously scavenge mechanical energy. The hybridized nanogenerator can deliver a high output current of about 3.8 mA and a high output voltage of about 245 V when the switch in the device circuit was turned on and off, respectively. A acceleration sensor can be achieved by using the hybridized nanogenerator, where the detection sensitivities are about 143.2 V/(m/s(2)) for TENG and 291.7 μA/(m/s(2)) for EMG. The fabricated hybridized nanogenerator may have practical use for scavenging mechanical energy and self-powered acceleration sensor systems.
Smart walking stick for blind people: an application of 3D printer
NASA Astrophysics Data System (ADS)
Ikbal, Md. Allama; Rahman, Faidur; Ali, Md. Ripon; Kabir, M. Hasnat; Furukawa, Hidemitsu
2017-04-01
A prototype of the smart walking stick has been designed and characterized for the people who are visually impaired. In this study, it was considered that the proposed system will alert visuallyimpaired people over the obstacles which are in front of blind people as well as the obstacles of the street such as a manhole, when the blind people are walking in the street. The proposed system was designed in two stages, i.e. hardware and software which makes the system as a complete prototype. Three ultrasonic sonar sensors were used to detect in front obstacle and street surface obstacle such as manhole. Basically the sensor transmits an electromagnetic wave which travels toward the obstacle and back to the sensor receiver. The distance between the sensor and the obstacle is calculated from the received signal. The calculated distance value is compared with the pre-defined value and determines whether the obstacle is present or not. The 3D CAD software was used to design the sensor holder. An Up-Mini 3D printer was used to print the sensor holders which were mounted on the walking stick. Therefore, the sensors were fixed in the right position. Another sensor was used for the detecting the water on the walking street. The performance for detecting the obstacles and water indicate the merit of smart walking stick.
NASA Astrophysics Data System (ADS)
Rendina, Ivo; Bellucci, Marco; Cocorullo, Giuseppe; Della Corte, Francesco G.; Iodice, Mario
2000-03-01
A new type of non-perturbing electromagnetic power sensor for microwaves and millimeter-waves, based on the thermo- optical effect in a silicon interferometric etalon cavity is presented. The incident field power is partially dissipated into the all-silicon metal-less etalon, constituting the sensing element of the detector, so causing its temperature increase. This, in turn, induces the intensity modulation of a probe laser beam reflected by the cavity after a multiple beam interference process. The sensing element is directly connected to an optical fiber for remote interrogation, so avoiding the use of perturbing coaxial cables. The performances of such a new class of non-perturbing and wideband probes, in terms of sensitivity and resolution are discussed in detail. The experimental results concerning the characterization of a preliminary prototype sensor are presented and compared with theoretical data. The dependence of the sensor response on the electromagnetic frequency and on the sensing element characteristics is finally discussed.
The calorimeter system of the new muon g-2 experiment at Fermilab
Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; ...
2015-12-02
The electromagnetic calorimeter for the new muon ( g–2) experiment at Fermilab will consist of arrays of PbF 2 Cerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. Here, we report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0–4.5 GeV electrons with a 28-element prototype array.
1990-12-01
data rate to the electronics would be much lower on the average and the data much "richer" in information. Intelligent use of...system bottleneck, a high data rate should be provided by I/O systems. 2. machines with intelligent storage management specially designed for logic...management information processing, surveillance sensors, intelligence data collection and handling, solid state sciences, electromagnetics, and propagation, and electronic reliability/maintainability and compatibility.
Autonomous collection of dynamically-cued multi-sensor imagery
NASA Astrophysics Data System (ADS)
Daniel, Brian; Wilson, Michael L.; Edelberg, Jason; Jensen, Mark; Johnson, Troy; Anderson, Scott
2011-05-01
The availability of imagery simultaneously collected from sensors of disparate modalities enhances an image analyst's situational awareness and expands the overall detection capability to a larger array of target classes. Dynamic cooperation between sensors is increasingly important for the collection of coincident data from multiple sensors either on the same or on different platforms suitable for UAV deployment. Of particular interest is autonomous collaboration between wide area survey detection, high-resolution inspection, and RF sensors that span large segments of the electromagnetic spectrum. The Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL) is building sensors with such networked communications capability and is conducting field tests to demonstrate the feasibility of collaborative sensor data collection and exploitation. Example survey / detection sensors include: NuSAR (NRL Unmanned SAR), a UAV compatible synthetic aperture radar system; microHSI, an NRL developed lightweight hyper-spectral imager; RASAR (Real-time Autonomous SAR), a lightweight podded synthetic aperture radar; and N-WAPSS-16 (Nighttime Wide-Area Persistent Surveillance Sensor-16Mpix), a MWIR large array gimbaled system. From these sensors, detected target cues are automatically sent to the NRL/SDL developed EyePod, a high-resolution, narrow FOV EO/IR sensor, for target inspection. In addition to this cooperative data collection, EyePod's real-time, autonomous target tracking capabilities will be demonstrated. Preliminary results and target analysis will be presented.
Fiber-Optic Micrometeoroid/Orbital Debris Impact Detector System
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Tennyson, R. C.; Morison, W. D.
2012-01-01
A document describes a reliable, lightweight micrometeoroid/orbital debris (MMOD) detection system that can be located at strategic positions of "high consequence" to provide real-time warning of a penetration, its location, and the extent of the damage to a spacecraft. The concept is to employ fiber-optic sensors to detect impact damage and penetration of spacecraft structures. The fibers are non-electrical, employ light waves, and are immune to electromagnetic interference. The fiber-optic sensor array can be made as a stand-alone product, being bonded to a flexible membrane material or a structure that is employed as a MMOD shield material. The optical sensors can also be woven into hybrid MMOD shielding fabrics. The glass fibers of the fiber-optic sensor provide a dual purpose in contributing to the breakup of MMOD projectiles. The grid arrays can be made in a modular configuration to provide coverage over any area desired. Each module can be connected to a central scanner instrument and be interrogated in a continuous or periodic mode.
System providing limit switch function with simultaneous absolute position output
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2006-01-01
A limit and position sensing system includes a sensor assembly and an emitter. The sensor assembly includes first and second electrical conductors arranged in opposing parallel planes. The first electrical conductor is coiled outwardly from either end thereof in a clockwise fashion to form a first coil region and a second coil region. The second electrical conductor forms a single coil with portions of the single coil's rings lying between the first end and second end of the first electrical conductor being parallel to an axis of the first electrical conductor's plane. Ferromagnetic material is aligned with the first and second electrical conductors and spans beyond (a) the first and second ends of the first electrical conductor, and (b) the portions of the rings of the second electrical conductor's single coil that lie between the first end and second end of the first electrical conductor. The emitter is spaced apart from the sensor assembly and transmits a periodic electromagnetic wave towards the sensor assembly.
Front-end Electronics for Unattended Measurement (FEUM). Results of Prototype Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, Ryan C.; Keller, Daniel T.; Morris, Scott J.
2015-07-01
The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, amore » technical evaluation of a candidate FEUM device produced by a commercial vendor has been performed. This evaluation assessed the device against the IAEA’s original technical specifications and a broad range of important parameters that include sensor types, cable lengths and types, industrial electromagnetic noise that can degrade signals from remotely located detectors, and high radiation fields. Testing data, interpretation, findings and recommendations are provided.« less
Application of the thermoelectric MEMS microwave power sensor in a power radiation monitoring system
NASA Astrophysics Data System (ADS)
Bo, Gao; Jing, Yang; Si, Jiang; Debo, Wang
2016-08-01
A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas. Project supported by the National Natural Science Foundation of China (No. 11304158), the Province Natural Science Foundation of Jiangsu (No. BK20140890), the Open Research Fund of the Key Laboratory of MEMS of Ministry of Education, Southeast University (No. 3206005302), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Nos. NY213024, NY215139).
Assurance Technology Challenges of Advanced Space Systems
NASA Technical Reports Server (NTRS)
Chern, E. James
2004-01-01
The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.
2016-10-01
Figure 2-2). The array structure is fabricated from PVC and Garolite fiberglass. The array is normally deployed on a set of wheels, resulting in a sensor...Low branches were cleared to 8 feet above ground to reduce obstruction of the RTS prism; large logs and fallen timber were not removed. CH2M also
Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun
2016-01-01
The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system. PMID:27025907
Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun
2016-03-30
The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system.
2015-06-01
National Instruments. The National Instruments DAQ is a full-featured PC running Windows 7. The DAQ, electromagnetic transmitter , and batteries for the... electromagnetic induction Environet Environet, Inc. ESTCP Environmental Security Technology Certification Program ftp file transfer protocol FUDS formerly used...capabilities of a currently available advanced electromagnetic induction sensor developed specifically for discrimination on real sites under operational
Sensor technology workshop: Structure and goals
NASA Technical Reports Server (NTRS)
Wilson, Barbara A.
1991-01-01
The Astrotech 21 charter for the second of three workshops is described. The purpose was to identify technology needs in the areas of electromagnetic radiation sensors, and to recommend a plan to develop the required capabilities that are not currently available. The panels chosen for this workshop focused specifically on those technologies needed for the Astrotech 21 Program including: gamma ray and x ray sensors, ultraviolet and visible sensors, direct infrared sensors, and heterodyne submillimeter wave sensors.
Large-area graphene for sensor applications
NASA Astrophysics Data System (ADS)
Snow, Eric S.
2010-04-01
Graphene represents an important new material with potential Department of Defense sensor applications. At the Naval Research Laboratory we have developed three techniques to produce large-area graphene films. We have used this material to construct chemical and radio-frequency electromagnetic sensors. Here we report the initial results of this effort.
Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M.; Manjarrez, Elías; Tapia, Jesús A.; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A.; Herrera-May, Agustín L.
2013-01-01
We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG). PMID:24196434
Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M; Manjarrez, Elías; Tapia, Jesús A; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A; Herrera-May, Agustín L
2013-11-05
We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG).
Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit
Dai, Houde; Zhang, Pengyue; Lueth, Tim C.
2015-01-01
Quantitative assessment of parkinsonian tremor based on inertial sensors can provide reliable feedback on the effect of medication. In this regard, the features of parkinsonian tremor and its unique properties such as motor fluctuations and dyskinesia are taken into account. Least-square-estimation models are used to assess the severities of rest, postural, and action tremors. In addition, a time-frequency signal analysis algorithm for tremor state detection was also included in the tremor assessment method. This inertial sensor-based method was verified through comparison with an electromagnetic motion tracking system. Seven Parkinson’s disease (PD) patients were tested using this tremor assessment system. The measured tremor amplitudes correlated well with the judgments of a neurologist (r = 0.98). The systematic analysis of sensor-based tremor quantification and the corresponding experiments could be of great help in monitoring the severity of parkinsonian tremor. PMID:26426020
Sensor fusion approaches for EMI and GPR-based subsurface threat identification
NASA Astrophysics Data System (ADS)
Torrione, Peter; Morton, Kenneth, Jr.; Besaw, Lance E.
2011-06-01
Despite advances in both electromagnetic induction (EMI) and ground penetrating radar (GPR) sensing and related signal processing, neither sensor alone provides a perfect tool for detecting the myriad of possible buried objects that threaten the lives of Soldiers and civilians. However, while neither GPR nor EMI sensing alone can provide optimal detection across all target types, the two approaches are highly complementary. As a result, many landmine systems seek to make use of both sensing modalities simultaneously and fuse the results from both sensors to improve detection performance for targets with widely varying metal content and GPR responses. Despite this, little work has focused on large-scale comparisons of different approaches to sensor fusion and machine learning for combining data from these highly orthogonal phenomenologies. In this work we explore a wide array of pattern recognition techniques for algorithm development and sensor fusion. Results with the ARA Nemesis landmine detection system suggest that nonlinear and non-parametric classification algorithms provide significant performance benefits for single-sensor algorithm development, and that fusion of multiple algorithms can be performed satisfactorily using basic parametric approaches, such as logistic discriminant classification, for the targets under consideration in our data sets.
NASA Astrophysics Data System (ADS)
Yin, Zelin; Zhang, Ruirui; Tong, Jie; Chen, Xi
2013-12-01
Partial discharges (PDs) are an electrical phenomenon that occurs within a transformer whenever the voltage stress is sufficient to produce ionization in voids or inclusions within a solid dielectric, at conductor/dielectric interfaces, or in bubbles within liquid dielectrics such as oil; high-frequency transient current discharges will then appear repeatedly and will progressively deteriorate the insulation, ultimately leading to breakdown. Fiber sensor has great potential on the partial discharge detection in high-voltage equipment for its immunity to electromagnetic interference and it can take direct measurement in the high voltage equipment. The energy released in PDs produces a number of effects, resulting in flash, chemical and structural changes and electromagnetic emissions and so on. Acoustic PD detection is based on the mechanical pressure wave emitted from the discharge and fluorescent fiber PD detection is based on the emitted light produced by ionization, excitation and recombination processes during the discharge. Both of the two methods have the shortage of weak anti-interference capacity in the physical environment, like thunder or other sound source. In order to avoid the false report, an all-fiber combined PD detection system of the two methods is developed in this paper. In the system the fluorescent fiber PD sensor is considered as a reference signal, three F-P based PD detection sensors are used to both monitor the PD intensity and calculate the exact position of the discharge source. Considering the wave band of the F-P cavity and the fluorescent probe are quite different, the reflection spectrum of the F-P cavity is in the infrared region, however the fluorescent probe is about 600nm to 700nm, thus the F-P sensor and fluorescent fiber probe can be connected in one fiber and the reflection light can be detected by two different detectors without mutual interference. The all-fiber partial discharge monitoring system not only can detect the PDs but also can ensure the position of the PD source and is of great anti-interference capacity in harsh environment.
Close-in detection system for the Mine Hunter/Killer program
NASA Astrophysics Data System (ADS)
Bishop, Steven S.; Campana, Stephen B.; Lang, David A.; Wiggins, Carl M.
2000-08-01
The Close-in Detection (CID) System is the vehicle-mounted multisensor landmine detection system for the Army CECOM Night Vision Electronic Sensors Directorate (NVESD) Mine Hunter/Killer (MH/K) Program. The CID System is being developed by BAE Systems in San Diego, CA. TRW Systems and Information Technology Group in Arlington, VA and a team of specialists for ERIM, E-OIR, SNL, and APL/JHU support NVESD in the development, analysis and testing of the CID and associated signal and data processing. The CID System includes tow down-looking sensor arrays: a ground- penetrating radar (GPR) array, and a set of Electro-Magnetic Induction (EMI) coils for metal detection. These arrays span a 3-meter wide swath in front of a high mobility, multipurpose wheeled vehicle. The system also includes a forward looking IR imaging system mounted on the roof of the vehicle and covering a swath of the road ahead of the vehicle. Signals from each sensor are processed separately to detect and localize objects of interest. Features of candidate objects are integrated in a processor that uses them to discriminates between anti-tank miens and clutter. Mine locations are passed to the neutralization subsystem of MH/K. This paper reviews the design of the sensors and signal processing of the CID system and gives examples and analysis of recent test results at the NVESD mine lanes. The strengths and weaknesses of each sensor are discussed, and the application of multisensor fusion is illustrated.
2015-04-21
seismic sensors , acoustic sensors , electromagnetic sensors and infrared (IR) detectors are among in-need multimodal sensing of vehicles, personnel, weapons... sensors and detectors largely due to the fact that the nature of piezoelectricity renders both active and passive sensing with fast response, low profile...and low power consumption. Acoustic and seismic sensors are used to ascertain the exact target location, speed, direction of motion, and
NASA Technical Reports Server (NTRS)
Goldowskiy, M. P.
1984-01-01
A self regulating, nonfrictional, active magnetic bearing is disclosed which has an elongated cylindrical housing for containing a shaft type armature with quadrature positioned shaft position sensors and equidistantly positioned electromagnets located at one end of the housing. Each set of sensors is responsive to orthogonal displacement of the armature and is used to generate control signals to energize the electromagnets to center the armature. A bumper magnet assembly is located at one end of the housing for dampening any undesired axial movement of the armature or to axially move the armature either continuously or fixedly.
The Harp probe - An in situ Bragg scattering sensor
NASA Technical Reports Server (NTRS)
Mollo-Christensen, E.; Huang, N. E.; Long, S. R.; Bliven, L. F.
1984-01-01
A wave sensor, consisting of parallel, evenly spaced capacitance wires, whose output is the sum of the water surface deflections at the wires, has been built and tested in a wave tank. The probe output simulates Bragg scattering of electromagnetic waves from a water surface with waves; it can be used to simulate electromagnetic probing of the sea surface by radar. The study establishes that the wave probe, called the 'Harp' for short, will simulate Bragg scattering and that it can also be used to study nonlinear wave processes.
FR4-based electromagnetic energy harvester for wireless sensor nodes
NASA Astrophysics Data System (ADS)
Hatipoglu, G.; Ürey, H.
2010-01-01
Electromagnetic (EM) energy harvesting seems to be one of the most promising ways to power wireless sensors in a wireless sensor network. In this paper, FR4, the most commonly used PCB material, is utilized as a mechanical vibrating structure for EM energy harvesting for body-worn sensors and intelligent tire sensors, which involve impact loadings. FR4 can be a better material for such applications compared to silicon MEMS devices due to lower stiffness and broadband response. In order to demonstrate FR4 performance and broadband response, three moving magnet type EM generator designs are developed and investigated throughout the paper. A velocity-damped harvester simulation model is first developed, including a detailed magnetic model and the magnetic damping effects. The numerical results agree well with the experimental results. Human running acceleration at the hip area that is obtained experimentally is simulated in order to demonstrate system performance, which results in a scavenged power of about 40 µW with 15 m s-2 acceleration input. The designed FR4 energy scavengers with mechanical stoppers implemented are particularly well suited for nearly periodic and non-sinusoidal high- g excitations with rich harmonic content. For the intelligent tire applications, a special compact FR4 scavenger is designed that is able to withstand large shocks and vibrations due to mechanical shock stoppers built into the structure. Using our design, 0.4 mW power across a load resistance at off-resonance operation is obtained in shaker experiments. In the actual operation, the tangential accelerations as a result of the tire-road contact are estimated to supply power around 1 mW with our design, which is sufficient for powering wireless tire sensors. The normalized power density (NPD) of the designed actuators compares favorably with most actuators reported in the literature.
NASA Astrophysics Data System (ADS)
Mitsuzawa, K.; Goto, T.; Araki, E.; Watanabe, T.; Sugioka, H.; Kasaya, T.; Sayanagi, K.; Mikada, H.; Fujimoto, H.; Nagao, T.; Koizumi, K.; Asakawa, K.
2005-12-01
Western part of the Sagami Bay central Pacific side of Japan, is known as one of the high active tectonic areas. In this area, Teishi Knoll, volcanic seamount, erupted in 1989 and the earthquake swarms occurs repeatedly every few years in the eastern coast of the Izu Peninsula. The real-time deep sea floor observatory was deployed about 7 km off Hatsushima Island, Sagami Bay, at a depth of 1174 m in 1993 to monitor seismic activities, underwater pressure, water temperature and deep currents. The video camera and lights were also mounted in the observatory to monitor the relations among biological activities associated with the tectonic activities. The observation system including submarine electro-optical cable with a length of 8 km was completely renewed in 2000. The several underwater-mateable connectors are installed in the new observatory for additional observation instruments. A precise pressure sensor, ocean bottom gravity meter and ocean bottom electro-magnetic meter were installed using ROV Hyper-Dolphin in the cruise of R/V Natsushima from January 9 to 14, 2005. We start to operate them at February 10, 2005 after checking those of data qualities. We also installed an underwater internet interface, which is called Linux Box, as a prototype of underwater network system which was operated by Linux operating system. The Linux Box is a key network system for multidisciplinary observation network. It will be able to connect much kind of observation instruments as using internet connection. We put the precise pressure sensor as a sensor of the Linux Box in this experiment.
Fiber-optic temperature profiling for thermal protection system heat shields
NASA Astrophysics Data System (ADS)
Black, Richard J.; Costa, Joannes M.; Zarnescu, Livia; Hackney, Drew A.; Moslehi, Behzad; Peters, Kara J.
2016-11-01
To achieve better designs for spacecraft heat shields for missions requiring atmospheric aero-capture or entry/reentry, reliable thermal protection system (TPS) sensors are needed. Such sensors will provide both risk reduction and heat-shield mass minimization, which will facilitate more missions and enable increased payloads and returns. This paper discusses TPS thermal measurements provided by a temperature monitoring system involving lightweight, electromagnetic interference-immune, high-temperature resistant fiber Bragg grating (FBG) sensors with a thermal mass near that of TPS materials together with fast FBG sensor interrogation. Such fiber-optic sensing technology is highly sensitive and accurate, as well as suitable for high-volume production. Multiple sensing FBGs can be fabricated as arrays on a single fiber for simplified design and reduced cost. Experimental results are provided to demonstrate the temperature monitoring system using multisensor FBG arrays embedded in a small-size super-light ablator (SLA) coupon which was thermally loaded to temperatures in the vicinity of the SLA charring temperature. In addition, a high-temperature FBG array was fabricated and tested for 1000°C operation, and the temperature dependence considered over the full range (cryogenic to high temperature) for which silica fiber FBGs have been subjected.
Fiber-Optic Current Sensor Validation with Triggered Lightning Measurements
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.
