Sample records for electromagnetic tracking device

  1. Intraoperative visualization and assessment of electromagnetic tracking error

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Ungi, Tamas; Lasso, Andras; MacDonald, Andrew; Nanji, Sulaiman; Fichtinger, Gabor

    2015-03-01

    Electromagnetic tracking allows for increased flexibility in designing image-guided interventions, however it is well understood that electromagnetic tracking is prone to error. Visualization and assessment of the tracking error should take place in the operating room with minimal interference with the clinical procedure. The goal was to achieve this ideal in an open-source software implementation in a plug and play manner, without requiring programming from the user. We use optical tracking as a ground truth. An electromagnetic sensor and optical markers are mounted onto a stylus device, pivot calibrated for both trackers. Electromagnetic tracking error is defined as difference of tool tip position between electromagnetic and optical readings. Multiple measurements are interpolated into the thin-plate B-spline transform visualized in real time using 3D Slicer. All tracked devices are used in a plug and play manner through the open-source SlicerIGT and PLUS extensions of the 3D Slicer platform. Tracking error was measured multiple times to assess reproducibility of the method, both with and without placing ferromagnetic objects in the workspace. Results from exhaustive grid sampling and freehand sampling were similar, indicating that a quick freehand sampling is sufficient to detect unexpected or excessive field distortion in the operating room. The software is available as a plug-in for the 3D Slicer platforms. Results demonstrate potential for visualizing electromagnetic tracking error in real time for intraoperative environments in feasibility clinical trials in image-guided interventions.

  2. The use of a robotic tibial rotation device and an electromagnetic tracking system to accurately reproduce the clinical dial test.

    PubMed

    Stinton, S K; Siebold, R; Freedberg, H; Jacobs, C; Branch, T P

    2016-03-01

    The purpose of this study was to: (1) determine whether a robotic tibial rotation device and an electromagnetic tracking system could accurately reproduce the clinical dial test at 30° of knee flexion; (2) compare rotation data captured at the footplates of the robotic device to tibial rotation data measured using an electromagnetic sensor on the proximal tibia. Thirty-two unilateral ACL-reconstructed patients were examined using a robotic tibial rotation device that mimicked the dial test. The data reported in this study is only from the healthy legs of these patients. Torque was applied through footplates and was measured using servomotors. Lower leg motion was measured at the foot using the motors. Tibial motion was also measured through an electromagnetic tracking system and a sensor on the proximal tibia. Load-deformation curves representing rotational motion of the foot and tibia were compared using Pearson's correlation coefficients. Off-axis motions including medial-lateral translation and anterior-posterior translation were also measured using the electromagnetic system. The robotic device and electromagnetic system were able to provide axial rotation data and translational data for the tibia during the dial test. Motion measured at the foot was not correlated to motion of the tibial tubercle in internal rotation or in external rotation. The position of the tibial tubercle was 26.9° ± 11.6° more internally rotated than the foot at torque 0 Nm. Medial-lateral translation and anterior-posterior translation were combined to show the path of the tubercle in the coronal plane during tibial rotation. The information captured during a manual dial test includes both rotation of the tibia and proximal tibia translation. All of this information can be captured using a robotic tibial axial rotation device with an electromagnetic tracking system. The pathway of the tibial tubercle during tibial axial rotation can provide additional information about knee instability without relying on side-to-side comparison between knees. The translation of the proximal tibia is important information that must be considered in addition to axial rotation of the tibia when performing a dial test whether done manually or with a robotic device. Instrumented foot position cannot provide the same information. IV.

  3. Photon - electron identification in the PHENIX Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Edouard, Kistenev; Gabor, David; Sebastian, White; Craig, Woody; Alexander, Bazilevsky; Vladimir, Kochetkov; Valeriy, Onuchin

    1998-10-01

    The results on the electron/hadron descrimination based upon analysis of the data collected from PHENIX electromagnetic calorimeter are presented. Two configurations are considered: (a) stand alone calorimeter; (b) calorimeter assisted by tracking devices to provide an independent estimates for particle momenta.

  4. Simultaneous localization and calibration for electromagnetic tracking systems.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2016-06-01

    In clinical environments, field distortion can cause significant electromagnetic tracking errors. Therefore, dynamic calibration of electromagnetic tracking systems is essential to compensate for measurement errors. It is proposed to integrate the motion model of the tracked instrument with redundant EM sensor observations and to apply a simultaneous localization and mapping algorithm in order to accurately estimate the pose of the instrument and create a map of the field distortion in real-time. Experiments were conducted in the presence of ferromagnetic and electrically-conductive field distorting objects and results compared with those of a conventional sensor fusion approach. The proposed method reduced the tracking error from 3.94±1.61 mm to 1.82±0.62 mm in the presence of steel, and from 0.31±0.22 mm to 0.11±0.14 mm in the presence of aluminum. With reduced tracking error and independence from external tracking devices or pre-operative calibrations, the approach is promising for reliable EM navigation in various clinical procedures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Tracking Electromagnetic Energy With SQUIDs

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A superconducting quantum interference device (SQUID) is a gadget used to measure extremely weak signals, specifically magnetic flux. It can detect subtle changes in energy, up to 100 billion times weaker than the electromagnetic energy required to move a compass needle. SQUIDs are used for a variety of testing procedures where extreme sensitivity is required and where the test instrument need not come into direct contact with the test subject. NASA uses SQUIDs for remote, noncontact sensing in a variety of venues, including monitoring the Earth s magnetic field and tracking brain activity of pilots. Scientists at NASA s Goddard Space Flight Center have been making extensive use of this technology, from astrophysical research, to tracking the navigational paths of bees in flight to determine if they are using internal compasses. These very sensitive measurement devices have a wide variety of uses within NASA and even more uses within the commercial realm.

  6. Navigation with Electromagnetic Tracking for Interventional Radiology Procedures

    PubMed Central

    Wood, Bradford J.; Zhang, Hui; Durrani, Amir; Glossop, Neil; Ranjan, Sohan; Lindisch, David; Levy, Eliott; Banovac, Filip; Borgert, Joern; Krueger, Sascha; Kruecker, Jochen; Viswanathan, Anand; Cleary, Kevin

    2008-01-01

    PURPOSE To assess the feasibility of the use of preprocedural imaging for guide wire, catheter, and needle navigation with electromagnetic tracking in phantom and animal models. MATERIALS AND METHODS An image-guided intervention software system was developed based on open-source software components. Catheters, needles, and guide wires were constructed with small position and orientation sensors in the tips. A tetrahedral-shaped weak electromagnetic field generator was placed in proximity to an abdominal vascular phantom or three pigs on the angiography table. Preprocedural computed tomographic (CT) images of the phantom or pig were loaded into custom-developed tracking, registration, navigation, and rendering software. Devices were manipulated within the phantom or pig with guidance from the previously acquired CT scan and simultaneous real-time angiography. Navigation within positron emission tomography (PET) and magnetic resonance (MR) volumetric datasets was also performed. External and endovascular fiducials were used for registration in the phantom, and registration error and tracking error were estimated. RESULTS The CT scan position of the devices within phantoms and pigs was accurately determined during angiography and biopsy procedures, with manageable error for some applications. Preprocedural CT depicted the anatomy in the region of the devices with real-time position updating and minimal registration error and tracking error (<5 mm). PET can also be used with this system to guide percutaneous biopsies to the most metabolically active region of a tumor. CONCLUSIONS Previously acquired CT, MR, or PET data can be accurately codisplayed during procedures with reconstructed imaging based on the position and orientation of catheters, guide wires, or needles. Multimodality interventions are feasible by allowing the real-time updated display of previously acquired functional or morphologic imaging during angiography, biopsy, and ablation. PMID:15802449

  7. Transbronchial needle aspiration with a new electromagnetically-tracked TBNA needle

    NASA Astrophysics Data System (ADS)

    Choi, Jae; Popa, Teo; Gruionu, Lucian

    2009-02-01

    Transbronchial needle aspiration (TBNA) is a common method used to collect tissue for diagnosis of different chest diseases and for staging lung cancer, but the procedure has technical limitations. These limitations are mostly related to the difficulty of accurately placing the biopsy needles into the target mass. Currently, pulmonologists plan TBNA by examining a number of Computed Tomography (CT) scan slices before the operation. Then, they manipulate the bronchoscope down the respiratory track and blindly direct the biopsy. Thus, the biopsy success rate is low. The diagnostic yield of TBNA is approximately 70 percent. To enhance the accuracy of TBNA, we developed a TBNA needle with a tip position that can be electromagnetically tracked. The needle was used to estimate the bronchoscope's tip position and enable the creation of corresponding virtual bronchoscopic images from a preoperative CT scan. The TBNA needle was made with a flexible catheter embedding Wang Transbronchial Histology Needle and a sensor tracked by electromagnetic field generator. We used Aurora system for electromagnetic tracking. We also constructed an image-guided research prototype system incorporating the needle and providing a user-friendly interface to assist the pulmonologist in targeting lesions. To test the feasibility of the accuracy of the newly developed electromagnetically-tracked needle, a phantom study was conducted in the interventional suite at Georgetown University Hospital. Five TBNA simulations with a custom-made phantom with a bronchial tree were performed. The experimental results show that our device has potential to enhance the accuracy of TBNA.

  8. Approach to intraoperative electromagnetic navigation in orthognathic surgery: A phantom skull based trial.

    PubMed

    Berger, Moritz; Kallus, Sebastian; Nova, Igor; Ristow, Oliver; Eisenmann, Urs; Dickhaus, Hartmut; Kuhle, Reinald; Hoffmann, Jürgen; Seeberger, Robin

    2015-11-01

    Intraoperative guidance using electromagnetic navigation is an upcoming method in maxillofacial surgery. However, due to their unwieldy structures, especially the line-of-sight problem, optical navigation devices are not used for daily orthognathic surgery. Therefore, orthognathic surgery was simulated on study phantom skulls, evaluating the accuracy and handling of a new electromagnetic tracking system. Le-Fort I osteotomies were performed on 10 plastic skulls. Orthognathic surgical planning was done in the conventional way using plaster models. Accuracy of the gold standard, splint-based model surgery versus an electromagnetic tracking system was evaluated by measuring the actual maxillary deviation using bimaxillary splints and preoperative and postoperative cone beam computer tomography imaging. The distance of five anatomical marker points were compared pre- and postoperatively. The electromagnetic tracking system was significantly more accurate in all measured parameters compared with the gold standard using bimaxillary splints (p < 0.01). The data shows a discrepancy between the model surgical plans and the actual correction of the upper jaw of 0.8 mm. Using the electromagnetic tracking, we could reduce the discrepancy of the maxillary transposition between the planned and actual orthognathic surgery to 0.3 mm on average. The data of this preliminary study shows a high level of accuracy in surgical orthognathic performance using electromagnetic navigation, and may offer greater precision than the conventional plaster model surgery with bimaxillary splints. This preliminary work shows great potential for the establishment of an intraoperative electromagnetic navigation system for maxillofacial surgery. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  9. Apparatus and method to pulverize rock using a superconducting electromagnetic linear motor

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex (Inventor)

    2009-01-01

    A rock pulverizer device based on a superconducting linear motor. The superconducting electromagnetic rock pulverizer accelerates a projectile via a superconducting linear motor and directs the projectile at high speed toward a rock structure that is to be pulverized by collision of the speeding projectile with the rock structure. The rock pulverizer is comprised of a trapped field superconducting secondary magnet mounted on a movable car following a track, a wire wound series of primary magnets mounted on the track, and the complete magnet/track system mounted on a vehicle used for movement of the pulverizer through a mine as well as for momentum transfer during launch of the rock breaking projectile.

  10. Military Applications of Fiber Optics Technology

    DTIC Science & Technology

    1989-05-01

    Research Projects Agency DNA Defense Nuclear Agency EMI Electromagnetic interference EMP Electromagnetic pulse FET Field effect transistor FOFA Follow...Organization SEED Self electro-optic effect device TBM Tactical ballistic missile TOW Tube launched, optically tracked, wire-guided UAV Unmanned aerial vehicle...systems, coupled with novel but effective transducing technology, have set the stage for a powerful class of fiber optic sensors. 8 Optical fibers have

  11. A new method for motion capture of the scapula using an optoelectronic tracking device: a feasibility study.

    PubMed

    Šenk, Miroslav; Chèze, Laurence

    2010-06-01

    Optoelectronic tracking systems are rarely used in 3D studies examining shoulder movements including the scapula. Among the reasons is the important slippage of skin markers with respect to scapula. Methods using electromagnetic tracking devices are validated and frequently applied. Thus, the aim of this study was to develop a new method for in vivo optoelectronic scapular capture dealing with the accepted accuracy issues of validated methods. Eleven arm positions in three anatomical planes were examined using five subjects in static mode. The method was based on local optimisation, and recalculation procedures were made using a set of five scapular surface markers. The scapular rotations derived from the recalculation-based method yielded RMS errors comparable with the frequently used electromagnetic scapular methods (RMS up to 12.6° for 150° arm elevation). The results indicate that the present method can be used under careful considerations for 3D kinematical studies examining different shoulder movements.

  12. Method for evaluating compatibility of commercial electromagnetic (EM) microsensor tracking systems with surgical and imaging tables

    NASA Astrophysics Data System (ADS)

    Nafis, Christopher; Jensen, Vern; von Jako, Ron

    2008-03-01

    Electromagnetic (EM) tracking systems have been successfully used for Surgical Navigation in ENT, cranial, and spine applications for several years. Catheter sized micro EM sensors have also been used in tightly controlled cardiac mapping and pulmonary applications. EM systems have the benefit over optical navigation systems of not requiring a line-of-sight between devices. Ferrous metals or conductive materials that are transient within the EM working volume may impact tracking performance. Effective methods for detecting and reporting EM field distortions are generally well known. Distortion compensation can be achieved for objects that have a static spatial relationship to a tracking sensor. New commercially available micro EM tracking systems offer opportunities for expanded image-guided navigation procedures. It is important to know and understand how well these systems perform with different surgical tables and ancillary equipment. By their design and intended use, micro EM sensors will be located at the distal tip of tracked devices and therefore be in closer proximity to the tables. Our goal was to define a simple and portable process that could be used to estimate the EM tracker accuracy, and to vet a large number of popular general surgery and imaging tables that are used in the United States and abroad.

  13. Tracking Systems for Virtual Rehabilitation: Objective Performance vs. Subjective Experience. A Practical Scenario

    PubMed Central

    Lloréns, Roberto; Noé, Enrique; Naranjo, Valery; Borrego, Adrián; Latorre, Jorge; Alcañiz, Mariano

    2015-01-01

    Motion tracking systems are commonly used in virtual reality-based interventions to detect movements in the real world and transfer them to the virtual environment. There are different tracking solutions based on different physical principles, which mainly define their performance parameters. However, special requirements have to be considered for rehabilitation purposes. This paper studies and compares the accuracy and jitter of three tracking solutions (optical, electromagnetic, and skeleton tracking) in a practical scenario and analyzes the subjective perceptions of 19 healthy subjects, 22 stroke survivors, and 14 physical therapists. The optical tracking system provided the best accuracy (1.074 ± 0.417 cm) while the electromagnetic device provided the most inaccurate results (11.027 ± 2.364 cm). However, this tracking solution provided the best jitter values (0.324 ± 0.093 cm), in contrast to the skeleton tracking, which had the worst results (1.522 ± 0.858 cm). Healthy individuals and professionals preferred the skeleton tracking solution rather than the optical and electromagnetic solution (in that order). Individuals with stroke chose the optical solution over the other options. Our results show that subjective perceptions and preferences are far from being constant among different populations, thus suggesting that these considerations, together with the performance parameters, should be also taken into account when designing a rehabilitation system. PMID:25808765

  14. Radiant energy collector

    DOEpatents

    Winston, Roland

    1977-01-11

    An electromagnetic energy collection device is provided which does not require a solar tracking capability. It includes an energy receiver positioned between two side walls which reflect substantially all incident energy received over a predetermined included angle directly onto the energy receiver.

  15. Design and evaluation of a computed tomography (CT)-compatible needle insertion device using an electromagnetic tracking system and CT images.

    PubMed

    Shahriari, Navid; Hekman, Edsko; Oudkerk, Matthijs; Misra, Sarthak

    2015-11-01

    Percutaneous needle insertion procedures are commonly used for diagnostic and therapeutic purposes. Although current technology allows accurate localization of lesions, they cannot yet be precisely targeted. Lung cancer is the most common cause of cancer-related death, and early detection reduces the mortality rate. Therefore, suspicious lesions are tested for diagnosis by performing needle biopsy. In this paper, we have presented a novel computed tomography (CT)-compatible needle insertion device (NID). The NID is used to steer a flexible needle (φ0.55 mm) with a bevel at the tip in biological tissue. CT images and an electromagnetic (EM) tracking system are used in two separate scenarios to track the needle tip in three-dimensional space during the procedure. Our system uses a control algorithm to steer the needle through a combination of insertion and minimal number of rotations. Noise analysis of CT images has demonstrated the compatibility of the device. The results for three experimental cases (case 1: open-loop control, case 2: closed-loop control using EM tracking system and case 3: closed-loop control using CT images) are presented. Each experimental case is performed five times, and average targeting errors are 2.86 ± 1.14, 1.11 ± 0.14 and 1.94 ± 0.63 mm for case 1, case 2 and case 3, respectively. The achieved results show that our device is CT-compatible and it is able to steer a bevel-tipped needle toward a target. We are able to use intermittent CT images and EM tracking data to control the needle path in a closed-loop manner. These results are promising and suggest that it is possible to accurately target the lesions in real clinical procedures in the future.

  16. High precision dual-axis tracking solar wireless charging system based on the four quadrant photoelectric sensor

    NASA Astrophysics Data System (ADS)

    Liu, Zhilong; Wang, Biao; Tong, Weichao

    2015-08-01

    This paper designs a solar automatic tracking wireless charging system based on the four quadrant photoelectric sensor. The system track the sun's rays automatically in real time to received the maximum energy and wireless charging to the load through electromagnetic coupling. Four quadrant photoelectric sensor responsive to the solar spectrum, the system could get the current azimuth and elevation angle of the light by calculating the solar energy incident on the sensor profile. System driver the solar panels by the biaxial movement mechanism to rotate and tilt movement until the battery plate and light perpendicular to each other. Maximize the use of solar energy, and does not require external power supply to achieve energy self-sufficiency. Solar energy can be collected for portable devices and load wireless charging by close electromagnetic field coupling. Experimental data show that: Four quadrant photoelectric sensor more sensitive to light angle measurement. when track positioning solar light, Azimuth deviation is less than 0.8°, Elevation angle deviation is less than 0.6°. Use efficiency of a conventional solar cell is only 10% -20%.The system uses a Four quadrant dual-axis tracking to raise the utilization rate of 25% -35%.Wireless charging electromagnetic coupling efficiency reached 60%.

  17. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    NASA Astrophysics Data System (ADS)

    Li, Y. J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R. X.; Zheng, J.; Deng, C. Y.; Deng, Z. G.

    2016-09-01

    Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical 'Y' shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs', meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  18. Real-time FDG PET Guidance during Biopsies and Radiofrequency Ablation Using Multimodality Fusion with Electromagnetic Navigation

    PubMed Central

    Kadoury, Samuel; Abi-Jaoudeh, Nadine; Levy, Elliot B.; Maass-Moreno, Roberto; Krücker, Jochen; Dalal, Sandeep; Xu, Sheng; Glossop, Neil; Wood, Bradford J.

    2011-01-01

    Purpose: To assess the feasibility of combined electromagnetic device tracking and computed tomography (CT)/ultrasonography (US)/fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) fusion for real-time feedback during percutaneous and intraoperative biopsies and hepatic radiofrequency (RF) ablation. Materials and Methods: In this HIPAA-compliant, institutional review board–approved prospective study with written informed consent, 25 patients (17 men, eight women) underwent 33 percutaneous and three intraoperative biopsies of 36 FDG-avid targets between November 2007 and August 2010. One patient underwent biopsy and RF ablation of an FDG-avid hepatic focus. Targets demonstrated heterogeneous FDG uptake or were not well seen or were totally inapparent at conventional imaging. Preprocedural FDG PET scans were rigidly registered through a semiautomatic method to intraprocedural CT scans. Coaxial biopsy needle introducer tips and RF ablation electrode guider needle tips containing electromagnetic sensor coils were spatially tracked through an electromagnetic field generator. Real-time US scans were registered through a fiducial-based method, allowing US scans to be fused with intraprocedural CT and preacquired FDG PET scans. A visual display of US/CT image fusion with overlaid coregistered FDG PET targets was used for guidance; navigation software enabled real-time biopsy needle and needle electrode navigation and feedback. Results: Successful fusion of real-time US to coregistered CT and FDG PET scans was achieved in all patients. Thirty-one of 36 biopsies were diagnostic (malignancy in 18 cases, benign processes in 13 cases). RF ablation resulted in resolution of targeted FDG avidity, with no local treatment failure during short follow-up (56 days). Conclusion: Combined electromagnetic device tracking and image fusion with real-time feedback may facilitate biopsies and ablations of focal FDG PET abnormalities that would be challenging with conventional image guidance. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101985/-/DC1 PMID:21734159

  19. Absolute vs. relative error characterization of electromagnetic tracking accuracy

    NASA Astrophysics Data System (ADS)

    Matinfar, Mohammad; Narayanasamy, Ganesh; Gutierrez, Luis; Chan, Raymond; Jain, Ameet

    2010-02-01

    Electromagnetic (EM) tracking systems are often used for real time navigation of medical tools in an Image Guided Therapy (IGT) system. They are specifically advantageous when the medical device requires tracking within the body of a patient where line of sight constraints prevent the use of conventional optical tracking. EM tracking systems are however very sensitive to electromagnetic field distortions. These distortions, arising from changes in the electromagnetic environment due to the presence of conductive ferromagnetic surgical tools or other medical equipment, limit the accuracy of EM tracking, in some cases potentially rendering tracking data unusable. We present a mapping method for the operating region over which EM tracking sensors are used, allowing for characterization of measurement errors, in turn providing physicians with visual feedback about measurement confidence or reliability of localization estimates. In this instance, we employ a calibration phantom to assess distortion within the operating field of the EM tracker and to display in real time the distribution of measurement errors, as well as the location and extent of the field associated with minimal spatial distortion. The accuracy is assessed relative to successive measurements. Error is computed for a reference point and consecutive measurement errors are displayed relative to the reference in order to characterize the accuracy in near-real-time. In an initial set-up phase, the phantom geometry is calibrated by registering the data from a multitude of EM sensors in a non-ferromagnetic ("clean") EM environment. The registration results in the locations of sensors with respect to each other and defines the geometry of the sensors in the phantom. In a measurement phase, the position and orientation data from all sensors are compared with the known geometry of the sensor spacing, and localization errors (displacement and orientation) are computed. Based on error thresholds provided by the operator, the spatial distribution of localization errors are clustered and dynamically displayed as separate confidence zones within the operating region of the EM tracker space.

  20. Sensor-based electromagnetic navigation to facilitate implantation of left ventricular leads in cardiac resynchronization therapy.

    PubMed

    Döring, Michael; Sommer, Philipp; Rolf, Sascha; Lucas, Johannes; Breithardt, Ole A; Hindricks, Gerhard; Richter, Sergio

    2015-02-01

    Implantation of cardiac resynchronization therapy (CRT) devices can be challenging, time consuming, and fluoroscopy intense. To facilitate placement of left ventricular (LV) leads, a novel electromagnetic navigation system (MediGuide™, St. Jude Medical, St. Paul, MN, USA) has been developed, displaying real-time 3-D location of sensor-embedded delivery tools superimposed on prerecorded X-ray cine-loops of coronary sinus venograms. We report our experience and advanced progress in the use of this new electromagnetic tracking system to guide LV lead implantation. Between January 2012 and December 2013, 71 consecutive patients (69 ± 9 years, 76% male) were implanted with a CRT device using the new electromagnetic tracking system. Demographics, procedural data, and periprocedural adverse events were gathered. The impact of the operator's experience, optimized workflow, and improved software technology on procedural data were analyzed. LV lead implantation was successfully achieved in all patients without severe adverse events. Total procedure time measured 87 ± 37 minutes and the median total fluoroscopy time (skin-to-skin) was 4.9 (2.5-7.8) minutes with a median dose-area-product of 476 (260-1056) cGy*cm(2) . An additional comparison with conventional CRT device implantations showed a significant reduction in fluoroscopy time from 8.0 (5.8; 11.5) to 4.5 (2.8; 7.3) minutes (P = 0.016) and radiation dose from 603 (330; 969) to 338 (176; 680) cGy*cm(2) , respectively (P = 0.044 ). Use of the new navigation system enables safe and successful LV lead placement with improved orientation and significantly reduced radiation exposure during CRT implantation. © 2014 Wiley Periodicals, Inc.

  1. A proto-type design of a real-tissue phantom for the validation of deformation algorithms and 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Szegedi, M.; Rassiah-Szegedi, P.; Fullerton, G.; Wang, B.; Salter, B.

    2010-07-01

    The purpose of this study is to design a real-tissue phantom for use in the validation of deformation algorithms. A phantom motion controller that runs sinusoidal and non-regular patient-based breathing pattern, via a piston, was applied to porcine liver tissue. It was regulated to simulate movement ranges similar to recorded implanted liver markers from patients. 4D CT was applied to analyze deformation. The suitability of various markers in the liver and the position reproducibility of markers and of reference points were studied. The similarity of marker motion pattern in the liver phantom and in real patients was evaluated. The viability of the phantom over time and its use with electro-magnetic tracking devices were also assessed. High contrast markers, such as carbon markers, implanted in the porcine liver produced less image artifacts on CT and were well visualized compared to metallic ones. The repositionability of markers was within a measurement accuracy of ±2 mm. Similar anatomical patient motions were reproducible up to elongations of 3 cm for a time period of at least 90 min. The phantom is compatible with electro-magnetic tracking devices and 4D CT. The phantom motion is reproducible and simulates realistic patient motion and deformation. The ability to carry out voxel-based tracking allows for the evaluation of deformation algorithms in a controlled environment with recorded patient traces. The phantom is compatible with all therapy devices clinically encountered in our department.

  2. Magneto-optical tracking of flexible laparoscopic ultrasound: model-based online detection and correction of magnetic tracking errors.

    PubMed

    Feuerstein, Marco; Reichl, Tobias; Vogel, Jakob; Traub, Joerg; Navab, Nassir

    2009-06-01

    Electromagnetic tracking is currently one of the most promising means of localizing flexible endoscopic instruments such as flexible laparoscopic ultrasound transducers. However, electromagnetic tracking is also susceptible to interference from ferromagnetic material, which distorts the magnetic field and leads to tracking errors. This paper presents new methods for real-time online detection and reduction of dynamic electromagnetic tracking errors when localizing a flexible laparoscopic ultrasound transducer. We use a hybrid tracking setup to combine optical tracking of the transducer shaft and electromagnetic tracking of the flexible transducer tip. A novel approach of modeling the poses of the transducer tip in relation to the transducer shaft allows us to reliably detect and significantly reduce electromagnetic tracking errors. For detecting errors of more than 5 mm, we achieved a sensitivity and specificity of 91% and 93%, respectively. Initial 3-D rms error of 6.91 mm were reduced to 3.15 mm.

  3. Monitoring of breathing motion in image-guided PBS proton therapy: comparative analysis of optical and electromagnetic technologies.

    PubMed

    Fattori, Giovanni; Safai, Sairos; Carmona, Pablo Fernández; Peroni, Marta; Perrin, Rosalind; Weber, Damien Charles; Lomax, Antony John

    2017-03-31

    Motion monitoring is essential when treating non-static tumours with pencil beam scanned protons. 4D medical imaging typically relies on the detected body surface displacement, considered as a surrogate of the patient's anatomical changes, a concept similarly applied by most motion mitigation techniques. In this study, we investigate benefits and pitfalls of optical and electromagnetic tracking, key technologies for non-invasive surface motion monitoring, in the specific environment of image-guided, gantry-based proton therapy. Polaris SPECTRA optical tracking system and the Aurora V3 electromagnetic tracking system from Northern Digital Inc. (NDI, Waterloo, CA) have been compared both technically, by measuring tracking errors and system latencies under laboratory conditions, and clinically, by assessing their practicalities and sensitivities when used with imaging devices and PBS treatment gantries. Additionally, we investigated the impact of using different surrogate signals, from different systems, on the reconstructed 4D CT images. Even though in controlled laboratory conditions both technologies allow for the localization of static fiducials with sub-millimetre jitter and low latency (31.6 ± 1 msec worst case), significant dynamic and environmental distortions limit the potential of the electromagnetic approach in a clinical setting. The measurement error in case of close proximity to a CT scanner is up to 10.5 mm and precludes its use for the monitoring of respiratory motion during 4DCT acquisitions. Similarly, the motion of the treatment gantry distorts up to 22 mm the tracking result. Despite the line of sight requirement, the optical solution offers the best potential, being the most robust against environmental factors and providing the highest spatial accuracy. The significant difference in the temporal location of the reconstructed phase points is used to speculate on the need to apply the same monitoring system for imaging and treatment to ensure the consistency of detected phases.

  4. Position sensitive detection of neutrons in high radiation background field.

    PubMed

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  5. Position sensitive detection of neutrons in high radiation background field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavrik, D., E-mail: vavrik@itam.cas.cz; Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9; Jakubek, J.

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e{sup −} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane)more » and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup −4}.« less

  6. Expanding the use of real-time electromagnetic tracking in radiation oncology.

    PubMed

    Shah, Amish P; Kupelian, Patrick A; Willoughby, Twyla R; Meeks, Sanford L

    2011-11-15

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery.

  7. Expanding the use of real‐time electromagnetic tracking in radiation oncology

    PubMed Central

    Kupelian, Patrick A.; Willoughby, Twyla R.; Meeks, Sanford L.

    2011-01-01

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity‐modulated radiation therapy (IMRT), image‐guided radiation therapy (IGRT) for both inter‐ and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery. PACS number: 87.63.‐d PMID:22089017

  8. Electromagnetic tracking of motion in the proximity of computer generated graphical stimuli: a tutorial.

    PubMed

    Schnabel, Ulf H; Hegenloh, Michael; Müller, Hermann J; Zehetleitner, Michael

    2013-09-01

    Electromagnetic motion-tracking systems have the advantage of capturing the tempo-spatial kinematics of movements independently of the visibility of the sensors. However, they are limited in that they cannot be used in the proximity of electromagnetic field sources, such as computer monitors. This prevents exploiting the tracking potential of the sensor system together with that of computer-generated visual stimulation. Here we present a solution for presenting computer-generated visual stimulation that does not distort the electromagnetic field required for precise motion tracking, by means of a back projection medium. In one experiment, we verify that cathode ray tube monitors, as well as thin-film-transistor monitors, distort electro-magnetic sensor signals even at a distance of 18 cm. Our back projection medium, by contrast, leads to no distortion of the motion-tracking signals even when the sensor is touching the medium. This novel solution permits combining the advantages of electromagnetic motion tracking with computer-generated visual stimulation.

  9. Electromagnetic tracking system with reduced distortion using quadratic excitation.

    PubMed

    Bien, Tomasz; Li, Mengfei; Salah, Zein; Rose, Georg

    2014-03-01

    Electromagnetic tracking systems, frequently used in minimally invasive surgery, are affected by conductive distorters. The influence of conductive distorters on electromagnetic tracking system accuracy can be reduced through magnetic field modifications. This approach was developed and tested. The voltage induced directly by the emitting coil in the sensing coil without additional influence by the conductive distorter depends on the first derivative of the voltage on the emitting coil. The voltage which is induced indirectly by the emitting coil across the conductive distorter in the sensing coil, however, depends on the second derivative of the voltage on the emitting coil. The electromagnetic tracking system takes advantage of this difference by supplying the emitting coil with a quadratic excitation voltage. The method is adaptive relative to the amount of distortion cause by the conductive distorters. This approach is evaluated with an experimental setup of the electromagnetic tracking system. In vitro testing showed that the maximal error decreased from 10.9 to 3.8 mm when the quadratic voltage was used to excite the emitting coil instead of the sinusoidal voltage. Furthermore, the root mean square error in the proximity of the aluminum disk used as a conductive distorter was reduced from 3.5 to 1.6 mm when the electromagnetic tracking system used the quadratic instead of sinusoidal excitation. Electromagnetic tracking with quadratic excitation is immune to the effects of a conductive distorter, especially compared with sinusoidal excitation of the emitting coil. Quadratic excitation of electromagnetic tracking for computer-assisted surgery is promising for clinical applications.

  10. An Electromagnetic Sensor for the Autonomous Running of Visually Impaired and Blind Athletes (Part II: The Wearable Device).

    PubMed

    Pieralisi, Marco; Di Mattia, Valentina; Petrini, Valerio; De Leo, Alfredo; Manfredi, Giovanni; Russo, Paola; Scalise, Lorenzo; Cerri, Graziano

    2017-02-16

    Currently, the availability of technology developed to increase the autonomy of visually impaired athletes during sports is limited. The research proposed in this paper (Part I and Part II) focuses on the realization of an electromagnetic system that can guide a blind runner along a race track without the need for a sighted guide. In general, the system is composed of a transmitting unit (widely described in Part I) and a receiving unit, whose components and main features are described in this paper. Special attention is paid to the definition of an electromagnetic model able to faithfully represent the physical mechanisms of interaction between the two units, as well as between the receiving magnetic sensor and the body of the user wearing the device. This theoretical approach allows for an estimation of the signals to be detected, and guides the design of a suitable signal processing board. This technology has been realized, patented, and tested with a blind volunteer with successful results and this paper presents interesting suggestions for further improvements.

  11. An Electromagnetic Sensor for the Autonomous Running of Visually Impaired and Blind Athletes (Part II: The Wearable Device)

    PubMed Central

    Pieralisi, Marco; Di Mattia, Valentina; Petrini, Valerio; De Leo, Alfredo; Manfredi, Giovanni; Russo, Paola; Scalise, Lorenzo; Cerri, Graziano

    2017-01-01

    Currently, the availability of technology developed to increase the autonomy of visually impaired athletes during sports is limited. The research proposed in this paper (Part I and Part II) focuses on the realization of an electromagnetic system that can guide a blind runner along a race track without the need for a sighted guide. In general, the system is composed of a transmitting unit (widely described in Part I) and a receiving unit, whose components and main features are described in this paper. Special attention is paid to the definition of an electromagnetic model able to faithfully represent the physical mechanisms of interaction between the two units, as well as between the receiving magnetic sensor and the body of the user wearing the device. This theoretical approach allows for an estimation of the signals to be detected, and guides the design of a suitable signal processing board. This technology has been realized, patented, and tested with a blind volunteer with successful results and this paper presents interesting suggestions for further improvements. PMID:28212348

  12. Tracked ultrasound calibration studies with a phantom made of LEGO bricks

    NASA Astrophysics Data System (ADS)

    Soehl, Marie; Walsh, Ryan; Rankin, Adam; Lasso, Andras; Fichtinger, Gabor

    2014-03-01

    In this study, spatial calibration of tracked ultrasound was compared by using a calibration phantom made of LEGO® bricks and two 3-D printed N-wire phantoms. METHODS: The accuracy and variance of calibrations were compared under a variety of operating conditions. Twenty trials were performed using an electromagnetic tracking device with a linear probe and three trials were performed using varied probes, varied tracking devices and the three aforementioned phantoms. The accuracy and variance of spatial calibrations found through the standard deviation and error of the 3-D image reprojection were used to compare the calibrations produced from the phantoms. RESULTS: This study found no significant difference between the measured variables of the calibrations. The average standard deviation of multiple 3-D image reprojections with the highest performing printed phantom and those from the phantom made of LEGO® bricks differed by 0.05 mm and the error of the reprojections differed by 0.13 mm. CONCLUSION: Given that the phantom made of LEGO® bricks is significantly less expensive, more readily available, and more easily modified than precision-machined N-wire phantoms, it prompts to be a viable calibration tool especially for quick laboratory research and proof of concept implementations of tracked ultrasound navigation.

  13. The first clinical implementation of electromagnetic transponder-guided MLC tracking.

    PubMed

    Keall, Paul J; Colvill, Emma; O'Brien, Ricky; Ng, Jin Aun; Poulsen, Per Rugaard; Eade, Thomas; Kneebone, Andrew; Booth, Jeremy T

    2014-02-01

    We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre. An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed. The first clinical implementation of electromagnetic transponder-guided MLC tracking was for a prostate cancer patient being treated with dual-arc VMAT (RapidArc). For the first fraction of the first patient treatment of electromagnetic transponder-guided MLC tracking we recorded the in-room time and transponder positions, and performed dose reconstruction to estimate the delivered dose and also the dose received had MLC tracking not been used. The total in-room time was 21 min with 2 min of beam delivery. No additional time was needed for MLC tracking and there were no beam holds. The average prostate position from the initial setup was 1.2 mm, mostly an anterior shift. Dose reconstruction analysis of the delivered dose with MLC tracking showed similar isodose and target dose volume histograms to the planned treatment and a 4.6% increase in the fractional rectal V60. Dose reconstruction without motion compensation showed a 30% increase in the fractional rectal V60 from that planned, even for the small motion. The real-time beam-target correction method, electromagnetic transponder-guided MLC tracking, has been translated to the clinic. This achievement represents a milestone in improving geometric and dosimetric accuracy, and by inference treatment outcomes, in cancer radiotherapy.

  14. The first clinical implementation of electromagnetic transponder-guided MLC tracking

    PubMed Central

    Keall, Paul J.; Colvill, Emma; O’Brien, Ricky; Ng, Jin Aun; Poulsen, Per Rugaard; Eade, Thomas; Kneebone, Andrew; Booth, Jeremy T.

    2014-01-01

    Purpose: We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre. Methods: An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed. The first clinical implementation of electromagnetic transponder-guided MLC tracking was for a prostate cancer patient being treated with dual-arc VMAT (RapidArc). For the first fraction of the first patient treatment of electromagnetic transponder-guided MLC tracking we recorded the in-room time and transponder positions, and performed dose reconstruction to estimate the delivered dose and also the dose received had MLC tracking not been used. Results: The total in-room time was 21 min with 2 min of beam delivery. No additional time was needed for MLC tracking and there were no beam holds. The average prostate position from the initial setup was 1.2 mm, mostly an anterior shift. Dose reconstruction analysis of the delivered dose with MLC tracking showed similar isodose and target dose volume histograms to the planned treatment and a 4.6% increase in the fractional rectal V60. Dose reconstruction without motion compensation showed a 30% increase in the fractional rectal V60 from that planned, even for the small motion. Conclusions: The real-time beam-target correction method, electromagnetic transponder-guided MLC tracking, has been translated to the clinic. This achievement represents a milestone in improving geometric and dosimetric accuracy, and by inference treatment outcomes, in cancer radiotherapy. PMID:24506591

  15. The Kinect as an interventional tracking system

    NASA Astrophysics Data System (ADS)

    Wang, Xiang L.; Stolka, Philipp J.; Boctor, Emad; Hager, Gregory; Choti, Michael

    2012-02-01

    This work explores the suitability of low-cost sensors for "serious" medical applications, such as tracking of interventional tools in the OR, for simulation, and for education. Although such tracking - i.e. the acquisition of pose data e.g. for ultrasound probes, tissue manipulation tools, needles, but also tissue, bone etc. - is well established, it relies mostly on external devices such as optical or electromagnetic trackers, both of which mandate the use of special markers or sensors attached to each single entity whose pose is to be recorded, and also require their calibration to the tracked entity, i.e. the determination of the geometric relationship between the marker's and the object's intrinsic coordinate frames. The Microsoft Kinect sensor is a recently introduced device for full-body tracking in the gaming market, but it was quickly hacked - due to its wide range of tightly integrated sensors (RGB camera, IR depth and greyscale camera, microphones, accelerometers, and basic actuation) - and used beyond this area. As its field of view and its accuracy are within reasonable usability limits, we describe a medical needle-tracking system for interventional applications based on the Kinect sensor, standard biopsy needles, and no necessary attachments, thus saving both cost and time. Its twin cameras are used as a stereo pair to detect needle-shaped objects, reconstruct their pose in four degrees of freedom, and provide information about the most likely candidate.

  16. Electromagnetic tracking for abdominal interventions in computer aided surgery

    PubMed Central

    Zhang, Hui; Banovac, Filip; Lin, Ralph; Glossop, Neil; Wood, Bradford J.; Lindisch, David; Levy, Elliot; Cleary, Kevin

    2014-01-01

    Electromagnetic tracking has great potential for assisting physicians in precision placement of instruments during minimally invasive interventions in the abdomen, since electromagnetic tracking is not limited by the line-of-sight restrictions of optical tracking. A new generation of electromagnetic tracking has recently become available, with sensors small enough to be included in the tips of instruments. To fully exploit the potential of this technology, our research group has been developing a computer aided, image-guided system that uses electromagnetic tracking for visualization of the internal anatomy during abdominal interventions. As registration is a critical component in developing an accurate image-guided system, we present three registration techniques: 1) enhanced paired-point registration (time-stamp match registration and dynamic registration); 2) orientation-based registration; and 3) needle shape-based registration. Respiration compensation is another important issue, particularly in the abdomen, where respiratory motion can make precise targeting difficult. To address this problem, we propose reference tracking and affine transformation methods. Finally, we present our prototype navigation system, which integrates the registration, segmentation, path-planning and navigation functions to provide real-time image guidance in the clinical environment. The methods presented here have been tested with a respiratory phantom specially designed by our group and in swine animal studies under approved protocols. Based on these tests, we conclude that our system can provide quick and accurate localization of tracked instruments in abdominal interventions, and that it offers a user friendly display for the physician. PMID:16829506

  17. Electromagnetic-Guided MLC Tracking Radiation Therapy for Prostate Cancer Patients: Prospective Clinical Trial Results.

    PubMed

    Keall, Paul J; Colvill, Emma; O'Brien, Ricky; Caillet, Vincent; Eade, Thomas; Kneebone, Andrew; Hruby, George; Poulsen, Per R; Zwan, Benjamin; Greer, Peter B; Booth, Jeremy

    2018-06-01

    To report on the primary and secondary outcomes of a prospective clinical trial of electromagnetic-guided multileaf collimator (MLC) tracking radiation therapy for prostate cancer. Twenty-eight men with prostate cancer were treated with electromagnetic-guided MLC tracking with volumetric modulated arc therapy. A total of 858 fractions were delivered, with the dose per fraction ranging from 2 to 13.75 Gy. The primary outcome was feasibility, with success determined if >95% of fractions were successfully delivered. The secondary outcomes were (1) the improvement in beam-target geometric alignment, (2) the improvement in dosimetric coverage of the prostate and avoidance of critical structures, and (3) no acute grade ≥3 genitourinary or gastrointestinal toxicity. All 858 planned fractions were successfully delivered with MLC tracking, demonstrating the primary outcome of feasibility (P < .001). MLC tracking improved the beam-target geometric alignment from 1.4 to 0.90 mm (root-mean-square error). MLC tracking improved the dosimetric coverage of the prostate and reduced the daily variation in dose to critical structures. No acute grade ≥3 genitourinary or gastrointestinal toxicity was observed. Electromagnetic-guided MLC tracking radiation therapy for prostate cancer is feasible. The patients received improved geometric targeting and delivered dose distributions that were closer to those planned than they would have received without electromagnetic-guided MLC tracking. No significant acute toxicity was observed. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. A software solution to dynamically reduce metallic distortions of electromagnetic tracking systems for image-guided surgery.

    PubMed

    Li, Mengfei; Hansen, Christian; Rose, Georg

    2017-09-01

    Electromagnetic tracking systems (EMTS) have achieved a high level of acceptance in clinical settings, e.g., to support tracking of medical instruments in image-guided interventions. However, tracking errors caused by movable metallic medical instruments and electronic devices are a critical problem which prevents the wider application of EMTS for clinical applications. We plan to introduce a method to dynamically reduce tracking errors caused by metallic objects in proximity to the magnetic sensor coil of the EMTS. We propose a method using ramp waveform excitation based on modeling the conductive distorter as a resistance-inductance circuit. Additionally, a fast data acquisition method is presented to speed up the refresh rate. With the current approach, the sensor's positioning mean error is estimated to be 3.4, 1.3 and 0.7 mm, corresponding to a distance between the sensor and center of the transmitter coils' array of up to 200, 150 and 100 mm, respectively. The sensor pose error caused by different medical instruments placed in proximity was reduced by the proposed method to a level lower than 0.5 mm in position and [Formula: see text] in orientation. By applying the newly developed fast data acquisition method, we achieved a system refresh rate up to approximately 12.7 frames per second. Our software-based approach can be integrated into existing medical EMTS seamlessly with no change in hardware. It improves the tracking accuracy of clinical EMTS when there is a metallic object placed near the sensor coil and has the potential to improve the safety and outcome of image-guided interventions.

  19. Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes.

    PubMed

    Hu, Li; Huang, Yingzhou; Pan, Lujun; Fang, Yurui

    2017-09-11

    Plasmonic chirality represents significant potential for novel nanooptical devices due to its association with strong chiroptical responses. Previous reports on plasmonic chirality mechanism mainly focus on phase retardation and coupling. In this paper, we propose a model similar to the chiral molecules for explaining the intrinsic plasmonic chirality mechanism of varies 3D chiral structures quantitatively based on the interplay and mixing of electric and magnetic dipole modes (directly from electromagnetic field numerical simulations), which forms mixed electric and magnetic polarizability.

  20. Quality assurance for clinical implementation of an electromagnetic tracking system.

    PubMed

    Santanam, Lakshmi; Noel, Camille; Willoughby, Twyla R; Esthappan, Jacqueline; Mutic, Sasa; Klein, Eric E; Low, Daniel A; Parikh, Parag J

    2009-08-01

    The Calypso Medical 4D localization system utilizes alternating current electromagnetics for accurate, real-time tumor tracking. A quality assurance program to clinically implement this system is described here. Testing of the continuous electromagnetic tracking system (Calypso Medical Technologies, Seattle, WA) was performed using an in-house developed four-dimensional stage and a quality assurance fixture containing three radiofrequency transponders at independently measured locations. The following tests were performed to validate the Calypso system: (a) Localization and tracking accuracy, (b) system reproducibility, (c) measurement of the latency of the tracking system, and (d) measurement of transmission through the Calypso table overlay and the electromagnetic array. The translational and rotational localization accuracies were found to be within 0.01 cm and 1.0 degree, respectively. The reproducibility was within 0.1 cm. The average system latency was measured to be within 303 ms. The attenuation by the Calypso overlay was measured to be 1.0% for both 6 and 18 MV photons. The attenuations by the Calypso array were measured to be 2% and 1.5% for 6 and 18 MV photons, respectively. For oblique angles, the transmission was measured to be 3% for 6 MV, while it was 2% for 18 MV photons. A quality assurance process has been developed for the clinical implementation of an electromagnetic tracking system in radiation therapy.

  1. 78 FR 35173 - Physical Medicine Devices; Reclassification of Stair-Climbing Wheelchairs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    .... Electromagnetic interference: The device may interfere with the operation of other electrical devices or be... electromagnetic compatibility testing as well as characterization of speed/acceleration, battery longevity, and... electrical safety and electromagnetic compatibility of the device. Performance testing must demonstrate...

  2. 78 FR 1162 - Cardiovascular Devices; Reclassification of External Cardiac Compressor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... safety and electromagnetic compatibility; For devices containing software, software verification... electromagnetic compatibility; For devices containing software, software verification, validation, and hazard... electrical components, appropriate analysis and testing must validate electrical safety and electromagnetic...

  3. Measurement of electromagnetic tracking error in a navigated breast surgery setup

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Baksh, Aidan; Ungi, Tamas; Lasso, Andras; Baum, Zachary; Gauvin, Gabrielle; Engel, Jay; Rudan, John; Fichtinger, Gabor

    2016-03-01

    PURPOSE: The measurement of tracking error is crucial to ensure the safety and feasibility of electromagnetically tracked, image-guided procedures. Measurement should occur in a clinical environment because electromagnetic field distortion depends on positioning relative to the field generator and metal objects. However, we could not find an accessible and open-source system for calibration, error measurement, and visualization. We developed such a system and tested it in a navigated breast surgery setup. METHODS: A pointer tool was designed for concurrent electromagnetic and optical tracking. Software modules were developed for automatic calibration of the measurement system, real-time error visualization, and analysis. The system was taken to an operating room to test for field distortion in a navigated breast surgery setup. Positional and rotational electromagnetic tracking errors were then calculated using optical tracking as a ground truth. RESULTS: Our system is quick to set up and can be rapidly deployed. The process from calibration to visualization also only takes a few minutes. Field distortion was measured in the presence of various surgical equipment. Positional and rotational error in a clean field was approximately 0.90 mm and 0.31°. The presence of a surgical table, an electrosurgical cautery, and anesthesia machine increased the error by up to a few tenths of a millimeter and tenth of a degree. CONCLUSION: In a navigated breast surgery setup, measurement and visualization of tracking error defines a safe working area in the presence of surgical equipment. Our system is available as an extension for the open-source 3D Slicer platform.

  4. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths

    PubMed Central

    Jiang, Zhi Hao; Turpin, Jeremy P.; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H.

    2015-01-01

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. PMID:26217054

  5. Automatic segmentation and centroid detection of skin sensors for lung interventions

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Xu, Sheng; Xue, Zhong; Wong, Stephen T.

    2012-02-01

    Electromagnetic (EM) tracking has been recognized as a valuable tool for locating the interventional devices in procedures such as lung and liver biopsy or ablation. The advantage of this technology is its real-time connection to the 3D volumetric roadmap, i.e. CT, of a patient's anatomy while the intervention is performed. EM-based guidance requires tracking of the tip of the interventional device, transforming the location of the device onto pre-operative CT images, and superimposing the device in the 3D images to assist physicians to complete the procedure more effectively. A key requirement of this data integration is to find automatically the mapping between EM and CT coordinate systems. Thus, skin fiducial sensors are attached to patients before acquiring the pre-operative CTs. Then, those sensors can be recognized in both CT and EM coordinate systems and used calculate the transformation matrix. In this paper, to enable the EM-based navigation workflow and reduce procedural preparation time, an automatic fiducial detection method is proposed to obtain the centroids of the sensors from the pre-operative CT. The approach has been applied to 13 rabbit datasets derived from an animal study and eight human images from an observation study. The numerical results show that it is a reliable and efficient method for use in EM-guided application.

  6. MRI - 3D Ultrasound - X-ray Image Fusion with Electromagnetic Tracking for Transendocardial Therapeutic Injections: In-vitro Validation and In-vivo Feasibility

    PubMed Central

    Hatt, Charles R.; Jain, Ameet K.; Parthasarathy, Vijay; Lang, Andrew; Raval, Amish N.

    2014-01-01

    Myocardial infarction (MI) is one of the leading causes of death in the world. Small animal studies have shown that stem-cell therapy offers dramatic functional improvement post-MI. An endomyocardial catheter injection approach to therapeutic agent delivery has been proposed to improve efficacy through increased cell retention. Accurate targeting is critical for reaching areas of greatest therapeutic potential while avoiding a life-threatening myocardial perforation. Multimodal image fusion has been proposed as a way to improve these procedures by augmenting traditional intra-operative imaging modalities with high resolution pre-procedural images. Previous approaches have suffered from a lack of real-time tissue imaging and dependence on X-ray imaging to track devices, leading to increased ionizing radiation dose. In this paper, we present a new image fusion system for catheter-based targeted delivery of therapeutic agents. The system registers real-time 3D echocardiography, magnetic resonance, X-ray, and electromagnetic sensor tracking within a single flexible framework. All system calibrations and registrations were validated and found to have target registration errors less than 5 mm in the worst case. Injection accuracy was validated in a motion enabled cardiac injection phantom, where targeting accuracy ranged from 0.57 to 3.81 mm. Clinical feasibility was demonstrated with in-vivo swine experiments, where injections were successfully made into targeted regions of the heart. PMID:23561056

  7. Electromagnetic bone segment tracking to control femoral derotation osteotomy-A saw bone study.

    PubMed

    Geisbüsch, Andreas; Auer, Christoph; Dickhaus, Hartmut; Niklasch, Mirjam; Dreher, Thomas

    2017-05-01

    Correction of rotational gait abnormalities is common practice in pediatric orthopaedics such as in children with cerebral palsy. Femoral derotation osteotomy is established as a standard treatment, however, different authors reported substantial variability in outcomes following surgery with patients showing over- or under-correction. Only 60% of the applied correction is observed postoperatively, which strongly suggests intraoperative measurement error or loss of correction during surgery. This study was conducted to verify the impact of error sources in the derotation procedure and assess the utility of a newly developed, instrumented measurement system based on electromagnetic tracking aiming to improve the accuracy of rotational correction. A supracondylar derotation osteotomy was performed in 21 artificial femur sawbones and the amount of derotation was quantified during the procedure by the tracking system and by nine raters using a conventional goniometer. Accuracy of both measurement devices was determined by repeated computer tomography scans. Average derotation measured by the tracking system differed by 0.1° ± 1.6° from the defined reference measurement . In contrast, a high inter-rater variability was found in goniometric measurements (range: 10.8° ± 6.9°, mean interquartile distance: 6.6°). During fixation of the osteosynthesis, the tracking system reliably detected unintentional manipulation of the correction angle with a mean absolute change of 4.0° ± 3.2°. Our findings show that conventional control of femoral derotation is subject to relevant observer bias whereas instrumental tracking yields accuracy better than ±2°. The tracking system is a step towards more reliable and safe implementation of femoral correction, promising substantial improvements of patient safety in the future. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1106-1112, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. 78 FR 28733 - Medical Devices; General Hospital and Personal Use Monitoring Devices; Classification of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... Toxicology Testing. Labeling (dose limits). Electromagnetic incompatibility........ Electromagnetic... analysis and nonclinical testing must validate electromagnetic compatibility performance, wireless... electromagnetic compatibility performance, wireless performance, and electrical safety; and (4) Labeling must...

