Observation of Wave Packet Distortion during a Negative-Group-Velocity Transmission
Ye, Dexin; Salamin, Yannick; Huangfu, Jiangtao; Qiao, Shan; Zheng, Guoan; Ran, Lixin
2015-01-01
In Physics, causality is a fundamental postulation arising from the second law of thermodynamics. It states that, the cause of an event precedes its effect. In the context of Electromagnetics, the relativistic causality limits the upper bound of the velocity of information, which is carried by electromagnetic wave packets, to the speed of light in free space (c). In anomalously dispersive media (ADM), it has been shown that, wave packets appear to propagate with a superluminal or even negative group velocity. However, Sommerfeld and Brillouin pointed out that the “front” of such wave packets, known as the initial point of the Sommerfeld precursor, always travels at c. In this work, we investigate the negative-group-velocity transmission of half-sine wave packets. We experimentally observe the wave front and the distortion of modulated wave packets propagating with a negative group velocity in a passive artificial ADM in microwave regime. Different from previous literature on the propagation of superluminal Gaussian packets, strongly distorted sinusoidal packets with non-superluminal wave fronts were observed. This result agrees with Brillouin's assertion, i.e., the severe distortion of seemingly superluminal wave packets makes the definition of group velocity physically meaningless in the anomalously dispersive region. PMID:25631746
Controlling of the electromagnetic solitary waves generation in the wake of a two-color laser
NASA Astrophysics Data System (ADS)
Pan, K. Q.; Li, S. W.; Guo, L.; Yang, D.; Li, Z. C.; Zheng, C. Y.; Jiang, S. E.; Zhang, B. H.; He, X. T.
2018-05-01
Electromagnetic solitary waves generated by a two-color laser interaction with an underdense plasma are investigated. It is shown that, when the former wave packet of the two-color laser is intense enough, it will excite nonlinear wakefields and generate electron density cavities. The latter wave packets will beat with the nonlinear wakefield and generate both high-frequency and low-frequency components. When the peak density of the cavities exceeds the critical density of the low-frequency component, this part of the electromagnetic field will be trapped to generate electromagnetic solitary waves. By changing the laser and plasma parameters, we can control the wakefield generation, which will also control the generation of the solitary waves. One-dimensional particle-in-cell simulations are performed to prove the controlling of the solitary waves. The simulation results also show that solitary waves generated by higher laser intensities will become moving solitary waves. The two-dimensional particle-in-cell also shows the generation of the solitary waves. In the two-dimensional case, solitary waves are distributed in the transverse directions because of the filamentation instability.
Quantum and classical dissipation of charged particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.
2013-08-15
A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle.more » •Classical and quantum dynamics of a damped electric charge.« less
Single photon at a configurable quantum-memory-based beam splitter
NASA Astrophysics Data System (ADS)
Guo, Xianxin; Mei, Yefeng; Du, Shengwang
2018-06-01
We report the demonstration of a configurable coherent quantum-memory-based beam splitter (BS) for a single-photon wave packet making use of laser-cooled 85Rb atoms and electromagnetically induced transparency. The single-photon wave packet is converted (stored) into a collective atomic spin state and later retrieved (split) into two nearly opposing directions. The storage time, beam-splitting ratio, and relative phase are configurable and can be dynamically controlled. We experimentally confirm that such a BS preserves the quantum particle nature of the single photon and the coherence between the two split wave packets of the single photon.
NASA Astrophysics Data System (ADS)
Dolcini, Fabrizio
2017-02-01
The effects of Rashba interaction and electromagnetic field on the edge states of a two-dimensional topological insulator are investigated in a nonperturbative way. We show that the electron dynamics is equivalent to a problem of massless Dirac fermions propagating with an inhomogeneous velocity, enhanced by the Rashba profile with respect to the bare Fermi value vF. Despite the inelastic and time-reversal breaking processes induced by the electromagnetic field, no backscattering occurs without interaction. The photoexcited electron densities are explicitly obtained in terms of the electric field and the Rashba interaction, and are shown to fulfill generalized chiral anomaly equations. The case of a Gaussian electromagnetic pulse is analyzed in detail. When the photoexcitation occurs far from the Rashba region, the latter effectively acts as a "superluminal gate" boosting the photoexcited wave packet outside the light-cone determined by vF. In contrast, for an electric pulse overlapping the Rashba region, the emerging wave packets are squeezed in a manner that depends on the overlap area. The electron-electron interaction effects are also discussed, for both intraspin and interspin density-density coupling. The results suggest that Rashba interaction, often considered as an unwanted disorder effect, may be exploited to tailor the shape and the propagation time of photoexcited spin-polarized wave packets.
Spectra of KeV Protons Related to Ion-Cyclotron Wave Packets
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Sibeck, D. G.; Tel'Nikhin, A. A.; Kronberg, T. K.
2017-01-01
We use the Fokker-Planck-Kolmogorov equation to study the statistical aspects of stochastic dynamics of the radiation belt (RB) protons driven by nonlinear electromagnetic ion-cyclotron (EMIC) wave packets. We obtain the spectra of keV protons scattered by these waves that showsteeping near the gyroresonance, the signature of resonant wave-particle interaction that cannot be described by a simple power law. The most likely mechanism for proton precipitation events in RBs is shown to be nonlinear wave-particle interaction, namely, the scattering of RB protons into the loss cone by EMIC waves.
Electromagnetic or other directed energy pulse launcher
Ziolkowski, Richard W.
1990-01-01
The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.
Generation of attosecond electron packets via conical surface plasmon electron acceleration
Greig, S. R.; Elezzabi, A. Y.
2016-01-01
We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129
Cherenkov Radiation Control via Self-accelerating Wave-packets.
Hu, Yi; Li, Zhili; Wetzel, Benjamin; Morandotti, Roberto; Chen, Zhigang; Xu, Jingjun
2017-08-18
Cherenkov radiation is a ubiquitous phenomenon in nature. It describes electromagnetic radiation from a charged particle moving in a medium with a uniform velocity larger than the phase velocity of light in the same medium. Such a picture is typically adopted in the investigation of traditional Cherenkov radiation as well as its counterparts in different branches of physics, including nonlinear optics, spintronics and plasmonics. In these cases, the radiation emitted spreads along a "cone", making it impractical for most applications. Here, we employ a self-accelerating optical pump wave-packet to demonstrate controlled shaping of one type of generalized Cherenkov radiation - dispersive waves in optical fibers. We show that, by tuning the parameters of the wave-packet, the emitted waves can be judiciously compressed and focused at desired locations, paving the way to such control in any physical system.
NASA Technical Reports Server (NTRS)
Estes, Robert D.; Grossi, Mario D.
1989-01-01
The problem of electromagnetic wave generation by an electrodynamic tethered satellite system is important both for the ordinary operation of such systems and for their possible application as orbiting transmitters. The tether's ionospheric circuit closure problem is closely linked with the propagation of charge-carrying electromagnetic wave packets away from the tethered system. Work is reported which represents a step towards a solution to the problem that takes into account the effects of boundaries and of vertical variations in plasma density, collision frequencies, and ion species. The theory of Alfen wave packet generation by an electrodynamic tethered system in an infinite plasma medium is reviewed, and brief summary of previous work on the problem is given. The consequences of the presence of the boundaries and the vertical nonuniformity are then examined. One of the most significant new features to emerge when ion-neutral collisions are taken into account is the coupling of the Alfven waves to the fast magnetosonic wave. This latter wave is important, as it may be confined by vertical variations in the Alfven speed to a sort of leaky ionospheric wave guide, the resonances of which could be of great importance to the signal received on the Earth's surface. The infinite medium solution for this case where the (uniform) geomagnetic field makes an arbitrary angle with the vertical is taken as the incident wave-packet. Even without a full solution, a number of conclusions can be drawn, the most important of which may be that the electromagnetic field associated with the operation of a steady-current tethered system will probably be too weak to detect on the Earth's surface, even for large tethered currents. This is due to the total reflection of the incident wave at the atmospheric boundary and the inability of a steady-current tethered system to excite the ionospheric wave-guide. An outline of the approach to the numerical problem is given. The use of numerical integrations and boundary conditions consistent with a conducting Earth is proposed to obtain the solution for the horizontal electromagnetic field components at the boundary of the ionosphere with the atmospheric cavity.
NASA Technical Reports Server (NTRS)
Hizanidis, Kyriakos
1989-01-01
The relativistic motion of electrons in an intense electromagnetic wave packet propagating obliquely to a uniform magnetic field is analytically studied on the basis of the Fokker-Planck-Kolmogorov (FPK) approach. The wavepacket consists of circularly polarized electron-cyclotron waves. The dynamical system in question is shown to be reducible to one with three degrees of freedom. Within the framework of the Hamiltonian analysis the nonlinear diffusion tensor is derived, and it is shown that this tensor can be separated into zeroth-, first-, and second-order parts with respect to the relative bandwidth. The zeroth-order part describes diffusive acceleration along lines of constant unperturbed Hamiltonian. The second-order part, which corresponds to the longest time scale, describes diffusion across those lines. A possible transport theory is outlined on the basis of this separation of the time scales.
Gaussian and Airy wave packets of massive particles with orbital angular momentum
NASA Astrophysics Data System (ADS)
Karlovets, Dmitry V.
2015-01-01
While wave-packet solutions for relativistic wave equations are oftentimes thought to be approximate (paraxial), we demonstrate, by employing a null-plane- (light-cone-) variable formalism, that there is a family of such solutions that are exact. A scalar Gaussian wave packet in the transverse plane is generalized so that it acquires a well-defined z component of the orbital angular momentum (OAM), while it may not acquire a typical "doughnut" spatial profile. Such quantum states and beams, in contrast to the Bessel states, may have an azimuthal-angle-dependent probability density and finite uncertainty of the OAM, which is determined by the packet's width. We construct a well-normalized Airy wave packet, which can be interpreted as a one-particle state for a relativistic massive boson, show that its center moves along the same quasiclassical straight path, and, which is more important, spreads with time and distance exactly as a Gaussian wave packet does, in accordance with the uncertainty principle. It is explained that this fact does not contradict the well-known "nonspreading" feature of the Airy beams. While the effective OAM for such states is zero, its uncertainty (or the beam's OAM bandwidth) is found to be finite, and it depends on the packet's parameters. A link between exact solutions for the Klein-Gordon equation in the null-plane-variable formalism and the approximate ones in the usual approach is indicated; generalizations of these states for a boson in the external field of a plane electromagnetic wave are also presented.
Theory of the Motion of Ball Lightning
NASA Astrophysics Data System (ADS)
Handel, Peter
2008-04-01
The Maser-Soliton Theory of BL predicts the dynamics of each of the harmonic waves in the wave packet that feeds and in fact defines the Langmuir plasma soliton that is observed as BL. The frequencies in the wave packet are in a narrow window f that corresponds in the case of open air BL to the diameter of the area in which the damage caused by the final explosion of the BL is observed. This is usually of the order of δx=30 m roughly, in rms. The corresponding wave vector interval is δk=(1/2)(1/30m)=0.017/m in rms. At the same time, k is of the order of 6/m, yielding k/δk=360. This pronounced line-narrowing is obtained due to the large gain of the atmospheric maser when it generates the Kapitsa standing wave. Phase differences between the waves that make up the electromagnetic field that couples with the electrostatic field of the soliton are determined by the frequency dependence of gain and dissipation. They are influenced less by the motion of the air, than by the maser dynamics and by the boundary conditions shaping the electromagnetic field, i.e. the individual photonic wave-packet. The paper presents the equations that determine the phase dynamics and therefore also the observed motion of BL. A similar phase dynamics is expected to be applicable to the special case of UFO motions.
About the Nature of a Coherence of Light Waves
NASA Astrophysics Data System (ADS)
Demyaneko, P. O.; Zinkovskiy, Y. F.; Savenko, Y. V.
The confrontation of corpuscular and wave hypotheses was not partly stacked in frameworks of the uniform theory. Fundamental works of Fresnel and Fraunhofer on a diffraction of light have erected a wave theory in a rank of dominant true. The wave theory did not so effectively explain developments of corpuscular properties of a light. Its feeble place was also necessity for concept "coherence", introduced for explanation of a light interference. The wave coherence is properly understood as waves ability to interfere. The problem of a light coherence continues to be interesting for investigators [L], but clear understanding of its nature is not yet appeared. Because, it is unconvincing to consider an attribution to the act of separate atom radiation of electromagnetic waves "zug" of a few meters length as explanation of the coherence nature, when it has become possible to generate light pulses by duration ˜ 10 -15 s. Let's note there is the spatial separation of a primary luminous flux on two secondary ones in a basis of all ways of deriving of coherent luminous fluxes. And these fluxes are able to interfere when are brought together. Their coherence was explained that at partitioning each "zug" was bisected, and at joining again met mutual coherent "its halves". There was not disputed the question, how happens " separation of each waves "zug" in halves". M. Plank postulated (1900) heated bodies radiate electromagnetic waves not continuously, but by separate portions he called "quantums" of energy. Its have a quantity is proportional to frequency of electromagnetic waves. A. Einstein has entered (1905) a hypothesis of light quantums -- light is indeed generated as quantums, and in further it exists as a flux of quantums and interacts with matter also, as a flux of separate quantums. The term "photon" was entered by G.N. Lewis (1929) properly for emphasising of light quantums and that one underlined corpuscularity of a light. At investigation of an atom structure there was set (E. Rutherford, N. Bohr, 1911) quantums are generated in atoms at transitions of excited electrons from higher energy levels onto lowest levels. At that, there are radiated quantums-waves of electromagnetic energy into environmental space. In different light sources "working body" has the "own" structure of energy levels defining spectral characteristics of these sources. So, the development of representations about the nature of a light returns to a corpuscular hypothesis. It has become clear, that the light organically combines in itself both property of waves and the properties of particles. It depends on requirements of experiment which one from developments will be prevalent. Inseparable unity of corpuscular and wave properties is proper for all microparticles (a hypothesis De Brogle, 1924) and has received a title of "wave-corpuscle dualism". Let's make a common view about "sizes" of a photon. As was mentioned, the light pulses can have duration ˜ 10 -15 s. Spatial length of such pulses in direction of motion ˜ 10 -6 m, that comparable with a light wavelength λ . It is possible to suspect that it will be a size of a photon in direction of its propagation. An estimate of "cross" of the sizes of a photon we shall obtain by analyzing of light diffraction on a narrow slot. The angular size of central diffraction peak at decreasing of width of a slot b is increased, and it reaches 180 at b = λ . Then the light intensity promptly impinges behind it. From this it is possible to assume, that the cross sectional dimensions of photon also is comparable with λ . It is necessary to clear understand, that photon, as the wave formation, does not have sharp borders. It is possible to speak only about the sizes of area containing a dominant share of photon energy. So, photon is a spatial localized electromagnetic perturbation, that allows to allot it with properties of a particle. Essential properties of a photon are indivisibility and existence only in a motion. So, the light is a photons flux: both light wave and light electromagnetic field consist of final number of photons. At that, it is important to remember that in any light source along with spontaneous mechanism it also operates a mechanism of induced radiation, generating identical (coherent) quantums. Due to it, there is radiated a partially coherent flux, consisting of large or small groups of quantums ("quantum packets"), from any light source. In limits of a separate packet its component quantums are coherent, because all of them are originated by one quantum which has appeared spontaneously, which induced occurrence of other quantums of this packet, passing by other excited atoms. The representation about quantum packets gives clear physical explanation to concept of "light waves zugs". Quantum packet is that "zug of waves". "Quality" of a light source (in sense of its coherence) is determined by sizes of quantum packets -- the larger they the more qualitative source, radiating them. There are understandable a better coherence of a gas light sources: the atoms in gas are arranged on large distances and do not hinder for spontaneously generated light quantum to overcome without absorption or dispersion that large distance, challenging on it an induced radiation of other excited atoms. The low coherence of glow-discharge tubes is stipulated by that the radiation in them goes only from surface layer of atoms and the requirements for development of the mechanism of induced radiation are unfavorable. It is also obvious the high coherence of a laser radiation due to a positive optical back coupling. The coherent quantums of one quantum packet exist a long time inside the resonator; they are reproducing there during all this time. Due to this the lasers are capable to generate multi-km quantum packets ("zugs"). By the way, it could not to explain "by emissive opportunities" of one atom. It is understandable a division of quantum packets on semi transparent mirrors: the part of quantums of each packet simply transits through a semi transparent mirrors, and remaining ones are simply reflected from it. The model of quantum packets gives clear explanation of coherence parameters of light flux. A length of coherence is a spatial extent of a quantum packet in direction of its propagation. A coherence time is a time of flight of quantum packet by a fixed spectator. A coherence radius (size) is a spatial extent of a quantum packet in direction, perpendicular to direction of its propagation. A volume of coherence is simply a volume of quantum packet. Separately it is necessary to tell about the fact of increasing of coherence radius of a light flux, propagating in space. Iterated, including by us, assertion: "at induced transitions there are generated the same quantums as ones induced them". It is not necessary to understand it too literally. What perfect was a light source, the spectral line of its radiation always has final width. That means, there is a certain frequency dispersion of quantums, generated by source, or modules of their wave vectors. Apparently, it is necessary to expect as well certain dispersion of particular straggling of wave vectors directions inside separate quantum packets. Beginning with experimentally obtained radius of sunlight coherence on surface of the Earth, it was determined a value of angular divergence of quantum packets. With the help of the obtained thus value, there were calculated values of coherence radiuses of light, coming on the Earth from more remote stars. Obtained calculated values are well compared with experimentally obtained values of light coherence radiuses for these stars. Starting from proposed concept of quantum packets, we have given explanation to such development of wave properties of the light as interference, in particular, its variety, when superimposed coherent fluxes interfere. It is not less important from a point of view of the coordination of their explanations with our representations about luminous flux structure, there is an analysis also such developments of wave properties of light, as its interference on thin films, "Newton's ringes", etc. For explanation of this variety of interference there is no need for concept coherence, as in such interference is watched always and for a light from any sources. There is a special interest to phenomenas bound with diffraction of light, from a point of view of quantum packets model. The prime task here is to give a corresponding explanation to the content both senses of Huygens' and Huygens-Fresnel principles. These problems will be considered in following our works. [L] Mandel L., Wolf E. Optical Coherence and Quantum Optics / Cambrige, 1995
Taking an electron-magnon duality shortcut from electron to magnon transport
NASA Astrophysics Data System (ADS)
Mook, Alexander; Göbel, Börge; Henk, Jürgen; Mertig, Ingrid
2018-04-01
The quasiparticles in insulating magnets are the charge-neutral magnons, whose magnetic moments couple to electromagnetic fields. For collinear easy-axis magnets, this coupling can be mapped elegantly onto the scenario of charged particles in electromagnetic fields. From this mapping we obtain equations of motion for magnon wave packets equal to those of electron wave packets in metals. Thus, well-established electronic transport phenomena can be carried over to magnons: this duality shortcut facilitates the discussion of magnon transport. We identify the magnon versions of normal and anomalous Hall, Nernst, Ettingshausen, and Righi-Leduc effects. They are discussed for selected types of easy-axis magnets: ferromagnets, antiferromagnets, and ferrimagnets. Besides a magnon Wiedemann-Franz law and the magnon counterpart of the negative magnetoresistance of electrons in Weyl semimetals, we predict that certain low-symmetry ferrimagnets exhibit a nonlinear version of the anomalous magnon Hall-effect family.
Instantaneous Frequency Analysis on Nonlinear EMIC Emissions: Arase Observation
NASA Astrophysics Data System (ADS)
Shoji, M.; Yoshizumi, M.; Omura, Y.; Kasaba, Y.; Ishisaka, K.; Matsuda, S.; Kasahara, Y.; Yagitani, S.; Matsuoka, A.; Teramoto, M.; Takashima, T.; Shinohara, I.
2017-12-01
In the inner magnetosphere, electromagnetic ion cyclotron (EMIC) waves cause nonlinear interactions with energetic protons. The waves drastically modify the proton distribution function, resulting in the particle loss in the radiation belt. Arase spacecraft, launched in late 2016, observed a nonlinear EMIC falling tone emission in the high magnetic latitude (MLAT) region of the inner magnetosphere. The wave growth with sub-packet structures of the falling tone emission is found by waveform data from PWE/EFD instrument. The evolution of the instantaneous frequency of the electric field of the EMIC falling tone emission is analyzed by Hilbert-Huang transform (HHT). We find several sub-packets with rising frequency in the falling tone wave. A self-consistent hybrid simulation suggested the complicate frequency evolution of the EMIC sub-packet emissions in the generation region. The intrinsic mode functions of Arase data derived from HHT are compared with the simulation data. The origin of the falling tone emission in the high MLAT region is also discussed.
NASA Technical Reports Server (NTRS)
Thejappa, G.; MacDowall, R. J.; Bergamo, M.
2012-01-01
We present the high time resolution observations of one of the Langmuir wave packets obtained in the source region of a solar type III radio burst. This wave packet satisfies the threshold condition of the supersonic modulational instability, as well as the criterion of a collapsing Langmuir soliton, i.e., the spatial scale derived from its peak intensity is less than that derived from its short time scale. The spectrum of t his wave packet contains an intense spectral peak at local electron plasma frequency, f(sub pe) and relatively weaker peaks at 2f(sub pe) and 3f(sub pe). We apply the wavelet based bispectral analysis technique on this wave packet and compute the bicoherence between its spectral components. It is found that the bicoherence exhibits two peaks at (approximately f(sub pe), approximately f(sub pe)) and (approximately f(sub pe) approximately 2f(sub pe)), which strongly suggest that the spectral peak at 2f(sub pe) probably corresponds to the second harmonic radio emission, generated as a result of the merging of antiparallel propagating Langmuir waves trapped in the collapsing Langmuir soliton, and, the spectral peak at 3f(sub pe) probably corresponds to the third harmonic radio emission, generated as a result of merging of a trapped Langmuir wave and a second harmonic electromagnetic wave.
NASA Astrophysics Data System (ADS)
Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje
2012-10-01
We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.
The momentum of an electromagnetic wave inside a dielectric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Testa, Massimo, E-mail: massimo.testa@roma1.infn.it
2013-09-15
The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham–Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored. -- Highlights: •We discuss an approximation to treat electrodynamics of a dielectric material. •We support the Abraham form for the electromagnetic momentum. •We deduce Snell’s law from themore » conservation of the Abraham momentum. •We show how to deal with the electric field discontinuity at the dielectric boundary.« less
Electromagnetic Ion Cyclotron Waves Detected by Kaguya and Geotail in the Earth's Magnetotail
NASA Astrophysics Data System (ADS)
Nakagawa, Tomoko; Nishino, Masaki N.; Tsunakawa, Hideo; Takahashi, Futoshi; Shibuya, Hidetoshi; Shimizu, Hisayoshi; Matsushima, Masaki; Saito, Yoshifumi
2018-02-01
Narrowband electromagnetic ion cyclotron waves first discovered by the Apollo 15 and 16 Lunar Surface Magnetometers were surveyed in the magnetic field data obtained by the Kaguya satellite at an altitude of ˜100 km above the Moon in the tail lobe and plasma sheet boundary layer of the Earth's magnetosphere. The frequencies of the waves were typically 0.7 times the local proton cyclotron frequency, and 75% of the waves were left hand polarized with respect to the background magnetic field. They had a significant compressional component and comprised several discrete packets. They were detected on the dayside, nightside, and above the terminator of the Moon, irrespective of the lunar magnetic anomaly, or the magnetic connection to the lunar surface. The waves with the same characteristics were detected by Geotail in the absence of the Moon in the magnetotail. The most likely energy source of the electromagnetic ion cyclotron waves is the ring beam ions in the plasma sheet boundary layer.
MMS Observations of Harmonic Electromagnetic Cyclotron Waves
NASA Astrophysics Data System (ADS)
Usanova, M.; Ahmadi, N.; Ergun, R.; Trattner, K. J.; Fuselier, S. A.; Torbert, R. B.; Mauk, B.; Le Contel, O.; Giles, B. L.; Russell, C. T.; Burch, J.; Strangeway, R. J.
2017-12-01
Harmonically related electromagnetic ion cyclotron waves with the fundamental frequency near the O+ cyclotron frequency were observed by the four MMS spacecraft on May 20, 2016. The wave activity was detected by the spacecraft on their inbound passage through the Earth's morning magnetosphere during generally quiet geomagnetic conditions but enhanced solar wind dynamic pressure. It was also associated with an enhancement of energetic H+ and O+ ions. The waves are seen in both magnetic and electric fields, formed by over ten higher order harmonics, most pronounced in the electric field. The wave activity lasted for about an hour with some wave packets giving rise to short-lived structures extending from Hz to kHz range. These observations are particularly interesting since they suggest cross-frequency coupling between the lower and higher frequency modes. Further work will focus on examining the nature and role of these waves in the energetic particle dynamics from a theoretical perspective.
NASA Astrophysics Data System (ADS)
Brenning, N.; Axnäs, I.; Koepke, M.; Raadu, M. A.; Tennfors, E.
2017-12-01
Infrequent, bursty, electromagnetic, whistler-mode wave packets, excited spontaneously in the laboratory by an electron beam from a hot cathode, appear transiently, each with a time duration τ around ∼1 μs. The wave packets have a center frequency f W that is broadly distributed in the range 7 MHz < f W < 40 MHz. They are excited in a region with separate electrostatic (es) plasma oscillations at values of f hf, 200 MHz < f hf < 500 MHz, that are hypothesized to match eigenmode frequencies of an axially localized hf es field in a well-defined region attached to the cathode. Features of these es-eigenmodes that are studied include: the mode competition at times of transitions from one dominating es-eigenmode to another, the amplitude and spectral distribution of simultaneously occurring es-eigenmodes that do not lead to a transition, and the correlation of these features with the excitation of whistler mode waves. It is concluded that transient coupling of es-eigenmode pairs at f hf such that | {{{f}}}1,{{h}{{f}}}-{{{f}}}2,{{h}{{f}}}| = {f}{{W}}< {f}{{g}{{e}}} can explain both the transient lifetime and the frequency spectra of the whistler-mode wave packets (f W) as observed in lab. The generalization of the results to bursty whistler-mode excitation in space from electron beams, created on the high potential side of double layers, is discussed.
Relativistic laser-plasma interactions in the quantum regime.
Eliasson, Bengt; Shukla, P K
2011-04-01
We consider nonlinear interactions between a relativistically strong laser beam and a plasma in the quantum regime. The collective behavior of electrons is modeled by a Klein-Gordon equation, which is nonlinearly coupled with the electromagnetic wave through the Maxwell and Poisson equations. This allows us to study nonlinear interactions between arbitrarily large-amplitude electromagnetic waves and a quantum plasma. We have used our system of nonlinear equations to study theoretically the parametric instabilities involving stimulated Raman scattering and modulational instabilities. A model for quasi-steady-state propagating electromagnetic wave packets is also derived, and which shows possibility of localized solitary structures in a quantum plasma. Numerical simulations demonstrate collapse and acceleration of electrons in the nonlinear stage of the modulational instability, as well as possibility of the wake-field acceleration of electrons to relativistic speeds by short laser pulses at nanometer length scales. Our study is relevant for understanding the localization of intense electromagnetic pulses in a quantum plasma with extremely high electron densities and relatively low temperature.
Classical electromagnetic fields from quantum sources in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Holliday, Robert; McCarty, Ryan; Peroutka, Balthazar; Tuchin, Kirill
2017-01-01
Electromagnetic fields are generated in high energy nuclear collisions by spectator valence protons. These fields are traditionally computed by integrating the Maxwell equations with point sources. One might expect that such an approach is valid at distances much larger than the proton size and thus such a classical approach should work well for almost the entire interaction region in the case of heavy nuclei. We argue that, in fact, the contrary is true: due to the quantum diffusion of the proton wave function, the classical approximation breaks down at distances of the order of the system size. We compute the electromagnetic field created by a charged particle described initially as a Gaussian wave packet of width 1 fm and evolving in vacuum according to the Klein-Gordon equation. We completely neglect the medium effects. We show that the dynamics, magnitude and even sign of the electromagnetic field created by classical and quantum sources are different.
NASA Astrophysics Data System (ADS)
Macusova, E.; Santolik, O.; Pickett, J. S.; Gurnett, D. A.; Cornilleau-Wehrlin, N.; Demekhov, A. G.; Titova, E. E.