2013-01-01
A fiber optic current sensor based on the Faraday Effect is developed that is highly suitable for aircraft installation and can measure total current enclosed in a fiber loop down to DC. Other attributes include being small, light-weight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate when exposed to a magnetic field in the direction of light propagation. Measuring the induced light polarization rotation in fiber loops yields the total current enclosed. Two sensor systems were constructed and installed at Camp Blanding, Florida, measuring rocket-triggered lightning. The systems were similar in design but with different laser wavelengths, sensitivities and ranges. Results are compared to a shunt resistor as reference. The 850nm wavelength system tested in summer 2011 showed good result comparison early. However, later results showed gradual amplitude increase with time, attributed to corroded connections affecting the 50-ohm output termination. The 1550nm system also yielded good results in the summer 2012. The successful measurements demonstrate the fiber optic sensor's accuracies in capturing real lightning currents, and represent an important step toward future aircraft installation.
2009-09-01
evaluate specific system equipment func- tions, performance, operations, and safety in the field environment. The planned test procedures require free space...emission of radiofrequency (RF) electromagnetic energy within a limited spectral region and controlled power spec- tral density. There would be...for personnel. The applicable DoD standard that provides required guidelines for permissible exposure limits of DoD personnel is DoD Instruction
1980-01-01
November 1976. 11. Ohio State University, Electroscience Laboratory, Electromagnetic Pulse Sounding for Geological Surveying with Application in Rock...Peters, L. and Moffatt, D. L., Electromagnetic Pulse Sounding for Geological Surveying with Application in Rock Mechanics and Rapid Excavation... Electromagnetic Pulse Sounding for Geolog- ical Surveying with Application in Rock Mechanics and Rapid Excava- tion Program, Ohio State University, Report
Modelling of resonant MEMS magnetic field sensor with electromagnetic induction sensing
NASA Astrophysics Data System (ADS)
Liu, Song; Xu, Huaying; Xu, Dehui; Xiong, Bin
2017-06-01
This paper presents an analytical model of resonant MEMS magnetic field sensor with electromagnetic induction sensing. The resonant structure vibrates in square extensional (SE) mode. By analyzing the vibration amplitude and quality factor of the resonant structure, the magnetic field sensitivity as a function of device structure parameters and encapsulation pressure is established. The developed analytical model has been verified by comparing calculated results with experiment results and the deviation between them is only 10.25%, which shows the feasibility of the proposed device model. The model can provide theoretical guidance for further design optimization of the sensor. Moreover, a quantitative study of the magnetic field sensitivity is conducted with respect to the structure parameters and encapsulation pressure based on the proposed model.
Method and Apparatus for Non-Destructive Evaluation of Materials
NASA Technical Reports Server (NTRS)
Washabaugh, Andrew P. (Inventor); Lyons, Robert (Inventor); Thomas, Zachary (Inventor); Martin, Christopher (Inventor); Goldfine, Neil J. (Inventor)
2017-01-01
Methods and apparatus for characterizing composite materials for manufacturing quality assurance (QA), periodic inspection during the useful life, or for forensic analysis/material testing. System are provided that relate eddy-current sensor responses to the fiber layup of a composite structure, the presence of impact damage on a composite structure with or without a metal liner, volumetric stress within the composite, fiber tow density, and other NDE inspection requirements. Also provided are systems that determine electromagnetic material properties and material dimensions of composite materials from capacitive sensor inspection measurements. These properties are related to the presence of buried defects in non-conductive composite materials, moisture ingress, aging of the material due to service or environmental/thermal exposure, or changes in manufacturing quality.
Method and Apparatus for Non-Destructive Evaluation of Materials
NASA Technical Reports Server (NTRS)
Lyons, Robert (Inventor); Martin, Christopher (Inventor); Washabaugh, Andrew P. (Inventor); Goldfine, Neil J. (Inventor); Thomas, Zachary (Inventor); Jablonski, David A. (Inventor)
2015-01-01
Methods and apparatus for characterizing composite materials for manufacturing quality assurance (QA), periodic inspection during the useful life, or for forensic analysis/material testing. System are provided that relate eddy-current sensor responses to the fiber layup of a composite structure, the presence of impact damage on a composite structure with or without a metal liner, volumetric stress within the composite, fiber tow density, and other NDE inspection requirements. Also provided are systems that determine electromagnetic material properties and material dimensions of composite materials from capacitive sensor inspection measurements. These properties are related to the presence of buried defects in non-conductive composite materials, moisture ingress, aging of the material due to service or environmental/thermal exposure, or changes in manufacturing quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, N.M.; Johnson, J.A.; Larsen, E.D.
1992-01-01
In-process ultrasonic sensing of welding allows detection of weld defects in real time. A noncontacting ultrasonic system is being developed to operate in a production environment. The principal components are a pulsed laser for ultrasound generation and an electromagnetic acoustic transducer (EMAT) for ultrasound reception. A PC-based data acquisition system determines the quality of the weld on a pass-by-pass basis. The laser/EMAT system interrogates the area in the weld volume where defects are most likely to occur. This area of interest is identified by computer calculations on a pass-by-pass basis using weld planning information provided by the off-line programmer. Themore » absence of a signal above the threshold level in the computer-calculated time interval indicates a disruption of the sound path by a defect. The ultrasonic sensor system then provides an input signal to the weld controller about the defect condition. 8 refs.« less
Speech Adaptation to Kinematic Recording Sensors: Perceptual and Acoustic Findings
ERIC Educational Resources Information Center
Dromey, Christopher; Hunter, Elise; Nissen, Shawn L.
2018-01-01
Purpose: This study used perceptual and acoustic measures to examine the time course of speech adaptation after the attachment of electromagnetic sensor coils to the tongue, lips, and jaw. Method: Twenty native English speakers read aloud stimulus sentences before the attachment of the sensors, immediately after attachment, and again 5, 10, 15,…
Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology.
Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran
2017-04-18
In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor's operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene-methanol mixture where various concentrations of toluene were analysed.
Apparatus and method for magnetically unloading a rotor bearing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, Seth Robert
An apparatus and method for unloading a rotor bearing is described. The apparatus includes an electromagnet for levitating the rotor. In one embodiment, a sensor of the magnetic field near the electromagnet is used to control the current to levitate the rotor. In another embodiment, a method is provided that includes rotating the rotor, increasing the current to levitate the rotor and decrease the gap between electromagnet and rotor, and then reducing the current to levitate the rotor with a minimal amount of electric power to the electromagnet.
Armored Combat Vehicles Science and Technology Plan
1982-11-01
APPLICATION OF SENSORS Investigate the seismic, acoustic, and electromagnetic signatures of military and intruder -type targets and the theoretical aspects...a prototype sampling system which has the capability to monitor ambieut air both outside and inside vehicles and provide an early warning to the crew...and through various processing modules provide automated functions for simultaneous tracking of targets and automitic recognition, 74 f’," SENSING
Navy Virginia (SSN-774) Class Attack Submarine Procurement: Background and Issues for Congress
2010-09-28
advanced electromagnetic signature reduction (AESR), a conformal acoustic velocity sensor wide aperture array (CAVES WAA), and a flexible payload...vibrations and acoustic signatures of targets. The Navy has stated that CAVES WAA could save approximately $4 million per submarine. The Navy is analyzing...Turbine Generator magnetic levitation bearings / throttle control system, etc.); • Special Hull Treatment continues to debond from VIRGINIA Class
Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique
2016-04-18
Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.
Electromagnetic Navigation Diagnostic Bronchoscopy
Gildea, Thomas R.; Mazzone, Peter J.; Karnak, Demet; Meziane, Moulay; Mehta, Atul C.
2006-01-01
Rationale: Electromagnetic navigation bronchoscopy using superDimension/Bronchus System is a novel method to increase diagnostic yield of peripheral and mediastinal lung lesions. Objectives: A prospective, open label, single-center, pilot study was conducted to determine the ability of electromagnetic navigation bronchoscopy to sample peripheral lung lesions and mediastinal lymph nodes with standard bronchoscopic instruments and demonstrate safety. Methods: Electromagnetic navigation bronchoscopy was performed using the superDimension/Bronchus system consisting of electromagnetic board, position sensor encapsulated in the tip of a steerable probe, extended working channel, and real-time reconstruction of previously acquired multiplanar computed tomography images. The final distance of the steerable probe to lesion, expected error based on the actual and virtual markers, and procedure yield was gathered. Measurements: 60 subjects were enrolled between December 2004 and September 2005. Mean navigation times were 7 ± 6 min and 2 ± 2 min for peripheral lesions and lymph nodes, respectively. The steerable probe tip was navigated to the target lung area in all cases. The mean peripheral lesions and lymph nodes size was 22.8 ± 12.6 mm and 28.1 ± 12.8 mm. Yield was determined by results obtained during the bronchoscopy per patient. Results: The yield/procedure was 74% and 100% for peripheral lesions and lymph nodes, respectively. A diagnosis was obtained in 80.3% of bronchoscopic procedures. A definitive diagnosis of lung malignancy was made in 74.4% of subjects. Pneumothorax occurred in two subjects. Conclusion: Electromagnetic navigation bronchoscopy is a safe method for sampling peripheral and mediastinal lesions with high diagnostic yield independent of lesion size and location. PMID:16873767
Magnetoacoustic Sensing of Magnetic Nanoparticles.
Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis
2016-03-11
The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.
NASA Astrophysics Data System (ADS)
Bocciolone, Marco; Bucca, Giuseppe; Collina, Andrea; Comolli, Lorenzo
2013-12-01
One of the most common way to collect the traction current needed for the underground vehicle operation is by using the pantograph-overhead line system. The periodically check of pantographs and overhead lines is important to assure the correct interaction between the two systems in terms of good current collection quality. The main diagnostic tools are the monitoring of the vertical force between the overhead line and the pantograph head, and the vertical acceleration on the pantograph head. The pantograph system works under high voltage (1500 V, DC, in our tests) and high electromagnetic disturbances are present. For this reason, traditional electrical sensors can be used only with particular precautions that complicate the measurement set up; fibre optic sensors, and in particular fibre Bragg grating (FBG) sensors, are particularly suitable for this application. In this paper, the application of the FBG sensors on a pantograph for the monitoring of underground pantograph-catenary system is presented. FBG sensors are used to measure both the contact force and the vertical acceleration of the pantograph head. The same measurements are also gathered with a traditional electrical system, allowing a comparison. The result is a very good agreement between electrical and optical measurements, except in particular frequency ranges where the different positioning of the sensors influences the output, limiting the comparison. Moreover, some interesting results on the dynamic behaviour of the pantograph and its interaction with the overhead line are presented. Finally, a method to point out the main defects on the overhead line is shown.
Instrumentation and data acquisition for satellite testing in nuclear environments
NASA Astrophysics Data System (ADS)
Samyal, B.; Naumann, W.
1982-06-01
Electro-optic and magnetic-optic sensors for measurement of SGEMP-induced electromagnetic fields in and around a satellite in a UGT environment and a fiber optic data link suitable for relaying analog measurements inside the satellite to outside data collection devices are described. The electro-optic and magneto-optic sensors are based on the Pockels and Faraday Effects, respectively. The former has a sensitivity range of 10 to the second power - 10 to the 6th power v/m and the latter 1 x 10 to the minus 6th power - 34 x 10 to the minus 4th power Weber/meters square. Brief theoretical reviews and optical systems for the application of these sensors are presented. These sensors have several advantages over the conventional electrical sensors and they exhibit a great potential for measurement of electromagenetic fields. However, the effects of radiation on these sensors are uncertain and need to be assessed for any future development of these sensors. The fiber optic data link consists of several transmitter modules, located at the satellite, connected by optical fibers to the corresponding receiver modules located at a radiation safe alcove.
Resonant Magnetic Field Sensors Based On MEMS Technology.
Herrera-May, Agustín L; Aguilera-Cortés, Luz A; García-Ramírez, Pedro J; Manjarrez, Elías
2009-01-01
Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.
Resonant Magnetic Field Sensors Based On MEMS Technology
Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías
2009-01-01
Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480
Pulse homodyne field disturbance sensor
McEwan, Thomas E.
1997-01-01
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two.
Pulse homodyne field disturbance sensor
McEwan, T.E.
1997-10-28
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two. 12 figs.
NASA Astrophysics Data System (ADS)
Guillemoteau, Julien; Tronicke, Jens
2015-07-01
For near surface geophysical surveys, small-fixed offset loop-loop electromagnetic induction (EMI) sensors are usually placed parallel to the ground surface (i.e., both loops are at the same height above ground). In this study, we evaluate the potential of making measurements with a system that is not parallel to the ground; i.e., by positioning the system at different inclinations with respect to ground surface. First, we present the Maxwell theory for inclined magnetic dipoles over a homogeneous half space. By analyzing the sensitivities of such configurations, we show that varying the angle of the system would result in improved imaging capabilities. For example, we show that acquiring data with a vertical system allows detection of a conductive body with a better lateral resolution compared to data acquired using standard horizontal configurations. The synthetic responses are presented for a heterogeneous medium and compared to field data acquired in the historical Park Sanssouci in Potsdam, Germany. After presenting a detailed sensitivity analysis and synthetic examples of such ground conductivity measurements, we suggest a new strategy of acquisition that allows to better estimate the true distribution of electrical conductivity using instruments with a fixed, small offset between the loops. This strategy is evaluated using field data collected at a well-constrained test-site in Horstwalde (Germany). Here, the target buried utility pipes are best imaged using vertical system configurations demonstrating the potential of our approach for typical applications.
Microlens performance limits in sub-2mum pixel CMOS image sensors.
Huo, Yijie; Fesenmaier, Christian C; Catrysse, Peter B
2010-03-15
CMOS image sensors with smaller pixels are expected to enable digital imaging systems with better resolution. When pixel size scales below 2 mum, however, diffraction affects the optical performance of the pixel and its microlens, in particular. We present a first-principles electromagnetic analysis of microlens behavior during the lateral scaling of CMOS image sensor pixels. We establish for a three-metal-layer pixel that diffraction prevents the microlens from acting as a focusing element when pixels become smaller than 1.4 microm. This severely degrades performance for on and off-axis pixels in red, green and blue color channels. We predict that one-metal-layer or backside-illuminated pixels are required to extend the functionality of microlenses beyond the 1.4 microm pixel node.
Fiber Bragg Grating Sensors for Harsh Environments
Mihailov, Stephen J.
2012-01-01
Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments. PMID:22438744
Development of fiber optic sensing interrogators for launchers
NASA Astrophysics Data System (ADS)
Plattner, M. P.; Buck, T. C.; Eder, B.; Reutlinger, A.; McKenzie, I.
2017-11-01
We present our work about the development of two complementary interrogation schemes based on fiber optic sensing for the use of structural and thermal monitoring of Ariane launchers. The advantages of fiber optic sensing in particular light-weight, immunity to electromagnetic interferences and the possibility of sensor distribution along optical fibers are driving factors for utilization of this technology in space crafts [1]. The edge-filter (EF) and scanning-laser (SL) interrogators for determination of the mean wavelength of fiber Bragg grating (FBG) sensors have been implemented as two separate demonstrators. Within this paper we describe the functional principles of both interrogators. Furthermore we present test results where the developed systems have been used for readout of FBG sensors which are implemented in an Ariane structural demonstrator during thermal, thermal-vacuum and vibration tests. Functionality of both systems is demonstrated and their potential for further development towards space qualified systems is shown. Since the performance characteristics of the two systems are different from each other, they are dedicated for different sensing applications on a launcher. The EF sensor interrogator provides a sample rate of 20 kHz at a number of 4 connected sensors and supports parallel readout and aliasing free operation. Therefore it is best suited for high priority measurement. Structural monitoring which requires the acquisition of real time sensor information in order to support control of the launcher is one operation area for a future EF system. The SL interrogator provides an overall measurement rate of 1 kHz at a number of 24 connected sensors distributed on three sensor channels. It can be adapted to any sensors that have design wavelengths lying within the output spectrum of the laser diode. Furthermore the number of overall sensors to be read out with this system can be adapted easily. Thermal mapping of satellite panels is one possible future application for the SL interrogator.
Mars SubsurfAce Sounding by Time-Domain Electromagnetic MeasuRements
NASA Astrophysics Data System (ADS)
Tacconi, G.; Minna, L.; Pagnan, S.; Tacconi, M.
1999-09-01
MASTER (Mars subsurfAce Sounding by Time-domain Electromagnetic measuRements) is an experimental project proposed to fly aboard the Italian Drill (DEEDRI) payload for the Mars Surveyor Program 2003. MASTER will offer the scientific community the first opportunity to scan Mars subsurface structure by means of the technique employing time-domain electromagnetic measurements TDEM. Up today proposed experiments for scanning the Martian subsurface have focused on exploring the crust of the planet Mars up to few meters, while MASTER will explore electrical structures and related soil characteristics and processes at depths up to hundreds meters at least. TDEM represents an active remote sensing system and will be used likely a ULF/ELF/VLF ``radar." If a certain volumetric zone has different electrical conductivity, the current in the sample will vary generating a secondary scattered electromagnetic field containing the information about the explored volume. The volumetric mean value of the conductivity will be estimated according to the implicit near field e.m. propagation conditions, considering the skin depth (d) and the apparent resistivity (ra) as the most representative and critical parameters. As any active remotely sensed measurements the TDEM system behaves like a ``bistatic" communication channel and is mandatory to investigate the characteristics of the background noise at the receiver site. The MASTER system, can operate also as a passive listening device of the possible electromagnetic background noise on the Mars surface at ULF/ELF/VLF bands. Present paper will describe in details the application of the TDEM method as well as the approaches to the detection and estimation of the e.m. BGN on Mars surface, in terms of man made, natural BGN and intrinsic noise of the sensors and electronic systems. The electromagnetic background noise detection/estimation represents by itself a no cost experiment and the first experiment of this type on Mars.
Panda, Sudhanshu S.; Rao, Mahesh N.; Thenkabail, Prasad S.; Fitzerald, James E.
2015-01-01
The American Society of Photogrammetry and Remote Sensing defined remote sensing as the measurement or acquisition of information of some property of an object or phenomenon, by a recording device that is not in physical or intimate contact with the object or phenomenon under study (Colwell et al., 1983). Environmental Systems Research Institute (ESRI) in its geographic information system (GIS) dictionary defines remote sensing as “collecting and interpreting information about the environment and the surface of the earth from a distance, primarily by sensing radiation that is naturally emitted or reflected by the earth’s surface or from the atmosphere, or by sending signals transmitted from a device and reflected back to it (ESRI, 2014).” The usual source of passive remote sensing data is the measurement of reflected or transmitted electromagnetic radiation (EMR) from the sun across the electromagnetic spectrum (EMS); this can also include acoustic or sound energy, gravity, or the magnetic field from or of the objects under consideration. In this context, the simple act of reading this text is considered remote sensing. In this case, the eye acts as a sensor and senses the light reflected from the object to obtain information about the object. It is the same technology used by a handheld camera to take a photograph of a person or a distant scenic view. Active remote sensing, however, involves sending a pulse of energy and then measuring the returned energy through a sensor (e.g., Radio Detection and Ranging [RADAR], Light Detection and Ranging [LiDAR]). Thermal sensors measure emitted energy by different objects. Thus, in general, passive remote sensing involves the measurement of solar energy reflected from the Earth’s surface, while active remote sensing involves synthetic (man-made) energy pulsed at the environment and the return signals are measured and recorded.
NASA Astrophysics Data System (ADS)
Nelson, Carl V.; Mendat, Deborah P.; Huynh, Toan B.
2006-05-01
The Johns Hopkins University Applied Physics Laboratory (APL) has developed a prototype metal detection survey system that will increase the search speed of conventional technology while maintaining high sensitivity. Higher search speeds will reduce the time to clear roads of landmines and improvised explosive devices (IED) and to locate unexploded ordnance (UXO) at Base Realignment and Closure (BRAC) sites, thus reducing remediation costs. The new survey sensor system is called the moving belt metal detector (MBMD) and operates by both increasing sensor speed over the ground while maintaining adequate sensor dwell time over the target for good signal-to-noise ratio (SNR) and reducing motion-induced sensor noise. The MBMD uses an array of metal detection sensors mounted on a flexible belt similar to a tank track. The belt motion is synchronized with the forward survey speed so individual sensor elements remain stationary relative to the ground. A single pulsed transmitter coil is configured to provide a uniform magnetic field along the length of the receivers in ground contact. Individual time-domain electromagnetic induction (EMI) receivers are designed to sense a single time-gate measurement of the total metal content. Each sensor module consists of a receiver coil, amplifier, digitizing electronics and a low power UHF wireless transmitter. This paper presents the survey system design concepts and metal detection data from various targets at several survey speeds. Although the laboratory prototype is designed to demonstrate metal detection survey speeds up to 10 m/s, higher speeds are achievable with a larger sensor array. In addition, the concept can be adapted to work with other sensor technologies not previously considered for moving platforms.
Development and Commissioning Results of the Hybrid Sensor Bus Engineering Qualification Model
NASA Astrophysics Data System (ADS)
Hurni, Andreas; Putzer, Phillipp; Roner, Markus; Gurster, Markus; Hulsemeyer, Christian; Lemke, Norbert M. K.