  9. Verifying placement of small-bore feeding tubes: electromagnetic device images versus abdominal radiographs.

    PubMed

    Bryant, Vera; Phang, Jean; Abrams, Kevin

    2015-11-01

    Clinicians are unsure if radiography is needed to confirm correct positioning of feeding tubes inserted with assistance from an electromagnetic system. To compare radiographic reports of feeding tube placement with images generated by an electromagnetic feeding tube placement device. The medical records of 200 consecutive patients who had feeding tubes inserted with assistance from an electromagnetic feeding tube placement device were reviewed retrospectively. Radiographic reports of tube site were compared with images generated by the device. Radiographic evidence of tube sites was available in 188 cases: 184 tubes were located in portions of the gastrointestinal tract. Ninety of the 188 tubes were situated in the optimal site (distal duodenum or jejunum) radiographically. Images generated by the electromagnetic device were available in 176 cases; of these, 52 tubes appeared to end in the expected left lower quadrant. Tubes shown on radiographs to be in other sites also occasionally appeared to end in the left lower quadrant. Nurses using the device did not recognize 4 of the 188 tubes (2.1%) that were inadvertently placed in the lung. No consistent pattern of quadrant distribution was found for tubes positioned in the stomach or proximal duodenum. Images generated by the electromagnetic tube placement device provided inconsistent results regarding tube location. A small percentage of seriously malpositioned tubes were not detected by using the electromagnetic device. These findings do not support eliminating radiographs to confirm correct tube placement following use of an electromagnetic tube placement device. ©2015 American Association of Critical-Care Nurses.

  10. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths.

    PubMed

    Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H

    2015-08-28

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Conformal needle-based ultrasound ablation using EM-tracked conebeam CT image guidance

    NASA Astrophysics Data System (ADS)

    Burdette, E. Clif; Banovac, Filip; Diederich, Chris J.; Cheng, Patrick; Wilson, Emmanuel; Cleary, Kevin R.

    2011-03-01

    Numerous studies have demonstrated the efficacy of interstitial ablative approaches for the treatment of renal and hepatic tumors. Despite these promising results, current systems remain highly dependent on operator skill, and cannot treat many tumors because there is little control of the size and shape of the zone of necrosis, and no control over ablator trajectory within tissue once insertion has taken place. Additionally, tissue deformation and target motion make it extremely difficult to accurately place the ablator device into the target. Irregularly shaped target volumes typically require multiple insertions and several sequential thermal ablation procedures. This study demonstrated feasibility of spatially tracked image-guided conformal ultrasound (US) ablation for percutaneous directional ablation of diseased tissue. Tissue was prepared by suturing the liver within a pig belly and 1mm BBs placed to serve as needle targets. The image guided system used integrated electromagnetic tracking and cone-beam CT (CBCT) with conformable needlebased high-intensity US ablation in the interventional suite. Tomographic images from cone beam CT were transferred electronically to the image-guided tracking system (IGSTK). Paired-point registration was used to register the target specimen to CT images and enable navigation. Path planning is done by selecting the target BB on the GUI of the realtime tracking system and determining skin entry location until an optimal path is selected. Power was applied to create the desired ablation extent within 7-10 minutes at a thermal dose (>300eqm43). The system was successfully used to place the US ablator in planned target locations within ex-vivo kidney and liver through percutaneous access. Targeting accuracy was 3-4 mm. Sectioned specimens demonstrated uniform ablation within the planned target zone. Subsequent experiments were conducted for multiple ablator positions based upon treatment planning simulations. Ablation zones in liver were 73cc, 84cc, and 140cc for 3, 4, and 5 placements, respectively. These experiments demonstrate the feasibility of combining real-time spatially tracked image guidance with directional interstitial ultrasound ablation. Interstitial ultrasound ablation delivered on multiple needles permit the size and shape of the ablation zone to be "sculpted" by modifying the angle and intensity of the active US elements in the array. This paper summarizes the design and development of the first system incorporating thermal treatment planning and integration of a novel interstitial acoustic ablation device with integrated 3D electromagnetic tracking and guidance strategy.

  12. 76 FR 44489 - Medical Devices; Neurological Devices; Classification of Repetitive Transcranial Magnetic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ...; Hazards caused by electromagnetic interference and electrostatic discharge hazards; and Hearing loss. FDA... electromagnetic Electromagnetic compatibility. interference and electrostatic discharge hazards. Labeling. Hearing...

  13. Electromagnetic interference from radio frequency identification inducing potentially hazardous incidents in critical care medical equipment.

    PubMed

    van der Togt, Remko; van Lieshout, Erik Jan; Hensbroek, Reinout; Beinat, E; Binnekade, J M; Bakker, P J M

    2008-06-25

    Health care applications of autoidentification technologies, such as radio frequency identification (RFID), have been proposed to improve patient safety and also the tracking and tracing of medical equipment. However, electromagnetic interference (EMI) by RFID on medical devices has never been reported. To assess and classify incidents of EMI by RFID on critical care equipment. Without a patient being connected, EMI by 2 RFID systems (active 125 kHz and passive 868 MHz) was assessed under controlled conditions during May 2006, in the proximity of 41 medical devices (in 17 categories, 22 different manufacturers) at the Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. Assessment took place according to an international test protocol. Incidents of EMI were classified according to a critical care adverse events scale as hazardous, significant, or light. In 123 EMI tests (3 per medical device), RFID induced 34 EMI incidents: 22 were classified as hazardous, 2 as significant, and 10 as light. The passive 868-MHz RFID signal induced a higher number of incidents (26 incidents in 41 EMI tests; 63%) compared with the active 125-kHz RFID signal (8 incidents in 41 EMI tests; 20%); difference 44% (95% confidence interval, 27%-53%; P < .001). The passive 868-MHz RFID signal induced EMI in 26 medical devices, including 8 that were also affected by the active 125-kHz RFID signal (26 in 41 devices; 63%). The median distance between the RFID reader and the medical device in all EMI incidents was 30 cm (range, 0.1-600 cm). In a controlled nonclinical setting, RFID induced potentially hazardous incidents in medical devices. Implementation of RFID in the critical care environment should require on-site EMI tests and updates of international standards.

  14. Information Security due to Electromagnetic Environments

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Hidenori; Seto, Shinji

    Generally, active electronic devices emit slightly unintentional electromagnetic noise. From long ago, electromagnetic emission levels have been regulated from the aspect of electromagnetic compatibility (EMC). Also, it has been known the electromagnetic emissions have been generated from the ON/OFF of signals in the device. Recently, it becomes a topic of conversation on the information security that the ON/OFF on a desired signal in the device can be reproduced or guessed by receiving the electromagnetic emission. For an example, a display image on a personal computer (PC) can be reconstructed by receiving and analyzing the electromagnetic emission. In sum, this fact makes known information leakage due to electromagnetic emission. “TEMPEST" that has been known as a code name originated in the U. S. Department of Defense is to prevent the information leakage caused by electromagnetic emissions. This paper reports the brief summary of the information security due to electromagnetic emissions from information technology equipments.

  15. The accuracy of an electromagnetic navigation system in lateral skull base approaches.

    PubMed

    Komune, Noritaka; Matsushima, Ken; Matsuo, Satoshi; Safavi-Abbasi, Sam; Matsumoto, Nozomu; Rhoton, Albert L

    2017-02-01

    Image-guided optical tracking systems are being used with increased frequency in lateral skull base surgery. Recently, electromagnetic tracking systems have become available for use in this region. However, the clinical accuracy of the electromagnetic tracking system has not been examined in lateral skull base surgery. This study evaluates the accuracy of electromagnetic navigation in lateral skull base surgery. Cadaveric and radiographic study. Twenty cadaveric temporal bones were dissected in a surgical setting under a commercially available, electromagnetic surgical navigation system. The target registration error (TRE) was measured at 28 surgical landmarks during and after performing the standard translabyrinthine and middle cranial fossa surgical approaches to the internal acoustic canal. In addition, three demonstrative procedures that necessitate navigation with high accuracy were performed; that is, canalostomy of the superior semicircular canal from the middle cranial fossa, 1 cochleostomy from the middle cranial fossa, 2 and infralabyrinthine approach to the petrous apex. 3 RESULTS: Eleven of 17 (65%) of the targets in the translabyrinthine approach and five of 11 (45%) of the targets in the middle fossa approach could be identified in the navigation system with TRE of less than 0.5 mm. Three accuracy-dependent procedures were completed without anatomical injury of important anatomical structures. The electromagnetic navigation system had sufficient accuracy to be used in the surgical setting. It was possible to perform complex procedures in the lateral skull base under the guidance of the electromagnetically tracked navigation system. N/A. Laryngoscope, 2016 127:450-459, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Silicon MEMS bistable electromagnetic vibration energy harvester using double-layer micro-coils

    NASA Astrophysics Data System (ADS)

    Podder, P.; Constantinou, P.; Mallick, D.; Roy, S.

    2015-12-01

    This work reports the development of a MEMS bistable electromagnetic vibrational energy harvester (EMVEH) consisting of a silicon-on-insulator (SOI) spiral spring, double layer micro-coils and miniaturized NdFeB magnets. Furthermore, with respect to the spiral silicon spring based VEH, four different square micro-coil topologies with different copper track width and number of turns have been investigated to determine the optimal coil dimensions. The micro-generator with the optimal micro-coil generated 0.68 micro-watt load power over an optimum resistive load at 0.1g acceleration, leading to normalized power density of 3.5 kg.s/m3. At higher accelerations the load power increased, and the vibrating magnet collides with the planar micro-coil producing wider bandwidth. Simulation results show that a substantially wider bandwidth could be achieved in the same device by introducing bistable nonlinearity through a repulsive configuration between the moving and fixed permanent magnets.

  17. Needle and catheter navigation using electromagnetic tracking for computer-assisted C-arm CT interventions

    NASA Astrophysics Data System (ADS)

    Nagel, Markus; Hoheisel, Martin; Petzold, Ralf; Kalender, Willi A.; Krause, Ulrich H. W.

    2007-03-01

    Integrated solutions for navigation systems with CT, MR or US systems become more and more popular for medical products. Such solutions improve the medical workflow, reduce hardware, space and costs requirements. The purpose of our project was to develop a new electromagnetic navigation system for interventional radiology which is integrated into C-arm CT systems. The application is focused on minimally invasive percutaneous interventions performed under local anaesthesia. Together with a vacuum-based patient immobilization device and newly developed navigation tools (needles, panels) we developed a safe and fully automatic navigation system. The radiologist can directly start with navigated interventions after loading images without any prior user interaction. The complete system is adapted to the requirements of the radiologist and to the clinical workflow. For evaluation of the navigation system we performed different phantom studies and achieved an average accuracy of better than 2.0 mm.

  18. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control.

    PubMed

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-08-25

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.

  19. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control

    PubMed Central

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-01-01

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved. PMID:27571081

  20. Susceptibility study of audio recording devices to electromagnetic stimulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halligan, Matthew S.; Grant, Steven L.; Beetner, Daryl G.

    2014-02-01

    Little research has been performed to study how intentional electromagnetic signals may couple into recording devices. An electromagnetic susceptibility study was performed on an analog tape recorder, a digital video camera, a wired computer microphone, and a wireless microphone system to electromagnetic interference. Devices were subjected to electromagnetic stimulations in the frequency range of 1-990 MHz and field strengths up to 4.9 V/m. Carrier and message frequencies of the stimulation signals were swept, and the impacts of device orientation and antenna polarization were explored. Message signals coupled into all devices only when amplitude modulated signals were used as stimulation signals.more » Test conditions that produced maximum sensitivity were highly specific to each device. Only narrow carrier frequency ranges could be used for most devices to couple messages into recordings. A basic detection technique using cross-correlation demonstrated the need for messages to be as long as possible to maximize message detection and minimize detection error. Analysis suggests that detectable signals could be coupled to these recording devices under realistic ambient conditions.« less

  1. Electromagnetic Tracking Navigation to Guide Radiofrequency Ablation (RFA) of a Lung Tumor

    PubMed Central

    Amalou, Hayet; Wood, Bradford J.

    2013-01-01

    Radiofrequency ablation (RFA) may be an option for patients with lung tumors who have unresectable disease and are not suitable for available palliative modalities. RFA electrode positioning may take several attempts, necessitating multiple imaging acquisitions or continuous use of CT (Computed Tomography). Electromagnetic tracking utilizes miniature sensors integrated with RFA equipment to guide tools in real-time, while referencing to pre-procedure imaging. This technology was demonstrated successfully during a lung tumor ablation, and was more accurate at targeting the tumor, compared to traditional freehand needle insertion. It is possible, although speculative and anecdotal, that more accuracy could prevent unnecessary repositioning punctures and decrease radiation exposure. Electromagnetic tracking has theoretical potential to benefit minimally invasive interventions. PMID:23207535

  2. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter.

    PubMed

    Litzenberg, Dale W; Gallagher, Ian; Masi, Kathryn J; Lee, Choonik; Prisciandaro, Joann I; Hamstra, Daniel A; Ritter, Timothy; Lam, Kwok L

    2013-08-01

    To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter. This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3×6 cm2 radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study. The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053±0.036, 0.121±0.023, and 0.093±0.013 cm. The method presented here provides an independent technique to verify the calibration of an electromagnetic tracking system to radiation isocenter. The calibration accuracy of the system was better than the 0.2 cm accuracy stated by the manufacturer. However, it should not be assumed to be zero, especially for stereotactic radiation therapy treatments where planning target volume margins are very small.

  3. Modular multiple sensors information management for computer-integrated surgery.

    PubMed

    Vaccarella, Alberto; Enquobahrie, Andinet; Ferrigno, Giancarlo; Momi, Elena De

    2012-09-01

    In the past 20 years, technological advancements have modified the concept of modern operating rooms (ORs) with the introduction of computer-integrated surgery (CIS) systems, which promise to enhance the outcomes, safety and standardization of surgical procedures. With CIS, different types of sensor (mainly position-sensing devices, force sensors and intra-operative imaging devices) are widely used. Recently, the need for a combined use of different sensors raised issues related to synchronization and spatial consistency of data from different sources of information. In this study, we propose a centralized, multi-sensor management software architecture for a distributed CIS system, which addresses sensor information consistency in both space and time. The software was developed as a data server module in a client-server architecture, using two open-source software libraries: Image-Guided Surgery Toolkit (IGSTK) and OpenCV. The ROBOCAST project (FP7 ICT 215190), which aims at integrating robotic and navigation devices and technologies in order to improve the outcome of the surgical intervention, was used as the benchmark. An experimental protocol was designed in order to prove the feasibility of a centralized module for data acquisition and to test the application latency when dealing with optical and electromagnetic tracking systems and ultrasound (US) imaging devices. Our results show that a centralized approach is suitable for minimizing synchronization errors; latency in the client-server communication was estimated to be 2 ms (median value) for tracking systems and 40 ms (median value) for US images. The proposed centralized approach proved to be adequate for neurosurgery requirements. Latency introduced by the proposed architecture does not affect tracking system performance in terms of frame rate and limits US images frame rate at 25 fps, which is acceptable for providing visual feedback to the surgeon in the OR. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Magnetic core mounting system

    DOEpatents

    Ronning, Jeffrey J.

    2002-01-01

    A mounting apparatus for an electromagnetic device such as a transformer of inductor includes a generally planar metallic plate as a first heat sink, and a metallic mounting cup as a second heat sink. The mounting cup includes a cavity configured to receive the electromagnetic device, the cavity being defined by a base, and an axially-extending annular sidewall extending from the base to a flange portion of the mounting cup. The mounting cup includes first and second passages for allowing the leads of first and second windings of the electromagnetic device to be routed out of the cavity. The cavity is filled with a polyurethane potting resin, and the mounting cup, including the potted electromagnetic device, is mounted to the plate heat sink using fasteners. The mounting cup, which surrounds the electromagnetic device, in combination with the potting resin provides improved thermal transfer to the plate heat sink, as well as providing resistance to vibration and shocks.

  5. An experimental study to investigate the effects of a motion tracking electromagnetic sensor during EEG data acquisition.

    PubMed

    Bashashati, Ali; Noureddin, Borna; Ward, Rabab K; Lawrence, Peter D; Birch, Gary E

    2006-03-01

    A power spectral analysis study was conducted to investigate the effects of using an electromagnetic motion tracking sensor on an electroencephalogram (EEG) recording system. The results showed that the sensors do not generate any consistent frequency component(s) in the power spectrum of the EEG in the frequencies of interest (0.1-55 Hz).

  6. Real-time active MR-tracking of metallic stylets in MR-guided radiation therapy

    PubMed Central

    Wang, Wei; Dumoulin, Charles L.; Viswanathan, Akila N.; Tse, Zion T. H.; Mehrtash, Alireza; Loew, Wolfgang; Norton, Isaiah; Tokuda, Junichi; Seethamraju, Ravi T.; Kapur, Tina; Damato, Antonio L.; Cormack, Robert A.; Schmidt, Ehud J.

    2014-01-01

    Purpose To develop an active MR-tracking system to guide placement of metallic devices for radiation therapy. Methods An actively tracked metallic stylet for brachytherapy was constructed by adding printed-circuit micro-coils to a commercial stylet. The coil design was optimized by electromagnetic simulation, and has a radio-frequency lobe pattern extending ~5 mm beyond the strong B0 inhomogeneity region near the metal surface. An MR-tracking sequence with phase-field dithering was used to overcome residual effects of B0 and B1 inhomogeneities caused by the metal, as well as from inductive coupling to surrounding metallic stylets. The tracking system was integrated with a graphical workstation for real-time visualization. 3T MRI catheter-insertion procedures were tested in phantoms and ex-vivo animal tissue, and then performed in three patients during interstitial brachytherapy. Results The tracking system provided high-resolution (0.6 × 0.6 × 0.6 mm3) and rapid (16 to 40 frames per second, with three to one phase-field dithering directions) catheter localization in phantoms, animals, and three gynecologic cancer patients. Conclusion This is the first demonstration of active tracking of the shaft of metallic stylet in MR-guided brachytherapy. It holds the promise of assisting physicians to achieve better targeting and improving outcomes in interstitial brachytherapy. PMID:24903165

  7. 78 FR 14013 - Medical Devices; Exemption From Premarket Notification; Class II Devices; Wheelchair Elevator

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ...: General Requirements for Safety-- Collateral Standard: Electromagnetic Compatibility--Requirements and... electromagnetic compatibility and electrical safety. Firms are now exempt from 510(k) requirements for vertical... Equipment--Part 1-2: General Requirements for Safety--Collateral Standard: Electromagnetic Compatibility...

  8. Environmental impact of the use of radiofrequency electromagnetic fields in physiotherapeutic treatment.

    PubMed

    Gryz, Krzysztof; Karpowicz, Jolanta

    2014-01-01

    Electromagnetic fields used in physiotherapeutic treatment affect not only patients, but also physiotherapists, patients not undergoing treatment and electronic medical equipment. The aim of the work was to study the parameters of the electromagnetic fields of physiotherapeutic devices with respect to requirements regarding the protection of electronic devices, including medical implants, against electromagnetic intererence, and the protection of the general public (patients not undergoing treatment and bystanders), as well as medical personnel, against the health hazards caused by electromagnetic exposure. The spatial distribution of electric and magnetic field strength was investigated near 3 capacitive short-wave and 3 long-wave diathermies and 3 ultrasound therapy units, as along with the capacitive electric currents caused by electromagnetic field interaction in the upper limbs of the physiotherapists operating these devices. The physiotherapists' exposure to electromagnetic fields depends on the spatial organisation of the workspace and their location during treatment. Electric fields able to interfere with the function of electronic medical implants and in whic anyone not undergoing treatment should not be present were measured up to 150-200 cm away from active applicators of short-wave diathermy, and up to 40-45 cm away from long-wave diathermy ones. Electric fields in which workers should not be present were measured up to 30-40 cm away from the applicators and cables of active short-wave diathermy devices. A capacitive electric current with a strength exceeding many times the international recommendations regarding workers protection was measured in the wrist while touching applicators and cables of active short-wave diathermy devices. The strongest environmental electromagnetic hazards occur near short-wave diathermy devices, and to a lesser degree near long-wave diathermy devices, but were not found near ultrasound therapy units.

  9. Real-time tracking of liver motion and deformation using a flexible needle

    PubMed Central

    Lei, Peng; Moeslein, Fred; Wood, Bradford J.

    2012-01-01

    Purpose A real-time 3D image guidance system is needed to facilitate treatment of liver masses using radiofrequency ablation, for example. This study investigates the feasibility and accuracy of using an electromagnetically tracked flexible needle inserted into the liver to track liver motion and deformation. Methods This proof-of-principle study was conducted both ex vivo and in vivo with a CT scanner taking the place of an electromagnetic tracking system as the spatial tracker. Deformations of excised livers were artificially created by altering the shape of the stage on which the excised livers rested. Free breathing or controlled ventilation created deformations of live swine livers. The positions of the needle and test targets were determined through CT scans. The shape of the needle was reconstructed using data simulating multiple embedded electromagnetic sensors. Displacement of liver tissues in the vicinity of the needle was derived from the change in the reconstructed shape of the needle. Results The needle shape was successfully reconstructed with tracking information of two on-needle points. Within 30 mm of the needle, the registration error of implanted test targets was 2.4 ± 1.0 mm ex vivo and 2.8 ± 1.5 mm in vivo. Conclusion A practical approach was developed to measure the motion and deformation of the liver in real time within a region of interest. The approach relies on redesigning the often-used seeker needle to include embedded electromagnetic tracking sensors. With the nonrigid motion and deformation information of the tracked needle, a single- or multimodality 3D image of the intraprocedural liver, now clinically obtained with some delay, can be updated continuously to monitor intraprocedural changes in hepatic anatomy. This capability may be useful in radiofrequency ablation and other percutaneous ablative procedures. PMID:20700662

  10. Free Motion Scanning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sword, Charles K.

    The present invention relates to an ultrasonic scanner and method for the imaging of a part surface, the scanner comprising: a probe assembly spaced apart from the surface including at least two tracking signals for emitting electromagnetic radiation and a transmitter for emitting ultrasonic waves onto a surface in order to induce at least a portion of said waves to be reflected from the surface, at least one detector for receiving the electromagnetic radiation wherein the detector is positioned to receive said radiation from the tracking signals, an analyzing means for recognizing a three-dimensional location of the tracking signals basedmore » on said emitted electromagnetic radiation, a differential conversion means for generating an output signal representative of the waveform of the reflected waves, and a means for relating said tracking signal location with the output signal and projecting an image of the resulting data. The scanner and method are particularly useful to acquire ultrasonic inspection data by scanning the probe-over a complex part surface in an arbitrary scanning pattern.« less

  11. Thin-film spectroscopic sensor

    DOEpatents

    Burgess, Jr., Lloyd W.; Goldman, Don S.

    1992-01-01

    There is disclosed an integrated spectrometer for chemical analysis by evanescent electromagnetic radiation absorption in a reaction volume. The spectrometer comprises a noninteractive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device. There is further disclosed a chemical sensor to determine the pressure and concentration of a chemical species in a mixture comprising an interactive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device.

  12. 78 FR 14015 - Medical Devices; Exemption From Premarket Notification; Class II Devices; Powered Patient Transport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... for Safety--Collateral Standard: Electromagnetic Compatibility--Requirements and Tests,'' and ASME A18.1 ``Safety Standard for Platform Lifts and Stairway Chair Lifts'') must validate electromagnetic...: Electromagnetic Compatibility--Requirements and Tests,'' and ASME A18.1 ``Safety Standard for Platform Lifts and...

  13. Anser EMT: the first open-source electromagnetic tracking platform for image-guided interventions.

    PubMed

    Jaeger, Herman Alexander; Franz, Alfred Michael; O'Donoghue, Kilian; Seitel, Alexander; Trauzettel, Fabian; Maier-Hein, Lena; Cantillon-Murphy, Pádraig

    2017-06-01

    Electromagnetic tracking is the gold standard for instrument tracking and navigation in the clinical setting without line of sight. Whilst clinical platforms exist for interventional bronchoscopy and neurosurgical navigation, the limited flexibility and high costs of electromagnetic tracking (EMT) systems for research investigations mitigate against a better understanding of the technology's characterisation and limitations. The Anser project provides an open-source implementation for EMT with particular application to image-guided interventions. This work provides implementation schematics for our previously reported EMT system which relies on low-cost acquisition and demodulation techniques using both National Instruments and Arduino hardware alongside MATLAB support code. The system performance is objectively compared to other commercial tracking platforms using the Hummel assessment protocol. Positional accuracy of 1.14 mm and angular rotation accuracy of [Formula: see text] are reported. Like other EMT platforms, Anser is susceptible to tracking errors due to eddy current and ferromagnetic distortion. The system is compatible with commercially available EMT sensors as well as the Open Network Interface for image-guided therapy (OpenIGTLink) for easy communication with visualisation and medical imaging toolkits such as MITK and 3D Slicer. By providing an open-source platform for research investigations, we believe that novel and collaborative approaches can overcome the limitations of current EMT technology.

  14. Image fusion and navigation platforms for percutaneous image-guided interventions.

    PubMed

    Rajagopal, Manoj; Venkatesan, Aradhana M

    2016-04-01

    Image-guided interventional procedures, particularly image guided biopsy and ablation, serve an important role in the care of the oncology patient. The need for tumor genomic and proteomic profiling, early tumor response assessment and confirmation of early recurrence are common scenarios that may necessitate successful biopsies of targets, including those that are small, anatomically unfavorable or inconspicuous. As image-guided ablation is increasingly incorporated into interventional oncology practice, similar obstacles are posed for the ablation of technically challenging tumor targets. Navigation tools, including image fusion and device tracking, can enable abdominal interventionalists to more accurately target challenging biopsy and ablation targets. Image fusion technologies enable multimodality fusion and real-time co-displays of US, CT, MRI, and PET/CT data, with navigational technologies including electromagnetic tracking, robotic, cone beam CT, optical, and laser guidance of interventional devices. Image fusion and navigational platform technology is reviewed in this article, including the results of studies implementing their use for interventional procedures. Pre-clinical and clinical experiences to date suggest these technologies have the potential to reduce procedure risk, time, and radiation dose to both the patient and the operator, with a valuable role to play for complex image-guided interventions.

  15. Navigation for fluoroscopy-guided cryo-balloon ablation procedures of atrial fibrillation

    NASA Astrophysics Data System (ADS)

    Bourier, Felix; Brost, Alexander; Kleinoeder, Andreas; Kurzendorfer, Tanja; Koch, Martin; Kiraly, Attila; Schneider, Hans-Juergen; Hornegger, Joachim; Strobel, Norbert; Kurzidim, Klaus

    2012-02-01

    Atrial fibrillation (AFib), the most common arrhythmia, has been identified as a major cause of stroke. The current standard in interventional treatment of AFib is the pulmonary vein isolation (PVI). PVI is guided by fluoroscopy or non-fluoroscopic electro-anatomic mapping systems (EAMS). Either classic point-to-point radio-frequency (RF)- catheter ablation or so-called single-shot-devices like cryo-balloons are used to achieve electrically isolation of the pulmonary veins and the left atrium (LA). Fluoroscopy-based systems render overlay images from pre-operative 3-D data sets which are then merged with fluoroscopic imaging, thereby adding detailed 3-D information to conventional fluoroscopy. EAMS provide tracking and visualization of RF catheters by means of electro-magnetic tracking. Unfortunately, current navigation systems, fluoroscopy-based or EAMS, do not provide tools to localize and visualize single shot devices like cryo-balloon catheters in 3-D. We present a prototype software for fluoroscopy-guided ablation procedures that is capable of superimposing 3-D datasets as well as reconstructing cyro-balloon catheters in 3-D. The 3-D cyro-balloon reconstruction was evaluated on 9 clinical data sets, yielded a reprojected 2-D error of 1.72 mm +/- 1.02 mm.

  16. Three-dimensional analysis of the surface registration accuracy of electromagnetic navigation systems in live endoscopic sinus surgery.

    PubMed

    Chang, C M; Fang, K M; Huang, T W; Wang, C T; Cheng, P W

    2013-12-01

    Studies on the performance of surface registration with electromagnetic tracking systems are lacking in both live surgery and the laboratory setting. This study presents the efficiency in time of the system preparation as well as the navigational accuracy of surface registration using electromagnetic tracking systems. Forty patients with bilateral chronic paranasal pansinusitis underwent endoscopic sinus surgery after undergoing sinus computed tomography scans. The surgeries were performed under electromagnetic navigation guidance after the surface registration had been carried out on all of the patients. The intraoperative measurements indicate the time taken for equipment set-up, surface registration and surgical procedure, as well as the degree of navigation error along 3 axes. The time taken for equipment set-up, surface registration and the surgical procedure was 179 +- 23 seconds, 39 +- 4.8 seconds and 114 +- 36 minutes, respectively. A comparison of the navigation error along the 3 axes showed that the deviation in the medial-lateral direction was significantly less than that in the anterior-posterior and cranial-caudal directions. The procedures of equipment set-up and surface registration in electromagnetic navigation tracking are efficient, convenient and easy to manipulate. The system accuracy is within the acceptable ranges, especially on the medial-lateral axis.

  17. Anisotropic conducting films for electromagnetic radiation applications

    DOEpatents

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  18. Electromagnetic Interference in Implantable Defibrillators in Single-Engine Fixed-Wing Aircraft.

    PubMed

    de Rotte, Alexandra A J; van der Kemp, Peter; Mundy, Peter A; Rienks, Rienk; de Rotte, August A

    2017-01-01

    Little is known about the possible electromagnetic interferences (EMI) in the single-engine fixed-wing aircraft environment with implantable cardio-defibrillators (ICDs). Our hypothesis is that EMI in the cockpit of a single-engine fixed-wing aircraft does not result in erroneous detection of arrhythmias and the subsequent delivery of an inappropriate device therapy. ICD devices of four different manufacturers, incorporated in a thorax phantom, were transported in a Piper Dakota Aircraft with ICAO type designator P28B during several flights. The devices under test were programmed to the most sensitive settings for detection of electromagnetic signals from their environment. After the final flight the devices under test were interrogated with the dedicated programmers in order to analyze the number of tachycardias detected. Cumulative registration time of the devices under test was 11,392 min, with a mean of 2848 min per device. The registration from each one of the devices did not show any detectable "tachycardia" or subsequent inappropriate device therapy. This indicates that no external signals, which could be originating from electromagnetic fields from the aircraft's avionics, were detected by the devices under test. During transport in the cockpit of a single-engine fixed-wing aircraft, the tested ICDs did not show any signs of being affected by electromagnetic fields originating from the avionics of the aircraft. This current study indicates that EMI is not a potential safety issue for transportation of passengers with an ICD implanted in a single-engine fixed-wing aircraft.de Rotte AAJ, van der Kemp P, Mundy PA, Rienks R, de Rotte AA. Electromagnetic interference in implantable defibrillators in single-engine fixed-wing aircraft. Aerosp Med Hum Perform. 2017; 88(1):52-55.

  19. 21 CFR 872.2060 - Jaw tracking device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device... Controls Guidance Document: Dental Sonography and Jaw Tracking Devices.” [68 FR 67367, Dec. 2, 2003] ...

  20. Real-time catheter tracking for high-dose-rate prostate brachytherapy using an electromagnetic 3D-guidance device: A preliminary performance study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Jun; Sebastian, Evelyn; Mangona, Victor

    2013-02-15

    Purpose: In order to increase the accuracy and speed of catheter reconstruction in a high-dose-rate (HDR) prostate implant procedure, an automatic tracking system has been developed using an electromagnetic (EM) device (trakSTAR, Ascension Technology, VT). The performance of the system, including the accuracy and noise level with various tracking parameters and conditions, were investigated. Methods: A direct current (dc) EM transmitter (midrange model) and a sensor with diameter of 1.3 mm (Model 130) were used in the trakSTAR system for tracking catheter position during HDR prostate brachytherapy. Localization accuracy was assessed under both static and dynamic analyses conditions. For themore » static analysis, a calibration phantom was used to investigate error dependency on operating room (OR) table height (bottom vs midposition vs top), sensor position (distal tip of catheter vs connector end of catheter), direction [left-right (LR) vs anterior-posterior (AP) vs superior-inferior (SI)], sampling frequency (40 vs 80 vs 120 Hz), and interference from OR equipment (present vs absent). The mean and standard deviation of the localization offset in each direction and the corresponding error vectors were calculated. For dynamic analysis, the paths of five straight catheters were tracked to study the effects of directions, sampling frequency, and interference of EM field. Statistical analysis was conducted to compare the results in different configurations. Results: When interference was present in the static analysis, the error vectors were significantly higher at the top table position (3.3 {+-} 1.3 vs 1.8 {+-} 0.9 mm at bottom and 1.7 {+-} 1.0 mm at middle, p < 0.001), at catheter end position (3.1 {+-} 1.1 vs 1.4 {+-} 0.7 mm at the tip position, p < 0.001), and at 40 Hz sampling frequency (2.6 {+-} 1.1 vs 2.4 {+-} 1.5 mm at 80 Hz and 1.8 {+-} 1.1 at 160 Hz, p < 0.001). So did the mean offset errors in the LR direction (-1.7 {+-} 1.4 vs 0.4 {+-} 0.5 mm in AP and 0.8 {+-} 0.8 mm in SI directions, p < 0.001). The error vectors were significantly higher with surrounding interference (2.2 {+-} 1.3 mm) vs without interference (1.0 {+-} 0.7 mm, p < 0.001). An accuracy of 1.6 {+-} 0.2 mm can be reached when using optimum configuration (160 Hz at middle table position). When interference was present in the dynamic tracking, the mean tracking errors in LR direction (1.4 {+-} 0.5 mm) was significantly higher than that in AP direction (0.3 {+-} 0.2 mm, p < 0.001). So did the mean vector errors at 40 Hz (2.1 {+-} 0.2 mm vs 1.3 {+-} 0.2 mm at 80 Hz and 0.9 {+-} 0.2 mm at 160 Hz, p < 0.05). However, when interference was absent, they were comparable in the both directions and at all sampling frequencies. An accuracy of 0.9 {+-} 0.2 mm was obtained for the dynamic tracking when using optimum configuration. Conclusions: The performance of an EM tracking system depends highly on the system configuration and surrounding environment. The accuracy of EM tracking for catheter reconstruction in a prostate HDR brachytherapy procedure can be improved by reducing interference from surrounding equipment, decreasing distance from transmitter to tracking area, and choosing appropriated sampling frequency. A calibration scheme is needed to further reduce the tracking error when the interference is high.« less

  1. 77 FR 16925 - Medical Devices; Neurological Devices; Classification of the Near Infrared Brain Hematoma Detector

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... Mitigation measures Excessive laser power Electrical safety and electromagnetic compatibility (EMC... should validate electromagnetic compatibility (EMC), electrical safety, and battery characteristics; (4...

  2. Various methods for assessing static lower extremity alignment: implications for prospective risk-factor screenings.

    PubMed

    Nguyen, Anh-Dung; Boling, Michelle C; Slye, Carrie A; Hartley, Emily M; Parisi, Gina L

    2013-01-01

    Accurate, efficient, and reliable measurement methods are essential to prospectively identify risk factors for knee injuries in large cohorts. To determine tester reliability using digital photographs for the measurement of static lower extremity alignment (LEA) and whether values quantified with an electromagnetic motion-tracking system are in agreement with those quantified with clinical methods and digital photographs. Descriptive laboratory study. Laboratory. Thirty-three individuals participated and included 17 (10 women, 7 men; age = 21.7 ± 2.7 years, height = 163.4 ± 6.4 cm, mass = 59.7 ± 7.8 kg, body mass index = 23.7 ± 2.6 kg/m2) in study 1, in which we examined the reliability between clinical measures and digital photographs in 1 trained and 1 novice investigator, and 16 (11 women, 5 men; age = 22.3 ± 1.6 years, height = 170.3 ± 6.9 cm, mass = 72.9 ± 16.4 kg, body mass index = 25.2 ± 5.4 kg/m2) in study 2, in which we examined the agreement among clinical measures, digital photographs, and an electromagnetic tracking system. We evaluated measures of pelvic angle, quadriceps angle, tibiofemoral angle, genu recurvatum, femur length, and tibia length. Clinical measures were assessed using clinically accepted methods. Frontal- and sagittal-plane digital images were captured and imported into a computer software program. Anatomic landmarks were digitized using an electromagnetic tracking system to calculate static LEA. Intraclass correlation coefficients and standard errors of measurement were calculated to examine tester reliability. We calculated 95% limits of agreement and used Bland-Altman plots to examine agreement among clinical measures, digital photographs, and an electromagnetic tracking system. Using digital photographs, fair to excellent intratester (intraclass correlation coefficient range = 0.70-0.99) and intertester (intraclass correlation coefficient range = 0.75-0.97) reliability were observed for static knee alignment and limb-length measures. An acceptable level of agreement was observed between clinical measures and digital pictures for limb-length measures. When comparing clinical measures and digital photographs with the electromagnetic tracking system, an acceptable level of agreement was observed in measures of static knee angles and limb-length measures. The use of digital photographs and an electromagnetic tracking system appears to be an efficient and reliable method to assess static knee alignment and limb-length measurements.

  3. SU-F-T-321: The Effect of an Electromagnetic Array Used for Patient Localization and Tumor Tracking On OSLD in Vivo Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rea, A; Kuruvilla, A; Gill, G

    Purpose: The purpose of this study was to observe the effect of an electromagnetic array used for patient localization and tumor tracking on optically-stimulated luminescent in-vivo dosimetry. Methods: A linear accelerator equipped with four photon energies was used to irradiate optically stimulated luminescent dosimeters (OSLDs) at the respective dmax depths and in the buildup region, with and without the presence of an electromagnetic array used for tumor tracking and patient localization. The OSLDs were placed on solid water slabs under 5 mm bolus and on each face of an octagonal phantom, and irradiated using both static beam and arc geometry,more » with and without the electromagnetic array under our setup. The electromagnetic array was placed 6 cm above the phantom to coincide with similar distances used during patient treatment. Ionization chamber measurements in a water phantom were also taken initially for comparison with the simple geometry OSLD measurements and published data. Results: Under simple geometry, a negligible change was observed at dmax for all energies when the electromagnetic array was placed over the setup. When measuring at five millimeter depth, increases of 1.3/3.1/16/18% were observed for energies 4X/6X/10X/15X respectively when the electromagnetic array was in place. Measurements using the octagonal phantom yielded scattered results for the lateral and posterior oblique fields, and showed increases in dose to the OSLDs placed on the anterior and lateral anterior faces of the phantom. Conclusion: Placing the electromagnetic array very close to the patient’s surface acts as a beam spoiler in the buildup region (at 5 mm depth), which in turn causes an increase in the measured dose reading of the OSLD. This increase in dose is more pronounced when the OSLD is placed directly underneath the electromagnetic array than off to one side or the other.« less

  4. 78 FR 73475 - Defense Federal Acquisition Regulation Supplement: Clauses With Alternates-Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... electromagnetic radiating device to the Contracting Officer during the initial planning, experimental, or... proposed electromagnetic radiating device to the Contracting Officer during the initial planning...

  5. ELISA - an electrostatic storage ring for low-energy ions

    NASA Astrophysics Data System (ADS)

    Pape Moeller, Soeren

    1997-05-01

    The design of a new type of storage ring for low-energy ions using electrostatic deflection and focusing devices is described. Electrostatic bends and quadrupoles are used since they are more efficient than magnetic ones for low-velocity heavy ions. Furthermore, electrostatic devices are more compact and easier to construct than magnetic devices. In comparison to an electromagnetic trap, one important advantage of the elecrostatic ring is the easy access to the circulating beam and its decay products. These and other features, e.g. no magnetic fields, makes such storage devices attractive for many atomic-physics experiments. Also neigboring fields as chemistry and biology might benefit from such an relatively inexpensive device. One important difference between an electrostatic and a magnetic ring is, that the longitudinal energy is not conserved for the electrostatic ring. The actual ring will have a race-track shape as defined by two straight sections each with two quadrupole doublets connected by 180-degrees bends. The bends will consist of 160-degrees spherical deflection plates surrounded by two parallel plate 10-degrees bends. The storage ring ELISA, currently being built, will have a circumference of 6 meters. The first beam tests will take place during summer 1996.

  6. Electromagnetic Spectrum Test and Evaluation Process

    DTIC Science & Technology

    2010-01-01

    HERO , hazards of electromagnetic radiation to ordnance ; HERP, hazards of electromagnetic radiation to personnel; HERF, hazards of electromagnetic ... electromagnetic pulse (EMP); electronic protection; electrostatic dis- charge (ESD); hazards of electromagnetic radi- ation to personnel (HERP), ordnance ...including ordnance containing electrically initiated devices, to be mutually compatible in their intended

  7. The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR.

    PubMed

    Booth, Jeremy T; Caillet, Vincent; Hardcastle, Nicholas; O'Brien, Ricky; Szymura, Kathryn; Crasta, Charlene; Harris, Benjamin; Haddad, Carol; Eade, Thomas; Keall, Paul J

    2016-10-01

    Real time adaptive radiotherapy that enables smaller irradiated volumes may reduce pulmonary toxicity. We report on the first patient treatment of electromagnetic-guided real time adaptive radiotherapy delivered with MLC tracking for lung stereotactic ablative body radiotherapy. A clinical trial was developed to investigate the safety and feasibility of MLC tracking in lung. The first patient was an 80-year old man with a single left lower lobe lung metastasis to be treated with SABR to 48Gy in 4 fractions. In-house software was integrated with a standard linear accelerator to adapt the treatment beam shape and position based on electromagnetic transponders implanted in the lung. MLC tracking plans were compared against standard ITV-based treatment planning. MLC tracking plan delivery was reconstructed in the patient to confirm safe delivery. Real time adaptive radiotherapy delivered with MLC tracking compared to standard ITV-based planning reduced the PTV by 41% (18.7-11cm 3 ) and the mean lung dose by 30% (202-140cGy), V20 by 35% (2.6-1.5%) and V5 by 9% (8.9-8%). An emerging technology, MLC tracking, has been translated into the clinic and used to treat lung SABR patients for the first time. This milestone represents an important first step for clinical real-time adaptive radiotherapy that could reduce pulmonary toxicity in lung radiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahimian, B.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  9. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, D.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  10. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berbeco, R.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  11. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keall, P.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  12. AC induction field heating of graphite foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, James W.; Rios, Orlando; Kisner, Roger

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.

  13. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  14. Device and method for redirecting electromagnetic signals

    DOEpatents

    Garcia, Ernest J.

    1999-01-01

    A device fabricated to redirect electromagnetic signals, the device including a primary driver adapted to provide a predetermined force, a linkage system coupled to the primary driver, a pusher rod rotationally coupled to the linkage system, a flexible rod element attached to the pusher rod and adapted to buckle upon the application of the predetermined force, and a mirror structure attached to the flexible rod element at one end and to the substrate at another end. When the predetermined force buckles the flexible rod element, the mirror structure and the flexible rod element both move to thereby allow a remotely-located electromagnetic signal directed towards the device to be redirected.

  15. Development of Device to Evoke Stretch Reflexes by Use of Electromagnetic Force for the Rehabilitation of the Hemiplegic Upper Limb after Stroke

    NASA Astrophysics Data System (ADS)

    Hayashi, Ryota; Ishimine, Tomoyasu; Kawahira, Kazumi; Yu, Yong; Tsujio, Showzow

    In this research, we focus on the method of rehabilitation with stretch reflexes for the hemiplegic upper limb in stroke patients. We propose a new device which utilizes electromagnetic force to evoke stretch reflexes. The device can exert an assisting force safely, because the electromagnetic force is non contact force. In this paper, we develop a support system applying the proposed device for the functional recovery training of the hemiplegic upper limb. The results obtained from several clinical tests with and without our support system are compared. Then we discuss the validity of our support system.

  16. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  17. 78 FR 49529 - Radio Frequency Wireless Technology in Medical Devices; Guidance for Industry and Food and Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ..., including selection of wireless technology, quality of service, coexistence, security, and electromagnetic... is an increasing concern because the electromagnetic environments where medical devices are used...

  18. Vibration properties of and power harvested by a system of electromagnetic vibration energy harvesters that have electrical dynamics

    NASA Astrophysics Data System (ADS)

    Cooley, Christopher G.

    2017-09-01

    This study investigates the vibration and dynamic response of a system of coupled electromagnetic vibration energy harvesting devices that each consist of a proof mass, elastic structure, electromagnetic generator, and energy harvesting circuit with inductance, resistance, and capacitance. The governing equations for the coupled electromechanical system are derived using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary number of these subsystems. The equations are cast in matrix operator form to expose the device's vibration properties. The device's complex-valued eigenvalues and eigenvectors are related to physical characteristics of its vibration. Because the electrical circuit has dynamics, these devices have more natural frequencies than typical electromagnetic vibration energy harvesters that have purely resistive circuits. Closed-form expressions for the steady state dynamic response and average power harvested are derived for devices with a single subsystem. Example numerical results for single and double subsystem devices show that the natural frequencies and vibration modes obtained from the eigenvalue problem agree with the resonance locations and response amplitudes obtained independently from forced response calculations. This agreement demonstrates the usefulness of solving eigenvalue problems for these devices. The average power harvested by the device differs substantially at each resonance. Devices with multiple subsystems have multiple modes where large amounts of power are harvested.

  19. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  20. 21 CFR 872.2060 - Jaw tracking device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...

  1. 21 CFR 872.2060 - Jaw tracking device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...

  2. 21 CFR 872.2060 - Jaw tracking device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...

  3. 21 CFR 872.2060 - Jaw tracking device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...

  4. A Voice and Mouse Input Interface for 3D Virtual Environments

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Bryson, Steve T.

    2003-01-01

    There have been many successful stories on how 3D input devices can be fully integrated into an immersive virtual environment. Electromagnetic trackers, optical trackers, gloves, and flying mice are just some of these input devices. Though we can use existing 3D input devices that are commonly used for VR applications, there are several factors that prevent us from choosing these input devices for our applications. One main factor is that most of these tracking devices are not suitable for prolonged use due to human fatigue associated with using them. A second factor is that many of them would occupy additional office space. Another factor is that many of the 3D input devices are expensive due to the unusual hardware that are required. For our VR applications, we want a user interface that would work naturally with standard equipment. In this paper, we demonstrate applications or our proposed muitimodal interface using a 3D dome display. We also show that effective data analysis can be achieved while the scientists view their data rendered inside the dome display and perform user interactions simply using the mouse and voice input. Though the sphere coordinate grid seems to be ideal for interaction using a 3D dome display, we can also use other non-spherical grids as well.

  5. AANA Journal Course: update for nurse anesthetists. Arrhythmia management devices and electromagnetic interference.

    PubMed

    Mattingly, Emily

    2005-04-01

    The technological complexity of implantable arrhythmia management devices, specifically pacemakers and defibrillators, has increased dramatically since their introduction only a few decades ago. Patients with such devices are encountered much more frequently in hospitals and surgery centers, yet anesthesia provider knowledge of safe and proper management is often incomplete. Anesthesia textbooks and references may provide only short paragraphs on arrhythmia management devices that do not address important perioperative management strategies for this ever-growing patient population. It is no longer satisfactory to simply place a magnet over an implanted device during surgery and assume that this action protects the patient from harm due to electromagnetic interference from inappropriate device function. This AANA Journal course serves as a concise review of basic device function, the sources and effects of electromagnetic interference in the operative setting, and patient management recommendations from current literature.

  6. 25 CFR 547.2 - What are the definitions for this part?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Electromagnetic interference. The disruption of operation of an electronic device when it is in the vicinity of an electromagnetic field in the radio frequency spectrum that is caused by another electronic device. Electrostatic...

  7. 25 CFR 547.2 - What are the definitions for this part?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Electromagnetic interference. The disruption of operation of an electronic device when it is in the vicinity of an electromagnetic field in the radio frequency spectrum that is caused by another electronic device. Electrostatic...

  8. Micro-fabricated integrated coil and magnetic circuit and method of manufacturing thereof

    DOEpatents

    Mihailovich, Robert E.; Papavasiliou, Alex P.; Mehrotra, Vivek; Stupar, Philip A.; Borwick, III, Robert L.; Ganguli, Rahul; DeNatale, Jeffrey F.

    2017-03-28

    A micro-fabricated electromagnetic device is provided for on-circuit integration. The electromagnetic device includes a core. The core has a plurality of electrically insulating layers positioned alternatingly between a plurality of magnetic layers to collectively form a continuous laminate having alternating magnetic and electrically insulating layers. The electromagnetic device includes a coil embedded in openings of the semiconductor substrate. An insulating material is positioned in the cavity and between the coil and an inner surface of the core. A method of manufacturing the electromagnetic device includes providing a semiconductor substrate having openings formed therein. Windings of a coil are electroplated and embedded in the openings. The insulating material is coated on or around an exposed surface of the coil. Alternating magnetic layers and electrically insulating layers may be micro-fabricated and electroplated as a single and substantially continuous segment on or around the insulating material.

  9. Illusion optics: Optically transforming the nature and the location of electromagnetic emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Jianjia; Tichit, Paul-Henri; Burokur, Shah Nawaz, E-mail: shah-nawaz.burokur@u-psud.fr

    Complex electromagnetic structures can be designed by using the powerful concept of transformation electromagnetics. In this study, we define a spatial coordinate transformation that shows the possibility of designing a device capable of producing an illusion on an antenna radiation pattern. Indeed, by compressing the space containing a radiating element, we show that it is able to change the radiation pattern and to make the radiation location appear outside the latter space. Both continuous and discretized models with calculated electromagnetic parameter values are presented. A reduction of the electromagnetic material parameters is also proposed for a possible physical fabrication ofmore » the device with achievable values of permittivity and permeability that can be obtained from existing well-known metamaterials. Following that, the design of the proposed antenna using a layered metamaterial is presented. Full wave numerical simulations using Finite Element Method are performed to demonstrate the performances of such a device.« less

  10. C-arm rotation encoding with accelerometers.

    PubMed

    Grzeda, Victor; Fichtinger, Gabor

    2010-07-01

    Fluoroscopic C-arms are being incorporated in computer-assisted interventions in increasing number. For these applications to work, the relative poses of imaging must be known. To find the pose, tracking methods such as optical cameras, electromagnetic trackers, and radiographic fiducials have been used-all hampered by significant shortcomings. We propose to recover the rotational pose of the C-arm using the angle-sensing ability of accelerometers, by exploiting the capability of the accelerometer to measure tilt angles. By affixing the accelerometer to a C-arm, the accelerometer tracks the C-arm pose during rotations of the C-arm. To demonstrate this concept, a C-arm analogue was constructed with a webcam device affixed to the C-arm model to mimic X-ray imaging. Then, measuring the offset between the accelerometer angle readings to the webcam pose angle, an angle correction equation (ACE) was created to properly tracking the C-arm rotational pose. Several tests were performed on the webcam C-arm model using the ACEs to tracking the primary and secondary angle rotations of the model. We evaluated the capability of linear and polynomial ACEs to tracking the webcam C-arm pose angle for different rotational scenarios. The test results showed that the accelerometer could track the pose of the webcam C-arm model with an accuracy of less than 1.0 degree. The accelerometer was successful in sensing the C-arm's rotation with clinically adequate accuracy in the C-arm webcam model.

  11. Accuracy of the NDI Wave Speech Research System

    ERIC Educational Resources Information Center

    Berry, Jeffrey J.

    2011-01-01

    Purpose: This work provides a quantitative assessment of the positional tracking accuracy of the NDI Wave Speech Research System. Method: Three experiments were completed: (a) static rigid-body tracking across different locations in the electromagnetic field volume, (b) dynamic rigid-body tracking across different locations within the…

  12. Infrared signal generation from AC induction field heating of graphite foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, James W.; Rios, Orlando

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam to produce light. An energy conversion device utilizes light energy from the heated graphite foam to perform a light energy consuming function. A device for producing light and a method of converting energy are also disclosed.

  13. Proposed electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  14. Neural-network-based navigation and control of unmanned aerial vehicles for detecting unintended emissions

    NASA Astrophysics Data System (ADS)

    Zargarzadeh, H.; Nodland, David; Thotla, V.; Jagannathan, S.; Agarwal, S.