2013-12-01
Whistler-mode chorus is one of the most intense electromagnetic wave emissions observed in the inner magnetosphere, usually outside the plasmasphere. These waves play an important role in wave-particle interactions. They are usually generated close to the geomagnetic equator in a wide range of L-shells, and they propagate toward larger magnetic latitudes. Whistler-mode chorus is sometimes composed of two frequency bands separated by a gap at one half of the electron cyclotron frequency. At short time scales (on the order of hundreds of milliseconds) chorus consist of different discrete spectral shapes: rising tones, falling tones, constant frequency tones, and hooks. Our survey is based on high time resolution measurements collected by the WBD instrument onboard four Cluster spacecraft. We analyze time intervals containing different types of spectral shapes occurring at different L-shells, and at different latitudes relative to the chorus source region, as it is determined from measurements of the STAFF-SA instrument. Each of these events includes a large number of individual wave packets (between a few hundreds to a few thousands). For each individual wave packet we determine the frequency sweep rate and the average amplitude. Our results confirm previous conclusions of numerical simulations, theoretical predictions, and case studies showing that the amplitude of chorus wave packets increases with an increasing frequency sweep rate. The amplitude also increases as the wave forming chorus propagate away from the equator. The scatter of obtained values of frequency sweep rates and amplitudes is much larger closer to the Earth than at larger radial distances. This work receives EU support through the FP7-Space grant agreement no 284520 for the MAARBLE collaborative research project.
Lightning and plasma wave observations from the galileo flyby of venus.
Gurnett, D A; Kurth, W S; Roux, A; Gendrin, R; Kennel, C F; Bolton, S J
1991-09-27
During the Galileo flyby of Venus the plasma wave instrument was used to search for impulsive radio signals from lightning and to investigate locally generated plasma waves. A total of nine events were detected in the frequency range from 100 kilohertz to 5.6 megahertz. Although the signals are weak, lightning is the only known source of these signals. Near the bow shock two types of locally generated plasma waves were observed, low-frequency electromagnetic waves from about 5 to 50 hertz and electron plasma oscillation at about 45 kilohertz. The plasma oscillations have considerable fine structure, possibly because of the formation of soliton-like wave packets.
Lightning and plasma wave observations from the Galileo flyby of Venus
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Kurth, W. S.; Roux, A.; Gendrin, R.; Kennel, C. F.; Bolton, S. J.
1991-01-01
Durig the Galileo flyby of Venus the plasma wave instrument was used to search for impulsive radio signals from lightning and to investigate locally generated plasma waves. A total of nine events were detected in the frequency range from 100 kilohertz to 5.6 megahertz. Although the signals are weak, lightning is the only known source of these signals. Near the bow shock two types of locally generated plasma waves were observed, low-frequency electromagnetic waves from about 5 to 50 hertz and electron plasma oscillation at about 45 kilohertz. The plasma oscillations have considerable fine structure, possibly because of the formation of soliton-like wave packets.
Evidence for four- and three-wave interactions in solar type III radio emissions
NASA Astrophysics Data System (ADS)
Thejappa, G.; MacDowall, R. J.; Bergamo, M.
2013-08-01
The high time resolution observations obtained by the STEREO/WAVES experiment show that in the source regions of solar type III radio bursts, Langmuir waves often occur as intense localized wave packets with short durations of only few ms. One of these wave packets shows that it is a three-dimensional field structure with WLneTe ~ 10-3, where WL is the peak energy density, and ne and Te are the electron density and temperature, respectively. For this wave packet, the conditions of the oscillating two-stream instability (OTSI) and supersonic collapse are satisfied within the error range of determination of main parameters. The density cavity, observed during this wave packet indicates that its depth, width and temporal coincidence are consistent with those of a caviton, generated by the ponderomotive force of the collapsing wave packet. The spectrum of each of the parallel and perpendicular components of the wave packet contains a primary peak at fpe, two secondary peaks at fpe ± fS and a low-frequency enhancement below fS, which, as indicated by the frequency and wave number resonance conditions, and the fast Fourier transform (FFT)-based tricoherence spectral peak at (fpe, fpe, fpe + fS, fpe - fS), are coupled to each other by the OTSI type of four-wave interaction (fpe is the local electron plasma frequency and fS is the frequency of ion sound waves). In addition to the primary peak at fpe, each of these spectra also contains a peak at 2fpe, which as indicated by the frequency and wave number resonance conditions, and the wavelet-based bicoherence spectral peak at (fpe, fpe), appears to correspond to the second harmonic electromagnetic waves generated as a result of coalescence of oppositely propagating sidebands excited by the OTSI. Thus, these observations for the first time provide combined evidence that (1) the OTSI and related strong turbulence processes play a significant role in the stabilization of the electron beam, (2) the coalescence of the oppositely propagating up- and down-shifted daughter Langmuir waves excited by the OTSI probably is the emission mechanism of the second harmonic radiation, and (3) the Langmuir collapse follows the route of OTSI in some of the type III radio bursts.
NASA Astrophysics Data System (ADS)
Blinov, N. A.; Zolotkov, V. N.; Lezin, A. Yu; Cheburkin, N. V.
1990-04-01
An analysis is made of transient stimulated scattering in a vibrationally nonequilibrium gas excited by a non-self-sustained discharge. A stability theory approach is used to describe the behavior of perturbation wave packets, yielding asymptotic expressions for the maximal increments of an instability of stimulated small-angle scattering by entropic and acoustic modes.
Analysis of magnetometer data/wave signals in the Earth's magnetosphere
NASA Technical Reports Server (NTRS)
Engebretson, Mark J.
1993-01-01
Work on the reduction and analysis of Dynamics Explorer (DE) satellite magnetometer data with special emphasis on the ULF fluctuations and waves evident in such data is described. Research focused on the following: (1) studies of Pc 1 wave packets near the plasmapause; (2) satellite-ground pulsation study; (3) support for studies of ion energization processes; (4) search for Pc 1 wave events in 1981 DE 1 data; (5) study of Pc 3-5 events observed simultaneously by DE 1 and by AMPTE CCE; (6) support for studies of electromagnetic transients on DE 1; and (7) analysis of wave events induced by sudden impulses.
Asymptotic quantum elastic generalized Lorenz Mie theory
NASA Astrophysics Data System (ADS)
Gouesbet, G.
2006-10-01
The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane-wave illumination. In a recent paper, we established that, if we restrict ourselves to the study of cross-sections, both for elastic and inelastic scatterings, a macroscopic sphere in Lorenz-Mie theory is formally equivalent to a quantum-like radial potential. To generalize this result, a prerequisite is to possess an asymptotic quantum generalized Lorenz-Mie theory expressing cross-sections in the case of a quantum radial potential interacting with a sub-class of quantum arbitrary wave-packets. Such a theory, restricted however to elastic scattering, is presented in this paper.
Effect of wave localization on plasma instabilities
NASA Astrophysics Data System (ADS)
Levedahl, William Kirk
1987-10-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
NASA Astrophysics Data System (ADS)
Tsiklauri, D.
2014-12-01
Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refaction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph=ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011) [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013) [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012) [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014) [5] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 21, 012903 (2014)
Nonlinear heating of ions by electron cyclotron frequency waves
NASA Astrophysics Data System (ADS)
Zestanakis, P. A.; Hizanidis, K.; Ram, A. K.; Kominis, Y.
2010-11-01
We study the nonlinear interaction of ions with electron cyclotron (EC) wave packets in a magnetized plasma. Previous studies have shown that such interactions with high frequency electrostatic lower hybrid waves can lead to coherent energization of ions. It requires the frequency bandwidth of the wave packet to be broader than the ion cyclotron frequency [1,2]. For the electromagnetic high frequency EC waves we have developed a more general theory, based on the Lie transform canonical perturbation method [3,4]. We apply the theory to the case of two overlapping EC beams. The wave frequency of each beam is assumed to be frequency modulated with a modulation bandwidth comparable to the ion cyclotron frequency. We present results for both X-mode and O-mode and illustrate the conditions for ion energization. [4pt] [1] D. Benisti, A. K. Ram, and A. Bers, Phys. Plasmas 5, 3224 (1998). [0pt] [2] A. K. Ram, A. Bers, and D. Benisti , J. Geophys. Res. 103, 9431 (1998). [0pt] [3] J.R. Cary and A.N. Kaufman, Phys. Fluids 24, 1238 (1981). [0pt] [4] R.L. Dewar, J. Phys A-Math. Gen 9, 2043 (1976).
Effect of wave localization on plasma instabilities. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Levedahl, William Kirk
1987-01-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
NASA Astrophysics Data System (ADS)
Tsiklauri, David
2015-04-01
Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refraction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph = ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011); http://dx.doi.org/10.1063/1.3590928 [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013); http://dx.doi.org/10.1063/1.4812453 [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012); http://dx.doi.org/10.1063/1.4768429 [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014); http://dx.doi.org/10.1063/1.4871723 [5] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 21, 012903 (2014); http://dx.doi.org/10.1063/1.4863494 This research is funded by the Leverhulme Trust Research Project Grant RPG-311
NASA Astrophysics Data System (ADS)
Al-Hashimi, M. H.; Wiese, U.-J.
2009-12-01
We consider wave packets of free particles with a general energy-momentum dispersion relation E(p). The spreading of the wave packet is determined by the velocity v=∂pE. The position-velocity uncertainty relation ΔxΔv⩾12|<∂p2E>| is saturated by minimal uncertainty wave packets Φ(p)=Aexp(-αE(p)+βp). In addition to the standard minimal Gaussian wave packets corresponding to the non-relativistic dispersion relation E(p)=p2/2m, analytic calculations are presented for the spreading of wave packets with minimal position-velocity uncertainty product for the lattice dispersion relation E(p)=-cos(pa)/ma2 as well as for the relativistic dispersion relation E(p)=p2+m2. The boost properties of moving relativistic wave packets as well as the propagation of wave packets in an expanding Universe are also discussed.
Roles Played by Electrostatic Waves in Producing Radio Emissions
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
2000-01-01
Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.
Gabelmann, Jeffrey M.; Kattner, J. Stephen; Houston, Robert A.
2006-12-19
This invention is an ultra-low frequency electromagnetic telemetry receiver which fuses multiple input receive sources to synthesize a decodable message packet from a noise corrupted telemetry message string. Each block of telemetry data to be sent to the surface receiver from a borehole tool is digitally encoded into a data packet prior to transmission. The data packet is modulated onto the ULF EM carrier wave and transmitted from the borehole to the surface and then are simultaneously detected by multiple receive sensors disbursed within the rig environment. The receive sensors include, but are not limited to, electric field and magnetic field sensors. The spacing of the surface receive elements is such that noise generators are unequally coupled to each receive element due to proximity and/or noise generator type (i.e. electric or magnetic field generators). The receiver utilizes a suite of decision metrics to reconstruct the original, non noise-corrupted data packet from the observation matrix via the estimation of individual data frames. The receiver will continue this estimation process until: 1) the message validates, or 2) a preset "confidence threshold" is reached whereby frames within the observation matrix are no longer "trusted".
Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2
NASA Technical Reports Server (NTRS)
Fraser, B. J.; Samson, J. C.; Hu, Y. D.; Mcpherron, R. L.; Russell, C. T.
1992-01-01
The first results of observations of ion cyclotron waves by the elliptically orbiting ISEE 1 and 2 pair of spacecraft are reported. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to the local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event is attributed to the modulation of this energy source by the Pc 5 waves seen at the same time.
The Aharonov-Bohm effect and Tonomura et al. experiments: Rigorous results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballesteros, Miguel; Weder, Ricardo
The Aharonov-Bohm effect is a fundamental issue in physics. It describes the physically important electromagnetic quantities in quantum mechanics. Its experimental verification constitutes a test of the theory of quantum mechanics itself. The remarkable experiments of Tonomura et al. ['Observation of Aharonov-Bohm effect by electron holography', Phys. Rev. Lett 48, 1443 (1982) and 'Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave', Phys. Rev. Lett 56, 792 (1986)] are widely considered as the only experimental evidence of the physical existence of the Aharonov-Bohm effect. Here we give the first rigorous proof that the classical ansatz of Aharonovmore » and Bohm of 1959 ['Significance of electromagnetic potentials in the quantum theory', Phys. Rev. 115, 485 (1959)], that was tested by Tonomura et al., is a good approximation to the exact solution to the Schroedinger equation. This also proves that the electron, that is, represented by the exact solution, is not accelerated, in agreement with the recent experiment of Caprez et al. in 2007 ['Macroscopic test of the Aharonov-Bohm effect', Phys. Rev. Lett. 99, 210401 (2007)], that shows that the results of the Tonomura et al. experiments can not be explained by the action of a force. Under the assumption that the incoming free electron is a Gaussian wave packet, we estimate the exact solution to the Schroedinger equation for all times. We provide a rigorous, quantitative error bound for the difference in norm between the exact solution and the Aharonov-Bohm Ansatz. Our bound is uniform in time. We also prove that on the Gaussian asymptotic state the scattering operator is given by a constant phase shift, up to a quantitative error bound that we provide. Our results show that for intermediate size electron wave packets, smaller than the ones used in the Tonomura et al. experiments, quantum mechanics predicts the results observed by Tonomura et al. with an error bound smaller than 10{sup -99}. It would be quite interesting to perform experiments with electron wave packets of intermediate size. Furthermore, we provide a physical interpretation of our error bound.« less
Multiple scattering induced negative refraction of matter waves
Pinsker, Florian
2016-01-01
Starting from fundamental multiple scattering theory it is shown that negative refraction indices are feasible for matter waves passing a well-defined ensemble of scatterers. A simple approach to this topic is presented and explicit examples for systems of scatterers in 1D and 3D are stated that imply negative refraction for a generic incoming quantum wave packet. Essential features of the effective scattering field, densities and frequency spectrum of scatterers are considered. Additionally it is shown that negative refraction indices allow perfect transmission of the wave passing the ensemble of scatterers. Finally the concept of the superlens is discussed, since it is based on negative refraction and can be extended to matter waves utilizing the observations presented in this paper which thus paves the way to ‘untouchable’ quantum systems in analogy to cloaking devices for electromagnetic waves. PMID:26857266
Aeroacoustic directivity via wave-packet analysis of mean or base flows
NASA Astrophysics Data System (ADS)
Edstrand, Adam; Schmid, Peter; Cattafesta, Louis
2017-11-01
Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.
Theory for low-frequency modulated Langmuir wave packets
NASA Technical Reports Server (NTRS)
Cairns, Iver H.; Robinson, P. A.
1992-01-01
Langmuir wave packets with low frequency modulations (or beats) observed in the Jovian foreshock are argued to be direct evidence for the Langmuir wave decay L yields L-prime + S. In this decay, 'pump' Langmuir waves L, driven by an electron beam, produce backscattered product Langmuir waves L-prime and ion sound waves S. The L and L-prime waves beat at the frequency and wavevector of the S waves, thereby modulating the wave packets. Beam speeds calculated using the modulated Jovian wave packets (1) are reasonable, at 4-10 times the electron thermal speed, (2) are consistent with theoretical limits on the decay process, and (3) decrease with increasing foreshock depth, as expected theoretically. These results strongly support the theory. The modulation depth of some wave packets suggests saturation by the decay L yields L-prime + S. Applications to modulated Langmuir packets in the Venusian and terrestrial foreshocks and in a type III radio source are proposed.
Quantizing the electromagnetic field near two-sided semitransparent mirrors
NASA Astrophysics Data System (ADS)
Furtak-Wells, Nicholas; Clark, Lewis A.; Purdy, Robert; Beige, Almut
2018-04-01
This paper models light scattering through flat surfaces with finite transmission, reflection, and absorption rates, with wave packets approaching the mirror from both sides. While using the same notion of photons as in free space, our model also accounts for the presence of mirror images and the possible exchange of energy between the electromagnetic field and the mirror surface. To test our model, we derive the spontaneous decay rate and the level shift of an atom in front of a semitransparent mirror as a function of its transmission and reflection rates. When considering limiting cases and using standard approximations, our approach reproduces well-known results but it also paves the way for the modeling of more complex scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, E.J.; Tsurutani, B.T.
1976-05-01
Lion roars, which are intense packets of electromagnetic waves characteristically found in the magneosheath, have been studied. On the basis of these observations, several possible wave generation mechanisms are examined. Landau resonance is considered to be an unlikely source because this mechanism requires a substantial component of the wave electric field paralle to B, and the observation that the waves propagate along the ambient field is contrary to this requirement. It is not obvious that electron cyclotron resonance is responsible, because the field magnitude decreases should cause T/sub parallel//T/sub perpendicular/ to increase, and this rise could lead to wave dampingmore » rather than wave growth. A model which is consistent with all the observations of this study is a proton cyclotron overstability involving 10-keV protons streaming through the magnetosheath. It appears possible that the streaming protons could produce both the waves and the field decreases and that all three would be coincident. (AIP)« less
Test particle simulation study of whistler wave packets observed near Comet Giacobini-Zinner
NASA Astrophysics Data System (ADS)
Kaya, N.; Matsumoto, H.; Tsurutani, B. T.
1989-01-01
Nonlinear interactions of water group ions with large-amplitude whistler wave packets detected at the leading edge of steepened magnetosonic waves observed near Comet Giacobini-Zinner (GZ) are studied using test particle simulations of water-ion interactions with a model wave based on GZ data. Some of the water ions are found to be decelerated in the steepened portion of the magnetosonic wave to the resonance velocity with the whistler wave packets. Through resonance and related nonlinear interaction with the large-amplitude whistler waves, the water ions become trapped by the packet. An energy balance calculation demonstrates that the trapped ions lose their kinetic energy during the trapped motion in the packet. Thus, the nonlinear trapping motion in the wave structure leads to effective energy transfer from the water group ions to the whistler wave packets in the leading edge of the steepened MHD waves.
On the Traversal Time of Barriers
NASA Astrophysics Data System (ADS)
Aichmann, Horst; Nimtz, Günter
2014-06-01
Fifty years ago Hartman studied the barrier transmission time of wave packets (J Appl Phys 33:3427-3433, 1962). He was inspired by the tunneling experiments across thin insulating layers at that time. For opaque barriers he calculated faster than light propagation and a transmission time independent of barrier length, which is called the Hartman effect. A faster than light (FTL or superluminal) wave packet velocity was deduced in analog tunneling experiments with microwaves and with infrared light thirty years later. Recently, the conjectured zero time of electron tunneling was claimed to have been observed in ionizing helium inside the barrier. The calculated and measured short tunneling time arises at the barrier front. This tunneling time was found to be universal for elastic fields as well as for electromagnetic fields. Remarkable is that the delay time is the same for the reflected and the transmitted waves in the case of symmetric barriers. Several theoretical physicists predicted this strange nature of the tunneling process. However, even with this background many members of the physics community do not accept a FTL signal velocity interpretation of the experimental tunneling results. Instead a luminal front velocity was calculated to explain the FTL experimental results frequently. However, Brillouin stated in his book on wave propagation and group velocity that the front velocity is given by the group velocity of wave packets in the case of physical signals, which have only finite frequency bandwidths. Some studies assumed barriers to be cavities and the observed tunneling time does represent the cavity lifetime. We are going to discus these continuing misleading interpretations, which are found in journals and in textbooks till today.
Cho, Jungyeon
2011-05-13
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
Transverse eV Ion Heating by Random Electric Field Fluctuations in the Plasmasphere
NASA Technical Reports Server (NTRS)
Artemyev, A. V.; Mourenas, D.; Agapitov, O. V.; Blum, L.
2017-01-01
Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2-3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse heating of H+ and O+ ions in the inner magnetosphere. The essential element of the proposed model of ion heating is the presence of trains of random whistler (hiss) wave packets, with significant amplitude modulations produced by strong wave damping, rapid wave growth, or a superposition of wave packets of different frequencies, phases, and amplitudes. Such characteristics correspond to measured characteristics of hiss waves in this region. Using test particle simulations with typical wave and plasma parameters, we demonstrate that the corresponding stochastic transverse ion heating reaches 0.07-0.2 eV/h for protons and 0.007-0.015 eV/h for O+ ions. This global temperature increase of the Maxwellian ion population from an initial Ti approx. 0.3 eV could potentially explain the observations.
Surface-Wave Pulse Routing around Sharp Right Angles
NASA Astrophysics Data System (ADS)
Gao, Z.; Xu, H.; Gao, F.; Zhang, Y.; Luo, Y.; Zhang, B.
2018-04-01
Surface-plasmon polaritons (SPPs), or localized electromagnetic surface waves propagating on a metal-dielectric interface, are deemed promising information carriers for future subwavelength terahertz and optical photonic circuitry. However, surface waves fundamentally suffer from scattering loss when encountering sharp corners in routing and interconnection of photonic signals. Previous approaches enabling scattering-free surface-wave guidance around sharp corners are limited to either volumetric waveguide environments or extremely narrow bandwidth, being unable to guide a surface-wave pulse (SPP wave packet) on an on-chip platform. Here, in a surface-wave band-gap crystal implemented on a single metal surface, we demonstrate in time-domain routing a surface-wave pulse around multiple sharp right angles without perceptible scattering. Our work not only offers a solution to on-chip surface-wave pulse routing along an arbitrary path, but it also provides spatiotemporal information on the interplay between surface-wave pulses and sharp corners, both of which are desirable in developing high-performance large-scale integrated photonic circuits.
Scattering of accelerated wave packets
NASA Astrophysics Data System (ADS)
Longhi, S.; Horsley, S. A. R.; Della Valle, G.
2018-03-01
Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.
NASA Technical Reports Server (NTRS)
Reimers, J. R.; Heller, E. J.
1985-01-01
The exact thermal rotational spectrum of a two-dimensional rigid rotor is obtained using Gaussian wave packet dynamics. The spectrum is obtained by propagating, without approximation, infinite sets of Gaussian wave packets. These sets are constructed so that collectively they have the correct periodicity, and indeed, are coherent states appropriate to this problem. Also, simple, almost classical, approximations to full wave packet dynamics are shown to give results which are either exact or very nearly exact. Advantages of the use of Gaussian wave packet dynamics over conventional linear response theory are discussed.
Spatial control of recollision wave packets with attosecond precision.
Kitzler, Markus; Lezius, Matthias
2005-12-16
We propose orthogonally polarized two-color laser pulses to steer tunneling electrons with attosecond precision around the ion core. We numerically demonstrate that the angles of birth and recollision, the recollision energy, and the temporal structure of the recolliding wave packet can be controlled without stabilization of the carrier-envelope phase of the laser, and that the wave packet's properties can be described by classical relations for a point charge. This establishes unique mapping between parameters of the laser field and attributes of the recolliding wave packet. The method is capable of probing ionic wave packet dynamics with attosecond resolution from an adjustable direction and might be used as an alternative to aligning molecules. Shaping the properties of the recollision wave packet by controlling the laser field may also provide new routes for improvement of attosecond pulse generation via high harmonic radiation.
Optical storage with electromagnetically induced transparency in cold atoms at a high optical depth
NASA Astrophysics Data System (ADS)
Zhang, Shanchao; Zhou, Shuyu; Liu, Chang; Chen, J. F.; Wen, Jianming; Loy, M. M. T.; Wong, G. K. L.; Du, Shengwang
2012-06-01
We report experimental demonstration of efficient optical storage with electromagnetically induced transparency (EIT) in a dense cold ^85Rb atomic ensemble trapped in a two-dimensional magneto-optical trap. By varying the optical depth (OD) from 0 to 140, we observe that the optimal storage efficiency for coherent optical pulses has a saturation value of 50% as OD > 50. Our result is consistent with that obtained from hot vapor cell experiments which suggest that a four-wave mixing nonlinear process degrades the EIT storage coherence and efficiency. We apply this EIT quantum memory for narrow-band single photons with controllable waveforms, and obtain an optimal storage efficiency of 49±3% for single-photon wave packets. This is the highest single-photon storage efficiency reported up to today and brings the EIT atomic quantum memory close to practical application because an efficiency of above 50% is necessary to operate the memory within non-cloning regime and beat the classical limit.
Symplectic semiclassical wave packet dynamics II: non-Gaussian states
NASA Astrophysics Data System (ADS)
Ohsawa, Tomoki
2018-05-01
We generalize our earlier work on the symplectic/Hamiltonian formulation of the dynamics of the Gaussian wave packet to non-Gaussian semiclassical wave packets. We find the symplectic forms and asymptotic expansions of the Hamiltonians associated with these semiclassical wave packets, and obtain Hamiltonian systems governing their dynamics. Numerical experiments demonstrate that the dynamics give a very good approximation to the short-time dynamics of the expectation values computed by a method based on Egorov’s theorem or the initial value representation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abele, H.; Jenke, T.; Leeb, H.
2010-03-15
We propose to apply Ramsey's method of separated oscillating fields to the spectroscopy of the quantum states in the gravity potential above a horizontal mirror. This method allows a precise measurement of quantum mechanical phaseshifts of a Schroedinger wave packet bouncing off a hard surface in the gravitational field of the Earth. Measurements with ultracold neutrons will offer a sensitivity to Newton's law or hypothetical short-ranged interactions, which is about 21 orders of magnitude below the energy scale of electromagnetism.
Femtosecond laser spectroscopy on the vibrational wave packet dynamics of the A 1Σ+ state of NaK
NASA Astrophysics Data System (ADS)
Berg, L.-E.; Beutter, M.; Hansson, T.
1996-05-01
The vibrational wave packet dynamics of a heteronuclear diatomic alkali molecule in an excited state, the A 1Σ+ state of gaseous NaK, has been measured for the first time. At λpump = 790 nm, a wave packet oscillation period of 442 fs and dephasing within 10 ps has been observed. This dynamics has been analysed by calculation of Franck-Condon factors and difference potentials. It is from this seen that initially the pump pulse prepares a wave packet at the inner turning point of the A-state. The wave packet then evolves in time and is probed at the outer turning point by a transition to the E-state with subsequent fluorescence detection.
Thermal averages in a quantum point contact with a single coherent wave packet.
Heller, E J; Aidala, K E; LeRoy, B J; Bleszynski, A C; Kalben, A; Westervelt, R M; Maranowski, K D; Gossard, A C
2005-07-01
A novel formal equivalence between thermal averages of coherent properties (e.g., conductance) and time averages of a single wave packet arises for Fermi gases and certain geometries. In the case of one open channel in a quantum point contact (QPC), only one wave packet history, with the wave packet width equal to the thermal length, completely determines the thermally averaged conductance. The formal equivalence moreover allows very simple physical interpretations of interference features surviving under thermal averaging. Simply put, pieces of the thermal wave packet returning to the QPC along independent paths must arrive at the same time in order to interfere. Remarkably, one immediate result of this approach is that higher temperature leads to narrower wave packets and therefore better resolution of events in the time domain. In effect, experiments at 4.2 K are performing time-gated experiments at better than a gigahertz. Experiments involving thermally averaged ballistic conductance in 2DEGS are presented as an application of this picture.
Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.
Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan
2016-04-22
We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.
NASA Technical Reports Server (NTRS)
Reimers, J. R.; Heller, E. J.
1985-01-01
Exact eigenfunctions for a two-dimensional rigid rotor are obtained using Gaussian wave packet dynamics. The wave functions are obtained by propagating, without approximation, an infinite set of Gaussian wave packets that collectively have the correct periodicity, being coherent states appropriate to this rotational problem. This result leads to a numerical method for the semiclassical calculation of rovibrational, molecular eigenstates. Also, a simple, almost classical, approximation to full wave packet dynamics is shown to give exact results: this leads to an a posteriori justification of the De Leon-Heller spectral quantization method.
Annular wave packets at Dirac points in graphene and their probability-density oscillation.
Luo, Ji; Valencia, Daniel; Lu, Junqiang
2011-12-14
Wave packets in graphene whose central wave vector is at Dirac points are investigated by numerical calculations. Starting from an initial Gaussian function, these wave packets form into annular peaks that propagate to all directions like ripple-rings on water surface. At the beginning, electronic probability alternates between the central peak and the ripple-rings and transient oscillation occurs at the center. As time increases, the ripple-rings propagate at the fixed Fermi speed, and their widths remain unchanged. The axial symmetry of the energy dispersion leads to the circular symmetry of the wave packets. The fixed speed and widths, however, are attributed to the linearity of the energy dispersion. Interference between states that, respectively, belong to two branches of the energy dispersion leads to multiple ripple-rings and the probability-density oscillation. In a magnetic field, annular wave packets become confined and no longer propagate to infinity. If the initial Gaussian width differs greatly from the magnetic length, expanding and shrinking ripple-rings form and disappear alternatively in a limited spread, and the wave packet resumes the Gaussian form frequently. The probability thus oscillates persistently between the central peak and the ripple-rings. If the initial Gaussian width is close to the magnetic length, the wave packet retains the Gaussian form and its height and width oscillate with a period determined by the first Landau energy. The wave-packet evolution is determined jointly by the initial state and the magnetic field, through the electronic structure of graphene in a magnetic field. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Berk, N. F.
2014-03-01
We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.
Realization of localized Bohr-like wave packets.