2016-08-01
In order to reduce mass, AIT effort and overall costs of classical point-to-point wired temperature sensor harness on-board spacecraft OHB System AGhas introduced the Hybrid Sensor Bus (HSB) system which interrogates sensors connected in a bus architecture. To use the advantages of electrical as wellas of fiber-optical sensing technologies, HSB is designed as a modular measurement system interrogating digital sensors connected on electricalsensor buses based on I2C and fiber-optical sensor buses based on fiber Bragg grating (FBG) sensors inscribed in optical fibers. Fiber-optical sensor bus networks on-board satellites are well suited for temperature measurement due to low mass, electro-magnetic insensitivity and the capability to embed them inside structure parts. The lightweight FBG sensors inscribed in radiation tolerant fibers can reach every part of the satellite. HSB has been developed in the frame of the ESA ARTES program with European and German co- funding and will be verified as flight demonstrator on- board the German Heinrich Hertz satellite (H2Sat).In this paper the Engineering Qualification Model (EQM) development of HSB and first commissioning results are presented. For the HSB development requirements applicable for telecommunication satellite platforms have been considered. This includes an operation of at least 15 years in a geostationary orbit.In Q3/2016 the qualification test campaign is planned to be carried out. The HSB EQM undergoes a full qualification according to ECSS. The paper concludes with an outlook regarding this HSB flight demonstrator development and its in-orbit verification (IOV) on board H2Sat.
Algorithms and Sensors for Small Robot Path Following
NASA Technical Reports Server (NTRS)
Hogg, Robert W.; Rankin, Arturo L.; Roumeliotis, Stergios I.; McHenry, Michael C.; Helmick, Daniel M.; Bergh, Charles F.; Matthies, Larry
2002-01-01
Tracked mobile robots in the 20 kg size class are under development for applications in urban reconnaissance. For efficient deployment, it is desirable for teams of robots to be able to automatically execute path following behaviors, with one or more followers tracking the path taken by a leader. The key challenges to enabling such a capability are (l) to develop sensor packages for such small robots that can accurately determine the path of the leader and (2) to develop path following algorithms for the subsequent robots. To date, we have integrated gyros, accelerometers, compass/inclinometers, odometry, and differential GPS into an effective sensing package. This paper describes the sensor package, sensor processing algorithm, and path tracking algorithm we have developed for the leader/follower problem in small robots and shows the result of performance characterization of the system. We also document pragmatic lessons learned about design, construction, and electromagnetic interference issues particular to the performance of state sensors on small robots.
A Fiber Bragg Grating Sensor for Radial Artery Pulse Waveform Measurement.
Jia, Dagong; Chao, Jing; Li, Shuai; Zhang, Hongxia; Yan, Yingzhan; Liu, Tiegen; Sun, Ye
2018-04-01
In this paper, we report the design and experimental validation of a novel optical sensor for radial artery pulse measurement based on fiber Bragg grating (FBG) and lever amplification mechanism. Pulse waveform analysis is a diagnostic tool for clinical examination and disease diagnosis. High fidelity radial artery pulse waveform has been investigated in clinical studies for estimating central aortic pressure, which is proved to be predictors of cardiovascular diseases. As a three-dimensional cylinder, the radial artery needs to be examined from different locations to achieve optimal pulse waveform for estimation and diagnosis. The proposed optical sensing system is featured as high sensitivity and immunity to electromagnetic interference for multilocation radial artery pulse waveform measurement. The FBG sensor can achieve the sensitivity of 8.236 nm/N, which is comparable to a commonly used electrical sensor. This FBG-based system can provide high accurate measurement, and the key characteristic parameters can be then extracted from the raw signals for clinical applications. The detecting performance is validated through experiments guided by physicians. In the experimental validation, we applied this sensor to measure the pulse waveforms at various positions and depths of the radial artery in the wrist according to the diagnostic requirements. The results demonstrate the high feasibility of using optical systems for physiological measurement and using this FBG sensor for radial artery pulse waveform in clinical applications.
The design of the Langmuir probe onboard a seismo-electromagnetic satellite
NASA Astrophysics Data System (ADS)
Guan, Yi-bing; Wang, Sh-ijin; Liu, Chao; Feng, Yu-bo
2011-08-01
The double Langmuir probe, as a payload of a seism-electromagnetic satellite, has been designed for in situ measurements of the parameters of the ionosphere plasma on the 500km altitude orbit to research the electromagnetic coupling between the solid-earth activities and the ionosphere disturbances. The Langmuir probe is comprised of two spherical sensors: the diameter of the smaller one is 1cm and the other one is 5cm. The two sensors are mounted on two parallel booms on the satellite, which are half meter far from each other. The two main ionosphere parameters measured by the Langmuir probe are electron density and electron temperature, which are computed from the I-V curves. The I-V curve is given by a current flow through a sensor in case of a sweep voltage is applied to the sensor. There are three main work models for the Langmuir probe: the normal model, the burst model and the decontamination model. The normal model is for the general measurement of the ionosphere parameters around the globe with 1s time resolution, while the burst model is to measure the ionosphere over the interested areas, like the areas with more earthquake activities, with 0.5s time resolution. The decontamination model would work if the I-V curves shown hysteresis phenomenon, which indicated that the sensors may be contaminated by the outgassing of the satellite. The description of the Langmuir probe instrument and its capabilities is provided.
Anser EMT: the first open-source electromagnetic tracking platform for image-guided interventions.
Jaeger, Herman Alexander; Franz, Alfred Michael; O'Donoghue, Kilian; Seitel, Alexander; Trauzettel, Fabian; Maier-Hein, Lena; Cantillon-Murphy, Pádraig
2017-06-01
Electromagnetic tracking is the gold standard for instrument tracking and navigation in the clinical setting without line of sight. Whilst clinical platforms exist for interventional bronchoscopy and neurosurgical navigation, the limited flexibility and high costs of electromagnetic tracking (EMT) systems for research investigations mitigate against a better understanding of the technology's characterisation and limitations. The Anser project provides an open-source implementation for EMT with particular application to image-guided interventions. This work provides implementation schematics for our previously reported EMT system which relies on low-cost acquisition and demodulation techniques using both National Instruments and Arduino hardware alongside MATLAB support code. The system performance is objectively compared to other commercial tracking platforms using the Hummel assessment protocol. Positional accuracy of 1.14 mm and angular rotation accuracy of [Formula: see text] are reported. Like other EMT platforms, Anser is susceptible to tracking errors due to eddy current and ferromagnetic distortion. The system is compatible with commercially available EMT sensors as well as the Open Network Interface for image-guided therapy (OpenIGTLink) for easy communication with visualisation and medical imaging toolkits such as MITK and 3D Slicer. By providing an open-source platform for research investigations, we believe that novel and collaborative approaches can overcome the limitations of current EMT technology.
Transbronchial needle aspiration with a new electromagnetically-tracked TBNA needle
NASA Astrophysics Data System (ADS)
Choi, Jae; Popa, Teo; Gruionu, Lucian
2009-02-01
Transbronchial needle aspiration (TBNA) is a common method used to collect tissue for diagnosis of different chest diseases and for staging lung cancer, but the procedure has technical limitations. These limitations are mostly related to the difficulty of accurately placing the biopsy needles into the target mass. Currently, pulmonologists plan TBNA by examining a number of Computed Tomography (CT) scan slices before the operation. Then, they manipulate the bronchoscope down the respiratory track and blindly direct the biopsy. Thus, the biopsy success rate is low. The diagnostic yield of TBNA is approximately 70 percent. To enhance the accuracy of TBNA, we developed a TBNA needle with a tip position that can be electromagnetically tracked. The needle was used to estimate the bronchoscope's tip position and enable the creation of corresponding virtual bronchoscopic images from a preoperative CT scan. The TBNA needle was made with a flexible catheter embedding Wang Transbronchial Histology Needle and a sensor tracked by electromagnetic field generator. We used Aurora system for electromagnetic tracking. We also constructed an image-guided research prototype system incorporating the needle and providing a user-friendly interface to assist the pulmonologist in targeting lesions. To test the feasibility of the accuracy of the newly developed electromagnetically-tracked needle, a phantom study was conducted in the interventional suite at Georgetown University Hospital. Five TBNA simulations with a custom-made phantom with a bronchial tree were performed. The experimental results show that our device has potential to enhance the accuracy of TBNA.
Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.
Felt, Wyatt; Chin, Khai Yi; Remy, C David
2017-09-01
This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.
Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku
2015-02-01
Registration of pre-clinical images to physical space is indispensable for computer-assisted endoscopic interventions in operating rooms. Electromagnetically navigated endoscopic interventions are increasingly performed at current diagnoses and treatments. Such interventions use an electromagnetic tracker with a miniature sensor that is usually attached at an endoscope distal tip to real time track endoscope movements in a pre-clinical image space. Spatial alignment between the electromagnetic tracker (or sensor) and pre-clinical images must be performed to navigate the endoscope to target regions. This paper proposes an adaptive marker-free registration method that uses a multiple point selection strategy. This method seeks to address an assumption that the endoscope is operated along the centerline of an intraluminal organ which is easily violated during interventions. We introduce an adaptive strategy that generates multiple points in terms of sensor measurements and endoscope tip center calibration. From these generated points, we adaptively choose the optimal point, which is the closest to its assigned the centerline of the hollow organ, to perform registration. The experimental results demonstrate that our proposed adaptive strategy significantly reduced the target registration error from 5.32 to 2.59 mm in static phantoms validation, as well as from at least 7.58 mm to 4.71 mm in dynamic phantom validation compared to current available methods. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Shilemay, Moshe; Rozban, Daniel; Levanon, Assaf; Yitzhaky, Yitzhak; Kopeika, Natan S; Yadid-Pecht, Orly; Abramovich, Amir
2013-03-01
Inexpensive millimeter-wavelength (MMW) optical digital imaging raises a challenge of evaluating the imaging performance and image quality because of the large electromagnetic wavelengths and pixel sensor sizes, which are 2 to 3 orders of magnitude larger than those of ordinary thermal or visual imaging systems, and also because of the noisiness of the inexpensive glow discharge detectors that compose the focal-plane array. This study quantifies the performances of this MMW imaging system. Its point-spread function and modulation transfer function were investigated. The experimental results and the analysis indicate that the image quality of this MMW imaging system is limited mostly by the noise, and the blur is dominated by the pixel sensor size. Therefore, the MMW image might be improved by oversampling, given that noise reduction is achieved. Demonstration of MMW image improvement through oversampling is presented.
Wang, Jingang; Gao, Can; Yang, Jie
2014-07-17
Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leon E.; Conrad, Ryan C.; Keller, Daniel T.
The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, amore » technical evaluation of a candidate FEUM device produced by a commercial vendor is being performed. This evaluation is assessing the device against the IAEA’s original technical specifications and a broad range of important parameters that included sensor types, cable types, and industrial electromagnetic noise that can degrade signals from remotely located detectors. Testing has been performed in a laboratory and also in environments representative of IAEA deployments. The results are expected to inform the IAEA about where and how FEUM devices might be implemented in the field. Data and preliminary findings from the testing performed to date are presented.« less
Cho, Keunhee; Cho, Jeong-Rae; Kim, Sung Tae; Park, Sung Yong; Kim, Young-Jin; Park, Young-Hwan
2016-01-01
The recently developed smart strand can be used to measure the prestress force in the prestressed concrete (PSC) structure from the construction stage to the in-service stage. The higher cost of the smart strand compared to the conventional strand renders it unaffordable to replace all the strands by smart strands, and results in the application of only a limited number of smart strands in the PSC structure. However, the prestress forces developed in the strands of the multi-strand system frequently adopted in PSC structures differ from each other, which means that the prestress force in the multi-strand system cannot be obtained by simple proportional scaling using the measurement of the smart strand. Therefore, this study examines the prestress force distribution in the multi-strand system to find the correlation between the prestress force measured by the smart strand and the prestress force distribution in the multi-strand system. To that goal, the prestress force distribution was measured using electromagnetic sensors for various factors of the multi-strand system adopted on site in the fabrication of actual PSC girders. The results verified the possibility to assume normal distribution for the prestress force distribution per anchor head, and a method computing the mean and standard deviation defining the normal distribution is proposed. This paper presents a meaningful finding by proposing an estimation method of the prestress force based upon field-measured data of the prestress force distribution in the multi-strand system of actual PSC structures. PMID:27548172
Standards and Procedures for Application of Radiometric Sensors
2010-07-01
radiation from slowly oscillating electrons. Optical radiation is defined to be the narrow portion of the electromagnetic spectrum spanning five orders...809-10, July 2010 4-1 CHAPTER 4 PHOTOMETRY Radiometry is the science and the craft of measuring radiant power across the entire optical ...distances compared to its focal length (which is the most common application) the image of the source is at the focal distance of the optical system
Detailed measurements of shower properties in a high granularity digital electromagnetic calorimeter
NASA Astrophysics Data System (ADS)
van der Kolk, N.
2018-03-01
The MAPS (Monolithic Active Pixel Sensors) prototype of the proposed ALICE Forward Calorimeter (FoCal) is the highest granularity electromagnetic calorimeter, with 39 million pixels with a size of 30 × 30 μm2. Particle showers can be studied with unprecedented detail with this prototype. Electromagnetic showers at energies between 2 GeV and 244 GeV have been studied and compared with GEANT4 simulations. Simulation models can be tested in more detail than ever before and the differences observed between FoCal data and GEANT4 simulations illustrate that improvements in electromagnetic models are still possible.
Laser Spiderweb Sensor Used with Portable Handheld Devices
NASA Technical Reports Server (NTRS)
Scott, David C. (Inventor); Ksendzov, Alexander (Inventor); George, Warren P. (Inventor); Smith, James A. (Inventor); Steinkraus, Joel M. (Inventor); Hofmann, Douglas C. (Inventor); Aljabri, Abdullah S. (Inventor); Bendig, Rudi M. (Inventor)
2017-01-01
A portable spectrometer, including a smart phone case storing a portable spectrometer, wherein the portable spectrometer includes a cavity; a source for emitting electromagnetic radiation that is directed on a sample in the cavity, wherein the electromagnetic radiation is reflected within the cavity to form multiple passes of the electromagnetic radiation through the sample; a detector for detecting the electromagnetic radiation after the electromagnetic radiation has made the multiple passes through the sample in the cavity, the detector outputting a signal in response to the detecting; and a device for communicating the signal to a smart phone, wherein the smart phone executes an application that performs a spectral analysis of the signal.
Eddy current sensor concepts for the Bridgman growth of semiconductors
NASA Astrophysics Data System (ADS)
Dharmasena, Kumar P.; Wadley, Haydn N. G.
1997-03-01
Electromagnetic finite element methods have been used to identify eddy current sensor designs for monitoring CdTe vertical Bridgman crystal growth. A model system consisting of pairs of silicon cylinders with electrical conductivities similar to those of solid and liquid CdTe has been used to evaluate the multifrequency response of several sensors designed for locating and characterizing the curvature of liquid-solid interfaces during vertical Bridgman growth. At intermediate frequencies (100-800 kHz), the sensor's imaginary impedance monotonically increases as interfacial curvature changes from concave to convex or the interface location moves upwards through the sensor. The experimental data are in excellent agreement with theoretical predictions. At higher test frequencies (˜ 5 MHz), the test circuit's parasitics contribute to the sensor's response. Even so, the predicted trends with interface location/curvature were found to be still preserved, and the experiments confirm that the sensor's high frequency response depends more on interface location and has only a small sensitivity to curvature. Multifrequency data obtained from these types of sensors have the potential to separately discriminate the location and the shape of liquid-solid interfaces during the vertical Bridgman growth of CdTe and other semiconductor materials of higher electrical conductivity.
Fiber-Optic/Photoelastic Flow Sensors
NASA Technical Reports Server (NTRS)
Wesson, Laurence N.; Cabato, Nellie L.; Brooks, Edward F.
1995-01-01
Simple, rugged, lightweight transducers detect periodic vortices. Fiber-optic-coupled transducers developed to measure flows over wide dynamic ranges and over wide temperature ranges in severe environments. Used to measure flows of fuel in advanced aircraft engines. Feasibility of sensors demonstrated in tests of prototype sensor in water flowing at various temperatures and speeds. Particularly attractive for aircraft applications because optical fibers compact and make possible transmission of sensor signals at high rates with immunity from electromagnetic interference at suboptical frequencies. Sensors utilize optical-to-optical conversion via photoelastic effect.
The Detection and Discrimination of Small Munitions using Giant Magnetoresistive (OMR) Sensors
2010-09-01
Suffield, Canada. McGlone, D.T., 1998, Magnetometer Comparison Smoke Creek Instruments’ GMR SCIMAG- 01 & Bartington Fluxgate MAG-03MC70, A...a magnetometer and frequency domain or time domain electromagnetic induction sensor. Both the Honeywell and NVE GlvlR sensors studied have si.m ilar...field sensor. In p0ssive mode, the GMR sensor, which has a resolution of Jess than l 0 nT, perfom1ed similarly to a cesium vapor magnetometer . When
Optical Sensors for Monitoring Gamma and Neutron Radiation
NASA Technical Reports Server (NTRS)
Boyd, Clark D.
2011-01-01
For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.
Holographic leaky-wave metasurfaces for dual-sensor imaging.
Li, Yun Bo; Li, Lian Lin; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun
2015-12-10
Metasurfaces have huge potentials to develop new type imaging systems due to their abilities of controlling electromagnetic waves. Here, we propose a new method for dual-sensor imaging based on cross-like holographic leaky-wave metasurfaces which are composed of hybrid isotropic and anisotropic surface impedance textures. The holographic leaky-wave radiations are generated by special impedance modulations of surface waves excited by the sensor ports. For one independent sensor, the main leaky-wave radiation beam can be scanned by frequency in one-dimensional space, while the frequency scanning in the orthogonal spatial dimension is accomplished by the other sensor. Thus, for a probed object, the imaging plane can be illuminated adequately to obtain the two-dimensional backward scattered fields by the dual-sensor for reconstructing the object. The relativity of beams under different frequencies is very low due to the frequency-scanning beam performance rather than the random beam radiations operated by frequency, and the multi-illuminations with low relativity are very appropriate for multi-mode imaging method with high resolution and anti- noise. Good reconstruction results are given to validate the proposed imaging method.
Electro-optic voltage sensor with Multiple Beam Splitting
Woods, Gregory K.; Renak, Todd W.; Crawford, Thomas M.; Davidson, James R.
2000-01-01
A miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.
Research on pressure tactile sensing technology based on fiber Bragg grating array
NASA Astrophysics Data System (ADS)
Song, Jinxue; Jiang, Qi; Huang, Yuanyang; Li, Yibin; Jia, Yuxi; Rong, Xuewen; Song, Rui; Liu, Hongbin
2015-09-01
A pressure tactile sensor based on the fiber Bragg grating (FBG) array is introduced in this paper, and the numerical simulation of its elastic body was implemented by finite element software (ANSYS). On the basis of simulation, fiber Bragg grating strings were implanted in flexible silicone to realize the sensor fabrication process, and a testing system was built. A series of calibration tests were done via the high precision universal press machine. The tactile sensor array perceived external pressure, which is demodulated by the fiber grating demodulation instrument, and three-dimension pictures were programmed to display visually the position and size. At the same time, a dynamic contact experiment of the sensor was conducted for simulating robot encountering other objects in the unknown environment. The experimental results show that the sensor has good linearity, repeatability, and has the good effect of dynamic response, and its pressure sensitivity was 0.03 nm/N. In addition, the sensor also has advantages of anti-electromagnetic interference, good flexibility, simple structure, low cost and so on, which is expected to be used in the wearable artificial skin in the future.
Health monitoring system for a tall building with Fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Li, D. S.; Li, H. N.; Ren, L.; Guo, D. S.; Song, G. B.
2009-03-01
Fiber Bragg grating (FBG) sensors demonstrate great potentials for structural health monitoring of civil structures to ensure their structural integrity, durability and reliability. The advantages of applying fiber optic sensors to a tall building include their immunity of electromagnetic interference and multiplexing ability to transfer optical signals over a long distance. In the work, FBG sensors, including strain and temperature sensors, are applied to the construction monitoring of an 18-floor tall building starting from its construction date. The main purposes of the project are: 1) monitoring the temperature evolution history within the concrete during the pouring process; 2) measuring the variations of the main column strains on the underground floor while upper 18 floors were subsequently added on; and 3) monitoring the relative displacements between two foundation blocks. The FBG sensors have been installed and interrogated continuously for more than five months. Monitoring results of temperature and strains during the period are presented in the paper. Furthermore, the lag behavior between the concrete temperature and its surrounding air temperature is investigated.
Study of ultrasonic sensor that is effective for all direction using an electromagnetic force
NASA Astrophysics Data System (ADS)
Iwaya, Kazuki; Murayama, Riichi; Hirayama, Takahiro
2015-03-01
Non-destructive inspection using ultrasonic sensors is widely utilized to guarantee the safety of large structures. However, there is the problem that it will take a very long time to complete. Therefore, it was decided to develop a sensor capable of testing a wide range of structures at a high inspection speed. The ultrasonic wave that the ultrasonic sensor can generate must be equally emitted in any direction and the ultrasonic wave returned from any direction be detected. To attain this objective, an electromagnetic acoustic transducer (EMAT) consisting of a circular-shaped magnet and an electric induction coil (EM) has been developed, because it is impossible to fabricate such a special ultrasonic sensor using a commercial-type ultrasonic sensor with a piezoelectric element, and it is convenient to automatically scan over the surface of the structure. First, the detail specifications of the new ultrasonic sensor have been determined by changing many of the parameters, for example, the impedance and the size of the EM coil, the size of the magnet, etc. The performance of the new sensor was then tested under different conditions. Based on the results of the experimental tests, it was demonstrated that the new sensor could generate ultrasonic waves in any direction and detect them from any direction. However, the performance was not high enough to apply the new sensor to a real structure. The new sensor has been improved to increase the performance by adding a new concept.