    2012-06-01

    Unmanned Aerial Vehicles (UAVs) are versatile aircraft with many applications, including the potential for use to detect unintended electromagnetic emissions from electronic devices. A particular area of recent interest has been helicopter unmanned aerial vehicles. Because of the nature of these helicopters' dynamics, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via output feedback control for trajectory tracking of a helicopter UAV using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic, virtual, and dynamic controllers and an observer. Optimal tracking is accomplished with a single NN utilized for cost function approximation. The controller positions the helicopter, which is equipped with an antenna, such that the antenna can detect unintended emissions. The overall closed-loop system stability with the proposed controller is demonstrated by using Lyapunov analysis. Finally, results are provided to demonstrate the effectiveness of the proposed control design for positioning the helicopter for unintended emissions detection.

  15. A Comparison of Antenna Measurements in a Near-Field Range and a Newly Renovated Short-Tapered Chamber

    DTIC Science & Technology

    2016-09-01

    SUPPLEMENTARY NOTES 14. ABSTRACT This study was undertaken to quantify and compare electromagnetic device (i.e., antenna) measurements using the US Army...15. SUBJECT TERMS electromagnetic , chamber, near-field range, anechoic chamber, antenna measurement 16. SECURITY CLASSIFICATION OF: 17...undertaken to quantify and compare electromagnetic (EM) device (i.e., antenna) measurements using the US Army Research Laboratory’s (ARL’s) near-field

  16. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps

    NASA Astrophysics Data System (ADS)

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A.

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  17. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps.

    PubMed

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  18. IRST: a key system in modern warfare

    NASA Astrophysics Data System (ADS)

    Missirian, Jean-Michel; Ducruet, Laurent

    1997-08-01

    A naval infra red search and track (IRST) system is a passive surveillance device capable of detecting and tracking air and surface threats in the region where electromagnetic sensors are less efficient, typically within a few degrees around the horizon. The evolution in anti ship sea skimming missiles performances has outlined the benefit that can be gained from infrared systems in ship self-defense. The complementary nature of radar and IRST systems can also be exploited to full advantage in the field of multisensor data fusion. The combined use of radar and infrared secures the detection by redundancy of data; it substantially enhances target tracking, classification and identification and reduces the combat system's reaction time. Designing an IRST implies matching technical choices with operational requirements, and this under increasingly stringent cost constraints. This paper first reminds the benefits that can be obtained with an IRST system in the context of modern naval warfare, then retraces the evolutions from the first generation IRST systems, such as VAMPIR, to the second-generation systems now entering service. A general presentation of the current SAGEM SA IRST family is also made for naval, air and ground-based applications.

  19. Electromagnetic navigation system for CT-guided biopsy of small lesions.

    PubMed

    Appelbaum, Liat; Sosna, Jacob; Nissenbaum, Yizhak; Benshtein, Alexander; Goldberg, S Nahum

    2011-05-01

    The purpose of this study was to evaluate an electromagnetic navigation system for CT-guided biopsy of small lesions. Standardized CT anthropomorphic phantoms were biopsied by two attending radiologists. CT scans of the phantom and surface electromagnetic fiducial markers were imported into the memory of the 3D electromagnetic navigation system. Each radiologist assessed the accuracy of biopsy using electromagnetic navigation alone by targeting sets of nine lesions (size range, 8-14 mm; skin to target distance, 5.7-12.8 cm) under eight different conditions of detector field strength and orientation (n = 117). As a control, each radiologist also biopsied two sets of five targets using conventional CT-guided technique. Biopsy accuracy, number of needle passes, procedure time, and radiation dose were compared. Under optimal conditions (phantom perpendicular to the electromagnetic receiver at highest possible field strength), phantom accuracy to the center of the lesion was 2.6 ± 1.1 mm. This translated into hitting 84.4% (38/45) of targets in a single pass (1.1 ± 0.4 CT confirmations), which was significantly fewer than the 3.6 ± 1.3 CT checks required for conventional technique (p < 0.001). The mean targeting time was 38.8 ± 18.2 seconds per lesion. Including procedural planning (∼5.5 minutes) and final CT confirmation of placement (∼3.5 minutes), the full electromagnetic tracking procedure required significantly less time (551.6 ± 87.4 seconds [∼9 minutes]) than conventional CT (833.3 ± 283.8 seconds [∼14 minutes]) for successful targeting (p < 0.001). Less favorable conditions, including nonperpendicular relation between the axis of the machine and weaker field strength, resulted in statistically significant lower accuracy (3.7 ± 1 mm, p < 0.001). Nevertheless, first-pass biopsy accuracy was 58.3% (21/36) and second-pass (35/36) accuracy was 97.2%. Lesions farther from the skin than 20-25 cm were out of range for successful electromagnetic tracking. Virtual electromagnetic tracking appears to have high accuracy in needle placement, potentially reducing time and radiation exposure compared with those of conventional CT techniques in the biopsy of small lesions.

  20. Laser Spiderweb Sensor Used with Portable Handheld Devices

    NASA Technical Reports Server (NTRS)

    Scott, David C. (Inventor); Ksendzov, Alexander (Inventor); George, Warren P. (Inventor); Smith, James A. (Inventor); Steinkraus, Joel M. (Inventor); Hofmann, Douglas C. (Inventor); Aljabri, Abdullah S. (Inventor); Bendig, Rudi M. (Inventor)

    2017-01-01

    A portable spectrometer, including a smart phone case storing a portable spectrometer, wherein the portable spectrometer includes a cavity; a source for emitting electromagnetic radiation that is directed on a sample in the cavity, wherein the electromagnetic radiation is reflected within the cavity to form multiple passes of the electromagnetic radiation through the sample; a detector for detecting the electromagnetic radiation after the electromagnetic radiation has made the multiple passes through the sample in the cavity, the detector outputting a signal in response to the detecting; and a device for communicating the signal to a smart phone, wherein the smart phone executes an application that performs a spectral analysis of the signal.

  1. Energy harvesting from rail track for transportation safety and monitoring.

    DOT National Transportation Integrated Search

    2014-02-01

    An efficient electromagnetic energy harvester featured with mechanical motion rectifier (MMR) is designed to recover : energy from the vibration-like railroad track deflections induced by passing trains. Comparing to typical existing : vibration ener...

  2. When to Perform Antenna Measurements in a Near-Field Range or a Short Tapered Chamber

    DTIC Science & Technology

    2017-03-01

    study was undertaken to quantify and compare electromagnetic device (i.e., antenna) measurements using the US Army Research Laboratory’s (ARL’s) near...results for future antennas under test in the most cost-effective manner (man-hours, custom mount, etc.) 15. SUBJECT TERMS electromagnetic , chamber...study was undertaken to quantify and compare electromagnetic (EM) device (i.e., antenna) measurements using the US Army Research Laboratory’s (ARL

  3. Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Henderson, Steve

    2005-01-01

    Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.

  4. Photonic crystal devices formed by a charged-particle beam

    DOEpatents

    Lin, Shawn-Yu; Koops, Hans W. P.

    2000-01-01

    A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.

  5. A Robust and Device-Free System for the Recognition and Classification of Elderly Activities.

    PubMed

    Li, Fangmin; Al-Qaness, Mohammed Abdulaziz Aide; Zhang, Yong; Zhao, Bihai; Luan, Xidao

    2016-12-01

    Human activity recognition, tracking and classification is an essential trend in assisted living systems that can help support elderly people with their daily activities. Traditional activity recognition approaches depend on vision-based or sensor-based techniques. Nowadays, a novel promising technique has obtained more attention, namely device-free human activity recognition that neither requires the target object to wear or carry a device nor install cameras in a perceived area. The device-free technique for activity recognition uses only the signals of common wireless local area network (WLAN) devices available everywhere. In this paper, we present a novel elderly activities recognition system by leveraging the fluctuation of the wireless signals caused by human motion. We present an efficient method to select the correct data from the Channel State Information (CSI) streams that were neglected in previous approaches. We apply a Principle Component Analysis method that exposes the useful information from raw CSI. Thereafter, Forest Decision (FD) is adopted to classify the proposed activities and has gained a high accuracy rate. Extensive experiments have been conducted in an indoor environment to test the feasibility of the proposed system with a total of five volunteer users. The evaluation shows that the proposed system is applicable and robust to electromagnetic noise.

  6. Missile’s Guidance Head Anti-Nuclear Electromagnetic Pulse Reinforcement,

    DTIC Science & Technology

    1996-11-18

    electromagnetic pulse bomb is one of them. This kind of nuclear bomb is mainly used to interfere or damage un-reinforced electric and electronic... electromagnetic pulse , the damaging mechanism of the nuclear electromagnetic pulse to the guidance head, and the response of electronic devices to...the nuclear electromagnetic pulse , at last introduces the guidance heads defense method to the nuclear electromagnetic pulse .

  7. Electromagnetic pulses bone healing booster

    NASA Astrophysics Data System (ADS)

    Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.

    2015-11-01

    Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.

  8. Primary experimental study on safety of deep brain stimulation in RF electromagnetic field.

    PubMed

    Jun, Xu; Luming, Li; Hongwei, Hao

    2009-01-01

    With the rapid growth of clinical application of Deep Brain Stimulation, its safety and functional concern in the electromagnetic field, another pollution becoming much more serious, has become more and more significant. Meanwhile, the measuring standards on Electromagnetic Compatibility (EMC) for DBS are still incomplete. Particularly, the knowledge of the electromagnetic field induced signals on the implanted lead is ignorant while some informal reports some side effects. This paper briefly surmised the status of EMC standards on implantable medical devices. Based on the EMC experiments of DBS device we developed, two experiments for measuring the induced voltage of the deep brain stimulator in RF electromagnetic field were reported. The measured data showed that the induced voltage in some frequency was prominent, for example over 2V. As a primary research, we think these results would be significant to cause researcher to pay more attention to the EMC safety problem and biological effects of the induced voltage in deep brain stimulation and other implantable devices.

  9. Electromagnetic Remote Sensing. Low Frequency Electromagnetics

    DTIC Science & Technology

    1989-01-01

    biased superconducting point - contact quantum devices", J.Appl.Phys. 41, p.1572, 1970. [40] A.Yariv and H.Winsor, "Proposal for detection of magnetic ... magnetics , electromagnetic induc- tion, electrostatics) 2. Nondestructive testing (electromagnetic induction, neutron tomography, x-ray imaging) 3...Detection of submarines from aircraft or ships ( magnetics , electromagnetic induction) 4. Detection of land vehicles using buried sensors ( magnetics

  10. SU-G-JeP1-01: A Combination of Real Time Electromagnetic Localization and Tracking with Cone Beam Computed Tomography in Stereotactic Radiosurgery for Brain Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muralidhar, K Raja; Pangam, Suresh; Ponaganti, Srinivas

    2016-06-15

    Purpose: 1. online verification of patient position during treatment using calypso electromagnetic localization and tracking system. 2. Verification and comparison of positional accuracy between cone beam computed tomography and calypso system. 3. Presenting the advantage of continuation localization in Stereotactic radiosurgery treatments. Methods: Ten brain tumor cases were taken for this study. Patients with head mask were under gone Computed Tomography (CT). Before scanning, mask was cut on the fore head area to keep surface beacons on the skin. Slice thickness of 0.65 mm were taken for this study. x, y, z coordinates of these beacons in TPS were enteredmore » into tracking station. Varian True Beam accelerator, equipped with On Board Imager was used to take Cone beam Computed Tomography (CBCT) to localize the patient. Simultaneously Surface beacons were used to localize and track the patient throughout the treatment. The localization values were compared in both systems. For localization CBCT considered as reference. Tracking was done throughout the treatment using Calypso tracking system using electromagnetic array. This array was in tracking position during imaging and treatment. Flattening Filter free beams of 6MV photons along with Volumetric Modulated Arc Therapy was used for the treatment. The patient movement was observed throughout the treatment ranging from 2 min to 4 min. Results: The average variation observed between calypso system and CBCT localization was less than 0.5 mm. These variations were due to manual errors while keeping beacon on the patient. Less than 0.05 cm intra-fraction motion was observed throughout the treatment with the help of continuous tracking. Conclusion: Calypso target localization system is one of the finest tools to perform radiosurgery in combination with CBCT. This non radiographic method of tracking is a real beneficial method to treat patients confidently while observing real-time motion information of the patient.« less

  11. Transverse Mode Electron Beam Microwave Generator

    NASA Technical Reports Server (NTRS)

    Wharton, Lawrence E.

    1994-01-01

    An electron beam microwave device having an evacuated interaction chamber to which are coupled a resonant cavity which has an opening between the resonant cavity and the evacuated interaction chamber and an electron gun which causes a narrow beam of electrons to traverse the evacuated interaction chamber. The device also contains a mechanism for feeding back a microwave electromagnetic field from the resonant cavity to the evacuated interaction chamber in such a way as to modulate the direction of propagation of the electron beam, thereby further amplifyjng the microwave electromagnetic field. Furthermore, provision is made for coupling the electromagnetic field out of the electron beam microwave device.

  12. Selected Issues in DoD’s Radio Frequency Identification (RFID) Implementation

    DTIC Science & Technology

    2006-04-01

    Evaluation of human exposure to electromagnetic fields from devices operating in the frequency range 0 Hz to 10 GHz, used in Electronic...standard for human exposure to RF Signal, 3 kHz-300 GHz BS EN 50364 Limitation of human exposure to electromagnetic fields from devices operating in the...Management and DoD Explosives Safety Board, and DoDD 6055.9-STD, DoD Ammunition and Explosives Safety Standards. Exposure of people to electromagnetic

  13. Method for plasma formation for extreme ultraviolet lithography-theta pinch

    DOEpatents

    Hassanein, Ahmed [Naperville, IL; Konkashbaev, Isak [Bolingbrook, IL; Rice, Bryan [Hillsboro, OR

    2007-02-20

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.

  14. ELECTROMAGNETIC APPARATUS FOR MOVING A ROD

    DOEpatents

    Young, J.N.

    1957-08-20

    An electromagnetic device for moving an object in a linear path by increments is described. The device is specifically adapted for moving a neutron absorbing control rod into and out of the core of a reactor and consists essentially of an extension member made of magnetic material connected to one end of the control rod and mechanically flexible to grip the walls of a sleeve member when flexed, a magnetic sleeve member coaxial with and slidable between limit stops along the flexible extension, electromagnetic coils substantially centrally located with respect to the flexible extension to flex the extension member into gripping engagement with the sleeve member when ener gized, moving electromagnets at each end of the sleeve to attract the sleeve when energized, and a second gripping electromagnet positioned along the flexible extension at a distance from the previously mentioned electromagnets for gripping the extension member when energized. In use, the second gripping electromagnet is deenergized, the first gripping electromagnet is energized to fix the extension member in the sleeve, and one of the moving electromagnets is energized to attract the sleeve member toward it, thereby moving the control rod.

  15. Safety of Electromagnetic Articulography in Patients with Pacemakers and Implantable Cardioverter-Defibrillators

    ERIC Educational Resources Information Center

    Joglar, Jose A.; Nguyen, Carol; Garst, Diane M.; Katz, William F.

    2009-01-01

    Purpose: "Electromagnetic articulography (EMA)" uses a helmet to create alternating magnetic fields for tracking speech articulator movement. An important safety consideration is whether EMA magnetic fields interfere with the operation of speakers' pacemakers or implantable cardioverter-defibrillators (ICDs). In this investigation,…

  16. Reverberant Microwave Propagation

    DTIC Science & Technology

    2008-10-01

    HERO Hazards of Electromagnetic Radiation to Ordnance HP Hewlett Packard HWD Half-Wave Dipole IEC International Electrotechnical Commission IEE...composite panels used in new ship design; Hazards of Electromagnetic Radiation to Ordnance ( HERO ) analyses; and digital wireless system performance...Electro-Explosive Device EMC Electromagnetic Compatibility ft Foot (feet) GHz Gigahertz HERO Hazards of Electromagnetic

  17. Electromagnetic image-guided orbital decompression: technique, principles, and preliminary experience with 6 consecutive cases.

    PubMed

    Servat, Juan J; Elia, Maxwell Dominic; Gong, Dan; Manes, R Peter; Black, Evan H; Levin, Flora

    2014-12-01

    To assess the feasibility of routine use of electromagnetic image guidance systems in orbital decompression. Six consecutive patients underwent stereotactic-guided three wall orbital decompression using the novel Fusion ENT Navigation System (Medtronic), a portable and expandable electromagnetic guidance system with multi-instrument tracking capabilities. The system consists of the Medtronic LandmarX System software-enabled computer station, signal generator, field-generating magnet, head-mounted marker coil, and surgical tracking instruments. In preparation for use of the LandmarX/Fusion protocol, all patients underwent preoperative non-contrast CT scan from the superior aspect of the frontal sinuses to the inferior aspect of the maxillary sinuses that includes the nasal tip. The Fusion ENT Navigation System (Medtronic™) was used in 6 patients undergoing maximal 3-wall orbital decompression for Graves' orbitopthy after a minimum of six months of disease inactivity. Preoperative Hertel exophthalmometry measured more than 27 mm in all patients. The navigation system proved to be no more difficult technically than the traditional orbital decompression approach. Electromagnetic image guidance is a stereotactic surgical navigation system that provides additional intraoperative flexibility in orbital surgery. Electromagnetic image-guidance offers the ability to perform more aggressive orbital decompressions with reduced risk.

  18. Effects of Bluetooth device electromagnetic field on hearing: pilot study.

    PubMed

    Balachandran, R; Prepageran, N; Prepagaran, N; Rahmat, O; Zulkiflee, A B; Hufaida, K S

    2012-04-01

    The Bluetooth wireless headset has been promoted as a 'hands-free' device with a low emission of electromagnetic radiation. To evaluate potential changes in hearing function as a consequence of using Bluetooth devices, by assessing changes in pure tone audiography and distortion production otoacoustic emissions. Prospective study. Thirty adult volunteers were exposed to a Bluetooth headset device (1) on 'standby' setting for 6 hours and (2) at full power for 10 minutes. Post-exposure hearing was evaluated using pure tone audiography and distortion production otoacoustic emission testing. There were no statistically significant changes in hearing, as measured above, following either exposure type. Exposure to the electromagnetic field emitted by a Bluetooth headset, as described above, did not decrease hearing thresholds or alter distortion product otoacoustic emissions.

  19. Electromagnetic-Tracked Biopsy under Ultrasound Guidance: Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakime, Antoine, E-mail: thakime@yahoo.com; Deschamps, Frederic; Marques De Carvalho, Enio Garcia

    2012-08-15

    Purpose: This study was designed to evaluate the accuracy and safety of electromagnetic needle tracking for sonographically guided percutaneous liver biopsies. Methods: We performed 23 consecutive ultrasound-guided liver biopsies for liver nodules with an electromagnetic tracking of the needle. A sensor placed at the tip of a sterile stylet (18G) inserted in a coaxial guiding trocar (16G) used for biopsy was localized in real time relative to the ultrasound imaging plane, thanks to an electromagnetic transmitter and two sensors on the ultrasound probe. This allows for electronic display of the needle tip location and the future needle path overlaid onmore » the real-time ultrasound image. Distance between needle tip position and its electronic display, number of needle punctures, number of needle pull backs for redirection, technical success (needle positioned in the target), diagnostic success (correct histopathology result), procedure time, and complication were evaluated according to lesion sizes, depth and location, operator experience, and 'in-plane' or 'out-of-plane' needle approach. Results: Electronic display was always within 2 mm from the real position of the needle tip. The technical success rate was 100%. A single needle puncture without repuncture was used in all patients. Pull backs were necessary in six patients (26%) to obtain correct needle placement. The overall diagnostic success rate was 91%. The overall true-positive, true-negative, false-negative, and failure rates of the biopsy were 100% (19/19) 100% (2/2), 0% (0/23), and 9% (2/23). The median total procedure time from the skin puncture to the needle in the target was 30 sec (from 5-60 s). Lesion depth and localizations, operator experience, in-plane or out-of-plane approach did not affect significantly the technical, diagnostic success, or procedure time. Even when the tumor size decreased, the procedure time did not increase. Conclusions: Electromagnetic-tracked biopsy is accurate to determine needle tip position and allows fast and accurate needle placement in targeted liver nodules.« less

  20. Laser-driven deflection arrangements and methods involving charged particle beams

    DOEpatents

    Plettner, Tomas [San Ramon, CA; Byer, Robert L [Stanford, CA

    2011-08-09

    Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.

  1. Conformal Electromagnetic Particle in Cell: A Review

    DOE PAGES

    Meierbachtol, Collin S.; Greenwood, Andrew D.; Verboncoeur, John P.; ...

    2015-10-26

    We review conformal (or body-fitted) electromagnetic particle-in-cell (EM-PIC) numerical solution schemes. Included is a chronological history of relevant particle physics algorithms often employed in these conformal simulations. We also provide brief mathematical descriptions of particle-tracking algorithms and current weighting schemes, along with a brief summary of major time-dependent electromagnetic solution methods. Several research areas are also highlighted for recommended future development of new conformal EM-PIC methods.

  2. Internal Model-Based Robust Tracking Control Design for the MEMS Electromagnetic Micromirror.

    PubMed

    Tan, Jiazheng; Sun, Weijie; Yeow, John T W

    2017-05-26

    The micromirror based on micro-electro-mechanical systems (MEMS) technology is widely employed in different areas, such as scanning, imaging and optical switching. This paper studies the MEMS electromagnetic micromirror for scanning or imaging application. In these application scenarios, the micromirror is required to track the command sinusoidal signal, which can be converted to an output regulation problem theoretically. In this paper, based on the internal model principle, the output regulation problem is solved by designing a robust controller that is able to force the micromirror to track the command signal accurately. The proposed controller relies little on the accuracy of the model. Further, the proposed controller is implemented, and its effectiveness is examined by experiments. The experimental results demonstrate that the performance of the proposed controller is satisfying.

  3. Internal Model-Based Robust Tracking Control Design for the MEMS Electromagnetic Micromirror

    PubMed Central

    Tan, Jiazheng; Sun, Weijie; Yeow, John T. W.

    2017-01-01

    The micromirror based on micro-electro-mechanical systems (MEMS) technology is widely employed in different areas, such as scanning, imaging and optical switching. This paper studies the MEMS electromagnetic micromirror for scanning or imaging application. In these application scenarios, the micromirror is required to track the command sinusoidal signal, which can be converted to an output regulation problem theoretically. In this paper, based on the internal model principle, the output regulation problem is solved by designing a robust controller that is able to force the micromirror to track the command signal accurately. The proposed controller relies little on the accuracy of the model. Further, the proposed controller is implemented, and its effectiveness is examined by experiments. The experimental results demonstrate that the performance of the proposed controller is satisfying. PMID:28587105

  4. Sensing device and method for measuring emission time delay during irradiation of targeted samples utilizing variable phase tracking

    NASA Technical Reports Server (NTRS)

    Danielson, J. D. Sheldon (Inventor)

    2006-01-01

    An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.

  5. Using spread spectrum for AMR magnetic sensor

    NASA Astrophysics Data System (ADS)

    Vala, David

    2016-09-01

    This contribution describe invention of Magnetometer with protection against detection by electronic counter- measure (ECM) registered by Czech patent office as patent no. 305322.1 Magnetic sensors are often part of dual use or security instruments and equipment. For this purpose is very interesting to build sensor with is hidden against electronic countermeasure. In this case is very important level and behavior of electromagnetic noise produced by sensor. And also electromagnetic compatibility of electronic devices is the area which significant grows nowadays too. As the consequence of this growth there is a continuous process of making more strict standards focused on electromagnetic radiation of electronic devices. Sensors technology begins to be a part of these issues due sensors bandwidth increasing and approaching to frequency of radio communication band. Nowadays microcontrollers and similar digital circuits are integrated into sensors devices and it brings new sources of electromagnetic radiation in modern smart sensors.

  6. Autogenerator of beams of charged particles

    DOEpatents

    Adler, Richard J.; Mazarakis, Michael G.; Miller, Robert B.; Shope, Steven L.; Smith, David L.

    1986-01-01

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  7. Autogenerator of beams of charged particles

    DOEpatents

    Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.

    1983-10-31

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  8. Homogeneous illusion device exhibiting transformed and shifted scattering effect

    NASA Astrophysics Data System (ADS)

    Mei, Jin-Shuo; Wu, Qun; Zhang, Kuang; He, Xun-Jun; Wang, Yue

    2016-06-01

    Based on the theory of transformation optics, a type of homogeneous illusion device exhibiting transformed and shifted scattering effect is proposed in this paper. The constitutive parameters of the proposed device are derived, and full-wave simulations are performed to validate the electromagnetic properties of transformed and shifted scattering effect. The simulation results show that the proposed device not only can visually shift the image of target in two dimensions, but also can visually transform the shape of target. It is expected that such homogeneous illusion device could possess potential applications in military camouflage and other field of electromagnetic engineering.

  9. Radio-frequency energy quantification in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Alon, Leeor

    Mapping of radio frequency (RF) energy deposition has been challenging for 50+ years, especially, when scanning patients in the magnetic resonance imaging (MRI) environment. As result, electromagnetic simulation software is often used for estimating the specific absorption rate (SAR), the rate of RF energy deposition in tissue. The thesis work presents challenges associated with aligning information provided by electromagnetic simulation and MRI experiments. As result of the limitations of simulations, experimental methods for the quantification of SAR were established. A system for quantification of the total RF energy deposition was developed for parallel transmit MRI (a system that uses multiple antennas to excite and image the body). The system is capable of monitoring and predicting channel-by-channel RF energy deposition, whole body SAR and capable of tracking potential hardware failures that occur in the transmit chain and may cause the deposition of excessive energy into patients. Similarly, we demonstrated that local RF power deposition can be mapped and predicted for parallel transmit systems based on a series of MRI temperature mapping acquisitions. Resulting from the work, we developed tools for optimal reconstruction temperature maps from MRI acquisitions. The tools developed for temperature mapping paved the way for utilizing MRI as a diagnostic tool for evaluation of RF/microwave emitting device safety. Quantification of the RF energy was demonstrated for both MRI compatible and non-MRI-compatible devices (such as cell phones), while having the advantage of being noninvasive, of providing millimeter resolution and high accuracy.

  10. Electromagnetic interference of endodontic equipments with cardiovascular implantable electronic device.

    PubMed

    Dadalti, Manoela Teixeira de Sant'Anna; da Cunha, Antônio José Ledo Alves; de Araújo, Marcos César Pimenta; de Moraes, Luis Gustavo Belo; Risso, Patrícia de Andrade

    2016-03-01

    Assess the electromagnetic interference (EMI) of endodontic equipment with cardiovascular implantable electronic devices (CIEDs) and related factors. The laser device, electronic apex locators (EAL), optical microscope, endodontic rotary motors, gutta-percha heat carrier (GH), gutta-percha gun and ultrasonic device were tested next to CIEDs (Medtronic and Biotronik) with varied sensitivity settings and distances. CIEDs were immersed in a saline solution to simulate the electrical resistence of the human body. The endodontic equipment was tested in both horizontal and vertical positions in relation to the components of the CIED. The tests were performed on a dental chair in order to assess the cumulative effect of electromagnetic fields. It was found no EMI with the Biotronik pacemaker. EALs caused EMI with Medtronic PM at a 2 cm distance, with the NSK(®) EAL also affecting the Medtronic defibrillator. GH caused EMI at 2 cm and 5 cm from the Medtronic defibrillator. EMI occurred when devices were horizontally positioned to the CIED. In the majority of the cases, EMI occurred when the pacemaker was set to maximum sensitivity. There was cumulative effect of electromagnetic fields between GH and dental chair. EALs and GH caused EMI which ranged according to type and sensitivity setting of the CIEDs and the distance. However, no endodontic equipment caused permanent damage to the CIED. The use of GH caused a cumulative effect of electromagnetic fields. It suggests that during the treatment of patients with CIEDs, only the necessary equipments should be kept turned on. Patients with CIEDs may be subject to EMI from electronic equipment used in dental offices, as they remain turned on throughout the treatment. This is the first article assessing the cumulative effect of electromagnetic fields. Copyright © 2016. Published by Elsevier Ltd.

  11. Electromagnetic semi-implantable hearing device: phase I. Clinical trials.

    PubMed

    McGee, T M; Kartush, J M; Heide, J C; Bojrab, D I; Clemis, J D; Kulick, K C

    1991-04-01

    Conventional hearing aids have improved significantly in recent years; however, amplification of sound within the external auditory canal creates a number of intrinsic problems, including acoustic feedback and the need for a tight ear mold to increase usable gain. Nonacoustic alternatives which could obviate these encumbrances have not become practical due to inefficient coupling (piezoelectric techniques) or unfeasible power requirements (electromagnetic techniques). Recent technical advances, however, prompted a major clinical investigation of a new electromagnetic, semi-implantable hearing device. This study presents the details of clinical phase I, in which an electromagnetic driver was coupled with a target magnet temporarily affixed onto the lateral surface of the malleus of six hearing aid users with sensorineural losses. The results indicate that the electromagnetic hearing device provides sufficient gain and output characteristics to benefit individuals with sensorineural hearing loss. Significant improvements compared to conventional hearing aids were noted in pure-tone testing and, to a lesser degree, in speech discrimination. Subjective responses were quite favorable, indicating that the electromagnetic hearing device 1. produces no acoustic feedback; 2. works well in noisy environments; and 3. provides a more quiet, natural sound than patients' conventional hearing aids. These favorable results led to phase II of the project, in which patients with surgically amendable mixed hearing losses were implanted with the target magnet incorporated within a hydroxyapatite ossicular prosthesis. The results of this second-stage investigation were also encouraging and will be reported separately.

  12. Percutaneous needle placement using laser guidance: a practical solution

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Kapoor, Ankur; Abi-Jaoudeh, Nadine; Imbesi, Kimberly; Hong, Cheng William; Mazilu, Dumitru; Sharma, Karun; Venkatesan, Aradhana M.; Levy, Elliot; Wood, Bradford J.

    2013-03-01

    In interventional radiology, various navigation technologies have emerged aiming to improve the accuracy of device deployment and potentially the clinical outcomes of minimally invasive procedures. While these technologies' performance has been explored extensively, their impact on daily clinical practice remains undetermined due to the additional cost and complexity, modification of standard devices (e.g. electromagnetic tracking), and different levels of experience among physicians. Taking these factors into consideration, a robotic laser guidance system for percutaneous needle placement is developed. The laser guidance system projects a laser guide line onto the skin entry point of the patient, helping the physician to align the needle with the planned path of the preoperative CT scan. To minimize changes to the standard workflow, the robot is integrated with the CT scanner via optical tracking. As a result, no registration between the robot and CT is needed. The robot can compensate for the motion of the equipment and keep the laser guide line aligned with the biopsy path in real-time. Phantom experiments showed that the guidance system can benefit physicians at different skill levels, while clinical studies showed improved accuracy over conventional freehand needle insertion. The technology is safe, easy to use, and does not involve additional disposable costs. It is our expectation that this technology can be accepted by interventional radiologists for CT guided needle placement procedures.

  13. Electromagnetic brake/clutch device

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1994-01-01

    An electromagnetic brake/clutch device includes a drive shaft supported by at least one bearing for transmitting torque, a housing, affixed to prevent its rotation, surrounding the drive shaft, and an electromagnetically activated device within the housing to selectively prevent and allow rotation of the drive shaft. The electromagnetically activated device includes a plurality of cammed rollers to prevent counter-clockwise rotation of the drive shaft. The drive shaft includes a circumferential disk and the housing includes a reaction ring for engagement with the plurality of cammed rollers. The plurality of cammed rollers are released from engagement with the circumferential disk and the reaction ring by a plurality of tripping mechanisms within the housing. The tripping action uses the locking force to act as a release force merely by changing the boundary conditions of the roller interface angles. The tripping mechanisms include trippers for disengaging the plurality of cammed rollers and an anvil shaped portion for providing lateral movement of the trippers. The plurality of cammed rollers is preloaded to engagement with the circumferential disk and reaction ring by a spring, and is located with respect to an adjacent tripping mechanism with another spring.

  14. SU-E-T-512: Electromagnetic Simulations of the Dielectric Wall Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uselmann, A; Mackie, T

    Purpose: To characterize and parametrically study the key components of a dielectric wall accelerator through electromagnetic modeling and particle tracking. Methods: Electromagnetic and particle tracking simulations were performed using a commercial code (CST Microwave Studio, CST Inc.) utilizing the finite integration technique. A dielectric wall accelerator consists of a series of stacked transmission lines sequentially fired in synchrony with an ion pulse. Numerous properties of the stacked transmission lines, including geometric, material, and electronic properties, were analyzed and varied in order to assess their impact on the transverse and axial electric fields. Additionally, stacks of transmission lines were simulated inmore » order to quantify the parasitic effect observed in closely packed lines. Particle tracking simulations using the particle-in-cell method were performed on the various stacks to determine the impact of the above properties on the resultant phase space of the ions. Results: Examination of the simulation results show that novel geometries can shape the accelerating pulse in order to reduce the energy spread and increase the average energy of accelerated ions. Parasitic effects were quantified for various geometries and found to vary with distance from the end of the transmission line and along the beam axis. An optimal arrival time of an ion pulse relative to the triggering of the transmission lines for a given geometry was determined through parametric study. Benchmark simulations of single transmission lines agree well with published experimental results. Conclusion: This work characterized the behavior of the transmission lines used in a dielectric wall accelerator and used this information to improve them in novel ways. Utilizing novel geometries, we were able to improve the accelerating gradient and phase space of the accelerated particle bunch. Through simulation, we were able to discover and optimize design issues with the device at low cost. Funding: Morgridge Institute for Research, Madison WI; Conflict of Interest: Dr. Mackie is an investor and board member at CPAC, a company developing compact accelerator designs similar to those discussed in this work, but designs discussed are not directed by CPAC. Funding: Morgridge Institute for Research, Madison WI; Conflict of Interest: Dr. Mackie is an investor and board member at CPAC, a company developing compact accelerator designs similar to those discussed in this work, but designs discussed are not directed by CPAC.« less

  15. Electromagnetic micropores: fabrication and operation.

    PubMed

    Basore, Joseph R; Lavrik, Nickolay V; Baker, Lane A

    2010-12-21

    We describe the fabrication and characterization of electromagnetic micropores. These devices consist of a micropore encompassed by a microelectromagnetic trap. Fabrication of the device involves multiple photolithographic steps, combined with deep reactive ion etching and subsequent insulation steps. When immersed in an electrolyte solution, application of a constant potential across the micropore results in an ionic current. Energizing the electromagnetic trap surrounding the micropore produces regions of high magnetic field gradients in the vicinity of the micropore that can direct motion of a ferrofluid onto or off of the micropore. This results in dynamic gating of the ion current through the micropore structure. In this report, we detail fabrication and characterize the electrical and ionic properties of the prepared electromagnetic micropores.

  16. Occupational exposure to electromagnetic fields in the Polish Armed Forces.

    PubMed

    Sobiech, Jaromir; Kieliszek, Jarosław; Puta, Robert; Bartczak, Dagmara; Stankiewicz, Wanda

    2017-06-19

    Standard devices used by military personnel that may pose electromagnetic hazard include: radars, missile systems, radio navigation systems and radio transceivers. The aim of this study has been to evaluate the exposure of military personnel to electromagnetic fields. Occupational exposure to electromagnetic fields was analyzed in the work environment of personnel of 204 devices divided into 5 groups (surface-to-air missile system radars, aircraft and helicopters, communication devices, surveillance and height finder radars, airport radars and radio navigation systems). Measurements were carried out at indicators, device terminals, radio panels, above vehicle seats, in vehicle hatches, by cabinets containing high power vacuum tubes and other transmitter components, by transmission lines, connectors, etc. Portable radios emit the electric field strength between 20-80 V/m close to a human head. The manpack radio operator's exposure is 60-120 V/m. Inside vehicles with high frequency/very high frequency (HF/VHF) band radios, the electric field strength is between 7-30 V/m and inside the radar cabin it ranges between 9-20 V/m. Most of the personnel on ships are not exposed to the electromagnetic field from their own radar systems but rather by accidental exposure from the radar systems of other ships. Operators of surface-to-air missile systems are exposed to the electric field strength between 7-15 V/m and the personnel of non-directional radio beacons - 100-150 V/m. In 57% of military devices Polish soldiers work in the occupational protection zones. In 35% of cases, soldiers work in intermediate and hazardous zones and in 22% - only in the intermediate zone. In 43% of devices, military personnel are not exposed to electromagnetic field. Int J Occup Med Environ Health 2017;30(4):565-577. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  17. Metamaterial Absorbers for Microwave Detection

    DTIC Science & Technology

    2015-06-01

    duration, high-power electrical pulses into electromagnetic waves. 6  A mode converter to tailor the spatial distribution of the electromagnetic ...congressional-report/113th-congress/senate- report/211/1. [16] C. Wilson, “High altitude electromagnetic pulse and high power microwave devices...and Communications CRS Congressional Report Services DE Directed Energy DEW Directed Energy Weapons EM Electromagnetic EMS

  18. Bi-Level Demand-Sensitive LED Street Lighting Systems

    DTIC Science & Technology

    2013-10-01

    Hazards of Electromagnetic Radiation to Fuel HERO : Hazards of Electromagnetic Radiation to Ordnance ...we followed the following guidelines very strictly: 68 • For Hazards of Electromagnetic Radiation to Ordnance (HERO), RF device to be brought in...should be used at least 5 feet from ordnance /explosives. • For, Hazards of Electromagnetic Radiation to Personnel (HERP), HERP Controlled and

  19. Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge

    PubMed Central

    Żak, Arkadiusz

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557

  20. An Electromagnetic Spectrum for Millennial Students: Teaching Light, Color, Energy, and Frequency Using the Electronic Devices of Our Time

    ERIC Educational Resources Information Center

    Murphy, Maureen Kendrick

    2010-01-01

    In this article, a comparison of student learning outcomes is made in sophomore-level physical science classes using a "traditional" pedagogical approach versus a "modern" approach. Specifically, when students were taught the electromagnetic spectrum using diagrams and examples that incorporate technological advances and electronic devices of our…

  1. Objective Assessment of Joint Stiffness: A Clinically Oriented Hardware and Software Device with an Application to the Shoulder Joint.

    PubMed

    McQuade, Kevin; Price, Robert; Liu, Nelson; Ciol, Marcia A

    2012-08-30

    Examination of articular joints is largely based on subjective assessment of the "end-feel" of the joint in response to manually applied forces at different joint orientations. This technical report aims to describe the development of an objective method to examine joints in general, with specific application to the shoulder, and suitable for clinical use. We adapted existing hardware and developed laptop-based software to objectively record the force/displacement behavior of the glenohumeral joint during three common manual joint examination tests with the arm in six positions. An electromagnetic tracking system recorded three-dimensional positions of sensors attached to a clinician examiner and a patient. A hand-held force transducer recorded manually applied translational forces. The force and joint displacement were time-synchronized and the joint stiffness was calculated as a quantitative representation of the joint "end-feel." A methodology and specific system checks were developed to enhance clinical testing reproducibility and precision. The device and testing protocol were tested on 31 subjects (15 with healthy shoulders, and 16 with a variety of shoulder impairments). Results describe the stiffness responses, and demonstrate the feasibility of using the device and methods in clinical settings.

  2. Kassiopeia: a modern, extensible C++ particle tracking package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less

  3. Kassiopeia: a modern, extensible C++ particle tracking package

    DOE PAGES

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus; ...

    2017-05-16

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less

  4. Kassiopeia: a modern, extensible C++ particle tracking package

    NASA Astrophysics Data System (ADS)

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus; Babutzka, Martin; Barrett, John P.; Behrens, Jan; Buzinsky, Nicholas; Corona, Thomas; Enomoto, Sanshiro; Erhard, Moritz; Formaggio, Joseph A.; Glück, Ferenc; Harms, Fabian; Heizmann, Florian; Hilk, Daniel; Käfer, Wolfgang; Kleesiek, Marco; Leiber, Benjamin; Mertens, Susanne; Oblath, Noah S.; Renschler, Pascal; Schwarz, Johannes; Slocum, Penny L.; Wandkowsky, Nancy; Wierman, Kevin; Zacher, Michael

    2017-05-01

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle’s state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.

  5. Evaluation of stray radiofrequency radiation emitted by electrosurgical devices

    NASA Astrophysics Data System (ADS)

    DeMarco, M.; Maggi, S.

    2006-07-01

    Electrosurgery refers to the passage of a high-frequency, high-voltage electrical current through the body to achieve the desired surgical effects. At the same time, these procedures are accompanied by a general increase of the electromagnetic field in an operating room that may expose both patients and personnel to relatively high levels of radiofrequency radiation. In the first part of this study, we have taken into account the radiation emitted by different monopolar electrosurgical devices, evaluating the electromagnetic field strength delivered by an electrosurgical handle and straying from units and other electrosurgical accessories. As a summary, in the worst case a surgeon's hands are exposed to a continuous and pulsed RF wave whose magnetic field strength is 0.75 A m-1 (E-field 400 V m-1). Occasionally stray radiation may exceed ICNIRP's occupational exposure guidelines, especially close to the patient return plate. In the second part of this paper, we have analysed areas of particular concern to prevent electromagnetic interference with some life-support devices (ventilators and electrocardiographic devices), which have failed to operate correctly. Most clinically relevant interference occurred when an electrosurgery device was used within 0.3 m of medical equipment. In the appendix, we suggest some practical recommendations intended to minimize the potential for electromagnetic hazards due to therapeutic application of RF energy.

  6. Efficient transformer for electromagnetic waves

    DOEpatents

    Miller, R.B.

    A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.

  7. Sensors management in robotic neurosurgery: the ROBOCAST project.

    PubMed

    Vaccarella, Alberto; Comparetti, Mirko Daniele; Enquobahrie, Andinet; Ferrigno, Giancarlo; De Momi, Elena

    2011-01-01

    Robot and computer-aided surgery platforms bring a variety of sensors into the operating room. These sensors generate information to be synchronized and merged for improving the accuracy and the safety of the surgical procedure for both patients and operators. In this paper, we present our work on the development of a sensor management architecture that is used is to gather and fuse data from localization systems, such as optical and electromagnetic trackers and ultrasound imaging devices. The architecture follows a modular client-server approach and was implemented within the EU-funded project ROBOCAST (FP7 ICT 215190). Furthermore it is based on very well-maintained open-source libraries such as OpenCV and Image-Guided Surgery Toolkit (IGSTK), which are supported from a worldwide community of developers and allow a significant reduction of software costs. We conducted experiments to evaluate the performance of the sensor manager module. We computed the response time needed for a client to receive tracking data or video images, and the time lag between synchronous acquisition with an optical tracker and ultrasound machine. Results showed a median delay of 1.9 ms for a client request of tracking data and about 40 ms for US images; these values are compatible with the data generation rate (20-30 Hz for tracking system and 25 fps for PAL video). Simultaneous acquisitions have been performed with an optical tracking system and US imaging device: data was aligned according to the timestamp associated with each sample and the delay was estimated with a cross-correlation study. A median value of 230 ms delay was calculated showing that realtime 3D reconstruction is not feasible (an offline temporal calibration is needed), although a slow exploration is possible. In conclusion, as far as asleep patient neurosurgery is concerned, the proposed setup is indeed useful for registration error correction because the brain shift occurs with a time constant of few tens of minutes.

  8. The Extensive Air Shower Experiment Kascade-Grande

    NASA Astrophysics Data System (ADS)

    Kang, Donghwa; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schatz, G.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    The extensive air shower experiment KASCADE-Grande (KArlsruhe Shower Core and Array DEtector and Grande array) is located on site of the Forschungszentrum Karlsruhe in Germany. The original KASCADE experiment consisted of a densely packed scintillator array with unshielded and shielded detectors for the measurement of the electromagnetic and muonic shower component independently, as well as muon tracking devices and a hadron calorimeter. The Grande array as an extension of KASCADE consists of 37 scintillation detector stations covering an area of 700×700 m2. The main goal for the combined measurements of KASCADE and Grande is the investigation of the energy spectrum and composition of primary cosmic rays in the energy range of 1016 to 1018 eV. In this paper an overview of the KASCADE-Grande experiment and recent results will be presented.

  9. Magnetostrictive valve

    NASA Technical Reports Server (NTRS)

    Casabianca, C. C.

    1978-01-01

    Device requires no moving parts and has less stringent tolerances. Device uses magnetostrictive powdered metal and electromagnets, rather than solenoid. Device is more reliable than conventional valves.

  10. Augmented Reality-Based Navigation System for Wrist Arthroscopy: Feasibility

    PubMed Central

    Zemirline, Ahmed; Agnus, Vincent; Soler, Luc; Mathoulin, Christophe L.; Liverneaux, Philippe A.; Obdeijn, Miryam

    2013-01-01

    Purpose In video surgery, and more specifically in arthroscopy, one of the major problems is positioning the camera and instruments within the anatomic environment. The concept of computer-guided video surgery has already been used in ear, nose, and throat (ENT), gynecology, and even in hip arthroscopy. These systems, however, rely on optical or mechanical sensors, which turn out to be restricting and cumbersome. The aim of our study was to develop and evaluate the accuracy of a navigation system based on electromagnetic sensors in video surgery. Methods We used an electromagnetic localization device (Aurora, Northern Digital Inc., Ontario, Canada) to track the movements in space of both the camera and the instruments. We have developed a dedicated application in the Python language, using the VTK library for the graphic display and the OpenCV library for camera calibration. Results A prototype has been designed and evaluated for wrist arthroscopy. It allows display of the theoretical position of instruments onto the arthroscopic view with useful accuracy. Discussion The augmented reality view represents valuable assistance when surgeons want to position the arthroscope or locate their instruments. It makes the maneuver more intuitive, increases comfort, saves time, and enhances concentration. PMID:24436832

  11. Augmented reality-based navigation system for wrist arthroscopy: feasibility.

    PubMed

    Zemirline, Ahmed; Agnus, Vincent; Soler, Luc; Mathoulin, Christophe L; Obdeijn, Miryam; Liverneaux, Philippe A

    2013-11-01

    In video surgery, and more specifically in arthroscopy, one of the major problems is positioning the camera and instruments within the anatomic environment. The concept of computer-guided video surgery has already been used in ear, nose, and throat (ENT), gynecology, and even in hip arthroscopy. These systems, however, rely on optical or mechanical sensors, which turn out to be restricting and cumbersome. The aim of our study was to develop and evaluate the accuracy of a navigation system based on electromagnetic sensors in video surgery. We used an electromagnetic localization device (Aurora, Northern Digital Inc., Ontario, Canada) to track the movements in space of both the camera and the instruments. We have developed a dedicated application in the Python language, using the VTK library for the graphic display and the OpenCV library for camera calibration. A prototype has been designed and evaluated for wrist arthroscopy. It allows display of the theoretical position of instruments onto the arthroscopic view with useful accuracy. The augmented reality view represents valuable assistance when surgeons want to position the arthroscope or locate their instruments. It makes the maneuver more intuitive, increases comfort, saves time, and enhances concentration.

  12. Risk assessment of electromagnetic fields exposure with metallic orthopedic implants: a cadaveric study.

    PubMed

    Crouzier, D; Selek, L; Martz, B-A; Dabouis, V; Arnaud, R; Debouzy, J-C

    2012-02-01

    Metallic materials are well known to strongly interact with electromagnetic fields. While biological effects of such field have been extensively studied, only few works dealt with the interactions of electromagnetic waves with passive metallic device implanted in biological system. Hence only several numerical and phantom simulation studies were focusing on this aspect, whereas no in situ anatomic experiment has been previously performed. In this study the effect of electromagnetic waves on eight different orthopaedic medical devices (six plates from 55 to 318mm length, a total knee and a total hip prosthesis) were explored on six human cadavers. To mimic a random environmental exposure resulting from the most common frequencies band used in domestic environment and medical applications (TV and radio broadcasting, cell phone communication, MRI, diathermy treatment), a multifrequency generator emitting in VHF, UHF, GSM and GCS frequency bands was used. The different medical devices were exposed to an electromagnetic field at 50W/m(2) and 100W/m(2). After 6min exposure, the temperature was measured on three points close to each medical device, and the induced currents were estimated. No significant temperature increase (<0.2°C) was finally detected; beside, a slight induced tension (up to 1.1V) was recorded but would appear too low to induce any biological side effect. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  13. Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion.

    PubMed

    Cao, Maosheng; Wang, Xixi; Cao, Wenqiang; Fang, Xiaoyong; Wen, Bo; Yuan, Jie

    2018-06-07

    Electromagnetic energy radiation is becoming a "health-killer" of living bodies, especially around industrial transformer substation and electricity pylon. Harvesting, converting, and storing waste energy for recycling are considered the ideal ways to control electromagnetic radiation. However, heat-generation and temperature-rising with performance degradation remain big problems. Herein, graphene-silica xerogel is dissected hierarchically from functions to "genes," thermally driven relaxation and charge transport, experimentally and theoretically, demonstrating a competitive synergy on energy conversion. A generic approach of "material genes sequencing" is proposed, tactfully transforming the negative effects of heat energy to superiority for switching self-powered and self-circulated electromagnetic devices, beneficial for waste energy harvesting, conversion, and storage. Graphene networks with "well-sequencing genes" (w = P c /P p > 0.2) can serve as nanogenerators, thermally promoting electromagnetic wave absorption by 250%, with broadened bandwidth covering the whole investigated frequency. This finding of nonionic energy conversion opens up an unexpected horizon for converting, storing, and reusing waste electromagnetic energy, providing the most promising way for governing electromagnetic pollution with self-powered and self-circulated electromagnetic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers.

    PubMed

    Luo, Xiongbiao

    2014-06-01

    Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model was designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0-10 min(-1). The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. An electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.

  15. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiongbiao, E-mail: xiongbiao.luo@gmail.com

    2014-06-15

    Purpose: Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. Methods: The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model wasmore » designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. Results: The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0–10 min{sup −1}. The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. Conclusions: An electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.« less

  16. Area Monitoring for Detection of Leaks and/or Flames

    NASA Technical Reports Server (NTRS)

    Mian, Zahid F. (Inventor); Gamache, Ronald W. (Inventor); Glasser, Nick (Inventor)

    2015-01-01

    A solution for monitoring an area for the presence of a flame and/or a leak, such as from a pressurized fluid, is provided. An imaging device can be used that acquires image data based on electromagnetic radiation having wavelengths only corresponding to at least one region of the electromagnetic spectrum in which electromagnetic radiation from an ambient light source is less than the electromagnetic radiation emitted by at least one type of flame for which the presence within the area is being monitored. An acoustic device can be used that is configured to acquire acoustic data for the area and enhance acoustic signals in a range of frequencies corresponding to a leak of a pressurized fluid present in the area.

  17. Area Monitoring for Detection of Leaks And/Or Flames

    NASA Technical Reports Server (NTRS)

    Mian, Zahid F. (Inventor); Gamache, Ronald W. (Inventor); Glasser, Nicholas (Inventor)

    2017-01-01

    A solution for monitoring an area for the presence of a flame and/or a leak, such as from a pressurized fluid, is provided. An imaging device can be used that acquires image data based on electromagnetic radiation having wavelengths only corresponding to at least one region of the electromagnetic spectrum in which electromagnetic radiation from an ambient light source is less than the electromagnetic radiation emitted by at least one type of flame for which the presence within the area is being monitored. An acoustic device can be used that is configured to acquire acoustic data for the area and enhance acoustic signals in a range of frequencies corresponding to a leak of a pressurized fluid present in the area.

  18. 76 FR 66283 - Notice of Intent To Grant Partially Exclusive Patent License; BOLD Industries, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Method for a Mobile Tracking Device.//U.S. Patent Application No. 20110036998 filed on August 14, 2009: Countermeasure Device for a Mobile Tracking Device.//U.S. Patent Application No. 20110113949 filed on May 12, 2010: Modulation Device for a Mobile Tracking Device.//U.S. Patent Application Serial No. 12/778,643...

  19. A hybrid power system for unmanned aerial vehicle electromagnetic launcher

    NASA Astrophysics Data System (ADS)

    Wang, Zhiren; Wu, Jun; Huang, Shengjun

    2018-06-01

    According to the UAV electromagnetic catapult with fixed timing, a hybrid energy storage system consist with battery and super capacitor is designed, in order to reduce the volume and weight of the energy storage system. The battery is regarded as the energy storage device and the super capacitor as power release device. Firstly, the battery charges the super capacitor, and then the super capacitor supplies power to electromagnetic catapult separately. The strategy is using the Buck circuit to charge the super capacitor with constant current and using the Boost circuit to make super capacitor provide a stable voltage circuit for electromagnetic catapult. The Simulink simulation results show that the designed hybrid energy storage system can meet the requirements of electromagnetic catapult. Compared with the system powered by the battery alone, the proposed scheme can reduce the number of batteries, and greatly reduce the volume and weight of the energy storage system.

  20. Evaluation of Information Leakage via Electromagnetic Emanation and Effectiveness of Tempest

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidema

    It is well known that there is relationship between electromagnetic emanation and processing information in IT devices such as personal computers and smart cards. By analyzing such electromagnetic emanation, eavesdropper will be able to get some information, so it becomes a real threat of information security. In this paper, we show how to estimate amount of information that is leaked as electromagnetic emanation. We assume the space between the IT device and the receiver is a communication channel, and we define the amount of information leakage via electromagnetic emanations by its channel capacity. By some experimental results of Tempest, we show example estimations of amount of information leakage. Using the value of channel capacity, we can calculate the amount of information per pixel in the reconstructed image. And we evaluate the effectiveness of Tempest fonts generated by Gaussian method and its threshold of security.