Mestayer, J J; Wyker, B; Lancaster, J C; Dunning, F B; Reinhold, C O; Yoshida, S; Burgdörfer, J
2008-06-20
We demonstrate a protocol to create localized wave packets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wave packets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wave packets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in a circular classical orbit around the nucleus. The possible extension of the approach to create "planetary atoms" in highly correlated stable multiply excited states is discussed.
NASA Astrophysics Data System (ADS)
Yu, Jie; Wang, Sen-Ming; Yuan, Kai-Jun; Cong, Shu-Lin
2006-09-01
The method of time-dependent quantum wave packet dynamics is used to calculate the femtosecond pump-probe photoelectron spectra and study the wave packet dynamic processes of the double-minimum potential state 61Σ+ of NaK in intense laser fields. The evolutions of the wave packet and the photoelectron energy spectra with time and internuclear distance are described in detail. The wave packet dynamic information of the 61Σ+ state can be extracted from the photoelectron energy spectra.
Coherent wave packet dynamics in a double-well potential in cavity
NASA Astrophysics Data System (ADS)
Zheng, Li; Li, Gang; Ding, Ming-Song; Wang, Yong-Liang; Zhang, Yun-Cui
2018-02-01
We investigate the coherent wave packet dynamics of a two-level atom trapped in a symmetric double-well potential in a near-resonance cavity. Prepared on one side of the double-well potential, the atom wave packet oscillates between the left and right wells, while recoil induced by the emitted photon from the atom entangles the atomic internal and external degrees of freedom. The collapse and revival of the tunneling occurs. Adjusting the width of the wave packets, one can modify the tunneling frequency and suppress the tunneling.
Transfer of a wave packet in double-well potential
NASA Astrophysics Data System (ADS)
Yang, Hai-Feng; Hu, Yao-Hua; Tan, Yong-Gang
2018-04-01
Energy potentials with double-well structures are typical in atoms and molecules systems. A manipulation scheme using Half Cycles Pulses (HCPs) is proposed to transfer a Gaussian wave packet between the two wells. On the basis of quantum mechanical simulations, the time evolution and the energy distribution of the wave packet are evaluated. The effect of time parameters, amplitude, and number of HCPs on spatial and energy distribution of the final state and transfer efficiency are investigated. After a carefully tailored HCPs sequence is applied to the initial wave packet localized in one well, the final state is a wave packet localized in the other well and populated at the lower energy levels with narrower distribution. The present scheme could be used to control molecular reactions and to prepare atoms with large dipole moments.
Trajectory description of the quantum–classical transition for wave packet interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2016-08-15
The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow themore » main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.« less
Quantum-shutter approach to tunneling time scales with wave packets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Norifumi; Garcia-Calderon, Gaston; Villavicencio, Jorge
2005-07-15
The quantum-shutter approach to tunneling time scales [G. Garcia-Calderon and A. Rubio, Phys. Rev. A 55, 3361 (1997)], which uses a cutoff plane wave as the initial condition, is extended to consider certain type of wave packet initial conditions. An analytical expression for the time-evolved wave function is derived. The time-domain resonance, the peaked structure of the probability density (as the function of time) at the exit of the barrier, originally found with the cutoff plane wave initial condition, is studied with the wave packet initial conditions. It is found that the time-domain resonance is not very sensitive to themore » width of the packet when the transmission process occurs in the tunneling regime.« less
NASA Astrophysics Data System (ADS)
Hiraga, R.; Omura, Y.
2017-12-01
By recent observations, chorus waves include fine structures such as amplitude fluctuations (i.e. sub-packet structure), and it has not been verified in detail yet how energetic electrons are efficiently accelerated under the wave features. In this study, we firstly focus on the acceleration process of a single electron: how it experiences the efficient energy increase by interaction with sub-packet chorus waves in parallel propagation along the Earth's magnetic field. In order to reproduce the chorus waves as seen by the latest observations by Van Allen Probes (Foster et al. 2017), the wave model amplitude in our simulation is structured such that when the wave amplitude nonlinearly grows to reach the optimum amplitude, it starts decreasing until crossing the threshold. Once it crosses the threshold, the wave dissipates and a new wave rises to repeat the nonlinear growth and damping in the same manner. The multiple occurrence of this growth-damping cycle forms a saw tooth-like amplitude variation called sub-packet. This amplitude variation also affects the wave frequency behavior which is derived by the chorus wave equations as a function of the wave amplitude (Omura et al. 2009). It is also reasonable to assume that when a wave packet diminishes and the next wave rises, it has a random phase independent of the previous wave. This randomness (discontinuity) in phase variation is included in the simulation. Through interaction with such waves, dynamics of energetic electrons were tracked. As a result, some electrons underwent an efficient acceleration process defined as successive entrapping, in which an electron successfully continues to surf the trapping potential generated by consecutive wave packets. When successive entrapping occurs, an electron trapped and de-trapped (escape the trapping potential) by a single wave packet falls into another trapping potential generated by the next wave sub-packet and continuously accelerated. The occurrence of successive entrapping is influenced by some factors such as the magnitude of wave amplitude or inhomogeneity of the Earth's dipole magnetic field. In addition, an energy range of electrons is also a major factor. In this way, it has been examined in detail how and under which conditions electrons are efficiently accelerated in the formation process of the radiation belts.
Two-point coherence of wave packets in turbulent jets
NASA Astrophysics Data System (ADS)
Jaunet, V.; Jordan, P.; Cavalieri, A. V. G.
2017-02-01
An experiment has been performed in order to provide support for wave-packet jet-noise modeling efforts. Recent work has shown that the nonlinear effects responsible for the two-point coherence of wave packets must be correctly accounted for if accurate sound prediction is to be achieved for subsonic turbulent jets. We therefore consider the same Mach 0.4 turbulent jet studied by Cavalieri et al. [Cavalieri et al., J. Fluid Mech. 730, 559 (2013), 10.1017/jfm.2013.346], but this time using two independent but synchronized, time-resolved stereo particle-image velocimetry systems. Each system can be moved independently, allowing simultaneous measurement of velocity in two, axially separated, crossflow planes, enabling eduction of the two-point coherence of wave packets. This and the associated length scales and phase speeds are studied and compared with those of the energy-containing turbulent eddies. The study illustrates how the two-point behavior of wave packets is fundamentally different from that of the more usually studied bulk two-point behavior, suggesting that sound-source modeling efforts should be reconsidered in the framework of wave packets. The study furthermore identifies two families of two-point-coherence behavior, respectively upstream and downstream of the end of the potential core, regions where linear theory is, respectively, successful and unsuccessful in predicting the axial evolution of wave-packets fluctuation energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benisti, Didier; Morice, Olivier; Gremillet, Laurent
The propagation of an electrostatic wave packet inside a collisionless and initially Maxwellian plasma is always dissipative because of the irreversible acceleration of the electrons by the wave. Then, in the linear regime, the wave packet is Landau damped, so that in the reference frame moving at the group velocity, the wave amplitude decays exponentially with time. In the nonlinear regime, once phase mixing has occurred and when the electron motion is nearly adiabatic, the damping rate is strongly reduced compared to the Landau one, so that the wave amplitude remains nearly constant along the characteristics. Yet, we show heremore » that the electrons are still globally accelerated by the wave packet, and in one dimension, this leads to a non local amplitude dependence of the group velocity. As a result, a freely propagating wave packet would shrink, and therefore, so would its total energy. In more than one dimension, not only does the magnitude of the group velocity nonlinearly vary, but also its direction. In the weakly nonlinear regime, when the collisionless damping rate is still significant compared to its linear value, the group velocity is directed towards the outside of the wave packet and tends to increase its transverse extent, while the opposite is true once the wave is essentially undamped. The impact of the nonlinear variation of the group velocity on the transverse size of the wave packet is quantified, and compared to that induced by the self-focussing due to wave front bowing.« less
NASA Astrophysics Data System (ADS)
Biswas, Tutul; Kanti Ghosh, Tarun
2018-02-01
We consider the α-T 3 model which provides a smooth crossover between the honeycomb lattice with pseudospin 1/2 and the dice lattice with pseudospin 1 through the variation of a parameter α. We study the dynamics of a wave packet representing a quasiparticle in the α-T3 model with zero and finite transverse magnetic field. For zero field, it is shown that the wave packet undergoes a transient zitterbewegung (ZB). Various features of ZB depending on the initial pseudospin polarization of the wave packet have been revealed. For an intermediate value of the parameter α i.e. for 0<α<1 the resulting ZB consists of two distinct frequencies when the wave packet was located initially in rim site. However, the wave packet exhibits single frequency ZB for α=0 and α=1 . It is also unveiled that the frequency of ZB corresponding to α=1 gets exactly half of that corresponding to the α=0 case. On the other hand, when the initial wave packet was in hub site, the ZB consists of only one frequency for all values of α. Using stationary phase approximation, we find analytical expression of velocity average which can be used to extract the associated timescale over which the transient nature of ZB persists. On the contrary, the wave packet undergoes permanent ZB in presence of a transverse magnetic field. Due to the presence of a large number of Landau energy levels, the oscillations in ZB appear to be much more complicated. The oscillation pattern depends significantly on the initial pseudospin polarization of the wave packet. Furthermore, it is revealed that the number of the frequency components involved in ZB depends on the parameter α.
Biswas, Tutul; Kanti Ghosh, Tarun
2018-01-22
We consider the α-T 3 model which provides a smooth crossover between the honeycomb lattice with pseudospin 1/2 and the dice lattice with pseudospin 1 through the variation of a parameter α. We study the dynamics of a wave packet representing a quasiparticle in the α-T 3 model with zero and finite transverse magnetic field. For zero field, it is shown that the wave packet undergoes a transient zitterbewegung (ZB). Various features of ZB depending on the initial pseudospin polarization of the wave packet have been revealed. For an intermediate value of the parameter α i.e. for [Formula: see text] the resulting ZB consists of two distinct frequencies when the wave packet was located initially in rim site. However, the wave packet exhibits single frequency ZB for [Formula: see text] and [Formula: see text]. It is also unveiled that the frequency of ZB corresponding to [Formula: see text] gets exactly half of that corresponding to the [Formula: see text] case. On the other hand, when the initial wave packet was in hub site, the ZB consists of only one frequency for all values of α. Using stationary phase approximation, we find analytical expression of velocity average which can be used to extract the associated timescale over which the transient nature of ZB persists. On the contrary, the wave packet undergoes permanent ZB in presence of a transverse magnetic field. Due to the presence of a large number of Landau energy levels, the oscillations in ZB appear to be much more complicated. The oscillation pattern depends significantly on the initial pseudospin polarization of the wave packet. Furthermore, it is revealed that the number of the frequency components involved in ZB depends on the parameter α.
NASA Astrophysics Data System (ADS)
Matsuura, Masahiro; Mano, Takaaki; Noda, Takeshi; Shibata, Naokazu; Hotta, Masahiro; Yusa, Go
2018-02-01
Quantum energy teleportation (QET) is a proposed protocol related to quantum vacuum. The edge channels in a quantum Hall system are well suited for the experimental verification of QET. For this purpose, we examine a charge-density wave packet excited and detected by capacitively coupled front gate electrodes. We observe the waveform of the charge packet, which is proportional to the time derivative of the applied square voltage wave. Further, we study the transmission and reflection behaviors of the charge-density wave packet by applying a voltage to another front gate electrode to control the path of the edge state. We show that the threshold voltages where the dominant direction is switched in either transmission or reflection for dense and sparse wave packets are different from the threshold voltage where the current stops flowing in an equilibrium state.
Angular momentum transport with twisted exciton wave packets
NASA Astrophysics Data System (ADS)
Zang, Xiaoning; Lusk, Mark T.
2017-10-01
A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.
Wessels, Philipp; Vogel, Andreas; Tödt, Jan-Niklas; Wieland, Marek; Meier, Guido; Drescher, Markus
2016-01-01
The analysis of isolated spin-wave packets is crucial for the understanding of magnetic transport phenomena and is particularly interesting for applications in spintronic and magnonic devices, where isolated spin-wave packets implement an information processing scheme with negligible residual heat loss. We have captured microscale magnetization dynamics of single spin-wave packets in metallic ferromagnets in space and time. Using an optically driven high-current picosecond pulse source in combination with time-resolved scanning Kerr microscopy probed by femtosecond laser pulses, we demonstrate phase-sensitive real-space observation of spin-wave packets in confined permalloy (Ni80Fe20) microstripes. Impulsive excitation permits extraction of the dynamical parameters, i.e. phase- and group velocities, frequencies and wave vectors. In addition to well-established Damon-Eshbach modes our study reveals waves with counterpropagating group- and phase-velocities. Such unusual spin-wave motion is expected for backward volume modes where the phase fronts approach the excitation volume rather than emerging out of it due to the negative slope of the dispersion relation. These modes are difficult to excite and observe directly but feature analogies to negative refractive index materials, thus enabling model studies of wave propagation inside metamaterials. PMID:26906113
Attosecond transient absorption of a bound wave packet coupled to a smooth continuum
Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva
2017-10-16
Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less
Attosecond transient absorption of a bound wave packet coupled to a smooth continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva
Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeibel, J. G.; Jones, R. R.
2003-08-01
Picosecond ''half-cycle'' pulses (HCPs) have been used to produce electronic wave packets by recombining photoelectrons with their parent ions. The time-dependent momentum distributions of the bound wave packets are probed using a second HCP and the impulsive momentum retrieval (IMR) method. For a given delay between the initial photoionization event and the HCP recombination, classical trajectory simulations predict pronounced periodic wave packet motion for a restricted range of recombining HCP amplitudes. This motion is characterized by the repeated formation and collapse of a highly localized spike in the three-dimensional electron probability density at a large distance from the nucleus. Ourmore » experiments confirm that oscillatory wave packet motion occurs only for certain recombination ''kick'' strengths. Moreover, the measured time-dependent momentum distributions are consistent with the predicted formation of a highly localized electron packet. We demonstrate a variation of the IMR in which amplitude modulation of the HCP probe field is employed to suppress noise and allow for a more direct recovery of electron momentum from experimental ionization data.« less
NASA Astrophysics Data System (ADS)
Biswas, Subhadip; Chattopadhyay, Rohitashwa; Bhattacharjee, Jayanta K.
2018-05-01
We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order n + 1. It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones.
Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.
Whitfield, A J; Johnson, E R
2015-05-01
The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting.
Local Dynamics of Baroclinic Waves in the Martian Atmosphere
NASA Astrophysics Data System (ADS)
Kavulich, M. J.; Szunyogh, I.; Gyarmati, G.; Wilson, R.
2010-12-01
In this presentation, the spatio-temporal evolution of baroclinic waves in the GFDL Mars GCM is investigated. The study employs diagnostic techniques that were developed to analyze the life cycles of baroclinic waves in the terrestrial atmosphere. These techniques include a Hilbert-transform-based method to extract the packets of Rossby wave envelopes at the jet level, the eddy kinetic energy equation for the full atmospheric column, and ensemble-based diagnostics. The results show that, similar to the terrestrial atmosphere, coherent westward-propagating wave packets can be detected in the Martian atmosphere. These wave packets are composed of waves of wavenumber 2 through 5, in contrast to the wavenumber 4 through 9 waves that contribute the upper-tropospheric wave packets of the terrestrial atmosphere. Additionally, as in the terrestrial atmosphere, the dominant part of the eddy kinetic energy is generated in regions of baroclinic energy conversion, which are strongly localized in both space and time. Implications of the results for predictability of the state of the Martian atmosphere are also discussed.
Segregation of helicity in inertial wave packets
NASA Astrophysics Data System (ADS)
Ranjan, A.
2017-03-01
Inertial waves are known to exist in the Earth's rapidly rotating outer core and could be important for the dynamo generation. It is well known that a monochromatic inertial plane wave traveling parallel to the rotation axis (along positive z ) has negative helicity while the wave traveling antiparallel (negative z ) has positive helicity. Such a helicity segregation, north and south of the equator, is necessary for the α2-dynamo model based on inertial waves [Davidson, Geophys. J. Int. 198, 1832 (2014), 10.1093/gji/ggu220] to work. The core is likely to contain a myriad of inertial waves of different wave numbers and frequencies. In this study, we investigate whether this characteristic of helicity segregation also holds for an inertial wave packet comprising waves with the same sign of Cg ,z, the z component of group velocity. We first derive the polarization relations for inertial waves and subsequently derive the resultant helicity in wave packets forming as a result of superposition of two or more waves. We find that the helicity segregation does hold for an inertial wave packet unless the wave numbers of the constituent waves are widely separated. In the latter case, regions of opposite color helicity do appear, but the mean helicity retains the expected sign. An illustration of this observation is provided by (a) calculating the resultant helicity for a wave packet formed by superposition of four upward-propagating inertial waves with different wave vectors and (b) conducting the direct numerical simulation of a Gaussian eddy under rapid rotation. Last, the possible effects of other forces such as the viscous dissipation, the Lorentz force, buoyancy stratification, and nonlinearity on helicity are investigated and discussed. The helical structure of the wave packet is likely to remain unaffected by dissipation or the magnetic field, but can be modified by the presence of linearly stable stratification and nonlinearity.
Excited-state vibronic wave-packet dynamics in H2 probed by XUV transient four-wave mixing
NASA Astrophysics Data System (ADS)
Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Leone, Stephen R.; Neumark, Daniel M.
2018-02-01
The complex behavior of a molecular wave packet initiated by an extreme ultraviolet (XUV) pulse is investigated with noncollinear wave mixing spectroscopy. A broadband XUV pulse spanning 12-16 eV launches a wave packet in H2 comprising a coherent superposition of multiple electronic and vibrational levels. The molecular wave packet evolves freely until a delayed few-cycle optical laser pulse arrives to induce nonlinear signals in the XUV via four-wave mixing (FWM). The angularly resolved FWM signals encode rich energy exchange processes between the optical laser field and the XUV-excited molecule. The noncollinear geometry enables spatial separation of ladder and V- or Λ-type transitions induced by the optical field. Ladder transitions, in which the energy exchange with the optical field is around 3 eV, appear off axis from the incident XUV beam. Each vibrationally revolved FWM line probes a different part of the wave packet in energy, serving as a promising tool for energetic tomography of molecular wave packets. V- or Λ-type transitions, in which the energy exchange is well under 1 eV, result in on-axis nonlinear signals. The first-order versus third-order interference of the on-axis signal serves as a mapping tool of the energy flow pathways. Intra- and interelectronic potential energy curve transitions are decisively identified. The current study opens possibilities for accessing complete dynamic information in XUV-excited complex systems.
Dispersionless wave packets in Dirac materials
NASA Astrophysics Data System (ADS)
Jakubský, Vít; Tušek, Matěj
2017-03-01
We show that a wide class of quantum systems with translational invariance can host dispersionless, soliton-like, wave packets. We focus on the setting where the effective, two-dimensional Hamiltonian acquires the form of the Dirac operator. The proposed framework for construction of the dispersionless wave packets is illustrated on silicene-like systems with topologically nontrivial effective mass. Our analytical predictions are accompanied by a numerical analysis and possible experimental realizations are discussed.
NASA Astrophysics Data System (ADS)
de Brito, P. E.; Nazareno, H. N.
2012-09-01
The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.
Biswas, Tutul; Ghosh, Tarun Kanti
2018-01-09
We consider the $\\alpha$-$T_3$ model which provides a smooth crossover between the honeycomb lattice with pseudospin $1/2$ and the dice lattice with pseudospin $1$ through the variation of a parameter $\\alpha$. We study the dynamics of a wave packet representing a quasiparticle in the $\\alpha$-T$_3$ model with zero and finite transverse magnetic field. For zero field, it is shown that the wave packet undergoes a transient $zitterbewegung$ (ZB). Various features of ZB depending on the initial pseudospin polarization of the wave packet have been revealed. For an intermediate value of the parameter $\\alpha$ i.e. for $0<\\alpha<1$ the resulting ZB consists of two distinct frequencies when the wave packet was located initially in $rim$ site. However, the wave packet exhibits single frequency ZB for $\\alpha=0$ and $\\alpha=1$. It is also unveiled that the frequency of ZB corresponding to $\\alpha=1$ gets exactly half of that corresponding to the $\\alpha=0$ case. On the other hand, when the initial wave packet was in $hub$ site, the ZB consists of only one frequency for all values of $\\alpha$. Using stationary phase approximation we find analytical expression of velocity average which can be used to extract the associated timescale over which the transient nature of ZB persists. On the contrary the wave packet undergoes permanent ZB in presence of a transverse magnetic field. Due to the presence of large number of Landau energy levels the oscillations in ZB appear to be much more complicated. The oscillation pattern depends significantly on the initial pseudospin polarization of the wave packet. Furthermore, it is revealed that the number of the frequency components involved in ZB depends on the parameter $\\alpha$. © 2018 IOP Publishing Ltd.
Propagation velocity of Alfven wave packets in a dissipative plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amagishi, Y.; Nakagawa, H.; Tanaka, M.
1994-09-01
We have experimentally studied the behavior of Alfven wave packets in a dissipative plasma due to ion--neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in themore » anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.« less
Propagation velocity of Alfvén wave packets in a dissipative plasma
NASA Astrophysics Data System (ADS)
Amagishi, Yoshimitsu; Nakagawa, Hiroyuki; Tanaka, Masayoshi
1994-09-01
We have experimentally studied the behavior of Alfvén wave packets in a dissipative plasma due to ion-neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in the anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.
Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay
NASA Astrophysics Data System (ADS)
Chen, Yi-Hsin; Lee, Meng-Jung; Wang, I.-Chung; Du, Shengwang; Chen, Yong-Fan; Chen, Ying-Cheng; Yu, Ite A.
2013-02-01
A high-storage efficiency and long-lived quantum memory for photons is an essential component in long-distance quantum communication and optical quantum computation. Here, we report a 78% storage efficiency of light pulses in a cold atomic medium based on the effect of electromagnetically induced transparency. At 50% storage efficiency, we obtain a fractional delay of 74, which is the best up-to-date record. The classical fidelity of the recalled pulse is better than 90% and nearly independent of the storage time, as confirmed by the direct measurement of phase evolution of the output light pulse with a beat-note interferometer. Such excellent phase coherence between the stored and recalled light pulses suggests that the current result may be readily applied to single photon wave packets. Our work significantly advances the technology of electromagnetically induced transparency-based optical memory and may find practical applications in long-distance quantum communication and optical quantum computation.
Coherent optical memory with high storage efficiency and large fractional delay.
Chen, Yi-Hsin; Lee, Meng-Jung; Wang, I-Chung; Du, Shengwang; Chen, Yong-Fan; Chen, Ying-Cheng; Yu, Ite A
2013-02-22
A high-storage efficiency and long-lived quantum memory for photons is an essential component in long-distance quantum communication and optical quantum computation. Here, we report a 78% storage efficiency of light pulses in a cold atomic medium based on the effect of electromagnetically induced transparency. At 50% storage efficiency, we obtain a fractional delay of 74, which is the best up-to-date record. The classical fidelity of the recalled pulse is better than 90% and nearly independent of the storage time, as confirmed by the direct measurement of phase evolution of the output light pulse with a beat-note interferometer. Such excellent phase coherence between the stored and recalled light pulses suggests that the current result may be readily applied to single photon wave packets. Our work significantly advances the technology of electromagnetically induced transparency-based optical memory and may find practical applications in long-distance quantum communication and optical quantum computation.
Plane wave packet formulation of atom-plus-diatom quantum reactive scattering.
Althorpe, Stuart C
2004-07-15
We recently interpreted several reactive scattering experiments using a plane wave packet (PWP) formulation of quantum scattering theory [see, e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper presents the first derivation of this formulation for atom-plus-diatom reactive scattering, and explains its relation to conventional time-independent reactive scattering. We generalize recent results for spherical-particle scattering [S. C. Althorpe, Phys. Rev. A 69, 042702 (2004)] to atom-rigid-rotor scattering in the space-fixed frame, atom-rigid-rotor scattering in the body-fixed frame, and finally A+BC rearrangement scattering. The reactive scattering is initiated by a plane wave packet, describing the A+BC reagents in center-of-mass scattering coordinates, and is detected by projecting onto a series of AC+B (or AB+C) plane wave "probe" packets. The plane wave packets are localized at the closest distance from the scattering center at which the interaction potential can be neglected. The time evolution of the initial plane wave packet provides a clear visualization of the scattering into space of the reaction products. The projection onto the probe packets yields the time-independent, state-to-state scattering amplitude, and hence the differential cross section. We explain how best to implement the PWP approach in a numerical computation, and illustrate this with a detailed application to the H+D2 reaction. (c) 2004 American Institute of Physics
Wave-variable framework for networked robotic systems with time delays and packet losses
NASA Astrophysics Data System (ADS)
Puah, Seng-Ming; Liu, Yen-Chen
2017-05-01
This paper investigates the problem of networked control system for nonlinear robotic manipulators under time delays and packet loss by using passivity technique. With the utilisation of wave variables and a passive remote controller, the networked robotic system is demonstrated to be stable with guaranteed position regulation. For the input/output signals of robotic systems, a discretisation block is exploited to convert continuous-time signals to discrete-time signals, and vice versa. Subsequently, we propose a packet management, called wave-variable modulation, to cope with the proposed networked robotic system under time delays and packet losses. Numerical examples and experimental results are presented to demonstrate the performance of the proposed wave-variable-based networked robotic systems.
NASA Astrophysics Data System (ADS)
Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.
2018-03-01
In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.
Generation of electron Airy beams.
Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady
2013-02-21
Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.
Acoustic wave propagation in a temporal evolving shear-layer for low-Mach number perturbations
NASA Astrophysics Data System (ADS)
Hau, Jan-Niklas; Müller, Björn
2018-01-01
We study wave packets with the small perturbation/gradient Mach number interacting with a smooth shear-layer in the linear regime of small amplitude perturbations. In particular, we investigate the temporal evolution of wave packets in shear-layers with locally curved regions of variable size using non-modal linear analysis and direct numerical simulations of the two-dimensional gas-dynamical equations. Depending on the wavenumber of the initially imposed wave packet, three different types of behavior are observed: (i) The wave packet passes through the shear-layer and constantly transfers energy back to the mean flow. (ii) It is turned around (or reflected) within the sheared region and extracts energy from the base flow. (iii) It is split into two oppositely propagating packages when reaching the upper boundary of the linearly sheared region. The conducted direct numerical simulations confirm that non-modal linear stability analysis is able to predict the wave packet dynamics, even in the presence of non-linearly sheared regions. In the light of existing studies in this area, we conclude that the sheared regions are responsible for the highly directed propagation of linearly generated acoustic waves when there is a dominating source, as it is the case for jet flows.
Airy Wave Packets Accelerating in Space-Time
NASA Astrophysics Data System (ADS)
Kondakci, H. Esat; Abouraddy, Ayman F.
2018-04-01
Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation invariance. A lesser-explored strategy for achieving optical self-similar propagation exploits the modification of the spatiotemporal field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt the axial dynamics of a wave packet of an arbitrary profile. This phenomenon is particularly striking in the case of a self-accelerating beam—such as an Airy beam—whose peak normally undergoes a transverse displacement upon free propagation. Here we synthesize an acceleration-free Airy wave packet that travels in a straight line by deforming its spatiotemporal spectrum to reproduce the impact of a Lorentz boost. The roles of the axial spatial coordinate and time are swapped, leading to "time diffraction" manifested in self-acceleration observed in the propagating Airy wave-packet frame.
Laser control of electronic transitions of wave packet by using quadratically chirped pulses.
Zou, Shiyang; Kondorskiy, Alexey; Mil'nikov, Gennady; Nakamura, Hiroki
2005-02-22
An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H(2)O) as examples.
Laser control of electronic transitions of wave packet by using quadratically chirped pulses
NASA Astrophysics Data System (ADS)
Zou, Shiyang; Kondorskiy, Alexey; Mil'nikov, Gennady; Nakamura, Hiroki
2005-02-01
An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H2O) as examples.
Runge-Lenz wave packet in multichannel Stark photoionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Texier, F.
2005-01-01
In a previous slow photoionization experiment, modulations of ionization rings were manifested for Xe in a constant electric field. The present quantum calculation reveals that the modulation is an effect of the multichannel core scattering and of tunneling waves through the Coulomb-Stark potential barrier: the barrier reduces the number of oscillations that is observed relatively to the number of oscillations of the short range wave functions, and the nonhydrogenic core phase shifts modify the position of the ionization rings. We find a hidden difference, in the ionization process, for two close values of the energy depending on the resonance withmore » the barrier. The ionization intensity is interpreted as a Runge-Lenz wave packet; thus, we can relate the quantum modulation to the classical Coulomb-Stark trajectories. The Runge-Lenz wave packet differs from a usual temporal wave packet because its components are eigenstates of the Runge-Lenz vector z projection and its evolution is not temporal but spatial.« less
NASA Astrophysics Data System (ADS)
Kozlov, V. V.; Katasonov, M. M.; Pavlenko, A. M.