2010-07-01
is comprised of 4 x 40 m lengths of braided copper wire (Figure 29) with a diameter of 15 mm, capable of passing a 500 amp current. In normal...fuel tank and rubber hoses . Sub-Audio Magnetics: Technology for Simultaneous Magnetic and Electromagnetic Detection 77 Figure 31 Quad
Progress towards extreme attitude testing with Magnetic Suspension and Balance Systems
NASA Technical Reports Server (NTRS)
Britcher, Colin P.; Parker, David H.
1988-01-01
Progress is reported in a research effort aimed towards demonstration of the feasibility of suspension and aerodynamic testing of models at high angles of attack in wind tunnel Magnetic Suspension and Balance Systems. Extensive modifications, described in this paper, have been made to the Southampton University suspension system in order to facilitate this work. They include revision of electromagnet configuration, installation of all-new position sensors and expansion of control system programs. An angle of attack range of 0 to 90 deg is expected for axisymmetric models. To date, suspension up to 80 deg angle of attack has been achieved.
NASA Astrophysics Data System (ADS)
Chen, De-Chao; Li, Hong-Ju; Xia, Sheng-Xuan; Qin, Meng; Zhai, Xiang; Wang, Ling-Ling
2017-08-01
A tunable electromagnetically-induced-transparency-like (EIT-like) device is proposed numerically and theoretically in the mid-infrared region, which is composed of periodically patterned ring and disk graphene. Distinguished from the commonly used three-level system, the hybridization of the plasmon mode is applied to describing and explaining the EIT-like phenomenon in the proposed systems. What is more, further researches have revealed that the spectral position of the transparency window can be tuned not only by geometrically changing the couple distance in graphene nanostructures, but also by dynamically altering the radius of the graphene nanodisk and the chemical potential of the graphene. At the transparency window, there exist large optical delays, which can slow down the speed of light in vacuum. This work may pave the way to the development of applications including tunable sensors, slow-light devices, and optical switches.
All-Dielectric Photonic-Assisted Radio Front-End Technology
NASA Astrophysics Data System (ADS)
Ayazi, Hossein Ali
The threats to civil society posed by high-power electromagnetic weapons are viewed as a grim but real possibility in the world after 11 September 2001. These weapons produce a power surge capable of destroying or damaging sensitive circuitry in electronic systems. Unfortunately, the trend towards circuits with smaller sizes and voltages renders modern electronics highly susceptible to such damage. Radiofrequency communication systems are particularly vulnerable, because the antenna provides a direct port of entry for electromagnetic radiation. In this work, we present a novel type of radiofrequency receiver front end featuring a complete absence of electronic circuitry and metal interconnects, the traditional 'soft spots' of a conventional radiofrequency receiver. The device exploits a dielectric resonator antenna to capture and deliver the radiofrequency signal onto a whispering-gallery mode electro-optic field sensor. The dielectric approach has an added benefit in that it reduces the physical size of the front end, an important benefit in mobile applications.
Optical Fiber-Based MR-Compatible Sensors for Medical Applications: An Overview
Taffoni, Fabrizio; Formica, Domenico; Saccomandi, Paola; Di Pino, Giovanni; Schena, Emiliano
2013-01-01
During last decades, Magnetic Resonance (MR)—compatible sensors based on different techniques have been developed due to growing demand for application in medicine. There are several technological solutions to design MR-compatible sensors, among them, the one based on optical fibers presents several attractive features. The high elasticity and small size allow designing miniaturized fiber optic sensors (FOS) with metrological characteristics (e.g., accuracy, sensitivity, zero drift, and frequency response) adequate for most common medical applications; the immunity from electromagnetic interference and the absence of electrical connection to the patient make FOS suitable to be used in high electromagnetic field and intrinsically safer than conventional technologies. These two features further heightened the potential role of FOS in medicine making them especially attractive for application in MRI. This paper provides an overview of MR-compatible FOS, focusing on the sensors employed for measuring physical parameters in medicine (i.e., temperature, force, torque, strain, and position). The working principles of the most promising FOS are reviewed in terms of their relevant advantages and disadvantages, together with their applications in medicine. PMID:24145918
Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology
Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran
2017-01-01
In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor’s operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene–methanol mixture where various concentrations of toluene were analysed. PMID:28420217
Bore, Thierry; Wagner, Norman; Delepine Lesoille, Sylvie; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique
2016-01-01
Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865
Excitation of surface electromagnetic waves in a graphene-based Bragg grating
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting
2012-01-01
Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc. PMID:23071901
Excitation of surface electromagnetic waves in a graphene-based Bragg grating.
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting
2012-01-01
Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.
Nuclear Electromagnetic Pulse Review
NASA Astrophysics Data System (ADS)
Dinallo, Michael
2011-04-01
Electromagnetic Pulse (EMP) from nuclear detonations have been observed for well over half a century. Beginning in the mid-to-late 1950s, the physics and modeling of EMP has been researched and will continue into the foreseeable future. The EMP environment propagates hundreds of miles from its origins and causes interference for all types of electronic instrumentation. This includes military, municipal and industry based electronic infrastructures such as power generation and distribution, command and control systems, systems used in financial and emergency services, electronic monitoring and communications networks, to mention some key infrastructure elements. Research into EMP has included originating physics, propagation and electromagnetic field coupling analyses and measurement-sensor development. Several methods for calculating EMP induced transient interference (voltage and current induction) will be briefly discussed and protection techniques reviewed. These methods can be mathematically simple or involve challenging boundary value solution techniques. A few illustrative calculations will demonstrate the concern for electronic system operability. Analyses such as the Wunsch-Bell model for electronic upset or damage, and the Singularity Expansion Method (SEM) put forth by Dr. Carl Baum, will facilitate the concern for EMP effects. The SEM determines the voltages and currents induced from transient electromagnetic fields in terms of natural modes of various types of electronic platforms (aerospace vehicles or land-based assets - fixed or mobile). Full-scale facility and laboratory simulation and response measurement approaches will be discussed. The talk will conclude with a discussion of some present research activities.
Compact, Low-Noise Magnetic Sensor with Fluxgate (DC) and Induction (AC) Modes of Operation
2009-07-01
induction sensor and the fluxgate magnetometer . ......................................... 2 Figure 3.1 - Impulse response of a 4” long coil (#6...Block diagram of the Year 2, Task 2 fluxgate magnetometer . ................................... 6 Figure 3.3 - FIS-prototype magnetic-field...and demonstrated an innovative dual-mode, fluxgate -induction sensor (FIS) that combines a fluxgate magnetometer and an electromagnetic (EM) induction
Microshell-tipped optical fibers as sensors of high-pressure pulses in adverse environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benjamin, R.F.; Mayer, F.J.; Maynard, R.L.
1984-01-01
An optical-fiber sensor for detecting the arrival of strong pressure pulses was developed. The sensor consists of an optical fiber, tipped with a gas-filled microballoon. They have been used successfully in adverse environments including explosives, ballistics and electromagnetic pulses (EMP). The sensor produces a bright optical pulse caused by the rapid shock-heating of a gas, typically argon or xenon, which is confined in the spherical glass or plastic microballoon. The light pulse is transmitted via the optical fiber to a photo detector, usually a streak camera or photomultiplier tube. The microballoon optical sensor (called an optical pin by analogy tomore » standard electrical pins), was originally developed for diagnosing an explosive, pulsed-power generator. Optical pins are required due to the EMP. The optical pins are economical arrival-time indicators because many channels can be recorded by one streak camera. The generator tests and related experiments, involving projectile velocities and detonation velocities of several kilometers per sec have demonstrated the usefulness of the sensors in explosives and ballistics applications. The technical and cost advantages of this optical pin make it potentially useful for many electromagnetic, explosive, and ballistics applications.« less
Comparing electronic probes for volumetric water content of low-density feathermoss
Overduin, P.P.; Yoshikawa, K.; Kane, D.L.; Harden, J.W.
2005-01-01
Purpose - Feathermoss is ubiquitous in the boreal forest and across various land-cover types of the arctic and subarctic. A variety of affordable commercial sensors for soil moisture content measurement have recently become available and are in use in such regions, often in conjunction with fire-susceptibility or ecological studies. Few come supplied with calibrations suitable or suggested for soils high in organics. Aims to test seven of these sensors for use in feathermoss, seeking calibrations between sensor output and volumetric water content. Design/methodology/approach - Measurements from seven sensors installed in live, dead and burned feathermoss samples, drying in a controlled manner, were compared to moisture content measurements. Empirical calibrations of sensor output to water content were determined. Findings - Almost all of the sensors tested were suitable for measuring the moss sample water content, and a unique calibration for each sensor for this material is presented. Differences in sensor design lead to changes in sensitivity as a function of volumetric water content, affecting the spatial averaging over the soil measurement volume. Research limitations/implications - The wide range of electromagnetic sensors available include frequency and time domain designs with variations in wave guide and sensor geometry, the location of sensor electronics and operating frequency. Practical implications - This study provides information for extending the use of electromagnetic sensors to feathermoss. Originality/value - A comparison of volumetric water content sensor mechanics and design is of general interest to researchers measuring soil water content. In particular, researchers working in wetlands, boreal forests and tundra regions will be able to apply these results. ?? Emerald Group Publishing Limited.
NASA Astrophysics Data System (ADS)
Fielder, Robert S.; Palmer, Matthew E.; Davis, Matthew A.; Engelbrecht, Gordon P.
2006-01-01
Luna Innovations has developed a novel, fiber optic, hybrid pressure-temperature sensor system for extremely high-temperature environments that is capable of reliable operation up to 1050 °C. This system is based on the extremely high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were tested for operability in a relatively high neutron dose environment up to 6.9×1017 n/cm2. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for space nuclear power applications including extremely low mass, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future space exploration missions would provide a substantial improvement in spacecraft instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to space nuclear applications. Successes and lessons learned will be highlighted. Additionally, development needs will be covered which will suggest a framework for a coherent plan to continue work in this area.
NASA Astrophysics Data System (ADS)
Tan, Jiubin; Qiang, Xifu; Ding, Xuemei
1991-08-01
Optical sensors have two notable advantages in modern precision measurement. One is that they can be used in nondestructive measurement because the sensors need not touch the surfaces of workpieces in measuring. The other one is that they can strongly resist electromagnetic interferences, vibrations, and noises, so they are suitable to be used in machining sites. But the drift of light intensity and the changing of the reflection coefficient at different measuring positions of a workpiece may have great influence on measured results. To solve the problem, a spectroscopic differential characteristic compensating method is put forward. The method can be used effectively not only in compensating the measuring errors resulted from the drift of light intensity but also in eliminating the influence to measured results caused by the changing of the reflection coefficient. Also, the article analyzes the possibility of and the means of separating data errors of a clinical measuring system for form and position errors of circular workpieces.
Augmented reality visualization of deformable tubular structures for surgical simulation.
Ferrari, Vincenzo; Viglialoro, Rosanna Maria; Nicoli, Paola; Cutolo, Fabrizio; Condino, Sara; Carbone, Marina; Siesto, Mentore; Ferrari, Mauro
2016-06-01
Surgical simulation based on augmented reality (AR), mixing the benefits of physical and virtual simulation, represents a step forward in surgical training. However, available systems are unable to update the virtual anatomy following deformations impressed on actual anatomy. A proof-of-concept solution is described providing AR visualization of hidden deformable tubular structures using nitinol tubes sensorized with electromagnetic sensors. This system was tested in vitro on a setup comprised of sensorized cystic, left and right hepatic, and proper hepatic arteries. In the trial session, the surgeon deformed the tubular structures with surgical forceps in 10 positions. The mean, standard deviation, and maximum misalignment between virtual and real arteries were 0.35, 0.22, and 0.99 mm, respectively. The alignment accuracy obtained demonstrates the feasibility of the approach, which can be adopted in advanced AR simulations, in particular as an aid to the identification and isolation of tubular structures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Savin, A.; Novy, F.; Fintova, S.; Steigmann, R.
2017-08-01
The current stage of nondestructive evaluation techniques imposes the development of new electromagnetic (EM) methods that are based on high spatial resolution and increased sensitivity. In order to achieve high performance, the work frequencies must be either radifrequencies or microwaves. At these frequencies, at the dielectric/conductor interface, plasmon polaritons can appear, propagating between conductive regions as evanescent waves. In order to use the evanescent wave that can appear even if the slits width is much smaller that the wavwelength of incident EM wave, a sensor with metamaterial (MM) is used. The study of the EM field diffraction against the edge of long thin discontinuity placed under the inspected surface of a conductive plate has been performed using the geometrical optics principles. This type of sensor having the reception coils shielded by a conductive screen with a circular aperture placed in the front of reception coil of emission reception sensor has been developed and “transported” information for obtaining of magnified image of the conductive structures inspected. This work presents a sensor, using MM conical Swiss roll type that allows the propagation of evanescent waves and the electromagnetic images are magnified. The test method can be successfully applied in a variety of applications of maxim importance such as defect/damage detection in materials used in automotive and aviation technologies. Applying this testing method, spatial resolution can be improved.
High-Sensitivity Fiber-Optic Ultrasound Sensors for Medical Imaging Applications
Wen, H.; Wiesler, D.G.; Tveten, A.; Danver, B.; Dandridge, A.
2010-01-01
This paper presents several designs of high-sensitivity, compact fiber-optic ultrasound sensors that may be used for medical imaging applications. These sensors translate ultrasonic pulses into strains in single-mode optical fibers, which are measured with fiber-based laser interferometers at high precision. The sensors are simpler and less expensive to make than piezoelectric sensors, and are not susceptible to electromagnetic interference. It is possible to make focal sensors with these designs, and several schemes are discussed. Because of the minimum bending radius of optical fibers, the designs are suitable for single element sensors rather than for arrays. PMID:9691368
Application of Time Domain Reflectometers in Urban Settings
Time domain reflectometers (TDRs) are sensors that measure the volumetric water content of soils and porous media. The sensors consist of stainless steel rods connected to a circuit board in an epoxy housing. An electromagnetic pulse is propagated along the rods. The time, or per...
Predicting risk of invasive species occurrence - remote-sesning strategies
USDA-ARS?s Scientific Manuscript database
Remote sensing is a means to describe characteristics of an area without physically sampling the area. Remote sensors can be mounted on a satellite, plane, or other airborne structure. Remotely sensed data allow for landscape perspectives on management issues. Sensors measure the electromagnetic ene...
Electro-optic voltage sensor head
Crawford, T.M.; Davidson, J.R.; Woods, G.K.
1999-08-17
The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers. 6 figs.
Electro-optic voltage sensor head
Crawford, Thomas M.; Davidson, James R.; Woods, Gregory K.
1999-01-01
The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.
NASA Astrophysics Data System (ADS)
Iervolino, Onorio; Meo, Michele
2017-04-01
Sign language is a method of communication for deaf-mute people with articulated gestures and postures of hands and fingers to represent alphabet letters or complete words. Recognizing gestures is a difficult task, due to intrapersonal and interpersonal variations in performing them. This paper investigates the use of Spiral Passive Electromagnetic Sensor (SPES) as a motion recognition tool. An instrumented glove integrated with wearable multi-SPES sensors was developed to encode data and provide a unique response for each hand gesture. The device can be used for recognition of gestures; motion control and well-defined gesture sets such as sign languages. Each specific gesture was associated to a unique sensor response. The gloves encode data regarding the gesture directly in the frequency spectrum response of the SPES. The absence of chip or complex electronic circuit make the gloves light and comfortable to wear. Results showed encouraging data to use SPES in wearable applications.
Human-motion energy harvester for autonomous body area sensors
NASA Astrophysics Data System (ADS)
Geisler, M.; Boisseau, S.; Perez, M.; Gasnier, P.; Willemin, J.; Ait-Ali, I.; Perraud, S.
2017-03-01
This paper reports on a method to optimize an electromagnetic energy harvester converting the low-frequency body motion and aimed at powering wireless body area sensors. This method is based on recorded accelerations, and mechanical and transduction models that enable an efficient joint optimization of the structural parameters. An optimized prototype of 14.8 mmØ × 52 mm, weighting 20 g, has generated up to 4.95 mW in a resistive load when worn at the arm during a run, and 6.57 mW when hand-shaken. Among the inertial electromagnetic energy harvesters reported so far, this one exhibits one of the highest power densities (up to 730 μW cm-3). The energy harvester was finally used to power a bluetooth low energy wireless sensor node with accelerations measurements at 25 Hz.
FEM Modeling of a Magnetoelectric Transducer for Autonomous Micro Sensors in Medical Application
NASA Astrophysics Data System (ADS)
Yang, Gang; Talleb, Hakeim; Gensbittel, Aurélie; Ren, Zhuoxiang
2015-11-01
In the context of wireless and autonomous sensors, this paper presents the multiphysics modeling of an energy transducer based on magnetoelectric (ME) composite for biomedical applications. The study considers the power requirement of an implanted sensor, the communication distance, the size limit of the device for minimal invasive insertion as well as the electromagnetic exposure restriction of the human body. To minimize the electromagnetic absorption by the human body, the energy source is provided by an external reader emitting low frequency magnetic field. The modeling is carried out with the finite element method by solving simultaneously the multiple physics problems including the electric load of the conditioning circuit. The simulation results show that with the T-L mode of a trilayer laminated ME composite, the transducer can deliver the required energy in respecting different constraints.
Di Sante, Raffaella
2015-01-01
In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987
Di Sante, Raffaella
2015-07-30
In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.
Combined Instrumentation Package COMARS+ for the ExoMars Schiaparelli Lander
NASA Astrophysics Data System (ADS)
Gülhan, Ali; Thiele, Thomas; Siebe, Frank; Kronen, Rolf
2018-02-01
In order to measure aerothermal parameters on the back cover of the ExoMars Schiaparelli lander the instrumentation package COMARS+ was developed by DLR. Consisting of three combined aerothermal sensors, one broadband radiometer sensor and an electronic box the payload provides important data for future missions. The aerothermal sensors called COMARS combine four discrete sensors measuring static pressure, total heat flux, temperature and radiative heat flux at two specific spectral bands. The infrared radiation in a broadband spectral range is measured by the separate broadband radiometer sensor. The electronic box of the payload is used for amplification, conditioning and multiplexing of the sensor signals. The design of the payload was mainly carried out using numerical tools including structural analyses, to simulate the main mechanical loads which occur during launch and stage separation, and thermal analyses to simulate the temperature environment during cruise phase and Mars entry. To validate the design an extensive qualification test campaign was conducted on a set of qualification models. The tests included vibration and shock tests to simulate launch loads and stage separation shocks. Thermal tests under vacuum condition were performed to simulate the thermal environment of the capsule during the different flight phases. Furthermore electromagnetic compatibility tests were conducted to check that the payload is compatible with the electromagnetic environment of the capsule and does not emit electromagnetic energy that could cause electromagnetic interference in other devices. For the sensor heads located on the ExoMars back cover radiation tests were carried out to verify their radiation hardness. Finally the bioburden reduction process was demonstrated on the qualification hardware to show the compliance with the planetary protection requirements. To test the actual heat flux, pressure and infrared radiation measurement under representative conditions, aerothermal tests were performed in an arc-heated wind tunnel facility. After all qualification tests were passed successfully, the acceptance test campaign for the flight hardware at acceptance level included the same tests than the qualification campaign except shock, radiation hardness and aerothermal tests. After passing all acceptance tests, the COMARS+ flight hardware was integrated into the Schiaparelli capsule in January 2015 at the ExoMars integration site at Thales Alenia Space in Turin. Although the landing of Schiaparelli failed, resulting in the loss of most COMARS+ flight data because they were stored on the lander, some data points were directly transmitted to the orbiter at low sampling rate during the entry phase. These data indicate that all COMARS+ sensors delivered useful data until parachute deployment with the exception of the plasma black-out phase. Since measured structure and sensor housing temperatures are far below predicted pre-flight values, a new calibration using COMARS+ spare sensors at temperatures below 0 °C is necessary.
Underwater Electromagnetic Sensor Networks, Part II: Localization and Network Simulations
Zazo, Javier; Valcarcel Macua, Sergio; Zazo, Santiago; Pérez, Marina; Pérez-Álvarez, Iván; Jiménez, Eugenio; Cardona, Laura; Brito, Joaquín Hernández; Quevedo, Eduardo
2016-01-01
In the first part of the paper, we modeled and characterized the underwater radio channel in shallow waters. In the second part, we analyze the application requirements for an underwater wireless sensor network (U-WSN) operating in the same environment and perform detailed simulations. We consider two localization applications, namely self-localization and navigation aid, and propose algorithms that work well under the specific constraints associated with U-WSN, namely low connectivity, low data rates and high packet loss probability. We propose an algorithm where the sensor nodes collaboratively estimate their unknown positions in the network using a low number of anchor nodes and distance measurements from the underwater channel. Once the network has been self-located, we consider a node estimating its position for underwater navigation communicating with neighboring nodes. We also propose a communication system and simulate the whole electromagnetic U-WSN in the Castalia simulator to evaluate the network performance, including propagation impairments (e.g., noise, interference), radio parameters (e.g., modulation scheme, bandwidth, transmit power), hardware limitations (e.g., clock drift, transmission buffer) and complete MAC and routing protocols. We also explain the changes that have to be done to Castalia in order to perform the simulations. In addition, we propose a parametric model of the communication channel that matches well with the results from the first part of this paper. Finally, we provide simulation results for some illustrative scenarios. PMID:27999309
Electromagnetic navigation diagnostic bronchoscopy for small peripheral lung lesions.