  1. 48 CFR 252.235-7003 - Frequency authorization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... characteristics of the proposed electromagnetic radiating device to the Contracting Officer during the initial... Contractor shall provide the technical operating characteristics of the proposed electromagnetic radiating...

  2. [Electromagnetic interference in the current era of cardiac implantable electronic devices designed for magnetic resonance environment].

    PubMed

    Ribatti, Valentina; Santini, Luca; Forleo, Giovanni B; Della Rocca, Domenico; Panattoni, Germana; Scali, Marta; Schirripa, Valentina; Danisi, Nicola; Ammirati, Fabrizio; Santini, Massimo

    2017-04-01

    In the last decades we are observing a continuous increase in the number of patients wearing cardiac implantable electronic devices (CIEDs). At the same time, we face daily with a domestic and public environment featured more and more by the presence and the utilization of new emitters and finally, more medical procedures are based on electromagnetic fields as well. Therefore, the topic of the interaction of devices with electromagnetic interference (EMI) is increasingly a real and actual problem.In the medical environment most attention is paid to magnetic resonance, nevertheless the risk of interaction is present also with ionizing radiation, electrical nerve stimulation and electrosurgery. In the non-medical environment, most studies reported in the literature focused on mobile phones, metal detectors, as well as on headphones or digital players as potential EMI sources, but many other instruments and tools may be intentional or non-intentional sources of electromagnetic fields.CIED manufacturers are more and more focusing on new technological features in order to make implantable devices less susceptible to EMI. However, patients and emitter manufacturers should be aware that limitations exist and that there is not complete immunity to EMI.

  3. Spaceborne centrifugal relays for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Ouzidane, Malika

    1991-01-01

    Acceleration using centrifugal relays is a recently discovered method for the acceleration of spaceborne payloads to high velocity at high thrust. Centrifugal relays are moving rotors which progressively accelerate reaction mass to higher velocities. One important engineering problem consists of accurately tracking the position of the projectiles and rotors and guiding each projectile exactly onto the appropriate guide tracks on each rotor. The topics of this research are the system kinematics and dynamics and the computerized guidance system which will allow the projectile to approach each rotor with exact timing with respect to the rotor rotation period and with very small errors in lateral positions. Kinematics studies include analysis of rotor and projectile positions versus time and projectile/rotor interactions. Guidance studies include a detailed description of the tracking mechanism (interrupt of optical beams) and the aiming mechanism (electromagnetic focusing) including the design of electromagnetic deflection coils and the switching circuitry.

  4. 49 CFR 214.509 - Required visual illumination and reflective devices for new on-track roadway maintenance machines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... devices for new on-track roadway maintenance machines. 214.509 Section 214.509 Transportation Other... TRANSPORTATION RAILROAD WORKPLACE SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.509 Required visual illumination and reflective devices for new on-track roadway maintenance machines. Each new...

  5. Performance of cardiopulmonary resuscitation feedback systems in a long-distance train with distributed traction.

    PubMed

    González-Otero, Digna M; de Gauna, Sofía Ruiz; Ruiz, Jesus; Rivero, Raquel; Gutierrez, J J; Saiz, Purificación; Russell, James K

    2018-04-20

    Out-of-hospital cardiac arrest is common in public locations, including public transportation sites. Feedback devices are increasingly being used to improve chest-compression quality. However, their performance during public transportation has not been studied yet. To test two CPR feedback devices representative of the current technologies (accelerometer and electromag- netic-field) in a long-distance train. Volunteers applied compressions on a manikin during the train route using both feedback devices. Depth and rate measurements computed by the devices were compared to the gold-standard values. Sixty-four 4-min records were acquired. The accelerometer-based device provided visual help in all experiments. Median absolute errors in depth and rate were 2.4 mm and 1.3 compressions per minute (cpm) during conventional speed, and 2.5 mm and 1.2 cpm during high speed. The electromagnetic-field-based device never provided CPR feedback; alert messages were shown instead. However, measurements were stored in its internal memory. Absolute errors for depth and rate were 2.6 mm and 0.7 cpm during conventional speed, and 2.6 mm and 0.7 cpm during high speed. Both devices were accurate despite the accelerations and the electromagnetic interferences induced by the train. However, the electromagnetic-field-based device would require modifications to avoid excessive alerts impeding feedback.

  6. 40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... range of low scale, for five minutes without adjustment. (7) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... vary as a result of electromagnetic radiation and induction devices normally found in the automotive...

  7. 40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... range of low scale, for five minutes without adjustment. (7) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... vary as a result of electromagnetic radiation and induction devices normally found in the automotive...

  8. 40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... range of low scale, for five minutes without adjustment. (7) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... vary as a result of electromagnetic radiation and induction devices normally found in the automotive...

  9. 40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... range of low scale, for five minutes without adjustment. (7) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... vary as a result of electromagnetic radiation and induction devices normally found in the automotive...

  10. 40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... range of low scale, for five minutes without adjustment. (7) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... vary as a result of electromagnetic radiation and induction devices normally found in the automotive...

  11. Calibration of 3D ultrasound to an electromagnetic tracking system

    NASA Astrophysics Data System (ADS)

    Lang, Andrew; Parthasarathy, Vijay; Jain, Ameet

    2011-03-01

    The use of electromagnetic (EM) tracking is an important guidance tool that can be used to aid procedures requiring accurate localization such as needle injections or catheter guidance. Using EM tracking, the information from different modalities can be easily combined using pre-procedural calibration information. These calibrations are performed individually, per modality, allowing different imaging systems to be mixed and matched according to the procedure at hand. In this work, a framework for the calibration of a 3D transesophageal echocardiography probe to EM tracking is developed. The complete calibration framework includes three required steps: data acquisition, needle segmentation, and calibration. Ultrasound (US) images of an EM tracked needle must be acquired with the position of the needles in each volume subsequently extracted by segmentation. The calibration transformation is determined through a registration between the segmented points and the recorded EM needle positions. Additionally, the speed of sound is compensated for since calibration is performed in water that has a different speed then is assumed by the US machine. A statistical validation framework has also been developed to provide further information related to the accuracy and consistency of the calibration. Further validation of the calibration showed an accuracy of 1.39 mm.

  12. Electromagnetic tracking in the clinical environment

    PubMed Central

    Yaniv, Ziv; Wilson, Emmanuel; Lindisch, David; Cleary, Kevin

    2009-01-01

    When choosing an electromagnetic tracking system (EMTS) for image-guided procedures several factors must be taken into consideration. Among others these include the system’s refresh rate, the number of sensors that need to be tracked, the size of the navigated region, the system interaction with the environment, whether the sensors can be embedded into the tools and provide the desired transformation data, and tracking accuracy and robustness. To date, the only factors that have been studied extensively are the accuracy and the susceptibility of EMTSs to distortions caused by ferromagnetic materials. In this paper the authors shift the focus from analysis of system accuracy and stability to the broader set of factors influencing the utility of EMTS in the clinical environment. The authors provide an analysis based on all of the factors specified above, as assessed in three clinical environments. They evaluate two commercial tracking systems, the Aurora system from Northern Digital Inc., and the 3D Guidance system with three different field generators from Ascension Technology Corp. The authors show that these systems are applicable to specific procedures and specific environments, but that currently, no single system configuration provides a comprehensive solution across procedures and environments. PMID:19378748

  13. Validation of a hybrid electromagnetic-piezoelectric vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Edwards, Bryn; Hu, Patrick A.; Aw, Kean C.

    2016-05-01

    This paper presents a low frequency vibration energy harvester with contact based frequency up-conversion and hybrid electromagnetic-piezoelectric transduction. An electromagnetic generator is proposed as a power source for low power wearable electronic devices, while a second piezoelectric generator is investigated as a potential power source for a power conditioning circuit for the electromagnetic transducer output. Simulations and experiments are conducted in order to verify the behaviour of the device under harmonic as well as wide-band excitations across two key design parameters—the length of the piezoelectric beam and the excitation frequency. Experimental results demonstrated that the device achieved a power output between 25.5 and 34 μW at an root mean squared (rms) voltage level between 16 and 18.5 mV for the electromagnetic transducer in the excitation frequency range of 3-7 Hz, while the output power of the piezoelectric transducer ranged from 5 to 10.5 μW with a minimum peak-to-peak output voltage of 6 V. A multivariate model validation was performed between experimental and simulation results under wide-band excitation in terms of the rms voltage outputs of the electromagnetic and piezoelectric transducers, as well as the peak-to-peak voltage output of the piezoelectric transducer, and it is found that the experimental data fit the model predictions with a minimum probability of 63.4% across the parameter space.

  14. Electromagnetic interference from electronic devices used in the management of type 1 diabetes can impair the performance of an avalanche transceiver in search mode.

    PubMed

    Miller, Steven C M

    2015-06-01

    Portable electronic devices play an important role in the management of type 1 diabetes mellitus. Electromagnetic interference from electronic devices has been shown to impair the function of an avalanche transceiver in search mode (but not in transmitting mode). This study investigates the influence of electromagnetic interference from diabetes devices on a searching avalanche beacon. The greatest distance at which an avalanche transceiver (in search mode) could accurately indicate the location of a transmitting transceiver was assessed when portable electronic devices (including an insulin pump and commonly used real-time continuous subcutaneous glucose monitoring system [rtCGMS]) were held in close proximity to each transceiver. The searching transceiver could accurately locate a transmitted signal at a distance of 30 m when used alone. This distance was unchanged by the Dexcom G4 rtCGMS, but was reduced to 10 m when the Medtronic Guardian rtCGMS was held close (within 30 cm) to the receiving beacon. Interference from the Animas Vibe insulin pump reduced this distance to 5 m, impairing the searching transceiver in a manner identical to the effect of a cell phone. Electromagnetic interference produced by some diabetes devices when held within 30 cm of a searching avalanche transceiver can impair the ability to locate a signal. Such interference could significantly compromise the outcome of a companion rescue scenario. Further investigation using other pumps and rtCGMS devices is required to evaluate all available diabetes electronics. Meantime, all electronic diabetes devices including rtCGMS and insulin pumps should not be used within 30 cm of an avalanche transceiver. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  15. 78 FR 26849 - Model Specifications for Breath Alcohol Ignition Interlock Devices (BAIIDs)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ...--Acetone Test 14--Emergency Override Test 15--Radiofrequency Interference/Electromagnetic Interference Test... requirements; temperature extreme testing; radio frequency interference (RFI) or electromagnetic interference...

  16. An open-source framework for testing tracking devices using Lego Mindstorms

    NASA Astrophysics Data System (ADS)

    Jomier, Julien; Ibanez, Luis; Enquobahrie, Andinet; Pace, Danielle; Cleary, Kevin

    2009-02-01

    In this paper, we present an open-source framework for testing tracking devices in surgical navigation applications. At the core of image-guided intervention systems is the tracking interface that handles communication with the tracking device and gathers tracking information. Given that the correctness of tracking information is critical for protecting patient safety and for ensuring the successful execution of an intervention, the tracking software component needs to be thoroughly tested on a regular basis. Furthermore, with widespread use of extreme programming methodology that emphasizes continuous and incremental testing of application components, testing design becomes critical. While it is easy to automate most of the testing process, it is often more difficult to test components that require manual intervention such as tracking device. Our framework consists of a robotic arm built from a set of Lego Mindstorms and an open-source toolkit written in C++ to control the robot movements and assess the accuracy of the tracking devices. The application program interface (API) is cross-platform and runs on Windows, Linux and MacOS. We applied this framework for the continuous testing of the Image-Guided Surgery Toolkit (IGSTK), an open-source toolkit for image-guided surgery and shown that regression testing on tracking devices can be performed at low cost and improve significantly the quality of the software.

  17. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    PubMed Central

    Zhou, Jun; Zamdborg, Leonid; Sebastian, Evelyn

    2015-01-01

    The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented. PMID:26203277

  18. Optical Phased Array Using Guided Resonance with Backside Reflectors

    NASA Technical Reports Server (NTRS)

    Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2016-01-01

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  19. Optical phased array using guided resonance with backside reflectors

    DOEpatents

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2016-11-01

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  20. Optical phased array using guided resonance with backside reflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2018-03-13

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  1. Optical Phased Array Using Guided Resonance with Backside Reflectors

    NASA Technical Reports Server (NTRS)

    Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2018-01-01

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  2. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. Copyright © 2016, American Association for the Advancement of Science.

  3. The effect of electromagnetic interference from mobile communication on the performance of intensive care ventilators.

    PubMed

    Jones, R P; Conway, D H

    2005-08-01

    Electromagnetic interference produced by wireless communication can affect medical devices and hospital policies exist to address this risk. During the transfer of ventilated patients, these policies may be compromised by essential communication between base and receiving hospitals. Local wireless networks (e.g. Bluetooth) may reduce the 'spaghetti syndrome' of wires and cables seen on intensive care units, but also generate electromagnetic interference. The aim of this study was to investigate these effects on displayed and actual ventilator performance. Five ventilators were tested: Drager Oxylog 2000, BREAS LTV-1000, Respironics BiPAP VISION, Puritan Bennett 7200 and 840. Electromagnetic interference was generated by three devices: Simoco 8020 radio handset, Nokia 7210 and Nokia 6230 mobile phone, Nokia 6230 communicating via Bluetooth with a Palm Tungsten T Personal Digital Assistant. We followed the American National Standard Recommended Practice for On-Site, Ad Hoc Testing (ANSI C63) for electromagnetic interference. We used a ventilator tester, to simulate healthy adult lungs and measure ventilator performance. The communication device under test was moved in towards each ventilator from a distance of 1 m in six axes. Alarms or error codes on the ventilator were recorded, as was ventilator performance. All ventilators tested, except for the Respironics VISION, showed a display error when subjected to electromagnetic interference from the Nokia phones and Simoco radio. Ventilator performance was only affected by the radio which caused the Puritan Bennett 840 to stop functioning completely. The transfer ventilators' performance were not affected by radio or mobile phone, although the mobile phone did trigger a low-power alarm. Effects on intensive care ventilators included display reset, with the ventilator restoring normal display function within 2 s, and low-power/low-pressure alarms. Bluetooth transmission had no effect on the function of all the ventilators tested. In a clinical setting, high-power-output devices such as a two-way radio may cause significant interference in ventilator function. Medium-power-output devices such as mobile phones may cause minor alarm triggers. Low-power-output devices such as Bluetooth appear to cause no interference with ventilator function.

  4. Needle placement for piriformis injection using 3-D imaging.

    PubMed

    Clendenen, Steven R; Candler, Shawn A; Osborne, Michael D; Palmer, Scott C; Duench, Stephanie; Glynn, Laura; Ghazi, Salim M

    2013-01-01

    Piriformis syndrome is a pain syndrome originating in the buttock and is attributed to 6% - 8% of patients referred for the treatment of back and leg pain. The treatment for piriformis syndrome using fluoroscopy, computed tomography (CT), electromyography (EMG), and ultrasound (US) has become standard practice. The treatment of Piriformis Syndrome has evolved to include fluoroscopy and EMG with CT guidance. We present a case study of 5 successful piriformis injections using 3-D computer-assisted electromagnet needle tracking coupled with ultrasound. A 6-degree of freedom electromagnetic position tracker was attached to the ultrasound probe that allowed the system to detect the position and orientation of the probe in the magnetic field. The tracked ultrasound probe was used to find the posterior superior iliac spine. Subsequently, 3 points were captured to register the ultrasound image with the CT or magnetic resonance image scan. Moreover, after the registration was obtained, the navigation system visualized the tracked needle relative to the CT scan in real-time using 2 orthogonal multi-planar reconstructions centered at the tracked needle tip. Conversely, a recent study revealed that fluoroscopically guided injections had 30% accuracy compared to ultrasound guided injections, which tripled the accuracy percentage. This novel technique exhibited an accurate needle guidance injection precision of 98% while advancing to the piriformis muscle and avoiding the sciatic nerve. The mean (± SD) procedure time was 19.08 (± 4.9) minutes. This technique allows for electromagnetic instrument tip tracking with real-time 3-D guidance to the selected target. As with any new technique, a learning curve is expected; however, this technique could offer an alternative, minimizing radiation exposure.

  5. [Return to work of a pacemaker bearing worker: the relationship between health problems and electromagnetic interferences].

    PubMed

    Taino, G; Frigerio, F

    2004-01-01

    The potential effects of electromagnetic fields is a problem that interest the public opinion, as the modern society expose all people to electromagnetic non ionizing radiations. The problem has a particular and important meaning facing the return to normal life and work conditions of a cardiopatic subject bearing a pacemaker (PM) or implantable cardioverter defibrillator (ICD). Electromagnetic interferences can produce temporary or permanent malfunctions in these devices. Checking for the absence of electromagnetic interferences is necessary considering that correct functioning of these medical devices is essential for the life of the bearer. Precautions normally adopted by these subjects are generally adequate to ensure protection from interferences present in life environment; for occupational environment, there is often lack of adequate information, also due to late involving of the doctor specialist in occupational health. This work intends to study in depth a specific job, a carpentry-workshop with welding activities, starting with a case of a PM bearer who asked a doctor specialist in occupational health to evaluate the problems involved in his return to work. Electric and magnetic fields produced by equipments present in the workshop were measured and compared to data supplied by the literature to evaluate the possibility of interactions in the normally functioning of implanted electronic devices. On the basis of our experience, we have found some criterions for specific risk assessement to adopt for the definition of operative protocols for return to work of PM or ICD carriers, also considering the lack of specific procedures and indications for the doctor specialist in occupational health. The collected information and data from the literature suggest that welding can be a risk for a subject with PM; as observed in experimental conditions, electromagnetic radiations can alter particular sensitive devices and those with uncorrected settings.

  6. SU-G-JeP1-06: Correlation of Lung Tumor Motion with Tumor Location Using Electromagnetic Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muccigrosso, D; Maughan, N; Parikh, P

    Purpose: It is well known that lung tumors move with respiration. However, most measurements of lung tumor motion have studied long treatment times with intermittent imaging; those populations may not necessarily represent conventional LINAC patients. We summarized the correlation between tumor motion and location in a multi-institutional trial with electromagnetic tracking, and identified the patient cohort that would most benefit from respiratory gating. Methods: Continuous electromagnetic transponder data (Varian Medical, Seattle, WA) of lung tumor motion was collected from 14 patients (214 total fractions) across 3 institutions during external beam radiation therapy in a prospective clinical trial (NCT01396551). External interventionmore » from the clinician, such as couch shifts, instructed breath-holds, and acquisition pauses, were manually removed from the 10 Hz tracking data according to recorded notes. The average three-dimensional displacement from the breathing cycle’s end-expiratory to end-inhalation phases (peak-to-peak distance) of the transponders’ isocenter was calculated for each patient’s treatment. A weighted average of each isocenter was used to assess the effects of location on motion. A total of 14 patients were included in this analysis, grouped by their transponders’ location in the lung: upper, medial, and lower. Results: 8 patients had transponders in the upper lung, and 3 patients each in the medial lobe and lower lung. The weighted average ± standard deviation of all peak-to-peak distances for each group was: 1.04 ± 0.39 cm in the lower lung, 0.56 ± 0.14 cm in the medial lung, and 0.30 ± 0.06 cm in the upper lung. Conclusion: Tumors in the lower lung are most susceptible to excessive motion and daily variation, and would benefit most from continuous motion tracking and gating. Those in the medial lobe might be at moderate risk. The upper lobes have limited motion. These results can guide different motion management strategies between lung tumor locations. This is part of an NIH-funded prospective clinical trial (NCT01396551), using an electromagnetic transponder tracking system and additional funding from Varian Medical (Seattle, WA).« less

  7. Wireless Coexistence and EMC of Bluetooth and 802.11b Devices in Controlled Laboratory Settings

    PubMed Central

    Seidman, Seth; Kainz, Wolfgang; Ruggera, Paul; Mendoza, Gonzalo

    2011-01-01

    This paper presents experimental testing that has been performed on wireless communication devices as victims of electromagnetic interference (EMI). Wireless victims included universal serial bus (USB) network adapters and personal digital assistants (PDAs) equipped with IEEE 802.11b and Bluetooth technologies. The experimental data in this paper was gathered in an anechoic chamber and a gigahertz transverse electromagnetic (GTEM) cell to ensure reliable and repeatable results. This testing includes: Electromagnetic compatibility (EMC) testing performed in accordance with IEC 60601-1-2, an in-band sweep of EMC testing, and coexistence testing. The tests in this study show that a Bluetooth communication was able to coexist with other Bluetooth devices with no decrease in throughput and no communication breakdowns. However, testing revealed a significant decrease in throughput and increase in communication breakdowns when an 802.11b source is near an 802.11b victim. In a hospital setting decreased throughput and communication breakdowns can cause wireless medical devices to fail. It is therefore vital to have an understanding of the effect EMI can have on wireless communication devices. PMID:22043254

  8. Wireless Coexistence and EMC of Bluetooth and 802.11b Devices in Controlled Laboratory Settings.

    PubMed

    Seidman, Seth; Kainz, Wolfgang; Ruggera, Paul; Mendoza, Gonzalo

    2011-01-01

    This paper presents experimental testing that has been performed on wireless communication devices as victims of electromagnetic interference (EMI). Wireless victims included universal serial bus (USB) network adapters and personal digital assistants (PDAs) equipped with IEEE 802.11b and Bluetooth technologies. The experimental data in this paper was gathered in an anechoic chamber and a gigahertz transverse electromagnetic (GTEM) cell to ensure reliable and repeatable results. This testing includes: Electromagnetic compatibility (EMC) testing performed in accordance with IEC 60601-1-2, an in-band sweep of EMC testing, and coexistence testing. The tests in this study show that a Bluetooth communication was able to coexist with other Bluetooth devices with no decrease in throughput and no communication breakdowns. However, testing revealed a significant decrease in throughput and increase in communication breakdowns when an 802.11b source is near an 802.11b victim. In a hospital setting decreased throughput and communication breakdowns can cause wireless medical devices to fail. It is therefore vital to have an understanding of the effect EMI can have on wireless communication devices.

  9. A coupled piezoelectric-electromagnetic energy harvesting technique for achieving increased power output through damping matching

    NASA Astrophysics Data System (ADS)

    Challa, Vinod R.; Prasad, M. G.; Fisher, Frank T.

    2009-09-01

    Vibration energy harvesting is being pursued as a means to power wireless sensors and ultra-low power autonomous devices. From a design standpoint, matching the electrical damping induced by the energy harvesting mechanism to the mechanical damping in the system is necessary for maximum efficiency. In this work two independent energy harvesting techniques are coupled to provide higher electrical damping within the system. Here the coupled energy harvesting device consists of a primary piezoelectric energy harvesting device to which an electromagnetic component is added to better match the total electrical damping to the mechanical damping in the system. The first coupled device has a resonance frequency of 21.6 Hz and generates a peak power output of ~332 µW, compared to 257 and 244 µW obtained from the optimized, stand-alone piezoelectric and electromagnetic energy harvesting devices, respectively, resulting in a 30% increase in power output. A theoretical model has been developed which closely agrees with the experimental results. A second coupled device, which utilizes the d33 piezoelectric mode, shows a 65% increase in power output in comparison to the corresponding stand-alone, single harvesting mode devices. This work illustrates the design considerations and limitations that one must consider to enhance device performance through the coupling of multiple harvesting mechanisms within a single energy harvesting device.

  10. Comparison of home and away-from-home physical activity using accelerometers and cellular network-based tracking devices.

    PubMed

    Ramulu, Pradeep Y; Chan, Emilie S; Loyd, Tara L; Ferrucci, Luigi; Friedman, David S

    2012-08-01

    Measuring physical at home and away from home is essential for assessing health and well-being, and could help design interventions to increase physical activity. Here, we describe how physical activity at home and away from home can be quantified by combining information from cellular network-based tracking devices and accelerometers. Thirty-five working adults wore a cellular network-based tracking device and an accelerometer for 6 consecutive days and logged their travel away from home. Performance of the tracking device was determined using the travel log for reference. Tracking device and accelerometer data were merged to compare physical activity at home and away from home. The tracking device detected 98.6% of all away-from-home excursions, accurately measured time away from home and demonstrated few prolonged signal drop-out periods. Most physical activity took place away from home on weekdays, but not on weekends. Subjects were more physically active per unit of time while away from home, particularly on weekends. Cellular network-based tracking devices represent an alternative to global positioning systems for tracking location, and provide information easily integrated with accelerometers to determine where physical activity takes place. Promoting greater time spent away from home may increase physical activity.

  11. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch.

    PubMed

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  12. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch

    NASA Astrophysics Data System (ADS)

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  13. 47 CFR 2.1093 - Radiofrequency radiation exposure evaluation: portable devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to... Exposure Criteria for Radiofrequency Electromagnetic Fields,” NCRP Report No. 86, Section 17.4.5. Copyright... Electromagnetic Fields—RF and Microwave,” IEEE C95.3-1991. (4) For purposes of analyzing portable transmitting...

  14. TU-AB-201-03: A Robot for the Automated Delivery of An Electromagnetic Tracking Sensor for the Localization of Brachytherapy Catheters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don, S; Cormack, R; Viswanathan, A

    Purpose: To present a programmable robotic system for the accurate and fast deployment of an electromagnetic (EM) sensor for brachytherapy catheter localization. Methods: A robotic system for deployment of an EM sensor was designed and built. The system was programmed to increment the sensor position at specified time and space intervals. Sensor delivery accuracy was measured in a phantom using the localization of the EM sensor and tested in different environmental conditions. Accuracy was tested by measuring the distance between the physical locations reached by the sensor (measured by the EM tracker) and the intended programmed locations. Results: The systemmore » consisted of a stepper motor connected to drive wheels (that grip the cable to move the sensor) and a series of guides to connect to a brachytherapy transfer tube, all controlled by a programmable Arduino microprocessor. The total cost for parts was <$300. The positional accuracy of the sensor location was within 1 mm of the expected position provided by the motorized guide system. Acquisition speed to localize a brachytherapy catheter with 20 cm of active length was 10 seconds. The current design showed some cable slip and warping depending on environment temperature. Conclusion: The use of EM tracking for the localization of brachytherapy catheters has been previously demonstrated. Efficient data acquisition and artifact reduction requires fast and accurate deployment of an EM sensor in consistent, repeatable patterns, which cannot practically be achieved manually. The design of an inexpensive, programmable robot allowing for the precise deployment of stepping patterns was presented, and a prototype was built. Further engineering is necessary to ensure that the device provides efficient independent localization of brachytherapy catheters. This research was funded by the Kaye Family Award.« less

  15. Study of a non-equilibrium plasma pinch with application for microwave generation

    NASA Astrophysics Data System (ADS)

    Al Agry, Ahmad Farouk

    The Non-Equilibrium Plasma Pinch (NEPP), also known as the Dense Plasma Focus (DPF) is well known as a source of energetic ions, relativistic electrons and neutrons as well as electromagnetic radiation extending from the infrared to X-ray. In this dissertation, the operation of a 15 kJ, Mather type, NEPP machine is studied in detail. A large number of experiments are carried out to tune the machine parameters for best performance using helium and hydrogen as filling gases. The NEPP machine is modified to be able to extract the copious number of electrons generated at the pinch. A hollow anode with small hole at the flat end, and a mock magnetron without biasing magnetic field are built. The electrons generated at the pinch are very difficult to capture, therefore a novel device is built to capture and transport the electrons from the pinch to the magnetron. The novel cup-rod-needle device successfully serves the purpose to capture and transport electrons to monitor the pinch current. Further, the device has the potential to field emit charges from its needle end acting as a pulsed electron source for other devices such as the magnetron. Diagnostics tools are designed, modeled, built, calibrated, and implemented in the machine to measure the pinch dynamics. A novel, UNLV patented electromagnetic dot sensors are successfully calibrated, and implemented in the machine. A new calibration technique is developed and test stands designed and built to measure the dot's ability to track the impetus signal over its dynamic range starting and ending in the noise region. The patented EM-dot sensor shows superior performance over traditional electromagnetic sensors, such as Rogowski coils. On the other hand, the cup-rod structure, when grounded on the rod side, serves as a diagnostic tool to monitor the pinch current by sampling the actual current, a quantity that has been always very challenging to measure without perturbing the pinch. To the best of our knowledge, this method of measuring the pinch current is unique and has never been done before. Agreement with other models is shown. The operation of the NEPP machine with the hole in the center of the anode and the magnetron connected including the cup-rod structure is examined against the NEPP machine signature with solid anode. Both cases showed excellent agreement. This suggests that the existence of the hole and the diagnostic tool inside the anode have negligible effects on the pinch.

  16. Electromagnetic radiation screening of semiconductor devices for long life applications

    NASA Technical Reports Server (NTRS)

    Hall, T. C.; Brammer, W. G.

    1972-01-01

    A review is presented of the mechanism of interaction of electromagnetic radiation in various spectral ranges, with various semiconductor device defects. Previous work conducted in this area was analyzed as to its pertinence to the current problem. The task was studied of implementing electromagnetic screening methods in the wavelength region determined to be most effective. Both scanning and flooding type stimulation techniques are discussed. While the scanning technique offers a considerably higher yield of useful information, a preliminary investigation utilizing the flooding approach is first recommended because of the ease of implementation, lower cost and ability to provide go-no-go information in semiconductor screening.

  17. Electromagnetic interference of dental equipment with implantable cardioverter defibrillators.

    PubMed

    Dadalti, Manoela Teixeira de Sant'Anna; da Cunha, Antônio José Ledo Alves; Araújo, Marcos César Pimenta de; Moraes, Luis Gustavo Belo de; Risso, Patrícia de Andrade

    2017-11-01

    Implantable cardioverter defibrillators (ICDs) are subject to electromagnetic interference (EMI). The aim of this study was to assess both the EMI of dental equipments with ICDs and related factors. High- and low-speed handpieces, an electric toothbrush, an implant motor and two types of ultrasonic devices were tested next to an ICD with different sensitivity settings. The ICD was immersed in a saline solution with electrical resistance of 400-800 ohms to simulate the resistance of the human body. The dental equipments were tested in both horizontal (0°) and vertical (90°) positions in relation to the components of the ICD. The tests were performed with a container containing saline solution, which was placed on a dental chair in order to assess the cumulative effect of electromagnetic fields. The dental chair, high- and low-speed handpieces, electric toothbrush, implant motor and ultrasonic devices caused no EMI with the ICD, irrespective of the program set-up or positioning. No cumulative effect of electromagnetic fields was verified. The results of this study suggest that the devices tested are safe for use in patients with an ICD.

  18. Cell Phones: Current Research Results

    MedlinePlus

    ... possibly carcinogenic to humans": Coffee Extremely low frequency electromagnetic fields (power line frequency) Talc-based body powder ... Effects of Wireless Communication Devices World Health Organization: Electromagnetic Fields and Public Health: Mobile Phones International Agency ...

  19. Radio Frequency Identification (RFID) in medical environment: Gaussian Derivative Frequency Modulation (GDFM) as a novel modulation technique with minimal interference properties.

    PubMed

    Rieche, Marie; Komenský, Tomás; Husar, Peter

    2011-01-01

    Radio Frequency Identification (RFID) systems in healthcare facilitate the possibility of contact-free identification and tracking of patients, medical equipment and medication. Thereby, patient safety will be improved and costs as well as medication errors will be reduced considerably. However, the application of RFID and other wireless communication systems has the potential to cause harmful electromagnetic disturbances on sensitive medical devices. This risk mainly depends on the transmission power and the method of data communication. In this contribution we point out the reasons for such incidents and give proposals to overcome these problems. Therefore a novel modulation and transmission technique called Gaussian Derivative Frequency Modulation (GDFM) is developed. Moreover, we carry out measurements to show the inteference properties of different modulation schemes in comparison to our GDFM.

  20. Absorption and Emission of Light in Optoelectronic Nanomaterials: The Role of the Local Optical Environment.

    PubMed

    Jiménez-Solano, Alberto; Galisteo-López, Juan F; Míguez, Hernán

    2018-04-19

    Tailoring the interaction of electromagnetic radiation with matter is central to the development of optoelectronic devices. This becomes particularly relevant for a new generation of devices offering the possibility of solution processing with competitive efficiencies as well as new functionalities. These devices, containing novel materials such as inorganic colloidal quantum dots or hybrid organic-inorganic lead halide perovskites, commonly demand thin (tens of nanometers) active layers in order to perform optimally and thus maximizing the way electromagnetic radiation interacts with these layers is essential. In this Perspective, we discuss the relevance of tailoring the optical environment of the active layer in an optoelectronic device and illustrate it with two real-world systems comprising photovoltaic cells and light emitting devices.

  1. Wavelet-based analysis of transient electromagnetic wave propagation in photonic crystals.

    PubMed

    Shifman, Yair; Leviatan, Yehuda

    2004-03-01

    Photonic crystals and optical bandgap structures, which facilitate high-precision control of electromagnetic-field propagation, are gaining ever-increasing attention in both scientific and commercial applications. One common photonic device is the distributed Bragg reflector (DBR), which exhibits high reflectivity at certain frequencies. Analysis of the transient interaction of an electromagnetic pulse with such a device can be formulated in terms of the time-domain volume integral equation and, in turn, solved numerically with the method of moments. Owing to the frequency-dependent reflectivity of such devices, the extent of field penetration into deep layers of the device will be different depending on the frequency content of the impinging pulse. We show how this phenomenon can be exploited to reduce the number of basis functions needed for the solution. To this end, we use spatiotemporal wavelet basis functions, which possess the multiresolution property in both spatial and temporal domains. To select the dominant functions in the solution, we use an iterative impedance matrix compression (IMC) procedure, which gradually constructs and solves a compressed version of the matrix equation until the desired degree of accuracy has been achieved. Results show that when the electromagnetic pulse is reflected, the transient IMC omits basis functions defined over the last layers of the DBR, as anticipated.

  2. FAST TRACK COMMUNICATION: Free form of the Foldy-Wouthuysen transformation in external electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Murguía, Gabriela; Raya, Alfredo

    2010-10-01

    We derive the exact Foldy-Wouthuysen transformation for Dirac fermions in a time-independent external electromagnetic field in the basis of the Ritus eigenfunctions, namely the eigenfunctions of the operator (γ sdot Π)2, with Πμ = pμ - eAμ. On this basis, the transformation acquires a free form involving the dynamical quantum numbers induced by the field.

  3. Integration of trans-esophageal echocardiography with magnetic tracking technology for cardiac interventions

    NASA Astrophysics Data System (ADS)

    Moore, John T.; Wiles, Andrew D.; Wedlake, Chris; Bainbridge, Daniel; Kiaii, Bob; Trejos, Ana Luisa; Patel, Rajni; Peters, Terry M.

    2010-02-01

    Trans-esophageal echocardiography (TEE) is a standard component of patient monitoring during most cardiac surgeries. In recent years magnetic tracking systems (MTS) have become sufficiently robust to function effectively in appropriately structured operating room environments. The ability to track a conventional multiplanar 2D TEE transducer in 3D space offers incredible potential by greatly expanding the cumulative field of view of cardiac anatomy beyond the limited field of view provided by 2D and 3D TEE technology. However, there is currently no TEE probe manufactured with MTS technology embedded in the transducer, which means sensors must be attached to the outer surface of the TEE. This leads to potential safety issues for patients, as well as potential damage to the sensor during procedures. This paper presents a standard 2D TEE probe fully integrated with MTS technology. The system is evaluated in an environment free of magnetic and electromagnetic disturbances, as well as a clinical operating room in the presence of a da Vinci robotic system. Our first integrated TEE device is currently being used in animal studies for virtual reality-enhanced ultrasound guidance of intracardiac surgeries, while the "second generation" TEE is in use in a clinical operating room as part of a project to measure perioperative heart shift and optimal port placement for robotic cardiac surgery. We demonstrate excellent system accuracy for both applications.

  4. A remotely operated drug delivery system with an electrolytic pump and a thermo-responsive valve

    PubMed Central

    Yi, Ying; Zaher, Amir; Yassine, Omar; Kosel, Jurgen; Foulds, Ian G.

    2015-01-01

    Implantable drug delivery devices are becoming attractive due to their abilities of targeted and controlled dose release. Currently, two important issues are functional lifetime and non-controlled drug diffusion. In this work, we present a drug delivery device combining an electrolytic pump and a thermo-responsive valve, which are both remotely controlled by an electromagnetic field (40.5 mT and 450 kHz). Our proposed device exhibits a novel operation mechanism for long-term therapeutic treatments using a solid drug in reservoir approach. Our device also prevents undesired drug liquid diffusions. When the electromagnetic field is on, the electrolysis-induced bubble drives the drug liquid towards the Poly (N-Isopropylacrylamide) (PNIPAM) valve that consists of PNIPAM and iron micro-particles. The heat generated by the iron micro-particles causes the PNIPAM to shrink, resulting in an open valve. When the electromagnetic field is turned off, the PNIPAM starts to swell. In the meantime, the bubbles are catalytically recombined into water, reducing the pressure inside the pumping chamber, which leads to the refilling of the fresh liquid from outside the device. A catalytic reformer is included, allowing more liquid refilling during the limited valve's closing time. The amount of body liquid that refills the drug reservoir can further dissolve the solid drug, forming a reproducible drug solution for the next dose. By repeatedly turning on and off the electromagnetic field, the drug dose can be cyclically released, and the exit port of the device is effectively controlled. PMID:26339328

  5. Conical electromagnetic radiation flux concentrator

    NASA Technical Reports Server (NTRS)

    Miller, E. R.

    1972-01-01

    Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.

  6. 21 CFR 890.5275 - Microwave diathermy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... medical conditions is a device that applies to specific areas of the body electromagnetic energy in the... electromagnetic energy in the microwave frequency bands of 915 megahertz to 2,450 megahertz and that is intended...

  7. 21 CFR 890.5275 - Microwave diathermy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... medical conditions is a device that applies to specific areas of the body electromagnetic energy in the... electromagnetic energy in the microwave frequency bands of 915 megahertz to 2,450 megahertz and that is intended...

  8. 21 CFR 890.5275 - Microwave diathermy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... medical conditions is a device that applies to specific areas of the body electromagnetic energy in the... electromagnetic energy in the microwave frequency bands of 915 megahertz to 2,450 megahertz and that is intended...

  9. 21 CFR 890.5275 - Microwave diathermy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... medical conditions is a device that applies to specific areas of the body electromagnetic energy in the... electromagnetic energy in the microwave frequency bands of 915 megahertz to 2,450 megahertz and that is intended...

  10. 21 CFR 890.5275 - Microwave diathermy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... medical conditions is a device that applies to specific areas of the body electromagnetic energy in the... electromagnetic energy in the microwave frequency bands of 915 megahertz to 2,450 megahertz and that is intended...

  11. A pilot study of eye-tracking devices in intensive care.

    PubMed

    Garry, Jonah; Casey, Kelly; Cole, Therese Kling; Regensburg, Angela; McElroy, Colleen; Schneider, Eric; Efron, David; Chi, Albert

    2016-03-01

    Eye-tracking devices have been suggested as a means of improving communication and psychosocial status among patients in the intensive care unit (ICU). This study was undertaken to explore the psychosocial impact and communication effects of eye-tracking devices in the ICU. A convenience sample of patients in the medical ICU, surgical ICU, and neurosciences critical care unit were enrolled prospectively. Patients participated in 5 guided sessions of 45 minutes each with the eye-tracking computer. After completion of the sessions, the Psychosocial Impact of Assistive Devices Scale (PIADS) was used to evaluate the device from the patient's perspective. All patients who participated in the study were able to communicate basic needs to nursing staff and family. Delirium as assessed by the Confusion Assessment Method for the Intensive Care Unit was present in 4 patients at recruitment and none after training. The device's overall psychosocial impact ranged from neutral (-0.29) to strongly positive (2.76). Compared with the absence of intervention (0 = no change), patients exposed to eye-tracking computers demonstrated a positive mean overall impact score (PIADS = 1.30; P = .004). This finding was present in mean scores for each PIADS domain: competence = 1.26, adaptability = 1.60, and self-esteem = 1.02 (all P < .01). There is a population of patients in the ICU whose psychosocial status, delirium, and communication ability may be enhanced by eye-tracking devices. These 3 outcomes are intertwined with ICU patient outcomes and indirectly suggest that eye-tracking devices might improve outcomes. A more in-depth exploration of the population to be targeted, the device's limitations, and the benefits of eye-tracking devices in the ICU is warranted. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The Evolutional History of Electromagnetic Navigation Bronchoscopy: State of the Art.

    PubMed

    Mehta, Atul C; Hood, Kristin L; Schwarz, Yehuda; Solomon, Stephen B

    2018-04-30

    Electromagnetic navigation bronchoscopy (ENB) has come a long way from the early roots of electromagnetic theory. Current ENB devices have the potential to change the way lung cancer is detected and treated. This paper provides an overview of the history, current state, and future of ENB. Copyright © 2018. Published by Elsevier Inc.

  13. 77 FR 39953 - Effective Date of Requirement for Premarket Approval for Shortwave Diathermy for All Other Uses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... body electromagnetic energy in the radio frequency bands of 13 megahertz to 27.12 megahertz and is... device that applies to the body electromagnetic energy in the radio frequency bands of 13 megahertz to 27... other uses. Cellular or Tissue Injury: There is uncertainty concerning the effects of electromagnetic...

  14. 47 CFR 2.1093 - Radiofrequency radiation exposure evaluation: portable devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” ANSI/IEEE C95.1-1992... Electromagnetic Fields,” NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR... Potentially Hazardous Electromagnetic Fields—RF and Microwave,” IEEE C95.3-1991. (4) For purposes of analyzing...

  15. 47 CFR 2.1093 - Radiofrequency radiation exposure evaluation: portable devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” ANSI/IEEE C95.1-1992... Electromagnetic Fields,” NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR... Potentially Hazardous Electromagnetic Fields—RF and Microwave,” IEEE C95.3-1991. (4) For purposes of analyzing...

  16. Radio Tracking Fish with Small Unmanned Aircraft Systems (sUAS).

    NASA Astrophysics Data System (ADS)

    Dahlgren, R. P.; Anderson, K. R.; Hanson, L.; Pinsker, E. A.; Jonsson, J.; Chapman, D. C.; Witten, D. M.; O'Connor, K. A.

    2017-12-01

    Tracking radio tagged fish by boat or on foot in riverine systems is difficult and time consuming, particularly in large braided island complexes, shallow wetlands, and rocky reaches. Invasive Asian carp are commonly found in these hard to reach areas, but their near-surface feeding behavior makes radio tracking possible. To identify new methods of fish tracking that could same time and money, this study tested the feasibility of tracking Asian carp with Small Unmanned Aerial Systems (sUAS) in areas generally inaccessible to traditional tracking equipment. The U.S. Geological Survey worked with NanoElectromagnetics LLC and WWR Development to create and integrate a lightweight custom radio receiver, directional antenna, and accompanying software into a sUAS platform. The receiver includes independent GPS, software defined radio, and compass. The NASA Ames Research Center (ARC) completed payload integration, electromagnetic-interference and airworthiness testing, and provided a DJI Matrice 600 sUAS for this study. Additionally, ARC provided subject matter experts, airworthiness and flight readiness evaluation, and flight test facilities during preparation; and a pilot, range safety officer, and aircraft engineer during field deployment. Results demonstrate that this custom sUAS and sensor combination can detect radio tags at 100m above ground level and at horizontal ranges of 100m and 300m, with operators in either onshore or offshore locations. With this combination of sUAS and radio receiver, fish can be tracked in areas previously inaccessible and during flooding, providing new insights into riverine fish movement and habitat utilization.

  17. A Compound Algorithm for Maximum Power Point Tracking Used in Laser Power Beaming

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Liu, Qiang; Gao, Shan; Teng, Yun; Cheng, Lin; Yu, Chengtao; Peng, Kai

    2018-03-01

    With the high voltage intelligent substation developing in a pretty high speed, more and more artificial intelligent techniques have been incorporated into the power devices to meet the automation needs. For the sake of the line maintenance staff’s safety, the high voltage isolating switch draws great attention among the most important power devices because of its capability of connecting and disconnecting the high voltage circuit. However, due to the very high level voltage of the high voltage isolating switch’s working environment, the power supply system of the surveillance devices could suffer from great electromagnetic interference. Laser power beaming exhibits its merits in such situation because it can provide steady power from a distance despite the day or the night. Then the energy conversion efficiency arises as a new concern. To make as much use of the laser power as possible, our work mainly focuses on extracting maximum power from the photovoltaic (PV) panel. In this paper, we proposed a neural network based algorithm which relates both the intrinsic and the extrinsic features of the PV panel to the proportion of the voltage at the maximum power point (MPP) to the open circuit voltage of the PV panel. Simulations and experiments were carried out to verify the validness of our algorithm.

  18. 21 CFR 890.5290 - Shortwave diathermy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... medical conditions is a device that applies to specific areas of the body electromagnetic energy in the... electromagnetic energy in the radio frequency bands of 13 megahertz to 27.12 megahertz and that is intended for...

  19. 21 CFR 890.5290 - Shortwave diathermy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... medical conditions is a device that applies to specific areas of the body electromagnetic energy in the... electromagnetic energy in the radio frequency bands of 13 megahertz to 27.12 megahertz and that is intended for...

  20. 21 CFR 890.5290 - Shortwave diathermy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... medical conditions is a device that applies to specific areas of the body electromagnetic energy in the... electromagnetic energy in the radio frequency bands of 13 megahertz to 27.12 megahertz and that is intended for...

  1. 21 CFR 890.5290 - Shortwave diathermy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... medical conditions is a device that applies to specific areas of the body electromagnetic energy in the... electromagnetic energy in the radio frequency bands of 13 megahertz to 27.12 megahertz and that is intended for...

  2. 21 CFR 890.5290 - Shortwave diathermy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... medical conditions is a device that applies to specific areas of the body electromagnetic energy in the... electromagnetic energy in the radio frequency bands of 13 megahertz to 27.12 megahertz and that is intended for...

  3. Device for conversion of electromagnetic radiation into electrical current

    DOEpatents

    Blakeslee, A.E.; Mitchell, K.W.

    1980-03-25

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  4. Device for conversion of electromagnetic radiation into electrical current

    DOEpatents

    Blakeslee, A. Eugene; Mitchell, Kim W.

    1981-01-01

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  5. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. Themore » optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.« less

  6. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOEpatents

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  7. Numerical simulation of eigenmodes of ring and race-track optical microresonators

    NASA Astrophysics Data System (ADS)

    Raskhodchikov, A. V.; Raskhodchikov, D. V.; Scherbak, S. A.; Lipovskii, A. A.

    2017-11-01

    We have performed a numerical study of whispering gallery modes of ring and race-track optical microresonators. Mode excitation was considered and their spectra and electromagnetic field distributions were calculated via numerical solution of the Helmholtz equation. We pay additional attention to features of eigenmodes in race-tracks in contrast with ring resonators. Particularly, we demonstrate that modes in race-tracks are not “classic” WGM in terms of total internal reflection from a single boundary, and an inner boundary is essential for their formation. The dependence of effective refractive index of race-tracks modes on the resonator width is shown.

  8. Interferometric Quantum-Nondemolition Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Kok, Peter; Lee, Hwang; Dowling, Jonathan

    2007-01-01

    Two interferometric quantum-nondemolition (QND) devices have been proposed: (1) a polarization-independent device and (2) a polarization-preserving device. The prolarization-independent device works on an input state of up to two photons, whereas the polarization-preserving device works on a superposition of vacuum and single- photon states. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode would also be populated by a single photon. Like other QND devices, the proposed devices are potentially useful for a variety of applications, including such areas of NASA interest as quantum computing, quantum communication, detection of gravity waves, as well as pedagogical demonstrations of the quantum nature of light. Many protocols in quantum computation and quantum communication require the possibility of detecting a photon without destroying it. The only prior single- photon-detecting QND device is based on quantum electrodynamics in a resonant cavity and, as such, it depends on the photon frequency. Moreover, the prior device can distinguish only between one photon and no photon. The proposed interferometric QND devices would not depend on frequency and could distinguish between (a) one photon and (b) zero or two photons. The first proposed device is depicted schematically in Figure 1. The input electromagnetic mode would be a superposition of a zero-, a one-, and a two-photon quantum state. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode also would be populated by a single photon.

  9. Invisible waves and hidden realms: augmented reality and experimental art

    NASA Astrophysics Data System (ADS)

    Ruzanka, Silvia

    2012-03-01

    Augmented reality is way of both altering the visible and revealing the invisible. It offers new opportunities for artistic exploration through virtual interventions in real space. In this paper, the author describes the implementation of two art installations using different AR technologies, one using optical marker tracking on mobile devices and one integrating stereoscopic projections into the physical environment. The first artwork, De Ondas y Abejas (The Waves and the Bees), is based on the widely publicized (but unproven) hypothesis of a link between cellphone radiation and the phenomenon of bee colony collapse disorder. Using an Android tablet, viewers search out small fiducial markers in the shape of electromagnetic waves hidden throughout the gallery, which reveal swarms of bees scattered on the floor. The piece also creates a generative soundscape based on electromagnetic fields. The second artwork, Urban Fauna, is a series of animations in which features of the urban landscape become plants and animals. Surveillance cameras become flocks of birds while miniature cellphone towers, lampposts, and telephone poles grow like small seedlings in time-lapse animation. The animations are presented as small stereoscopic projections, integrated into the physical space of the gallery. These two pieces explore the relationship between nature and technology through the visualization of invisible forces and hidden alternate realities.

  10. Scaling of electromagnetic transducers for shunt damping and energy harvesting

    NASA Astrophysics Data System (ADS)

    Elliott, Stephen J.; Zilletti, Michele

    2014-04-01

    In order for an electromagnetic transducer to operate well as either a mechanical shunt damper or as a vibration energy harvester, it must have good electromechanical coupling. A simple two-port analysis is used to derive a non-dimensional measure of electromechanical coupling, which must be large compared with unity for efficient operation in both of these applications. The two-port parameters for an inertial electromagnetic transducer are derived, from which this non-dimensional coupling parameter can be evaluated. The largest value that this parameter takes is approximately equal to the square of the magnetic flux density times the length of wire in the field, divided by the mechanical damping times the electrical resistance. This parameter is found to be only of the order of one for voice coil devices that weigh approximately 1 kg, and so such devices are generally not efficient, within the definition used here, in either of these applications. The non-dimensional coupling parameter is found to scale in approximate proportion to the device's characteristic length, however, and so although miniaturised devices are less efficient, greater efficiency can be obtained with large devices, such as those used to control civil engineering structures.

  11. No Electromagnetic Interference Occurred in a Patient with a HeartMate II Left Ventricular Assist System and a Subcutaneous Implantable Cardioverter-Defibrillator.

    PubMed

    Raman, Ajay Sundara; Shabari, Farshad Raissi; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh

    2016-04-01

    The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance.

  12. No Electromagnetic Interference Occurred in a Patient with a HeartMate II Left Ventricular Assist System and a Subcutaneous Implantable Cardioverter-Defibrillator

    PubMed Central

    Raman, Ajay Sundara; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh

    2016-01-01

    The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance. PMID:27127441

  13. Design, construction, test and field support of a containerless payload package for rocket flight. [electromagnetic heating and confinement

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The performance of a device for electromagnetically heating and positioning containerless melts during space processing was evaluated during a 360 second 0-g suborbital sounding rocket flight. Components of the electromagnetic containerless processing package (ECPP), its operation, and interface with the rocket are described along with flight and qualification tests results.

  14. Object tracking on mobile devices using binary descriptors

    NASA Astrophysics Data System (ADS)

    Savakis, Andreas; Quraishi, Mohammad Faiz; Minnehan, Breton

    2015-03-01

    With the growing ubiquity of mobile devices, advanced applications are relying on computer vision techniques to provide novel experiences for users. Currently, few tracking approaches take into consideration the resource constraints on mobile devices. Designing efficient tracking algorithms and optimizing performance for mobile devices can result in better and more efficient tracking for applications, such as augmented reality. In this paper, we use binary descriptors, including Fast Retina Keypoint (FREAK), Oriented FAST and Rotated BRIEF (ORB), Binary Robust Independent Features (BRIEF), and Binary Robust Invariant Scalable Keypoints (BRISK) to obtain real time tracking performance on mobile devices. We consider both Google's Android and Apple's iOS operating systems to implement our tracking approach. The Android implementation is done using Android's Native Development Kit (NDK), which gives the performance benefits of using native code as well as access to legacy libraries. The iOS implementation was created using both the native Objective-C and the C++ programing languages. We also introduce simplified versions of the BRIEF and BRISK descriptors that improve processing speed without compromising tracking accuracy.

  15. Effect of radiofrequency energy emitted from monopolar "Bovie" instruments on cardiac implantable electronic devices.