2017-10-01
Downstream development of artificial disturbances were investigated experimentally using hot-wire constant temperature anemometry. It is shown that vibrations with high-amplitude of a three-dimensional surface lead to formation of two types of perturbations in the straight wing boundary layer: streamwise oriented localized structures and wave packets. The amplitude of streamwise structure is decay downstream. The wave packets amplitude grows in adverse pressure gradient area. The flow separation is exponentially intensified of the wave packet amplitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beresh, Steven Jay; Casper, Katya M.; Schneider, Steven P.
2010-12-01
The development of turbulent spots in a hypersonic boundary layer was studied on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Under quiet flow conditions, the nozzle wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large turbulent spots that can be readily measured with pressure transducers. Measurements of naturally occurring wave packets and developing turbulent spots were made. The peak frequencies of these natural wave packets were in agreement with second-mode computations. For a controlled study, the breakdown of disturbances created by spark and glow perturbations were studiedmore » at similar freestream conditions. The spark perturbations were the most effective at creating large wave packets that broke down into turbulent spots. The flow disturbances created by the controlled perturbations were analyzed to obtain amplitude criteria for nonlinearity and breakdown as well as the convection velocities of the turbulent spots. Disturbances first grew into linear instability waves and then quickly became nonlinear. Throughout the nonlinear growth of the wave packets, large harmonics are visible in the power spectra. As breakdown begins, the peak amplitudes of the instability waves and harmonics decrease into the rising broad-band frequencies. Instability waves are still visible on either side of the growing turbulent spots during this breakdown process.« less
Transition from Propagating Polariton Solitons to a Standing Wave Condensate Induced by Interactions
NASA Astrophysics Data System (ADS)
Sich, M.; Chana, J. K.; Egorov, O. A.; Sigurdsson, H.; Shelykh, I. A.; Skryabin, D. V.; Walker, P. M.; Clarke, E.; Royall, B.; Skolnick, M. S.; Krizhanovskii, D. N.
2018-04-01
We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.
Sich, M; Chana, J K; Egorov, O A; Sigurdsson, H; Shelykh, I A; Skryabin, D V; Walker, P M; Clarke, E; Royall, B; Skolnick, M S; Krizhanovskii, D N
2018-04-20
We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.
Stochastic Acceleration of Ions Driven by Pc1 Wave Packets
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.
2015-01-01
The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.
Characteristics of Electromagnetic Pulse Propagation in Metal
NASA Technical Reports Server (NTRS)
Namkung, M.; Wincheski, B.; Nath, S.; Fulton, J. P.
2004-01-01
It is well known that the solution of the diffusion equation for an electromagnetic field with a time harmonic term, e(sup iwt), is in the form of a traveling wave whose amplitude attenuates over distance into a conducting medium. As the attenuation is an increasing function of frequency, the high frequency components attenuate more rapidly than those of low ones upon entering a well conducting object. At the same time, the phase velocity of an individual component is also an increasing function of frequency causing a broadening of the pulse traveling inside a conductor. In the results of our previous study of numerical simulations, the problem of using a gaussian input pulse was immediately clear. First, having the dominant frequency components distributed around zero, the movement of the peak was not well defined. Second, with the amplitude of fourier components varying slowly over a wide range, the dispersion-induced blurring of the peak position was seen to be severe. For the present study, we have used a gaussian modulated single frequency sinusoidal wave, i. e., the carrier, as an input pulse in an effort to improve the issues related to the unclear movement of peak and dispersion as described above. This was based on the following two anticipated advantages: First, the packet moves in a conductor at the group velocity calculated at the carrier frequency, which means it is well controllable. Second, the amplitude of frequency components other than that of the carrier can be almost negligible, such that the effect of dispersion can be significantly reduced. A series of experiments of transmitting electromagnetic pulses through aluminum plates of various thickness was performed to test the validity of the above points. The results of numerical simulation based on wave propagation are discussed with respect to the experimental results. Finally, a simple simulation was performed based on diffusion of a continuous sine wave input and the results are compared with those of a single frequency sinusoidal wave observed over time at difference locations inside a conductor.
Nonlinear optical waves with the second Painleve transcendent shape of envelope in Kerr media
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Tepichin Rodriguez, Eduardo; Sanchez Sanchez, Mauro
2004-05-01
Nonlinear optical wave packets with the second Painleve transcendent shape of envelope are revealed in Kerr media, manifesting weakly focusing cubic nonlinearity, square-law dispersion, and linear losses. When the state of nonlinear optical transmission is realized, two possible types of boundary conditions turn out to be satisfied for these wave packets. The propagation of initially unchirped optical wave packets under consideration could be supported by lossless medium in both normal and anomalous dispersion regimes. At the same time initially chirped optical waves with the second Painleve transcendent shape in low-loss medium and need matching the magnitude of optical losses by the dispersion and nonlinear properties of that medium.
Uncertainty relations for angular momentum eigenstates in two and three spatial dimensions
NASA Astrophysics Data System (ADS)
Bracher, Christian
2011-03-01
I reexamine Heisenberg's uncertainty relation for two- and three-dimensional wave packets with fixed angular momentum quantum numbers m or ℓ. A simple proof shows that the product of the average extent Δr and Δp of a two-dimensional wave packet in position and momentum space is bounded from below by ΔrΔp ≥ℏ(|m|+1). The minimum uncertainty is attained by modified Gaussian wave packets that are special eigenstates of the two-dimensional isotropic harmonic oscillator, which include the ground states of electrons in a uniform magnetic field. Similarly, the inequality ΔrΔp ≥ℏ(ℓ +3/2) holds for three-dimensional wave packets with fixed total angular momentum ℓ and the equality holds for a Gaussian radial profile. I also discuss some applications of these uncertainty relations.
In situ observations of Pc1 pearl pulsations by the Van Allen Probes
NASA Astrophysics Data System (ADS)
Paulson, K. W.; Smith, C. W.; Lessard, M. R.; Engebretson, M. J.; Torbert, R. B.; Kletzing, C. A.
2014-03-01
We present in situ observations of Pc1 pearl pulsations using the Van Allen Probes. These waves are often observed using ground-based magnetometers, but are rarely observed by orbiting satellites. With the Van Allen Probes, we have seen at least 14 different pearl pulsation events during the first year of operations. These new in situ measurements allow us to identify the wave classification based on local magnetic field conditions. Additionally, by using two spacecraft, we are able to observe temporal changes in the region of observation. The waves appear to be generated at an overall central frequency, as often observed on the ground, and change polarization from left- to right-handedness as they propagate into a region where they are resonant with the crossover frequency (where R- and L-mode waves have the same phase velocity). By combining both in situ and ground-based data, we have found that the region satisfying electromagnetic ion cyclotron wave generation conditions is azimuthally large while radially narrow. The observation of a similar modulation period on the ground as in the magnetosphere contradicts the bouncing wave packet mechanism of generation.
Propagation of Gaussian wave packets in complex media and application to fracture characterization
NASA Astrophysics Data System (ADS)
Ding, Yinshuai; Zheng, Yingcai; Zhou, Hua-Wei; Howell, Michael; Hu, Hao; Zhang, Yu
2017-08-01
Knowledge of the subsurface fracture networks is critical in probing the tectonic stress states and flow of fluids in reservoirs containing fractures. We propose to characterize fractures using scattered seismic data, based on the theory of local plane-wave multiple scattering in a fractured medium. We construct a localized directional wave packet using point sources on the surface and propagate it toward the targeted subsurface fractures. The wave packet behaves as a local plane wave when interacting with the fractures. The interaction produces multiple scattering of the wave packet that eventually travels up to the surface receivers. The propagation direction and amplitude of the multiply scattered wave can be used to characterize fracture density, orientation and compliance. Two key aspects in this characterization process are the spatial localization and directionality of the wave packet. Here we first show the physical behaviour of a new localized wave, known as the Gaussian Wave Packet (GWP), by examining its analytical solution originally formulated for a homogenous medium. We then use a numerical finite-difference time-domain (FDTD) method to study its propagation behaviour in heterogeneous media. We find that a GWP can still be localized and directional in space even over a large propagation distance in heterogeneous media. We then propose a method to decompose the recorded seismic wavefield into GWPs based on the reverse-time concept. This method enables us to create a virtually recorded seismic data using field shot gathers, as if the source were an incident GWP. Finally, we demonstrate the feasibility of using GWPs for fracture characterization using three numerical examples. For a medium containing fractures, we can reliably invert for the local parameters of multiple fracture sets. Differing from conventional seismic imaging such as migration methods, our fracture characterization method is less sensitive to errors in the background velocity model. For a layered medium containing fractures, our method can correctly recover the fracture density even with an inaccurate velocity model.
Astrophysical ZeV acceleration in the jets from an accreting blackhole
NASA Astrophysics Data System (ADS)
Tajima, Toshiki; Ebisuzaki, Toshikazu; Mizuta, Akira
2017-10-01
An accreting blackhole produces extreme amplitude Alfven waves whose wavelength (wave packet) size is characterized by its clumsiness. The ponderomotive force driven by the bow wake of these Alfven waves propagates along the AGN (blazar) jet, and accelerates protons/nuclei to extreme energies beyond Zetta-electron volt (ZeV = 1021 eV). Such acceleration is linear and does not suffer from the multiple scattering/bending involved in the Fermi acceleration that causes excessive synchrotron radiation loss beyond 1019 eV. This bow wake acceleration was confirmed one-dimensional particle-in-cell simulations. General relativistic Magneto-hydrodynamics simulations also show the intermittent eruptions of electro-magnetic waves from the innermost region of the accretion disk around a black hole. The production rate of ultra-high energy cosmic rays in M82 starburst galaxy is estimated from its gamma-ray luminosity and is found to be consistent with the observed flux of the northern hot spot by Telescope Array. We will discuss the possible acceleration in an intermediate mass black hole candidate M82 X-1 and the magnetic bending in the cosmological filaments in the local super cluster.
Direct Harmonic Linear Navier-Stokes Methods for Efficient Simulation of Wave Packets
NASA Technical Reports Server (NTRS)
Streett, C. L.
1998-01-01
Wave packets produced by localized disturbances play an important role in transition in three-dimensional boundary layers, such as that on a swept wing. Starting with the receptivity process, we show the effects of wave-space energy distribution on the development of packets and other three-dimensional disturbance patterns. Nonlinearity in the receptivity process is specifically addressed, including demonstration of an effect which can enhance receptivity of traveling crossflow disturbances. An efficient spatial numerical simulation method is allowing most of the simulations presented to be carried out on a workstation.
NASA Astrophysics Data System (ADS)
Schmidt, Burkhard; Hartmann, Carsten
2018-07-01
WavePacket is an open-source program package for numeric simulations in quantum dynamics. It can solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows, e.g., to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semi-classical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. Being highly versatile and offering visualization of quantum dynamics 'on the fly', WavePacket is well suited for teaching or research projects in atomic, molecular and optical physics as well as in physical or theoretical chemistry. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] which dealt with closed quantum systems and discrete variable representations, the present Part II focuses on the dynamics of open quantum systems, with Lindblad operators modeling dissipation and dephasing. This part also describes the WavePacket function for optimal control of quantum dynamics, building on rapid monotonically convergent iteration methods. Furthermore, two different approaches to dimension reduction implemented in WavePacket are documented here. In the first one, a balancing transformation based on the concepts of controllability and observability Gramians is used to identify states that are neither well controllable nor well observable. Those states are either truncated or averaged out. In the other approach, the H2-error for a given reduced dimensionality is minimized by H2 optimal model reduction techniques, utilizing a bilinear iterative rational Krylov algorithm. The present work describes the MATLAB version of WavePacket 5.3.0 which is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics can be found.
Glider Observations of Internal Tide Packets on the Australian Northwest Shelf
NASA Astrophysics Data System (ADS)
Book, J. W.; Steinberg, C. R.; Brinkman, R. M.; Jones, N. L.; Lowe, R.; Ivey, G. N.; Pattiaratchi, C. B.; Rice, A. E.
2016-02-01
The rapid profiling capabilities (less than 10 minutes per profile in 100 m of water excluding surfacing times) of autonomous gliders were utilized to study the structure of non-linear internal tide packets on the Australian Northwest Shelf. A total of five gliders were deployed on the shelf from 11 February - 21 April 2012 with more than 2900 glider CTD profiles collected during the final three weeks of this time period when the internal tide activity was intense. In general the internal tide packets showed high degrees of non-linearity, for example in one case a glider observed a 62 m rise of the 28° isotherm over 2.25 hours in a shelf location of 90 meters water depth. In addition to the glider measurements, moored strings of CTD sensors were used to measure the internal tide packets at fixed positions and the results show that the wave packets vary significantly with respect to their structure and arrival times from one tidal period to the next. This fact complicates interpretation of the glider data as wave packet spatial evolution is non-stationary and cannot be simply recovered from repeat glider visits to the same location. Furthermore, the packets were found to move at speeds near or greater (e.g., 0.55 m/s) than the speed that the gliders were moving. Despite these challenges, the gliders offer the only resource that can measure the spatial structure of the wave packets beyond the scope of our limited mooring positions. Therefore, we have implemented methods such as time-augmented empirical orthogonal functions to combine these glider measurements with the fixed mooring measurements in order to better understand the spatial and temporal patterns of the wave packet evolution over the slope and shelf of this region.
NASA Technical Reports Server (NTRS)
Yamanaka, M. D.
1989-01-01
In MAP observations, it was found that: (1) gravity waves in selected or filtered portions of data are fit for monochromatic structures, whereas (2) those in fully continuous and resolved observations take universal continuous spectra. It is possible to explain (2) by dispersion of quasi-monochromatic (or slowly varying) wave packets observed locally as (1), since the medium atmosphere is unsteady and nonuniform. Complete verification of the wave-mean flow interactions by tracking individual wave packets seems hopeless, because the wave induced flow cannot be distinguished from the basic flow independent of the waves. Instead, the primitive picture is looked at before MAP, that is, the atmosphere is just like an entertainment stage illuminated by cocktail lights of quasi-monochromatic gravity waves. The wave parameters are regarded as functions of time and spatial coordinates. The observational evidences (1) and (2) suggest that the wave parameter field is rather homogeneous, which can be explained by interference of quasi-monochromatic wave packets.
Isolated drops from capillary jets by means of Gaussian wave packets
NASA Astrophysics Data System (ADS)
Garcia, Francisco Javier; Gonzalez, Heliodoro; Castrejon-Pita, Alfonso Arturo; Castrejon-Pita, Jose Rafael; Gomez-Aguilar, Francisco Jose
2017-11-01
The possibility of obtaining isolated drops from a continuous liquid jet through localized velocity perturbations is explored analytically, numerically and experimentally. We show that Gaussian wave packets are appropriate for this goal. A temporal linear analysis predicts the early evolution of these wave packets and provides an estimate of the breakup length of the jet. Non-linear numerical simulations allow us both to corroborate these results and to obtain the shape of the surface of the jet prior to breakup. Finally, we show experimental evidence that stimulating with a Gaussian wave packet can lead to the formation of an isolated drop without disturbing the rest of the jet. The authors acknowledge support from the Spanish Government under Contract No. FIS2014-25161, the Junta de Andalucia under Contract No. P11-FQM-7919, the EPSRC-UK via the Grant EP/P024173/1, and the Royal Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuevas, F.A.; Curilef, S., E-mail: scurilef@ucn.cl; Plastino, A.R., E-mail: arplastino@ugr.es
The spread of a wave-packet (or its deformation) is a very important topic in quantum mechanics. Understanding this phenomenon is relevant in connection with the study of diverse physical systems. In this paper we apply various 'spreading measures' to characterize the evolution of an initially localized wave-packet in a tight-binding lattice, with special emphasis on information-theoretical measures. We investigate the behavior of both the probability distribution associated with the wave packet and the concomitant probability current. Complexity measures based upon Renyi entropies appear to be particularly good descriptors of the details of the delocalization process. - Highlights: > Spread ofmore » highly localized wave-packet in the tight-binding lattice. > Entropic and information-theoretical characterization is used to understand the delocalization. > The behavior of both the probability distribution and the concomitant probability current is investigated. > Renyi entropies appear to be good descriptors of the details of the delocalization process.« less
NASA Astrophysics Data System (ADS)
Du, Tao-Yuan; Huang, Xiao-Huan; Bian, Xue-Bin
2018-01-01
We study numerically the Bloch electron wave-packet dynamics in periodic potentials to simulate laser-solid interactions. We introduce an alternative perspective in the coordinate space combined with the motion of the Bloch electron wave packets moving at group and phase velocities under the laser fields. This model interprets the origins of the two contributions (intra- and interband transitions) in the high-order harmonic generation (HHG) processes by investigating the local and global behaviours of the wave packets. It also elucidates the underlying physical picture of the HHG intensity enhancement by means of carrier-envelope phase, chirp, and inhomogeneous fields. It provides a deep insight into the emission of high-order harmonics from solids. This model is instructive for experimental measurements and provides an alternative avenue to distinguish mechanisms of the HHG from solids in different laser fields.
NASA Astrophysics Data System (ADS)
da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.
2016-12-01
We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.
Effective photon mass and exact translating quantum relativistic structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, Fernando, E-mail: fernando.haas@ufrgs.br; Manrique, Marcos Antonio Albarracin, E-mail: sagret10@hotmail.com
2016-04-15
Using a variation of the celebrated Volkov solution, the Klein-Gordon equation for a charged particle is reduced to a set of ordinary differential equations, exactly solvable in specific cases. The new quantum relativistic structures can reveal a localization in the radial direction perpendicular to the wave packet propagation, thanks to a non-vanishing scalar potential. The external electromagnetic field, the particle current density, and the charge density are determined. The stability analysis of the solutions is performed by means of numerical simulations. The results are useful for the description of a charged quantum test particle in the relativistic regime, provided spinmore » effects are not decisive.« less
Resonance-assisted decay of nondispersive wave packets.
Wimberger, Sandro; Schlagheck, Peter; Eltschka, Christopher; Buchleitner, Andreas
2006-07-28
We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance-assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.
Steering attosecond electron wave packets with light.
Kienberger, R; Hentschel, M; Uiberacker, M; Spielmann, Ch; Kitzler, M; Scrinzi, A; Wieland, M; Westerwalbesloh, Th; Kleineberg, U; Heinzmann, U; Drescher, M; Krausz, F
2002-08-16
Photoelectrons excited by extreme ultraviolet or x-ray photons in the presence of a strong laser field generally suffer a spread of their energies due to the absorption and emission of laser photons. We demonstrate that if the emitted electron wave packet is temporally confined to a small fraction of the oscillation period of the interacting light wave, its energy spectrum can be up- or downshifted by many times the laser photon energy without substantial broadening. The light wave can accelerate or decelerate the electron's drift velocity, i.e., steer the electron wave packet like a classical particle. This capability strictly relies on a sub-femtosecond duration of the ionizing x-ray pulse and on its timing to the phase of the light wave with a similar accuracy, offering a simple and potentially single-shot diagnostic tool for attosecond pump-probe spectroscopy.
Koyama, Takeshi; Takahashi, Youtarou; Nakajima, Makoto; Suemoto, Tohru
2006-06-14
We investigated nuclear wave packet dynamics in the excited state of KI F centers at 10 K using time-resolved luminescence spectroscopy. Observed transient spectrum is divided into oscillatory and non-oscillatory components. The former lasts over 11 ps without appreciable damping and is attributed to the oscillation of the wave packet consisting mainly of the A(1g) mode around the center. The non-oscillatory part rises quickly after photo-excitation exhibiting a cooling of incoherent vibrational population. This behavior suggests the fast energy dissipation due to the dephasing of the bulk phonon modes.
A Gaussian wave packet phase-space representation of quantum canonical statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughtrie, David J.; Tew, David P.
2015-07-28
We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.
NASA Technical Reports Server (NTRS)
Neuhauser, Daniel; Baer, Michael; Judson, Richard S.; Kouri, Donald J.
1989-01-01
The first successful application of the three-dimensional quantum body frame wave packet approach to reactive scattering is reported for the H + H2 exchange reaction on the LSTH potential surface. The method used is based on a procedure for calculating total reaction probabilities from wave packets. It is found that converged, vibrationally resolved reactive probabilities can be calculated with a grid that is not much larger than required for the pure inelastic calculation. Tabular results are presented for several energies.
Information hiding and retrieval in Rydberg wave packets using half-cycle pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, J. M.; Pisharody, S. N.; Wen, H.
We demonstrate an information hiding and retrieval scheme with the relative phases between states in a Rydberg wave packet acting as the bits of a data register. We use a terahertz half-cycle pulse (HCP) to transfer phase-encoded information from an optically accessible angular momentum manifold to another manifold which is not directly accessed by our laser pulses, effectively hiding the information from our optical interferometric measurement techniques. A subsequent HCP acting on these wave packets reintroduces the information back into the optically accessible data register manifold which can then be read out.
Nonlinear lower hybrid structures in auroral plasmas: comparison of theory with observations
NASA Astrophysics Data System (ADS)
Robinson, P. A.
1999-01-01
Intense, localized lower hybrid wave structures are widely observed in auroral plasmas, often associated with density depletions. Commonly it is concluded without further analysis that these structures are solitons, collapsing wave packets, or other nonlinear entities. Such conclusions are often not justified on theoretical grounds. This review outlines theoretical constraints on field intensity, wave-packet scale length, timescales, and levels of density perturbations that must be met before nonlinear phenomena such as wave collapse and strong turbulence can occur. These criteria are determined within the framework of the modern nucleation scenario for the maintenance of strong turbulence, which involves collapse and dissipation (burnout) of each wave packet, followed by relaxation of its associated density perturbation, then renucleation of further energy into fields trapped in this relaxing perturbation, often leading to further collapse. The criteria are illustrated by applying them to a range of in situ auroral data that have been commonly interpreted in terms of lower hybrid solitons. It will be shown that the data are consistent with some of these criteria, but violate others if packets are all assumed to be observed in the collapse phase. However, theory and observations are consistent within the full nucleation scenario in which packets spend most of their time in the relaxation and renucleation phases, rather than undergoing collapse or burnout.
NASA Technical Reports Server (NTRS)
Thejappa, G.; MacDowall, R. J.; Bergamo, M.
2012-01-01
The four wave interaction process, known as the oscillating two stream instability (OTSI) is considered as one of the mechanisms responsible for stabilizing the electron beams associated with solar type III radio bursts. It has been reported that (1) an intense localized Langmuir wave packet associated with a type III burst contains the spectral characteristics of the OTSI: (a) a resonant peak at the local electron plasma frequency, f(sub pe), (b) a Stokes peak at a frequency slightly lower than f(sub pe), (c) anti-Stokes peak at a frequency slightly higher than f(sub pe), and (d) a low frequency enhancement below a few hundred Hz, (2) the frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI, and (3) the peak intensity of the wave packet is well above the thresholds for the OTSI as well as spatial collapse of envelope solitons. Here, for the first time, applying the trispectral analysis on this wave packet, we show that the tricoherence, which measures the degree of coherent four-wave coupling amongst the observed spectral components exhibits a peak. This provides an additional evidence for the OTSI and related spatial collapse of Langmuir envelope solitons in type III burst sources.
Time Dependent Channel Packet Calculation of Two Nucleon Scattering Matrix Elements
2010-03-01
solutions, 46 ( ) ( )1 1 11 ( ) cos sinL L L L Lr Akr j kr krψ δ η δ= − (3.70) Here, A is an arbitrary constant, Lδ is the phase shift...iv AFIT/DS/ENP/10-M03 Abstract A new approach to calculating nucleon-nucleon scattering matrix...elements using a proven atomic time-dependent wave packet technique is investigated. Using this technique, reactant and product wave packets containing
Time reversal of arbitrary photonic temporal modes via nonlinear optical frequency conversion
NASA Astrophysics Data System (ADS)
Raymer, Michael G.; Reddy, Dileep V.; van Enk, Steven J.; McKinstrie, Colin J.
2018-05-01
Single-photon wave packets can carry quantum information between nodes of a quantum network. An important general operation in photon-based quantum information systems is ‘blind’ reversal of a photon’s temporal wave packet envelope, that is, the ability to reverse an envelope without knowing the temporal state of the photon. We present an all-optical means for doing so, using nonlinear-optical frequency conversion driven by a short pump pulse. The process used may be sum-frequency generation or four-wave Bragg scattering. This scheme allows for quantum operations such as a temporal-mode parity sorter. We also verify that the scheme works for arbitrary states (not only single-photon ones) of an unknown wave packet.
Extended wave-packet model to calculate energy-loss moments of protons in matter
NASA Astrophysics Data System (ADS)
Archubi, C. D.; Arista, N. R.
2017-12-01
In this work we introduce modifications to the wave-packet method proposed by Kaneko to calculate the energy-loss moments of a projectile traversing a target which is represented in terms of Gaussian functions for the momentum distributions of electrons in the atomic shells. These modifications are introduced using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. We use the extended wave-packet model to evaluate the stopping power, the energy straggling, the inverse mean free path, and the ionization cross sections for protons in several targets, obtaining good agreements for all these quantities on an extensive energy range that covers low-, intermediate-, and high-energy regions. The extended wave-packet model proposed here provides a method to calculate in a very straightforward way all the significant terms of the inelastic interaction of light ions with any element of the periodic table.
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Mironov, V. A.; Skobelev, S. A.
2017-01-01
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the "kaleidoscopic" picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.
NASA Astrophysics Data System (ADS)
Crosnier de Bellaistre, C.; Trefzger, C.; Aspect, A.; Georges, A.; Sanchez-Palencia, L.
2018-01-01
We study numerically the expansion dynamics of an initially confined quantum wave packet in the presence of a disordered potential and a uniform bias force. For white-noise disorder, we find that the wave packet develops asymmetric algebraic tails for any ratio of the force to the disorder strength. The exponent of the algebraic tails decays smoothly with that ratio and no evidence of a critical behavior on the wave density profile is found. Algebraic localization features a series of critical values of the force-to-disorder strength where the m th position moment of the wave packet diverges. Below the critical value for the m th moment, we find fair agreement between the asymptotic long-time value of the m th moment and the predictions of diagrammatic calculations. Above it, we find that the m th moment grows algebraically in time. For correlated disorder, we find evidence of systematic delocalization, irrespective to the model of disorder. More precisely, we find a two-step dynamics, where both the center-of-mass position and the width of the wave packet show transient localization, similar to the white-noise case, at short time and delocalization at sufficiently long time. This correlation-induced delocalization is interpreted as due to the decrease of the effective de Broglie wavelength, which lowers the effective strength of the disorder in the presence of finite-range correlations.
Body frame close coupling wave packet approach to gas phase atom-rigid rotor inelastic collisions
NASA Technical Reports Server (NTRS)
Sun, Y.; Judson, R. S.; Kouri, D. J.
1989-01-01
The close coupling wave packet (CCWP) method is formulated in a body-fixed representation for atom-rigid rotor inelastic scattering. For J greater than j-max (where J is the total angular momentum and j is the rotational quantum number), the computational cost of propagating the coupled channel wave packets in the body frame is shown to scale approximately as N exp 3/2, where N is the total number of channels. For large numbers of channels, this will be much more efficient than the space frame CCWP method previously developed which scales approximately as N-squared under the same conditions.
Energy-flux characterization of conical and space-time coupled wave packets
NASA Astrophysics Data System (ADS)
Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di
2010-02-01
We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruban, V. P., E-mail: ruban@itp.ac.ru
2015-05-15
The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of roguemore » wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.« less
On-Demand Microwave Generator of Shaped Single Photons
NASA Astrophysics Data System (ADS)
Forn-Díaz, P.; Warren, C. W.; Chang, C. W. S.; Vadiraj, A. M.; Wilson, C. M.
2017-11-01
We demonstrate the full functionality of a circuit that generates single microwave photons on demand, with a wave packet that can be modulated with a near-arbitrary shape. We achieve such a high tunability by coupling a superconducting qubit near the end of a semi-infinite transmission line. A dc superconducting quantum interference device shunts the line to ground and is employed to modify the spatial dependence of the electromagnetic mode structure in the transmission line. This control allows us to couple and decouple the qubit from the line, shaping its emission rate on fast time scales. Our decoupling scheme is applicable to all types of superconducting qubits and other solid-state systems and can be generalized to multiple qubits as well as to resonators.
Artificial magnetic-field quenches in synthetic dimensions
NASA Astrophysics Data System (ADS)
Yılmaz, F.; Oktel, M. Ö.