Makris, D; Scherpereel, A; Leroy, S; Bouchindhomme, B; Faivre, J-B; Remy, J; Ramon, P; Marquette, C-H
2007-06-01
The present study prospectively evaluated the diagnostic yield and safety of electromagnetic navigation-guided bronchoscopy biopsy, for small peripheral lung lesions in patients where standard techniques were nondiagnostic. The study was conducted in a tertiary medical centre on 40 consecutive patients considered unsuitable for straightforward surgery or computed tomography (CT)-guided transthoracic needle aspiration biopsy, due to comorbidities. The lung lesion diameter was mean+/-sem 23.5+/-1.5 mm and the depth from the visceral-costal pleura was 14.9+/-2 mm. Navigation was facilitated by an electromagnetic tracking system which could detect a position sensor incorporated into a flexible catheter advanced through a bronchoscope. Information obtained during bronchoscopy was superimposed on previously acquired CT data. Divergence between CT data and data obtained during bronchoscopy was calculated by the system's software as a measure of navigational accuracy. All but one of the target lesions was reached and the overall diagnostic yield was 62.5% (25-40). Diagnostic yield was significantly affected by CT-to-body divergence; yield was 77.2% when estimated divergence was
Ballistocardiogram of avian eggs determined by an electromagnetic induction coil.
Ono, H; Akiyama, R; Sakamoto, Y; Pearson, J T; Tazawa, H
1997-07-01
As an avian embryo grows within an eggshell, the whole egg is moved by embryonic activity and also by the embryonic heartbeat. A technical interest in detecting minute biological movements has prompted the development of techniques and systems to measure the cardiogenic ballistic movement of the egg or ballistocardiogram (BCG). In this context, there is interest in using an electromagnetic induction coil (solenoid) as another simple sensor to measure the BCG and examining its possibility for BCG measurement. A small permanent magnet is attached tightly to the surface of an incubated egg, and then the egg with the magnet is placed in a solenoid. Preliminary model analysis is made to design a setup of the egg, magnet and solenoid coupling system. Then, simultaneous measurement with a laser displacement measuring system, developed previously, is made for chicken eggs, indicating that the solenoid detects the minute cardiogenic ballistic movements and that the BCG determined is a measure of the velocity of egg movements.
NASA Astrophysics Data System (ADS)
Auken, E.; Tulaczyk, S. M.; Foley, N.; Dugan, H.; Schamper, C.; Peter, D.; Virginia, R. A.; Sørensen, K.
2015-12-01
Here, we demonstrate how high powered airborne electromagnetic resistivity is efficiently used to map 3D domains of unfrozen water below glaciers and permafrost in the cold regions of the Earth. Exploration in these parts of the world has typically been conducted using radar methods, either ground-based or from an airborne platform. Radar is an excellent method if the penetrated material has a low electrical conductivity, but in materials with higher conductivity, such as sediments with liquid water, the energy is attenuated . Such cases are efficiently explored with electromagnetic methods, which attenuate less quickly in conductive media and can therefore 'see through' conductors and return valuable information about their electrical properties. In 2011, we used a helicopter-borne, time-domain electromagnetic sensor to map resistivity in the subsurface across the McMurdo Dry Valleys (MDV). The MDV are a polar desert in coastal Antarctica where glaciers, permafrost, ice-covered lakes, and ephemeral summer streams coexist. In polar environments, this airborne electromagnetic system excels at finding subsurface liquid water, as water which remains liquid under cold conditions must be sufficiently saline, and therefore electrically conductive. In Taylor Valley, in the MDV, our data show extensive subsurface low resistivity layers beneath higher resistivity layers, which we interpret as cryoconcentrated hypersaline brines lying beneath glaciers and frozen permafrost. These brines appear to be contiguous with surface lakes, subglacial regions, and the Ross Sea, which could indicate a regional hydrogeologic system wherein solutes may be transported between surface reservoirs by ionic diffusion and subsurface flow. The system as of 2011 had a maximum exploration depth of about 300 m. However, newer and more powerful airborne systems can explore to a depth of 500 - 600 m and new ground based instruments will get to 1000 m. This is sufficient to penetrate to the base of almost all coastal Antarctic glaciers. The MDV, where conductive brines exist beneath resistive glacial ice and frozen permafrost, are especially well suited to exploration by airborne electromagnetic, but similarly suitable systems are likely to exist elsewhere in the cryosphere.
Investigation of the detection of shallow tunnels using electromagnetic and seismic waves
NASA Astrophysics Data System (ADS)
Counts, Tegan; Larson, Gregg; Gürbüz, Ali Cafer; McClellan, James H.; Scott, Waymond R., Jr.
2007-04-01
Multimodal detection of subsurface targets such as tunnels, pipes, reinforcement bars, and structures has been investigated using both ground-penetrating radar (GPR) and seismic sensors with signal processing techniques to enhance localization capabilities. Both systems have been tested in bi-static configurations but the GPR has been expanded to a multi-static configuration for improved performance. The use of two compatible sensors that sense different phenomena (GPR detects changes in electrical properties while the seismic system measures mechanical properties) increases the overall system's effectiveness in a wider range of soils and conditions. Two experimental scenarios have been investigated in a laboratory model with nearly homogeneous sand. Images formed from the raw data have been enhanced using beamforming inversion techniques and Hough Transform techniques to specifically address the detection of linear targets. The processed data clearly indicate the locations of the buried targets of various sizes at a range of depths.
NASA Astrophysics Data System (ADS)
Krämer, Sebastian G. M.; Wiesent, Benjamin; Müller, Mathias S.; Puente León, Fernando; Méndez Hernández, Yarú
2008-04-01
Wind turbine blades are made of composite materials and reach a length of more than 42 meters. Developments for modern offshore turbines are working on about 60 meters long blades. Hence, with the increasing height of the turbines and the remote locations of the structures, health monitoring systems are becoming more and more important. Therefore, fiber-optic sensor systems are well-suited, as they are lightweight, immune against electromagnetic interference (EMI), and as they can be multiplexed. Based on two separately existing concepts for strain measurements and lightning detection on wind turbines, a fused system is presented. The strain measurement system is based on a reflective fiber-Bragg-grating (FBG) network embedded in the composite structure of the blade. For lightning detection, transmissive &fiber-optic magnetic field sensors based on the Faraday effect are used to register the lightning parameters and estimate the impact point. Hence, an existing lightning detection system will be augmented, due to the fusion, by the capability to measure strain, temperature and vibration. Load, strain, temperature and impact detection information can be incorporated into the turbine's monitoring or SCADA system and remote controlled by operators. Data analysis techniques allow dynamic maintenance scheduling to become a reality, what is of special interest for the cost-effective maintenance of large offshore or badly attainable onshore wind parks. To prove the feasibility of this sensor fusion on one optical fiber, interferences between both sensor systems are investigated and evaluated.
NASA Astrophysics Data System (ADS)
Shen, Yu; Wang, Ziyuan; Wen, Huaihai; Zhou, Zhi
2014-11-01
Fiber optic sensor (FOS) has received much attention in the field of Structure Health Monitoring (SHM) due to its advantages of low weight, small size, high sensitivity multiplexing ability, free of electromagnetic interference and long durability. However, in harsh environments, structures often undergo large strain where few traditional fiber optic sensors could survive. This paper report a novel material with features of light-transparent, chemically inert, thermally stable material Polydimethylsiloxane(PDMS) fabricated large axial/shearing strain sensor. The sensor was fabricated by directly coupling a conventional signal mode fiber into half cured PDMS material using a translation stage under the inspection of a microscope. Meanwhile, a laser diode and a photo detector were used in the fabrication process to make sure the sensor achieved minimum light loss. An experiment was conducted later to investigate the sensor's transmission characteristic in 1310nm infrared laser relating with the applied axial/shearing strain. The results show that the proposed sensor survived an axial strain of 6 7.79 x 106 μɛ ; a shear of 4 6.49 x 104 μɛ with good linearity and repetition. The experiment indicates that the proposed sensor can potentially be used as strain sensing elements in Structure Health Monitoring systems under earthquake or explosion.
Advanced Docking System With Magnetic Initial Capture
NASA Technical Reports Server (NTRS)
Lewis, James L.; Carroll, Monty B.; Morales, Ray; Le, Thang
2004-01-01
An advanced docking system is undergoing development to enable softer, safer docking than was possible when using prior docking systems. This system is intended for original use in docking of visiting spacecraft and berthing the Crew Return Vehicle at the International Space Station (ISS). The system could also be adapted to a variety of other uses in outer space and on Earth, including mating submersible vehicles, assembling structures, and robotic berthing/handling of payloads and cargo. Heretofore, two large spacecraft have been docked by causing the spacecraft to approach each other at a speed sufficient to activate capture latches - a procedure that results in large docking loads and is made more difficult because of the speed. The basic design and mode of operation of the present advanced docking system would eliminate the need to rely on speed of approach to activate capture latches, thereby making it possible to reduce approach speed and thus docking loads substantially. The system would comprise an active subsystem on one spacecraft and a passive subsystem on another spacecraft with which the active subsystem will be docked. The passive subsystem would include an extensible ring containing magnetic striker plates and guide petals. The active subsystem would include mating guide petals and electromagnets containing limit switches and would be arranged to mate with the magnetic striker plates and guide petals of the passive assembly. The electromagnets would be carried on (but not rigidly attached to) a structural ring that would be instrumented with load sensors. The outputs of the sensors would be sent, along with position information, as feedback to an electronic control subsystem. The system would also include electromechanical actuators that would extend or retract the ring upon command by the control subsystem.
L-C Measurement Acquisition Method for Aerospace Systems
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor, B. Douglas; Shams, Qamar A.; Fox, Robert L.
2003-01-01
This paper describes a measurement acquisition method for aerospace systems that eliminates the need for sensors to have physical connection to a power source (i.e., no lead wires) or to data acquisition equipment. Furthermore, the method does not require the sensors to be in proximity to any form of acquisition hardware. Multiple sensors can be interrogated using this method. The sensors consist of a capacitor, C(p), whose capacitance changes with changes to a physical property, p, electrically connected to an inductor, L. The method uses an antenna to broadcast electromagnetic energy that electrically excites one or more inductive-capacitive sensors via Faraday induction. This method facilitates measurements that were not previously possible because there was no practical means of providing power and data acquisition electrical connections to a sensor. Unlike traditional sensors, which measure only a single physical property, the manner in which the sensing element is interrogated simultaneously allows measurement of at least two unrelated physical properties (e.g., displacement rate and fluid level) by using each constituent of the L-C element. The key to using the method for aerospace applications is to increase the distance between the L-C elements and interrogating antenna; develop all key components to be non-obtrusive and to develop sensing elements that can easily be implemented. Techniques that have resulted in increased distance between antenna and sensor will be presented. Fluid-level measurements and pressure measurements using the acquisition method are demonstrated in the paper.
Fiber-Optic Strain Sensors With Linear Characteristics
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1993-01-01
Fiber-optic modal domain strain sensors having linear characteristics over wide range of strains proposed. Conceived in effort to improve older fiber-optic strain sensors. Linearity obtained by appropriate choice of design parameters. Pattern of light and dark areas at output end of optical fiber produced by interference between electromagnetic modes in which laser beam propagates in fiber. Photodetector monitors intensity at one point in pattern.
Advances in Classification Methods for Military Munitions Response
2010-12-01
Response Herb Nelson Objective of the Course Provide an update on the sensors , methods, and status of the classification of military munitions...advanced EMI sensors 2Advances in Classification - Introduction Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Electromagnetics (EM): Fundamentals and Parameter Extraction Stephen Billings EM Module Outline ● EMI Fundamentals How EMI sensors work and what they measure
2014-12-22
Radio frequency identification ( RFID ) based corrosion monitoring sensors: Part II Application and testing of the coating materials Youliang He1...email: yohe@nrcan.gc.ca Keywords: Corrosion monitoring; Wireless sensor; RFID ; Electromagnetic interference; Coating. Abstract Cost-effective...Radio Frequency Identification ( RFID ) transponders (tags) were investigated for wireless corrosion monitoring by applying a metal-filled conductive
NASA Astrophysics Data System (ADS)
Bowden, D. C.; Engelland-Gay, H.; Enright, A.; Gardner, J.; Klemperer, S. L.; McPhee, D. K.; Glen, J. M.
2010-12-01
Since 2006 a collaborative effort between Stanford University, the USGS, and UC Berkeley has maintained five ultra-low frequency electromagnetic (UFLEM) stations along the San Andreas Fault system. The standard site is equipped with three orthogonal coil magnetometers and two sets of orthogonal 100m electrode pairs, provides data in the 0.01- 20 Hz bandwidth, and operates alongside a broadband seismometer. We intend to use these data to characterize the generation of subsurface EM signals, and determine whether there exists a correlation to seismic activity or tectonic processes of the region. Our EM data is archived with the collocated seismic data at UC Berkeley’s Northern California Earthquake Data Center (NCEDC) and is available to the public at http://ulfem-data.stanford.edu/. Two new hardware developments in 2010 will provide more reliable calibration of our magnetic recorders, and will improve station reliability while reducing station cost. We have developed a method for calibration of buried magnetic sensor coils. As our strategy for detecting possible EM anomalies related to earthquake processes relies on comparing measured EM signals across multiple sites, it is necessary to confirm that each magnetic sensor at each site responds similarly and accurately. A portable coil placed on the ground surface, in turn above each buried magnetic sensor, generates a time-varying magnetic field of known magnitude at several different known frequencies in the bandwidth of interest. In this way, the health of each sensor can be tested and factory produced response curve verified. Signal generation and power supply for the coil is designed to be cheap (< $100), easily portable, and exactly reproducible between trials to within 95%, but does require an operator visit to each site for the measurements. In the future we intend to modify the portable system to create a winding that can be permanently installed around every magnetic sensor to provide regular calibration by a remote trigger. We have also designed, prototyped and here report results of preliminary field tests on a new data acquisition and logging system. The new system includes 8-channel A-to-D conversion, data packaging, telemetry, and power supply to components. The new system is intended to replace existing commercially-available digitizers (Quanterra) and electric-field signal conditioners (EMI, Inc.) at a fraction of their cost, while maintaining signal fidelity and system noise at levels commensurate with our ULFEM monitoring application.
Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures
NASA Technical Reports Server (NTRS)
Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser
2012-01-01
Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the system can capture acoustic emission events that can be a prelude to structural failure, as well as piezoactuator-induced ultrasonic Lamb-waves-based techniques as a basis for damage detection.
Contactless Inductive Bubble Detection in a Liquid Metal Flow
Gundrum, Thomas; Büttner, Philipp; Dekdouk, Bachir; Peyton, Anthony; Wondrak, Thomas; Galindo, Vladimir; Eckert, Sven
2016-01-01
The detection of bubbles in liquid metals is important for many technical applications. The opaqueness and the high temperature of liquid metals set high demands on the measurement system. The high electrical conductivity of the liquid metal can be exploited for contactless methods based on electromagnetic induction. We will present a measurement system which consists of one excitation coil and a pickup coil system on the opposite sides of the pipe. With this sensor we were able to detect bubbles in a sodium flow inside a stainless steel pipe and bubbles in a column filled with a liquid Gallium alloy. PMID:26751444
A Fiber-Optic Current Sensor for Lightning Measurement Applications
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.
2015-01-01
An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.
A fiber-optic current sensor for lightning measurement applications
NASA Astrophysics Data System (ADS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.
2015-05-01
An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.
Optical Fiber Grating Hydrogen Sensors: A Review
Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong
2017-01-01
In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed. PMID:28287499
Optical Fiber Grating Hydrogen Sensors: A Review.
Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong
2017-03-12
In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.
Multiview echocardiography fusion using an electromagnetic tracking system.
Punithakumar, Kumaradevan; Hareendranathan, Abhilash R; Paakkanen, Riitta; Khan, Nehan; Noga, Michelle; Boulanger, Pierre; Becher, Harald
2016-08-01
Three-dimensional ultrasound is an emerging modality for the assessment of complex cardiac anatomy and function. The advantages of this modality include lack of ionizing radiation, portability, low cost, and high temporal resolution. Major limitations include limited field-of-view, reliance on frequently limited acoustic windows, and poor signal to noise ratio. This study proposes a novel approach to combine multiple views into a single image using an electromagnetic tracking system in order to improve the field-of-view. The novel method has several advantages: 1) it does not rely on image information for alignment, and therefore, the method does not require image overlap; 2) the alignment accuracy of the proposed approach is not affected by any poor image quality as in the case of image registration based approaches; 3) in contrast to previous optical tracking based system, the proposed approach does not suffer from line-of-sight limitation; and 4) it does not require any initial calibration. In this pilot project, we were able to show that using a heart phantom, our method can fuse multiple echocardiographic images and improve the field-of view. Quantitative evaluations showed that the proposed method yielded a nearly optimal alignment of image data sets in three-dimensional space. The proposed method demonstrates the electromagnetic system can be used for the fusion of multiple echocardiography images with a seamless integration of sensors to the transducer.
Future superconductivity applications in space - A review
NASA Astrophysics Data System (ADS)
Krishen, Kumar; Ignatiev, Alex
High temperature superconductor (HISC) materials and devices can provide immediate applications for many space missions. The in-space thermal environment provides an opportunity to develop, test, and apply this technology to enhance performance and reliability for many applications of crucial importance to NASA. Specifically, the technology development areas include: (1) high current power transmission, (2) microwave components, devices, and antennas, (3) microwave, optical, and infrared sensors, (4) signal processors, (5) submillimeter wave components and systems, (6) ultra stable space clocks, (7) electromagnetic launch systems, and (8) accelerometers and position sensors for flight operations. HTSC is expected to impact NASA's Lunar Bases, Mars exploration, Mission to Earth, and Planetary exploration programs providing enabling and cost-effect technology. A review of the space applications of the HTSC technology is presented. Problem areas in technology development needing special attention are identified.
Design of access-tube TDR sensor for soil water content: Theory
USDA-ARS?s Scientific Manuscript database
The design of a cylindrical access-tube mounted waveguide was developed for in-situ soil water content sensing using time-domain reflectometry (TDR). To optimize the design with respect to sampling volume and losses, we derived the electromagnetic fields produced by a TDR sensor with cylindrical geo...
REMOTE SENSING FOR ENVIRONMENTAL COMPLIANCE MONITORING
I. Remote Sensing Basics
A. The electromagnetic spectrum demonstrates what we can see both in the visible and beyond the visible part of the spectrum through the use of various types of sensors.
B. Resolution refers to what a remote sensor can see and how often.
1. Sp...
NASA Technical Reports Server (NTRS)
2004-01-01
Topics covered include: Analysis of SSEM Sensor Data Using BEAM; Hairlike Percutaneous Photochemical Sensors; Video Guidance Sensors Using Remotely Activated Targets; Simulating Remote Sensing Systems; EHW Approach to Temperature Compensation of Electronics; Polymorphic Electronic Circuits; Micro-Tubular Fuel Cells; Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter; PVM Wrapper; Simulation of Hyperspectral Images; Algorithm for Controlling a Centrifugal Compressor; Hybrid Inflatable Pressure Vessel; Double-Acting, Locking Carabiners; Position Sensor Integral with a Linear Actuator; Improved Electromagnetic Brake; Flow Straightener for a Rotating-Drum Liquid Separator; Sensory-Feedback Exoskeletal Arm Controller; Active Suppression of Instabilities in Engine Combustors; Fabrication of Robust, Flat, Thinned, UV-Imaging CCDs; Chemical Thinning Process for Fabricating UV-Imaging CCDs; Pseudoslit Spectrometer; Waste-Heat-Driven Cooling Using Complex Compound Sorbents; Improved Refractometer for Measuring Temperatures of Drops; Semiconductor Lasers Containing Quantum Wells in Junctions; Phytoplankton-Fluorescence-Lifetime Vertical Profiler; Hexagonal Pixels and Indexing Scheme for Binary Images; Finding Minimum-Power Broadcast Trees for Wireless Networks; and Automation of Design Engineering Processes.
Wang, Jingang; Gao, Can; Yang, Jie
2014-01-01
Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid. PMID:25036333
Infrasound from ground to space
NASA Astrophysics Data System (ADS)
Bowman, Daniel Charles
Acoustic detector networks are usually located on the Earth's surface. However, these networks suffer from shortcomings such as poor detection range and pervasive wind noise. An alternative is to deploy acoustic sensors on high altitude balloons. In theory, such platforms can resolve signals arriving from great distances, acquire others that never reach the surface at all, and avoid wind noise entirely. This dissertation focuses on scientific advances, instrumentation, and analytical techniques resulting from the development of such sensor arrays. Results from infrasound microphones deployed on balloon flights in the middle stratosphere are described, and acoustic sources such as the ocean microbarom and building ventilation systems are discussed. Electromagnetic noise originating from the balloon, flight system, and other payloads is shown to be a pervasive issue. An experiment investigating acoustic sensor calibration at low pressures is presented, and implications for high altitude recording are considered. Outstanding challenges and opportunities in sound measurement using sensors embedded in the free atmosphere are outlined. Acoustic signals from field scale explosions designed to emulate volcanic eruptions are described, and their generation mechanisms modeled. Wave forms recorded on sensors suspended from tethered helium balloons are compared with those detected on ground stations during the experiment. Finally, the Hilbert-Huang transform, a high time resolution spectral analysis method for nonstationary and nonlinear time series, is presented.