    PubMed

    Robinson, Thomas N; Varosy, Paul D; Guillaume, Girard; Dunning, James E; Townsend, Nicole T; Jones, Edward L; Paniccia, Alessandro; Stiegmann, Greg V; Weyer, Christopher; Rozner, Marc A

    2014-09-01

    The monopolar "Bovie" instrument emits radiofrequency energy that can disrupt the function of other implanted electronic devices through a phenomenon termed electromagnetic interference. The purpose of this study was to quantify the electromagnetic interference occurring on cardiac implantable devices (CIEDs) resulting from monopolar instrument use in common, modifiable clinical scenarios. Three anesthetized pigs underwent CIED placement (1 pacemaker and 2 defibrillators). Electromagnetic interference was quantified when changing the monopolar instrument parameters of generator power, generator mode, surgical technique, orientation of active electrode cord, pathway of current vector, and proximity of active electrode to the CIED. Monopolar instrument parameters that decreased the electromagnetic interference occurring on the CIED included decreasing generator power from 60 W to 30 W (p < 0.001), using cut mode rather than coag mode (p < 0.001), using desiccation technique rather than fulguration technique (p < 0.001), orienting the active electrode cord from the feet rather than across the chest wall (p < 0.001), and avoiding the current vector from crossing the CIED system (p < 0.001). Increasing the distance between the active electrode tool and the CIED system decreased electromagnetic interference occurring on the CIED in a dose-response fashion up to a distance of 10 cm (ANOVA, p < 0.001), after which the magnitude of electromagnetic interference remained constant. Electromagnetic interference occurring on CIEDs resulting from monopolar instruments is minimized by decreasing generator power, using cut mode, using desiccation technique, orienting the active electrode cord from the feet, avoiding the current vector for crossing the CIED system, and increasing the distance between the active electrode and the CIED. Surgeons and operating room staff can minimize electromagnetic interference on CIEDs during monopolar instrument use by accounting for these modifiable clinical factors. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Multiview echocardiography fusion using an electromagnetic tracking system.

    PubMed

    Punithakumar, Kumaradevan; Hareendranathan, Abhilash R; Paakkanen, Riitta; Khan, Nehan; Noga, Michelle; Boulanger, Pierre; Becher, Harald

    2016-08-01

    Three-dimensional ultrasound is an emerging modality for the assessment of complex cardiac anatomy and function. The advantages of this modality include lack of ionizing radiation, portability, low cost, and high temporal resolution. Major limitations include limited field-of-view, reliance on frequently limited acoustic windows, and poor signal to noise ratio. This study proposes a novel approach to combine multiple views into a single image using an electromagnetic tracking system in order to improve the field-of-view. The novel method has several advantages: 1) it does not rely on image information for alignment, and therefore, the method does not require image overlap; 2) the alignment accuracy of the proposed approach is not affected by any poor image quality as in the case of image registration based approaches; 3) in contrast to previous optical tracking based system, the proposed approach does not suffer from line-of-sight limitation; and 4) it does not require any initial calibration. In this pilot project, we were able to show that using a heart phantom, our method can fuse multiple echocardiographic images and improve the field-of view. Quantitative evaluations showed that the proposed method yielded a nearly optimal alignment of image data sets in three-dimensional space. The proposed method demonstrates the electromagnetic system can be used for the fusion of multiple echocardiography images with a seamless integration of sensors to the transducer.

  17. Accuracy and Precision of a Custom Camera-Based System for 2-D and 3-D Motion Tracking during Speech and Nonspeech Motor Tasks

    ERIC Educational Resources Information Center

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose: Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable…

  18. A novel in vivo method for lung segment movement tracking

    NASA Astrophysics Data System (ADS)

    Leira, H. O.; Tangen, G. A.; Hofstad, E. F.; Langø, T.; Amundsen, T.

    2012-02-01

    Knowledge about lung movement in health and disease is sparse. Current evaluation methods, such as CT, MRI and external view have significant limitations. To study respiratory movement for image guided tumour diagnostics and respiratory physiology, we needed a method that overcomes these limitations. We fitted balloon catheters with electromagnetic sensors, and placed them in lung lobes of ventilated pigs. The sensors sensed their position at 40 Hz in an electromagnetic tracking field with a precision of ∼0.5 mm. The method was evaluated by recording sensor movement in different body positions and at different tidal volumes. No ‘gold standard’ exists for lung segment tracking, so our results were compared to ‘common knowledge’. The sensors were easily placed, showed no clinically relevant position drift and yielded sub-millimetre accuracy. Our measurements fit ‘common knowledge’, as increased ventilation volume increased respiratory movement, and the right lung moved significantly less in the right than the left lateral position. The novel method for tracking lung segment movements during respiration was easy to implement and yielded high spatial and temporal resolution, and the equipment parts are reusable. It is easy to implement as a research tool for lung physiology, navigated bronchoscopy and radiation therapy.

  19. A compact ball screw based electromagnetic energy harvester for railroad application

    NASA Astrophysics Data System (ADS)

    Pan, Yu; Lin, Teng; Liu, Cheng; Yu, Jie; Zuo, Jianyong; Zuo, Lei

    2018-03-01

    To enable the smart technologies, such as the positive train controls, rail damage detection and track health monitoring on the railroad side, the electricity is required and in needed. In this paper, we proposed a novel ball-screw based electromagnetic energy harvester for railway track with mechanical-motion-rectifier (MMR) mechanism, to harvest the energy that usually dissipated and wasted during train induced track vibration. Ball screw based design reduces backlash during motion transmission, and MMR nonlinear characteristics with one way clutches makes the harvester convert the bi-direction track vibration into a generator's unidirectional rotation, which improves the transmission reliability and increases the energy harvesting efficiency. A systematic model combining train-rail-harvester was established to analyze the dynamic characteristic of the proposed railway energy, and lab and in-field tests were carried out to experimentally characterize the proposed energy harvester. In lab bench test showed the proposed harvester reached a 70% mechanical efficiency with a high sensitivity to the environment vibration. In filed test showed that a peak 7.8W phase power was achieved when a two marshaling type A metro train passed by with a 30 km/h.

  20. Potential for Personal Digital Assistant interference with implantable cardiac devices.

    PubMed

    Tri, Jeffrey L; Trusty, Jane M; Hayes, David L

    2004-12-01

    To determine whether the wireless local area network (WLAN) technology, specifically the Personal Digital Assistant (PDA), interferes with implantable cardiac pacemakers and defibrillators. Various pacemakers and defibrillators were tested in vitro at the Mayo Clinic in Rochester, Minn, between March 6 and July 30, 2003. These cardiac devices were exposed to an HP Compaq IPAQ PDA fitted with a Cisco Aironet WLAN card. Initial testing was designed to show whether the Aironet card radiated energy in a consistent pattern from the antenna of the PDA to ensure that subsequent cardiac device testing would not be affected by the orientation of the PDA to the cardiac device. Testing involved placing individual cardiac devices in a simulator and uniformly exposing each device at its most sensitive programmable value to the WLAN card set to maximum power. During testing with the Cisco WLAN Aironet card, all devices programmed to the unipolar or bipolar configuration single- or dual-chamber mode had normal pacing and sensing functions and exhibited no effects of electromagnetic interference except for 1 implantable cardioverter-defibrillator (ICD). This aberration was determined to relate to the design of the investigators' testing apparatus and not to the output of the PDA. The ICD device appropriately identified and labeled the electromagnetic aberration as "noise." We documented no electromagnetic interference caused by the WLAN technology by using in vitro testing of pacemakers and ICDs; however, testing ideally should be completed in vivo to confirm the lack of any clinically important interactions.

  1. Effects of electrical loads containing non-resistive components on electromagnetic vibration energy harvester performance

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Corr, Lawrence R.; Ma, Tianwei

    2018-02-01

    To further advance the existing knowledge base on rectified vibration energy harvester design, this study investigates the fundamental effects of electrical loads containing non-resistive components (e.g., rectifiers and capacitors) on electromagnetic energy harvester performance. Three types of electrical loads, namely (I) a resistor with a rectifier, (II) a resistor with a rectifier and a capacitor, and (III) a simple charging circuit consisting of a rectifier and a capacitor, were considered. A linear electromagnetic energy harvester was used as an illustrative example. Results have verified that device performance obtained from pure-resistive loads cannot be generalized to applications involving rectifier and/or capacitor loads. Such generalization caused not only an overestimation in the maximum power delivered to the load resistance for cases (I) and (II), but also an underestimation of the optimal load resistance and an overestimation of device natural frequency for case (II). Results obtained from case (II) also showed that it is possible to tune the mechanical natural frequency of device using an adjustable regulating capacitor. For case (III), it was found that a larger storing capacitor, with a low rectifier voltage drop, improves the performance of the electromagnetic harvester.

  2. Electric converters of electromagnetic strike machine with capacitor supply

    NASA Astrophysics Data System (ADS)

    Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.

    2018-03-01

    The application of pulse linear electromagnetic engines in small power strike machines (energy impact is 0.01...1.0 kJ), where the characteristic mode of rare beats (pulse seismic vibrator, the arch crash device bins bulk materials), is quite effective. At the same time, the technical and economic performance of such machines is largely determined by the ability of the power source to provide a large instantaneous power of the supply pulses in the winding of the linear electromagnetic motor. The use of intermediate energy storage devices in power systems of rare-shock LEME makes it possible to obtain easily large instantaneous powers, forced energy conversion, and increase the performance of the machine. A capacitor power supply of a pulsed source of seismic waves is proposed for the exploration of shallow depths. The sections of the capacitor storage (CS) are connected to the winding of the linear electromagnetic motor by thyristor dischargers, the sequence of activation of which is determined by the control device. The charge of the capacitors to the required voltage is made directly from the battery source, or through the converter from a battery source with a smaller number of batteries.

  3. Theoretical Comparison of Motional and Transformer EMF Device Damping Efficiency

    NASA Astrophysics Data System (ADS)

    GRAVES, K. E.; TONCICH, D.; IOVENITTI, P. G.

    2000-06-01

    In this paper, theoretical comparison between electromagnetic dampers based on a “motional emf” and “transformer emf” design is presented. Transformer emf devices are based on the generation of emf in a stationary circuit, in which the emf is generated by a time-varying magnetic field linking the circuit. Motional emf devices are based on the generation of emf due to a moving conductor within a stationary magnetic field. Both of these designs can be used as damping elements for applications such as semi-active and regenerative vehicle suspension systems. The findings herein are provided so as to evaluate the most efficient device for such applications. The analysis consists of comparing the damping coefficient of the electromagnetic devices for a given magnetic field and given volume of conducting material. It has been found that for a limited range of dimensions, the transformer emf devices can be more then 1·2 times as efficient as the motional emf devices. However, for most realistic situations, motional emf devices will have the highest efficiency.

  4. Electromagnetic interference in cardiac rhythm management devices.

    PubMed

    Sweesy, Mark W; Holland, James L; Smith, Kerry W

    2004-01-01

    Clinicians caring for cardiac device patients with implanted pacemakers or cardioverter defibrillators (ICDs) are frequently asked questions by their patients concerning electromagnetic interference (EMI) sources and the devices. EMI may be radiated or conducted and may be present in many different forms including (but not limited to) radiofrequency waves, microwaves, ionizing radiation, acoustic radiation, static and pulsed magnetic fields, and electric currents. Manufacturers have done an exemplary job of interference protection with device features such as titanium casing, signal filtering, interference rejection circuits, feedthrough capacitors, noise reversion function, and programmable parameters. Nevertheless, EMI remains a real concern and a potential danger. Many factors influence EMI including those which the patient can regulate (eg, distance from and duration of exposure) and some the patient cannot control (eg, intensity of the EMI field, signal frequency). Potential device responses are many and range from simple temporary oversensing to permanent device damage Several of the more common EMI-generating devices and their likely effects on cardiac devices are considered in the medical, home, and daily living and work environments.

  5. Electromagnetic torque tweezers: a versatile approach for measurement of single-molecule twist and torque.

    PubMed

    Janssen, Xander J A; Lipfert, Jan; Jager, Tessa; Daudey, Renier; Beekman, Jaap; Dekker, Nynke H

    2012-07-11

    The well-established single-molecule force-spectroscopy techniques have recently been complemented by methods that can measure torque and twist directly, notably magnetic torque tweezers and the optical torque wrench. A limitation of the current torque measurement schemes is the intrinsic coupling between the force and torque degrees of freedom. Here we present electromagnetic torque tweezers (eMTT) that combine permanent and electromagnets to enable independent control of the force and torsional trap stiffness for sensitive measurements of single molecule torque and twist. Using the eMTT, we demonstrate sensitive torque measurements on tethered DNA molecules from simple tracking of the beads' (x,y)-position, obviating the need for any angular tracking algorithms or markers. Employing the eMTT for high-resolution torque measurements, we experimentally confirm the theoretically predicted torque overshoot at the DNA buckling transition in high salt conditions. We envision that the flexibility and control afforded by the eMTT will enable a range of new torque and twist measurement schemes from single-molecules to living cells.

  6. Improved accuracy of ultrasound-guided therapies using electromagnetic tracking: in-vivo speed of sound measurements

    NASA Astrophysics Data System (ADS)

    Samboju, Vishal; Adams, Matthew; Salgaonkar, Vasant; Diederich, Chris J.; Cunha, J. Adam M.

    2017-02-01

    The speed of sound (SOS) for ultrasound devices used for imaging soft tissue is often calibrated to water, 1540 m/s1 , despite in-vivo soft tissue SOS varying from 1450 to 1613 m/s2 . Images acquired with 1540 m/s and used in conjunction with stereotactic external coordinate systems can thus result in displacement errors of several millimeters. Ultrasound imaging systems are routinely used to guide interventional thermal ablation and cryoablation devices, or radiation sources for brachytherapy3 . Brachytherapy uses small radioactive pellets, inserted interstitially with needles under ultrasound guidance, to eradicate cancerous tissue4 . Since the radiation dose diminishes with distance from the pellet as 1/r2 , imaging uncertainty of a few millimeters can result in significant erroneous dose delivery5,6. Likewise, modeling of power deposition and thermal dose accumulations from ablative sources are also prone to errors due to placement offsets from SOS errors7 . This work presents a method of mitigating needle placement error due to SOS variances without the need of ionizing radiation2,8. We demonstrate the effects of changes in dosimetry in a prostate brachytherapy environment due to patientspecific SOS variances and the ability to mitigate dose delivery uncertainty. Electromagnetic (EM) sensors embedded in the brachytherapy ultrasound system provide information regarding 3D position and orientation of the ultrasound array. Algorithms using data from these two modalities are used to correct bmode images to account for SOS errors. While ultrasound localization resulted in >3 mm displacements, EM resolution was verified to <1 mm precision using custom-built phantoms with various SOS, showing 1% accuracy in SOS measurement.

  7. On the detection of a stochastic background of gravitational radiation by the Doppler tracking of spacecraft

    NASA Technical Reports Server (NTRS)

    Mashhoon, B.; Grishchuk, L. P.

    1980-01-01

    Consideration is given to the possibility of detection of an isotropic background gravitational radiation of a stochastic nature by the method of Doppler tracking of spacecraft. Attention is given in the geometrical optics limit, to the general formula for the frequency shift of an electromagnetic signal in the gravitational radiation field, and it is shown to be gauge independent. The propagation of a free electromagnetic wave in a gravitational radiation field is examined with the conclusion that no resonance phenomena can be expected. Finally, the 'Doppler noise' due to a stochastic background is evaluated, and it is shown to depend on the total energy density of the background and a parameter that is a characteristic of the radiation spectrum and the detection system used.

  8. Lateral distortions of electromagnetic cascades in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Porter, L. G.; Levit, L. B.; Jones, W. V.; Huggett, R. W.; Barrowes, S. C.

    1975-01-01

    Electromagnetic cascades in a lead-emulsion chamber have been studied to determine the effect of air gaps on the upstream sides of the emulsions. Such air gaps cause a change in the form of the radial distribution of electron tracks, making cascades appear older and giving incorrect energy estimates. The number of tracks remaining within a radius r was found to vary as exp(-g/G), where g is the gap thickness. The characteristic gap thickness in mm is G = 3.04 + 1.30 ln (Err per GeV per sq mm) where E is the energy of the initiating gamma ray. Use of this relation provides a significant correction to cascade-energy estimates and allows one to calculate the effect of different gap thicknesses on the energy threshold for visual detection of cascades.

  9. Enrichment of magnetic particles using temperature and magnetic field gradients induced by benchtop fabricated micro-electromagnets.

    PubMed

    Hosseini, A; Philpott, D N; Soleymani, L

    2017-11-21

    The active transport of analytes inside biosensing systems is important for reducing the response time and enhancing the limit-of-detection of these systems. Due to the ease of functionalization with bio-recognition agents and manipulation with magnetic fields, magnetic particles are widely used for active and directed transport of biological analytes. On-chip active electromagnets are ideally suited for manipulating magnetic particles in an automated and miniaturized fashion inside biosensing systems. Unfortunately, the magnetic force exerted by these devices decays rapidly as we move away from the device edges, and increasing the generated force to the levels necessary for particle manipulation requires a parallel increase in the applied current and the resultant Joule heating. In this paper, we designed a study to understand the combined role of thermal and magnetic forces on the movement of magnetic particles in order to extend the interaction distance of on-chip magnetic devices beyond the device edges. For this purpose, we used a rapid prototyping method to create an active/passive on-chip electromagnet with a micro/nano-structured active layer and a patterned ferromagnetic passive layer. We demonstrated that the measured terminal velocities of particles positioned near the electromagnet edge (∼5.5 μm) closely reflect the values obtained by multi-physics modelling. Interestingly, we observed a two orders of magnitude deviation between the experimental and modelling results for the terminal velocities of particles far from the electromagnet edge (∼55.5 μm). Heat modelling of the system using experimentally-measured thermal gradients indicates that this discrepancy is related to the enhanced fluid movement caused by thermal forces. This study enables the rational design of thermo-magnetic systems for thermally driving and magnetically capturing particles that are positioned at distances tens to hundreds of microns away from the edges of on-chip magnetic devices.

  10. Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits

    DTIC Science & Technology

    2017-03-01

    real-time an IC device. This non-invasive solution is cost effective, with a small form factor. Keywords: Electromagnetic radiation; Near-Field...solicitation was to design, develop and fabricate a low cost electromagnetic probe array for ICs counterfeit. The probe array should operate in the near...Our overall effort was focus on modeling, designing, fabricating, and utilizing novel electromagnetic probes for the analysis, characterization

  11. An automated method for the evaluation of the pointing accuracy of sun-tracking devices

    NASA Astrophysics Data System (ADS)

    Baumgartner, Dietmar J.; Rieder, Harald E.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz

    2016-04-01

    The accuracy of measurements of solar radiation (direct and diffuse radiation) depends significantly on the accuracy of the operational sun-tracking device. Thus rigid targets for instrument performance and operation are specified for international monitoring networks, such as e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices fulfilling these accuracy targets are available from various instrument manufacturers, however none of the commercially available systems comprises a secondary accuracy control system, allowing platform operators to independently validate the pointing accuracy of sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system independent and cost-effective method for evaluating the pointing accuracy of sun-tracking devices. We detail the monitoring system setup, its design and specifications and results from its application to the sun-tracking system operated at the Austrian RADiation network (ARAD) site Kanzelhöhe Observatory (KSO). Results from KSO-STREAMS (for mid-March to mid-June 2015) show that the tracking accuracy of the device operated at KSO lies well within BSRN specifications (i.e. 0.1 degree accuracy). We contrast results during clear-sky and partly cloudy conditions documenting sun-tracking performance at manufacturer specified accuracies for active tracking (0.02 degrees) and highlight accuracies achieved during passive tracking i.e. periods with less than 300 W m-2 direct radiation. Furthermore we detail limitations to tracking surveillance during overcast conditions and periods of partial solar limb coverage by clouds.

  12. Handheld portable real-time tracking and communications device

    DOEpatents

    Wiseman, James M [Albuquerque, NM; Riblett, Jr., Loren E.; Green, Karl L [Albuquerque, NM; Hunter, John A [Albuquerque, NM; Cook, III, Robert N.; Stevens, James R [Arlington, VA

    2012-05-22

    Portable handheld real-time tracking and communications devices include; a controller module, communications module including global positioning and mesh network radio module, data transfer and storage module, and a user interface module enclosed in a water-resistant enclosure. Real-time tracking and communications devices can be used by protective force, security and first responder personnel to provide situational awareness allowing for enhance coordination and effectiveness in rapid response situations. Such devices communicate to other authorized devices via mobile ad-hoc wireless networks, and do not require fixed infrastructure for their operation.

  13. First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping

    PubMed Central

    Ma, Yungui; Liu, Yichao; Lan, Lu; Wu, Tiantian; Jiang, Wei; Ong, C. K.; He, Sailing

    2013-01-01

    In the past years quasi-conformal mapping has been generally used to design broadband electromagnetic cloaks. However, this technique has some inherit practical limitations such as the lateral beam shift, rendering the device visible or difficult to hide a large object. In this work we circumvent these issues by using strict conformal mapping to build the first isotropic cloak. Microwave near-field measurement shows that our device (with dielectric constant larger than unity everywhere) has a very good cloaking performance and a broad frequency response. The present dielectric approach could be technically extended to the fabrication of other conformal devices at higher frequencies. PMID:23851589

  14. High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods

    DOEpatents

    Goyal, Amit , Kang; Sukill, [Knoxville, TN

    2012-02-21

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  15. Electromagnetic Pulse/Transient Threat Testing of Protection Devices for Amateur/Military Affiliate Radio System Equipment. Volume 3. Test Data, Electromagnetic Pulse Testing of Protection Devices. Section 1. High Energy Pulse-Device Failure Test. 50 Ohms Impedance 25,000 Volts-4000 Amps, 100 Joules.

    DTIC Science & Technology

    1985-10-31

    7 oat s LinkI . . - P Comments: ~ y V ,~o.*.-’ ,. 157q Pk: 6ETtC*6L- - ’ . */-’-..- -,.-., Oats Teet Poit c C 2 b AmplifI481OS’ dS Attenuaio 2-4D dB...Puleer Level * Data LinkI Comments: /:2- VO%’ a*1 Date/3 - Attenuaion dS HMmontai na/dIv I Vertial mnV/div I s. Horizontal g n a/div 2 Vertical IV

  16. Surgical navigation in urology: European perspective.

    PubMed

    Rassweiler, Jens; Rassweiler, Marie-Claire; Müller, Michael; Kenngott, Hannes; Meinzer, Hans-Peter; Teber, Dogu

    2014-01-01

    Use of virtual reality to navigate open and endoscopic surgery has significantly evolved during the last decade. Current status of seven most interesting projects inside the European Association of Urology section of uro-technology is summarized with review of literature. Marker-based endoscopic tracking during laparoscopic radical prostatectomy using high-definition technology reduces positive margins. Marker-based endoscopic tracking during laparoscopic partial nephrectomy by mechanical overlay of three-dimensional-segmented virtual anatomy is helpful during planning of trocar placement and dissection of renal hilum. Marker-based, iPAD-assisted puncture of renal collecting system shows more benefit for trainees with reduction of radiation exposure. Three-dimensional laser-assisted puncture of renal collecting system using Uro-Dyna-CT realized in an ex-vivo model enables minimal radiation time. Electromagnetic tracking for puncture of renal collecting system using a sensor at the tip of ureteral catheter worked in an in-vivo model of porcine ureter and kidney. Attitude tracking for ultrasound-guided puncture of renal tumours by accelerometer reduces the puncture error from 4.7 to 1.8 mm. Feasibility of electromagnetic and optical tracking with the da Vinci telemanipulator was shown in vitro as well as using in-vivo model of oesophagectomy. Target registration error was 11.2 mm because of soft-tissue deformation. Intraoperative navigation is helpful during percutaneous puncture collecting system and biopsy of renal tumour using various tracking techniques. Early clinical studies demonstrate advantages of marker-based navigation during laparoscopic radical prostatectomy and partial nephrectomy. Combination of different tracking techniques may further improve this interesting addition to video-assisted surgery.

  17. 47 CFR 2.1093 - Radiofrequency radiation exposure evaluation: portable devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Electromagnetic Fields, 3 kHz to 300 GHz,” ANSI/IEEE C95.1-1992, Copyright 1992 by the Institute of Electrical and... Exposure Criteria for Radiofrequency Electromagnetic Fields,” NCRP Report No. 86, Section 17.4.5. Copyright...

  18. Electromagnetic Nanoparticles for Sensing and Medical Diagnostic Applications

    PubMed Central

    Vegni, Lucio

    2018-01-01

    A modeling and design approach is proposed for nanoparticle-based electromagnetic devices. First, the structure properties were analytically studied using Maxwell’s equations. The method provides us a robust link between nanoparticles electromagnetic response (amplitude and phase) and their geometrical characteristics (shape, geometry, and dimensions). Secondly, new designs based on “metamaterial” concept are proposed, demonstrating great performances in terms of wide-angle range functionality and multi/wide behavior, compared to conventional devices working at the same frequencies. The approach offers potential applications to build-up new advanced platforms for sensing and medical diagnostics. Therefore, in the final part of the article, some practical examples are reported such as cancer detection, water content measurements, chemical analysis, glucose concentration measurements and blood diseases monitoring. PMID:29652853

  19. Electromagnetic diode based on photonic crystal cavity with embedded highly dispersive meta-interface

    NASA Astrophysics Data System (ADS)

    Chen, Yongqiang; Dong, Lijuan; Xu, Xiaohu; Jiang, Jun; Shi, Yunlong

    2017-12-01

    In this paper, we propose a scheme for subwavelength electromagnetic diodes by employing a photonic crystal (PC) cavity with embedded electromagnetically induced-transparency (EIT)-like highly dispersive meta-interface. A nonreciprocal response, with 21.5 dB transmission light contrast and 12.3 dBm working power, is conceptually demonstrated in a microstrip transmission line system with asymmetric absorption and nonlinear medium inclusion. Such high-contrast transmission and relatively low-threshold diode action stem from the composite PC-EIT mechanism. This mechanism not only possesses a large quality factor and strong localization of fields but also does not enlarge the device volume and drastically reduce transmittance. Our findings should be beneficial for the design of new and practical metamaterial-enabled nonlinear devices.

  20. Cryogenic scanning tunneling microscope with a magnetic coarse approach

    NASA Astrophysics Data System (ADS)

    Davydov, D. N.; Deltour, R.; Horii, N.; Timofeev, V. A.; Grokholski, A. S.

    1993-11-01

    A compact, rigid, and reliable cryogenic scanning tunneling microscope (CSTM) with a vertical electromagnetic coarse approach system was developed. This device can be used for topographic and local tunneling spectroscopy studies at liquid nitrogen and helium temperatures. Minimal step sizes of 28 nm for the electromagnetic translation device were achieved. The additional possibility of a coarse approach operation in the inertial slip-stick mode, without electromagnets, was successfully tested, making this STM compatible with external magnetic fields. A simple technique for characterizing the STM rigidity has been developed. Preliminary data, taken with this instrument are presented, demonstrating the achievement, at liquid helium temperature, of atomic resolution for topographic studies, and also the possibility of measuring simultaneously superconducting energy gap spectra.

  1. 49 CFR 214.511 - Required audible warning devices for new on-track roadway maintenance machines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... roadway maintenance machines. 214.511 Section 214.511 Transportation Other Regulations Relating to... SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.511 Required audible warning devices for new on-track roadway maintenance machines. Each new on-track roadway maintenance machine shall...

  2. 49 CFR 214.511 - Required audible warning devices for new on-track roadway maintenance machines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... roadway maintenance machines. 214.511 Section 214.511 Transportation Other Regulations Relating to... SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.511 Required audible warning devices for new on-track roadway maintenance machines. Each new on-track roadway maintenance machine shall...

  3. Network Information System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    1996-05-01

    The Network Information System (NWIS) was initially implemented in May 1996 as a system in which computing devices could be recorded so that unique names could be generated for each device. Since then the system has grown to be an enterprise wide information system which is integrated with other systems to provide the seamless flow of data through the enterprise. The system Iracks data for two main entities: people and computing devices. The following are the type of functions performed by NWIS for these two entities: People Provides source information to the enterprise person data repository for select contractors andmore » visitors Generates and tracks unique usernames and Unix user IDs for every individual granted cyber access Tracks accounts for centrally managed computing resources, and monitors and controls the reauthorization of the accounts in accordance with the DOE mandated interval Computing Devices Generates unique names for all computing devices registered in the system Tracks the following information for each computing device: manufacturer, make, model, Sandia property number, vendor serial number, operating system and operating system version, owner, device location, amount of memory, amount of disk space, and level of support provided for the machine Tracks the hardware address for network cards Tracks the P address registered to computing devices along with the canonical and alias names for each address Updates the Dynamic Domain Name Service (DDNS) for canonical and alias names Creates the configuration files for DHCP to control the DHCP ranges and allow access to only properly registered computers Tracks and monitors classified security plans for stand-alone computers Tracks the configuration requirements used to setup the machine Tracks the roles people have on machines (system administrator, administrative access, user, etc...) Allows systems administrators to track changes made on the machine (both hardware and software) Generates an adjustment history of changes on selected fields« less

  4. Electromagnetic shielding effectiveness of 3D printed polymer composites

    NASA Astrophysics Data System (ADS)

    Viskadourakis, Z.; Vasilopoulos, K. C.; Economou, E. N.; Soukoulis, C. M.; Kenanakis, G.

    2017-12-01

    We report on preliminary results regarding the electromagnetic shielding effectiveness of various 3D printed polymeric composite structures. All studied samples were fabricated using 3D printing technology, following the fused deposition modeling approach, using commercially available filaments as starting materials. The electromagnetic shielding performance of the fabricated 3D samples was investigated in the so called C-band of the electromagnetic spectrum (3.5-7.0 GHz), which is typically used for long-distance radio telecommunications. We provide evidence that 3D printing technology can be effectively utilized to prepare operational shields, making them promising candidates for electromagnetic shielding applications for electronic devices.

  5. Measurement technology of RF interference current in high current system

    NASA Astrophysics Data System (ADS)

    Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei

    2018-06-01

    Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.

  6. Gigahertz Electromagnetic Structures via Direct Ink Writing for Radio-Frequency Oscillator and Transmitter Applications.

    PubMed

    Zhou, Nanjia; Liu, Chengye; Lewis, Jennifer A; Ham, Donhee

    2017-04-01

    Radio-frequency (RF) electronics, which combine passive electromagnetic devices and active transistors to generate and process gigahertz (GHz) signals, provide a critical basis of ever-pervasive wireless networks. While transistors are best realized by top-down fabrication, relatively larger electromagnetic passives are within the reach of printing techniques. Here, direct writing of viscoelastic silver-nanoparticle inks is used to produce a broad array of RF passives operating up to 45 GHz. These include lumped devices such as inductors and capacitors, and wave-based devices such as transmission lines, their resonant networks, and antennas. Moreover, to demonstrate the utility of these printed RF passive structures in active RF electronic circuits, they are combined with discrete transistors to fabricate GHz self-sustained oscillators and synchronized oscillator arrays that provide RF references, and wireless transmitters clocked by the oscillators. This work demonstrates the synergy of direct ink writing and RF electronics for wireless applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Shumail, Muhammad; Tantawi, Sami G.

    2016-07-01

    Permanent magnet insertion devices (IDs), which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circular polarization modes. The electromagnetic equivalent definitions of undulator period (λu) and undulator deflection parameter (K ) are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. The corresponding radiation spectra and the intensity of harmonics is also calculated.

  8. [Morphological structure of rat epiphysis exposed to electromagnetic radiation from communication devices].

    PubMed

    Yashchenko, S G; Rybalko, S Yu

    Pineal gland is one of the most important components of homeostasis - the supporting system of the body. It participates in the launch of stress responses, restriction of their development, prevention of adverse effects on the body. There was proved an impact of electromagnetic radiation on the epiphysis. However, morphological changes in the epiphysis under exposure to electromagnetic radiation of modern communication devices are studied not sufficiently. For the time present the population is daily exposed to electromagnetic radiation, including local irradiation on the brain. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. Performed transmission electron microscopy revealed signs of degeneration of dark and light pinealocytes. These signs were manifested in the development of a complex of general and specific morphological changes. There was revealed the appearance of signs of aging and depletion transmission electron microscopy both in light and dark pinealocytes. These signs were manifested in the accumulation of lipofuscin granules and electron-dense "brain sand", the disappearance of nucleoli, cytoplasm vacuolization and mitochondrial cristae enlightenment.

  9. Electromagnetic induction sensor for dynamic testing of coagulation process.

    PubMed

    Wang, Zhe; Yu, Yuanhua; Yu, Zhanjiang; Chen, Qimeng

    2018-03-01

    With the increasing demand for coagulation POCT for patients in the surgery department or the ICU, rapid coagulation testing techniques and methods have drawn widespread attention from scholars and businessmen. This paper proposes the use of electromagnetic induction sensor probe for detection of dynamic process causing changes in the blood viscosity and density before and after coagulation based on the damped vibration principle, in order to evaluate the coagulation status. Utilizing the dynamic principle, the differential equation of vibration system comprising elastic support and electromagnetic induction device is established through sensor dynamic modeling. The structural parameters of elastic support are optimized, and the circular sheet spring is designed. Furthermore, harmonic response analysis and vibration fatigue coupling analysis are performed on the elastic support of the sensor by considering the natural frequency of the system, and the electromagnetic induction sensor testing device is set up. Using the device and coagulation reagent, the standard curve for coagulation POCT is plotted, and the blood sample application in clinical patients is established, which are methodologically compared with the imported POCT coagulation analyzer. The results show that the sensor designed in this paper has a first-order natural frequency of 11.368 Hz, which can withstand 5.295 × 10 2 million times of compressions and rebounds. Its correlation with the results of SONOCLOT analyzer reaches 0.996, and the reproducibility 0.002. The electromagnetic induction coagulation testing sensor designed has good elasticity and anti-fatigue, which can meet the accuracy requirement of clinical detection. This study provides the core technology for developing the electromagnetic induction POCT instrument for dynamic testing of coagulation process.

  10. Adhoc electromagnetic compatibility testing of non-implantable medical devices and radio frequency identification

    PubMed Central

    2013-01-01

    Background The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Methods Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125–134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. Results For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Conclusion Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to perform on-site RF immunity tests prior to RFID system deployment or prior to placing new medical devices in an RFID environment. The methods presented in this paper are time-consuming and burdensome and suggest the need for standard test methods for assessing the immunity of medical devices to RFID systems. PMID:23845013

  11. Adhoc electromagnetic compatibility testing of non-implantable medical devices and radio frequency identification.

    PubMed

    Seidman, Seth J; Guag, Joshua W

    2013-07-11

    The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125-134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to perform on-site RF immunity tests prior to RFID system deployment or prior to placing new medical devices in an RFID environment. The methods presented in this paper are time-consuming and burdensome and suggest the need for standard test methods for assessing the immunity of medical devices to RFID systems.

  12. The Vulnerabilities of Unmanned Aircraft System Common Data Links to Electronic Attack

    DTIC Science & Technology

    2010-06-11

    jamming, radar acquisition, and radar tracking (US Joint Forces Command 2009b, 101). Electromagnetic Interference ( EMI ). Any electromagnetic...has a range of up to 125 kilometers, and can remain airborne for up to 6 hours (see figure 6). The Shadow 200 is launched using a trailer mounted...disruption by EMI and friendly EW jamming systems. Second, FM 3-04.115 is the only publication that addresses counter-UAS threats and how enemy forces may

  13. Hand-Held EMI Sensor Combined with Inertial Positioning for Cued UXO Discrimination - APG Standardized UXO Test Site

    DTIC Science & Technology

    2013-04-01

    Measurement Tracking System (SAINT) with an advanced hand-held, time-domain electromagnetic sensor (TEM-HH) and document classification performance at...rejecting 77% of the clutter. 15. SUBJECT TERMS EMI, electromagnetic induction, UXO classification, UXO, IMU, inertial measurement unit, 16. SECURITY...U c. THIS PAGE U UU 19b. TELEPHONE NUMBER (include area code) 919-677-1560 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

  14. 21 CFR 821.20 - Devices subject to tracking.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... within § 821.1(a) must track that device in accordance with this part, if FDA issues a tracking order to... the criteria of section 519(e)(1) of the act and, by virtue of the order, the sponsor must track the...

  15. 21 CFR 821.20 - Devices subject to tracking.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... within § 821.1(a) must track that device in accordance with this part, if FDA issues a tracking order to... the criteria of section 519(e)(1) of the act and, by virtue of the order, the sponsor must track the...

  16. Highly efficient full-wave electromagnetic analysis of 3-D arbitrarily shaped waveguide microwave devices using an integral equation technique

    NASA Astrophysics Data System (ADS)

    Vidal, A.; San-Blas, A. A.; Quesada-Pereira, F. D.; Pérez-Soler, J.; Gil, J.; Vicente, C.; Gimeno, B.; Boria, V. E.

    2015-07-01

    A novel technique for the full-wave analysis of 3-D complex waveguide devices is presented. This new formulation, based on the Boundary Integral-Resonant Mode Expansion (BI-RME) method, allows the rigorous full-wave electromagnetic characterization of 3-D arbitrarily shaped metallic structures making use of extremely low CPU resources (both time and memory). The unknown electric current density on the surface of the metallic elements is represented by means of Rao-Wilton-Glisson basis functions, and an algebraic procedure based on a singular value decomposition is applied to transform such functions into the classical solenoidal and nonsolenoidal basis functions needed by the original BI-RME technique. The developed tool also provides an accurate computation of the electromagnetic fields at an arbitrary observation point of the considered device, so it can be used for predicting high-power breakdown phenomena. In order to validate the accuracy and efficiency of this novel approach, several new designs of band-pass waveguides filters are presented. The obtained results (S-parameters and electromagnetic fields) are successfully compared both to experimental data and to numerical simulations provided by a commercial software based on the finite element technique. The results obtained show that the new technique is specially suitable for the efficient full-wave analysis of complex waveguide devices considering an integrated coaxial excitation, where the coaxial probes may be in contact with the metallic insets of the component.

  17. Feasibility results of an electromagnetic compatibility test protocol to evaluate medical devices to radio frequency identification exposure

    PubMed Central

    2014-01-01

    Background The use of radio frequency identification (RFID) systems in healthcare is increasing, and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have demonstrated that RFID systems can interfere with medical devices; however, the majority of past studies relied on time-consuming and burdensome test schemes based on ad hoc test methods applied to individual RFID systems. Methods This paper presents the results of using an RFID simulator that allows for faster evaluation of RFID-medical device EMC against a library of RFID test signals at various field strengths. Results The results of these tests demonstrate the feasibility and adequacy of simulator testing and can be used to support its incorporation into applicable consensus standards. Conclusions This work can aid the medical device community in better assessing the risks associated with medical device exposure to RFID. PMID:25086451

  18. Feasibility results of an electromagnetic compatibility test protocol to evaluate medical devices to radio frequency identification exposure.

    PubMed

    Seidman, Seth J; Bekdash, Omar; Guag, Joshua; Mehryar, Maryam; Booth, Paul; Frisch, Paul

    2014-08-03

    The use of radio frequency identification (RFID) systems in healthcare is increasing, and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have demonstrated that RFID systems can interfere with medical devices; however, the majority of past studies relied on time-consuming and burdensome test schemes based on ad hoc test methods applied to individual RFID systems. This paper presents the results of using an RFID simulator that allows for faster evaluation of RFID-medical device EMC against a library of RFID test signals at various field strengths. The results of these tests demonstrate the feasibility and adequacy of simulator testing and can be used to support its incorporation into applicable consensus standards. This work can aid the medical device community in better assessing the risks associated with medical device exposure to RFID.

  19. A sophisticated cad tool for the creation of complex models for electromagnetic interaction analysis

    NASA Astrophysics Data System (ADS)

    Dion, Marc; Kashyap, Satish; Louie, Aloisius

    1991-06-01

    This report describes the essential features of the MS-DOS version of DIDEC-DREO, an interactive program for creating wire grid, surface patch, and cell models of complex structures for electromagnetic interaction analysis. It uses the device-independent graphics library DIGRAF and the graphics kernel system HALO, and can be executed on systems with various graphics devices. Complicated structures can be created by direct alphanumeric keyboard entry, digitization of blueprints, conversion form existing geometric structure files, and merging of simple geometric shapes. A completed DIDEC geometric file may then be converted to the format required for input to a variety of time domain and frequency domain electromagnetic interaction codes. This report gives a detailed description of the program DIDEC-DREO, its installation, and its theoretical background. Each available interactive command is described. The associated program HEDRON which generates simple geometric shapes, and other programs that extract the current amplitude data from electromagnetic interaction code outputs, are also discussed.

  20. Use of Permanent Magnets in Electromagnetic Facilities for the Treatment of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Beinerts, Toms; Bojarevičs, Andris; Bucenieks, Imants; Gelfgat, Yuri; Kaldre, Imants

    2016-06-01

    The possibility of applying the electromagnetic induction pump with permanent magnets for the transportation and stirring of aluminum melts in metallurgical furnaces is investigated. The electromagnetic and hydraulic characteristics of the pump have been investigated theoretically and experimentally with regard to its position in the furnace. The results of the experiments performed with a model in a eutectic InGaSn melt are in good agreement with the calculation data. Extrapolation of the experimental results on the physical characteristics of aluminum melts allows recommending such pumps for contactless control of motion and heat/mass transfer in aluminum melts in different technological processes. A high temperature and the aggressive properties of aluminum alloys make it complicated to use different mechanical devices to solve technological problems, such as liquid metal transportation, dosing, stirring, etc. In this case, any device units or elements moving in or contacting with the melt suffer from corrosion polluting the melt. Therefore, of more importance and topicality are contactless electromagnetic methods for processing of molten metals.

  1. 21 CFR 821.55 - Confidentiality.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... MEDICAL DEVICE TRACKING REQUIREMENTS Records and Inspections § 821.55 Confidentiality. (a) Any patient receiving a device subject to tracking requirements under this part may refuse to release, or refuse... identifying information for the purpose of tracking. (b) Records and other information submitted to FDA under...

  2. Amplitude control of the track-induced self-excited vibration for a maglev system.

    PubMed

    Zhou, Danfeng; Li, Jie; Zhang, Kun

    2014-09-01

    The Electromagnet Suspension (EMS) maglev train uses controlled electromagnetic forces to achieve suspension, and self-excited vibration may occur due to the flexibility of the track. In this article, the harmonic balance method is applied to investigate the amplitude of the self-excited vibration, and it is found that the amplitude of the vibration depends on the voltage of the power supplier. Based on this observation, a vibration amplitude control method, which controls the amplitude of the vibration by adjusting the voltage of the power supplier, is proposed to attenuate the vibration. A PI controller is designed to control the amplitude of the vibration at a given level. The effectiveness of this method shows a good prospect for its application to commercial maglev systems. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  3. An Alternative Wearable Tracking System Based on a Low-Power Wide-Area Network.

    PubMed

    Fernández-Garcia, Raul; Gil, Ignacio

    2017-03-14

    This work presents an alternative wearable tracking system based on a low-power wide area network. A complete GPS receiver was integrated with a textile substrate, and the latitude and longitude coordinates were sent to the cloud by means of the SIM-less SIGFOX network. To send the coordinates over SIGFOX protocol, a specific codification algorithm was used and a customized UHF antenna on jeans fabric was designed, simulated and tested. Moreover, to guarantee the compliance to international regulations for human body exposure to electromagnetic radiation, the electromagnetic specific absorption rate of this antenna was analyzed. A specific remote server was developed to decode the latitude and longitude coordinates. Once the coordinates have been decoded, the remote server sends this information to the open source data viewer SENTILO to show the location of the sensor node in a map. The functionality of this system has been demonstrated experimentally. The results guarantee the utility and wearability of the proposed tracking system for the development of sensor nodes and point out that it can be a low cost alternative to other commercial products based on GSM networks.

  4. Interference between active implanted medical devices and electromagnetic field emitting devices is rare but real: results of an incidence study in a population of physicians in France.

    PubMed

    Hours, Martine; Khati, Inès; Hamelin, Joel

    2014-03-01

    Assessing the behavior of active implanted medical devices (AIMDs) in response to electromagnetic field (EMF) transmitters is a current issue of great importance. Given the numerous telecommunication systems and our lack of knowledge as to the impact of electromagnetic effects, this study investigated the reality of possible AIMD disturbance by EMFs by interviewing health professionals. A self-administered postal questionnaire was sent to almost 5,000 physicians in five specialties: cardiology; endocrinology; ears, nose, and throat; urology; and neurology. It collected data on the existence and annual number of incidents observed and the conditions under which they occurred, the EMF sources involved, and the means of managing the malfunctions. A total of 1,188 physicians agreed to participate. Sixteen percent of participants reported cases of implant failure, three-quarters of whom, mainly in cardiology, reported rates of at least one incident per year-amounting to more than 100 incidents per year in all. Severity appeared to be moderate (discomfort or transient symptoms), but frequently required resetting or, more rarely, replacing the device. Some serious incidents were, however, reported. The sources implicated were basically of two types: electronic security systems (antitheft and airport gates) and medical electromagnetic radiation devices. These incidents were poorly reported within the public health system, preventing follow-up and effective performance of alert and surveillance functions. Although minor, the risk of interference between EMF sources and AIMDs is real and calls for vigilance. It particularly concerns antitheft and airport security gates, though other sources may also cause incidents. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.

  5. Thoracic surgery in patients with an implanted neurostimulator device.

    PubMed

    Meyring, Kristina; Zehnder, Adrian; Schmid, Ralph A; Kocher, Gregor J

    2017-10-01

    Movement disorders such as Parkinson's disease are increasingly treated with deep brain stimulators. Being implanted in a subcutaneous pocket in the chest region, thoracic surgical procedures can interfere with such devices, as they are sensible to external electromagnetic forces. Monopolar electrocautery can lead to dysfunction of the device or damage of the brain tissue caused by heat. We report a series of 3 patients with deep brain stimulators who underwent thoracic surgery. By turning off the deep brain stimulators before surgery and avoiding the use of monopolar cautery, electromagnetic interactions were avoided in all patients. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  6. Electromagnetic field tapering using all-dielectric gradient index materials.

    PubMed

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-07-28

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.

  7. A multiscale quantum mechanics/electromagnetics method for device simulations.

    PubMed

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-07

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.

  8. Field Evaluations of Tracking/Locating Technologies for Prevention of Missing Incidents.

    PubMed

    Bulat, Tatjana; Kerrigan, Michael V; Rowe, Meredeth; Kearns, William; Craighead, Jeffrey D; Ramaiah, Padmaja

    2016-09-01

    Persons with dementia are at risk of a missing incident, which is defined as an instance in which a demented person's whereabouts are unknown to the caregiver and the individual is not in an expected location. Since it is critical to determine the missing person's location as quickly as possible, we evaluated whether commercially available tracking technologies can assist in a rapid recovery. This study examined 7 commercially available tracking devices: 3 radio frequency (RF) based and 4 global positioning system (GPS) based, employing realistic tracking scenarios. Outcome measures were time to discovery and degree of deviation from a straight intercept course. Across all scenarios tested, GPS devices were found to be approximately twice as efficient as the RF devices in locating a "missing person." While the RF devices showed reasonable performance at close proximity, the GPS devices were found to be more appropriate overall for tracking/locating missing persons over unknown and larger distances. © The Author(s) 2016.

  9. Tracking down a solution: exploring the acceptability and value of wearable GPS devices for older persons, individuals with a disability and their support persons.

    PubMed

    Williamson, Brittany; Aplin, Tammy; de Jonge, Desleigh; Goyne, Matthew

    2017-11-01

    To explore the acceptability and value of three wearable GPS devices for older persons and individuals with a disability and safety concerns when accessing the community. This pilot study explored six wearers' and their support persons' experience of using three different wearable GPS devices (a pendant, watch, and mini GPS phone), each for a two-week period. Participants identified safety as the main value of using a wearable GPS device. The acceptability and value of these devices was strongly influenced by device features, ease of use, cost, appearance, the reliability of the GPS coordinates, the wearer's health condition and the users familiarity with technology. Overall, participants indicated that they preferred the pendant. Wearable GPS devices are potentially useful in providing individuals who have safety concerns with reassurance and access to assistance as required. To ensure successful utilization, future device design and device selection should consider the user's familiarity with technology and their health condition. This study also revealed that not all wearable GPS devices provide continuous location tracking. It is therefore critical to ensure that the device's location tracking functions address the wearer's requirements and reason for using the device. Implications for Rehabilitation The acceptability and usability of wearable GPS devices is strongly influenced by the device features, ease of use, cost, appearance, the reliability of the device to provide accurate and timely GPS coordinates, as well as the health condition of the wearer and their familiarity with technology. Wearable GPS devices need to be simple to use and support and training is essential to ensure they are successfully utilized. Not all wearable GPS devices provide continuous location tracking and accuracy of location is impacted by line of sight to satellites. Therefore, care needs to be taken when choosing a suitable device, to ensure that the device's location tracking features are based on the wearer's requirements and value behind using the device.

  10. Heuristic estimation of electromagnetically tracked catheter shape for image-guided vascular procedures

    NASA Astrophysics Data System (ADS)

    Mefleh, Fuad N.; Baker, G. Hamilton; Kwartowitz, David M.

    2014-03-01

    In our previous work we presented a novel image-guided surgery (IGS) system, Kit for Navigation by Image Focused Exploration (KNIFE).1,2 KNIFE has been demonstrated to be effective in guiding mock clinical procedures with the tip of an electromagnetically tracked catheter overlaid onto a pre-captured bi-plane fluoroscopic loop. Representation of the catheter in KNIFE differs greatly from what is captured by the fluoroscope, due to distortions and other properties of fluoroscopic images. When imaged by a fluoroscope, catheters can be visualized due to the inclusion of radiopaque materials (i.e. Bi, Ba, W) in the polymer blend.3 However, in KNIFE catheter location is determined using a single tracking seed located in the catheter tip that is represented as a single point overlaid on pre-captured fluoroscopic images. To bridge the gap in catheter representation between KNIFE and traditional methods we constructed a catheter with five tracking seeds positioned along the distal 70 mm of the catheter. We have currently investigated the use of four spline interpolation methods for estimation of true catheter shape and have assesed the error in their estimation of true catheter shape. In this work we present a method for the evaluation of interpolation algorithms with respect to catheter shape determination.

  11. Electromagnetic properties of thin-film transformer-coupled superconducting tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnegan, T.F.; Lacquaniti, V.; Vaglio, R.

    1981-09-01

    Multisection superconducting microstrip transformers with designed output impedances below 0.1 ..cap omega.. have been fabricated via precise photolithographic techniques to investigate the electromagnetic properties of Nb-Nb oxide-Pb tunnel junctions. The low-impedance transformer sections incorporate a rf sputtered thin-film Ta-oxide dielectric, and the reproducible external coupling achievable with this type of geometry makes possible the systematic investigation of electromagnetic device parameters as a function of tunneling oxide thickness.

  12. Eye-tracking for clinical decision support: A method to capture automatically what physicians are viewing in the EMR.

    PubMed

    King, Andrew J; Hochheiser, Harry; Visweswaran, Shyam; Clermont, Gilles; Cooper, Gregory F

    2017-01-01

    Eye-tracking is a valuable research tool that is used in laboratory and limited field environments. We take steps toward developing methods that enable widespread adoption of eye-tracking and its real-time application in clinical decision support. Eye-tracking will enhance awareness and enable intelligent views, more precise alerts, and other forms of decision support in the Electronic Medical Record (EMR). We evaluated a low-cost eye-tracking device and found the device's accuracy to be non-inferior to a more expensive device. We also developed and evaluated an automatic method for mapping eye-tracking data to interface elements in the EMR (e.g., a displayed laboratory test value). Mapping was 88% accurate across the six participants in our experiment. Finally, we piloted the use of the low-cost device and the automatic mapping method to label training data for a Learning EMR (LEMR) which is a system that highlights the EMR elements a physician is predicted to use.

  13. Lagrangian 3D tracking of fluorescent microscopic objects in motion

    NASA Astrophysics Data System (ADS)

    Darnige, T.; Figueroa-Morales, N.; Bohec, P.; Lindner, A.; Clément, E.

    2017-05-01

    We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.

  14. Lagrangian 3D tracking of fluorescent microscopic objects in motion.

    PubMed

    Darnige, T; Figueroa-Morales, N; Bohec, P; Lindner, A; Clément, E

    2017-05-01

    We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.

  15. Photonics

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Optoelectronic materials and devices are examined. Optoelectronic devices, which generate, detect, modulate, or switch electromagnetic radiation are being developed for a variety of space applications. The program includes spatial light modulators, solid state lasers, optoelectronic integrated circuits, nonlinear optical materials and devices, fiber optics, and optical networking photovoltaic technology and optical processing.

  16. Shock whilst gardening--implantable defibrillators & lawn mowers.

    PubMed

    Von Olshausen, G; Lennerz, C; Grebmer, C; Pavaci, H; Kolb, C

    2014-02-01

    Electromagnetic interference with implantable cardioverter defibrillators (ICDs) can cause inappropriate shock delivery or temporary inhibition of ICD functions. We present a case of electromagnetic interference between a lawn mower and an ICD resulting in an inappropriate discharge of the device due to erroneous detection of ventricular fibrillation.

  17. Design and testing of an electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Anderson, William J.

    1986-01-01

    Hostile environments such as the hard vacuum of space, and exposure to water or caustic fluids have fostered the development of devices which allow mechanical rotary feed throughs with positive sealing without the use of conventional dynamic seals. One such device is an electromagnetic coupling which transfers motion across a hermetic seal by means of a rotating magnetic field. Static pull-out torque and dynamic heat build-up and pull-out torque tests of a synchronous reluctance homopolar coupling are reported herein. Coupling efficiencies are estimated for a range of speeds and torques.