2018-02-01
Recent cold atom experiments have realized models where each hyperfine state at an optical lattice site can be regarded as a separate site in a synthetic dimension. In such synthetic ribbon configurations, manipulation of the transitions between the hyperfine levels provide direct control of the hopping in the synthetic dimension. This effect was used to simulate a magnetic field through the ribbon. Precise control over the hopping matrix elements in the synthetic dimension makes it possible to change this artificial magnetic field much faster than the time scales associated with atomic motion in the lattice. In this paper, we consider such a magnetic-flux quench scenario in synthetic dimensions. Sudden changes have not been considered for real magnetic fields as such changes in a conducting system would result in large induced currents. Hence we first study the difference between a time varying real magnetic field and an artificial magnetic field using a minimal six-site model. This minimal model clearly shows the connection between gauge dependence and the lack of on-site induced scalar potential terms. We then investigate the dynamics of a wave packet in an infinite two- or three-leg ladder following a flux quench and find that the gauge choice has a dramatic effect on the packet dynamics. Specifically, a wave packet splits into a number of smaller packets moving with different velocities. Both the weights and the number of packets depend on the implemented gauge. If an initial packet, prepared under zero flux in an n -leg ladder, is quenched to Hamiltonian with a vector potential parallel to the ladder, it splits into at most n smaller wave packets. The same initial wave packet splits into up to n2 packets if the vector potential is implemented to be along the rungs. Even a trivial difference in the gauge choice such as the addition of a constant to the vector potential produces observable effects. We also calculate the packet weights for arbitrary initial and final fluxes. Finally, we show that edge states in a thick ribbon are robust under the quench only when the same gap supports an edge state for the final Hamiltonian.
Principles of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Landé, Alfred
2013-10-01
Preface; Introduction: 1. Observation and interpretation; 2. Difficulties of the classical theories; 3. The purpose of quantum theory; Part I. Elementary Theory of Observation (Principle of Complementarity): 4. Refraction in inhomogeneous media (force fields); 5. Scattering of charged rays; 6. Refraction and reflection at a plane; 7. Absolute values of momentum and wave length; 8. Double ray of matter diffracting light waves; 9. Double ray of matter diffracting photons; 10. Microscopic observation of ρ (x) and σ (p); 11. Complementarity; 12. Mathematical relation between ρ (x) and σ (p) for free particles; 13. General relation between ρ (q) and σ (p); 14. Crystals; 15. Transition density and transition probability; 16. Resultant values of physical functions; matrix elements; 17. Pulsating density; 18. General relation between ρ (t) and σ (є); 19. Transition density; matrix elements; Part II. The Principle of Uncertainty: 20. Optical observation of density in matter packets; 21. Distribution of momenta in matter packets; 22. Mathematical relation between ρ and σ; 23. Causality; 24. Uncertainty; 25. Uncertainty due to optical observation; 26. Dissipation of matter packets; rays in Wilson Chamber; 27. Density maximum in time; 28. Uncertainty of energy and time; 29. Compton effect; 30. Bothe-Geiger and Compton-Simon experiments; 31. Doppler effect; Raman effect; 32. Elementary bundles of rays; 33. Jeans' number of degrees of freedom; 34. Uncertainty of electromagnetic field components; Part III. The Principle of Interference and Schrödinger's equation: 35. Physical functions; 36. Interference of probabilities for p and q; 37. General interference of probabilities; 38. Differential equations for Ψp (q) and Xq (p); 39. Differential equation for фβ (q); 40. The general probability amplitude Φβ' (Q); 41. Point transformations; 42. General theorem of interference; 43. Conjugate variables; 44. Schrödinger's equation for conservative systems; 45. Schrödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.
Pump-dump iterative squeezing of vibrational wave packets.
Chang, Bo Y; Sola, Ignacio R
2005-12-22
The free motion of a nonstationary vibrational wave packet in an electronic potential is a source of interesting quantum properties. In this work we propose an iterative scheme that allows continuous stretching and squeezing of a wave packet in the ground or in an excited electronic state, by switching the wave function between both potentials with pi pulses at certain times. Using a simple model of displaced harmonic oscillators and delta pulses, we derive the analytical solution and the conditions for its possible implementation and optimization in different molecules and electronic states. We show that the main constraining parameter is the pulse bandwidth. Although in principle the degree of squeezing (or stretching) is not bounded, the physical resources increase quadratically with the number of iterations, while the achieved squeezing only increases linearly.
Scattering of matter waves in spatially inhomogeneous environments
Tsitoura, F.; Krüger, P.; Kevrekidis, P. G.; ...
2015-03-30
In this article, we study scattering of quasi-one-dimensional matter waves at an interface of two spatial domains, one with repulsive and one with attractive interatomic interactions. It is shown that the incidence of a Gaussian wave packet from the repulsive to the attractive region gives rise to generation of a soliton train. More specifically, the number of emergent solitons can be controlled, e.g., by the variation of the amplitude or the width of the incoming wave packet. Furthermore, we study the reflectivity of a soliton incident from the attractive region to the repulsive one. We find the reflection coefficient numericallymore » and employ analytical methods, which treat the soliton as a particle (for moderate and large amplitudes) or a quasilinear wave packet (for small amplitudes), to determine the critical soliton momentum (as a function of the soliton amplitude) for which total reflection is observed.« less
Resonant tunneling of spin-wave packets via quantized states in potential wells.
Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O
2007-09-21
We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.
Universal potential-barrier penetration by initially confined wave packets
NASA Astrophysics Data System (ADS)
Granot, Er'El; Marchewka, Avi
2007-07-01
The dynamics of an initially sharp-boundary wave packet in the presence of an arbitrary potential barrier is investigated. It is shown that the penetration through the barrier is universal in the sense that it depends only on the values of the wave function and its derivatives at the boundary. The dependence on the derivatives vanishes at long distances from the barrier, where the dynamics is governed solely by the initial value of the wave function at the boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wavemore » packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.« less
Trajectory-based understanding of the quantum-classical transition for barrier scattering
NASA Astrophysics Data System (ADS)
Chou, Chia-Chun
2018-06-01
The quantum-classical transition of wave packet barrier scattering is investigated using a hydrodynamic description in the framework of a nonlinear Schrödinger equation. The nonlinear equation provides a continuous description for the quantum-classical transition of physical systems by introducing a degree of quantumness. Based on the transition equation, the transition trajectory formalism is developed to establish the connection between classical and quantum trajectories. The quantum-classical transition is then analyzed for the scattering of a Gaussian wave packet from an Eckart barrier and the decay of a metastable state. Computational results for the evolution of the wave packet and the transmission probabilities indicate that classical results are recovered when the degree of quantumness tends to zero. Classical trajectories are in excellent agreement with the transition trajectories in the classical limit, except in some regions where transition trajectories cannot cross because of the single-valuedness of the transition wave function. As the computational results demonstrate, the process that the Planck constant tends to zero is equivalent to the gradual removal of quantum effects originating from the quantum potential. This study provides an insightful trajectory interpretation for the quantum-classical transition of wave packet barrier scattering.
NASA Astrophysics Data System (ADS)
Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.
2018-04-01
Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.
Quantum spreading of a self-gravitating wave-packet in singularity free gravity
NASA Astrophysics Data System (ADS)
Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam
2018-01-01
In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein's general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1 / r singularity in the potential - such that the gradient of the potential vanishes within the scale of non-locality. We will show that a quantum wave-packet spreads faster for a ghost-free and singularity-free gravity as compared to the Newtonian case, therefore providing us a unique scenario for testing classical and quantum properties of short-distance gravity in a laboratory in the near future.
Symmetry and conservation laws in semiclassical wave packet dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohsawa, Tomoki, E-mail: tomoki@utdallas.edu
2015-03-15
We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum asmore » well as naturally corresponds to the quantum picture.« less
Huang, Jiayu; Liu, Shu; Zhang, Dong H; Krems, Roman V
2018-04-06
Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.
Hybridization effects on wave packet dynamics in topological insulator thin films.
Yar, Abdullah; Naeem, Muhammad; Khan, Safi Ullah; Sabeeh, Kashif
2017-11-22
Theoretical study of electron wave packet dynamics in topological insulator (TI) thin films is presented. We have investigated real space trajectories and spin dynamics of electron wave packets in TI thin films. Our focus is on the role of hybridization between the electronic states of the two surfaces. This allows us to access the crossover regime of a thick film with no hybridization to a thin film with finite hybridization. We show that the electron wave packet undergoes side-jump motion in addition to zitterbewegung. The oscillation frequency of zitterbewegung can be tuned by the strength of hybridization, which in turn can be tuned by the thickness of the film. We find that the spin expectations also exhibit zitterbewegung tunable by hybridization. We also show that it is possible to obtain persistent zitterbewegung, oscillations which do not decay, in both the real space trajectories as well as spin dynamics. The zitterbewegung oscillation frequency in TI thin films falls in a parameter regime where it might be possible to observe these effects using present day experimental techniques.
Generalized Gaussian wave packet dynamics: Integrable and chaotic systems.
Pal, Harinder; Vyas, Manan; Tomsovic, Steven
2016-01-01
The ultimate semiclassical wave packet propagation technique is a complex, time-dependent Wentzel-Kramers-Brillouin method known as generalized Gaussian wave packet dynamics (GGWPD). It requires overcoming many technical difficulties in order to be carried out fully in practice. In its place roughly twenty years ago, linearized wave packet dynamics was generalized to methods that include sets of off-center, real trajectories for both classically integrable and chaotic dynamical systems that completely capture the dynamical transport. The connections between those methods and GGWPD are developed in a way that enables a far more practical implementation of GGWPD. The generally complex saddle-point trajectories at its foundation are found using a multidimensional Newton-Raphson root search method that begins with the set of off-center, real trajectories. This is possible because there is a one-to-one correspondence. The neighboring trajectories associated with each off-center, real trajectory form a path that crosses a unique saddle; there are exceptions that are straightforward to identify. The method is applied to the kicked rotor to demonstrate the accuracy improvement as a function of ℏ that comes with using the saddle-point trajectories.
Son, Minjung; Park, Kyu Hyung; Yoon, Min-Chul; Kim, Pyosang; Kim, Dongho
2015-06-18
Broadband laser pulses with ultrashort duration are capable of triggering impulsive excitation of the superposition of vibrational eigenstates, giving rise to quantum beating signals originating from coherent wave packet motions along the potential energy surface. In this work, coherent vibrational wave packet dynamics of an N,N'-bis(2,6-dimethylphenyl)perylene bisimide (DMP-PBI) were investigated by femtosecond broadband pump-probe spectroscopy which features fast and balanced data acquisition with a wide spectral coverage of >200 nm. Clear modulations were observed in the envelope of the stimulated emission decay profiles of DMP-PBI with the oscillation frequencies of 140 and 275 cm(-1). Fast Fourier transform analysis of each oscillatory mode revealed characteristic phase jumps near the maxima of the steady-state fluorescence, indicating that the observed vibrational coherence originates from an excited-state wave packet motion. Quantum calculations of the normal modes at the low-frequency region suggest that low-frequency C-C (C═C) stretching motions accompanied by deformation of the dimethylphenyl substituents are responsible for the manifestation of such coherent wave packet dynamics.
In Situ Detection of Strong Langmuir Turbulence Processes in Solar Type III Radio Bursts
NASA Technical Reports Server (NTRS)
Golla, Thejappa; Macdowall, Robert J.; Bergamo, M.
2012-01-01
The high time resolution observations obtained by the WAVES experiment of the STEREO spacecraft in solar type III radio bursts show that Langmuir waves often occur as intense localized wave packets. These wave packets are characterized by short durations of only a few ms and peak intensities, which well exceed the supersonic modulational instability (MI) thresholds. These timescales and peak intensities satisfy the criterion of the solitons collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets consist of primary spectral peaks corresponding to beam-resonant Langmuir waves, two or more sidebands corresponding to down-shifted and up-shifted daughter Langmuir waves, and low frequency enhancements below a few hundred Hz corresponding to daughter ion sound waves. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the modulational instability (MI). Moreover, the tricoherences, computed using trispectral analysis techniques show that these spectral components are coupled to each other with a high degree of coherency as expected of the MI type of four wave interactions. The high intensities, short scale lengths, sideband spectral structures and low frequency spectral enhancements and, high levels of tricoherences amongst the spectral components of these wave packets provide unambiguous evidence for the supersonic MI and related strong turbulence processes in type III radio bursts. The implication of these observations include: (1) the MI and related strong turbulence processes often occur in type III source regions, (2) the strong turbulence processes probably play very important roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation at the fundamental and second harmonic of the electron plasma frequency, fpe, and (3) the Langmuir collapse probably follows the route of MI in type III radio bursts.
Internal Gravity Waves Forced by an Isolated Mountain
NASA Astrophysics Data System (ADS)
Nikitina, L.; Campbell, L.
2009-12-01
Density-stratified fluid flow over topography such as mountains, hills and ridges may give rise to internal gravity waves which transport and distribute energy away from their source and have profound effects on the general circulation of the atmosphere and ocean. Much of our knowledge of internal gravity wave dynamics has been acquired from theoretical studies involving mathematical analyses of simplified forms of the governing equations, as well as numerical simulations at varying levels of approximation. In this study, both analytical and numerical methods are used to examine the nonlinear dynamics of gravity waves forced by an isolated mountain. The topography is represented by a lower boundary condition on a two-dimensional rectangular domain and the waves are represented as a perturbation to the background shear flow, thus allowing the use of weakly-nonlinear and multiple-scale asymptotic analyzes. The waves take the form of a packet, localized in the horizontal direction and comprising a continuous spectrum of horizontal wavenumbers centered at zero. For horizontally-localized wave packets, such as those forced by a mountain range with multiple peaks, there are generally two horizontal scales, the fast (short) scale which is defined by the oscillations within the packet and the slow (large) scale which is defined by the horizontal extent of the packet. In the case of an isolated mountain that we examine here, the multiple-scaling procedure is simplified by the absence of a fast spatial scale. The problem is governed by two small parameters that define the height and width of the mountain and approximate solutions are derived in terms of these parameters. Numerical solutions are also carried out to simulate nonlinear critical-level interactions such as the transfer of energy to the background flow by the wave packet, wave reflection and static instability and, eventually, wave breaking leading to turbulence. It is found that for waves forced by an isolated mountain the time frame within which these nonlinear effects become significant depends on both the mountain height and width and that they begin to occur at least an order of magnitude later and the configuration thus remains stable longer than in the case of waves forced by a mountain range of equivalent height.
NASA Astrophysics Data System (ADS)
Schmidt, Burkhard; Lorenz, Ulf
2017-04-01
WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.
Boundary Layer Instabilities Generated by Freestream Laser Perturbations
NASA Technical Reports Server (NTRS)
Chou, Amanda; Schneider, Steven P.
2015-01-01
A controlled, laser-generated, freestream perturbation was created in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT). The freestream perturbation convected downstream in the Mach-6 wind tunnel to interact with a flared cone model. The geometry of the flared cone is a body of revolution bounded by a circular arc with a 3-meter radius. Fourteen PCB 132A31 pressure transducers were used to measure a wave packet generated in the cone boundary layer by the freestream perturbation. This wave packet grew large and became nonlinear before experiencing natural transition in quiet flow. Breakdown of this wave packet occurred when the amplitude of the pressure fluctuations was approximately 10% of the surface pressure for a nominally sharp nosetip. The initial amplitude of the second mode instability on the blunt flared cone is estimated to be on the order of 10 -6 times the freestream static pressure. The freestream laser-generated perturbation was positioned upstream of the model in three different configurations: on the centerline, offset from the centerline by 1.5 mm, and offset from the centerline by 3.0 mm. When the perturbation was offset from the centerline of a blunt flared cone, a larger wave packet was generated on the side toward which the perturbation was offset. The offset perturbation did not show as much of an effect on the wave packet on a sharp flared cone as it did on a blunt flared cone.
Manipulation of quantum evolution
NASA Technical Reports Server (NTRS)
Cabera, David Jose Fernandez; Mielnik, Bogdan
1994-01-01
The free evolution of a non-relativistic charged particle is manipulated using time-dependent magnetic fields. It is shown that the application of a programmed sequence of magnetic pulses can invert the free evolution process, forcing an arbitrary wave packet to 'go back in time' to recover its past shape. The possibility of more general operations upon the Schrodinger wave packet is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vubangsi, M.; Tchoffo, M.; Fai, L. C.
The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .
NASA Astrophysics Data System (ADS)
Hansson, Tony
1999-08-01
An inexpensive semiclassical method to simulate time-resolved pump-probe spectroscopy on molecular wave packets is applied to NaK molecules at high temperature. The method builds on the introduction of classical phase factors related to the r-centroids for vibronic transitions and assumes instantaneous laser-molecule interaction. All observed quantum mechanical features are reproduced - for short times where experimental data are available even quantitatively. Furthermore, it is shown that fully quantum dynamical molecular wave packet calculations on molecules at elevated temperatures, which do not include all rovibrational states, must be regarded with caution, as they easily might yield even qualitatively incorrect results.
Evolution of a localized Langmuir packet in the solar wind and on auroral field lines
NASA Technical Reports Server (NTRS)
Roth, I.; Muschietti, L.; Brown, E. F.; Gray, P. C.
1994-01-01
Langmuir emissions in space are reported to be clumpy and intermittent. The high-frequency wave power appears concentrated in spatial packets, whether amidst the solar wind or on auroral field lines. Due to the plasma motion relative to the spacecraft, determining the source for the wave free energy in the three-dimensional electron distribution function has always been difficult, since the unstable features pass by the detector in presumably too short time to be measured. The range of unstable phase velocities and growth rates have generally been estimated rather than determined by unequivocal measurements. The analysis of wave-particle interactions in a space environment has taken recently a new turn with the development of wave correlators on board rockets and satellites. Such instruments seek to identify correlations between the phase of the wave-field and the fluxes of energetic particles. The data interpretation is complex, however, it must be backed by a detailed theoretical understanding of the wave-particle interaction, including the phase relation for inhomogeneous packets. To this end Langmuir packets interacting with fast electrons can be studied in the appropriate regime by means of particle-in-cell simulations, provided that one succeeds in reducing the level of the fluctuations, enhancing the signal-to-noise ratio, and incorporating the appropriate boundary conditions. The first results of such simulations are presented here as a test and expansion of previous analysis.
Study of the wave packet treatment of neutrino oscillation at Daya Bay
NASA Astrophysics Data System (ADS)
Daya Bay Collaboration
2017-09-01
The disappearance of reactor \\bar{ν }_e observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion σ _{rel}. Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of \\bar{ν }_e acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. The modified survival probability formula was used to fit Daya Bay data, providing the first experimental limits: 2.38 × 10^{-17}< σ _{rel} < 0.23. Treating the dimensions of the reactor cores and detectors as constraints, the limits are improved: 10^{-14} ≲ σ _ {rel} < 0.23, and an upper limit of σ _ {rel}<0.20 (which corresponds to σ _x ≳ 10^{-11} {cm }) is obtained. All limits correspond to a 95% C.L. Furthermore, the effect due to the wave packet nature of neutrino oscillation is found to be insignificant for reactor antineutrinos detected by the Daya Bay experiment thus ensuring an unbiased measurement of the oscillation parameters sin ^22θ _{13} and Δ m^2_{32} within the plane wave model.
Bulut, Niyazi; Kłos, Jacek; Alexander, Millard H
2012-03-14
We present converged exact quantum wave packet calculations of reaction probabilities, integral cross sections, and thermal rate coefficients for the title reaction. Calculations have been carried out on the ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged wave packet reaction probabilities at selected values of the total angular momentum up to a partial wave of J = 140 with the HCl reagent initially selected in the v = 0, j = 0-16 rovibrational states have been obtained for the collision energy range from threshold up to 0.8 eV. The present calculations confirm an important enhancement of reactivity with rotational excitation of the HCl molecule. First, accurate integral cross sections and rate constants have been calculated and compared with the available experimental data.
Current-induced instability of domain walls in cylindrical nanowires
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Zhang, Zhaoyang; Pepper, Ryan A.; Mu, Congpu; Zhou, Yan; Fangohr, Hans
2018-01-01
We study the current-driven domain wall (DW) motion in cylindrical nanowires using micromagnetic simulations by implementing the Landau-Lifshitz-Gilbert equation with nonlocal spin-transfer torque in a finite difference micromagnetic package. We find that in the presence of DW, Gaussian wave packets (spin waves) will be generated when the charge current is suddenly applied to the system. This effect is excluded when using the local spin-transfer torque. The existence of spin waves emission indicates that transverse domain walls can not move arbitrarily fast in cylindrical nanowires although they are free from the Walker limit. We establish an upper velocity limit for DW motion by analyzing the stability of Gaussian wave packets using the local spin-transfer torque. Micromagnetic simulations show that the stable region obtained by using nonlocal spin-transfer torque is smaller than that by using its local counterpart. This limitation is essential for multiple DWs since the instability of Gaussian wave packets will break the structure of multiple DWs.
NASA Astrophysics Data System (ADS)
Capman, N.; Engebretson, M.; Posch, J. L.; Cattell, C. A.; Tian, S.; Wygant, J. R.; Kletzing, C.; Lessard, M.; Anderson, B. J.; Russell, C. T.; Reeves, G. D.; Fuselier, S. A.
2016-12-01
A 0.5-1.0 Hz electromagnetic ion cyclotron (EMIC) wave event was observed on December 14, 2015 from 13:26 to 13:28 UT at the four MMS satellites (L= 9.5, MLT= 13.0, MLAT= -24.4, peak amplitude 7 nT), and both Van Allen probes (RBSP-A: L= 5.7, MLT= 12.8, MLAT= 19.5, peak amplitude 5 nT; RBSP-B: L= 4.3, MLT= 14.2, MLAT= 11.3, peak amplitude 1 nT). On the ground, it was observed by search coil magnetometers at Halley Bay and South Pole, Antarctica, and Sondrestromfjord, Greenland, and by fluxgate magnetometers of the MACCS array at Pangnirtung and Cape Dorset in Arctic Canada. This event was preceded by a small increase of the solar wind pressure of 3 nPa from 13:10 to 13:20 UT. The proton distributions at Van Allen probe A confirm that the compression increased the pitch angle anisotropy in 10 keV ring current protons. The wave forms were very similar at the four MMS spacecraft indicating that the coherence-scale of the wave packets is larger than the inter-spacecraft separations of 20 km at the time. Inter-comparison of the wave signals at the four MMS spacecraft are used to assess the characteristics of the waves and estimate their spatial scales transverse and parallel to the background magnetic field.
Uiberacker, Christoph; Jakubetz, Werner
2004-06-22
We investigate population transfer across the barrier in a double-well potential, induced by a pair of time-delayed single-lobe half-cycle pulses. We apply this setup both to a one-dimensional (1D) quartic model potential and to a three-dimensional potential representing HCN-->HNC isomerization. Overall the results for the two systems are similar, although in the 3D system some additional features appear not seen in the 1D case. The generic mechanism of population transfer is the preparation by the pump pulse of a wave packet involving delocalized states above the barrier, followed by the essentially 1D motion of the delocalized part of wave packet across the barrier, and the eventual de-excitation by the dump pulse to localized states in the other well. The correct timing is given by the well-to-well passage time of the wave packet and its recurrence properties, and by the signs of the field lobes which determine the direction and acceleration or deceleration of the wave packet motion. In the 3D system an additional pump-pump-dump mechanism linked to wave packet motion in the reagent well can mediate isomerization. Since the transfer time and the pulse durations are of the same order of magnitude, there is also a marked dependence of the dynamics and the transfer yield on the pulse duration. Our analysis also sheds light on the pronounced carrier envelope phase dependence previously observed for isomerization and molecular dissociation with one-cycle and sub-one-cycle pulses. (c) 2004 American Institute of Physics.
Delocalization of charge and current in a chiral quasiparticle wave packet
NASA Astrophysics Data System (ADS)
Sarkar, Subhajit
2018-03-01
A chiral quasiparticle wave packet (c-QPWP) is defined as a conventional superposition of chiral quasiparticle states corresponding to an interacting electron system in two dimensions (2D) in the presence of Rashba spin-orbit coupling (RSOC). I investigate its internal structure via studying the charge and the current densities within the first-order perturbation in the electron-electron interaction. It is found that the c-QPWP contains a localized charge which is less than the magnitude of the bare charge and the remaining charge resides at the system boundary. The amount of charge delocalized turns out to be inversely proportional to the degenerate Fermi velocity v0(=√{α2+2 μ /m }) when RSOC (with strength α ) is weak, and therefore externally tunable. For strong RSOC, the magnitudes of both the delocalized charge and the current further strongly depend on the direction of propagation of the wave packet. Both the charge and the current densities consist of an anisotropic r-2 tail away from the center of the wave packet. Possible implications of such delocalizations in real systems corresponding to 2D semiconductor heterostructure are also discussed within the context of particle injection experiments.
Quantum dynamics of the Einstein-Rosen wormhole throat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunstatter, Gabor; Peltola, Ari; Louko, Jorma
2011-02-15
We consider the polymer quantization of the Einstein wormhole throat theory for an eternal Schwarzschild black hole. We numerically solve the difference equation describing the quantum evolution of an initially Gaussian, semiclassical wave packet. As expected from previous work on loop quantum cosmology, the wave packet remains semiclassical until it nears the classical singularity at which point it enters a quantum regime in which the fluctuations become large. The expectation value of the radius reaches a minimum as the wave packet is reflected from the origin and emerges to form a near-Gaussian but asymmetrical semiclassical state at late times. Themore » value of the minimum depends in a nontrivial way on the initial mass/energy of the pulse, its width, and the polymerization scale. For wave packets that are sufficiently narrow near the bounce, the semiclassical bounce radius is obtained. Although the numerics become difficult to control in this limit, we argue that for pulses of finite width the bounce persists as the polymerization scale goes to zero, suggesting that in this model the loop quantum gravity effects mimicked by polymer quantization do not play a crucial role in the quantum bounce.« less
Vetoshkin, Evgeny; Babikov, Dmitri
2007-09-28
For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.
A model with chaotic scattering and reduction of wave packets
NASA Astrophysics Data System (ADS)
Guarneri, Italo
2018-03-01
Some variants of Smilansky’s model of a particle interacting with harmonic oscillators are examined in the framework of scattering theory. A dynamical proof is given of the existence of wave operators. Analysis of a classical version of the model provides a transparent picture for the spectral transition to which the quantum model owes its renown, and for the underlying dynamical behaviour. The model is thereby classified as an extreme case of chaotic scattering, with aspects related to wave packet reduction and irreversibility.
Quantum revival for elastic waves in thin plate
NASA Astrophysics Data System (ADS)
Dubois, Marc; Lefebvre, Gautier; Sebbah, Patrick
2017-05-01
Quantum revival is described as the time-periodic reconstruction of a wave packet initially localized in space and time. This effect is expected in finite-size systems which exhibit commensurable discrete spectrum such as the infinite quantum well. Here, we report on the experimental observation of full and fractional quantum revival for classical waves in a two dimensional cavity. We consider flexural waves propagating in thin plates, as their quadratic dispersion at low frequencies mimics the dispersion relation of quantum systems governed by Schrödinger equation. Time-dependent excitation and measurement are performed at ultrasonic frequencies and reveal a periodic reconstruction of the initial elastic wave packet.
Only Above Barrier Energy Components Contribute to Barrier Traversal Time
NASA Astrophysics Data System (ADS)
Galapon, Eric A.
2012-04-01
A time of arrival operator across a square potential barrier is constructed. The expectation value of the barrier time of arrival operator for a sufficiently localized incident wave packet is compared with the expectation value of the free particle time of arrival operator for the same wave packet. The comparison yields an expression for the expected traversal time across the barrier. It is shown that only the above barrier components of the momentum distribution of the incident wave packet contribute to the barrier traversal time, implying that below the barrier components are transmitted without delay. This is consistent with the recent experiment in attosecond ionization in helium indicating that there is no real tunneling delay time [P. Eckle , Science 322, 1525 (2008)SCIEAS0036-807510.1126/science.1163439].
Characterizing the astrophysical S factor for 12C+12C fusion with wave-packet dynamics
NASA Astrophysics Data System (ADS)
Diaz-Torres, Alexis; Wiescher, Michael
2018-05-01
A quantitative study of the astrophysically important subbarrier fusion of 12C+12C is presented. Low-energy collisions are described in the body-fixed reference frame using wave-packet dynamics within a nuclear molecular picture. A collective Hamiltonian drives the time propagation of the wave packet through the collective potential-energy landscape. The fusion imaginary potential for specific dinuclear configurations is crucial for understanding the appearance of resonances in the fusion cross section. The theoretical subbarrier fusion cross sections explain some observed resonant structures in the astrophysical S factor. These cross sections monotonically decline towards stellar energies. The structures in the data that are not explained are possibly due to cluster effects in the nuclear molecule, which need to be included in the present approach.