Analyzing planetary transits with a smartphone
NASA Astrophysics Data System (ADS)
Barrera-Garrido, Azael
2015-03-01
Today's smartphones are getting more sensors than ever as factory-installed accessories. The time when a luxury mobile phone had only vertical and GPS sensors is gone. New smartphones come equipped with multiple sensors for many physical parameters. Smartphones are becoming portable physics laboratory data loggers for a variety of measurements in mechanics, thermodynamics, electromagnetism, and optics. All sorts of possibilities are now open, provided their sensors are calibrated. Many examples using the sensors available in smartphones have been presented, mostly in this column and a few other publications, such as acceleration sensors,1-3 microphones,4,5 camera,6-8 and light sensors.9,10
Remote driven and read MEMS sensors for harsh environments.
Knobloch, Aaron J; Ahmad, Faisal R; Sexton, Dan W; Vernooy, David W
2013-10-21
The utilization of high accuracy sensors in harsh environments has been limited by the temperature constraints of the control electronics that must be co-located with the sensor. Several methods of remote interrogation for resonant sensors are presented in this paper which would allow these sensors to be extended to harsh environments. This work in particular demonstrates for the first time the ability to acoustically drive a silicon comb drive resonator into resonance and electromagnetically couple to the resonator to read its frequency. The performance of this system was studied as a function of standoff distance demonstrating the ability to excite and read the device from 22 cm when limited to drive powers of 30 mW. A feedback architecture was implemented that allowed the resonator to be driven into resonance from broadband noise and a standoff distance of 15 cm was demonstrated. It is emphasized that no junction-based electronic device was required to be co-located with the resonator, opening the door for the use of silicon-based, high accuracy MEMS devices in high temperature wireless applications.
Study on dynamic response measurement of the submarine pipeline by full-term FBG sensors.
Zhou, Jinghai; Sun, Li; Li, Hongnan
2014-01-01
The field of structural health monitoring is concerned with accurately and reliably assessing the integrity of a given structure to reduce ownership costs, increase operational lifetime, and improve safety. In structural health monitoring systems, fiber Bragg grating (FBG) is a promising measurement technology for its superior ability of explosion proof, immunity to electromagnetic interference, and high accuracy. This paper is a study on the dynamic characteristics of fiber Bragg grating (FBG) sensors applied to a submarine pipeline, as well as an experimental investigation on a laboratory model of the pipeline. The dynamic response of a submarine pipeline under seismic excitation is a coupled vibration of liquid and solid interaction. FBG sensors and strain gauges are used to monitor the dynamic response of a submarine pipeline model under a variety of dynamic loading conditions and the maximum working frequency of an FBG strain sensor is calculated according to its dynamic strain responses. Based on the theoretical and experimental results, it can be concluded that FBG sensor is superior to strain gauge and satisfies the demand of dynamic strain measurement.
Study on Dynamic Response Measurement of the Submarine Pipeline by Full-Term FBG Sensors
Zhou, Jinghai; Sun, Li; Li, Hongnan
2014-01-01
The field of structural health monitoring is concerned with accurately and reliably assessing the integrity of a given structure to reduce ownership costs, increase operational lifetime, and improve safety. In structural health monitoring systems, fiber Bragg grating (FBG) is a promising measurement technology for its superior ability of explosion proof, immunity to electromagnetic interference, and high accuracy. This paper is a study on the dynamic characteristics of fiber Bragg grating (FBG) sensors applied to a submarine pipeline, as well as an experimental investigation on a laboratory model of the pipeline. The dynamic response of a submarine pipeline under seismic excitation is a coupled vibration of liquid and solid interaction. FBG sensors and strain gauges are used to monitor the dynamic response of a submarine pipeline model under a variety of dynamic loading conditions and the maximum working frequency of an FBG strain sensor is calculated according to its dynamic strain responses. Based on the theoretical and experimental results, it can be concluded that FBG sensor is superior to strain gauge and satisfies the demand of dynamic strain measurement. PMID:24971391
Near field planar microwave probe sensor for nondestructive condition assessment of wood products
NASA Astrophysics Data System (ADS)
Tiwari, Nilesh Kumar; Singh, Surya Prakash; Akhtar, M. Jaleel
2018-06-01
In this work, the unified methodology based on the newly designed electrically small planar resonant microwave sensor to detect the subsurface defect in wood products is presented. The proposed planar sensor involves loading of the specially designed coupled microstrip line with a novel small resonating element at its end. The novel design topology of the proposed near field sensor substantially increases the overall resolution and sensitivity of the microwave scanning system due to the strong localization of the electric field in the electrically small sensing region. A detailed electromagnetic and quasi static analysis of the near field scanning mechanism is also described in this work, which helps to understand the physics involved in the proposed scanning mechanism. The prototype of the designed sensor is fabricated on a 0.8 mm Roger 5880 substrate, and accordingly, the scattering parameters of the sensor under both loaded and unloaded conditions are measured. The measured and simulated scattering parameters under the unloaded condition are compared to validate the fabricated sensor, and a closed match between the simulated and measured resonance frequencies is observed. The fabricated sensor is used here for two potential applications, viz., the dielectric sensing of various low permittivity contrast dielectric materials and subsurface imaging of wood products to trace concealed defects and moisture content under the thin paint layer. The proposed resonant sensor can potentially be used to develop the low profile, low cost, non-destructive, and non-invasive quality monitoring system for inspecting various types of wood products without peeling off the upper paint coating.
Modular multiple sensors information management for computer-integrated surgery.
Vaccarella, Alberto; Enquobahrie, Andinet; Ferrigno, Giancarlo; Momi, Elena De
2012-09-01
In the past 20 years, technological advancements have modified the concept of modern operating rooms (ORs) with the introduction of computer-integrated surgery (CIS) systems, which promise to enhance the outcomes, safety and standardization of surgical procedures. With CIS, different types of sensor (mainly position-sensing devices, force sensors and intra-operative imaging devices) are widely used. Recently, the need for a combined use of different sensors raised issues related to synchronization and spatial consistency of data from different sources of information. In this study, we propose a centralized, multi-sensor management software architecture for a distributed CIS system, which addresses sensor information consistency in both space and time. The software was developed as a data server module in a client-server architecture, using two open-source software libraries: Image-Guided Surgery Toolkit (IGSTK) and OpenCV. The ROBOCAST project (FP7 ICT 215190), which aims at integrating robotic and navigation devices and technologies in order to improve the outcome of the surgical intervention, was used as the benchmark. An experimental protocol was designed in order to prove the feasibility of a centralized module for data acquisition and to test the application latency when dealing with optical and electromagnetic tracking systems and ultrasound (US) imaging devices. Our results show that a centralized approach is suitable for minimizing synchronization errors; latency in the client-server communication was estimated to be 2 ms (median value) for tracking systems and 40 ms (median value) for US images. The proposed centralized approach proved to be adequate for neurosurgery requirements. Latency introduced by the proposed architecture does not affect tracking system performance in terms of frame rate and limits US images frame rate at 25 fps, which is acceptable for providing visual feedback to the surgeon in the OR. Copyright © 2012 John Wiley & Sons, Ltd.
An approach to improving the signal-to-optical-noise ratio of pulsed magnetic field photonic sensors
NASA Astrophysics Data System (ADS)
Wang, Jiang-ping; Li, Yu-quan
2008-12-01
During last years, interest in pulsed magnetic field sensors has widely increased. In fact, magnetic field measurement has a critical part in various scientific and technical areas. In order to research on pulsed magnetic field characteristic and corresponding measuring and defending means, a sensor with high immunity to electrical noise, high sensitivity, high accuracy and wide dynamic range is needed. The conventional magnetic field measurement system currently use active metallic probes which can disturb the measuring magnetic field and make sensor very sensitive to electromagnetic noise. Photonic magnetic field sensor exhibit great advantages with respect to the electronic ones: a very good galvanic insulation, high sensitivity and very wide bandwidth. Photonic sensing technology is fit for demand of a measure pulsed magnetic field. A type of pulsed magnetic field photonic sensor has been designed, analyzed, and tested. The cross polarization angle in photonic sensor effect on the signal-to-optical-noise ratio is theoretically analyzed in this paper. A novel approach for improving the signal-to-optical-noise ratio of pulsed magnetic field sensors was proposed. The experiments have proved that this approach is practical. The theoretical analysis and simulation results show that the signal-to-optical-noise ratio can potentially be considerably improved by setup suitable for the cross polarization angle.
Design and characterization of microstrip based E-field sensor for GSM and UMTS frequency bands
NASA Astrophysics Data System (ADS)
Narang, N.; Dubey, S. K.; Negi, P. S.; Ojha, V. N.
2016-12-01
An Electric (E-) field sensor based on coplanar waveguide-fed microstrip antenna to measure E-field strength for dual-band operation at 914 MHz and 2.1 GHz is proposed, designed, and characterized. The parametric optimization of the design has been performed to obtain resonance at global system for mobile communication and universal mobile telecommunication system frequency band. Low return loss (-17 dB and -19 dB), appropriate gain (0.50 dB and 1.55 dB), and isotropic behaviour (directivity ˜ 1 dB), respectively, at 914 MHz and 2.1 GHz, are obtained for probing application. Antenna factor (AF) is used as an important parameter to characterize the performance of the E-field sensor. The AF measurement is explained in detail and results are reported. Finally, using the designed E-field sensor, the E-field strength measurements are carried out in a transverse electromagnetic cell. The key sources of uncertainties in the measurement are identified, evaluated, and incorporated into the final results. The measurement results are compared with theoretical values, which are found in good agreement. For comparative validation, the results are evaluated with reference to an already calibrated commercially available isotropic probe.
Design and characterization of microstrip based E-field sensor for GSM and UMTS frequency bands.
Narang, N; Dubey, S K; Negi, P S; Ojha, V N
2016-12-01
An Electric (E-) field sensor based on coplanar waveguide-fed microstrip antenna to measure E-field strength for dual-band operation at 914 MHz and 2.1 GHz is proposed, designed, and characterized. The parametric optimization of the design has been performed to obtain resonance at global system for mobile communication and universal mobile telecommunication system frequency band. Low return loss (-17 dB and -19 dB), appropriate gain (0.50 dB and 1.55 dB), and isotropic behaviour (directivity ∼ 1 dB), respectively, at 914 MHz and 2.1 GHz, are obtained for probing application. Antenna factor (AF) is used as an important parameter to characterize the performance of the E-field sensor. The AF measurement is explained in detail and results are reported. Finally, using the designed E-field sensor, the E-field strength measurements are carried out in a transverse electromagnetic cell. The key sources of uncertainties in the measurement are identified, evaluated, and incorporated into the final results. The measurement results are compared with theoretical values, which are found in good agreement. For comparative validation, the results are evaluated with reference to an already calibrated commercially available isotropic probe.
Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors
Wang, Hui; Zhang, Ke-Qin
2013-01-01
Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027
Non-Invasive Electromagnetic Skin Patch Sensor to Measure Intracranial Fluid–Volume Shifts
Griffith, Jacob; Cluff, Kim; Eckerman, Brandon; Aldrich, Jessica; Becker, Ryan; Moore-Jansen, Peer; Patterson, Jeremy
2018-01-01
Elevated intracranial fluid volume can drive intracranial pressure increases, which can potentially result in numerous neurological complications or death. This study’s focus was to develop a passive skin patch sensor for the head that would non-invasively measure cranial fluid volume shifts. The sensor consists of a single baseline component configured into a rectangular planar spiral with a self-resonant frequency response when impinged upon by external radio frequency sweeps. Fluid volume changes (10 mL increments) were detected through cranial bone using the sensor on a dry human skull model. Preliminary human tests utilized two sensors to determine feasibility of detecting fluid volume shifts in the complex environment of the human body. The correlation between fluid volume changes and shifts in the first resonance frequency using the dry human skull was classified as a second order polynomial with R2 = 0.97. During preliminary and secondary human tests, a ≈24 MHz and an average of ≈45.07 MHz shifts in the principal resonant frequency were measured respectively, corresponding to the induced cephalad bio-fluid shifts. This electromagnetic resonant sensor may provide a non-invasive method to monitor shifts in fluid volume and assist with medical scenarios including stroke, cerebral hemorrhage, concussion, or monitoring intracranial pressure. PMID:29596338
NASA Technical Reports Server (NTRS)
Sargent, Noel B.
2001-01-01
A 55 We free-piston Stirling Technology Demonstration Convertor (TDC) has been tested as part of an evaluation to determine its feasibility as a means for significantly reducing the amount of radioactive material required compared to Radioisotope Thermoelectric Generators (RTGs) to support long-term space science missions. Measurements were made to quantify the low frequency magnetic and electric fields radiated from the Stirling's 80 Hertz (Hz) linear alternator and control electronics in order to determine the magnitude of reduction that will be required to protect sensitive field sensors aboard some science missions. One identified "Solar Probe" mission requires a 100 dB reduction in the low frequency magnetic field over typical military standard design limits, to protect its plasma wave sensor. This paper discusses the electromagnetic interference (EMI) control options relative to the physical design impacts for this power system, composed of 3 basic electrical elements. They are (1) the Stirling Power Convertor with its linear alternator, (2) the power switching and control electronics to convert the 90 V, 80 Hz alternator output to DC for the use of the spacecraft, and (3) the interconnecting wiring including any instrumentation to monitor and control items 1 and 2.
Yang, Yuanmu; Kravchenko, Ivan I.; Briggs, Dayrl P.; ...
2014-12-16
Fano-resonant plasmonic metamaterials and nanostructures have become a major focus of the nanophotonics fields over the past several years due their ability to produce high quality factor (Q-factor) resonances. The origin of such resonances is the interference between a broad and narrow resonance, ultimately allowing suppression of radiative damping. However, Fano-resonant plasmonic structures still suffer non-radiative damping due to Ohmic loss, ultimately limiting the achievable Q-factors to values less than ~10. Here, we report experimental demonstration of Fano-resonant silicon-based metamaterials that have a response that mimics the electromagnetically induced transparency (EIT) found in atomic systems. Due to extremely low absorptionmore » loss, a record-high quality factor (Q-factor) of 306 was experimentally observed. Furthermore, the unit cell of the metamaterial was designed with a feed-gap which results in strong local field enhancement in the surrounding medium resulting in strong light-matter interaction. This allows the metamaterial to serve as a refractive index sensor with a figure-of-merit (FOM) of 101, far exceeding the performance of previously demonstrated localized surface plasmon resonance sensors.« less
Precision timing detectors with cadmium-telluride sensor
NASA Astrophysics Data System (ADS)
Bornheim, A.; Pena, C.; Spiropulu, M.; Xie, S.; Zhang, Z.
2017-09-01
Precision timing detectors for high energy physics experiments with temporal resolutions of a few 10 ps are of pivotal importance to master the challenges posed by the highest energy particle accelerators such as the LHC. Calorimetric timing measurements have been a focus of recent research, enabled by exploiting the temporal coherence of electromagnetic showers. Scintillating crystals with high light yield as well as silicon sensors are viable sensitive materials for sampling calorimeters. Silicon sensors have very high efficiency for charged particles. However, their sensitivity to photons, which comprise a large fraction of the electromagnetic shower, is limited. To enhance the efficiency of detecting photons, materials with higher atomic numbers than silicon are preferable. In this paper we present test beam measurements with a Cadmium-Telluride (CdTe) sensor as the active element of a secondary emission calorimeter with focus on the timing performance of the detector. A Schottky type CdTe sensor with an active area of 1cm2 and a thickness of 1 mm is used in an arrangement with tungsten and lead absorbers. Measurements are performed with electron beams in the energy range from 2 GeV to 200 GeV. A timing resolution of 20 ps is achieved under the best conditions.
Piezoelectric and electromagnetic respiratory effort energy harvesters.
Shahhaidar, Ehsaneh; Padasdao, Bryson; Romine, R; Stickley, C; Boric-Lubecke, Olga
2013-01-01
The movements of the torso due to normal breathing could be harvested as an alternative, and renewable power source for an ultra-low power electronic device. The same output signal could also be recorded as a physiological signal containing information about breathing, thus enabling self-powered wearable biosensors/harvesters. In this paper, the selection criteria for such a biosensor, optimization procedure, trade-offs, and challenges as a sensor and harvester are presented. The empirical data obtained from testing different modules on a mechanical torso and a human subject demonstrated that an electromagnetic generator could be used as an unobtrusive self-powered medical sensor by harvesting more power, offering reasonable amount of output voltage for rectification purposes, and detecting respiratory effort.
Apparatus for responding to an anomalous change in downhole pressure
Hall, David R.; Fox, Joe; Wilde, Tyson; Barlow, Jonathan S.
2010-04-13
A method of responding to an anomalous change in downhole pressure in a bore hole comprises detecting the anomalous change in downhole pressure, sending a signal along the segmented electromagnetic transmission path, receiving the signal, and performing a automated response. The anomalous change in downhole pressure is detected at a first location along a segmented electromagnetic transmission path, and the segmented electromagnetic transmission path is integrated into the tool string. The signal is received by at least one receiver in communication with the segmented electromagnetic transmission path. The automated response is performed along the tool string. Disclosed is an apparatus for responding to an anomalous change in downhole pressure in a downhole tool string, comprising a segmented electromagnetic transmission path connecting one or more receivers and at least one pressure sensor.
2011-03-01
following: disturbance of sensitive environments (including wildlife); dredging up potentially contaminated sediments; physical contact with UXO; damaging or...is discussed below. 2.1.1 EM61 System and Sensors The EM61 is a high-resolution time-domain electromagnetic metal detector that is capable of...the position of the tow boat and then try to extrapolate the position of the detector based on cable length and GPS heading. In most cases, the
Microprocessor controlled force actuator
NASA Technical Reports Server (NTRS)
Zimmerman, D. C.; Inman, D. J.; Horner, G. C.
1986-01-01
The mechanical and electrical design of a prototype force actuator for vibration control of large space structures (LSS) is described. The force actuator is an electromagnetic system that produces a force by reacting against a proof-mass. The actuator has two colocated sensors, a digital microcontroller, and a power amplifier. The total weight of actuator is .998 kg. The actuator has a steady state force output of approximately 2.75 N from approximately 2 Hz to well beyond 1000 Hz.
Electro-optic high voltage sensor
Davidson, James R.; Seifert, Gary D.
2003-09-16
A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.
Bucak, Ihsan Ömür
2010-01-01
In the automotive industry, electromagnetic variable reluctance (VR) sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV) system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.
Bucak, İhsan Ömür
2010-01-01
In the automotive industry, electromagnetic variable reluctance (VR) sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV) system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion. PMID:22294906
Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong
2012-01-01
Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.
A high frequency electromagnetic impedance imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex
2003-01-15
Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systemsmore » for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.« less
Measurement of Electromagnetic Properties of Lightning with 10 Nanosecond Resolution
NASA Technical Reports Server (NTRS)
Baum, C. E.; Breen, E. L.; Oneill, J. P.; Moore, C. B.; Hall, D. L.
1980-01-01
Electromagnetic data recorded from lightning strikes are presented. The data analysis reveals general characteristics of fast electromagnetic fields measured at the ground including rise times, amplitudes, and time patterns. A look at the electromagnetic structure of lightning shows that the shortest rise times in the vicinity of 30 ns are associated with leader leader streamers. Lightning location is based on electromagnetic field characteristics and is compared to a nearby sky camera. The fields from both leaders and return strokes were measured and are discussed. The data were obtained during 1978 and 1979 from lightning strikes occuring within 5 kilometers of an underground metal instrumentation room located on South Baldy peak near Langmuir Laboratory, New Mexico. The computer controlled instrumentation consisted of sensors previously used for measuring the nuclear electromagnetic pulse (EMP) and analog-digital recorders with 10 ns sampling, 256 levels of resolution, and 2 kilobytes of internal memory.
A new EMI system for detection and classification of challenging targets
NASA Astrophysics Data System (ADS)
Shubitidze, F.; Fernández, J. P.; Barrowes, B. E.; O'Neill, K.
2013-06-01
Advanced electromagnetic induction (EMI) sensors currently feature multi-axis illumination of targets and tri-axial vector sensing (e.g., MetalMapper), or exploit multi-static array data acquisition (e.g., TEMTADS). They produce data of high density, quality, and diversity, and have been combined with advanced EMI models to provide superb classification performance relative to the previous generation of single-axis, monostatic sensors. However, these advances yet have to improve significantly our ability to classify small, deep, and otherwise challenging targets. Particularly, recent live-site discrimination studies at Camp Butner, NC and Camp Beale, CA have revealed that it is more challenging to detect and discriminate small munitions (with calibers ranging from 20 mm to 60 mm) than larger ones. In addition, a live-site test at the Massachusetts Military Reservation, MA highlighted the difficulties for current sensors to classify large, deep, and overlapping targets with high confidence. There are two main approaches to overcome these problems: 1) adapt advanced EMI models to the existing systems and 2) improve the detection limits of current sensors by modifying their hardware. In this paper we demonstrate a combined software/hardware approach that will provide extended detection range and spatial resolution to next-generation EMI systems; we analyze and invert EMI data to extract classification features for small and deep targets; and we propose a new system that features a large transmitter coil.
An efficient biosensor made of an electromagnetic trap and a magneto-resistive sensor.