  18. Remote monitoring of electromagnetic signals and seismic events using smart mobile devices

    NASA Astrophysics Data System (ADS)

    Georgiadis, Pantelis; Cavouras, Dionisis; Sidiropoulos, Konstantinos; Ninos, Konstantinos; Nomicos, Constantine

    2009-06-01

    This study presents the design and development of a novel mobile wireless system to be used for monitoring seismic events and related electromagnetic signals, employing smart mobile devices like personal digital assistants (PDAs) and wireless communication technologies such as wireless local area networks (WLANs), general packet radio service (GPRS) and universal mobile telecommunications system (UMTS). The proposed system enables scientists to access critical data while being geographically independent of the sites of data sources, rendering it as a useful tool for preliminary scientific analysis.

  19. 49 CFR 234.247 - Purpose of inspections and tests; removal from service of relay or device failing to meet test...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operations over the grade crossing resume. (c) Any electronic device, relay, or other electromagnetic device... service of relay or device failing to meet test requirements. 234.247 Section 234.247 Transportation Other... Inspections and Tests § 234.247 Purpose of inspections and tests; removal from service of relay or device...

  20. A first look at reconstructed data from the GlueX detector

    NASA Astrophysics Data System (ADS)

    Taylor, Simon; GlueX Collaboration

    2015-10-01

    Construction of the GlueX detector in Hall D at the Thomas Jefferson National Accelerator Facility has recently been completed as part of the 12 GeV Upgrade to the facility. The detector consists of a barrel region containing devices for tracking charged particles and a lead-scintillator calorimeter for detecting photons, and a forward region consisting of two layers of scintillator paddles for time-of-flight measurements and a lead-glass electromagnetic calorimeter. The electron beam from the accelerator is converted into a photon beam by inserting a diamond radiator, thereby producing a coherent bremsstrahlung spectrum of photons impinging on a 30 cm-long LH2 target. The energy of the photon beam is determined using a tagging spectrometer. A commissioning run took place in Spring of 2015 during which all of the detector components were read out. Preliminary calibrations have been determined to a level sufficient to allow reconstruction of final states with several charged tracks and neutral particles. A first look at results of reconstruction of events using the GlueX detector will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC05-06OR23177.

  1. Simplified stereo-optical ultrasound plane calibration

    NASA Astrophysics Data System (ADS)

    Hoßbach, Martin; Noll, Matthias; Wesarg, Stefan

    2013-03-01

    Image guided therapy is a natural concept and commonly used in medicine. In anesthesia, a common task is the injection of an anesthetic close to a nerve under freehand ultrasound guidance. Several guidance systems exist using electromagnetic tracking of the ultrasound probe as well as the needle, providing the physician with a precise projection of the needle into the ultrasound image. This, however, requires additional expensive devices. We suggest using optical tracking with miniature cameras attached to a 2D ultrasound probe to achieve a higher acceptance among physicians. The purpose of this paper is to present an intuitive method to calibrate freehand ultrasound needle guidance systems employing a rigid stereo camera system. State of the art methods are based on a complex series of error prone coordinate system transformations which makes them susceptible to error accumulation. By reducing the amount of calibration steps to a single calibration procedure we provide a calibration method that is equivalent, yet not prone to error accumulation. It requires a linear calibration object and is validated on three datasets utilizing di erent calibration objects: a 6mm metal bar and a 1:25mm biopsy needle were used for experiments. Compared to existing calibration methods for freehand ultrasound needle guidance systems, we are able to achieve higher accuracy results while additionally reducing the overall calibration complexity. Ke

  2. A novel 3-dimensional electromagnetic guidance system increases intraoperative microwave antenna placement accuracy.

    PubMed

    Sastry, Amit V; Swet, Jacob H; Murphy, Keith J; Baker, Erin H; Vrochides, Dionisios; Martinie, John B; McKillop, Iain H; Iannitti, David A

    2017-12-01

    Failure to locate lesions and accurately place microwave antennas can lead to incomplete tumor ablation. The Emprint™ SX Ablation Platform employs real-time 3D-electromagnetic spatial antenna tracking to generate intraoperative laparoscopic antenna guidance. We sought to determine whether Emprint™ SX affected time/accuracy of antenna-placement in a laparoscopic training model. Targets (7-10 mm) were set in agar within a laparoscopic training device. Novices (no surgical experience), intermediates (surgical residents), and experts (HPB-surgeons) were asked to locate and hit targets using a MWA antenna (10-ultrasound only, 10-Emprint™ SX). Time to locate target, number of attempts to hit the target, first-time hit rate, and time from initiating antenna advance to hitting the target were measured. Participants located 100% of targets using ultrasound, with experts taking significantly less time than novices and intermediates. Using ultrasound only, successful hit-rates were 70% for novices and 90% for intermediates and experts. Using Emprint™ SX, successful hit rates for all 3-groups were 100%, with significantly increased first-time hit-rates and reduced time required to hit targets compared to ultrasound only. Emprint™ SX significantly improved accuracy and speed of antenna-placement independent of experience, and was particularly beneficial for novice users. Copyright © 2017 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  3. Haptic control with environment force estimation for telesurgery.

    PubMed

    Bhattacharjee, Tapomayukh; Son, Hyoung Il; Lee, Doo Yong

    2008-01-01

    Success of telesurgical operations depends on better position tracking ability of the slave device. Improved position tracking of the slave device can lead to safer and less strenuous telesurgical operations. The two-channel force-position control architecture is widely used for better position tracking ability. This architecture requires force sensors for direct force feedback. Force sensors may not be a good choice in the telesurgical environment because of the inherent noise, and limitation in the deployable place and space. Hence, environment force estimation is developed using the concept of the robot function parameter matrix and a recursive least squares method. Simulation results show efficacy of the proposed method. The slave device successfully tracks the position of the master device, and the estimation error quickly becomes negligible.

  4. Electromagnetic absorption properties of spacecraft and space debris

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Santoni, F.; Giusti, A.; Delfini, A.; Pastore, R.; Vricella, A.; Albano, M.; Arena, L.; Piergentili, F.; Marchetti, M.

    2017-04-01

    Aim of the work is to present a method to evaluate the electromagnetic absorption properties of spacecraft and space debris. For these objects, the radar detection ability depends mainly on volume, shape, materials type and other electromagnetic reflecting behaviour of spacecraft surface components, such as antennas or thermal blankets, and of metallic components in space debris. The higher the electromagnetic reflection coefficient of such parts, the greater the radar detection possibility. In this research an electromagnetic reverberation chamber is used to measure the absorption cross section (ACS) of four objects which may represent space structure operating components as well as examples of space debris: a small satellite, a composite antenna dish, a Thermal Protection System (TPS) tile and a carbon-based composite missile shell. The ACS mainly depends on geometrical characteristics like apertures, face numbers and bulk porosity, as well as on the type of the material itself. The ACS, which is an electromagnetic measurement, is expressed in squared meters and thus can be compared with the objects geometrical cross section. A small ACS means a quite electromagnetic reflective tendency, which is beneficial for radar observations; on the contrary, high values of ACS indicate a strong absorption of the electromagnetic field, which in turn can result a critical hindering of radar tracking.

  5. Is Continuing Contumely Relative to Mc Leod's Vision and ``Secret Sacred Science, (SSS),'': Contagiously Counterproductive in Science, or an Unhealthy Artifact of ``Turf Wars''?

    NASA Astrophysics Data System (ADS)

    Leod, Roger

    2007-04-01

    Mc Leod confirmed, with physics, his models for vision, and for electromagnetic artifacts, by traditional methods, associated with phenomena like tornados, hurricanes, and earthquakes. The latter confirmations are evidently apparent across current ethnology, cultures, linguistics, religion, rituals, exotic astronomy, somewhat concealed evidence of native record-keeping/writing, and iconography. Use of cultural anthropology while observing a modern Peruvian sacred-site-sweeping at Cuzco, coupled with their assertion that Ñari Huallac means ``serpent God,'' plus electromagnet information, reveals that their religious world-view include(s)(d) applied science that is still otherwise unacknowledged. Alexander Thom's precise megalithic site-measurements also imply that ``The Ancients' Serpent'' made/makes precise tracks that convey valuable information. The linguistics of words like Seminole, and unusual visual effects, reveal some traditionalists have done better than most scientists, for vision, and observational physics, and earth science. Tornado and hurricane tracks are predictable, as are some earthquakes. Tornado ``detuning'' or shutdown is electromagnetically possible. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.C2.7

  6. Design of electromagnetic refractor and phase transformer using coordinate transformation theory.

    PubMed

    Lin, Lan; Wang, Wei; Cui, Jianhua; Du, Chunlei; Luo, Xiangang

    2008-05-12

    We designed an electromagnetic refractor and a phase transformer using form-invariant coordinate transformation of Maxwell's equations. The propagation direction of electromagnetic energy in these devices can be modulated as desired. Unlike the conventional dielectric refractor, electromagnetic fields at our refraction boundary do not conform to the Snell's law in isotropic materials and the impedance at this boundary is matched which makes the reflection extremely low; and the transformation of the wave front from cylindrical to plane can be realized in the phase transformer with a slab structure. Two dimensional finite-element simulations were performed to confirm the theoretical results.

  7. [Features of control of electromagnetic radiation emitted by personal computers].

    PubMed

    Pal'tsev, Iu P; Buzov, A L; Kol'chugin, Iu I

    1996-01-01

    Measurements of PC electromagnetic irradiation show that the main sources are PC blocks emitting the waves of certain frequencies. Use of wide-range detectors measuring field intensity in assessment of PC electromagnetic irradiation gives unreliable results. More precise measurements by selective devices are required. Thus, it is expedient to introduce a term "spectral density of field intensity" and its maximal allowable level. In this case a frequency spectrum of PC electromagnetic irradiation is divided into 4 ranges, one of which is subjected to calculation of field intensity for each harmonic frequency, and others undergo assessment of spectral density of field intensity.

  8. Shape memory alloy-based biopsy device for active locomotive intestinal capsule endoscope.

    PubMed

    Le, Viet Ha; Hernando, Leon-Rodriguez; Lee, Cheong; Choi, Hyunchul; Jin, Zhen; Nguyen, Kim Tien; Go, Gwangjun; Ko, Seong-Young; Park, Jong-Oh; Park, Sukho

    2015-03-01

    Recently, capsule endoscopes have been used for diagnosis in digestive organs. However, because a capsule endoscope does not have a locomotive function, its use has been limited to small tubular digestive organs, such as small intestine and esophagus. To address this problem, researchers have begun studying an active locomotive intestine capsule endoscope as a medical instrument for the whole gastrointestinal tract. We have developed a capsule endoscope with a small permanent magnet that is actuated by an electromagnetic actuation system, allowing active and flexible movement in the patient's gut environment. In addition, researchers have noted the need for a biopsy function in capsule endoscope for the definitive diagnosis of digestive diseases. Therefore, this paper proposes a novel robotic biopsy device for active locomotive intestine capsule endoscope. The proposed biopsy device has a sharp blade connected with a shape memory alloy actuator. The biopsy device measuring 12 mm in diameter and 3 mm in length was integrated into our capsule endoscope prototype, where the device's sharp blade was activated and exposed by the shape memory alloy actuator. Then the electromagnetic actuation system generated a specific motion of the capsule endoscope to extract the tissue sample from the intestines. The final biopsy sample tissue had a volume of about 6 mm(3), which is a sufficient amount for a histological analysis. Consequently, we proposed the working principle of the biopsy device and conducted an in-vitro biopsy test to verify the feasibility of the biopsy device integrated into the capsule endoscope prototype using the electro-magnetic actuation system. © IMechE 2015.

  9. Electronic Combat in Space: Examining the Legality of Fielding a Space-Based Disruptive Electromagnetic Jamming System

    DTIC Science & Technology

    2007-06-15

    particles ( asteroids and meteoroids), energetic charged particles (ions, protons, electrons, etc.), and electromagnetic and ionizing radiation (x-rays...These protocols include a ban on Non-Detectable Fragments; restrictions on the use of Mines , Booby Traps, and Other Devices; prohibitions on certain...

  10. Rugged superconducting detector for monitoring infrared energy sources in harsh environments

    NASA Astrophysics Data System (ADS)

    Laviano, F.; Gerbaldo, R.; Ghigo, G.; Gozzelino, L.; Minetti, B.; Rovelli, A.; Mezzetti, E.

    2010-12-01

    Broadband electromagnetic characterization of hot plasmas, such as in nuclear fusion reactors and related experiments, requires detecting systems that must withstand high flux of particles and electromagnetic radiations. We propose a rugged layout of a high temperature superconducting detector aimed at 3 THz collective Thomson scattering (CTS) spectroscopy in hot fusion plasma. The YBa2Cu3O7 - x superconducting film is patterned by standard photolithography and the sensing area of the device is created by means of high-energy heavy ion irradiation, in order to modify the crystal structure both of the superconducting film and of the substrate. This method diminishes process costs and resulting device fragility due to membrane or air-bridge structures that are commonly needed for MIR and FIR radiation detection. Moreover the sensing area of the device is wired by the same superconducting material and thus excellent mechanical strength is exhibited by the whole device, due to the oxide substrate. Continuous wave operation of prototype devices is demonstrated at liquid nitrogen temperature, for selected infrared spectra of broadband thermal energy sources. Several solutions, which exploit the advantages coming from the robustness of this layout in terms of intrinsic radiation hardness of the superconducting material and of the needed optical components, are analysed with reference to applications of infrared electromagnetic detectors in a tokamak machine environment.

  11. Fractal-Inspired Subwavelength Geometric Inclusions for Improvement of High-Frequency Electromagnetic Devices

    NASA Astrophysics Data System (ADS)

    Smith, Kathryn Leigh

    This dissertation presents research results demonstrating the efficacy of fractal-inspired subwavelength geometric inclusions for improvement of high-frequency electromagnetic devices. It begins with a review of the open literature in the area of fractal applications in antennas and metamaterials. This is followed by a detailed discussion of three high-frequency electromagnetic devices that demonstrate performance improvement through incorporation of subwavelength geometric design elements. The first of these devices is a spherical spiral metamaterial unit cell that was developed as a three-dimensional fractal expansion of the traditional split ring resonator, and is shown to be capable of producing broadband negative permeability, negative permittivity, or both, depending solely on the orientation of the unit cells with respect to the incident electric field. The second device is a ringed rectangular patch antenna that has four resonant frequencies. All four of these operative frequencies are shown to produce similar radiation patterns, which also closely match the pattern of a traditional patch antenna. Several minor geometric modifications of the basic shape of the device are also presented, and are shown to enable modification of the number of resonances, as well as tuning of frequencies of resonance. The third and final topic is a modified horn antenna that incorporates a spiral metamaterial as a phase-shifting device in order to achieve circularly polarized radiation. The handedness of the radiated wave is shown to be tunable through simple reorientation of the loading unit cells. In each of these cases, electrically-small geometric modification of existing device geometries is shown to greatly affect performance, either by increasing bandwidth, by inducing multiband behavior, or by enabling exotic radiation characteristics.

  12. Measurement of pattern recognition efficiency of tracks generated by ionizing radiation in a Medipix2 device

    NASA Astrophysics Data System (ADS)

    Bouchami, J.; Gutiérrez, A.; Holy, T.; Houdayer, A.; Jakůbek, J.; Lebel, C.; Leroy, C.; Macana, J.; Martin, J.-P.; Pospíšil, S.; Prak, S.; Sabella, P.; Teyssier, C.; CERN Medipix Collaboration

    2011-05-01

    Several experiments were performed to establish the Medipix2 device capabilities for track recognition and its efficiency at measuring fluxes. A Medipix2 device was exposed to 241Am, 106Ru and 137Cs radioactive sources, separately and simultaneously. It was also exposed to heavy particle beams (protons and alpha-particles), recoiled on a gold foil to reduce the incoming flux and allow the study of the detector response struck by incoming particles at different incidence angles. For three proton beams (400 keV, 4 and 10 MeV), the device was exposed to the radioactive sources on top of beam, giving a mixed radiation field. To test the reliability of track recognition with this device, the activities of the radioactive sources were extracted from the experimental data and compared to the expected activities. Rotation of the Medipix2 device allowed the test of the heavy tracks recognition at different incidence angles.

  13. WE-A-17A-09: Exploiting Electromagnetic Technologies for Real-Time Seed Drop Position Validation in Permanent Implant Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Racine, E; Hautvast, G; Binnekamp, D

    Purpose: To report on preliminary results validating the performance of a specially designed LDR brachytherapy needle prototype possessing both electromagnetic (EM) tracking and seed drop detection abilities. Methods: An EM hollow needle prototype has been designed and constructed in collaboration with research partner Philips Healthcare. The needle possesses conventional 3D tracking capabilities, along with a novel seed drop detection mechanism exploiting local changes of electromagnetic properties generated by the passage of seeds in the needle's embedded sensor coils. These two capabilities are exploited by proprietary engineering and signal processing techniques to generate seed drop position estimates in real-time treatment delivery.more » The electromagnetic tracking system (EMTS) used for the experiment is the NDI Aurora Planar Field Generator. The experiment consisted of dropping a total of 35 seeds in a prismatic agarose phantom, and comparing the 3D seed drop positions of the EMTS to those obtained by an image analysis of subsequent micro-CT scans. Drop position error computations and statistical analysis were performed after a 3D registration of the two seed distributions. Results: Of the 35 seeds dropped in the phantom, 32 were properly detected by the needle prototype. Absolute drop position errors among the detected seeds ranged from 0.5 to 4.8 mm with mean and standard deviation values of 1.6 and 0.9 mm, respectively. Error measurements also include undesirable and uncontrollable effects such as seed motion upon deposition. The true accuracy performance of the needle prototype is therefore underestimated. Conclusion: This preliminary study demonstrates the potential benefits of EM technologies in detecting the passage of seeds in a hollow needle as a means of generating drop position estimates in real-time treatment delivery. Such tools could therefore represent a potentially interesting addition to existing brachytherapy protocols for rapid dosimetry validation. Equipments and fundings for this project were provided by Philips Medical.« less

  14. Cardiac rhythm management devices

    PubMed

    Stevenson, Irene; Voskoboinik, Alex

    2018-05-01

    The last decade has seen ongoing evolution and use of cardiac rhythm management devices, including pacemakers, cardiac resynchronisation therapy, implantable cardioverter defibrillators and loop recorders. General practitioners are increasingly involved in follow-up and management of patients with these devices. The aim of this article is to provide an overview of different cardiac rhythm management devices, including their role, implant procedure, post-procedural care, potential complications and follow‑up. We also include practical advice for patients regarding driving, exercise, sexual intimacy and precautions with regards to electromagnetic interference. Cardiac rhythm management devices perform many functions, including bradycardia pacing, monitoring for arrhythmias, cardiac resynchronisation for heart failure, defibrillation and anti-tachycardia pacing for tachyarrhythmias. Concerns regarding potential device-related complications should be discussed with the implanting physician. In the post-implant period, patients with cardiac rhythm management devices can expect to lead normal, active lives. However, caution must occasionally be exercised in certain situations, such as near appliances with electromagnetic interference. Future innovations will move away from transvenous leads to leadless designs with combinations of different components on a 'modular' basis according to the function required.

  15. iPad2(R) use in patients with implantable cardioverter defibrillators causes electromagnetic interference: the EMIT Study.

    PubMed

    Kozik, Teri M; Chien, Gianna; Connolly, Therese F; Grewal, Gurinder S; Liang, David; Chien, Walter

    2014-04-10

    Over 140 million iPads(®) have been sold worldwide. The iPad2(®), with magnets embedded in its frame and Smart Cover and 3G cellular data capability, can potentially cause electromagnetic interference in implantable cardioverter defibrillators. This can lead to potentially life-threatening situations in patients. The goal of this study was to determine whether the iPad2(®) can cause electromagnetic interference in patients with implantable cardioverter defibrillators. Twenty-seven patients with implantable cardioverter defibrillators were studied. The iPad2(®) was held at reading distance and placed directly over the device with cellular data capability activated and deactivated. The manufacturers/models of devices and the patients' body mass index were noted. The presence of electromagnetic interference was detected by using a programmer supplied by each manufacturer. Magnet mode with suspension of anti-tachycardia therapy was triggered in 9 (33%) patients. All occurred when the iPad2(®) was placed directly over the device. The cellular data status did not cause interference and no noise or oversensing was noted. There was no significant difference between the mean body mass index of the groups with or without interference. The iPad2(®) can trigger magnet mode in implantable cardioverter defibrillators when laid directly over the device. This is potentially dangerous if patients should develop life-threatening arrhythmias at the same time. As new electronic products that use magnets are produced, the potential risk to patients with implantable defibrillators needs to be addressed.

  16. Reduction and analysis of data collected during the electromagnetic tornado experiment

    NASA Technical Reports Server (NTRS)

    Davisson, L. D.; Bradbury, J.

    1975-01-01

    Progress is reviewed on the reduction and analysis of tornado data collected on analog tape. The strip chart recording of 7 tracks from all available analog data for quick look analysis is emphasized.

  17. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumail, Muhammad; Tantawi, Sami G.

    Permanent magnet insertion devices (IDs), which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circularmore » polarization modes. The electromagnetic equivalent definitions of undulator period (λ u) and undulator deflection parameter (K) are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. As a result, the corresponding radiation spectra and the intensity of harmonics is also calculated.« less

  18. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    DOE PAGES

    Shumail, Muhammad; Tantawi, Sami G.

    2016-07-27

    Permanent magnet insertion devices (IDs), which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circularmore » polarization modes. The electromagnetic equivalent definitions of undulator period (λ u) and undulator deflection parameter (K) are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. As a result, the corresponding radiation spectra and the intensity of harmonics is also calculated.« less

  19. Consumer sleep tracking devices: a review of mechanisms, validity and utility.

    PubMed

    Kolla, Bhanu Prakash; Mansukhani, Subir; Mansukhani, Meghna P

    2016-05-01

    Consumer sleep tracking devices such as fitness trackers and smartphone apps have become increasingly popular. These devices claim to measure the sleep duration of their users and in some cases purport to measure sleep quality and awaken users from light sleep, potentially improving overall sleep. Most of these devices appear to utilize data generated from in-built accelerometers to determine sleep parameters but the exact mechanisms and algorithms are proprietary. The growing literature comparing these devices against polysomnography/actigraphy shows that they tend to underestimate sleep disruptions and overestimate total sleep times and sleep efficiency in normal subjects. In this review, we evaluate the current literature comparing the accuracy of consumer sleep tracking devices against more conventional methods used to measure sleep duration and quality. We discuss the current technology that these devices utilize as well as summarize the value of these devices in clinical evaluations and their potential limitations.

  20. Characterization of printed planar electromagnetic coils using digital extrusion and roll-to-roll flexographic processes

    NASA Astrophysics Data System (ADS)

    Rickard, Scott

    Electromagnets are a crucial component in a wide range of more complex electrical devices due to their ability to turn electrical energy into mechanical energy and vice versa. The trend for electronics becoming smaller and lighter has led to increased interest in using flat, planar electromagnetic coils, which have been shown to perform better at scaled down sizes. The two-dimensional geometry of a planar electromagnetic coil yields itself to be produced by a roll-to-roll additive manufacturing process. The emergence of the printed electronics field, which uses traditional printing processes to pattern functional inks, has led to new methods of mass-producing basic electrical components. The ability to print a planar electromagnetic coil using printed electronics could rival the traditional subtractive and semi-subtractive PCB process of manufacturing. The ability to print lightweight planar electromagnetic coils on flexible substrates could lead to their inclusion into intelligent packaging applications and could have specific use in actuating devices, transformers, and electromagnetic induction applications such as energy harvesting or wireless charging. In attempts to better understand the limitations of printing planar electromagnetic coils, the effect that the design parameters of the planar coils have on the achievable magnetic field strength were researched. A comparison between prototyping methods of digital extrusion and manufacturing scale flexographic printing are presented, discussing consistency in the printed coils and their performance in generating magnetic fields. A method to predict the performance of these planar coils is introduced to allow for design within required needs of an application. Results from the research include a demonstration of a printed coil being used in a flat speaker design, working off of actuating principles.

  1. Accuracy analysis for triangulation and tracking based on time-multiplexed structured light.

    PubMed

    Wagner, Benjamin; Stüber, Patrick; Wissel, Tobias; Bruder, Ralf; Schweikard, Achim; Ernst, Floris

    2014-08-01

    The authors' research group is currently developing a new optical head tracking system for intracranial radiosurgery. This tracking system utilizes infrared laser light to measure features of the soft tissue on the patient's forehead. These features are intended to offer highly accurate registration with respect to the rigid skull structure by means of compensating for the soft tissue. In this context, the system also has to be able to quickly generate accurate reconstructions of the skin surface. For this purpose, the authors have developed a laser scanning device which uses time-multiplexed structured light to triangulate surface points. The accuracy of the authors' laser scanning device is analyzed and compared for different triangulation methods. These methods are given by the Linear-Eigen method and a nonlinear least squares method. Since Microsoft's Kinect camera represents an alternative for fast surface reconstruction, the authors' results are also compared to the triangulation accuracy of the Kinect device. Moreover, the authors' laser scanning device was used for tracking of a rigid object to determine how this process is influenced by the remaining triangulation errors. For this experiment, the scanning device was mounted to the end-effector of a robot to be able to calculate a ground truth for the tracking. The analysis of the triangulation accuracy of the authors' laser scanning device revealed a root mean square (RMS) error of 0.16 mm. In comparison, the analysis of the triangulation accuracy of the Kinect device revealed a RMS error of 0.89 mm. It turned out that the remaining triangulation errors only cause small inaccuracies for the tracking of a rigid object. Here, the tracking accuracy was given by a RMS translational error of 0.33 mm and a RMS rotational error of 0.12°. This paper shows that time-multiplexed structured light can be used to generate highly accurate reconstructions of surfaces. Furthermore, the reconstructed point sets can be used for high-accuracy tracking of objects, meeting the strict requirements of intracranial radiosurgery.

  2. Consumer sleep tracking devices: a critical review.

    PubMed

    Lee, Jeon; Finkelstein, Joseph

    2015-01-01

    Consumer sleep tracking devices are widely advertised as effective means to monitor and manage sleep quality and to provide positive effects on overall heath. However objective evidence supporting these claims is not always readily available. The goal of this study was to perform a comprehensive review of available information on six representative sleep tracking devices: BodyMedia FIT, Fitbit Flex, Jawbone UP, Basis Band, Innovative Sleep Solutions SleepTracker, and Zeo Sleep Manager Pro. The review was conducted along the following dimensions: output metrics, theoretical frameworks, systematic evaluation, and FDA clearance. The review identified a critical lack of basic information about the devices: five out of six devices provided no supporting information on their sensor accuracy and four out of six devices provided no information on their output metrics accuracy. Only three devices were found to have related peer-reviewed articles. However in these articles wake detection accuracy was revealed to be quite low and to vary widely (BodyMedia, 49.9±3.6%; Fitbit, 19.8%; Zeo, 78.9% to 83.5%). No supporting evidence on how well tracking devices can help mitigate sleep loss and manage sleep disturbances in practical life was provided.

  3. Enhancement of sun-tracking with optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Wu, Jiunn-Chi

    2015-09-01

    Sun-tracking is one of the most challenging tasks in implementing CPV. In order to justify the additional complexity of sun-tracking, careful assessment of performance of CPV by monitoring the performance of sun-tracking is vital. Measurement of accuracy of sun-tracking is one of the important tasks in an outdoor test. This study examines techniques with three optoelectronic devices (i.e. position sensitive device (PSD), CCD and webcam). Outdoor measurements indicated that during sunny days (global horizontal insolation (GHI) > 700 W/m2), three devices recorded comparable tracking accuracy of 0.16˜0.3°. The method using a PSD has fastest sampling rate and is able to detect the sun's position without additional image processing. Yet, it cannot identify the sunlight effectively during low insolation. The techniques with a CCD and a webcam enhance the accuracy of centroid of sunlight via the optical lens and image processing. The image quality acquired using a webcam and a CCD is comparable but the webcam is more affordable than that of CCD because it can be assembled with consumer-graded products.

  4. Sensor and tracking data integration into a common operating picture

    NASA Astrophysics Data System (ADS)

    Bailey, Mark E.

    2003-09-01

    With rapid technological developments, a new innovative range of possibilities can be actualized in mainstreaming a network with checks and balances to provide sensor and tracking data integration/information to a wider Department of Defense (DoD) audience or group of agencies. As technologies are developed, methods to display the data are required. Multiple diverse tracking devices and sensors need to be displayed on a common operating picture. Sensors and tracking devices are used to monitor an area or object for movement or boundary penetration. Tracking devices in turn determine transit patterns of humans, animals and/or vehicles. In consortium these devices can have dual applications for military requirements and for other general purposes. The DoD Counterdrug Technology Development Program Office (CDTDPO) has designed a system to distribute sensor and tracking data to multiple users in separate agencies. This information can be displayed in whole or in part as to the specific needs of the user. It is with this purpose that the Data Distribution Network (DDN) was created to disseminate information to a collective group or to a select audience.

  5. An automated method for the evaluation of the pointing accuracy of Sun-tracking devices

    NASA Astrophysics Data System (ADS)

    Baumgartner, Dietmar J.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz; Veronig, Astrid M.; Rieder, Harald E.

    2017-03-01

    The accuracy of solar radiation measurements, for direct (DIR) and diffuse (DIF) radiation, depends significantly on the precision of the operational Sun-tracking device. Thus, rigid targets for instrument performance and operation have been specified for international monitoring networks, e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices that fulfill these accuracy requirements are available from various instrument manufacturers; however, none of the commercially available systems comprise an automatic accuracy control system allowing platform operators to independently validate the pointing accuracy of Sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system-independent, and cost-effective system for evaluating the pointing accuracy of Sun-tracking devices. We detail the monitoring system setup, its design and specifications, and the results from its application to the Sun-tracking system operated at the Kanzelhöhe Observatory (KSO) Austrian radiation monitoring network (ARAD) site. The results from an evaluation campaign from March to June 2015 show that the tracking accuracy of the device operated at KSO lies within BSRN specifications (i.e., 0.1° tracking accuracy) for the vast majority of observations (99.8 %). The evaluation of manufacturer-specified active-tracking accuracies (0.02°), during periods with direct solar radiation exceeding 300 W m-2, shows that these are satisfied in 72.9 % of observations. Tracking accuracies are highest during clear-sky conditions and on days where prevailing clear-sky conditions are interrupted by frontal movement; in these cases, we obtain the complete fulfillment of BSRN requirements and 76.4 % of observations within manufacturer-specified active-tracking accuracies. Limitations to tracking surveillance arise during overcast conditions and periods of partial solar-limb coverage by clouds. On days with variable cloud cover, 78.1 % (99.9 %) of observations meet active-tracking (BSRN) accuracy requirements while for days with prevailing overcast conditions these numbers reduce to 64.3 % (99.5 %).

  6. Surface properties and electromagnetic excitation of a piezoelectric gallium phosphate biosensor.

    PubMed

    Vasilescu, Alina; Ballantyne, Scott M; Cheran, Larisa-Emilia; Thompson, Michael

    2005-02-01

    The surface properties of GaPO4 have been studied by secondary ion mass spectrometry, X-ray photoelectron spectroscopy and electromagnetic acoustic wave excitation in order to explore the potential of this relatively new piezoelectric material as a biosensor. The X-ray photoelectron spectrum of the substrate shows a Ga-rich surface (Ga:P = 1.4), while the negative secondary ion mass spectrum is similar to that of other phosphates, with PO3- and PO2- being the main fragments derived from the substrate. Surface analysis reveals that the linker protein for biotinylated moieties, neutravidin, is both readily chemisorbed to bare gallium phosphate at pH 7.5 and attached to p-hydroxy benzaldehyde-treated devices, establishing the possibility to exploit the surface chemistry of the phosphate for the fabrication of an electrode-free acoustic wave biosensor. Preliminary results regarding the detection of the adsorption of neutravidin with an electromagnetic field-excited GaPO4 device incorporated in a FIA configuration showed comparable results with those obtained with a quartz-sensor equivalent. The frequency shift for the adsorbed protein layer at the device fundamental frequency was 200 Hz and the noise was routinely around 13 Hz. The possibility to use the electrodeless acoustic GaPO4 device at higher harmonics in the liquid phase has also been confirmed.

  7. User acceptance of location-tracking technologies in health research: Implications for study design and data quality.

    PubMed

    Hardy, Jean; Veinot, Tiffany C; Yan, Xiang; Berrocal, Veronica J; Clarke, Philippa; Goodspeed, Robert; Gomez-Lopez, Iris N; Romero, Daniel; Vydiswaran, V G Vinod

    2018-03-01

    Research regarding place and health has undergone a revolution due to the availability of consumer-focused location-tracking devices that reveal fine-grained details of human mobility. Such research requires that participants accept such devices enough to use them in their daily lives. There is a need for a theoretically grounded understanding of acceptance of different location-tracking technology options, and its research implications. Guided by an extended Unified Theory of Acceptance and Use of Technology (UTAUT), we conducted a 28-day field study comparing 21 chronically ill people's acceptance of two leading, consumer-focused location-tracking technologies deployed for research purposes: (1) a location-enabled smartphone, and (2) a GPS watch/activity tracker. Participants used both, and completed two surveys and qualitative interviews. Findings revealed that all participants exerted effort to facilitate data capture, such as by incorporating devices into daily routines and developing workarounds to keep devices functioning. Nevertheless, the smartphone was perceived to be significantly easier and posed fewer usability challenges for participants than the watch. Older participants found the watch significantly more difficult to use. For both devices, effort expectancy was significantly associated with future willingness to participate in research although prosocial motivations overcame some concerns. Social influence, performance expectancy and use behavior were significantly associated with intentions to use the devices in participants' personal lives. Data gathered via the smartphone was significantly more complete than data gathered via the watch, primarily due to usability challenges. To make longer-term participation in location tracking research a reality, and to achieve complete data capture, researchers must minimize the effort involved in participation; this requires usable devices. For long-term location-tracking studies using similar devices, findings indicate that only smartphone-based tracking is up to the challenge. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Electromagnetic Fields, Pulsed Radiofrequency Radiation, and Epigenetics: How Wireless Technologies May Affect Childhood Development

    ERIC Educational Resources Information Center

    Sage, Cindy; Burgio, Ernesto

    2018-01-01

    Mobile phones and other wireless devices that produce electromagnetic fields (EMF) and pulsed radiofrequency radiation (RFR) are widely documented to cause potentially harmful health impacts that can be detrimental to young people. New epigenetic studies are profiled in this review to account for some neurodevelopmental and neurobehavioral changes…

  9. 77 FR 20642 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... Advisory Committee. General Function of the Committee: To provide advice and recommendations to the Agency... utilizes electromagnetic waves to characterize human tissue in real time and provides intraoperative...

  10. Capacity of dental equipment to interfere with cardiac implantable electrical devices.

    PubMed

    Lahor-Soler, Eduard; Miranda-Rius, Jaume; Brunet-Llobet, Lluís; Sabaté de la Cruz, Xavier

    2015-06-01

    Patients with cardiac implantable electrical devices should take precautions when exposed to electromagnetic fields. Possible interference as a result of proximity to electromagnets or electricity flow from electronic tools employed in clinical odontology remains controversial. The objective of this study was to examine in vitro the capacity of dental equipment to provoke electromagnetic interference in pacemakers and implantable cardioverter defibrillators. Six electronic dental instruments were tested on three implantable cardioverter defibrillators and three pacemakers from different manufacturers. A simulator model, submerged in physiological saline, with elements that reproduced life-size anatomic structures was used. The instruments were analyzed at differing distances and for different time periods of application. The dental instruments studied displayed significant differences in their capacity to trigger electromagnetic interference. Significant differences in the quantity of registered interference were observed with respect to the variables manufacturer, type of cardiac implant, and application distance but not with the variable time of application. The electronic dental equipment tested at a clinical application distance (20 cm) provoked only slight interference in the pacemakers and implantable cardioverter defibrillators employed, irrespective of manufacturer. © 2015 Eur J Oral Sci.

  11. Devices, systems, and methods for harvesting energy and methods for forming such devices

    DOEpatents

    Kotter, Dale K.; Novack, Steven D.

    2012-12-25

    Energy harvesting devices include a substrate coupled with a photovoltaic material and a plurality of resonance elements associated with the substrate. The resonance elements are configured to collect energy in at least visible and infrared light spectra. Each resonance element is capacitively coupled with the photovoltaic material, and may be configured to resonate at a bandgap energy of the photovoltaic material. Systems include a photovoltaic material coupled with a feedpoint of a resonance element. Methods for harvesting energy include exposing a resonance element having a resonant electromagnetic radiation having a frequency between approximately 20 THz and approximately 1,000 THz, absorbing at least a portion of the electromagnetic radiation with the resonance element, and resonating the resonance element at a bandgap energy of an underlying photovoltaic material. Methods for forming an energy harvesting device include forming resonance elements on a substrate and capacitively coupling the resonance elements with a photovoltaic material.

  12. Characterization of a rotary hybrid multimodal energy harvester

    NASA Astrophysics Data System (ADS)

    Larkin, Miles R.; Tadesse, Yonas

    2014-04-01

    In this study, experimental characterizations of a new hybrid energy harvesting device consisting of piezoelectric and electromagnetic transducers are presented. The generator, to be worn on the legs or arms of a person, harnesses linear motion and impact forces from human motion to generate electrical energy. The device consists of an unbalanced rotor made of three piezoelectric beams which have permanent magnets attached to the ends. Impact forces cause the beams to vibrate, generating a voltage across their electrodes and linear motion causes the rotor to spin. As the rotor spins, the magnets pass over ten electromagnetic coils mounted to the base, inducing a current through the wire. Several design related issues were investigated experimentally in order to optimize the hybrid device for maximum power generation. Further experiments were conducted on the system to characterize the energy harvesting capabilities of the device, all of which are presented in this study.

  13. Bilayer avalanche spin-diode logic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Joseph S., E-mail: joseph.friedman@u-psud.fr; Querlioz, Damien; Fadel, Eric R.

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  14. Applicability of an electrosurgical device based on electromagnetics in neurosurgery.

    PubMed

    Gharabaghi, Alireza; Rosahl, Steffen K; Samii, Amir; Feigl, Guenther C; Safavi-Abbasi, Sam; Bundschuh, Otto; Tatagiba, Marcos; Samii, Madjid

    2006-07-01

    Because of electrical and thermal spread to healthy nervous tissue, the application of electrosurgical tools in neurosurgery has specific limitations. This is true for both bipolar and monopolar devices. These limitations are not inherent to an instrument in which action is based on electromagnetic interaction with human tissue. We evaluated the indications and the clinical applicability of a new radiofrequency electrosurgical unit that works on this biophysical principle. The system was found to be a useful addition for the resection of morphologically tougher tissue with keyhole approaches in which the ultrasound aspirator cannot easily be applied.

  15. Electromagnetic interference caused by common surgical energy-based devices on an implanted cardiac defibrillator.

    PubMed

    Paniccia, Alessandro; Rozner, Marc; Jones, Edward L; Townsend, Nicole T; Varosy, Paul D; Dunning, James E; Girard, Guillaume; Weyer, Christopher; Stiegmann, Gregory V; Robinson, Thomas N

    2014-12-01

    Surgical energy-based devices emit energy, which can interfere with other electronic devices (eg, implanted cardiac pacemakers and/or defibrillators). The purpose of this study was to quantify the amount of unintentional energy (electromagnetic interference [EMI]) transferred to an implanted cardiac defibrillator by common surgical energy-based devices. A transvenous cardiac defibrillator was implanted in an anesthetized pig. The primary outcome measure was the average maximum EMI occurring on the implanted cardiac device during activations of multiple different surgical energy-based devices. The EMI transferred to the implanted cardiac device is as follows: traditional bipolar 30 W .01 ± .004 mV, advanced bipolar .004 ± .003 mV, ultrasonic shears .01 ± .004 mV, monopolar Bovie 30 W coagulation .50 ± .20 mV, monopolar Bovie 30 W blend .92 ± .63 mV, monopolar instrument without dispersive electrode .21 ± .07 mV, plasma energy 3.48 ± .78 mV, and argon beam coagulator 2.58 ± .34 mV. Surgeons can minimize EMI on implanted cardiac defibrillators by preferentially utilizing bipolar and ultrasonic devices. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Radiation-hardened fast acquisition/weak signal tracking system and method

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke (Inventor); Boegner, Gregory J. (Inventor); Sirotzky, Steve (Inventor)

    2009-01-01

    A global positioning system (GPS) receiver and method of acquiring and tracking GPS signals comprises an antenna adapted to receive GPS signals; an analog radio frequency device operatively connected to the antenna and adapted to convert the GPS signals from an analog format to a digital format; a plurality of GPS signal tracking correlators operatively connected to the analog RF device; a GPS signal acquisition component operatively connected to the analog RF device and the plurality of GPS signal tracking correlators, wherein the GPS signal acquisition component is adapted to calculate a maximum vector on a databit correlation grid; and a microprocessor operatively connected to the plurality of GPS signal tracking correlators and the GPS signal acquisition component, wherein the microprocessor is adapted to compare the maximum vector with a predetermined correlation threshold to allow the GPS signal to be fully acquired and tracked.

  17. Laboratory and Field Testing of NYCTA Power Frequency Track Circuits

    DOT National Transportation Integrated Search

    1986-02-01

    This report addresses the possible electromagnetic interference between the electronic AC propulsion control systems and the signaling and train control systems. The potential exists for AC-drive propulsion systems to cause EMI that can adversely aff...

  18. Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling

    PubMed Central

    Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro

    2016-01-01

    This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator. PMID:26978370

  19. Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling.

    PubMed

    Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro

    2016-03-11

    This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator.

  20. Electromagnetic guided couch and multileaf collimator tracking on a TrueBeam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Rune; Ravkilde, Thomas; Worm, Esben Schjødt

    2016-05-15

    Purpose: Couch and MLC tracking are two promising methods for real-time motion compensation during radiation therapy. So far, couch and MLC tracking experiments have mainly been performed by different research groups, and no direct comparison of couch and MLC tracking of volumetric modulated arc therapy (VMAT) plans has been published. The Varian TrueBeam 2.0 accelerator includes a prototype tracking system with selectable couch or MLC compensation. This study provides a direct comparison of the two tracking types with an otherwise identical setup. Methods: Several experiments were performed to characterize the geometric and dosimetric performance of electromagnetic guided couch and MLCmore » tracking on a TrueBeam accelerator equipped with a Millennium MLC. The tracking system latency was determined without motion prediction as the time lag between sinusoidal target motion and the compensating motion of the couch or MLC as recorded by continuous MV portal imaging. The geometric and dosimetric tracking accuracies were measured in tracking experiments with motion phantoms that reproduced four prostate and four lung tumor trajectories. The geometric tracking error in beam’s eye view was determined as the distance between an embedded gold marker and a circular MLC aperture in continuous MV images. The dosimetric tracking error was quantified as the measured 2%/2 mm gamma failure rate of a low and a high modulation VMAT plan delivered with the eight motion trajectories using a static dose distribution as reference. Results: The MLC tracking latency was approximately 146 ms for all sinusoidal period lengths while the couch tracking latency increased from 187 to 246 ms with decreasing period length due to limitations in the couch acceleration. The mean root-mean-square geometric error was 0.80 mm (couch tracking), 0.52 mm (MLC tracking), and 2.75 mm (no tracking) parallel to the MLC leaves and 0.66 mm (couch), 1.14 mm (MLC), and 2.41 mm (no tracking) perpendicular to the leaves. The motion-induced gamma failure rate was in mean 0.1% (couch tracking), 8.1% (MLC tracking), and 30.4% (no tracking) for prostate motion and 2.9% (couch), 2.4% (MLC), and 41.2% (no tracking) for lung tumor motion. The residual tracking errors were mainly caused by inadequate adaptation to fast lung tumor motion for couch tracking and to prostate motion perpendicular to the MLC leaves for MLC tracking. Conclusions: Couch and MLC tracking markedly improved the geometric and dosimetric accuracies of VMAT delivery. However, the two tracking types have different strengths and weaknesses. While couch tracking can correct perfectly for slowly moving targets such as the prostate, MLC tracking may have considerably larger dose errors for persistent target shift perpendicular to the MLC leaves. Advantages of MLC tracking include faster dynamics with better adaptation to fast moving targets, the avoidance of moving the patient, and the potential to track target rotations and deformations.« less

  1. Coded excitation ultrasonic needle tracking: An in vivo study.

    PubMed

    Xia, Wenfeng; Ginsberg, Yuval; West, Simeon J; Nikitichev, Daniil I; Ourselin, Sebastien; David, Anna L; Desjardins, Adrien E

    2016-07-01

    Accurate and efficient guidance of medical devices to procedural targets lies at the heart of interventional procedures. Ultrasound imaging is commonly used for device guidance, but determining the location of the device tip can be challenging. Various methods have been proposed to track medical devices during ultrasound-guided procedures, but widespread clinical adoption has remained elusive. With ultrasonic tracking, the location of a medical device is determined by ultrasonic communication between the ultrasound imaging probe and a transducer integrated into the medical device. The signal-to-noise ratio (SNR) of the transducer data is an important determinant of the depth in tissue at which tracking can be performed. In this paper, the authors present a new generation of ultrasonic tracking in which coded excitation is used to improve the SNR without spatial averaging. A fiber optic hydrophone was integrated into the cannula of a 20 gauge insertion needle. This transducer received transmissions from the ultrasound imaging probe, and the data were processed to obtain a tracking image of the needle tip. Excitation using Barker or Golay codes was performed to improve the SNR, and conventional bipolar excitation was performed for comparison. The performance of the coded excitation ultrasonic tracking system was evaluated in an in vivo ovine model with insertions to the brachial plexus and the uterine cavity. Coded excitation significantly increased the SNRs of the tracking images, as compared with bipolar excitation. During an insertion to the brachial plexus, the SNR was increased by factors of 3.5 for Barker coding and 7.1 for Golay coding. During insertions into the uterine cavity, these factors ranged from 2.9 to 4.2 for Barker coding and 5.4 to 8.5 for Golay coding. The maximum SNR was 670, which was obtained with Golay coding during needle withdrawal from the brachial plexus. Range sidelobe artifacts were observed in tracking images obtained with Barker coded excitation, and they were visually absent with Golay coded excitation. The spatial tracking accuracy was unaffected by coded excitation. Coded excitation is a viable method for improving the SNR in ultrasonic tracking without compromising spatial accuracy. This method provided SNR increases that are consistent with theoretical expectations, even in the presence of physiological motion. With the ultrasonic tracking system in this study, the SNR increases will have direct clinical implications in a broad range of interventional procedures by improving visibility of medical devices at large depths.

  2. Magnetic tracking for TomoTherapy systems: gradiometer based methods to filter eddy-current magnetic fields.

    PubMed

    McGary, John E; Xiong, Zubiao; Chen, Ji

    2013-07-01

    TomoTherapy systems lack real-time, tumor tracking. A possible solution is to use electromagnetic markers; however, eddy-current magnetic fields generated in response to a magnetic source can be comparable to the signal, thus degrading the localization accuracy. Therefore, the tracking system must be designed to account for the eddy fields created along the inner bore conducting surfaces. The aim of this work is to investigate localization accuracy using magnetic field gradients to determine feasibility toward TomoTherapy applications. Electromagnetic models are used to simulate magnetic fields created by a source and its simultaneous generation of eddy currents within a conducting cylinder. The source position is calculated using a least-squares fit of simulated sensor data using the dipole equation as the model equation. To account for field gradients across the sensor area (≈ 25 cm(2)), an iterative method is used to estimate the magnetic field at the sensor center. Spatial gradients are calculated with two arrays of uniaxial, paired sensors that form a gradiometer array, where the sensors are considered ideal. Experimental measurements of magnetic fields within the TomoTherapy bore are shown to be 1%-10% less than calculated with the electromagnetic model. Localization results using a 5 × 5 array of gradiometers are, in general, 2-4 times more accurate than a planar array of sensors, depending on the solenoid orientation and position. Simulation results show that the localization accuracy using a gradiometer array is within 1.3 mm over a distance of 20 cm from the array plane. In comparison, localization errors using single array are within 5 mm. The results indicate that the gradiometer method merits further studies and work due to the accuracy achieved with ideal sensors. Future studies should include realistic sensor models and extensive numerical studies to estimate the expected magnetic tracking accuracy within a TomoTherapy system before proceeding with prototype development.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, W; Merrick, G; Kurko, B

    Purpose: To quantify the effect of metal hip prosthesis on the ability to track and localize electromagnetic transponders. Methods: Three Calypso transponders were implanted into two prostate phantoms. The geometric center of the transponders were identified on computed tomography and set as the isocenter. With the phantom stationary on the treatment table and the tracking array 14-cm above the isocenter, data was acquired by the Calypso system at 10 Hz to establish the uncertainty in measurements. Transponder positional data was acquired with unilateral hip prostheses of different metallic compositions and then with bilateral hips placed at variable separation from themore » phantom. Results: Regardless of hip prosthesis composition, the average vector displacement in the presence of a unilateral prosthesis was < 0.5 mm. The greatest contribution to overall vector displacement occurred in the lateral dimension. With bilateral hip prosthesis, the average vector displacement was 0.3 mm. The displacement in the lateral dimension was markedly reduced compared with a unilateral hip, suggesting that there was a countervailing effect with bilateral hip prosthesis. The greatest average vector displacement was 0.6 mm and occurred when bilateral hip prostheses were placed within 4 cm of the detector array. Conclusion: Unilateral and bilateral hip prostheses did not have any meaningful effect on the ability to accurately track electromagnetic transponders implanted in a prostate phantom. At clinically realistic distances between the hip and detection array, the average tracking error is negligible.« less

  4. An Alternative Wearable Tracking System Based on a Low-Power Wide-Area Network

    PubMed Central

    Fernández-Garcia, Raul; Gil, Ignacio

    2017-01-01

    This work presents an alternative wearable tracking system based on a low-power wide area network. A complete GPS receiver was integrated with a textile substrate, and the latitude and longitude coordinates were sent to the cloud by means of the SIM-less SIGFOX network. To send the coordinates over SIGFOX protocol, a specific codification algorithm was used and a customized UHF antenna on jeans fabric was designed, simulated and tested. Moreover, to guarantee the compliance to international regulations for human body exposure to electromagnetic radiation, the electromagnetic specific absorption rate of this antenna was analyzed. A specific remote server was developed to decode the latitude and longitude coordinates. Once the coordinates have been decoded, the remote server sends this information to the open source data viewer SENTILO to show the location of the sensor node in a map. The functionality of this system has been demonstrated experimentally. The results guarantee the utility and wearability of the proposed tracking system for the development of sensor nodes and point out that it can be a low cost alternative to other commercial products based on GSM networks. PMID:28335424

  5. Hybrid Orientation Based Human Limbs Motion Tracking Method

    PubMed Central

    Glonek, Grzegorz; Wojciechowski, Adam

    2017-01-01

    One of the key technologies that lays behind the human–machine interaction and human motion diagnosis is the limbs motion tracking. To make the limbs tracking efficient, it must be able to estimate a precise and unambiguous position of each tracked human joint and resulting body part pose. In recent years, body pose estimation became very popular and broadly available for home users because of easy access to cheap tracking devices. Their robustness can be improved by different tracking modes data fusion. The paper defines the novel approach—orientation based data fusion—instead of dominating in literature position based approach, for two classes of tracking devices: depth sensors (i.e., Microsoft Kinect) and inertial measurement units (IMU). The detailed analysis of their working characteristics allowed to elaborate a new method that let fuse more precisely limbs orientation data from both devices and compensates their imprecisions. The paper presents the series of performed experiments that verified the method’s accuracy. This novel approach allowed to outperform the precision of position-based joints tracking, the methods dominating in the literature, of up to 18%. PMID:29232832

  6. Stable operating regime for traveling wave devices

    DOEpatents

    Carlsten, Bruce E.

    2000-01-01

    Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.

  7. Safe use of cellular telephones in hospitals: fundamental principles and case studies.

    PubMed

    Cohen, Ted; Ellis, Willard S; Morrissey, Joseph J; Bakuzonis, Craig; David, Yadin; Paperman, W David

    2005-01-01

    Many industries and individuals have embraced cellular telephones. They provide mobile, synchronous communication, which could hypothetically increase the efficiency and safety of inpatient healthcare. However, reports of early analog cellular telephones interfering with critical life-support machines had led many hospitals to strictly prohibit cellular telephones. A literature search revealed that individual hospitals now are allowing cellular telephone use with various policies to prevent electromagnetic interference with medical devices. The fundamental principles underlying electromagnetic interference are immunity, frequency, modulation technology, distance, and power Electromagnetic interference risk mitigation methods based on these principles have been successfully implemented. In one case study, a minimum distance between cellular telephones and medical devices is maintained, with restrictions in critical areas. In another case study, cellular telephone coverage is augmented to automatically control the power of the cellular telephone. While no uniform safety standard yet exists, cellular telephones can be safely used in hospitals when their use is managed carefully.

  8. Structures, systems and methods for harvesting energy from electromagnetic radiation

    DOEpatents

    Novack, Steven D [Idaho Falls, ID; Kotter, Dale K [Shelley, ID; Pinhero, Patrick J [Columbia, MO

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  9. Testing for EMC (electromagnetic compatibility) in the clinical environment.