Spectral dimension and dynamics for Harper's equation
NASA Astrophysics Data System (ADS)
Wilkinson, Michael; Austin, Elizabeth J.
1994-07-01
The spectrum of Harper's equation (a model for Bloch electrons in a magnetic field) is a fractal Cantor set if the ratio β of the area of a unit cell to that of a flux quantum is not a rational number. It has been conjectured that the second moment of an initially localized wave packet has a power-law growth of the form
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sati, Priti; Tripathi, V. K.
Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of lowmore » frequency electromagnetic wave.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechant, Lawrence J.
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler,more » closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.« less
Thermal responses in a coronal loop maintained by wave heating mechanisms
NASA Astrophysics Data System (ADS)
Matsumoto, Takuma
2018-05-01
A full 3-dimensional compressible magnetohydrodynamic (MHD) simulation is conducted to investigate the thermal responses of a coronal loop to the dynamic dissipation processes of MHD waves. When the foot points of the loop are randomly and continuously forced, the MHD waves become excited and propagate upward. Then, 1-MK temperature corona is produced naturally as the wave energy dissipates. The excited wave packets become non-linear just above the magnetic canopy, and the wave energy cascades into smaller spatial scales. Moreover, collisions between counter-propagating Alfvén wave packets increase the heating rate, resulting in impulsive temperature increases. Our model demonstrates that the heating events in the wave-heated loops can be nanoflare-like in the sense that they are spatially localized and temporally intermittent.
Multi-Ferroic Polymer Nanoparticle Composites for Next Generation Metamaterials
2016-05-23
another application, electromagnetic wave shielding . Electromagnetic wave induces current which results in loss of energy. Thus magnetic nanoparticles...applicable for electromagnetic wave shielding . For better electromagnetic wave shielding capability, i) high dielectric constant, ii) high magnetic ...electromagnetic wave shielding properties7,8. In such point of view, designing a structure, magnetic nanoparticles in two dimensional electric conductive matrix
NASA Astrophysics Data System (ADS)
Suemoto, Tohru; Tomimoto, Shinichi; Matsuoka, Taira
Recent developments in femtosecond dynamics of the photoexcited state in quasi-one-dimensional platinum complexes [Pt(en)2][Pt(en)2X2] (ClO4)4 with X = Cl, Br and I are reviewed. The experimental results of time-resolved luminescence spectroscopy based on up-conversion technique are presented and analyzed in terms of a theory of wave-packet motion. An attempt to make a movie of wave-packet motion is mentioned. In Sec. 1, a brief introduction to the dynamics of the excited states in quasi-one-dimensional platinum complexes is given. It is stressed that this system can be a good model system for investigating the photo-induced structural phase transition. In order to describe a one-dimensional chain consisting of metal ions and halogen ions, the extended Peierls-Hubbard model is introduced in Sec. 2. The theoretical model of the relaxation dynamics in the excited states with a strong electron-lattice coupling is given in Sec. 3. The model is based on the interaction mode, which is appropriate for understanding the vibrational relaxation of localized centers in solids. Experimental backgrounds with some historical survey are given in Sec. 4. The recent experimental results of time-resolved luminescence for Pt-Cl, Pt-Br and Pt-I systems are presented in Secs. 5 to 8. The main result contains the direct observation of the wave-packet oscillation in the self-trapped excitons. The relaxation process observed in experiments has been successfully interpreted in terms of the model based on the interaction mode and the dynamical aspects are compared with the transient absorption measurements. The lifetime of the STE is shorter in Pt-X with heavier halogen ions. This behavior is discussed in relation with the non-radiative process leading to lattice rearrangements. In Secs. 9 and 10, visualization of the wave-packet form is presented. The basic behavior of the wave-packet is well understood in terms of a harmonic oscillator model. A non-exponential decay profiles are revealed from the center of gravity motion of the wave-packets. The exciton localization process is also discussed in the last section.
Creating Rydberg electron wave packets using terahertz pulses
NASA Astrophysics Data System (ADS)
Bromage, Jake
1999-10-01
In this thesis I present experiments in which we excited classical-limit states of an atom using terahertz pulses. In a classical-limit state, an atom's outer electron is confined to a wave packet that orbits the core along a classical trajectory. Researchers have excited states with classical traits, but wave packets localized in all three dimensions have proved elusive. Theoretical studies have shown such states can be created using terahertz pulses. Using these techniques, we created a linear-orbit wave packet (LOWP), that is three-dimensionally localized and orbits along a line on one side of the atom's core. Terahertz pulses are sub-picosecond bursts of far- infrared radiation. Unlike ultrashort optical pulses, the electric field of terahertz pulses barely completes a single cycle. Our simulations of the atom-pulse interaction show that this electric field profile is critical in determining the quality of the wave packet. To characterize our terahertz pulses, we invented dithered-edge sampling which time- resolves the electric field using a photoconductive receiver and a triggered attenuator. We also studied how pulses are distorted after propagating through metallic structures, and used our findings to design our atomic experiments. We excited wave packets in atomic sodium using a two-step process. First, we used tunable, nanosecond dye lasers to excite an extreme Stark state. Next, we used a terahertz pump pulse to coherently redistribute population among extreme Stark states in neighboring manifolds. Interference between the final states produces a localized, dynamic LOWP. To analyze the LOWP, we ionized it with a stronger terahertz probe pulse, varying the pump-probe delay to map out its motion. We observed two strong LOWP signatures. Changing the static electric field produced small changes (2%) in the orbital period that agreed with our theoretical predictions. Secondly, because the LOWP scatters off the core, the pump-probe signal depended on the direction of the kick the LOWP received from the robe pulse. These observations, combined with our detailed simulations that used sodium parameters and the actual shape of the terahertz pulse, lead us to conclude that we excited a LOWP.
Geometrical aspects in optical wave-packet dynamics.
Onoda, Masaru; Murakami, Shuichi; Nagaosa, Naoto
2006-12-01
We construct a semiclassical theory for propagation of an optical wave packet in a nonconducting medium with a periodic structure of dielectric permittivity and magnetic permeability, i.e., a nonconducting photonic crystal. We employ a quantum-mechanical formalism in order to clarify its link to those of electronic systems. It involves the geometrical phase, i.e., Berry's phase, in a natural way, and describes an interplay between orbital motion and internal rotation. Based on the above theory, we discuss the geometrical aspects of the optical Hall effect. We also consider a reduction of the theory to a system without periodic structure and apply it to the transverse shift of an optical beam at an interface reflection or refraction. For a generic incident beam with an arbitrary polarization, an identical result for the transverse shift of each reflected or transmitted beam is given by the following different approaches: (i) analytic evaluation of wave-packet dynamics, (ii) total angular momentum (TAM) conservation for individual photons, and (iii) numerical simulation of wave-packet dynamics. It is consistent with a result by classical electrodynamics. This means that the TAM conservation for individual photons is already taken into account in wave optics, i.e., classical electrodynamics. Finally, we show an application of our theory to a two-dimensional photonic crystal, and propose an optimal design for the enhancement of the optical Hall effect in photonic crystals.
NASA Astrophysics Data System (ADS)
Oldenburg, A. L.; John, P. C.; Eden, J. G.
2000-12-01
Vibrational wave packets in the B 1Πu and D 1Σu+ excited states of Cs2 have been studied on the ˜100 fs time scale by pump-probe laser spectroscopy. The temporal behavior of the wave packets was monitored by photoionizing the electronically excited molecule with a time-delayed probe pulse and recording the time and energy-integrated photoelectron signal as a function of time delay between the pump and probe pulses. For the B 1Σu+ experiments, wave packets were produced by exciting the B 1Σu+←X 1Σg+ transition in the ˜740-790 nm region and subsequently detected by photoionizing the molecule at wavelengths between 565 nm and 600 nm. By simulating the experimentally observed transients with the density matrix formalism (and explicitly accounting for laser chirp and |Δv|>1 coherences), improved values for the equilibrium internuclear separation for the Cs2(B1Πu) state and Te for the Cs2+(X) state were determined to be Re(B 1Πu)=4.93±0.03 Å and Te[Cs2+(X)]=29 930±100 cm-1, respectively. Similar experiments were conducted for the D 1Σu+ state. Wave packets composed of vibrational levels (v'≈40-50) perturbed by the bound 2 3Πou state were produced on the D 1Σu+ potential surface by driving the D 1Σu+←X 1Σg+ transition in the 575-610 nm spectral interval.
Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics
Bakhtiari, Sasan; Gopalsami, Nachappa; Raptis, Apostolos C.
1999-03-23
A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.
Generic short-time propagation of sharp-boundaries wave packets
NASA Astrophysics Data System (ADS)
Granot, E.; Marchewka, A.
2005-11-01
A general solution to the "shutter" problem is presented. The propagation of an arbitrary initially bounded wave function is investigated, and the general solution for any such function is formulated. It is shown that the exact solution can be written as an expression that depends only on the values of the function (and its derivatives) at the boundaries. In particular, it is shown that at short times (t << 2mx2/hbar, where x is the distance to the boundaries) the wave function propagation depends only on the wave function's values (or its derivatives) at the boundaries of the region. Finally, we generalize these findings to a non-singular wave function (i.e., for wave packets with finite-width boundaries) and suggest an experimental verification.
Kim, So Young; Joo, Taiha
2015-08-06
Persistence of vibrational coherence in electronic transition has been noted especially in biochemical systems. Here, we report the dynamics between electronic excited states in free base tetraphenylporphyrin (H2TPP) by time-resolved fluorescence with high time resolution. Following the photoexcitation of the B state, ultrafast internal conversion occurs to the Qx state directly as well as via the Qy state. Unique and distinct coherent nuclear wave packet motions in the Qx and Qy states are observed through the modulation of the fluorescence intensity in time. The instant, serial internal conversions from the B to the Qy and Qx states generate the coherent wave packets. Theory and experiment show that the observed vibrational modes involve the out-of-plane vibrations of the porphyrin ring that are strongly coupled to the internal conversion of H2TPP.
Time-frequency representation of autoionization dynamics in helium
NASA Astrophysics Data System (ADS)
Busto, D.; Barreau, L.; Isinger, M.; Turconi, M.; Alexandridi, C.; Harth, A.; Zhong, S.; Squibb, R. J.; Kroon, D.; Plogmaker, S.; Miranda, M.; Jiménez-Galán, Á.; Argenti, L.; Arnold, C. L.; Feifel, R.; Martín, F.; Gisselbrecht, M.; L'Huillier, A.; Salières, P.
2018-02-01
Autoionization, which results from the interference between direct photoionization and photoexcitation to a discrete state decaying to the continuum by configuration interaction, is a well known example of the important role of electron correlation in light-matter interaction. Information on this process can be obtained by studying the spectral, or equivalently, temporal complex amplitude of the ionized electron wave packet. Using an energy-resolved interferometric technique, we measure the spectral amplitude and phase of autoionized wave packets emitted via the sp2+ and sp3+ resonances in helium. These measurements allow us to reconstruct the corresponding temporal profiles by Fourier transform. In addition, applying various time-frequency representations, we observe the build-up of the wave packets in the continuum, monitor the instantaneous frequencies emitted at any time and disentangle the dynamics of the direct and resonant ionization channels.
White, Alexander James; Tretiak, Sergei; Mozyrsky, Dima V.
2016-04-25
Accurate simulation of the non-adiabatic dynamics of molecules in excited electronic states is key to understanding molecular photo-physical processes. Here we present a novel method, based on a semiclassical approximation, that is as efficient as the commonly used mean field Ehrenfest or ad hoc surface hopping methods and properly accounts for interference and decoherence effects. This novel method is an extension of Heller's thawed Gaussian wave-packet dynamics that includes coupling between potential energy surfaces. By studying several standard test problems we demonstrate that the accuracy of the method can be systematically improved while maintaining high efficiency. The method is suitablemore » for investigating the role of quantum coherence in the non-adiabatic dynamics of many-atom molecules.« less
NASA Astrophysics Data System (ADS)
Li, Shenmin; Guo, Hua
2002-09-01
The scattering dynamics of vibrationally excited NO from a metal surface is investigated theoretically using a dissipative model that includes both the neutral and negative ion states. The Liouville-von Neumann equation is solved numerically by a Monte Carlo wave packet method, in which the wave packet is allowed to "jump" between the neutral and negative ion states in a stochastic fashion. It is shown that the temporary population of the negative ion state results in significant changes in vibrational dynamics, which eventually lead to vibrationally inelastic scattering of NO. Reasonable agreement with experiment is obtained with empirical potential energy surfaces. In particular, the experimentally observed facile multiquantum relaxation of the vibrationally highly excited NO is reproduced. The simulation also provides interesting insight into the scattering dynamics.
The Nosé–Hoover looped chain thermostat for low temperature thawed Gaussian wave-packet dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughtrie, David J.; Tew, David P.
2014-05-21
We have used a generalised coherent state resolution of the identity to map the quantum canonical statistical average for a general system onto a phase-space average over the centre and width parameters of a thawed Gaussian wave packet. We also propose an artificial phase-space density that has the same behaviour as the canonical phase-space density in the low-temperature limit, and have constructed a novel Nosé–Hoover looped chain thermostat that generates this density in conjunction with variational thawed Gaussian wave-packet dynamics. This forms a new platform for evaluating statistical properties of quantum condensed-phase systems that has an explicit connection to themore » time-dependent Schrödinger equation, whilst retaining many of the appealing features of path-integral molecular dynamics.« less
Time-Frequency Analysis of Boundary-Layer Instabilites Generated by Freestream Laser Perturbations
NASA Technical Reports Server (NTRS)
Chou, Amanda; Schneider, Steven P.
2015-01-01
A controlled disturbance is generated in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) by focusing a high-powered Nd:YAG laser to create a laser-induced breakdown plasma. The plasma then cools, creating a freestream thermal disturbance that can be used to study receptivity. The freestream disturbance convects down-stream in the Mach-6 wind tunnel to interact with a flared cone model. The adverse pressure gradient created by the flare of the model is capable of generating second-mode instability waves that grow large and become nonlinear before experiencing natural transition in quiet flow. The freestream laser perturbation generates a wave packet in the boundary layer at the same frequency as the natural second mode, complicating time-independent analyses of the effect of the laser perturbation. The data show that the laser perturbation creates an instability wave packet that is larger than the natural waves on the sharp flared cone. The wave packet is still difficult to distinguish from the natural instabilities on the blunt flared cone.
Nonlinear critical-layer evolution of a forced gravity wave packet
NASA Astrophysics Data System (ADS)
Campbell, L. J.; Maslowe, S. A.
2003-10-01
In this paper, numerical simulations are presented of the nonlinear critical-layer evolution of a forced gravity wave packet in a stratified shear flow. The wave packet, localized in the horizontal direction, is forced at the lower boundary of a two-dimensional domain and propagates vertically towards the critical layer. The wave mean-flow interactions in the critical layer are investigated numerically and contrasted with the results obtained using a spatially periodic monochromatic forcing. With the horizontally localized forcing, the net absorption of the disturbance at the critical layer continues for large time and the onset of the nonlinear breakdown is delayed compared with the case of monochromatic forcing. There is an outward flux of momentum in the horizontal direction so that the horizontal extent of the packet increases with time. The extent to which this happens depends on a number of factors including the amplitude and horizontal length of the forcing. It is also seen that the prolonged absorption of the disturbance stabilizes the solution to the extent that it is always convectively stable; the local Richardson number remains positive well into the nonlinear regime. In this respect, our results for the localized forcing differ from those in the case of monochromatic forcing where significant regions with negative Richardson number appear.
Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondorskiy, Alexey D., E-mail: kondor@sci.lebedev.ru; Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp
2015-09-21
We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaborationmore » of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully’s models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio “on-the-fly” simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.« less
Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.
Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B
2011-02-10
The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.
Application of sound and temperature to control boundary-layer transition
NASA Technical Reports Server (NTRS)
Maestrello, Lucio; Parikh, Paresh; Bayliss, A.; Huang, L. S.; Bryant, T. D.
1987-01-01
The growth and decay of a wave packet convecting in a boundary layer over a concave-convex surface and its active control by localized surface heating are studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiations are computed using linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wave packet increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically, exhibiting a decay characteristic of acoustic waves in two dimensions. The far-field acoustic behavior exhibits a super-directivity type of behavior with a beaming downstream. Active control by surface heating is shown to reduce the growth of the wave packet but have little effect on acoustic far field behavior for the cases considered. Active control by sound emanating from the surface of an airfoil in the vicinity of the leading edge is experimentally investigated. The purpose is to control the separated region at high angles of attack. The results show that injection of sound at shedding frequency of the flow is effective in an increase of lift and reduction of drag.
Imaging and control of interfering wave packets in a dissociating molecule.
Skovsen, Esben; Machholm, Mette; Ejdrup, Tine; Thøgersen, Jan; Stapelfeldt, Henrik
2002-09-23
Using two identical 110 femtosecond (fs) optical pulses separated by 310 fs, we launch two dissociative wave packets in I2. We measure the square of the wave function as a function of both the internuclear separation, /Psi(R)/(2), and of the internuclear velocity, /Psi(v(R))/(2), by ionizing the dissociating molecule with an intense 20 fs probe pulse. Strong interference is observed in both /Psi(R)/(2) and in /Psi(v(R))/(2). The interference, and therefore the shape of the wave function, is controlled through the phase difference between the two dissociation pulses in good agreement with calculations.
Delta function excitation of waves in the earth's ionosphere
NASA Technical Reports Server (NTRS)
Vidmar, R. J.; Crawford, F. W.; Harker, K. J.
1983-01-01
Excitation of the earth's ionosphere by delta function current sheets is considered, and the temporal and spatial evolution of wave packets is analyzed for a two-component collisional F2 layer. Approximations of an inverse Fourier-Laplace transform via saddle point methods provide plots of typical wave packets. These illustrate cold plasma wave theory and may be used as a diagnostic tool since it is possible to relate specific features, e.g., the frequency of a modulation envelope, to plasma parameters such as the electron cyclotron frequency. It is also possible to deduce the propagation path length and orientation of a remote radio beacon.
The propagator of stochastic electrodynamics
NASA Astrophysics Data System (ADS)
Cavalleri, G.
1981-01-01
The "elementary propagator" for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density ~ω3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to ψψ* where ψ is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics.
Evolution of Nonlinear Internal Waves in China Seas
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Hsu, Ming-K.; Liang, Nai K.
1997-01-01
Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. Based on the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water due to a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a turning point of approximately equal layer depths has been observed in the SAR image and simulated by numerical model.
Ultrafast Chemical Dynamics of Reactions in Beams
1994-04-14
Wave Packet Motion in Dissociative Reactions: Up to 40 Picoseconds. P. Cong, A. Mokhtari , and A. H. Zewail Chem. Phys. Lett., 172.109 (1990) 3. Direct...Femtosecond Mapping of the Trajectories in a Chemical Reaction. A. Mokhtari , P. Cong, J. L. Herek, and A. H. Zewail Nature, 348 225 (1990) 4...to 40 Picoseconds. P. Cong. A. Mokhtari , and A. H. Zewail Chem. Phys. Left., 172. 109 (1990) 8 4. Femtosecond Selective Control of Wave Packet
Wave packet dynamics, time scales and phase diagram in the IBM-Lipkin-Meshkov-Glick model
NASA Astrophysics Data System (ADS)
Castaños, Octavio; de los Santos, Francisco; Yáñez, Rafael; Romera, Elvira
2018-02-01
We derive the phase diagram of a scalar two-level boson model by studying the equilibrium and stability properties of its energy surface. The plane of control parameters is enlarged with respect to previous studies. We then analyze the time evolution of wave packets centered around the ground state at various quantum phase transition boundary lines. In particular, classical and revival times are computed numerically.
Creating high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses
NASA Astrophysics Data System (ADS)
Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Xu, ZiShan; Liu, HongPing
2018-04-01
We propose a method of producing high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses. The first positive-polarity optical half-cycle pulse is used to prepare an excited-state wave packet while the second one is less intense, but with opposite polarity and time delayed, and is employed to drag back the escaping free electron and clip the shape of the bound Rydberg wave packet, selectively increasing or decreasing a fraction of the angular-momentum components. An intelligent choice of laser parameters such as phase and amplitude helps us to control the orbital-angular-momentum composition of an electron wave packet with more facility; thus, a specified angular-momentum state with high purity can be achieved. This scheme of producing high-purity angular-momentum-state Rydberg atoms has significant application in quantum-information processing.
Hartman effect and weak measurements that are not really weak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolovski, D.; IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5, Plaza Bizkaia, 48011, Bilbao, Bizkaia; Akhmatskaya, E.
2011-08-15
We show that in wave packet tunneling, localization of the transmitted particle amounts to a quantum measurement of the delay it experiences in the barrier. With no external degree of freedom involved, the envelope of the wave packet plays the role of the initial pointer state. Under tunneling conditions such ''self-measurement'' is necessarily weak, and the Hartman effect just reflects the general tendency of weak values to diverge, as postselection in the final state becomes improbable. We also demonstrate that it is a good precision, or a 'not really weak' quantum measurement: no matter how wide the barrier d, itmore » is possible to transmit a wave packet with a width {sigma} small compared to the observed advancement. As is the case with all weak measurements, the probability of transmission rapidly decreases with the ratio {sigma}/d.« less
Ultra-bright pulsed electron beam with low longitudinal emittance
Zolotorev, Max
2010-07-13
A high-brightness pulsed electron source, which has the potential for many useful applications in electron microscopy, inverse photo-emission, low energy electron scattering experiments, and electron holography has been described. The source makes use of Cs atoms in an atomic beam. The source is cycled beginning with a laser pulse that excites a single Cs atom on average to a band of high-lying Rydberg nP states. The resulting valence electron Rydberg wave packet evolves in a nearly classical Kepler orbit. When the electron reaches apogee, an electric field pulse is applied that ionizes the atom and accelerates the electron away from its parent ion. The collection of electron wave packets thus generated in a series of cycles can occupy a phase volume near the quantum limit and it can possess very high brightness. Each wave packet can exhibit a considerable degree of coherence.
Localizing high-lying Rydberg wave packets with two-color laser fields
NASA Astrophysics Data System (ADS)
Larimian, Seyedreza; Lemell, Christoph; Stummer, Vinzenz; Geng, Ji-Wei; Roither, Stefan; Kartashov, Daniil; Zhang, Li; Wang, Mu-Xue; Gong, Qihuang; Peng, Liang-You; Yoshida, Shuhei; Burgdörfer, Joachim; Baltuška, Andrius; Kitzler, Markus; Xie, Xinhua
2017-08-01
We demonstrate control over the localization of high-lying Rydberg wave packets in argon atoms with phase-locked orthogonally polarized two-color laser fields. With a reaction microscope, we measure ionization signals of high-lying Rydberg states induced by a weak dc field and blackbody radiation as a function of the relative phase between the two-color fields. We find that the dc-field-ionization yield of high-lying Rydberg argon atoms oscillates with the relative two-color phase with a period of 2 π while the photoionization signal by blackbody radiation shows a period of π . Accompanying simulations show that these observations are a clear signature of the asymmetric localization of electrons recaptured into very elongated (low angular momentum) high-lying Rydberg states after conclusion of the laser pulse. Our findings thus open an effective pathway to control the localization of high-lying Rydberg wave packets.
NASA Astrophysics Data System (ADS)
Wang, Yu; Chou, Chia-Chun
2018-05-01
The coupled complex quantum Hamilton-Jacobi equations for electronic nonadiabatic transitions are approximately solved by propagating individual quantum trajectories in real space. Equations of motion are derived through use of the derivative propagation method for the complex actions and their spatial derivatives for wave packets moving on each of the coupled electronic potential surfaces. These equations for two surfaces are converted into the moving frame with the same grid point velocities. Excellent wave functions can be obtained by making use of the superposition principle even when nodes develop in wave packet scattering.
NASA Astrophysics Data System (ADS)
Yuan, T.; Heale, C. J.; Snively, J. B.
2016-12-01
Utilizing observations from the Na lidar at Utah State University and the nearby Mesospheric Temperature Mapper (MTM) at Bear Lake Observatory (BLO) [41.9°N, 111.4°W], we investigate a unique case of vertical dispersion for a spectrally broad gravity wave packet in the mesopause region over Logan, Utah (41.7°N, 111.8°W) that occurred on September 2nd, 2011, to study the waves' evolution as a packet propagates upward. The lidar observed temperature perturbation was dominated by close to a 1-hour modulation at 100 km during the early hours, but gradually evolved into a 1.5-hour modulation during the second half of the night. The vertical wavelength also decreased simultaneously, while the vertical group and phase velocities of the packet apparently slowed, as it was approaching a critical level during the second half of the night. A two-dimensional numerical model is utilized to simulate the observed GW processes, finding that the location of the lidar relative to the source can strongly influence which portion of the spectrum can be observed at a particular location relative to a source.
Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere
NASA Technical Reports Server (NTRS)
Wong, H. K.
1995-01-01
DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.
EMIC waves and associated relativistic electron precipitation on 25-26 January 2013
Zhang, Jichun; Halford, Alexa J.; Saikin, Anthony A.; ...
2016-10-28
Using measurements from the Van Allen Probes and the Balloon Array for RBSP Relativistic Electron Losses (BARREL), we perform a case study of electromagnetic ion cyclotron (EMIC) waves and associated relativistic electron precipitation (REP) observed on 25–26 January 2013. Among all the EMIC wave and REP events from the two missions, the pair of the events is the closest both in space and time. The Van Allen Probe-B detected significant EMIC waves at L = 2.1–3.9 and magnetic local time (MLT) = 21.0–23.4 for 53.5 min from 2353:00 UT, 25 January 2013. Meanwhile, BARREL-1T observed clear precipitation of relativistic electronsmore » at L = 4.2–4.3 and MLT = 20.7–20.8 for 10.0 min from 2358 UT, 25 January 2013. Local plasma and field conditions for the excitation of the EMIC waves, wave properties, electron minimum resonant energy E min, and electron pitch angle diffusion coefficient D αα of a sample EMIC wave packet are examined along with solar wind plasma and interplanetary magnetic field parameters, geomagnetic activity, and results from the spectral analysis of the BARREL balloon observations to investigate the two types of events. The events occurred in the early main phase of a moderate storm (min. Dst* = -51.0 nT). The EMIC wave event consists of two parts. Finally, unlike the first part, the second part of the EMIC wave event was locally generated and still in its source region. It is found that the REP event is likely associated with the EMIC wave event.« less
EMIC waves and associated relativistic electron precipitation on 25-26 January 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jichun; Halford, Alexa J.; Saikin, Anthony A.
Using measurements from the Van Allen Probes and the Balloon Array for RBSP Relativistic Electron Losses (BARREL), we perform a case study of electromagnetic ion cyclotron (EMIC) waves and associated relativistic electron precipitation (REP) observed on 25–26 January 2013. Among all the EMIC wave and REP events from the two missions, the pair of the events is the closest both in space and time. The Van Allen Probe-B detected significant EMIC waves at L = 2.1–3.9 and magnetic local time (MLT) = 21.0–23.4 for 53.5 min from 2353:00 UT, 25 January 2013. Meanwhile, BARREL-1T observed clear precipitation of relativistic electronsmore » at L = 4.2–4.3 and MLT = 20.7–20.8 for 10.0 min from 2358 UT, 25 January 2013. Local plasma and field conditions for the excitation of the EMIC waves, wave properties, electron minimum resonant energy E min, and electron pitch angle diffusion coefficient D αα of a sample EMIC wave packet are examined along with solar wind plasma and interplanetary magnetic field parameters, geomagnetic activity, and results from the spectral analysis of the BARREL balloon observations to investigate the two types of events. The events occurred in the early main phase of a moderate storm (min. Dst* = -51.0 nT). The EMIC wave event consists of two parts. Finally, unlike the first part, the second part of the EMIC wave event was locally generated and still in its source region. It is found that the REP event is likely associated with the EMIC wave event.« less
NASA Astrophysics Data System (ADS)
Prodhan, Suryoday; Ramasesha, S.