Li, Fuquan; Kosel, Jürgen
2014-09-15
Magneto-resistive biosensors have been found to be useful because of their high sensitivity, low cost, small size, and direct electrical output. They use super-paramagnetic beads to label a biological target and detect it via sensing the stray field. In this paper, we report a new setup for magnetic biosensors, replacing the conventional "sandwich" concept with an electromagnetic trap. We demonstrate the capability of the biosensor in the detection of E. coli. The trap is formed by a current-carrying microwire that attracts the magnetic beads into a sensing space on top of a tunnel magneto-resistive sensor. The sensor signal depends on the number of beads in the sensing space, which depends on the size of the beads. This enables the detection of biological targets, because such targets increase the volume of the beads. Experiments were carried out with a 6 µm wide microwire, which attracted the magnetic beads from a distance of 60 μm, when a current of 30 mA was applied. A sensing space of 30 µm in length and 6 µm in width was defined by the magnetic sensor. The results showed that individual E. coli bacterium inside the sensing space could be detected using super-paramagnetic beads that are 2.8 µm in diameter. The electromagnetic trap setup greatly simplifies the device and reduces the detection process to two steps: (i) mixing the bacteria with magnetic beads and (ii) applying the sample solution to the sensor for measurement, which can be accomplished within about 30 min with a sample volume in the µl range. This setup also ensures that the biosensor can be cleaned easily and re-used immediately. The presented setup is readily integrated on chips via standard microfabrication techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
Electro-optic voltage sensor with beam splitting
Woods, Gregory K.; Renak, Todd W.; Davidson, James R.; Crawford, Thomas M.
2002-01-01
The invention is a miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware typically found in the prior art. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.
Fiber Sensor Systems Based on Fiber Laser and Microwave Photonic Technologies
Fu, Hongyan; Chen, Daru; Cai, Zhiping
2012-01-01
Fiber-optic sensors, especially fiber Bragg grating (FBG) sensors are very attractive due to their numerous advantages over traditional sensors, such as light weight, high sensitivity, cost-effectiveness, immunity to electromagnetic interference, ease of multiplexing and so on. Therefore, fiber-optic sensors have been intensively studied during the last several decades. Nowadays, with the development of novel fiber technology, more and more newly invented fiber technologies bring better and superior performance to fiber-optic sensing networks. In this paper, the applications of some advanced photonic technologies including fiber lasers and microwave photonic technologies for fiber sensing applications are reviewed. FBG interrogations based on several kinds of fiber lasers, especially the novel Fourier domain mode locking fiber laser, have been introduced; for the application of microwave photonic technology, examples of microwave photonic filtering utilized as a FBG sensing interrogator and microwave signal generation acting as a transversal loading sensor have been given. Both theoretical analysis and experimental demonstrations have been carried out. The comparison of these advanced photonic technologies for the applications of fiber sensing is carried out and important issues related to the applications have been addressed and the suitable and potential application examples have also been discussed in this paper. PMID:22778591
Integrated Liquid Bismuth Propellant Feed System
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.
2006-01-01
A prototype bismuth propellant feed and control system was constructed and tested. An electromagnetic pump was used in this system to provide fine control of the hydrostatic pressure, and a new type of in-line flow sensor was developed to provide an accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of macor for the main body of both components. Post-test inspections of both components revealed no cracks or leaking in either. In separate proof-of-concept experiments, the pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, with a pressure of 10 kPa at 30 A. Flow sensing was successfully demonstrated in a bench-top test using gallium as a substitute liquid metal. A real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.
Calibration of micro-capacitance measurement system for thermal barrier coating testing
NASA Astrophysics Data System (ADS)
Ren, Yuan; Chen, Dixiang; Wan, Chengbiao; Tian, Wugang; Pan, Mengchun
2018-06-01
In order to comprehensively evaluate the thermal barrier coating system of an engine blade, an integrated planar sensor combining electromagnetic coils with planar capacitors is designed, in which the capacitance measurement accuracy of the planar capacitor is a key factor. The micro-capacitance measurement system is built based on an impedance analyzer. Because of the influence of non-ideal factors on the measuring system, there is an obvious difference between the measured value and the actual value. It is necessary to calibrate the measured results and eliminate the difference. In this paper, the measurement model of a planar capacitive sensor is established, and the relationship between the measured value and the actual value of capacitance is deduced. The model parameters are estimated with the least square method, and the calibration accuracy is evaluated with experiments under different dielectric conditions. The capacitance measurement error is reduced from 29% ˜ 46.5% to around 1% after calibration, which verifies the feasibility of the calibration method.
A COTS-MQS shipborne EO/IR imaging system
NASA Astrophysics Data System (ADS)
Hutchinson, Mark A.; Miller, John L.; Weaver, James
2005-05-01
The Sea Star SAFIRE is a commercially developed, off the shelf, military qualified system (COTS-MQS) consisting of a 640 by 480 InSb infrared imager, laser rangefinder and visible imager in a gyro-stabilized platform designed for shipborne applications. These applications include search and rescue, surveillance, fire control, fisheries patrol, harbor security, and own-vessel perimeter security and self protection. Particularly challenging considerations unique to shipborne systems include the demanding environment conditions, man-machine interfaces, and effects of atmospheric conditions on sensor performance. Shipborne environmental conditions requiring special attention include electromagnetic fields, as well as resistance to rain, ice and snow, shock, vibration, and salt. Features have been implemented to withstand exposure to water and high humidity; anti-ice/de-ice capability for exposure to snow and ice; wash/wipe of external windows; corrosion resistance for exposure to water and salt spray. A variety of system controller configurations provide man-machine interfaces suitable for operation on ships. EO sensor developments that address areas of haze penetration, glint, and scintillation will be presented.
Negative Refractive Index Metasurfaces for Enhanced Biosensing
Jakšić, Zoran; Vuković, Slobodan; Matovic, Jovan; Tanasković, Dragan
2010-01-01
In this paper we review some metasurfaces with negative values of effective refractive index, as scaffolds for a new generation of surface plasmon polariton-based biological or chemical sensors. The electromagnetic properties of a metasurface may be tuned by its full immersion into analyte, or by the adsorption of a thin layer on it, both of which change its properties as a plasmonic guide. We consider various simple forms of plasmonic crystals suitable for this purpose. We start with the basic case of a freestanding, electromagnetically symmetrical plasmonic slab and analyze different ultrathin, multilayer structures, to finally consider some two-dimensional “wallpaper” geometries like split ring resonator arrays and fishnet structures. A part of the text is dedicated to the possibility of multifunctionalization where a metasurface structure is simultaneously utilized both for sensing and for selectivity enhancement. Finally we give an overview of surface-bound intrinsic electromagnetic noise phenomena that limits the ultimate performance of a metasurfaces sensor. PMID:28879974
Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents.
RoyChoudhury, Sohini; Rawat, Vaishali; Jalal, Ahmed Hasnain; Kale, S N; Bhansali, Shekhar
2016-12-15
Potential applications of thin film metamaterials are diverse and their realization to offer miniaturized waveguides, antennas and shielding patterns are on anvil. These artificially engineered structures can produce astonishing electromagnetic responses because of their constituents being engineered at much smaller dimensions than the wavelength of the incident electromagnetic wave, hence behaving as artificial materials. Such micro-nano dimensions of thin film metamaterial structures can be customized for various applications due to their exclusive responses to not only electromagnetic, but also to acoustic and thermal waves that surpass the natural materials' properties. In this paper, the recent major advancements in the emerging fields of diagnostics (sensors) and therapeutics involving thin film metamaterials have been reviewed and underlined; discussing their edge over conventional counterpart techniques; concentrating on their design considerations and feasible ways of achieving them. Challenges faced in sensitivity, precision, accuracy and factors that interfere with the degree of performance of the sensors are also dealt with, herein. Copyright © 2016 Elsevier B.V. All rights reserved.
Rain Simulation for the Test of Automotive Surround Sensors
NASA Astrophysics Data System (ADS)
Hasirlioglu, Sinan; Riener, Andreas; Doric, Igor
2017-04-01
The WHO Global Health Observatory data indicates that over 1.25 million people die in traffic accidents annually. To save lives, car manufacturers spend lot of efforts on the development of novel safety systems aiming to avoid or mitigate accidents and provide maximum protection for vehicle occupants as well as vulnerable road users. All the safety features mainly rely on data from surround sensors such as radar, lidar and camera and intelligent vehicles today use these environmental data for instant decision making and vehicle control. As already small errors in sensor data measurements could lead to catastrophes like major injuries or road traffic fatalities, it is of utmost importance to ensure high reliability and accuracy of sensors and safety systems. This work focuses on the influence of environmental factors such as rain conditions, as it is known that rain drops scatter the electromagnetic waves. The result is incorrect measurements with a direct negative impact on environment detection. To identify potential problems of sensors under varying environmental conditions, systems are today tested in real-world settings with two main problems: First, tests are time-consuming and second, environmental conditions are not reproducible. Our approach to test the influence of weather on automotive sensors is to use an indoor rain simulator. Our artificial rain maker, installed at CARISSMA (Center of Automotive Research on Integrated Safety Systems and Measurement Area), is parametrized with rain characteristics measured in the field using a standard disdrometer. System behavior on artificial rain is compared and validated with natural rainfall. With this simulator it is finally possible to test environmental influence at various levels and under reproducible conditions. This saves lot of efforts required for the test process itself and furthermore has a positive impact on the reliability of sensor systems due to the fact that test driven development is enabled.
Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun
2017-01-01
In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA) estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs) under the condition of gain and phase uncertainties (GPU) and mutual coupling (MC). GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA) based on the instrumental sensors method (ISM). The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result. PMID:29072588
Zhang, Dong; Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun
2017-10-26
In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA) estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs) under the condition of gain and phase uncertainties (GPU) and mutual coupling (MC). GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA) based on the instrumental sensors method (ISM). The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result.
Design and testing of access-tube TDR soil water sensor
USDA-ARS?s Scientific Manuscript database
We developed the design of a waveguide on the exterior of an access tube for use in time-domain reflectometry (TDR) for in-situ soil water content sensing. In order to optimize the design with respect to sampling volume and losses, we derived the electromagnetic (EM) fields produced by a TDR sensor...
Staniec, Kamil; Habrych, Marcin
2016-07-19
The importance of constructing wide-area sensor networks for holistic environmental state evaluation has been demonstrated. A general structure of such a network has been presented with distinction of three segments: local (based on ZigBee, Ethernet and ModBus techniques), core (base on cellular technologies) and the storage/application. The implementation of these techniques requires knowledge of their technical limitations and electromagnetic compatibility issues. The former refer to ZigBee performance degradation in multi-hop transmission, whereas the latter are associated with the common electromagnetic spectrum sharing with other existing technologies or with undesired radiated emissions generated by the radio modules of the sensor network. In many cases, it is also necessary to provide a measurement station with autonomous energy source, such as solar. As stems from measurements of the energetic efficiency of these sources, one should apply them with care and perform detailed power budget since their real performance may turn out to be far from expected. This, in turn, may negatively affect-in particular-the operation of chemical sensors implemented in the network as they often require additional heating.
Staniec, Kamil; Habrych, Marcin
2016-01-01
The importance of constructing wide-area sensor networks for holistic environmental state evaluation has been demonstrated. A general structure of such a network has been presented with distinction of three segments: local (based on ZigBee, Ethernet and ModBus techniques), core (base on cellular technologies) and the storage/application. The implementation of these techniques requires knowledge of their technical limitations and electromagnetic compatibility issues. The former refer to ZigBee performance degradation in multi-hop transmission, whereas the latter are associated with the common electromagnetic spectrum sharing with other existing technologies or with undesired radiated emissions generated by the radio modules of the sensor network. In many cases, it is also necessary to provide a measurement station with autonomous energy source, such as solar. As stems from measurements of the energetic efficiency of these sources, one should apply them with care and perform detailed power budget since their real performance may turn out to be far from expected. This, in turn, may negatively affect—in particular—the operation of chemical sensors implemented in the network as they often require additional heating. PMID:27447633
Micromachined piconewton force sensor for biophysics investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Steven J.; Thayer, Gayle E.; Corwin, Alex D.
2006-10-23
We describe a micromachined force sensor that is able to measure forces as small as 1 pN in both air and water. First, we measured the force field produced by an electromagnet on individual 2.8 {mu}m magnetic beads glued to the sensor. By repeating with 11 different beads, we measured a 9% standard deviation in saturation magnetization. We next demonstrated that the sensor was fully functional when immersed in physiological buffer. These results show that the force sensors can be useful for magnetic force calibration and also for measurement of biophysical forces on chip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabayan, H.S.; Bogdan, E.; Zicker, J.
The electromagnetic fields in the immediate vicinity of the Experimental Test Accelerator (ETA) at the Lawrence Livermore Laboratory have been characterized. Various EM sensors that cover the frequency band from the very low frequencies up into the GHz region have been used. The report describes in detail the probes, the test set-up and the data processing techniques.
Soil Moisture Estimation Using Hyperspectral SWIR Imagery
NASA Astrophysics Data System (ADS)
Lewis, D.
2007-12-01
The U.S. Geological Survey (USGS) is engaged with the U.S. Department of Agriculture's (USDA) Agricultural Research Service (ARS) and the University of Georgia's National Environmentally Sound Production Agriculture Laboratory (NESPAL) both in Tifton, Georgia, USA, to develop transformations for medium and high resolution remotely sensed images to generate moisture indicators for soil. The Institute for Technology Development (ITD) is located at the Stennis Space Center in southern Mississippi and has developed hyperspectral sensor systems that, when mounted in aircraft, collect electromagnetic reflectance data of the terrain. The sensor suite consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near InfraRed (VNIR) and Short Wave InfraRed (SWIR). The USDA/ ARS' Southeast Watershed Research Laboratory has probes that measure and record soil moisture. Data taken from the ITD SWIR sensor and the USDA/ARS soil moisture meters were analyzed to study the informatics relationships between SWIR data and measured soil moisture. The geographic locations of 29 soil moisture meters provided by the USDA/ARS are in the vicinity of Tifton, Georgia. Using USGS Digital Ortho Quads (DOQ), flightlines were drawn over the 29 soil moisture meters. The SWIR sensor was installed into an aircraft. The coordinates for the flightlines were also loaded into the navigational system of the aircraft. This airborne platform was used to collect the data over these flightlines. In order to prepare the data set for analysis, standard preprocessing was performed. These standard processes included sensor calibration, spectral subsetting, and atmospheric calibration. All 60 bands of the SWIR data were collected for each line in the image data, 15 bands of which were stripped from the data set leaving 45 bands of information in the wavelength range of 906 to 1705 nanometers. All the image files were calibrated using the regression equations generated by using radiometer data collected over calibration tarps. Regions of Interest (ROI) were drawn over the image data set corresponding with the location of the soil moisture meters. Scripts written in ENVI's Interactive Data Language (IDL) were developed to extract the spectra from each of the processed hyperspectral image data over each soil moisture meter from its corresponding ROI. The informatics relationship between soil moisture and SWIR spectra was identified by using the resulting data set.
Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves
NASA Astrophysics Data System (ADS)
Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.
2018-04-01
Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple mockups of the DSTs being used to develop the sensor system.
Temperature and pressure fiber-optic sensors applied to minimally invasive diagnostics and therapies
NASA Astrophysics Data System (ADS)
Hamel, Caroline; Pinet, Éric
2006-02-01
We present how fiber-optic temperature or pressure sensors could be applied to minimally invasive diagnostics and therapies. For instance a miniature pressure sensor based on micro-optical mechanical systems (MOMS) could solve most of the problems associated with fluidic pressure transduction presently used for triggering purposes. These include intra-aortic balloon pumping (IABP) therapy and other applications requiring detection of fast and/or subtle fluid pressure variations such as for intracranial pressure monitoring or for urology diagnostics. As well, miniature temperature sensors permit minimally invasive direct temperature measurement in diagnostics or therapies requiring energy transfer to living tissues. The extremely small size of fiber-optic sensors that we have developed allows quick and precise in situ measurements exactly where the physical parameters need to be known. Furthermore, their intrinsic immunity to electromagnetic interference (EMI) allows for the safe use of EMI-generating therapeutic or diagnostic equipments without compromising the signal quality. With the trend of ambulatory health care and the increasing EMI noise found in modern hospitals, the use of multi-parameter fiber-optic sensors will improve constant patient monitoring without any concern about the effects of EMI disturbances. The advantages of miniature fiberoptic sensors will offer clinicians new monitoring tools that open the way for improved diagnostic accuracy and new therapeutic technologies.
A passive optical fibre hydrophone array utilising fibre Bragg grating sensors
NASA Astrophysics Data System (ADS)
Karas, Andrew R.; Papageorgiou, Anthony W.; Cook, Peter R.; Arkwright, John W.
2018-02-01
Many current high performance hydrophones use piezo-electric technology to measure sound pressure in water. These hydrophones are sensitive enough to detect any sound above the lowest ambient ocean acoustic noise, however cost of manufacture, weight and storage volume of the array as well as deployment and maintenance costs can limit their largescale application. Piezo-electric systems also have issues with electro-magnetic interference and the signature of the electrical cabling required in a large array. A fibre optic hydrophone array has advantages over the piezo-electric technology in these areas. This paper presents the operating principle of a passive optical fibre hydrophone array utilising Fibre Bragg Gratings (FBGs). The multiple FBG sensors are interrogated using a single solid state spectrometer which further reduces the cost of the deployed system. A noise equivalent power (NEP) comparison of the developed FBG hydrophone versus an existing piezo-electric hydrophone is presented as well as a comparison to the lowest ambient ocean acoustic noise (sea state zero). This research provides an important first step towards a cost effective multi sensor hydrophone array using FBGs.
Kasaya, Takafumi; Mitsuzawa, Kyohiko; Goto, Tada-Nori; Iwase, Ryoichi; Sayanagi, Keizo; Araki, Eiichiro; Asakawa, Kenichi; Mikada, Hitoshi; Watanabe, Tomoki; Takahashi, Ichiro; Nagao, Toshiyasu
2009-01-01
Sagami Bay is an active tectonic area in Japan. In 1993, a real-time deep sea floor observatory was deployed at 1,175 m depth about 7 km off Hatsushima Island, Sagami Bay to monitor seismic activities and other geophysical phenomena. Video cameras monitored biological activities associated with tectonic activities. The observation system was renovated completely in 2000. An ocean bottom electromagnetic meter (OBEM), an ocean bottom differential pressure gauge (DPG) system, and an ocean bottom gravity meter (OBG) were installed January 2005; operations began in February of that year. An earthquake (M5.4) in April 2006, generated a submarine landslide that reached the Hatsushima Observatory, moving some sensors. The video camera took movies of mudflows; OBEM and other sensors detected distinctive changes occurring with the mudflow. Although the DPG and OBG were recovered in January 2008, the OBEM continues to obtain data.
NASA Astrophysics Data System (ADS)
Challa, Vinod R.; Prasad, M. G.; Fisher, Frank T.
2009-09-01
Vibration energy harvesting is being pursued as a means to power wireless sensors and ultra-low power autonomous devices. From a design standpoint, matching the electrical damping induced by the energy harvesting mechanism to the mechanical damping in the system is necessary for maximum efficiency. In this work two independent energy harvesting techniques are coupled to provide higher electrical damping within the system. Here the coupled energy harvesting device consists of a primary piezoelectric energy harvesting device to which an electromagnetic component is added to better match the total electrical damping to the mechanical damping in the system. The first coupled device has a resonance frequency of 21.6 Hz and generates a peak power output of ~332 µW, compared to 257 and 244 µW obtained from the optimized, stand-alone piezoelectric and electromagnetic energy harvesting devices, respectively, resulting in a 30% increase in power output. A theoretical model has been developed which closely agrees with the experimental results. A second coupled device, which utilizes the d33 piezoelectric mode, shows a 65% increase in power output in comparison to the corresponding stand-alone, single harvesting mode devices. This work illustrates the design considerations and limitations that one must consider to enhance device performance through the coupling of multiple harvesting mechanisms within a single energy harvesting device.
Test and evaluation of Japanese GPR-EMI dual sensor systems at Benkovac test site in Croatia
NASA Astrophysics Data System (ADS)
Ishikawa, J.; Furuta, K.; Pavković, Nikola
2007-04-01
This paper presents an experimental design and the evaluation result of a trial that were carried out from 1 February to 9 March 2006 using real PMA-1A and PMA-2 landmines at the Benkovac test site in Croatia. The objective of the Croatia- Japan joint trial is to evaluate dual sensor systems, which use both ground penetrating radar (GPR) and electromagnetic inductive (EMI) sensors. A comparative trial was also carried out by Croatian deminers using an existing EMI sensor, i.e., a metal detector (MD). The trial aims at evaluating differences in performance between dual sensors and MDs, especially in terms of discrimination of landmines from metal fragments and extension of detectable range in the depth direction. Devices evaluated here are 4 prototypes of anti-personnel landmine detection systems developed under a project of the Japan Science and Technology Agency (JST), the supervising authority of which is the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The prototypes provide operators with subsurface images, and final decision whether a shadow in the image is a real landmine or not is left to the operator. This is similar to the way that medical doctors find cancer by reading CT images. Since operators' pre-knowledge of locations of buried targets significantly influences the test result, three test lanes, which have 3 different kinds of soils, have been designed to be suitable for blind tests. The result showed that the dual sensor systems have a potential to discriminate landmines from metal fragments and that probability of detection for small targets in mineralized soils can be improved by using GPR.
Recent Development of Nanomaterial-Doped Conductive Polymers
NASA Astrophysics Data System (ADS)
Asyraf, Mohammad; Anwar, Mahmood; Sheng, Law Ming; Danquah, Michael K.