    PubMed

    Paperman, D; David, Y; Martinez, M

    1996-01-01

    Testing for electromagnetic compatibility (EMC) in the clinical environment introduces a host of complex conditions not normally encountered under laboratory conditions. In the clinical environment, various radio-frequency (RF) sources of electromagnetic interference (EMI) may be present throughout the entire spectrum of interest. Isolating and analyzing the impact from the sources of interference to medical devices involves a multidisciplinary approach based on training in, and knowledge of, the following: operation of medical devices and their susceptibility to EMI; RF propagation modalities and interaction theory; spectrum analysis systems and techniques (preferably with signature analysis capabilities) and calibrated antennas; the investigation methodology of suspected EMC problems, and testing protocols and standards. Using combinations of standard test procedures adapted for the clinical environment with personnel that have an understanding of radio-frequency behavior increases the probability of controlling, proactively, EMI in the clinical environment, thus providing for a safe and more effective patient care environment.

  10. Controversies on electromagnetic field exposure and the nervous systems of children.

    PubMed

    Warille, Aymen A; Onger, M Emin; Turkmen, A Pinar; Deniz, Ö Gülsüm; Altun, Gamze; Yurt, K Kubra; Altunkaynak, B Zuhal; Kaplan, Süleyman

    2016-05-01

    This paper reviewed possible health effects from exposure to low levels of electromagnetic field (EMF) in children, arising from electrical power sources and mobile phones. Overall, the information about effects on developmental processes and cognitive functions is insufficient and further research on children and adolescents is critically needed. New research approaches are required focused on the effects on the developmental processes of children exposed to electromagnetic fields, using consistent protocols. When the current data were considered in detail, it was noted that children's unique vulnerabilities make them more sensitive to EMFs emitted by electronics and wireless devices, as compared to adults. Some experimental research shows a neurological impact and exposure in humans may lead to the cognitive and behavioral impairments. Because of the proliferation of wireless devices, public awareness of these dangers now is important to safeguard children's future healthy brain development.

  11. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  12. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.

    PubMed

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-12

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  13. Advanced Measurement Devices for the Microgravity Electromagnetic Levitation Facility EML

    NASA Technical Reports Server (NTRS)

    Brillo, Jurgen; Fritze, Holger; Lohofer, Georg; Schulz, Michal; Stenzel, Christian

    2012-01-01

    This paper reports on two advanced measurement devices for the microgravity electromagnetic levitation facility (EML), which is currently under construction for the use onboard the "International Space Station (ISS)": the "Sample Coupling Electronics (SCE)" and the "Oxygen Sensing and Control Unit (OSC)". The SCE measures by a contactless, inductive method the electrical resistivity and the diameter of a spherical levitated metallic droplet by evaluating the voltage and electrical current applied to the levitation coil. The necessity of the OSC comes from the insight that properties like surface tension or, eventually, viscosity cannot seriously be determined by the oscillating drop method in the EML facility without knowing the conditions of the surrounding atmosphere. In the following both measurement devices are explained and laboratory test results are presented.

  14. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yungsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe-based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  15. Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy.

    PubMed

    Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi

    2017-07-18

    The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can now be realized through very fast data acquisition, processing, and reconstruction algorithms. If we use DPC STEM for atomic-resolution imaging using a sub-angstrom size electron probe, it has been shown that we can directly observe the atomic electric field inside atoms within crystals and even inside single atoms, the field between the atomic nucleus and the surrounding electron cloud, which possesses information about the atomic species, local chemical bonding and charge redistribution between bonded atoms. This possibility may open an alternative way for directly visualizing atoms and nanostructures, that is, seeing atoms as an entity of electromagnetic fields that reflect the intra- and interatomic electronic structures. In this Account, the current status of aberration-corrected DPC STEM is highlighted, along with some applications in real material and device studies.

  16. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    NASA Astrophysics Data System (ADS)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-09-01

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  17. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissuemore » voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.« less

  18. Early effects of extracorporeal shock wave treatment on osteoblast-like cells: a comparative study between electromagnetic and electrohydraulic devices.

    PubMed

    Martini, Lucia; Giavaresi, Gianluca; Fini, Milena; Borsari, Veronica; Torricelli, Paola; Giardino, Roberto

    2006-11-01

    Extracorporeal shockwave therapy (ESWT) has been increasingly applied to treat orthopedic and musculoskeletal pathologies. ESWT involves mechanical perturbations that, as with other physical therapies, can result in mechanical stimuli to a large number of cells, including bone cells. The aim of this study was to evaluate the effects of shock waves on osteoblast-like cells (MG63) when using two different generators of shock waves (electrohydraulic and electromagnetic devices), in terms of cell damage, cell viability, osteogenic phenotype expression, and cytokine production. MG63 cells were suspended in 1.5 mL screw-cap cryotubes (1 x 10 cells/mL), containing phosphate buffer solution (PBS), which were maintained at 37 degrees C during all the experimental times. Two levels of energy flux density (EFD) were evaluated for each device: 0.15 to 0.18 mJ/mm2 and 0.40 mJ/mm2. Cells were then cultivated for 72 hours starting from a concentration of 1 x 10 cells/mL, and biological activity and viability were evaluated 24 and 72 hours after treatment. The results obtained demonstrate that the factors most affecting osteoblast activity involve both the device and the level of EFD selected, and they must be considered all together. The use of the electromagnetic device and a level of EFD lower than 0.40 mJ/mm2 would appear to induce fewer immediate cytodestructive effects and better stimulate subsequent proliferation and the synthetic activity of MG63.

  19. Old Train, New Track.

    ERIC Educational Resources Information Center

    Prokopeak, Andrew W.

    1984-01-01

    Presents ideas for using model trains as a teaching tool and/or minicourse in junior high school science classes. Students investigate such topics as electric motor operation, electric potential, resistance, electromagnets, transformers, switches, centripetal force, cam mechanism, circuitry and wiring techniques, and ammeters. Directions for…

  20. Palmar reconstruction of the triangular fibrocartilage complex for instability of the distal radioulnar joint: a biomechanical study.

    PubMed

    Kataoka, T; Moritomo, H; Omokawa, S; Iida, A; Wada, T; Aoki, M

    2013-06-01

    We developed a new triangular fibrocartilage complex reconstruction technique for distal radioulnar joint instability in which the palmar portion of the triangular fibrocartilage complex was predominantly reconstructed, and evaluated whether such reconstruction can restore stability of the distal radioulnar joint in seven fresh cadaver upper extremities. Distal radioulnar joint instability was induced by cutting all soft-tissue stabilizers around the distal ulna. Using a palmar approach, a palmaris longus tendon graft was sutured to the remnant of the palmar radioulnar and ulnocarpal ligaments. The graft was then passed through a bone tunnel created at the fovea and was sutured. Loads were applied to the radius, and dorsopalmar displacements of the radius relative to the ulna were measured using an electromagnetic tracking device in neutral rotation, 60° supination and 60° pronation. We compared the dorsopalmar displacements before sectioning, before reconstruction and after reconstruction. Dorsopalmar instability produced by sectioning significantly improved in all forearm positions after reconstruction.

  1. Image Fusion During Vascular and Nonvascular Image-Guided Procedures☆

    PubMed Central

    Abi-Jaoudeh, Nadine; Kobeiter, Hicham; Xu, Sheng; Wood, Bradford J.

    2013-01-01

    Image fusion may be useful in any procedure where previous imaging such as positron emission tomography, magnetic resonance imaging, or contrast-enhanced computed tomography (CT) defines information that is referenced to the procedural imaging, to the needle or catheter, or to an ultrasound transducer. Fusion of prior and intraoperative imaging provides real-time feedback on tumor location or margin, metabolic activity, device location, or vessel location. Multimodality image fusion in interventional radiology was initially introduced for biopsies and ablations, especially for lesions only seen on arterial phase CT, magnetic resonance imaging, or positron emission tomography/CT but has more recently been applied to other vascular and nonvascular procedures. Two different types of platforms are commonly used for image fusion and navigation: (1) electromagnetic tracking and (2) cone-beam CT. Both technologies would be reviewed as well as their strengths and weaknesses, indications, when to use one vs the other, tips and guidance to streamline use, and early evidence defining clinical benefits of these rapidly evolving, commercially available and emerging techniques. PMID:23993079

  2. Descriptive study of electromagnetic wave distribution for various seating positions: using digital textbooks.

    PubMed

    Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung

    2014-04-01

    To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in an elementary school that uses digital textbooks. Electric and magnetic fields from TPCs were measured using the HI-3603 Visual Display Terminal/ Very Low Frequency (VDT/VLF) radiation measurement system. Electromagnetic field values from TPCs measured at a student's seat and at a teacher's computer were deemed not harmful to health. However, electromagnetic field values varied based on the distance between students, other electronic devices such as a desktop computers, and student posture while using a TPC. Based on these results, it is necessary to guide students to observe proper posture and to arrange seats at an appropriate distance in the classroom.

  3. Accuracy of lesion boundary tracking in navigated breast tumor excision

    NASA Astrophysics Data System (ADS)

    Heffernan, Emily; Ungi, Tamas; Vaughan, Thomas; Pezeshki, Padina; Lasso, Andras; Gauvin, Gabrielle; Rudan, John; Engel, C. Jay; Morin, Evelyn; Fichtinger, Gabor

    2016-03-01

    PURPOSE: An electromagnetic navigation system for tumor excision in breast conserving surgery has recently been developed. Preoperatively, a hooked needle is positioned in the tumor and the tumor boundaries are defined in the needle coordinate system. The needle is tracked electromagnetically throughout the procedure to localize the tumor. However, the needle may move and the tissue may deform, leading to errors in maintaining a correct excision boundary. It is imperative to quantify these errors so the surgeon can choose an appropriate resection margin. METHODS: A commercial breast biopsy phantom with several inclusions was used. Location and shape of a lesion before and after mechanical deformation were determined using 3D ultrasound volumes. Tumor location and shape were estimated from initial contours and tracking data. The difference in estimated and actual location and shape of the lesion after deformation was quantified using the Hausdorff distance. Data collection and analysis were done using our 3D Slicer software application and PLUS toolkit. RESULTS: The deformation of the breast resulted in 3.72 mm (STD 0.67 mm) average boundary displacement for an isoelastic lesion and 3.88 mm (STD 0.43 mm) for a hyperelastic lesion. The difference between the actual and estimated tracked tumor boundary was 0.88 mm (STD 0.20 mm) for the isoelastic and 1.78 mm (STD 0.18 mm) for the hyperelastic lesion. CONCLUSION: The average lesion boundary tracking error was below 2mm, which is clinically acceptable. We suspect that stiffness of the phantom tissue affected the error measurements. Results will be validated in patient studies.

  4. Electromagnetic Momentum in Magnetic Media and the Abraham-Minkowski Controversy

    ERIC Educational Resources Information Center

    Jimenez, J. L.; Campos, I.; Lopez-Marino, M. A.

    2011-01-01

    We explore the consequences of a force density, [image omitted], studied by some authors, for the device designed by Lai (1980 "Am. J. Phys. 48" 658) to analyse which definition of electromagnetic momentum density, either Minkowski's or Abraham's, is consistent with mechanical torques that arise from the change in time of a magnetic field, which…

  5. A Comparative Study of the Precision of Carstens and Northern Digital Instruments Electromagnetic Articulographs

    ERIC Educational Resources Information Center

    Savariaux, Christophe; Badin, Pierre; Samson, Adeline; Gerber, Silvain

    2017-01-01

    Purpose: This study compares the precision of the electromagnetic articulographs used in speech research: Northern Digital Instruments' Wave and Carstens' AG200, AG500, and AG501 systems. Method: The fluctuation of distances between 3 pairs of sensors attached to a manually rotated device that can position them inside the measurement volumes was…

  6. Space and Missile Systems Center Standard: Test Requirements for Ground Systems

    DTIC Science & Technology

    2013-09-30

    Human Exposure to Radio Frequency Electromagnetic Fields , 3kHz to...5] Federal Code of Regulations FCC Part 15 Federal Code of Regulations, Title 47: Telecommunication, Part 15– Radio Frequency Devices 2.3 Non...DT&E Development test and evaluation EMC Electromagnetic compatibility FAT Factory acceptance test FCA Functional configuration audit FCC

  7. The Relationship between Pre-Service Teachers' Awareness Levels of Electromagnetic Pollution and Other Environmental Problems

    ERIC Educational Resources Information Center

    Koklukaya, Ayse Nesibe; Guven Yildirim, Ezgi; Selvi, Mahmut

    2017-01-01

    Purpose: The purpose of this study is to find out the relationship between the awareness level of preservice science teachers' conscious use of technological devices, which cause electromagnetic pollution, and their awareness level of related environmental problems. Research Methods: In this study, a mixed design method was used. A relational…

  8. Sliding mode control of electromagnetic tethered satellite formation

    NASA Astrophysics Data System (ADS)

    Hallaj, Mohammad Amin Alandi; Assadian, Nima

    2016-08-01

    This paper investigates the control of tethered satellite formation actuated by electromagnetic dipoles and reaction wheels using the robust sliding mode control technique. Generating electromagnetic forces and moments by electric current coils provides an attractive control actuation alternative for tethered satellite system due to the advantages of no propellant consumption and no obligatory rotational motion. Based on a dumbbell model of tethered satellite in which the flexibility and mass of the tether is neglected, the equations of motion in Cartesian coordinate are derived. In this model, the J2 perturbation is taken into account. The far-field and mid-field models of electromagnetic forces and moments of two satellites on each other and the effect of the Earth's magnetic field are presented. A robust sliding mode controller is designed for precise trajectory tracking purposes and to deal with the electromagnetic force and moment uncertainties and external disturbances due to the Earth's gravitational and magnetic fields inaccuracy. Numerical simulation results are presented to validate the effectiveness of the developed controller and its superiority over the linear controller.

  9. Overview of Advanced Electromagnetic Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Kamhawi, Hani; Gilland, James H.; Arrington, Lynn A.

    2005-01-01

    NASA Glenn Research Center s Very High Power Electric Propulsion task is sponsored by the Energetics Heritage Project. Electric propulsion technologies currently being investigated under this program include pulsed electromagnetic plasma thrusters, magnetoplasmadynamic thrusters, helicon plasma sources as well as the systems models for high power electromagnetic propulsion devices. An investigation and evaluation of pulsed electromagnetic plasma thruster performance at energy levels up to 700 Joules is underway. On-going magnetoplasmadynamic thruster experiments will investigate applied-field performance characteristics of gas-fed MPDs. Plasma characterization of helicon plasma sources will provide additional insights into the operation of this novel propulsion concept. Systems models have been developed for high power electromagnetic propulsion concepts, such as pulsed inductive thrusters and magnetoplasmadynamic thrusters to enable an evaluation of mission-optimized designs.

  10. Magneto-optic tracking of a flexible laparoscopic ultrasound transducer for laparoscope augmentation.

    PubMed

    Feuerstein, Marco; Reichl, Tobias; Vogel, Jakob; Schneider, Armin; Feussner, Hubertus; Navabi, Nassir

    2007-01-01

    In abdominal surgery, a laparoscopic ultrasound transducer is commonly used to detect lesions such as metastases. The determination and visualization of position and orientation of its flexible tip in relation to the patient or other surgical instruments can be of much help to (novice) surgeons utilizing the transducer intraoperatively. This difficult subject has recently been paid attention to by the scientific community . Electromagnetic tracking systems can be applied to track the flexible tip. However, the magnetic field can be distorted by ferromagnetic material. This paper presents a new method based on optical tracking of the laparoscope and magneto-optic tracking of the transducer, which is able to automatically detect field distortions. This is used for a smooth augmentation of the B-scan images of the transducer directly on the camera images in real time.

  11. Study of the post-derailment safety measures on low-speed derailment tests

    NASA Astrophysics Data System (ADS)

    Guo, Lirong; Wang, Kaiyun; Lin, Jianhui; Zhang, Bing; Chen, Zaigang; Song, Xinwu; Du, Gaofeng

    2016-07-01

    Prevention of train from derailment is the most important issue for the railway system. Keeping derailed vehicle close to the track centreline is beneficial to minimise the severe consequences associated with derailments. In this paper, the post-derailment safety measures are studied based on low-speed derailment tests. Post-derailment devices can prevent deviation of the train from the rail by catching the rail, and they are mounted under the axle box. Considering the different structures of vehicles, both trailer and motor vehicles are equipped with the safety device and then separately used in low-speed derailment tests. In derailment tests, two kinds of track, namely the CRTS-I slab ballastless track and the CRTS-II bi-block sleeper ballastless track, are adopted to investigate the effect of the track types on the derailment. In addition, the derailment speed and the weight of the derailed vehicle are also taken into account in derailment tests. The test results indicate that the post-derailment movement of the vehicle includes running and bounce. Reducing the derailment speed and increasing the weight of the head of the train are helpful to reduce the possibility for derailments. For the CRTS-I slab ballastless track, the safety device can prevent trailer vehicles from deviating from the track centreline. The gearbox plays an important role in controlling the lateral displacement of motor vehicle after a derailment while the safety device contributes less to keep derailed motor vehicles on the track centreline. The lateral distance between the safety device and rails should be larger than 181.5 mm for protecting the fasteners system. And for the CRTS-II bi-block sleeper ballastless track, it helps to decrease the post-derailment distance due to the longitudinal impacts with sleepers. It can also restrict the lateral movement of derailed vehicle due to the high shoulders. The results suggest that, CRTS-II bi-block sleeper ballastless track should be widely used in derailment prone areas.

  12. Wearable Tracking Tags Test Privacy Boundaries at the U. of Washington

    ERIC Educational Resources Information Center

    Dotinga, Randy

    2008-01-01

    Tags such as the radio-frequency identifications or RFIDs are devices that make it possible for individuals to be tracked and their location reported back to a database. The devices--chips with radio antennas--emit signals, and tracking them reveals the movement of people or things. Many stores use the technology to catch shoplifters at exits. To…

  13. Modeling of thermalization phenomena in coaxial plasma accelerators

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vivek; Panneerchelvam, Premkumar; Raja, Laxminarayan L.

    2018-05-01

    Coaxial plasma accelerators are electromagnetic acceleration devices that employ a self-induced Lorentz force to produce collimated plasma jets with velocities ~50 km s‑1. The accelerator operation is characterized by the formation of an ionization/thermalization zone near gas inlet of the device that continually processes the incoming neutral gas into a highly ionized thermal plasma. In this paper, we present a 1D non-equilibrium plasma model to resolve the plasma formation and the electron-heavy species thermalization phenomena that take place in the thermalization zone. The non-equilibrium model is based on a self-consistent multi-species continuum description of the plasma with finite-rate chemistry. The thermalization zone is modelled by tracking a 1D gas-bit as it convects down the device with an initial gas pressure of 1 atm. The thermalization process occurs in two stages. The first is a plasma production stage, associated with a rapid increase in the charged species number densities facilitated by cathode surface electron emission and volumetric production processes. The production stage results in the formation of a two-temperature plasma with electron energies of ~2.5 eV in a low temperature background gas of ~300 K. The second, a temperature equilibration stage, is characterized by the energy transfer between the electrons and heavy species. The characteristic length scale for thermalization is found to be comparable to axial length of the accelerator thus putting into question the equilibrium magnetohydrodynamics assumption used in modeling coaxial accelerators.

  14. Electronic tracking system and wandering in Alzheimer's disease: a case study.

    PubMed

    Faucounau, V; Riguet, M; Orvoen, G; Lacombe, A; Rialle, V; Extra, J; Rigaud, A-S

    2009-01-01

    Wandering is a behavioural disorder, which occurs in Alzheimer's disease or other dementia. People who wander are at risk of physical harm and untimely death. Moreover, wandering behaviour causes a lot of stress to the caregivers. In the last few years, different geolocation devices have been developed in order to minimise risk and manage unsafe wandering. These detection systems rarely meet patients and caregivers' needs because they are not involved in the devices building process. The aim is to explore the needs and perceptions of wandering persons and their caregivers towards existing tracking devices as well as their acceptability and usability. This paper reports a dyad case. The tracking system tested is presented as a mobile Global Positioning System (GPS) receiver-shaped, including function of telephony and data transfer via GSM/GPRS. Dyad patient/caregiver expressed their needs and perceptions towards tracking devices and gave their impressions about the functioning of the tested device at the end of the test. The patient focused on the device's shape which he found too voluminous and unaesthetic, and was unable to give an opinion about the device's functioning. The spouse highlighted malfunctions and usage difficulties, which made the device not appropriate to her needs. Involving end-users in the co-design of new technologies is necessary for building tailored devices. Moreover, in this area of dementia care, the person-centred approach is essential to a tailored wandering management.

  15. Portable modular detection system

    DOEpatents

    Brennan, James S [Rodeo, CA; Singh, Anup [Danville, CA; Throckmorton, Daniel J [Tracy, CA; Stamps, James F [Livermore, CA

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  16. Electromagnetic liquid pistons for capillarity-based pumping.

    PubMed

    Malouin, Bernard A; Vogel, Michael J; Olles, Joseph D; Cheng, Lili; Hirsa, Amir H

    2011-02-07

    The small scales associated with lab-on-a-chip technologies lend themselves well to capillarity-dominated phenomena. We demonstrate a new capillarity-dominated system where two adjoining ferrofluid droplets can behave as an electronically-controlled oscillator or switch by an appropriate balance of magnetic, capillary, and inertial forces. Their oscillatory motion can be exploited to displace a surrounding liquid (akin to an axial piston pump), forming electromagnetic "liquid pistons." Such ferrofluid pistons can pump a precise volume of liquid via finely tunable amplitudes (cf. pump stroke) or resonant frequencies (cf. pump speed) with no solid moving parts for long-term operation without wear in a small device. Furthermore, the rapid propagation of electromagnetic fields and the favorable scaling of capillary forces with size permit micron sized devices with very fast operating speeds (∼kHz). The pumping dynamics and performance of these liquid pistons is explored, with experimental measurements showing good agreement with a spherical cap model. While these liquid pistons may find numerous applications in micro- and mesoscale fluidic devices (e.g., remotely activated drug delivery), here we demonstrate the use of these liquid pistons in capillarity-dominated systems for chip-level, fast-acting adaptive liquid lenses with nearly perfect spherical interfaces.

  17. Vibration and shape control of hinged light structures using electromagnetic forces

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuji; Miyachi, Shigenobu; Sasaki, Toshiyuki

    2003-08-01

    This paper describes a new electromagnetic device for vibration control of a light-weighted deployable/retractable structure which consists of many small units connected with mechanical hinges. A typical example of such a structure is a solar cell paddle of an artificial satellite which is composed of many thin flexible blankets connected in series. Vibration and shape control of the paddle is not easy, because control force and energy do not transmit well between the blankets which are discretely connected by hinges with each other. The new device consists of a permanent magnet glued along an edge of a blanket and an electric current-conducting coil glued along an adjoining edge of another adjacent blanket. Conduction of the electric current in a magnetic field from the magnet generates an electromagnetic force on the coil. By changing the current in the coil, therefore, we may control the vibration and shape of the blankets. To confirm the effectiveness of the new device, constructing a simple paddle model consisting eight hinge- panels, we have carried out a model experiment of vibration and shape control of the paddle. In addition, a numerical simulation of vibration control of the hinge structure is performed to compare with measured data.

  18. Evaluation of magnetic field's uniformity inside electromagnetic coils using graphene

    NASA Astrophysics Data System (ADS)

    Amanatiadis, Stamatios A.; Kantartzis, Nikolaos V.; Ohtani, Tadao; Kanai, Yasushii

    2018-05-01

    The distribution of the magnetic field in electromagnetic coils, such as those employed in magnetic resonance imaging (MRI), is evaluated in this paper, through graphene gyrotropic properties. Initially, the rotation of an incident linearly polarized plane wave, due to an infinite graphene layer, is studied theoretically via the extraction of the perpendicular, to the polarization, electric component of the transmitted wave. Moreover, the influence of the magnetic bias field strength on this component is, also, examined, indicating the eligibility of graphene to detect magnetostatic field variations. To this aim, a specific device is proposed, consisting of a high frequency source, an electric field detector, and a finite graphene sheet that differs from the infinite one of the analytical case. To quantify the distance that the gyrotropic effects are detectable, the effective region is introduced and extracted via a properly modified finite-difference time-domain (FDTD) algorithm. The featured device is verified through a setup comprising a uniform electromagnetic coil, where the generated magnetostatic field is calculated at several cross-sections of the coil and compared to actual field values. Results indicate the accuracy and sensitivity of the designed device for the unambiguous regions.

  19. Damage effect and mechanism of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Xiao-Wen, Xi; Chang-Chun, Chai; Gang, Zhao; Yin-Tang, Yang; Xin-Hai, Yu; Yang, Liu

    2016-04-01

    The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900), and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  20. On-Demand Calibration and Evaluation for Electromagnetically Tracked Laparoscope in Augmented Reality Visualization

    PubMed Central

    Liu, Xinyang; Plishker, William; Zaki, George; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj

    2017-01-01

    Purpose Common camera calibration methods employed in current laparoscopic augmented reality systems require the acquisition of multiple images of an entire checkerboard pattern from various poses. This lengthy procedure prevents performing laparoscope calibration in the operating room (OR). The purpose of this work was to develop a fast calibration method for electromagnetically (EM) tracked laparoscopes, such that calibration can be performed in the OR on demand. Methods We designed a mechanical tracking mount to uniquely and snugly position an EM sensor to an appropriate location on a conventional laparoscope. A tool named fCalib was developed to calibrate intrinsic camera parameters, distortion coefficients, and extrinsic parameters (transformation between the scope lens coordinate system and the EM sensor coordinate system) using a single image that shows an arbitrary portion of a special target pattern. For quick evaluation of calibration result in the OR, we integrated a tube phantom with fCalib and overlaid a virtual representation of the tube on the live video scene. Results We compared spatial target registration error between the common OpenCV method and the fCalib method in a laboratory setting. In addition, we compared the calibration re-projection error between the EM tracking-based fCalib and the optical tracking-based fCalib in a clinical setting. Our results suggested that the proposed method is comparable to the OpenCV method. However, changing the environment, e.g., inserting or removing surgical tools, would affect re-projection accuracy for the EM tracking-based approach. Computational time of the fCalib method averaged 14.0 s (range 3.5 s – 22.7 s). Conclusions We developed and validated a prototype for fast calibration and evaluation of EM tracked conventional (forward viewing) laparoscopes. The calibration method achieved acceptable accuracy and was relatively fast and easy to be performed in the OR on demand. PMID:27250853

  1. On-demand calibration and evaluation for electromagnetically tracked laparoscope in augmented reality visualization.

    PubMed

    Liu, Xinyang; Plishker, William; Zaki, George; Kang, Sukryool; Kane, Timothy D; Shekhar, Raj

    2016-06-01

    Common camera calibration methods employed in current laparoscopic augmented reality systems require the acquisition of multiple images of an entire checkerboard pattern from various poses. This lengthy procedure prevents performing laparoscope calibration in the operating room (OR). The purpose of this work was to develop a fast calibration method for electromagnetically (EM) tracked laparoscopes, such that the calibration can be performed in the OR on demand. We designed a mechanical tracking mount to uniquely and snugly position an EM sensor to an appropriate location on a conventional laparoscope. A tool named fCalib was developed to calibrate intrinsic camera parameters, distortion coefficients, and extrinsic parameters (transformation between the scope lens coordinate system and the EM sensor coordinate system) using a single image that shows an arbitrary portion of a special target pattern. For quick evaluation of calibration results in the OR, we integrated a tube phantom with fCalib prototype and overlaid a virtual representation of the tube on the live video scene. We compared spatial target registration error between the common OpenCV method and the fCalib method in a laboratory setting. In addition, we compared the calibration re-projection error between the EM tracking-based fCalib and the optical tracking-based fCalib in a clinical setting. Our results suggest that the proposed method is comparable to the OpenCV method. However, changing the environment, e.g., inserting or removing surgical tools, might affect re-projection accuracy for the EM tracking-based approach. Computational time of the fCalib method averaged 14.0 s (range 3.5 s-22.7 s). We developed and validated a prototype for fast calibration and evaluation of EM tracked conventional (forward viewing) laparoscopes. The calibration method achieved acceptable accuracy and was relatively fast and easy to be performed in the OR on demand.

  2. Eye-tracking for clinical decision support: A method to capture automatically what physicians are viewing in the EMR

    PubMed Central

    King, Andrew J.; Hochheiser, Harry; Visweswaran, Shyam; Clermont, Gilles; Cooper, Gregory F.

    2017-01-01

    Eye-tracking is a valuable research tool that is used in laboratory and limited field environments. We take steps toward developing methods that enable widespread adoption of eye-tracking and its real-time application in clinical decision support. Eye-tracking will enhance awareness and enable intelligent views, more precise alerts, and other forms of decision support in the Electronic Medical Record (EMR). We evaluated a low-cost eye-tracking device and found the device’s accuracy to be non-inferior to a more expensive device. We also developed and evaluated an automatic method for mapping eye-tracking data to interface elements in the EMR (e.g., a displayed laboratory test value). Mapping was 88% accurate across the six participants in our experiment. Finally, we piloted the use of the low-cost device and the automatic mapping method to label training data for a Learning EMR (LEMR) which is a system that highlights the EMR elements a physician is predicted to use. PMID:28815151

  3. Emitter location errors in electronic recognition system

    NASA Astrophysics Data System (ADS)

    Matuszewski, Jan; Dikta, Anna

    2017-04-01

    The paper describes some of the problems associated with emitter location calculations. This aspect is the most important part of the series of tasks in the electronic recognition systems. The basic tasks include: detection of emission of electromagnetic signals, tracking (determining the direction of emitter sources), signal analysis in order to classify different emitter types and the identification of the sources of emission of the same type. The paper presents a brief description of the main methods of emitter localization and the basic mathematical formulae for calculating their location. The errors' estimation has been made to determine the emitter location for three different methods and different scenarios of emitters and direction finding (DF) sensors deployment in the electromagnetic environment. The emitter has been established using a special computer program. On the basis of extensive numerical calculations, the evaluation of precise emitter location in the recognition systems for different configuration alignment of bearing devices and emitter was conducted. The calculations which have been made based on the simulated data for different methods of location are presented in the figures and respective tables. The obtained results demonstrate that calculation of the precise emitter location depends on: the number of DF sensors, the distances between emitter and DF sensors, their mutual location in the reconnaissance area and bearing errors. The precise emitter location varies depending on the number of obtained bearings. The higher the number of bearings, the better the accuracy of calculated emitter location in spite of relatively high bearing errors for each DF sensor.

  4. Design and Fabrication of Helmholtz Coils to Study the Effects of Pulsed Electromagnetic Fields on the Healing Process in Periodontitis: Preliminary Animal Results

    PubMed Central

    Haghnegahdar, A; Khosrovpanah, H; Andisheh-Tadbir, A; Mortazavi, Gh; Saeedi Moghadam, M; Mortazavi, SMJ; Zamani, A; Haghani, M; Shojaei Fard, M; Parsaei, H; Koohi, O

    2014-01-01

    Background: Effects of electromagnetic fields on healing have been investigated for centuries. Substantial data indicate that exposure to electromagnetic field can lead to enhanced healing in both soft and hard tissues. Helmholtz coils are devices that generate pulsed electromagnetic fields (PEMF). Objective: In this work, a pair of Helmholtz coils for enhancing the healing process in periodontitis was designed and fabricated. Method: An identical pair of square Helmholtz coils generated the 50 Hz magnetic field.  This device was made up of two parallel coaxial circular coils (100 turns in each loop, wound in series) which were separated from each other by a distance equal to the radius of one coil (12.5 cm). The windings of our Helmholtz coil was made of standard 0.95mm wire to provide the maximum possible current. The coil was powered by a function generator.  Results: The Helmholtz Coils generated a uniform magnetic field between its coils. The magnetic field strength at the center of the space between two coils was 97.6 μT. Preliminary biological studies performed on rats show that exposure of laboratory animals to pulsed electromagnetic fields enhanced the healing of periodontitis. Conclusion: Exposure to PEMFs can lead to stimulatory physiological effects on cells and tissues such as enhanced healing of periodontitis. PMID:25505775

  5. Conformal phased surfaces for wireless powering of bioelectronic microdevices

    PubMed Central

    Agrawal, Devansh R.; Tanabe, Yuji; Weng, Desen; Ma, Andrew; Hsu, Stephanie; Liao, Song-Yan; Zhen, Zhe; Zhu, Zi-Yi; Sun, Chuanbowen; Dong, Zhenya; Yang, Fengyuan; Tse, Hung Fat; Poon, Ada S. Y.; Ho, John S.

    2017-01-01

    Wireless powering could enable the long-term operation of advanced bioelectronic devices within the human body. Although both enhanced powering depth and device miniaturization can be achieved by shaping the field pattern within the body, existing electromagnetic structures do not provide the spatial phase control required to synthesize such patterns. Here, we describe the design and operation of conformal electromagnetic structures, termed phased surfaces, that interface with non-planar body surfaces and optimally modulate the phase response to enhance the performance of wireless powering. We demonstrate that the phased surfaces can wirelessly transfer energy across anatomically heterogeneous tissues in large animal models, powering miniaturized semiconductor devices (<12 mm3) deep within the body (>4 cm). As an illustration of in vivo operation, we wirelessly regulated cardiac rhythm by powering miniaturized stimulators at multiple endocardial sites in a porcine animal model. PMID:29226018

  6. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system

    PubMed Central

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-01-01

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices. PMID:27941895

  7. Illusions and Cloaks for Surface Waves

    PubMed Central

    McManus, T. M.; Valiente-Kroon, J. A.; Horsley, S. A. R.; Hao, Y.

    2014-01-01

    Ever since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks. PMID:25145953

  8. Detecting concealed objects at a checkpoint

    DOEpatents

    McMakin, Douglas L [Richland, WA; Hall, Thomas E [Kennewick, WA; Sheen, David M [Richland, WA; Severtsen, Ronald H [Richland, WA

    2008-07-29

    Disclosed are systems, methods, devices, and apparatus to interrogate a clothed individual with electromagnetic radiation to determine if a concealed object is being carried. This determination includes establishing data corresponding to an image of the individual with a pair of opposed, semi-cylindrical array panels each configured to interrogate the individual with electromagnetic radiation in the 200 MHz to 1 THz range.

  9. Deoxyribonucleic acid (DNA)-based optical materials

    NASA Astrophysics Data System (ADS)

    Grote, James G.; Heckman, Emily M.; Hagen, Joshua A.; Yaney, Perry P.; Subramanyam, Guru; Clarson, Stephen J.; Diggs, Darnell E.; Nelson, Robert L.; Zetts, John S.; Hopkins, F. Kenneth; Ogata, Naoya

    2004-12-01

    Optical materials for waveguiding applications must possess the desired optical and electromagnetic properties for optimal device performance. Purified deoxyribonucleic acid (DNA), derived from salmon sperm, has been investigated for use as an optical waveguide material. In this paper we present the materials processing and optical and electromagnetic characterization of this purified DNA to render a high quality, low loss optical waveguide material.

  10. Prospects for Finite-Difference Time-Domain (FDTD) Computational Electrodynamics

    NASA Astrophysics Data System (ADS)

    Taflove, Allen

    2002-08-01

    FDTD is the most powerful numerical solution of Maxwell's equations for structures having internal details. Relative to moment-method and finite-element techniques, FDTD can accurately model such problems with 100-times more field unknowns and with nonlinear and/or time-variable parameters. Hundreds of FDTD theory and applications papers are published each year. Currently, there are at least 18 commercial FDTD software packages for solving problems in: defense (especially vulnerability to electromagnetic pulse and high-power microwaves); design of antennas and microwave devices/circuits; electromagnetic compatibility; bioelectromagnetics (especially assessment of cellphone-generated RF absorption in human tissues); signal integrity in computer interconnects; and design of micro-photonic devices (especially photonic bandgap waveguides, microcavities; and lasers). This paper explores emerging prospects for FDTD computational electromagnetics brought about by continuing advances in computer capabilities and FDTD algorithms. We conclude that advances already in place point toward the usage by 2015 of ultralarge-scale (up to 1E11 field unknowns) FDTD electromagnetic wave models covering the frequency range from about 0.1 Hz to 1E17 Hz. We expect that this will yield significant benefits for our society in areas as diverse as computing, telecommunications, defense, and public health and safety.

  11. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.

    PubMed

    Harne, Ryan L

    2012-07-01

    Conversion of ambient vibrational energy into electric power has been the impetus of much modern research. The traditional analysis has focused on absolute electrical power output from the harvesting devices and efficiency defined as the convertibility of an infinite resource of vibration excitation into power. This perspective has limited extensibility when applying resonant harvesters to host resonant structures when the inertial influence of the harvester is more significant. Instead, this work pursues a fundamental understanding of the coupled dynamics of a main mass-spring-damper system to which an electromagnetic or piezoelectric mass-spring-damper is attached. The governing equations are derived, a metric of efficiency is presented, and analysis is undertaken. It is found that electromagnetic energy harvesting efficiency and maximum power output is limited by the strength of the coupling such that no split system resonances are induced for a given mass ratio. For piezoelectric harvesters, only the coupling strength and certain design requirements dictate maximum power and efficiency achievable. Since the harvesting circuitry must "follow" the split resonances as the piezoelectric harvesters become more massive, the optimum design of piezoelectric harvesters appears to be more involved than for electromagnetic devices.

  12. Electromagnetic optimisation of a 2.45 GHz microwave plasma source operated at atmospheric pressure and designed for hydrogen production

    NASA Astrophysics Data System (ADS)

    Miotk, R.; Jasiński, M.; Mizeraczyk, J.

    2018-03-01

    This paper presents the partial electromagnetic optimisation of a 2.45 GHz cylindrical-type microwave plasma source (MPS) operated at atmospheric pressure. The presented device is designed for hydrogen production from liquid fuels, e.g. hydrocarbons and alcohols. Due to industrial requirements regarding low costs for hydrogen produced in this way, previous testing indicated that improvements were required to the electromagnetic performance of the MPS. The MPS has a duct discontinuity region, which is a result of the cylindrical structure located within the device. The microwave plasma is generated in this discontinuity region. Rigorous analysis of the region requires solving a set of Maxwell equations, which is burdensome for complicated structures. Furthermore, the presence of the microwave plasma increases the complexity of this task. To avoid calculating the complex Maxwell equations, we suggest the use of the equivalent circuit method. This work is based upon the idea of using a Weissfloch circuit to characterize the area of the duct discontinuity and the plasma. The resulting MPS equivalent circuit allowed the calculation of a capacitive metallic diaphragm, through which an improvement in the electromagnetic performance of the plasma source was obtained.

  13. Device characteristics of antenna-coupled metal-insulator-metal diodes (rectenna) using Al2O3, TiO2, and Cr2O3 as insulator layer for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Inac, Mesut; Shafique, Atia; Ozcan, Meric; Gurbuz, Yasar

    2015-09-01

    Antenna-coupled metal-insulator-metal devices are most potent candidate for future energy harvesting devices. The reason for that they are ultra-high speed devices that can rectify the electromagnetic radiation at high frequencies. In addition to their speed, they are also small devices that can have more number of devices in unit area. In this work, it is aimed design and develop a device which can harvest and detect IR radiation.

  14. Electromagnetic immunity of infusion pumps to GSM mobile phones: a systematic review.

    PubMed

    Calcagnini, Giovanni; Censi, Federica; Triventi, Michele; Mattei, Eugenio; Bartolini, Pietro

    2007-01-01

    Electromagnetic interference with life-sustaining medical care devices has been reported by various groups. Previous studies have demonstrated that volumetric and syringe pumps are susceptible to false alarm buzzing and blocking, when exposed to various electromagnetic sources. The risk of electromagnetic interference depends on several factors such as the phone-emitted power, distance and carrier frequency, phone model and antenna type. The main recommendations and the relevant harmonized standard are also reported and discussed. >From the data available in literature emerges that, for distances lower than 1 m there is a non negligible risk of electromagnetic interferences, although significant differences exists in the reported minimum distances. Interference effects clinically relevant for the patients are rare. No permanent damage to the pumps has been ever reported, although in several cases intervention of personnel is required to resume normal operation.

  15. Electromagnetic Modeling of Human Body Using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Ng, Cho-Kuen; Beall, Mark; Ge, Lixin; Kim, Sanghoek; Klaas, Ottmar; Poon, Ada

    Realistic simulation of electromagnetic wave propagation in the actual human body can expedite the investigation of the phenomenon of harvesting implanted devices using wireless powering coupled from external sources. The parallel electromagnetics code suite ACE3P developed at SLAC National Accelerator Laboratory is based on the finite element method for high fidelity accelerator simulation, which can be enhanced to model electromagnetic wave propagation in the human body. Starting with a CAD model of a human phantom that is characterized by a number of tissues, a finite element mesh representing the complex geometries of the individual tissues is built for simulation. Employing an optimal power source with a specific pattern of field distribution, the propagation and focusing of electromagnetic waves in the phantom has been demonstrated. Substantial speedup of the simulation is achieved by using multiple compute cores on supercomputers.

  16. A Novel Passive Tracking Scheme Exploiting Geometric and Intercept Theorems

    PubMed Central

    Zhou, Biao; Sun, Chao; Ahn, Deockhyeon; Kim, Youngok

    2018-01-01

    Passive tracking aims to track targets without assistant devices, that is, device-free targets. Passive tracking based on Radio Frequency (RF) Tomography in wireless sensor networks has recently been addressed as an emerging field. The passive tracking scheme using geometric theorems (GTs) is one of the most popular RF Tomography schemes, because the GT-based method can effectively mitigate the demand for a high density of wireless nodes. In the GT-based tracking scheme, the tracking scenario is considered as a two-dimensional geometric topology and then geometric theorems are applied to estimate crossing points (CPs) of the device-free target on line-of-sight links (LOSLs), which reveal the target’s trajectory information in a discrete form. In this paper, we review existing GT-based tracking schemes, and then propose a novel passive tracking scheme by exploiting the Intercept Theorem (IT). To create an IT-based CP estimation scheme available in the noisy non-parallel LOSL situation, we develop the equal-ratio traverse (ERT) method. Finally, we analyze properties of three GT-based tracking algorithms and the performance of these schemes is evaluated experimentally under various trajectories, node densities, and noisy topologies. Analysis of experimental results shows that tracking schemes exploiting geometric theorems can achieve remarkable positioning accuracy even under rather a low density of wireless nodes. Moreover, the proposed IT scheme can provide generally finer tracking accuracy under even lower node density and noisier topologies, in comparison to other schemes. PMID:29562621

  17. Electrically induced energy transmission used for implantable medical devices deep inside the body: Measurement of received voltage in consideration of biological effect.

    PubMed

    Shiba, Kenji

    2015-08-01

    We proposed an electrically induced energy transmission method for implantable medical devices deep inside the body. This method makes it possible to transmit energy deep inside the body using only a couple of titanium electrodes attached to the surface of the implantable medical device. In this study, electromagnetic simulations in which the area and distance of the receiving electrodes were changed were conducted. Then, experimental measurements of the received voltage were conducted in which electric energy was transmitted from the surface of the human phantom to an implantable device inside it (transmitting distance: 12 cm). As a result of the electromagnetic simulation, the area and distance of the receiving electrodes were roughly proportional to the received voltage, respectively. As a result of the experimental measurement, a received voltage of 2460 mV could be obtained with a load resistance of 100 Ω. We confirmed that our energy transmission method could be a powerful method for transmitting energy to a deeply implanted medical device.

  18. Miniature sonar fish tag

    NASA Technical Reports Server (NTRS)

    Lovelady, R. W.; Ferguson, R. L.

    1975-01-01

    Self-powered sonar device may be implanted in body of fish. It transmits signal that can be detected with portable tracking gear or by automatic detection-and-tracking system. Operating life of over 4000 hours may be expected. Device itself may be used almost indefinitely.

  19. Evaluation of bias in the Hamburg wheel tracking device.

    DOT National Transportation Integrated Search

    2013-09-01

    As the list of states adopting the Hamburg Wheel Tracking Device (HWTD) continues to grow, there is a need to evaluate how results are utilized. American Association of State Highway and Transportation Officials T 324 does not standardize the analysi...

  20. Virtual target tracking (VTT) as applied to mobile satellite communication networks

    NASA Astrophysics Data System (ADS)

    Amoozegar, Farid

    1999-08-01

    Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.

  1. 49 CFR 236.809 - Signal, slotted mechanical.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Signal, slotted mechanical. 236.809 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.809 Signal, slotted mechanical. A mechanically operated signal with an electromagnetic device...

  2. Modelling of a Bi-axial Vibration Energy Harvester

    DTIC Science & Technology

    2013-05-01

    magnetic field distribution and thus the output power of the vibration energy harvester , the modelling of the response of the ball- bearing to host......nonlinear and bi-axial vibration energy harvesting device. The device utilises a wire-coil electromagnetic (EM) transducer within a nonlinear oscillator

  3. 49 CFR 236.809 - Signal, slotted mechanical.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Signal, slotted mechanical. 236.809 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.809 Signal, slotted mechanical. A mechanically operated signal with an electromagnetic device...

  4. 49 CFR 236.809 - Signal, slotted mechanical.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Signal, slotted mechanical. 236.809 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.809 Signal, slotted mechanical. A mechanically operated signal with an electromagnetic device...

  5. 49 CFR 236.809 - Signal, slotted mechanical.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Signal, slotted mechanical. 236.809 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.809 Signal, slotted mechanical. A mechanically operated signal with an electromagnetic device...

  6. A magnetorheological fluid locking device

    NASA Astrophysics Data System (ADS)

    Kavlicoglu, Barkan; Liu, Yanming

    2011-04-01

    A magnetorheological fluid (MRF) device is designed to provide a static locking force caused by the operation of a controllable MRF valve. The intent is to introduce an MRF device which provides the locking force of a fifth wheel coupler while maintaining the "powerless" locking capability when required. A passive magnetic field supplied by a permanent magnet provides a powerless locking resistance force. The passively closed MRF valve provides sufficient reaction force to eliminate axial displacement to a pre-defined force value. Unlocking of the device is provided by means of an electromagnet which re-routes the magnetic field distribution along the MR valve, and minimizes the resistance. Three dimensional electromagnetic finite element analyses are performed to optimize the MRF lock valve performance. The MRF locking valve is fabricated and tested for installation on a truck fifth wheel application. An experimental setup, resembling actual working conditions, is designed and tests are conducted on vehicle interface schemes. The powerless-locking capacity and the unlocking process with minimal resistance are experimentally demonstrated.

  7. Deoxyribonucleic acid (DNA) cladding layers for nonlinear-optic-polymer-based electro-optic devices

    NASA Astrophysics Data System (ADS)

    Grote, James G.; Ogata, Naoya; Diggs, Darnell E.; Hopkins, Frank K.

    2003-07-01

    Nonlinear optic (NLO) polymer based electro-optic devices have been achieving world record low half wave voltages and high frequencies over the last 2-3 years. Part of the advancement is through the use of relatively more conductive polymers for the cladding layers. Based on the current materials available for these cladding materials, however, the desired optical and electromagnetic properites are being balanced for materials processability. One does not want the solvent present in one layer to dissovle the one deposited underneath, or be dissolved by the one being deposited on top. Optimized polymer cladding materials, to further enhance device performance, are continuing to be investigated. Thin films of deoxyribonucleic acid (DNA), derived from salmon sperm, show promise in providing both the desired optical and magnetic properties, as well as the desired resistance to various solvents used for NLO polymer device fabrication. Thin films of DNA were deposited on glass and silicon substrates and the film quality, optical and electromagnetic properties and resistance to various solvents were characterized.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravindran, P; Wui Ann, W; Lim, Y

    Purpose: In general, the linear accelerator is gated using respiratory signal obtained by way of external sensors to account for the breathing motion during radiotherapy. One of the commonly used gating devices is the Varian RPM device. Calypso system that uses electromagnetic tracking of implanted or surface transponders could also be used for gating. The aim of this study is to compare the gating efficiency of RPM device and the calypso system by phantom studies. Methods: An ArcCheck insert was used as the phantom with a Gafchromic film placed in its holder. The ArcCheck insert was placed on a Motionmore » Sim platform and moved in the longitudinal direction simulating a respiratory motion with a period of 5 seconds and amplitude of ±6mm. The Gafchromic film was exposed to a 2 × 2cm{sup 2} field, i) with the phantom static, ii) phantom moving but ungated iii) gated with gating window of 2mm and 3mm. This was repeated with Calypso system using surface transponders with the same gating window. The Gafchromic films were read with an EPSON 11000 flatbed scanner and analysed with ‘Medphysto’ software. Results: The full width at half maximum (FWHM) as measured with film at the level of the film holder was 1.65cm when the phantom was static. FWHM measured with phantom moving and without gating was 1.16 cm and penumbra was 7 mm (80–20%) on both sides. When the beam was gated with 2 mm gating window the FWHM was 1.8 cm with RPM device and 1.9 cm with Calypso. Similarly, when the beam was gated with 3 mm window, the FWHM was 1.9cm with RPM device and 2cm with Calypso. Conclusion: This work suggests that the gating efficiency of RPM device is better than that of the Calypso with surface transponder, with reference to the latency in gating.« less

  9. Interoperative Biopsy Site Relocalization in Endoluminal Surgery.

    PubMed

    Vemuri, Anant Suraj; Nicolau, Stephane; Sportes, Adrien; Marescaux, Jacques; Soler, Luc; Ayache, Nicholas

    2016-09-01

    Barrett's oesophagus, a premalignant condition of the oesophagus has been on a rise in the recent years. The standard diagnostic protocol for Barrett's involves obtaining biopsies at suspicious regions along the oesophagus. The localization and tracking of these biopsy sites "interoperatively" poses a significant challenge for providing targeted treatments and tracking disease progression. This paper proposes an approach to provide guided navigation and relocalization of the biopsy sites using an electromagnetic tracking system. The characteristic of our approach over existing ones is the integration of an electromagnetic sensor at the flexible endoscope tip, so that the endoscopic camera depth inside the oesophagus can be computed in real time, allowing to retrieve and display an image from a previous exploration at the same depth. We first describe our system setup and methodology for interoperative registration. We then propose three incremental experiments of our approach. First, on synthetic data with realistic noise model to analyze the error bounds of our system. The second on in vivo pig data using an optical tracking system to provide a pseudo ground truth. Accuracy results obtained were consistent with the synthetic experiments despite uncertainty introduced due to breathing motion, and remain inside acceptable error margin according to medical experts. Finally, a third experiment designed using data from pigs to simulate a real task of biopsy site relocalization, and evaluated by ten gastro-intestinal experts. It clearly demonstrated the benefit of our system toward assisted guidance by improving the biopsy site retrieval rate from 47.5% to 94%.

  10. FAST TRACK COMMUNICATION: An electromagnetically induced grating by microwave modulation

    NASA Astrophysics Data System (ADS)

    Xiao, Zhi-Hong; Shin, Sung Guk; Kim, Kisik

    2010-08-01

    We study the phenomenon of an electromagnetically induced phase grating in a double-dark state system of 87Rb atoms, the two closely placed lower fold levels of which are coupled by a weak microwave field. Owing to the existence of the weak microwave field, the efficiency of the phase grating is strikingly improved, and an efficiency of approximately 33% can be achieved. Under the action of the weak standing wave field, the high efficiency of the phase grating can be maintained by modulating the strength and detuning of the weak microwave field, increasing the strength of the standing wave field.

  11. Electromagnetic pulse-induced current measurement device

    NASA Astrophysics Data System (ADS)

    Gandhi, Om P.; Chen, Jin Y.

    1991-08-01

    To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.

  12. Shuttle Communications and Tracking, Avionics, and Electromagnetic Compatibility

    NASA Technical Reports Server (NTRS)

    deSilva, K.; Hwu, Shian; Kindt, Kaylene; Kroll, Quin; Nuss, Ray; Romero, Denise; Schuler, Diana; Sham, Catherine; Scully, Robert

    2011-01-01

    By definition, electromagnetic compatibility (EMC) is the capability of components, sub-systems, and systems, to operate in their intended electromagnetic environment, within an established margin of safety, and at design levels of performance. Practice of the discipline itself incorporates knowledge of various aspects of applied physics, materials science, and engineering across the board, and includes control and mitigation of undesirable electromagnetic interaction between intentional and unintentional emitters and receivers of radio frequency energy, both within and external to the vehicle; identification and control of the hazards of non-ionizing electromagnetic radiation to personnel, ordnance, and fuels and propellants; and vehicle and system protection from the direct and indirect effects of lightning and various other forms of electrostatic discharge (ESD) threats, such as triboelectrification and plasma charging. EMC is extremely complex and far-reaching, affecting in some degree every aspect of the vehicle s design and operation. The most successful efforts incorporate EMC design features and techniques throughout design and fabrication of the vehicle s structure and components, as well as appropriate operational considerations with regard to electromagnetic threats in the operational environment, from the beginning of the design effort to the end of the life cycle of the manufactured product. This approach yields the highest design performance with the lowest cost and schedule impact.