2017-08-01
Singlet fission (SF) is a potential pathway for significant enhancement of efficiency in organic solar cells (OSC). In this paper, we study singlet fission in a pair of polyene molecules in two different stacking arrangements employing exact many-body wave packet dynamics. In the noninteracting model, the SF yield is absent. The individual molecules are treated within Hubbard and Pariser-Parr-Pople (PPP) models and the interaction between them involves transfer terms, intersite electron repulsions, and site-charge-bond-charge repulsion terms. Initial wave packet is constructed from excited singlet state of one molecule and ground state of the other. Time development of this wave packet under the influence of intermolecular interactions is followed within the Schrödinger picture by an efficient predictor-corrector scheme. In unsubstituted Hubbard and PPP chains, 2 1A excited singlet state leads to significant SF yield while the 1 1B state gives negligible fission yield. On substitution by donor-acceptor groups of moderate strength, the lowest excited state will have sufficient 2 1A character and hence results in significant SF yield. Because of rapid internal conversion, the nature of the lowest excited singlet will determine the SF contribution to OSC efficiency. Furthermore, we find the fission yield depends considerably on the stacking arrangement of the polyene molecules.
Basis for paraxial surface-plasmon-polariton packets
NASA Astrophysics Data System (ADS)
Martinez-Herrero, Rosario; Manjavacas, Alejandro
2016-12-01
We present a theoretical framework for the study of surface-plasmon polariton (SPP) packets propagating along a lossy metal-dielectric interface within the paraxial approximation. Using a rigorous formulation based on the plane-wave spectrum formalism, we introduce a set of modes that constitute a complete basis set for the solutions of Maxwell's equations for a metal-dielectric interface in the paraxial approximation. The use of this set of modes allows us to fully analyze the evolution of the transversal structure of SPP packets beyond the single plane-wave approximation. As a paradigmatic example, we analyze the case of a Gaussian SPP mode, for which, exploiting the analogy with paraxial optical beams, we introduce a set of parameters that characterize its propagation.
Internal tide transformation across a continental slope off Cape Sines, Portugal
NASA Astrophysics Data System (ADS)
Small, Justin
2002-04-01
During the INTIFANTE 99 experiment in July 1999, observations were made of a prominent internal undular bore off Cape Sines, Portugal. The feature was always present and dominant in a collection of synthetic aperture radar (SAR) images of the area covering the period before, during and after the trial. During the trial, rapid dissemination of SAR data to the survey ship enabled assessment of the progression of the feature, and the consequent planning of a survey of the bore coincident with a new SAR image. Large amplitude internal waves of 50 m amplitude in 250 m water depth, and 40 m in 100 m depth, were observed. The images show that the position of the feature is linked to the phase of the tide, suggesting an internal tide origin. The individual packets of internal waves contain up to seven waves with wavelengths in the range of 500-1500 m, and successive packets are separated by internal tide distances of typically 16-20 km, suggesting phase speeds of 0.35-0.45 m s -1. The internal waves were coherent over crest lengths of between 15 and 70 km, the longer wavefronts being due to the merging of packets. This paper uses the SAR data to detail the transformation of the wave packet as it passes across the continental slope and approaches the coast. The generation sites for the feature are discussed and reasons for its unusually large amplitude are hypothesised. It is concluded that generation at critical slopes of the bathymetry and non-linear interactions are the likely explanations for the large amplitudes.
NASA Astrophysics Data System (ADS)
Hartinger, Klaus; Bartels, Randy A.
2008-01-01
We demonstrate a single-shot measurement of the transient phase modulation due to field free molecular alignment at the revival times of a rotational wave packet. The wave packet is excited by an arbitrarily polarized ultrashort laser pulse in CO2 at room temperature. With this technique the time dependence along the eigenpolarization directions of the linear susceptibility tensor, i.e., the time dependence of its principle components, can be directly observed with high sensitivity.
Energy and Information Transfer Via Coherent Exciton Wave Packets
NASA Astrophysics Data System (ADS)
Zang, Xiaoning
Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The associated excitations were dubbed twisted excitons. Twisted exciton packets can be manipulated as they travel down molecular chains, and this has applications in quantum information science as well. In each setting considered, exciton dynamics were initially studied using a simple tight-binding formalism. This misses the actual many-body interactions and multiple energy levels associated real systems. To remedy this, I adapted an existing time-domain Density Functional Theory code and applied it to study the dynamics of exciton wave packets on quasi-one-dimensional systems. This required the use of high-performance computing and the construction of a number of key auxiliary codes. Establishing the requisite methodology constituted a substantial part of the entire thesis. Surprisingly, this effort uncovered a computational issue associated with Rabi oscillations that had been incorrectly characterized in the literature. My research elucidated the actual problem and a solution was found. This new methodology was an integral part of the overall computational analysis. The thesis then takes up the a detailed consideration of the prospect for creating systems that support a strong measure of transport coherence. While physical implementations include molecular assemblies, solid-state superlattices, and even optical lattices, I decided to focus on assemblies of nanometer-sized silicon quantum dots. First principles computational analysis was used to quantify reorganization within individual dots and excitonic coupling between dots. Quantum dot functionalizations were identified that make it plausible to maintain a measure of excitonic coherence even at room temperatures. Attention was then turned to the use of covalently bonded bridge material to join quantum dots in a way that facilitates efficient exciton transfer. Both carbon and silicon structures were considered by considering the way in which subunits might be best brought together. This resulted in a set of design criteria which were then evaluated using first-principles, excited state analyses. It was found that efficient exciton transfer is indeed possible. When coupled to the previous quantum dot functionalizations, the notion that quantum dot materials could support partially coherent exciton wave packets was determined to be quite reasonable.
Experimental Basis for IED Particle Model
NASA Astrophysics Data System (ADS)
Zheng-Johansson, J.
2009-03-01
The internally electrodynamic (IED) particle model is built on three experimental facts: a) electric charges present in all matter particles, b) an accelerated charge generates electromagnetic (EM) waves by Maxwell's equations and Planck energy equation, and c) source motion gives Doppler effect. A set of well-kwon basic particle equations have been predicted based on first-principles solutions for IED particle (e.g. J Phys CS128, 012019, 2008); the equations are long experimentally validated. A critical review of the key experiments suggests that the IED process underlies these equations not just sufficiently but also necessarily. E.g.: 1) A free IED electron solution is a plane wave ψ= Ce^i(kdX-φT) requisite for producing the diffraction fringe in a Davisson-Germer experiment, and of also all basic point-like attributes facilitated by a linear momentum kd and the model structure. It needs not further be a wave packet which produces not a diffraction fringe. 2)The radial partial EM waves, hence the total ψ, of an IED electron will, on both EM theory and experiment basis -not by assumption, enter two slits at the same time, as is requisite for an electron to interfere with itself as shown in double slit experiments. 3) On annihilation, an electron converts (from mass m) to a radiation energy φ without an acceleration which is externally observable and yet requisite by EM theory. So a charge oscillation of frequency φ and its EM waves must regularly present internal of a normal electron, whence the IED model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adcock, T. A. A.; Taylor, P. H.
2016-01-15
The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest whichmore » leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.« less
Semiannual Status Report. [excitation of electromagnetic waves in the whistler frequency range
NASA Technical Reports Server (NTRS)
1994-01-01
During the last six months, we have continued our study of the excitation of electromagnetic waves in the whistler frequency range and the role that these waves will play in the acceleration of electrons and ions in the auroral region. A paper entitled 'Electron Beam Excitation of Upstream Waves in the Whistler Mode Frequency Range' was listed in the Journal of Geophysical Research. In this paper, we have shown that an anisotropic electron beam (or gyrating electron beam) is capable of generating both left-hand and right-hand polarized electromagnetic waves in the whistler frequency range. Since right-hand polarized electromagnetic waves can interact with background electrons and left-hand polarized waves can interact with background ions through cyclotron resonance, it is possible that these beam generated left-hand and right-hand polarized electromagnetic waves can accelerate either ions or electrons (or both), depending on the physical parameters under consideration. We are currently carrying out a comprehensive study of the electromagnetic whistler and lower hybrid like waves observed in the auroral zone using both wave and particle data. Our first task is to identify these wave modes and compare it with particle observations. Using both the DE-1 particle and wave measurements, we can positively identify those electromagnetics lower hybrid like waves as fast magnetosonic waves and the upper cutoff of these waves is the local lower hybrid frequency. From the upper cutoff of the frequency spectrum, one can infer the particle density and the result is in very good agreement with the particle data. Since these electromagnetic lower hybrid like waves can have frequencies extended down to the local ion cyclotron frequency, it practically confirms that they are not whistler waves.
The dissipation of electromagnetic waves in plasmas
NASA Astrophysics Data System (ADS)
Basov, N. G.
The present anthology includes articles concerning the experimental study of the interaction of high power electromagnetic waves with collisionless plasmas and with electrons. Among the topics covered are the nonlinear dissipation of electromagnetic waves in inhomogeneous collisionless plasmas, the collisionless absorption of electromagnetic waves in plasmas and 'slow' nonlinear phenomena, the nonlinear effects of electron plasma waves propagating in an inhomogeneous plasma layer, and secondary-emission microwave discharges having large electron transit angles.
Stationary phase method and delay times for relativistic and non-relativistic tunneling particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardini, A.E.
2009-06-15
The stationary phase method is frequently adopted for calculating tunneling phase times of analytically-continuous Gaussian or infinite-bandwidth step pulses which collide with a potential barrier. This report deals with the basic concepts on deducing transit times for quantum scattering: the stationary phase method and its relation with delay times for relativistic and non-relativistic tunneling particles. After reexamining the above-barrier diffusion problem, we notice that the applicability of this method is constrained by several subtleties in deriving the phase time that describes the localization of scattered wave packets. Using a recently developed procedure - multiple wave packet decomposition - for somemore » specifical colliding configurations, we demonstrate that the analytical difficulties arising when the stationary phase method is applied for obtaining phase (traversal) times are all overcome. In this case, we also investigate the general relation between phase times and dwell times for quantum tunneling/scattering. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, we demonstrate that these two distinct transit time definitions are explicitly connected. The traversal times are obtained for a symmetrized (two identical bosons) and an antisymmetrized (two identical fermions) quantum colliding configuration. Multiple wave packet decomposition shows us that the phase time (group delay) describes the exact position of the scattered particles and, in addition to the exact relation with the dwell time, leads to correct conceptual understanding of both transit time definitions. At last, we extend the non-relativistic formalism to the solutions for the tunneling zone of a one-dimensional electrostatic potential in the relativistic (Dirac to Klein-Gordon) wave equation where the incoming wave packet exhibits the possibility of being almost totally transmitted through the potential barrier. The conditions for the occurrence of accelerated and, eventually, superluminal tunneling transmission probabilities are all quantified and the problematic superluminal interpretation based on the non-relativistic tunneling dynamics is revisited. Lessons concerning the dynamics of relativistic tunneling and the mathematical structure of its solutions suggest revealing insights into mathematically analogous condensed-matter experiments using electrostatic barriers in single- and bi-layer graphene, for which the accelerated tunneling effect deserves a more careful investigation.« less
Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media
NASA Astrophysics Data System (ADS)
Ma, Jun; Wu, Fuqiang; Hayat, Tasawar; Zhou, Ping; Tang, Jun
2017-11-01
Continuous wave emitting from sinus node of the heart plays an important role in wave propagating among cardiac tissue, while the heart beating can be terminated when the target wave is broken into turbulent states by electromagnetic radiation. In this investigation, local periodical forcing is applied on the media to induce continuous target wave in the improved cardiac model, which the effect of electromagnetic induction is considered by using magnetic flux, then external electromagnetic radiation is imposed on the media. It is found that target wave propagation can be blocked to stand in a local area and the excitability of media is suppressed to approach quiescent but homogeneous state when electromagnetic radiation is imposed on the media. The sampled time series for membrane potentials decrease to quiescent state due to the electromagnetic radiation. It could accounts for the mechanism of abnormality in heart failure exposed to continuous electromagnetic field.
Laser control of reactions of photoswitching functional molecules.
Tamura, Hiroyuki; Nanbu, Shinkoh; Ishida, Toshimasa; Nakamura, Hiroki
2006-07-21
Laser control schemes of reactions of photoswitching functional molecules are proposed based on the quantum mechanical wave-packet dynamics and the design of laser parameters. The appropriately designed quadratically chirped laser pulses can achieve nearly complete transitions of wave packet among electronic states. The laser parameters can be optimized by using the Zhu-Nakamura theory of nonadiabatic transition. This method is effective not only for the initial photoexcitation process but also for the pump and dump scheme in the middle of the overall photoswitching process. The effects of momentum of the wave packet crossing a conical intersection on the branching ratio of products have also been clarified. These control schemes mentioned above are successfully applied to the cyclohexadiene/hexatriene photoisomerization (ring-opening) process which is the reaction center of practical photoswitching molecules such as diarylethenes. The overall efficiency of the ring opening can be appreciably increased by using the appropriately designed laser pulses compared to that of the natural photoisomerization without any control schemes.
Anderson localization and Mott insulator phase in the time domain
Sacha, Krzysztof
2015-01-01
Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less
NASA Astrophysics Data System (ADS)
Liu, Zhaoxiang; Yao, Jinping; Chen, Jinming; Xu, Bo; Chu, Wei; Cheng, Ya
2018-02-01
The generation of laserlike narrow bandwidth emissions from nitrogen molecular ions (N2+ ) generated in intense near- and mid infrared femtosecond laser fields has aroused much interest because of the mysterious physics underlying such a phenomenon. Here, we perform a pump-probe measurement on the nonlinear interaction of rotational quantum wave packets of N2+ generated in midinfrared (e.g., at a wavelength centered at 1580 nm) femtosecond laser fields with an ultrashort probe pulse whose broad spectrum overlaps both P - and R -branch rotational transition lines between the electronic states N2+(B2Σu+,v'=0 ) and N2+(X2Σg+,v =0 ) . The results indicate the occurrence of highly efficient near-resonant stimulated Raman scattering in the quantum wave packets of N2+ ions generated in strong laser fields in the midinfrared region, of which the underlying mechanism is different from that of the air lasers generated in atmospheric environment when pumping with 800 nm intense pulses.
Ultrafast Imaging of Chiral Surface Plasmon by Photoemission Electron Microscopy
NASA Astrophysics Data System (ADS)
Dai, Yanan; Dabrowski, Maciej; Petek, Hrvoje
We employ Time-Resolved Photoemission Electron Microscopy (TR-PEEM) to study surface plasmon polariton (SPP) wave packet dynamics launched by tunable (VIS-UV) femtosecond pulses of various linear and circular polarizations. The plasmonic structures are micron size single-crystalline Ag islands grown in situ on Si surfaces and characterized by Low Energy Electron Microscopy (LEEM). The local fields of plasmonic modes enhance two and three photon photoemission (2PP and 3PP) at the regions of strong field enhancement. Imaging of the photoemission signal with PEEM electron optics thus images the plasmonic fields excited in the samples. The observed PEEM images with left and right circularly polarized light show chiral images, which is a consequence of the transverse spin momentum of surface plasmon. By changing incident light polarization, the plasmon interference pattern shifts with light ellipticity indicating a polarization dependent excitation phase of SPP. In addition, interferometric-time resolved measurements record the asymmetric SPP wave packet motion in order to characterize the dynamical properties of chiral SPP wave packets.
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; ...
2017-05-24
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
NASA Astrophysics Data System (ADS)
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; van Driel, Tim B.; Chollet, Matthieu; Glownia, James M.; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Matar, Samir F.; Nielsen, Martin M.; Benfatto, Maurizio; Gaffney, Kelly J.; Collet, Eric; Cammarata, Marco
2017-05-01
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.
Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials
NASA Astrophysics Data System (ADS)
Zhou, W. J.; Li, X. P.; Wang, Y. S.; Chen, W. Q.; Huang, G. L.
2018-01-01
The objective of this work is to analyze wave packet propagation in weakly nonlinear acoustic metamaterials and reveal the interior nonlinear wave mechanism through spectro-spatial analysis. The spectro-spatial analysis is based on full-scale transient analysis of the finite system, by which dispersion curves are generated from the transmitted waves and also verified by the perturbation method (the L-P method). We found that the spectro-spatial analysis can provide detailed information about the solitary wave in short-wavelength region which cannot be captured by the L-P method. It is also found that the optical wave modes in the nonlinear metamaterial are sensitive to the parameters of the nonlinear constitutive relation. Specifically, a significant frequency shift phenomenon is found in the middle-wavelength region of the optical wave branch, which makes this frequency region behave like a band gap for transient waves. This special frequency shift is then used to design a direction-biased waveguide device, and its efficiency is shown by numerical simulations.
ERIC Educational Resources Information Center
Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung
2014-01-01
To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in…
NASA Astrophysics Data System (ADS)
Kurosaki, Yuzuru; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel
2009-07-01
Quantum wave packet optimal control simulations with intense laser pulses have been carried out for studying molecular isomerization dynamics of a one-dimensional (1D) reaction-path model involving a dominant competing dissociation channel. The 1D intrinsic reaction coordinate model mimics the ozone open→cyclic ring isomerization along the minimum energy path that successively connects the ozone cyclic ring minimum, the transition state (TS), the open (global) minimum, and the dissociative O2+O asymptote on the O3 ground-state A1' potential energy surface. Energetically, the cyclic ring isomer, the TS barrier, and the O2+O dissociation channel lie at ˜0.05, ˜0.086, and ˜0.037 hartree above the open isomer, respectively. The molecular orientation of the modeled ozone is held constant with respect to the laser-field polarization and several optimal fields are found that all produce nearly perfect isomerization. The optimal control fields are characterized by distinctive high temporal peaks as well as low frequency components, thereby enabling abrupt transfer of the time-dependent wave packet over the TS from the open minimum to the targeted ring minimum. The quick transition of the ozone wave packet avoids detrimental leakage into the competing O2+O channel. It is possible to obtain weaker optimal laser fields, resulting in slower transfer of the wave packets over the TS, when a reduced level of isomerization is satisfactory.
Proposed imaging of the ultrafast electronic motion in samples using x-ray phase contrast.
Dixit, Gopal; Slowik, Jan Malte; Santra, Robin
2013-03-29
Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.
Proposed Imaging of the Ultrafast Electronic Motion in Samples using X-Ray Phase Contrast
NASA Astrophysics Data System (ADS)
Dixit, Gopal; Slowik, Jan Malte; Santra, Robin
2013-03-01
Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11 636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the Laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.
Nonlinear modes of the tensor Dirac equation and CPT violation
NASA Technical Reports Server (NTRS)
Reifler, Frank J.; Morris, Randall D.
1993-01-01
Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated.
Improving the resolution for Lamb wave testing via a smoothed Capon algorithm
NASA Astrophysics Data System (ADS)
Cao, Xuwei; Zeng, Liang; Lin, Jing; Hua, Jiadong
2018-04-01
Lamb wave testing is promising for damage detection and evaluation in large-area structures. The dispersion of Lamb waves is often unavoidable, restricting testing resolution and making the signal hard to interpret. A smoothed Capon algorithm is proposed in this paper to estimate the accurate path length of each wave packet. In the algorithm, frequency domain whitening is firstly used to obtain the transfer function in the bandwidth of the excitation pulse. Subsequently, wavenumber domain smoothing is employed to reduce the correlation between wave packets. Finally, the path lengths are determined by distance domain searching based on the Capon algorithm. Simulations are applied to optimize the number of smoothing times. Experiments are performed on an aluminum plate consisting of two simulated defects. The results demonstrate that spatial resolution is improved significantly by the proposed algorithm.
Risk perception and public concerns of electromagnetic waves from cellular phones in Korea.
Kim, Kyunghee; Kim, Hae-Joon; Song, Dae Jong; Cho, Yong Min; Choi, Jae Wook
2014-05-01
In this study, the difference between the risk perception of electromagnetic waves from cellular phones and the risk perception of other factors such as environment and food was analyzed. The cause of the difference in the psychological and social factors that affect the group with high risk perception of electromagnetic waves was also analyzed. A questionnaire survey on the risk perception of electromagnetic waves from cellular phones was carried out on 1001 subjects (men and women) over the age of 20. In the group with high risk perception of electromagnetic waves from cellular phones, women had higher risk perception than men. Logistic regression analysis, where the group with high risk perception of electromagnetic waves and the group with low risk perception were used as dependent variables, indicated that the risk perception of electromagnetic waves in women was 1.815 times statistically significantly higher than the risk perception of men (95% CI: 1.340-2.457). Also, high risk perception of electromagnetic waves from cellular phones was observed when the subjects considered that they had more personal knowledge (OR: 1.416, 95% CI: 1.216-1.648), that the seriousness of the risk to future generations was high (OR: 1.410, 95% CI: 1.234-1.611), and their outrage for the occurrence of accidents related to electromagnetic waves was high (OR: 1.460, 95% CI: 1.264-1.686). The results of this study need to be sufficiently considered and reflected in designing the risk communication strategies and communication methods for the preventive measures and advice on electromagnetic waves from cellular phones. © 2014 Wiley Periodicals, Inc.
Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.
Krafft, C; Volokitin, A
2013-05-01
Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leyser, T.B.
1994-06-01
A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. Themore » electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission.« less
NASA Technical Reports Server (NTRS)
Alexander, Joan
1996-01-01
This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.
NASA Technical Reports Server (NTRS)
Alexander, M. Joan
1996-01-01
This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. [1995] that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.
Alfvénic wave packets collision in a kinetic plasma
NASA Astrophysics Data System (ADS)
Pezzi, Oreste; Parashar, Tulasi N.; Servidio, Sergio; Valentini, Francesco; Malara, Francesco; Matthaeus, William H.; Veltri, Pierluigi
2016-04-01
The problem of two colliding and counter-propagating Alfvénic wave packets has been investigated in detail since the late Seventies. In particular Moffatt [1] and Parker [2] showed that, in the framework of the incompressible magnetohydrodynamics (MHD), nonlinear interactions can develop only during the overlapping of the two packets. Here we describe a similar problem in the framework of the kinetic physics. The collision of two quasi-Alfvénic packets has been analyzed by means of MHD, Hall-MHD and kinetic simulations performed with two different hybrid codes: a PIC code [3] and a Vlasov-Maxwell code [4]. Due to the huge computational cost, only a 2D-3V phase space is allowed (two dimensions in the physical space, three dimensions in the velocity space). Preliminary results suggest that, as well as in the MHD case, the most relevant nonlinear effects occur during the overlapping of the two packets. For both the PIC and Vlasov cases, strong temperature anisotropies are present during the evolution of the wave packets. Moreover, due to the absence of numerical noise, Vlasov simulations show that the collision of the counter-propagating solitary waves produces a significant beam in the velocity distribution functions [5], which, instead, cannot be appreciated in PIC simulations. We remark that, beyond the interest of studying a well-known MHD problem in the realm of the kinetic physics, our results allows also to compare different numerical codes. [1] H.K. Moffatt, Field generation in electrically conducting fluids (Cambridge University Press, 1978). [2] E.N. Parker, Cosmical magnetic fields: their origin and their activity (Oxford University Press, 1979). [3] T.N. Parashar, M.A. Shay, P.A. Cassak and W.H. Matthaeus, Physics of Plasmas 16, 032310 (2009). [4] F. Valentini, P. Trávníček, F. Califano, P. Hellinger & A. Mangeney, Journal of Computational Physics 225, 753-770 (2007). [5] J. He, C. Tu, E. Marsch, C.H. Chen, L. Wang, Z. Pei, L. Zhang, C.S. Salem and S.D. Bale, The Astrophysical Journal Letters 813, L30 (2015).
Collisions of two Alfvénic wave packets in a kinetic plasma
NASA Astrophysics Data System (ADS)
Pezzi, O.; Servidio, S.; Valentini, F.; Parashar, T.; Malara, F.; Matthaeus, W. H.; Veltri, P.
2016-12-01
The problem of two colliding and counter-propagating Alfvénic wave packets has been investigated in detail since the late Seventies. In particular Moffatt [1] and Parker [2] showed that, in the framework of the incompressible magnetohydrodynamics (MHD), nonlinear interactions can develop only during the overlapping of the two packets. Here we describe a similar problem in the framework of the kinetic physics. The collision of two quasi-Alfvénic packets has been analyzed by means of MHD, Hall-MHD and kinetic simulations performed with two different hybrid codes: a PIC code [3] and a Vlasov-Maxwell code [4]. Due to the huge computational cost, only a 2D-3V phase space is allowed (two dimensions in the physical space, three dimensions in the velocity space). Preliminary results suggest that, as well as in the MHD case, the most relevant nonlinear effects occur during the overlapping of the two packets. For both the PIC and Vlasov cases, strong temperature anisotropies are present during the evolution of the wave packets. Moreover, due to the absence of numerical noise, Vlasov simulations show that the collision of the counter-propagating solitary waves produces a significant beam in the velocity distribution functions [5], which, instead, cannot be appreciated in PIC simulations. We remark that, beyond the interest of studying a well-known MHD problem in the realm of the kinetic physics, our results allows also to compare different numerical codes. [1] H.K. Moffatt, Field generation in electrically conducting fluids (Cambridge University Press, 1978). [2] E.N. Parker, Cosmical magnetic fields: their origin and their activity (Oxford University Press, 1979). [3] T.N. Parashar, M.A. Shay, P.A. Cassak and W.H. Matthaeus, Physics of Plasmas 16, 032310 (2009). [4] F. Valentini, P. Trávníček, F. Califano, P. Hellinger & A. Mangeney, Journal of Computational Physics 225, 753-770 (2007). [5] J. He, C. Tu, E. Marsch, C.H. Chen, L. Wang, Z. Pei, L. Zhang, C.S. Salem and S.D. Bale, The Astrophysical Journal Letters 813, L30 (2015).
Quantum primary rainbows in transmission of positrons through very short carbon nanotubes
NASA Astrophysics Data System (ADS)
Ćosić, M.; Petrović, S.; Nešković, N.
2016-04-01
This paper is devoted to a quantum mechanical consideration of the transmission of positrons of a kinetic energy of 1 MeV through very short (11, 9) single-wall chiral carbon nanotubes. The nanotube lengths are between 50 and 320 nm. The transmission process is determined by the rainbow effects. The interaction potential of a positron and the nanotube is deduced from the Molire's interaction potential of the positron and a nanotube atom using the continuum approximation. We solve numerically the time-dependent Schrödinger equation, and calculate the spatial and angular distributions of transmitted positrons. The initial positron beam is assumed to be an ensemble of non-interacting Gaussian wave packets. We generate the spatial and angular distributions using the computer simulation method. The examination is focused on the spatial and angular primary rainbows. It begins with an analysis of the corresponding classical rainbows, and continues with a detailed investigation of the amplitudes and phases of the wave functions of transmitted positrons. These analyses enable one to identify the principal and supernumerary primary rainbows appearing in the spatial and angular distributions. They also result in a detailed explanation of the way of their generation, which includes the effects of wrinkling of each wave packet during its deflection from the nanotube wall, and of its concentration just before a virtual barrier lying close to the corresponding classical rainbow. The wrinkling of the wave packets occurs due to their internal focusing. In addition, the wave packets wrinkle in a mutually coordinated way. This explanation may induce new theoretical and experimental investigations of quantum rainbows occurring in various atomic collision processes.
Numerical study of interfacial solitary waves propagating under an elastic sheet
Wang, Zhan; Părău, Emilian I.; Milewski, Paul A.; Vanden-Broeck, Jean-Marc
2014-01-01
Steady solitary and generalized solitary waves of a two-fluid problem where the upper layer is under a flexible elastic sheet are considered as a model for internal waves under an ice-covered ocean. The fluid consists of two layers of constant densities, separated by an interface. The elastic sheet resists bending forces and is mathematically described by a fully nonlinear thin shell model. Fully localized solitary waves are computed via a boundary integral method. Progression along the various branches of solutions shows that barotropic (i.e. surface modes) wave-packet solitary wave branches end with the free surface approaching the interface. On the other hand, the limiting configurations of long baroclinic (i.e. internal) solitary waves are characterized by an infinite broadening in the horizontal direction. Baroclinic wave-packet modes also exist for a large range of amplitudes and generalized solitary waves are computed in a case of a long internal mode in resonance with surface modes. In contrast to the pure gravity case (i.e without an elastic cover), these generalized solitary waves exhibit new Wilton-ripple-like periodic trains in the far field. PMID:25104909
Science 101: Can Electromagnetic Waves Affect Emotions?
ERIC Educational Resources Information Center
Robertson, Bill
2017-01-01
The answer to this month's question, "Can electromagnetic waves affect emotions," is yes. Wherever there are electromagnetic (EM) waves (basically everywhere!), there is the potential for them directly or indirectly to affect the emotions. But what about the likely motivation behind the originally-posed question? Can EM waves affect your…
2006-07-17
The false-color VNIR image from NASA Terra spacecraft was acquired off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction.
Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.
Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F
2011-04-01
Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.