2017-12-01
Conductive polymers (CPs) have received significant research attention in material engineering for applications in microelectronics, micro-scale sensors, electromagnetic shielding, and micro actuators. Numerous research efforts have been focused on enhancing the conductivity of CPs by doping. Various conductive materials, such as metal nanoparticles and carbon-based nanoparticles, and structures, such as silver nanoparticles and graphene nanosheets, have been converted into polypyrrole and polypyrrole compounds as the precursors to developing hybrids, conjugates, or crystal nodes within the matrix to enhance the various structural properties, particularly the electrical conductivity. This article reviews nanomaterial doping of conductive polymers alongside technological advancements in the development and application of nanomaterial-doped polymeric systems. Emphasis is given to conductive nanomaterials such as nano-silver particles and carbon-based nanoparticles, graphene nano-sheets, fullerene, and carbon nanotubes (CNT) as dopants for polypyrrole-based CPs. The nature of induced electrical properties including electromagnetic absorption, electrical capacitance, and conductivities of polypyrrole systems is also discussed. The prospects and challenges associated with the development and application of CPs are also presented.
Luo, Xiongbiao; Wan, Ying; He, Xiangjian
2015-04-01
Electromagnetically guided endoscopic procedure, which aims at accurately and robustly localizing the endoscope, involves multimodal sensory information during interventions. However, it still remains challenging in how to integrate these information for precise and stable endoscopic guidance. To tackle such a challenge, this paper proposes a new framework on the basis of an enhanced particle swarm optimization method to effectively fuse these information for accurate and continuous endoscope localization. The authors use the particle swarm optimization method, which is one of stochastic evolutionary computation algorithms, to effectively fuse the multimodal information including preoperative information (i.e., computed tomography images) as a frame of reference, endoscopic camera videos, and positional sensor measurements (i.e., electromagnetic sensor outputs). Since the evolutionary computation method usually limits its possible premature convergence and evolutionary factors, the authors introduce the current (endoscopic camera and electromagnetic sensor's) observation to boost the particle swarm optimization and also adaptively update evolutionary parameters in accordance with spatial constraints and the current observation, resulting in advantageous performance in the enhanced algorithm. The experimental results demonstrate that the authors' proposed method provides a more accurate and robust endoscopic guidance framework than state-of-the-art methods. The average guidance accuracy of the authors' framework was about 3.0 mm and 5.6° while the previous methods show at least 3.9 mm and 7.0°. The average position and orientation smoothness of their method was 1.0 mm and 1.6°, which is significantly better than the other methods at least with (2.0 mm and 2.6°). Additionally, the average visual quality of the endoscopic guidance was improved to 0.29. A robust electromagnetically guided endoscopy framework was proposed on the basis of an enhanced particle swarm optimization method with using the current observation information and adaptive evolutionary factors. The authors proposed framework greatly reduced the guidance errors from (4.3, 7.8) to (3.0 mm, 5.6°), compared to state-of-the-art methods.
Report of the Defense Science Board Task Force on Military System Applications of Superconductors
1988-10-01
sensitivity increases over current scan- ning IR sensors, # W’W Ana/&_ and U/tin- Fast Di sia$zd W Pfor radar and optical sen- sors; W’Ujh Power Motors...The electromagnetic (EM) mass accelerator concept is some 25 years old and has been ex- plored intermittently . Recently, SDIO has supported EM rail...Increased Radar Range HIS - Medium Risk (Phased-Array Antenna) WIDEBAND ANALOG AND ULTRA- FAST LTS - Low Risk (Analog) DIGITAL SIGNAL PROCESSING Medium Risk
Airborne Systems Course Textbook. Electro-Optical Systems Test and Evaluation,
1981-06-01
by twice the angle between the reflecting faces. The porro - prism shown in Figure 2.2.3.1(c) is used to deflect the beam by 1800. Beam Retro-Reflection...Reflection of Electromagnetic Radiation at the Interface Between Two Media 2.13 2.2 Optics 2.15 2.2.1 The Lens 2.15 2.2.2 The Mirror 2.25 2.2.3 The Prism 2.30...2.5.2 The Optical Resonator 2.77 2.5.3 Laser Implementation 2.79 2.5.4 Laser Radiation Characteristics 2.81 2.6 Electro-Optical Sensors 2.83 2.6.1
Natural Crack Sizing Based on Eddy Current Image and Electromagnetic Field Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endo, H.; Uchimoto, T.; Takagi, T.
2006-03-06
An eddy current testing (ECT) system with multi-coil type probes is applied to size up cracks fabricated on austenite stainless plates. We have developed muti-channel ECT system to produce data as digital images. The probes consist of transmit-receive type sensors as elements to classify crack directions, working as two scan direction modes simultaneously. Template matching applied to the ECT images determines regions of interest in sizing up cracks. Finite element based inversion sizes up the crack depth from the measured ECT signal. The present paper demonstrates this approach for fatigue crack and stress corrosion cracking.
Fiberoptic metal detector capable of profile detection.
Hua, Wei-Shu; Hooks, Joshua R; Erwin, Nicholas A; Wu, Wen-Jong; Wang, Wei-Chih
2011-03-31
The purpose of this paper is to develop a novel ferromagnetic polymeric metal detector system by using a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing device. This ferromagnetic polymeric metal detector system is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is made possible by disrupting the magnetic flux density present on the magnetostrictive sensor. This paper discusses the magnetic properties of the ferromagnetic polymers. In addition, the preliminary results of successful sensing of different geometrical metal shapes will be discussed.
Magnetic suspension and balance systems (MSBSs)
NASA Technical Reports Server (NTRS)
Britcher, Colin P.; Kilgore, Robert A.
1987-01-01
The problems of wind tunnel testing are outlined, with attention given to the problems caused by mechanical support systems, such as support interference, dynamic-testing restrictions, and low productivity. The basic principles of magnetic suspension are highlighted, along with the history of magnetic suspension and balance systems. Roll control, size limitations, high angle of attack, reliability, position sensing, and calibration are discussed among the problems and limitations of the existing magnetic suspension and balance systems. Examples of the existing systems are presented, and design studies for future systems are outlined. Problems specific to large-scale magnetic suspension and balance systems, such as high model loads, requirements for high-power electromagnets, high-capacity power supplies, highly sophisticated control systems and position sensors, and high costs are assessed.
Yasumatsu, Naoya; Watanabe, Shinichi
2012-02-01
We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.
NASA Astrophysics Data System (ADS)
McFee, John E.; Russell, Kevin L.; Chesney, Robert H.; Faust, Anthony A.; Das, Yogadhish
2006-05-01
The Improved Landmine Detection System (ILDS) is intended to meet Canadian military mine clearance requirements in rear area combat situations and peacekeeping on roads and tracks. The system consists of two teleoperated vehicles and a command vehicle. The teleoperated protection vehicle precedes, clearing antipersonnel mines and magnetic and tilt rod-fuzed antitank mines. It consists of an armoured personnel carrier with a forward looking infrared imager, a finger plow or roller and a magnetic signature duplicator. The teleoperated detection vehicle follows to detect antitank mines. The purpose-built vehicle carries forward looking infrared and visible imagers, a 3 m wide, down-looking sensitive electromagnetic induction detector array and a 3 m wide down-looking ground probing radar, which scan the ground in front of the vehicle. Sensor information is combined using navigation sensors and custom navigation, registration, spatial correspondence and data fusion algorithms. Suspicious targets are then confirmed by a thermal neutron activation detector. The prototype, designed and built by Defence R&D Canada, was completed in October 1997. General Dynamics Canada delivered four production units, based on the prototype concept and technologies, to the Canadian Forces (CF) in 2002. ILDS was deployed in Afghanistan in 2003, making the system the first militarily fielded, teleoperated, multi-sensor vehicle-mounted mine detector and the first with a fielded confirmation sensor. Performance of the prototype in Canadian and independent US trials is summarized and recent results from the production version of the confirmation sensor are discussed. CF operations with ILDS in Afghanistan are described.
NASA Technical Reports Server (NTRS)
Szatkowski, George N.; Dudley, Kenneth L.; Smith, Laura J.; Wang, Chuantong; Ticatch, Larry A.
2014-01-01
Traditional methods to protect composite aircraft from lightning strike damage rely on a conductive layer embedded on or within the surface of the aircraft composite skin. This method is effective at preventing major direct effect damage and minimizes indirect effects to aircraft systems from lightning strike attachment, but provides no additional benefit for the added parasitic weight from the conductive layer. When a known lightning strike occurs, the points of attachment and detachment on the aircraft surface are visually inspected and checked for damage by maintenance personnel to ensure continued safe flight operations. A new multi-functional lightning strike protection (LSP) method has been developed to provide aircraft lightning strike protection, damage detection and diagnosis for composite aircraft surfaces. The method incorporates a SansEC sensor array on the aircraft exterior surfaces forming a "Smart skin" surface for aircraft lightning zones certified to withstand strikes up to 100 kiloamperes peak current. SansEC sensors are open-circuit devices comprised of conductive trace spiral patterns sans (without) electrical connections. The SansEC sensor is an electromagnetic resonator having specific resonant parameters (frequency, amplitude, bandwidth & phase) which when electromagnetically coupled with a composite substrate will indicate the electrical impedance of the composite through a change in its resonant response. Any measureable shift in the resonant characteristics can be an indication of damage to the composite caused by a lightning strike or from other means. The SansEC sensor method is intended to diagnose damage for both in-situ health monitoring or ground inspections. In this paper, the theoretical mathematical framework is established for the use of open circuit sensors to perform damage detection and diagnosis on carbon fiber composites. Both computational and experimental analyses were conducted to validate this new method and system for aircraft composite damage detection and diagnosis. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. This paper also presents the shielding effectiveness along with the lightning direct effect test results from several different SansEC LSP and baseline protected and unprotected carbon fiber reinforced polymer (CFRP) test panels struck at 40 and 100 kiloamperes following a universal common practice test procedure to enable damage comparisons between SansEC LSP configurations and common practice copper mesh LSP approaches. The SansEC test panels were mounted in a LSP test bed during the lightning test. Electrical, mechanical and thermal parameters were measured during lightning attachment and are presented with post test nondestructive inspection comparisons. The paper provides correlational results between the SansEC sensors computed electric field distribution and the location of the lightning attachment on the sensor trace and visual observations showing the SansEC sensor's affinity for dispersing the lightning attachment.
NASA Astrophysics Data System (ADS)
Ivanov, A. S.; Kalanchin, I. Yu; Pugacheva, E. E.
2017-09-01
One of the first electric motors, based on the use of electromagnets, was a reluctance motor in the XIX century. Due to the complexities in the implementation of control system the development of switched reluctance electric machines was repeatedly initiated only in 1960 thanks to the development of computers and power electronic devices. The main feature of these machines is the capacity to work both in engine mode and in generator mode. Thanks to a simple and reliable design in which there is no winding of the rotor, commutator, permanent magnets, a reactive gate-inductor electric drive operating in the engine mode is actively being introduced into various areas such as car industry, production of household appliances, wind power engineering, as well as responsible production processes in the oil and mining industries. However, the existing shortcomings of switched reluctance electric machines, such as nonlinear pulsations of electromagnetic moment, the presence of three or four phase supply system and sensor of rotor position prevent wide distribution of this kind of electric machines.
Can we estimate the cellular phone RF peak output power with a simple experiment?
NASA Astrophysics Data System (ADS)
Fioreze, Maycon; dos Santos Junior, Sauli; Goncalves Hönnicke, Marcelo
2016-07-01
Cellular phones are becoming increasingly useful tools for students. Since cell phones operate in the microwave bandwidth, they can be used to motivate students to demonstrate and better understand the properties of electromagnetic waves. However, since these waves operate at higher frequencies (L-band, from 800 MHz to 2 GHz) it is not simple to detect them. Usually, expensive real-time high frequency oscilloscopes are required. Indirect measurements are also possible through heat-based and diode-detector-based radio-frequency (RF) power sensors. Another didactic and intuitive way is to explore a simple and inexpensive detection system, based on the interference effect caused in the electronic circuit of TV and PC soundspeakers, and to try to investigate different properties of the cell phones’ RF electromagnetic waves, such as its power and modulated frequency. This manuscript proposes a trial to quantify these measurements, based on a simple Friis equation model and the time constant of the circuit used in the detection system, in order to show it didactically to the students and even allow them also to explore such a simple detection system at home.
Superconducting Metallic Glass Transition-Edge-Sensors
NASA Technical Reports Server (NTRS)
Hays, Charles C. (Inventor)
2013-01-01
A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.
Nondestructive testing of advanced materials using sensors with metamaterials
NASA Astrophysics Data System (ADS)
Rozina, Steigmann; Narcis Andrei, Danila; Nicoleta, Iftimie; Catalin-Andrei, Tugui; Frantisek, Novy; Stanislava, Fintova; Petrica, Vizureanu; Adriana, Savin
2016-11-01
This work presents a method for nondestructive evaluation (NDE) of advanced materials that makes use of the images in near field and the concentration of flux using the phenomenon of spatial resolution. The method allows the detection of flaws as crack, nonadhesion of coating, degradation or presence delamination stresses correlated with the response of electromagnetic sensor.
A waveguide-on-access-tube (WOAT) TDR sensor for deep soil water content and bulk EC
USDA-ARS?s Scientific Manuscript database
A waveguide-on-access-tube (WOAT) TDR sensor was invented and the design optimized through a combination of electromagnetic modeling and several rounds of prototyping and testing in air, water, mixtures of water and ethylene glycol, sand, and silty clay loam soils over a range of water contents and ...
Near Surface Investigation of Agricultural Soils using a Multi-Frequency Electromagnetic Sensor
NASA Astrophysics Data System (ADS)
Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Cheema, M.; Galagedara, L.
2017-12-01
Electromagnetic induction (EMI) sensors have been used as precision agricultural tools over decades. They are being used to measure spatiotemporal variability of soil properties and soil stratification in the sense of apparent electrical conductivity (ECa). We mapped the ECa variability by horizontal coplanar (HCP) and by vertical coplanar (VCP) orientation of a multi-frequency EMI sensor and identified its interrelation with physical properties of soil. A broadband, multi-frequency handheld EMI sensor (GEM-2) was used on a loamy sand soil cultivated with silage-corn in western Newfoundland, Canada. Log and line spaced, three frequency ranges (weak, low, and high), based on the factory calibration were tested using HCP and VCP orientation to produce spatiotemporal data of ECa. In parallel, we acquired data on soil moisture content, texture and bulk density. We then assessed the statistical significance of the relationship between ECa and soil physical properties. The test site had three areas of distinct soil properties corresponding to the elevation, in particular. The same spatial variability was also identified by ECa mapping at different frequencies and the two modes of coil orientations. Data analysis suggested that the high range frequency (38 kHz (log-spaced) and 49 kHz (line-spaced)) for both HCP and VCP orientations produced accurate ECa maps, better than the weak and low range frequencies tested. Furthermore, results revealed that the combined effects of soil texture, moisture content and bulk density affect ECameasurements as obtained by both frequencies and two coil orientations. Keywords: Apparent electrical conductivity, Electromagnetic induction, Horizontal coplanar, Soil properties, Vertical coplanar
Fiberoptics technology and its application to propulsion control systems
NASA Technical Reports Server (NTRS)
Baumbick, R. J.
1983-01-01
Electro-optical systems have many advantages over conventional electrical systems. Among these are optics' insensitivity to electro-magnetic interference, good electrical isolation and the ability to make measurements in highly explosive areas without risk. These advantages promise to help improve the reliability of future aircraft engine control systems which will be entirely electronic digital. To improve the reliability of these systems, especially against lightning strikes, passive, optical, sensors and fiberoptic transmission lines are being considered for use in future engine systems. Also under consideration are actuators which receive their command signals over fiber optic cables. This paper reviews concepts used for optical instrumentation and actuation systems and discusses work being done by NASA Lewis Research Center in this area.
Microshell-tipped optical fibers as sensors of high-pressure pulses in adverse environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benjamin, R.F.; Mayer, F.J.; Maynard, R.L.
1984-01-01
We have developed and used an optical-fiber sensor for detecting the arrival of strong pressure pulses. The sensor consists of an optical fiber, tipped with a gas-filled microballoon. They have been used successfully in adverse environments including explosives, ballistics and electromagnetic pulses (EMP). The sensor produces a bright optical pulse caused by the rapid shock-heating of a gas, typically argon or xenon, which is confined in the spherical glass or plastic microballoon. The light pulse is transmitted via the optical fiber to a photo detector, usually a streak camera or photomultiplier tube. The microballoon optical sensor (called an optical pinmore » by analogy to standard electrical pins), was originally developed for diagnosing an explosive, pulsed-power generator. Optical pins are required due to the EMP. The optical pins are economical arrival-time indicators because many channels can be recorded by one streak camera. The generator tests and related experiments, involving projectile velocities and detonation velocities of several kilometers per/sec have demonstrated the usefulness of the sensors in explosives and ballistics applications. We have also measured the sensitivity of the optical pins to slowly-moving projectiles and found that a 200 m/sec projectile impacting the microballoon sensor produces a flash having a risetime less than 100 ns and a pulse duration (FWHM) of less than 300 ns. The technical and cost advantages of this optical pin make it potentially useful for many electromagnetic, explosive, and ballistics applications.« less
Field-Based Optimal Placement of Antennas for Body-Worn Wireless Sensors
Januszkiewicz, Łukasz; Di Barba, Paolo; Hausman, Sławomir
2016-01-01
We investigate a case of automated energy-budget-aware optimization of the physical position of nodes (sensors) in a Wireless Body Area Network (WBAN). This problem has not been presented in the literature yet, as opposed to antenna and routing optimization, which are relatively well-addressed. In our research, which was inspired by a safety-critical application for firefighters, the sensor network consists of three nodes located on the human body. The nodes communicate over a radio link operating in the 2.4 GHz or 5.8 GHz ISM frequency band. Two sensors have a fixed location: one on the head (earlobe pulse oximetry) and one on the arm (with accelerometers, temperature and humidity sensors, and a GPS receiver), while the position of the third sensor can be adjusted within a predefined region on the wearer’s chest. The path loss between each node pair strongly depends on the location of the nodes and is difficult to predict without performing a full-wave electromagnetic simulation. Our optimization scheme employs evolutionary computing. The novelty of our approach lies not only in the formulation of the problem but also in linking a fully automated optimization procedure with an electromagnetic simulator and a simplified human body model. This combination turns out to be a computationally effective solution, which, depending on the initial placement, has a potential to improve performance of our example sensor network setup by up to about 20 dB with respect to the path loss between selected nodes. PMID:27196911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.; Drira, Anis
Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings tomore » support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.« less
Electromagnetics and Antenna Technology, Chapters 4 and 5
2017-03-07
potential future application is for performing radio astronomy missions [9–16]. The antenna technology described here could be applied to other platforms...vector sensor antenna for radio astronomy [11] is depicted in the photograph shown in Figure 5.1. This electromagnetic vector Figure 5.1 Photograph of...for performing radio astronomy missions. The antenna technology described here could be applied to other platforms such as airborne vehicles, towers
2016-03-14
DoD Department of Defense EMI electromagnetic induction ESTCP Environmental Security Technology Certification Program ft. foot GPS global...three primary objectives: Test and validate detection and discrimination capabilities of a currently available advanced electromagnetic induction ... induction (EMI) sensors in dynamic and static data acquisition modes and associated analysis software. To achieve these objectives, a controlled test was
The Kinect as an interventional tracking system
NASA Astrophysics Data System (ADS)
Wang, Xiang L.; Stolka, Philipp J.; Boctor, Emad; Hager, Gregory; Choti, Michael
2012-02-01
This work explores the suitability of low-cost sensors for "serious" medical applications, such as tracking of interventional tools in the OR, for simulation, and for education. Although such tracking - i.e. the acquisition of pose data e.g. for ultrasound probes, tissue manipulation tools, needles, but also tissue, bone etc. - is well established, it relies mostly on external devices such as optical or electromagnetic trackers, both of which mandate the use of special markers or sensors attached to each single entity whose pose is to be recorded, and also require their calibration to the tracked entity, i.e. the determination of the geometric relationship between the marker's and the object's intrinsic coordinate frames. The Microsoft Kinect sensor is a recently introduced device for full-body tracking in the gaming market, but it was quickly hacked - due to its wide range of tightly integrated sensors (RGB camera, IR depth and greyscale camera, microphones, accelerometers, and basic actuation) - and used beyond this area. As its field of view and its accuracy are within reasonable usability limits, we describe a medical needle-tracking system for interventional applications based on the Kinect sensor, standard biopsy needles, and no necessary attachments, thus saving both cost and time. Its twin cameras are used as a stereo pair to detect needle-shaped objects, reconstruct their pose in four degrees of freedom, and provide information about the most likely candidate.
A battery-run pulsed motor with inherent dynamic electronic switch control
NASA Astrophysics Data System (ADS)
Tripathi, K. C.; Lal, P.; Sarma, P. R.; Sharma, A. K.; Prakash, V.
1980-02-01
A new type of battery-run brushless ferrite-magnet dc motor system is described. Its rotor part consists of a few permanent ceramic (ferrite) magnets uniformly spread on the rim of a disk (wheel) and the stator part consists of electromagnets placed in such a way that when energized, they always form a repulsive couple to rotate the disk. A sensor coil is placed to give an induced pulse signal, which acts as an inherent dynamic switching time control for the automatic electronic control system. Control of speed, brake system, and safety measures are also discussed. Experimental values for the present system are given. Some possible applications are suggested.