  13. On-track testing of a power harvesting device for railroad track health monitoring

    NASA Astrophysics Data System (ADS)

    Hansen, Sean E.; Pourghodrat, Abolfazl; Nelson, Carl A.; Fateh, Mahmood

    2010-03-01

    A considerable proportion of railroad infrastructure exists in regions which are comparatively remote. With regard to the cost of extending electrical infrastructure into these areas, road crossings in these areas do not have warning light systems or crossing gates and are commonly marked with reflective signage. For railroad track health monitoring purposes, distributed sensor networks can be applicable in remote areas, but the same limitation regarding electrical infrastructure is the hindrance. This motivated the development of an energy harvesting solution for remote railroad deployment. This paper describes on-track experimental testing of a mechanical device for harvesting mechanical power from passing railcar traffic, in view of supplying electrical power to warning light systems at crossings and to remote networks of sensors. The device is mounted to and spans two rail ties and transforms the vertical rail displacement into electrical energy through mechanical amplification and rectification into a PMDC generator. A prototype was tested under loaded and unloaded railcar traffic at low speeds. Stress analysis and speed scaling analysis are presented, results of the on-track tests are compared and contrasted to previous laboratory testing, discrepancies between the two are explained, and conclusions are drawn regarding suitability of the device for illuminating high-efficiency LED lights at railroad crossings and powering track-health sensor networks.

  14. Evaluation of Georgia asphalt mixture properties using a Hamburg wheel-tracking device.

    DOT National Transportation Integrated Search

    2017-05-01

    This study used a Hamburg Wheel-Tracking Device (HWTD) to evaluate the resistance of Georgia asphalt mixtures to rutting and stripping. It aimed to develop an HWTD test procedure and criteria aligned with GDOTs asphalt materials and mixture design...

  15. 49 CFR 220.5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... device means an electronic or electrical device used to conduct oral, written, or visual communication... equipment, or track motor car, singly or in combination with other equipment, on the track of a railroad..., roadway, signal and communication systems, electric traction systems, roadway facilities or roadway...

  16. 49 CFR 220.5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... device means an electronic or electrical device used to conduct oral, written, or visual communication... equipment, or track motor car, singly or in combination with other equipment, on the track of a railroad..., roadway, signal and communication systems, electric traction systems, roadway facilities or roadway...

  17. 49 CFR 220.5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... device means an electronic or electrical device used to conduct oral, written, or visual communication... equipment, or track motor car, singly or in combination with other equipment, on the track of a railroad..., roadway, signal and communication systems, electric traction systems, roadway facilities or roadway...

  18. Interactive Diet and Activity Tracking in AARP (IDATA) Study Data | Division of Cancer Prevention

    Cancer.gov

    The Interactive Diet and Activity Tracking in AARP (IDATA) Study is a methodologic study of device-based, internet-based, and conventional self-report instrum | Device-based and intensive self-report physical activity and diet data with biomarkers

  19. 49 CFR 220.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... device means an electronic or electrical device used to conduct oral, written, or visual communication... equipment, or track motor car, singly or in combination with other equipment, on the track of a railroad..., roadway, signal and communication systems, electric traction systems, roadway facilities or roadway...

  20. First Observation of a Hall Effect in a Dusty Plasma: A Charged Granular Flow with Relevance to Planetary Rings

    NASA Astrophysics Data System (ADS)

    Eiskowitz, Skylar; Ballew, Nolan; Rojas, Rubén; Lathrop, Daniel

    2017-11-01

    The particles in Saturn's rings exhibit complex dynamic behavior. They experience solar radiation pressure, electromagnetic forces, and granular collisions. To investigate the possibility of the Hall Effect in the dusty plasma that comprise Saturn's rings, we have built an experiment that demonstrates the Hall Effect in granular matter. We focus on the Hall Effect because the rings' grains become collisionally charged and experience Saturn's dipolar magnetic field and Lorentz forces as they orbit. The experimental setup includes a closed ring-like track where granular matter is forced to circulate driven by compressed air. The structure sits between two electromagnets so that a portion of the track experiences up to a 0.2 T magnetic field. We vary the strength of the field and the speed of the particles. We report the voltage differences between two conducting plates on opposite sides of the track. If Saturn's rings do experience the Hall Effect, the inside and outside of the rings will develop a charge separation that can lead to a radial electric field and various phenomena including orbital effects due to the additional electric forces. Observational evidence from Cassini suggests that Saturn's rings exhibit lighting, supporting the notion that they are electrically charged. TREND REU program sponsored by the National Science Foundation.

  1. Accuracy and Adoption of Wearable Technology Used by Active Citizens: A Marathon Event Field Study

    PubMed Central

    Suleder, Julian; Zowalla, Richard

    2017-01-01

    Background Today, runners use wearable technology such as global positioning system (GPS)–enabled sport watches to track and optimize their training activities, for example, when participating in a road race event. For this purpose, an increasing amount of low-priced, consumer-oriented wearable devices are available. However, the variety of such devices is overwhelming. It is unclear which devices are used by active, healthy citizens and whether they can provide accurate tracking results in a diverse study population. No published literature has yet assessed the dissemination of wearable technology in such a cohort and related influencing factors. Objective The aim of this study was 2-fold: (1) to determine the adoption of wearable technology by runners, especially “smart” devices and (2) to investigate on the accuracy of tracked distances as recorded by such devices. Methods A pre-race survey was applied to assess which wearable technology was predominantly used by runners of different age, sex, and fitness level. A post-race survey was conducted to determine the accuracy of the devices that tracked the running course. Logistic regression analysis was used to investigate whether age, sex, fitness level, or track distance were influencing factors. Recorded distances of different device categories were tested with a 2-sample t test against each other. Results A total of 898 pre-race and 262 post-race surveys were completed. Most of the participants (approximately 75%) used wearable technology for training optimization and distance recording. Females (P=.02) and runners in higher age groups (50-59 years: P=.03; 60-69 years: P<.001; 70-79 year: P=.004) were less likely to use wearables. The mean of the track distances recorded by mobile phones with combined app (mean absolute error, MAE=0.35 km) and GPS-enabled sport watches (MAE=0.12 km) was significantly different (P=.002) for the half-marathon event. Conclusions A great variety of vendors (n=36) and devices (n=156) were identified. Under real-world conditions, GPS-enabled devices, especially sport watches and mobile phones, were found to be accurate in terms of recorded course distances. PMID:28246070

  2. Visualization of frequency-modulated electric field based on photonic frequency tracking in asynchronous electro-optic measurement system

    NASA Astrophysics Data System (ADS)

    Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao

    2018-04-01

    We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.

  3. The electrobrachistochrone

    NASA Astrophysics Data System (ADS)

    Lipscombe, Trevor C.; Mungan, Carl E.

    2018-05-01

    The brachistochrone problem consists of finding the track of shortest travel time between given initial and final points for a particle sliding frictionlessly along it under the influence of a given external force field. Solvable variations of the standard example of a uniform gravitational field would be suitable for homework and computer projects by undergraduate physics students studying intermediate mechanics and electromagnetism. An electrobrachistochrone problem is here proposed, in which a charged particle moves along a frictionless track under the influence of its electrostatic force of attraction to an image charge in a grounded conducting plane below the track. The path of least time is found to be a foreshortened cycloid and its properties are investigated analytically and graphically.

  4. Quantitative evaluation for accumulative calibration error and video-CT registration errors in electromagnetic-tracked endoscopy.

    PubMed

    Liu, Sheena Xin; Gutiérrez, Luis F; Stanton, Doug

    2011-05-01

    Electromagnetic (EM)-guided endoscopy has demonstrated its value in minimally invasive interventions. Accuracy evaluation of the system is of paramount importance to clinical applications. Previously, a number of researchers have reported the results of calibrating the EM-guided endoscope; however, the accumulated errors of an integrated system, which ultimately reflect intra-operative performance, have not been characterized. To fill this vacancy, we propose a novel system to perform this evaluation and use a 3D metric to reflect the intra-operative procedural accuracy. This paper first presents a portable design and a method for calibration of an electromagnetic (EM)-tracked endoscopy system. An evaluation scheme is then described that uses the calibration results and EM-CT registration to enable real-time data fusion between CT and endoscopic video images. We present quantitative evaluation results for estimating the accuracy of this system using eight internal fiducials as the targets on an anatomical phantom: the error is obtained by comparing the positions of these targets in the CT space, EM space and endoscopy image space. To obtain 3D error estimation, the 3D locations of the targets in the endoscopy image space are reconstructed from stereo views of the EM-tracked monocular endoscope. Thus, the accumulated errors are evaluated in a controlled environment, where the ground truth information is present and systematic performance (including the calibration error) can be assessed. We obtain the mean in-plane error to be on the order of 2 pixels. To evaluate the data integration performance for virtual navigation, target video-CT registration error (TRE) is measured as the 3D Euclidean distance between the 3D-reconstructed targets of endoscopy video images and the targets identified in CT. The 3D error (TRE) encapsulates EM-CT registration error, EM-tracking error, fiducial localization error, and optical-EM calibration error. We present in this paper our calibration method and a virtual navigation evaluation system for quantifying the overall errors of the intra-operative data integration. We believe this phantom not only offers us good insights to understand the systematic errors encountered in all phases of an EM-tracked endoscopy procedure but also can provide quality control of laboratory experiments for endoscopic procedures before the experiments are transferred from the laboratory to human subjects.

  5. Exposure to non-ionizing electromagnetic radiation from mobile telephony and the association with psychiatric symptoms.

    PubMed

    Silva, Denize Francisca da; Barros, Warley Rocha; Almeida, Maria da Conceição Chagas de; Rêgo, Marco Antônio Vasconcelos

    2015-10-01

    The aim of this study was to investigate the association between exposure to non-ionizing electromagnetic radiation from mobile phone base stations and psychiatric symptoms. In a cross-sectional study in Salvador, Bahia State, Brazil, 440 individuals were interviewed. Psychiatric complaints and diagnoses were the dependent variables and distance from the individual's residence to the base station was considered the main independent variable. Hierarchical logistic regression analysis was conducted to assess confounding. An association was observed between psychiatric symptoms and residential proximity to the base station and different forms of mobile phone use (making calls with weak signal coverage, keeping the mobile phone close to the body, having two or more chips, and never turning off the phone while sleeping), and with the use of other electronic devices. The study concluded that exposure to electromagnetic radiation from mobile phone base stations and other electronic devices was associated with psychiatric symptoms, independently of gender, schooling, and smoking status. The adoption of precautionary measures to reduce such exposure is recommended.

  6. Development of a full-waveform voltage and current recording device for multichannel transient electromagnetic transmitters

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyue; Zhang, Qisheng; Wang, Meng; Kong, Qiang; Zhang, Shengquan; He, Ruihao; Liu, Shenghui; Li, Shuhan; Yuan, Zhenzhong

    2017-11-01

    Due to the pressing demand for metallic ore exploration technology in China, several new technologies are being employed in the relevant exploration instruments. In addition to possessing the high resolution of the traditional transient electromagnetic method, high-efficiency measurements, and a short measurement time, the multichannel transient electromagnetic method (MTEM) technology can also sensitively determine the characteristics of a low-resistivity geologic body, without being affected by the terrain. Besides, the MTEM technology also solves the critical, existing interference problem in electrical exploration technology. This study develops a full-waveform voltage and current recording device for MTEM transmitters. After continuous acquisition and storage of the large, pseudo-random current signals emitted by the MTEM transmitter, these signals are then convoluted with the signals collected by the receiver to obtain the earth's impulse response. In this paper, the overall design of the full-waveform recording apparatus, including the hardware and upper-computer software designs, the software interface display, and the results of field test, is discussed in detail.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imani, Mohammadreza F., E-mail: mohamad.imani@gmail.com; Grbic, Anthony

    One of the obstacles preventing wireless power transfer from becoming ubiquitous is their leakage of power: high-amplitude electromagnetic fields that can interfere with other electronic devices, increase health concerns, or hinder power metering. In this paper, we present near-field plates (NFPs) as a novel method to tailor the electromagnetic fields generated by a wireless power transfer system while maintaining high efficiency. NFPs are modulated arrays or surfaces designed to form prescribed near-field patterns. The NFP proposed in this paper consists of an array of loaded loops that are designed to confine the electromagnetic fields of a resonant transmitting loop tomore » the desired direction (receiving loop) while suppressing fields in other directions. The step-by-step design procedure for this device is outlined. Two NFPs are designed and examined in full-wave simulation. Their performance is shown to be in close agreement with the design predictions, thereby verifying the proposed design and operation. A NFP is also fabricated and experimentally shown to form a unidirectional wireless power transfer link with high efficiency.« less

  8. Electromagnetic Compatibility Testing of Implantable Neurostimulators Exposed to Metal Detectors

    PubMed Central

    Seidman, Seth J; Kainz, Wolfgang; Casamento, Jon; Witters, Donald

    2010-01-01

    This paper presents results of electromagnetic compatibility (EMC) testing of three implantable neurostimulators exposed to the magnetic fields emitted from several walk-through and hand-held metal detectors. The motivation behind this testing comes from numerous adverse event reports involving active implantable medical devices (AIMDs) and security systems that have been received by the Food and Drug Administration (FDA). EMC testing was performed using three neurostimulators exposed to the emissions from 12 walk-through metal detectors (WTMDs) and 32 hand-held metal detectors (HHMDs). Emission measurements were performed on all HHMDs and WTMDs and summary data is presented. Results from the EMC testing indicate possible electromagnetic interference (EMI) between one of the neurostimulators and one WTMD and indicate that EMI between the three neurostimulators and HHMDs is unlikely. The results suggest that worst case situations for EMC testing are hard to predict and testing all major medical device modes and setting parameters are necessary to understand and characterize the EMC of AIMDs. PMID:20448818

  9. Basic EMC (Electromagnetic compatibility) technology advancement for C3 systems. Volume 4D: Modeling crosstalk in balanced twisted pairs

    NASA Astrophysics Data System (ADS)

    Koopman, D. A.; Paul, C. R.

    1984-08-01

    Electrical devices (computers, radar systems, communication radios, etc.) are interconnected by wires on most present systems. Electromagnetic fields produced by the excitation of these wires will cause unintentional coupling of signals onto nearby wires. This undesired electromagnetic coupling is termed crosstalk. It is important to be able to determine whether these crosstalk signals will cause the devices at the ends of the wires to malfunction. Wires are often grouped together in cable bundles or harnesses. The close proximity of wires in these bundles enhances the possibility that the crosstalk levels will be sufficiently large to cause malfunctions. The ability to predict crosstalk levels and the means to control crosstalk when it causes a problem are important to optimum system design. It interference of this type is allowed to surface during final system tests, a costly and time consuming retrofit of the wiring or the addition of filters and other interference control measures may be required.

  10. Computer simulation of magnetization-controlled shunt reactors for calculating electromagnetic transients in power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpov, A. S.

    2013-01-15

    A computer procedure for simulating magnetization-controlled dc shunt reactors is described, which enables the electromagnetic transients in electric power systems to be calculated. It is shown that, by taking technically simple measures in the control system, one can obtain high-speed reactors sufficient for many purposes, and dispense with the use of high-power devices for compensating higher harmonic components.

  11. Physics Almost Saved the President! Electromagnetic Induction and the Assassination of James Garfield: A Teaching Opportunity in Introductory Physics

    ERIC Educational Resources Information Center

    Overduin, James; Molloy, Dana; Selway, Jim

    2014-01-01

    Electromagnetic induction is probably one of the most challenging subjects for students in the introductory physics sequence, especially in algebra-based courses. Yet it is at the heart of many of the devices we rely on today. To help students grasp and retain the concept, we have put together a simple and dramatic classroom demonstration that…

  12. Turbulent Transition in Electromagnetically Levitated Drops

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Trapaga, G.; Abedian, B.; Matson, D. M.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Electromagnetic levitation (EML) is an important tool in materials research. Because a sample can be processed without contact with a container, experiments may be performed on high temperature, highly reactive, and undercooled liquid metals. Many of these experiments are affected by fluid flow in the sample, driven by the electromagnetic positioning force. Despite the importance of convection in these experiments, the transition to turbulence is not well understood in this system. However, we have observed a transition from laminar to turbulent flow in EML droplets in the course of microgravity experiments in TEMPUS on the Space Shuttle (STS-94). The transition occurs repeatably and over a narrow range of conditions. These experimental observations are compared with two competing theories about the transition to turbulence. Also, the results of a particle tracking study of the instabilities leading up to the transition to turbulence are presented.

  13. Terahertz metamaterials

    DOEpatents

    Peralta, Xomalin Guaiuli; Brener, Igal; O'Hara, John; Azad, Abul; Smirnova, Evgenya; Williams, John D.; Averitt, Richard D.

    2014-08-12

    Terahertz metamaterials comprise a periodic array of resonator elements disposed on a dielectric substrate or thin membrane, wherein the resonator elements have a structure that provides a tunable magnetic permeability or a tunable electric permittivity for incident electromagnetic radiation at a frequency greater than about 100 GHz and the periodic array has a lattice constant that is smaller than the wavelength of the incident electromagnetic radiation. Microfabricated metamaterials exhibit lower losses and can be assembled into three-dimensional structures that enable full coupling of incident electromagnetic terahertz radiation in two or three orthogonal directions. Furthermore, polarization sensitive and insensitive metamaterials at terahertz frequencies can enable new devices and applications.

  14. Threats to ultra-high-field MRI

    NASA Astrophysics Data System (ADS)

    Le Bihan, Denis

    2009-08-01

    In 2004 the European Commission (EC) adopted a directive restricting occupational exposure to electromagnetic fields. This directive (2004/40/CE), which examines the possible health risks of the electromagnetic fields from mobile phones, Wi-Fi, Bluetooth and other devices, concluded that upper limits on radiation and applied electromagnetic fields are necessary to prevent workers from suffering any undue acute health effects. But although not initially intended, the biggest impact of the directive could be on magnetic resonance imaging (MRI), which is used in hospitals worldwide to produce images of unrivalled quality of the brain and other soft tissues.

  15. Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassanein, Ahmed; Konkashbaev, Isak

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.

  16. Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons

    NASA Astrophysics Data System (ADS)

    Slim, J.; Gebel, R.; Heberling, D.; Hinder, F.; Hölscher, D.; Lehrach, A.; Lorentz, B.; Mey, S.; Nass, A.; Rathmann, F.; Reifferscheidt, L.; Soltner, H.; Straatmann, H.; Trinkel, F.; Wolters, J.

    2016-08-01

    The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1-2 MHz at the COoler SYnchrotron COSY at Jülich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.

  17. Use of Electromagnetic Navigational Transthoracic Needle Aspiration (E-TTNA) for Sampling of Lung Nodules.

    PubMed

    Arias, Sixto; Lee, Hans; Semaan, Roy; Frimpong, Bernice; Ortiz, Ricardo; Feller-Kopman, David; Oakjones-Burgess, Karen; Yarmus, Lonny

    2015-05-23

    Lung nodule evaluation represents a clinical challenge especially in patients with intermediate risk for malignancy. Multiple technologies are presently available to sample nodules for pathological diagnosis. Those technologies can be divided into bronchoscopic and non-bronchoscopic interventions. Electromagnetic navigational bronchoscopy is being extensively used for the endobronchial approach to peripheral lung nodules but has been hindered by anatomic challenges resulting in a 70% diagnostic yield. Electromagnetic navigational guided transthoracic needle lung biopsy is novel non-bronchoscopic method that uses a percutaneous electromagnetic tip tracked needle to obtain core biopsy specimens. Electromagnetic navigational transthoracic needle aspiration complements bronchoscopic techniques potentially allowing the provider to maximize the diagnostic yield during one single procedure. This article describes a novel integrated diagnostic approach to pulmonary lung nodules. We propose the use of endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) for mediastinal staging; radial EBUS, navigational bronchoscopy and E-TTNA during one single procedure to maximize diagnostic yield and minimize the number of invasive procedures needed to obtain a diagnosis. This manuscript describes in detail how the navigation transthoracic procedure is performed. Additional clinical studies are needed to determine the clinical utility of this novel technology.

  18. Scalable patients tracking framework for mass casualty incidents.

    PubMed

    Yu, Xunyi; Ganz, Aura

    2011-01-01

    We introduce a system that tracks patients in a Mass Casualty Incident (MCI) using active RFID triage tags and mobile anchor points (DM-tracks) carried by the paramedics. The system does not involve any fixed deployment of the localization devices while maintaining a low cost triage tag. The localization accuracy is comparable to GPS systems without incurring the cost of providing a GPS based device to every patient in the disaster scene.

  19. [Study on Intelligent Automatic Tracking Radiation Protection Curtain].

    PubMed

    Zhao, Longyang; Han, Jindong; Ou, Minjian; Chen, Jinlong

    2015-09-01

    In order to overcome the shortcomings of traditional X-ray inspection taking passive protection mode, this paper combines the automatic control technology, puts forward a kind of active protection X-ray equipment. The device of automatic detection of patients receiving X-ray irradiation part, intelligent adjustment in patients and shooting device between automatic tracking radiation protection device height. The device has the advantages of automatic adjustment, anti-radiation device, reduce the height of non-irradiated area X-ray radiation and improve the work efficiency. Testing by the professional organization, the device can decrease more than 90% of X-ray dose for patients with non-irradiated area.

  20. Experiment on a novel user input for computer interface utilizing tongue input for the severely disabled.

    PubMed

    Kencana, Andy Prima; Heng, John

    2008-11-01

    This paper introduces a novel passive tongue control and tracking device. The device is intended to be used by the severely disabled or quadriplegic person. The main focus of this device when compared to the other existing tongue tracking devices is that the sensor employed is passive which means it requires no powered electrical sensor to be inserted into the user's mouth and hence no trailing wires. This haptic interface device employs the use of inductive sensors to track the position of the user's tongue. The device is able perform two main PC functions that of the keyboard and mouse function. The results show that this device allows the severely disabled person to have some control in his environment, such as to turn on and off or control daily electrical devices or appliances; or to be used as a viable PC Human Computer Interface (HCI) by tongue control. The operating principle and set-up of such a novel passive tongue HCI has been established with successful laboratory trials and experiments. Further clinical trials will be required to test out the device on disabled persons before it is ready for future commercial development.

  1. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.

    PubMed

    Wu, Wei; Fang, Qiang

    2011-01-01

    Printed Spiral Coil (PSC) is a coil antenna for near-field wireless power transmission to the next generation implant medical devices. PSC for implant medical device should be power efficient and low electromagnetic radiation to human tissues. We utilized a physical model of printed spiral coil and applied our algorithm to design PSC operating at 13.56 MHz. Numerical and electromagnetic simulation of power transfer efficiency of PSC in air medium is 77.5% and 71.1%, respectively. The simulation results show that the printed spiral coil which is optimized for air will keep 15.2% power transfer efficiency in human subcutaneous tissues. In addition, the Specific Absorption Ratio (SAR) for this coil antenna in subcutaneous at 13.56 MHz is below 1.6 W/Kg, which suggests this coil is implantable safe based on IEEE C95.1 safety guideline.

  2. Microwave platform as a valuable tool for characterization of nanophotonic devices

    PubMed Central

    Shishkin, Ivan; Baranov, Dmitry; Slobozhanyuk, Alexey; Filonov, Dmitry; Lukashenko, Stanislav; Samusev, Anton; Belov, Pavel

    2016-01-01

    The rich potential of the microwave experiments for characterization and optimization of optical devices is discussed. While the control of the light fields together with their spatial mapping at the nanoscale is still laborious and not always clear, the microwave setup allows to measure both amplitude and phase of initially determined magnetic and electric field components without significant perturbation of the near-field. As an example, the electromagnetic properties of an add-drop filter, which became a well-known workhorse of the photonics, is experimentally studied with the aid of transmission spectroscopy measurements in optical and microwave ranges and through direct mapping of the near fields at microwave frequencies. We demonstrate that the microwave experiments provide a unique platform for the comprehensive studies of electromagnetic properties of micro- and nanophotonic devices, and allow to obtain data which are hardly acquirable by conventional optical methods. PMID:27759058

  3. Working principle of an electromagnetic wiping system

    NASA Astrophysics Data System (ADS)

    Ernst, R.; Fautrelle, Y.; Bianchi, A.-M.; Iliescu, M.

    2009-03-01

    In galvanizing lines, the gas knife wiping device works well for controlling the zinc coating thickness up to 2 to 3 m/s strip velocities. But for higher velocities, a strong liquid zinc splash risk forbids the gas pressure increase, which would be necessary to keep the same thickness control efficiency of the knives. That is why a complementary electromagnetic wiping system, whose purpose is to pre-wipe the liquid zinc before the gas knives take over, is presented here. After mentioning different kinds of AC and DC possible electromagnetic solutions, a DC field electromagnetic brake (EMB) system based on the use of permanent magnets is selected for a future experimental implementation. In order to better understand the electromagnetic and fluid mechanics phenomena, an analytical model and then different numerical models are presented here. These models show an interesting wiping effect on the liquid zinc, which seems promising for a future experimental pilot design. Figs 8, Refs 9.

  4. Detection and Classification of UXO Using Unmanned Undersea Electromagnetic Sensing Platforms

    NASA Astrophysics Data System (ADS)

    Schultz, G.; Keranen, J.; McNinch, J.; Miller, J.

    2017-12-01

    Important seafloor applications, including mine countermeasures, unexploded ordnance (UXO) surveys, salvage, and underwater hazards, require the detection, geo-registration, and characterization of man-made targets on, or below, the seafloor. Investigations in littoral environments can be time-consuming and expensive due to the challenges of accurately tracking underwater assets, the difficulty of quick or effective site reconnaissance activities, high levels of clutter in nearshore areas, and lack of situational awareness and real-time feedback to operators. Consequently, a high payoff exists for effective methods using sensor and data fusion, feature extraction, and effective payload integration and deployment for improved assessments of littoral infrastructure. We present technology development and demonstration results from multiple technology research, development, and demonstration projects over the last 3 years that have been focused on advancing seafloor target detection, tracking, and classification for specific environmental and defense missions. We focus on challenges overcome in integrating and testing new miniaturized passive magnetic and controlled-source electromagnetic sensors on a variety of remotely and autonomously operated sensing platforms (ROVs, AUVs and bottom crawling systems). In particular, we present aspects of the design, development, and testing of array configurations of miniaturized atomic magnetometers/gradiometers and multi-dimensional electromagnetic (EM) sensor arrays. Results from nearshore (surf zone and marsh in North Carolina) and littoral experiments (bays and reef areas of Florida Gulf and Florida Keys) are presented.

  5. Emitter signal separation method based on multi-level digital channelization

    NASA Astrophysics Data System (ADS)

    Han, Xun; Ping, Yifan; Wang, Sujun; Feng, Ying; Kuang, Yin; Yang, Xinquan

    2018-02-01

    To solve the problem of emitter separation under complex electromagnetic environment, a signal separation method based on multi-level digital channelization is proposed in this paper. A two-level structure which can divide signal into different channel is designed first, after that, the peaks of different channels are tracked using the track filter and the coincident signals in time domain are separated in time-frequency domain. Finally, the time domain waveforms of different signals are acquired by reverse transformation. The validness of the proposed method is proved by experiment.

  6. A multimodal image guiding system for Navigated Ultrasound Bronchoscopy (EBUS): A human feasibility study

    PubMed Central

    Hofstad, Erlend Fagertun; Amundsen, Tore; Langø, Thomas; Bakeng, Janne Beate Lervik; Leira, Håkon Olav

    2017-01-01

    Background Endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) is the endoscopic method of choice for confirming lung cancer metastasis to mediastinal lymph nodes. Precision is crucial for correct staging and clinical decision-making. Navigation and multimodal imaging can potentially improve EBUS-TBNA efficiency. Aims To demonstrate the feasibility of a multimodal image guiding system using electromagnetic navigation for ultrasound bronchoschopy in humans. Methods Four patients referred for lung cancer diagnosis and staging with EBUS-TBNA were enrolled in the study. Target lymph nodes were predefined from the preoperative computed tomography (CT) images. A prototype convex probe ultrasound bronchoscope with an attached sensor for position tracking was used for EBUS-TBNA. Electromagnetic tracking of the ultrasound bronchoscope and ultrasound images allowed fusion of preoperative CT and intraoperative ultrasound in the navigation software. Navigated EBUS-TBNA was used to guide target lymph node localization and sampling. Navigation system accuracy was calculated, measured by the deviation between lymph node position in ultrasound and CT in three planes. Procedure time, diagnostic yield and adverse events were recorded. Results Preoperative CT and real-time ultrasound images were successfully fused and displayed in the navigation software during the procedures. Overall navigation accuracy (11 measurements) was 10.0 ± 3.8 mm, maximum 17.6 mm, minimum 4.5 mm. An adequate sample was obtained in 6/6 (100%) of targeted lymph nodes. No adverse events were registered. Conclusions Electromagnetic navigated EBUS-TBNA was feasible, safe and easy in this human pilot study. The clinical usefulness was clearly demonstrated. Fusion of real-time ultrasound, preoperative CT and electromagnetic navigational bronchoscopy provided a controlled guiding to level of target, intraoperative overview and procedure documentation. PMID:28182758

  7. Solar tracking apparatus

    DOEpatents

    Hammons, Burrell E.

    1980-01-01

    The invention relates to a solar tracking device which tracks the position of the sun using paired, partially-shaded photocells. Auxiliary photocells are used for initial acquisition of the sun and for the suppression of false tracking when the sun is obscured by clouds.

  8. Solar tracking apparatus

    DOEpatents

    Hammons, B.E.

    The invention relates to a solar tracking device which tracks the position of the sun using paired, partially-shaded photocells. Auxilliary photocells are used for initial acquisition of the sun and for the suppression of false tracking when the sun is obscured by clouds.

  9. 49 CFR 236.757 - Lock, electric.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Lock, electric. 236.757 Section 236.757... Lock, electric. A device to prevent or restrict the movement of a lever, a switch or a movable bridge, unless the locking member is withdrawn by an electrical device, such as an electromagnet, solenoid or...

  10. 49 CFR 236.757 - Lock, electric.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Lock, electric. 236.757 Section 236.757... Lock, electric. A device to prevent or restrict the movement of a lever, a switch or a movable bridge, unless the locking member is withdrawn by an electrical device, such as an electromagnet, solenoid or...

  11. 49 CFR 236.757 - Lock, electric.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Lock, electric. 236.757 Section 236.757... Lock, electric. A device to prevent or restrict the movement of a lever, a switch or a movable bridge, unless the locking member is withdrawn by an electrical device, such as an electromagnet, solenoid or...

  12. 49 CFR 236.757 - Lock, electric.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lock, electric. 236.757 Section 236.757... Lock, electric. A device to prevent or restrict the movement of a lever, a switch or a movable bridge, unless the locking member is withdrawn by an electrical device, such as an electromagnet, solenoid or...

  13. 49 CFR 236.757 - Lock, electric.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Lock, electric. 236.757 Section 236.757... Lock, electric. A device to prevent or restrict the movement of a lever, a switch or a movable bridge, unless the locking member is withdrawn by an electrical device, such as an electromagnet, solenoid or...

  14. An Assessment of Hazards Caused by Electromagnetic Interaction on Humans Present near Short-Wave Physiotherapeutic Devices of Various Types Including Hazards for Users of Electronic Active Implantable Medical Devices (AIMD)

    PubMed Central

    Gryz, Krzysztof

    2013-01-01

    Leakage of electromagnetic fields (EMF) from short-wave radiofrequency physiotherapeutic diathermies (SWDs) may cause health and safety hazards affecting unintentionally exposed workers (W) or general public (GP) members (assisting patient exposed during treatment or presenting there for other reasons). Increasing use of electronic active implantable medical devices (AIMDs), by patients, attendants, and workers, needs attention because dysfunctions of these devices may be caused by electromagnetic interactions. EMF emitted by 12 SWDs (with capacitive or inductive applicators) were assessed following international guidelines on protection against EMF exposure (International Commission on Nonionizing Radiation Protection for GP and W, new European directive 2013/35/EU for W, European Recommendation for GP, and European Standard EN 50527-1 for AIMD users). Direct EMF hazards for humans near inductive applicators were identified at a distance not exceeding 45 cm for W or 62 cm for GP, but for AIMD users up to 90 cm (twice longer than that for W and 50% longer than that for GP because EMF is pulsed modulated). Near capacitive applicators emitting continuous wave, the corresponding distances were: 120 cm for W or 150 cm for both—GP or AIMD users. This assessment does not cover patients who undergo SWD treatment (but it is usually recommended for AIMD users to be careful with EMF treatment). PMID:24089662

  15. Review and analysis of Hamburg Wheel Tracking device test data.

    DOT National Transportation Integrated Search

    2014-02-01

    The Hamburg Wheel Tracking Device (HWTD) test (TEX-242-F) and the Kansas Test Method KT-56 (KT-56), or : modified Lottman test, have been used in Kansas for the last 10 years or so to predict rutting and moisture damage potential of : Superpave mixes...

  16. Main principles of passive devices based on graphene and carbon films in microwave-THz frequency range

    NASA Astrophysics Data System (ADS)

    Kuzhir, Polina P.; Paddubskaya, Alesia G.; Volynets, Nadezhda I.; Batrakov, Konstantin G.; Kaplas, Tommi; Lamberti, Patrizia; Kotsilkova, Rumiana; Lambin, Philippe

    2017-07-01

    The ability of thin conductive films, including graphene, pyrolytic carbon (PyC), graphitic PyC (GrPyC), graphene with graphitic islands (GrI), glassy carbon (GC), and sandwich structures made of all these materials separated by polymer slabs to absorb electromagnetic radiation in microwave-THz frequency range, is discussed. The main physical principles making a basis for high absorption ability of these heterostructures are explained both in the language of electromagnetic theory and using representation of equivalent electrical circuits. The idea of using carbonaceous thin films as the main working elements of passive radiofrequency (RF) devices, such as shields, filters, polarizers, collimators, is proposed theoretically and proved experimentally. The important advantage of PyC, GrI, GrPyC, and GC is that, in contrast to graphene, they either can be easily deposited onto a dielectric substrate or are strong enough to allow their transfer from the catalytic substrate without a shuttle polymer layer. This opens a new avenue toward the development of a scalable protocol for cost-efficient production of ultralight electromagnetic shields that can be transferred to commercial applications. A robust design via finite-element method and design of experiment for RF devices based on carbon/graphene films and sandwiches is also discussed in the context of virtual prototyping.

  17. Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance

    NASA Astrophysics Data System (ADS)

    Mondal, Subhadip; Ghosh, Sabyasachi; Ganguly, Sayan; Das, Poushali; Ravindren, Revathy; Sit, Subhashis; Chakraborty, Goutam; Das, Narayan Ch

    2017-10-01

    Widespread usage and development of electrical/electronic devices can create severe problems for various other devices and in our everyday lives due to harmful exposure to electromagnetic (EM) radiation. Herein, we report on the electromagnetic interference (EMI)-shielding performance of highly flexible and conductive chlorinated polyethylene (CPE)/carbon nanofiber (CNF) nanocomposites fabricated by a probe-sonication-assisted simple solution-mixing process. The dispersion of CNF nanofillers inside the CPE matrix has been studied by electron micrographs. This dispersion is reflected in the formation of continuous conductive networks at a low percolation-threshold value of 2.87 wt% and promising EMI-shielding performance of 41.5 dB for 25 wt% CNF in the X-band frequency (8.2-12.4 GHz). Such an intriguing performance mainly depends on the unique filler-filler or filler-polymer networks in CPE nanocomposites. In addition, the composite material displays a superior EMI efficiency of 47.5 dB for 2.0 mm thickness at 8.2 GHz. However, we have been encouraged by the promotion of highly flexible and lightweight CPE/CNF nanocomposite as a superior EMI shield, which can protect electronic devices against harm caused by EM radiation and offers an adaptable solution in advanced EMI-shield applications.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Schanfein

    Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxidemore » (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).« less

  19. MO-FG-BRA-06: Electromagnetic Beacon Insertion in Lung Cancer Patients and Resultant Surrogacy Errors for Dynamic MLC Tumour Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardcastle, N; Booth, J; Caillet, V

    Purpose: To assess endo-bronchial electromagnetic beacon insertion and to quantify the geometric accuracy of using beacons as a surrogate for tumour motion in real-time multileaf collimator (MLC) tracking of lung tumours. Methods: The LIGHT SABR trial is a world-first clinical trial in which the MLC leaves move with lung tumours in real time on a standard linear accelerator. Tracking is performed based on implanted electromagnetic beacons (CalypsoTM, Varian Medical Systems, USA) as a surrogate for tumour motion. Five patients have been treated and have each had three beacons implanted endo-bronchially under fluoroscopic guidance. The centre of mass (C.O.M) has beenmore » used to adapt the MLC in real-time. The geometric error in using the beacon C.O.M as a surrogate for tumour motion was measured by measuring the tumour and beacon C.O.M in all phases of the respiratory cycle of a 4DCT. The surrogacy error was defined as the difference in beacon and tumour C.O.M relative to the reference phase (maximum exhale). Results: All five patients have had three beacons successfully implanted with no migration between simulation and end of treatment. Beacon placement relative to tumour C.O.M varied from 14 to 74 mm and in one patient spanned two lobes. Surrogacy error was measured in each patient on the simulation 4DCT and ranged from 0 to 3 mm. Surrogacy error as measured on 4DCT was subject to artefacts in mid-ventilation phases. Surrogacy error was a function of breathing phase and was typically larger at maximum inhale. Conclusion: Beacon placement and thus surrogacy error is a major component of geometric uncertainty in MLC tracking of lung tumours. Surrogacy error must be measured on each patient and incorporated into margin calculation. Reduction of surrogacy error is limited by airway anatomy, however should be taken into consideration when performing beacon insertion and planning. This research is funded by Varian Medical Systems via a collaborative research agreement.« less

  20. Exploring the Association between Campus Co-Curricular Involvement and Academic Achievement

    ERIC Educational Resources Information Center

    Bergen-Cico, Dessa; Viscomi, Joe

    2013-01-01

    This research examines the relationship between college student attendance at co-curricular programs and GPA. Researchers tracked attendance of two cohorts totaling 3,000+ students through electromagnetic scanning at university-sponsored events. Analysis of GPA by attendance rate clusters revealed that students attending 5-14 events over the…

  1. Goldstone radio spectrum protection. [deep space network

    NASA Technical Reports Server (NTRS)

    Gaudian, B. A.; Cushman, R. B.

    1980-01-01

    Potential electromagnetic interference to the Goldstone tracking receivers due to neighboring military installations is discussed. Coordination of the military and NASA Goldstone activities in the Mojave Desert area is seen to be an effective method to protect the Goldstone radio spectrum while maintaining compatible operations for the military and Goldstone.

  2. HBCU/MI: 3D Formable RF Materials and Devices

    DTIC Science & Technology

    2016-08-01

    SECURITY CLASSIFICATION OF: The aim of this project was to explore 3D printing for RF/microwave circuits and devices. The research produced several... 3D printed microwave filters, a 3D wifi radio circuit, and new materials for 3D printed electromagnetic devices. The research demonstrates that 3D ...journals: Final Report: HBCU/MI: 3D Formable RF Materials and Devices Report Title The aim of this project was to explore 3D printing for RF/microwave

  3. Extracting, Tracking, and Visualizing Magnetic Flux Vortices in 3D Complex-Valued Superconductor Simulation Data.

    PubMed

    Guo, Hanqi; Phillips, Carolyn L; Peterka, Tom; Karpeyev, Dmitry; Glatz, Andreas

    2016-01-01

    We propose a method for the vortex extraction and tracking of superconducting magnetic flux vortices for both structured and unstructured mesh data. In the Ginzburg-Landau theory, magnetic flux vortices are well-defined features in a complex-valued order parameter field, and their dynamics determine electromagnetic properties in type-II superconductors. Our method represents each vortex line (a 1D curve embedded in 3D space) as a connected graph extracted from the discretized field in both space and time. For a time-varying discrete dataset, our vortex extraction and tracking method is as accurate as the data discretization. We then apply 3D visualization and 2D event diagrams to the extraction and tracking results to help scientists understand vortex dynamics and macroscale superconductor behavior in greater detail than previously possible.

  4. Sci—Fri PM: Topics — 08: The Role and Benefits of Electromagnetic Needle-Tracking Technologies in Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaulieu, L.; Racine, E.; Boutaleb, S.

    In modern brachytherapy, application of large doses of ionizing radiation in a limited number of fractions is frequent. Furthermore, as with any surgical procedures, brachytherapy is subject to learning curve effects. In this context, there could be advantages of integrating real-time tracking of needles/catheters to existing protocols given the recent prominent advances in tracking technologies. In this work, we review the use of an electromagnetic tracking system (EMTS) based on the second generation Aurora® Planar Field Generator (Northern Digital Inc) and custom design needles (Philips Healthcare) for brachytherapy applications. The position and orientation information is obtained from 5 degrees ofmore » freedom sensors. Basic system performance characterization is performed in well-controlled conditions to establish accuracy and reproducibility as well as potential interference from standard brachytherapy equipment. The results show that sensor locations can be tracked to within 0.04mm (la) when located within 26cm of the generator. Orientation accuracy of the needle remained within ±1° in the same region, but rose quickly at larger distances. The errors on position and orientation strongly dependent the sensor position in the characterization volume (500×500×500mm{sup 3}). The presence of an ultrasound probe was shown to have negligible effects on tracking accuracy. The use of EMTS for automatic catheter/applicator reconstruction was also explored. Reconstruction time was less than 10 sec/channel and tips identification was within 0.69±0.29mm of the reference values. Finally, we demonstrate that hollow needle designs with special EM adaptation also allow for real-time seed drop position estimation. In phantom experiments showed that drop positions were on average within 1.6±0.9mm of the reference position measured from μCT. Altogether, EMTS offer promising benefits in a wide range of brachytherapy applications.« less

  5. Fast calibration of electromagnetically tracked oblique-viewing rigid endoscopes.

    PubMed

    Liu, Xinyang; Rice, Christina E; Shekhar, Raj

    2017-10-01

    The oblique-viewing (i.e., angled) rigid endoscope is a commonly used tool in conventional endoscopic surgeries. The relative rotation between its two moveable parts, the telescope and the camera head, creates a rotation offset between the actual and the projection of an object in the camera image. A calibration method tailored to compensate such offset is needed. We developed a fast calibration method for oblique-viewing rigid endoscopes suitable for clinical use. In contrast to prior approaches based on optical tracking, we used electromagnetic (EM) tracking as the external tracking hardware to improve compactness and practicality. Two EM sensors were mounted on the telescope and the camera head, respectively, with considerations to minimize EM tracking errors. Single-image calibration was incorporated into the method, and a sterilizable plate, laser-marked with the calibration pattern, was also developed. Furthermore, we proposed a general algorithm to estimate the rotation center in the camera image. Formulas for updating the camera matrix in terms of clockwise and counterclockwise rotations were also developed. The proposed calibration method was validated using a conventional [Formula: see text], 5-mm laparoscope. Freehand calibrations were performed using the proposed method, and the calibration time averaged 2 min and 8 s. The calibration accuracy was evaluated in a simulated clinical setting with several surgical tools present in the magnetic field of EM tracking. The root-mean-square re-projection error averaged 4.9 pixel (range 2.4-8.5 pixel, with image resolution of [Formula: see text] for rotation angles ranged from [Formula: see text] to [Formula: see text]. We developed a method for fast and accurate calibration of oblique-viewing rigid endoscopes. The method was also designed to be performed in the operating room and will therefore support clinical translation of many emerging endoscopic computer-assisted surgical systems.

  6. SU-F-BRA-03: Integrating Novel Electromagnetic Tracking Hollow Needle Assistance in Permanent Implant Brachytherapy Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Racine, E; Hautvast, G; Binnekamp, D

    Purpose: To report on the results of a complete permanent implant brachytherapy procedure assisted by an electromagnetic (EM) hollow needle possessing both 3D tracking and seed drop detection abilities. Methods: End-to-end in-phantom EM-assisted LDR procedures were conducted. The novel system consisted of an EM tracking apparatus (NDI Aurora V2, Planar Field Generator), a 3D US scanner (Philips CX50), a hollow needle prototype allowing 3D tracking and seed drop detection and a specially designed treatment planning software (Philips Healthcare). A tungsten-doped 30 cc spherical agarose prostate immersed in gelatin was used for the treatment. A cylindrical shape of 0.8 cc wasmore » carved along its diameter to mimic the urethra. An initial plan of 26 needles and 47 seeds was established with the system. The plan was delivered with the EM-tracked hollow needle, and individual seed drop locations were recorded on the fly. The phantom was subsequently imaged with a CT scanner from which seed positions and contour definitions were obtained. The DVHs were then independently recomputed and compared with those produced by the planning system, both before and after the treatment. Results: Of the 47 seeds, 45 (96%) were detected by the EM technology embedded in the hollow needle design. The executed plan (from CT analysis) differed from the initial plan by 2%, 14% and 8% respectively in terms of V100, D90 and V150 for the prostate, and by 8%, 7% and 10% respectively in terms of D5, V100 and V120 for the urethra. Conclusion: The average DVH deviations between initial and executed plans were within a 5% tolerance imposed for this proof-of-concept assessment. This relatively good concordance demonstrates the feasibility and potential benefits of combining EM tracking and seed drop detection for real-time dosimetry validation and assistance in permanent implant brachytherapy procedures. This project has been entirely funded by Philips Healthcare.« less

  7. Calorie counting and fitness tracking technology: Associations with eating disorder symptomatology.

    PubMed

    Simpson, Courtney C; Mazzeo, Suzanne E

    2017-08-01

    The use of online calorie tracking applications and activity monitors is increasing exponentially. Anecdotal reports document the potential for these trackers to trigger, maintain, or exacerbate eating disorder symptomatology. Yet, research has not examined the relation between use of these devices and eating disorder-related attitudes and behaviors. This study explored associations between the use of calorie counting and fitness tracking devices and eating disorder symptomatology. Participants (N=493) were college students who reported their use of tracking technology and completed measures of eating disorder symptomatology. Individuals who reported using calorie trackers manifested higher levels of eating concern and dietary restraint, controlling for BMI. Additionally, fitness tracking was uniquely associated with ED symptomatology after adjusting for gender and bingeing and purging behavior within the past month. Findings highlight associations between use of calorie and fitness trackers and eating disorder symptomatology. Although preliminary, overall results suggest that for some individuals, these devices might do more harm than good. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird.

    PubMed

    Engels, Svenja; Schneider, Nils-Lasse; Lefeldt, Nele; Hein, Christine Maira; Zapka, Manuela; Michalik, Andreas; Elbers, Dana; Kittel, Achim; Hore, P J; Mouritsen, Henrik

    2014-05-15

    Electromagnetic noise is emitted everywhere humans use electronic devices. For decades, it has been hotly debated whether man-made electric and magnetic fields affect biological processes, including human health. So far, no putative effect of anthropogenic electromagnetic noise at intensities below the guidelines adopted by the World Health Organization has withstood the test of independent replication under truly blinded experimental conditions. No effect has therefore been widely accepted as scientifically proven. Here we show that migratory birds are unable to use their magnetic compass in the presence of urban electromagnetic noise. When European robins, Erithacus rubecula, were exposed to the background electromagnetic noise present in unscreened wooden huts at the University of Oldenburg campus, they could not orient using their magnetic compass. Their magnetic orientation capabilities reappeared in electrically grounded, aluminium-screened huts, which attenuated electromagnetic noise in the frequency range from 50 kHz to 5 MHz by approximately two orders of magnitude. When the grounding was removed or when broadband electromagnetic noise was deliberately generated inside the screened and grounded huts, the birds again lost their magnetic orientation capabilities. The disruptive effect of radiofrequency electromagnetic fields is not confined to a narrow frequency band and birds tested far from sources of electromagnetic noise required no screening to orient with their magnetic compass. These fully double-blinded tests document a reproducible effect of anthropogenic electromagnetic noise on the behaviour of an intact vertebrate.

  9. 21 CFR 821.25 - Device tracking system and content requirements: manufacturer requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... manufacturer of a tracked device shall keep current records in accordance with its standard operating procedure... this section. A manufacturer shall make this standard operating procedure available to FDA upon request. A manufacturer shall incorporate the following into the standard operating procedure: (1) Data...

  10. 21 CFR 821.25 - Device tracking system and content requirements: manufacturer requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... manufacturer of a tracked device shall keep current records in accordance with its standard operating procedure... this section. A manufacturer shall make this standard operating procedure available to FDA upon request. A manufacturer shall incorporate the following into the standard operating procedure: (1) Data...

  11. 21 CFR 821.25 - Device tracking system and content requirements: manufacturer requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... manufacturer of a tracked device shall keep current records in accordance with its standard operating procedure... this section. A manufacturer shall make this standard operating procedure available to FDA upon request. A manufacturer shall incorporate the following into the standard operating procedure: (1) Data...

  12. 21 CFR 821.25 - Device tracking system and content requirements: manufacturer requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... manufacturer of a tracked device shall keep current records in accordance with its standard operating procedure... this section. A manufacturer shall make this standard operating procedure available to FDA upon request. A manufacturer shall incorporate the following into the standard operating procedure: (1) Data...

  13. 23 CFR 646.204 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: Active warning devices means those traffic control devices activated by the approach or presence of a... means a group of knowledgeable representatives of the parties of interest in a railroad-highway crossing or a group of crossings. Main line railroad track means a track of a principal line of a railroad...

  14. 23 CFR 646.204 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...: Active warning devices means those traffic control devices activated by the approach or presence of a... means a group of knowledgeable representatives of the parties of interest in a railroad-highway crossing or a group of crossings. Main line railroad track means a track of a principal line of a railroad...

  15. 23 CFR 646.204 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...: Active warning devices means those traffic control devices activated by the approach or presence of a... means a group of knowledgeable representatives of the parties of interest in a railroad-highway crossing or a group of crossings. Main line railroad track means a track of a principal line of a railroad...

  16. 21 CFR 821.30 - Tracking obligations of persons other than device manufacturers: distributor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... name, address, telephone number, and social security number (if available) of the patient receiving the...; (ii) The name, address, telephone number, and social security number (if available) of the patient... the manufacturer of the tracked device for audit upon written request by an authorized representative...

  17. 21 CFR 821.30 - Tracking obligations of persons other than device manufacturers: distributor requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... name, address, telephone number, and social security number (if available) of the patient receiving the...; (ii) The name, address, telephone number, and social security number (if available) of the patient... the manufacturer of the tracked device for audit upon written request by an authorized representative...

  18. Proceedings of the Workshop on an Electromagnetic Positioning System in Space

    NASA Technical Reports Server (NTRS)

    Oran, W. A. (Editor)

    1978-01-01

    A workshop was convened to help determine if sufficient justification existed to proceed with the design of an electromagnetic (EM) positioning device for use in space. Those in attendance included experts in crystal growth, nucleation phenomena, containerless processing techniques, properties of materials, metallurgical techniques, and glass technology. Specific areas mentioned included the study of metallic glasses and investigations of the properties of high temperature materials.

  19. [Electromagnetic hazards from electrosurgery--assessment of occupational exposure to electromagnetic field and currents induceed in the body].

    PubMed

    Gryz, Krzysztof; Karpowicz, Jolanta

    2006-01-01

    The investigation of the occupational exposure to electromagnetic fields from electrosurgery devices were done (according to the requirements of Polish Standard PN-T-06580:2002). The exposure was evaluated following the criteria established by occupational safety and health regulations. The measurements and evaluation of the currents flowing through the exposed workers body were also conducted following the method and criteria published by IEEE standard and European Directive 2004/40/EC. It was found that in the vicinity of electrosurgical devices, the area of electromagnetic fields to which only workers operating the source of field should be exposed can exist up to the distance of 70 cm from the active electrode and supplying cables. In the case when the cables are placed directly on the surgeon body or long duration of the daily exposure the overexposure of workers can appear (referring to Polish regulations). The current flowing through the arm of surgeon keeping the electrode with electric field of the maximum strength (app. 1000 V/m or higher) can exceed permissible value of 40 mA established by the Directive 2004/40/EC for contact current. The reduction of the surgeon exposure can be reached by the proper positioning of the cables supplying monopolar electrode or by the use of bipolar electrode.

  20. An electromagnetic microvalve for pneumatic control of microfluidic systems.

    PubMed

    Liu, Xuling; Li, Songjing

    2014-10-01

    An electromagnetic microvalve for pneumatic control of microfluidic devices has been designed, fabricated, and tested. The microvalve is composed of two parts: a miniature electromagnetic actuator and a valve body. The electromagnetic actuator consists mainly of a thin polydimethylsiloxane (PDMS)-based elastomer, which acts as the valve diaphragm. The diaphragm, used as a solid hydraulic medium, converts the large contact area of a valve core into a small contact area of valve head while maintaining a large stroking force. This microvalve remains closed because of a compressed mechanical spring force generated by the actuator. On the other hand, when a voltage is applied, the valve core moves up, relaxing the thin PDMS membrane, opening the microvalve. The fast open response (~17 ms) of the valve was achieved with a leak rate as low as 0.026 sccm at 200 KPa (N2) pressure. We tested the pertinent dynamic parameters such as flow rate in on/off mode, flow rate of duty cycles, and actuated frequencies in pulse width modulation (PWM) mode. Our method provides a simple, cheap, and small microvalve that avoids the bulky and expensive external pressure control solenoid manifold. This allows it to be easily integrated into portable and disposable devices. © 2014 Society for Laboratory Automation and Screening.

Top