Zhang, Qun; Hepburn, John W
2008-08-15
We propose a novel method that uses the oscillation of an atomic excited wave packet observed through a pump-probe technique to accurately determine the zero time delay between a pair of ultrashort laser pulses. This physically based approach provides an easy fix for the intractable problem of synchronizing two different femtosecond laser pulses in a practical experimental environment, especially where an in situ time zero measurement with high accuracy is required.
Rydberg wave packets in static electric fields initiated with far infrared pulses
NASA Astrophysics Data System (ADS)
Robicheaux, F.; Lankhuijzen, G. M.; Rella, C.; Noordam, L. D.
1998-05-01
We perform experimental and theoretical studies of transitions from bound atomic Rydberg Stark states in a static electric field to autoionizing states. The transitions are induced by a broadband, tunable free electron laser pulse (1-5 ps width). The systematics of the wave packet properties are investigated when the initial state is the lowest energy state or highest energy state of the n-manifold. We show that the recently proposed electron gun is realized for Rb giving an AC electron current with a 20 ps period.
Hyperfine-Structure-Induced Depolarization of Impulsively Aligned I2 Molecules
NASA Astrophysics Data System (ADS)
Thomas, Esben F.; Søndergaard, Anders A.; Shepperson, Benjamin; Henriksen, Niels E.; Stapelfeldt, Henrik
2018-04-01
A moderately intense 450 fs laser pulse is used to create rotational wave packets in gas phase I2 molecules. The ensuing time-dependent alignment, measured by Coulomb explosion imaging with a delayed probe pulse, exhibits the characteristic revival structures expected for rotational wave packets but also a complex nonperiodic substructure and decreasing mean alignment not observed before. A quantum mechanical model attributes the phenomena to coupling between the rotational angular momenta and the nuclear spins through the electric quadrupole interaction. The calculated alignment trace agrees very well with the experimental results.
NASA Astrophysics Data System (ADS)
Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji
2017-01-01
We present a wave-packet dynamical approach to charge transport using maximally localized Wannier functions based on density functional theory including van der Waals interactions. We apply it to the transport properties of pentacene and rubrene single crystals and show the temperature-dependent natures from bandlike to thermally activated behaviors as a function of the magnitude of external static disorder. We compare the results with those obtained by the conventional band and hopping models and experiments.
The effects of dissipation on topological mechanical systems
NASA Astrophysics Data System (ADS)
Xiong, Ye; Wang, Tianxiang; Tong, Peiqing
2016-09-01
We theoretically study the effects of isotropic dissipation in a topological mechanical system which is an analogue of Chern insulator in mechanical vibrational lattice. The global gauge invariance is still conserved in this system albeit it is destroyed by the dissipation in the quantum counterpart. The chiral edge states in this system are therefore robust against strong dissipation. The dissipation also causes a dispersion of damping for the eigenstates. It will modify the equation of motion of a wave packet by an extra effective force. After taking into account the Berry curvature in the wave vector space, the trace of a free wave packet in the real space should be curved, feinting to break the Newton’s first law.
Theoretical prediction of a rotating magnon wave packet in ferromagnets.
Matsumoto, Ryo; Murakami, Shuichi
2011-05-13
We theoretically show that the magnon wave packet has a rotational motion in two ways: a self-rotation and a motion along the boundary of the sample (edge current). They are similar to the cyclotron motion of electrons, but unlike electrons the magnons have no charge and the rotation is not due to the Lorentz force. These rotational motions are caused by the Berry phase in momentum space from the magnon band structure. Furthermore, the rotational motion of the magnon gives an additional correction term to the magnon Hall effect. We also discuss the Berry curvature effect in the classical limit of long-wavelength magnetostatic spin waves having macroscopic coherence length.
NASA Astrophysics Data System (ADS)
Hayata, K.; Tsuji, Y.; Koshiba, M.
1992-10-01
A theoretical formulation of electron pulse propagation in quantum wire structures with mesoscopic scale cross sections is presented, assuming quantum ballistic transport of electron wave packets over a certain characteristic length. As typical mesoscopic structures for realizing coherent electron transmission, two traveling-wave configurations are considered: straight quantum wire waveguides and quantum wire bend structures (quantum whispering galleries). To estimate temporal features of the pulse during propagation, the walk off, the dispersion, and the pulse coherence lengths are defined as useful characteristic lengths. Numerical results are shown for ultrashort pulse propagation through rectangular wire waveguides. Effects due to an external electric field are discussed as well.
Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system
NASA Technical Reports Server (NTRS)
Whelan, D. A.; Stenzel, R. L.
1985-01-01
It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girka, I. O., E-mail: igorgirka@karazin.ua; Girka, V. O.; Sydora, R. D.
2016-06-15
The influence of non-monochromaticity of an external alternating electric field on excitation of TM eigenmodes at harmonics of the electron cyclotron frequency is considered here. These TM-modes propagate along the plasma interface in a metal waveguide. An external static constant magnetic field is oriented perpendicularly to the plasma interface. The problem is solved theoretically using the kinetic Vlasov-Boltzmann equation for description of plasma particles motion and the Maxwell equations for description of the electromagnetic mode fields. The external alternating electric field is supposed to be a superposition of two waves, whose amplitudes are different and their frequencies correlate as 2:1.more » An infinite set of equations for electric field harmonics of these modes is derived with the aid of nonlinear boundary conditions. This set is solved using the wave packet approach consisting of the main harmonic frequency and two nearest satellite temporal harmonics. Analytical studies of the obtained set of equations allow one to find two different regimes of parametric instability, namely, enhancement and suppression of the instability. Numerical analysis of the instability is carried out for the three first electron cyclotron harmonics.« less
A ray tracing model of gravity wave propagation and breakdown in the middle atmosphere
NASA Technical Reports Server (NTRS)
Schoeberl, M. R.
1985-01-01
Gravity wave ray tracing and wave packet theory is used to parameterize wave breaking in the mesosphere. Rays are tracked by solving the group velocity equations, and the interaction with the basic state is determined by considering the evolution of the packet wave action density. The ray tracing approach has a number of advantages over the steady state parameterization as the effects of gravity wave focussing and refraction, local dissipation, and wave response to rapid changes in the mean flow are more realistically considered; however, if steady state conditions prevail, the method gives identical results. The ray tracing algorithm is tested using both interactive and noninteractive models of the basic state. In the interactive model, gravity wave interaction with the polar night jet on a beta-plane is considered. The algorithm produces realistic polar night jet closure for weak topographic forcing of gravity waves. Planetary scale waves forced by local transfer of wave action into the basic flow in turn transfer their wave action into the zonal mean flow. Highly refracted rays are also found not to contribute greatly to the climatology of the mesosphere, as their wave action is severely reduced by dissipation during their lateral travel.
STEREO observations of insitu waves in the vicinity of interplanetary shocks
NASA Astrophysics Data System (ADS)
Golla, T.; MacDowall, R. J.
2017-12-01
We present the high time resolution observations of the in situ waves obtained by the time domain sampler (TDS) of the WAVES experiment on the STEREO spacecraft in the vicinity of typical quasi-perpendicular super-critical interplanetary shocks. We show that often Langmuir waves occur as coherent one dimensional magnetic field aligned wave packets in the upstream regions and persist over large distances. The characteristics of these wave packets are consistent with those of Langmuir solitons formed as a result of oscillatting two stream instability (OTSI). Very intense high frequency waves which are completely different from Langmuir waves occur in the transition regions. These waves occur as very incoherent emissions and exhibit broad fundamental and second harmonic spectral peaks. We identify these waves as electron acoustic waves excited by the electron beams in the transition regions. We also show that very intense low frequency ion sound waves occur in the downstream regions. We discuss the implications of these observations on the theories of (1) strong Langmuir turbulence, (2) beam stabilization, (3) emission mechanisms of solar type II radio bursts, (4) wave-particle interactions responsible for collisionless dissipation, and (5) heating of the downstream plasmas.
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
ERIC Educational Resources Information Center
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-01-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…
Electromagnetic Wave Absorption Coating Material with Self-Healing Properties.
Wang, Ya-Min; Pan, Min; Liang, Xiang-Yong; Li, Bang-Jing; Zhang, Sheng
2017-12-01
Electromagnetic wave absorption coatings can effectively minimize electromagnetic radiation and are widely used in the military and civil field. However, even small scratches on the coating can lead to a large decline of absorption ability and bring serious consequences. To enhance the lifetime of electromagnetic wave absorbing coating, a kind of self-healing electromagnetic wave absorbing coating is developed by introducing host-guest interactions between the absorbing fillers and polymer matrix. After being damaged, the cracks on this coating can be healed completely with the aid of small amounts of water. Simultaneously, the electromagnetic absorbing ability of the coating is restored along with the self-healing process. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Propagation of electromagnetic wave in dusty plasma and the influence of dust size distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; China Research Institute of Radio Wave Propagation; Wu, Jian
The effect of charged dust particle and their size distribution on the propagation of electromagnetic wave in a dusty plasma is investigated. It is shown that the additional collision mechanism provided by charged dust particles can significantly alter the electromagnetic properties of a plasma, leading to the appearance of attenuation of electromagnetic wave through dusty plasma. The attenuation coefficient mainly depends on the dust density, radius, and the charge numbers on the dust surface. The results described here will be used to enhance understanding of electromagnetic wave propagation processed in space and laboratory dusty plasma.
NASA Technical Reports Server (NTRS)
Bell, T. F.; Ngo, H. D.
1990-01-01
This paper presents a theoretical model for electrostatic lower hybrid waves excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and the topside ionosphere, where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. In this model, the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. Results indicate that high-amplitude short-wavelength (5 to 100 m) quasi-electrostatic whistler mode waves can be excited when electromagnetic whistler mode waves scatter from small-scale planar magnetic-field-aligned plasma density irregularities in the topside ionosphere and magnetosphere.
Properties, propagation, and excitation of EMIC waves observed by MMS: A case study
NASA Astrophysics Data System (ADS)
Zhang, J.; Boardsen, S. A.; Coffey, V. N.; Chandler, M. O.; Saikin, A.; Mello, E. M.; Russell, C. T.; Torbert, R. B.; Fuselier, S. A.; Giles, B. L.; Gershman, D. J.
2017-12-01
Electromagnetic ion cyclotron (EMIC) waves (0.1-5 Hz) play an important role in particle dynamics in the Earth's magnetosphere. EMIC waves are preferentially excited in regions where hot anisotropic ions and cold dense plasma populations spatially overlap. While the generation region of EMIC waves is usually on or near the magnetic equatorial plane in the inner magnetosphere, EMIC waves have both equatorial and off-equator source regions on the dayside in the compressed outer magnetosphere. Using field and plasma measurements from the Magnetospheric Multiscale (MMS) mission, we perform a case study of EMIC waves and associated local plasma conditions observed on 19 October 2015. From 0315 to 0810 UT, before crossing the magnetopause into the magnetosheath, all four MMS spacecraft detected long-lasting He+-band EMIC wave emissions around local noon (MLT = 12.7 - 14.0) at high L-shells (L = 8.8 - 15.2) and low magnetic latitudes (MLAT = -21.8º - -30.3º). Energetic (> 1 keV) and anisotropic ions were present throughout this event that was in the recovery phase of a weak geomagnetic storm (min. Dst = -48 nT at 1000 UT on 18 October 2015). The testing of linear theory suggests that the EMIC waves were excited locally. Although the wave event is dominated by small normal angles, its polarization is mixed with right- and left-handedness and its propagation is bi-directional with regard to the background magnetic field. The short inter-spacecraft distances (as low as 15 km) of the MMS mission make it possible to accurately determine the k vector of the waves using the phase difference technique. Preliminary analysis finds that the k vector magnitude, phase speed, and wavelength of the 0.3-Hz wave packet at 0453:55 UT are 0.005 km-1, 372.9 km/s, and 1242.9 km, respectively. We will discuss the characteristics of the wave and particle measurements and their significance in this locale.
NASA Technical Reports Server (NTRS)
Zhang, Jichun; Coffey, Victoria N.; Chandler, Michael O.; Boardsen, Scott A.; Saikin, Anthony A.; Mello, Emily M.; Russell, Christopher T.; Torbert, Roy B.; Fuselier, Stephen A.; Giles, Barbara L.;
2017-01-01
Electromagnetic ion cyclotron (EMIC) waves (0.1-5 Hz) play an important role in particle dynamics in the Earth's magnetosphere. EMIC waves are preferentially excited in regions where hot anisotropic ions and cold dense plasma populations spatially overlap. While the generation region of EMIC waves is usually on or near the magnetic equatorial plane in the inner magnetosphere, EMIC waves have both equatorial and off-equator source regions on the dayside in the compressed outer magnetosphere. Using field and plasma measurements from the Magnetospheric Multiscale (MMS) mission, we perform a case study of EMIC waves and associated local plasma conditions observed on 19 October 2015. From 0315 to 0810 UT, before crossing the magnetopause into the magnetosheath, all four MMS spacecraft detected long-lasting He(exp +)-band EMIC wave emissions around local noon (MLT = 12.7 - 14.0) at high L-shells (L = 8.8 - 15.2) and low magnetic latitudes (MLAT = -21.8deg - -30.3deg). Energetic (greater than 1 keV) and anisotropic ions were present throughout this event that was in the recovery phase of a weak geomagnetic storm (min. Dst = -48 nT at 1000 UT on 18 October 2015). The testing of linear theory suggests that the EMIC waves were excited locally. Although the wave event is dominated by small normal angles, its polarization is mixed with right- and left-handedness and its propagation is bi-directional with regard to the background magnetic field. The short inter-spacecraft distances (as low as 15 km) of the MMS mission make it possible to accurately determine the k vector of the waves using the phase difference technique. Preliminary analysis finds that the k vector magnitude, phase speed, and wavelength of the 0.3-Hz wave packet at 0453:55 UT are 0.005 km(exp -1), 372.9 km/s, and 1242.9 km, respectively.
Terahertz wave manipulation based on multi-bit coding artificial electromagnetic surfaces
NASA Astrophysics Data System (ADS)
Li, Jiu-Sheng; Zhao, Ze-Jiang; Yao, Jian-Quan
2018-05-01
A polarization insensitive multi-bit coding artificial electromagnetic surface is proposed for terahertz wave manipulation. The coding artificial electromagnetic surfaces composed of four-arrow-shaped particles with certain coding sequences can generate multi-bit coding in the terahertz frequencies and manipulate the reflected terahertz waves to the numerous directions by using of different coding distributions. Furthermore, we demonstrate that our coding artificial electromagnetic surfaces have strong abilities to reduce the radar cross section with polarization insensitive for TE and TM incident terahertz waves as well as linear-polarized and circular-polarized terahertz waves. This work offers an effectively strategy to realize more powerful manipulation of terahertz wave.
Quantifying Electromagnetic Wave Propagation Environment Using Measurements From A Small Buoy
2017-06-01
ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A SMALL BUOY by Andrew E. Sweeney June 2017 Thesis Advisor: Qing Wang...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE QUANTIFYING ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A...the Coupled Air Sea Processes and Electromagnetic (EM) ducting Research (CASPER), to understand air-sea interaction processes and their representation
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.
2006-11-21
Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phasemore » from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility.« less
Collective neutrino oscillations and neutrino wave packets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhmedov, Evgeny; Lindner, Manfred; Kopp, Joachim, E-mail: akhmedov@mpi-hd.mpg.de, E-mail: jkopp@uni-mainz.de, E-mail: lindner@mpi-hd.mpg.de
Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino densitymore » matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.« less
Spatiotemporal Airy Ince-Gaussian wave packets in strongly nonlocal nonlinear media.
Peng, Xi; Zhuang, Jingli; Peng, Yulian; Li, DongDong; Zhang, Liping; Chen, Xingyu; Zhao, Fang; Deng, Dongmei
2018-03-08
The self-accelerating Airy Ince-Gaussian (AiIG) and Airy helical Ince-Gaussian (AihIG) wave packets in strongly nonlocal nonlinear media (SNNM) are obtained by solving the strongly nonlocal nonlinear Schrödinger equation. For the first time, the propagation properties of three dimensional localized AiIG and AihIG breathers and solitons in the SNNM are demonstrated, these spatiotemporal wave packets maintain the self-accelerating and approximately non-dispersion properties in temporal dimension, periodically oscillating (breather state) or steady (soliton state) in spatial dimension. In particular, their numerical experiments of spatial intensity distribution, numerical simulations of spatiotemporal distribution, as well as the transverse energy flow and the angular momentum in SNNM are presented. Typical examples of the obtained solutions are based on the ratio between the input power and the critical power, the ellipticity and the strong nonlocality parameter. The comparisons of analytical solutions with numerical simulations and numerical experiments of the AiIG and AihIG optical solitons show that the numerical results agree well with the analytical solutions in the case of strong nonlocality.
Optimal control theory with continuously distributed target states: An application to NaK
NASA Astrophysics Data System (ADS)
Kaiser, Andreas; May, Volkhard
2006-01-01
Laser pulse control of molecular dynamics is studied theoretically by using optimal control theory. The control theory is extended to target states which are distributed in time as well as in a space of parameters which are responsible for a change of individual molecular properties. This generalized treatment of a control task is first applied to wave packet formation in randomly oriented diatomic systems. Concentrating on an ensemble of NaK molecules which are not aligned the control yield decreases drastically when compared with an aligned ensemble. Second, we demonstrate for NaK the maximization of the probe pulse transient absorption in a pump-probe scheme with an optimized pump pulse. These computations suggest an overall optical control scheme, whereby a flexible technique is suggested to form particular wave packets in the excited state potential energy surface. In particular, it is shown that considerable wave packet localization at the turning points of the first-excited Σ-state potential energy surfaces of NaK may be achieved. The dependency of the control yield on the probe pulse parameters is also discussed.
Experimental Basis for IED Particle Model
NASA Astrophysics Data System (ADS)
Zheng-Johansson, J.
2009-05-01
The internally electrodynamic (IED) particle model is built on three experimental facts: a) electric charges present in all matter particles, b) an accelerated charge generates electromagnetic (EM) waves by Maxwell's equations and Planck energy equation, and c) source motion gives Doppler effect. A set of well-kwon basic particle equations have been predicted based on first-principles solutions for IED particle (e.g. arxiv:0812.3951, J Phys CS128, 012019, 2008); the equations are long experimentally validated. A critical review of the key experiments suggests that the IED process underlies these equations not just sufficiently but also necessarily. E.g.: 1) A free IED electron solution is a plane wave ψ= Ce^i(kdX-φT) requisite for producing the diffraction fringe in a Davisson-Germer experiment, and of also all basic point-like attributes facilitated by a linear momentum kd and the model structure. It needs not further be a wave packet which produces not a diffraction fringe. 2)The radial partial EM waves, hence the total ψ, of an IED electron will, on both EM theory and experiment basis -not by assumption, enter two slits at the same time, as is requisite for an electron to interfere with itself as shown in double slit experiments. 3) On annihilation, an electron converts (from mass m) to a radiation energy φ without an acceleration which is externally observable and yet requisite by EM theory. So a charge oscillation of frequency φ and its EM waves must regularly present internal of a normal electron, whence the IED model.
Anomalous time delays and quantum weak measurements in optical micro-resonators
Asano, M.; Bliokh, K. Y.; Bliokh, Y. P.; Kofman, A. G.; Ikuta, R.; Yamamoto, T.; Kivshar, Y. S.; Yang, L.; Imoto, N.; Özdemir, Ş.K.; Nori, F.
2016-01-01
Quantum weak measurements, wavepacket shifts and optical vortices are universal wave phenomena, which originate from fine interference of multiple plane waves. These effects have attracted considerable attention in both classical and quantum wave systems. Here we report on a phenomenon that brings together all the above topics in a simple one-dimensional scalar wave system. We consider inelastic scattering of Gaussian wave packets with parameters close to a zero of the complex scattering coefficient. We demonstrate that the scattered wave packets experience anomalously large time and frequency shifts in such near-zero scattering. These shifts reveal close analogies with the Goos–Hänchen beam shifts and quantum weak measurements of the momentum in a vortex wavefunction. We verify our general theory by an optical experiment using the near-zero transmission (near-critical coupling) of Gaussian pulses propagating through a nano-fibre with a side-coupled toroidal micro-resonator. Measurements demonstrate the amplification of the time delays from the typical inverse-resonator-linewidth scale to the pulse-duration scale. PMID:27841269
Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.
Wang, Ken Kang-Hsin; Ye, Zhen
2003-12-01
We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.
Quantum-classical correspondence for the inverted oscillator
NASA Astrophysics Data System (ADS)
Maamache, Mustapha; Ryeol Choi, Jeong
2017-11-01
While quantum-classical correspondence for a system is a very fundamental problem in modern physics, the understanding of its mechanism is often elusive, so the methods used and the results of detailed theoretical analysis have been accompanied by active debate. In this study, the differences and similarities between quantum and classical behavior for an inverted oscillator have been analyzed based on the description of a complete generalized Airy function-type quantum wave solution. The inverted oscillator model plays an important role in several branches of cosmology and particle physics. The quantum wave packet of the system is composed of many sub-packets that are localized at different positions with regular intervals between them. It is shown from illustrations of the probability density that, although the quantum trajectory of the wave propagation is somewhat different from the corresponding classical one, the difference becomes relatively small when the classical excitation is sufficiently high. We have confirmed that a quantum wave packet moving along a positive or negative direction accelerates over time like a classical wave. From these main interpretations and others in the text, we conclude that our theory exquisitely illustrates quantum and classical correspondence for the system, which is a crucial concept in quantum mechanics. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)
NASA Astrophysics Data System (ADS)
Chen, Jiangwei; Dai, Yuyao; Yan, Lin; Zhao, Huimin
2018-04-01
In this paper, we shall demonstrate theoretically that steady bound electromagnetic eigenstate can arise in an infinite homogeneous isotropic linear metamaterial with zero-real-part-of-impedance and nonzero-imaginary-part-of-wave-vector, which is partly attributed to that, here, nonzero-imaginary-part-of-wave-vector is not involved with energy losses or gain. Altering value of real-part-of-impedance of the metamaterial, the bound electromagnetic eigenstate may become to be a progressive wave. Our work may be useful to further understand energy conversion and conservation properties of electromagnetic wave in the dispersive and absorptive medium and provides a feasible route to stop, store and release electromagnetic wave (light) conveniently by using metamaterial with near-zero-real-part-of-impedance.
The effects of dissipation on topological mechanical systems
Xiong, Ye; Wang, Tianxiang; Tong, Peiqing
2016-01-01
We theoretically study the effects of isotropic dissipation in a topological mechanical system which is an analogue of Chern insulator in mechanical vibrational lattice. The global gauge invariance is still conserved in this system albeit it is destroyed by the dissipation in the quantum counterpart. The chiral edge states in this system are therefore robust against strong dissipation. The dissipation also causes a dispersion of damping for the eigenstates. It will modify the equation of motion of a wave packet by an extra effective force. After taking into account the Berry curvature in the wave vector space, the trace of a free wave packet in the real space should be curved, feinting to break the Newton’s first law. PMID:27605247
Ultrasound-aided high-resolution biophotonic imaging
NASA Astrophysics Data System (ADS)
Wang, Lihong V.
2003-10-01
We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.
Kreisbeck, C; Kramer, T; Molina, R A
2017-04-20
We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin-Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.
Control of dephasing in rotationally hot molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartram, David; Ivanov, Misha
We consider a rotationally hot diatomic molecule as an example of an open quantum system, where molecular vibrational wave packets are subject to dephasing due to rovibrational coupling. We report analytical and numerical results addressing whether the dephasing rate can be controlled by adjustment of the initial wave packet phases. It appears that over long time scales, phase-only control is not possible, but for earlier time scales the possibility of phase-only control of dephasing remains. In addition, we point out that the time dependence of the dephasing process depends significantly upon the degeneracy of the rotational environment states.
The coupled three-dimensional wave packet approach to reactive scattering
NASA Astrophysics Data System (ADS)
Marković, Nikola; Billing, Gert D.
1994-01-01
A recently developed scheme for time-dependent reactive scattering calculations using three-dimensional wave packets is applied to the D+H2 system. The present method is an extension of a previously published semiclassical formulation of the scattering problem and is based on the use of hyperspherical coordinates. The convergence requirements are investigated by detailed calculations for total angular momentum J equal to zero and the general applicability of the method is demonstrated by solving the J=1 problem. The inclusion of the geometric phase is also discussed and its effect on the reaction probability is demonstrated.
Time-reversal-symmetric single-photon wave packets for free-space quantum communication.
Trautmann, N; Alber, G; Agarwal, G S; Leuchs, G
2015-05-01
Readout and retrieval processes are proposed for efficient, high-fidelity quantum state transfer between a matter qubit, encoded in the level structure of a single atom or ion, and a photonic qubit, encoded in a time-reversal-symmetric single-photon wave packet. They are based on controlling spontaneous photon emission and absorption of a matter qubit on demand in free space by stimulated Raman adiabatic passage. As these processes do not involve mode selection by high-finesse cavities or photon transport through optical fibers, they offer interesting perspectives as basic building blocks for free-space quantum-communication protocols.
Transformation Theory, Accelerating Frames, and Two Simple Problems
ERIC Educational Resources Information Center
Schmid, G. Bruno
1977-01-01
Presents an operator which transforms quantum functions to solve problems of the stationary state wave functions for a particle and the motion and spreading of a Gaussian wave packet in uniform gravitational fields. (SL)
Remote monitoring of electromagnetic signals and seismic events using smart mobile devices
NASA Astrophysics Data System (ADS)
Georgiadis, Pantelis; Cavouras, Dionisis; Sidiropoulos, Konstantinos; Ninos, Konstantinos; Nomicos, Constantine
2009-06-01
This study presents the design and development of a novel mobile wireless system to be used for monitoring seismic events and related electromagnetic signals, employing smart mobile devices like personal digital assistants (PDAs) and wireless communication technologies such as wireless local area networks (WLANs), general packet radio service (GPRS) and universal mobile telecommunications system (UMTS). The proposed system enables scientists to access critical data while being geographically independent of the sites of data sources, rendering it as a useful tool for preliminary scientific analysis.
On the asymptotic character of electromagnetic waves in a Friedmann Robertson Walker universe
NASA Astrophysics Data System (ADS)
Haghighipour, Nader
2005-02-01
Asymptotic properties of electromagnetic waves are studied within the context of Friedmann Robertson Walker (FRW) cosmology. Electromagnetic fields are considered as small perturbations on the background spacetime and Maxwell’s equations are solved for all three cases of flat, closed and open FRW universes. The asymptotic character of these solutions is investigated and their relevance to the problem of cosmological tails of electromagnetic waves is discussed.
The difference of detecting water mist and smoke by electromagnetic wave in simulation experiments
NASA Astrophysics Data System (ADS)
Zhang, Jingdi; Cui, Bing; Xiao, Si
2015-10-01
Although mist is similar to smoke in morphology, their compositions are very different. Therefore there is a significant difference between mist and smoke when detected by electromagnetic wave. This paper puts forward a kind of feasible solution based on Ansoft HFSS software about how to determine the forest fire by distinguishing mist and smoke above the forest. The experiments simulate the difference between mist and smoke model when detected by electromagnetic wave in different wavelengths. We find the mist and smoke model cannot absorb or reflect electromagnetic wave efficiently in Megahertz band. While in Gigahertz band mist model began to absorb and reflect electromagnetic wave above 650 Gigahertz band, but no change in smoke model. And the biggest difference appears in Terahertz band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalaee, Mohammad Javad, E-mail: mjkalaee@ut.ac.ir; Katoh, Yuto, E-mail: yuto@stpp.gp.tohoku.ac.jp
One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma wavesmore » (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.« less
NASA Astrophysics Data System (ADS)
Horký, Miroslav; Omura, Yoshiharu; Santolík, Ondřej
2018-04-01
This paper presents the wave mode conversion between electrostatic and electromagnetic waves on the plasma density gradient. We use 2-D electromagnetic code KEMPO2 implemented with the generation of density gradient to simulate such a conversion process. In the dense region, we use ring beam instability to generate electron Bernstein waves and we study the temporal evolution of wave spectra, velocity distributions, Poynting flux, and electric and magnetic energies to observe the wave mode conversion. Such a conversion process can be a source of electromagnetic emissions which are routinely measured by spacecraft on the plasmapause density gradient.
Excitation of surface electromagnetic waves in a graphene-based Bragg grating
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting
2012-01-01
Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc. PMID:23071901
Electromagnetic radiation accompanying gravitational waves from black hole binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgov, A.; Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com
The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiationmore » with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.« less
Excitation of surface electromagnetic waves in a graphene-based Bragg grating.
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting
2012-01-01
Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.
Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong
2012-12-01
Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.
Converging Oceaniac Internal Waves, Somalia, Africa
1988-10-03
The arculate fronts of these apparently converging internal waves off the northeast coast of Somalia (11.5N, 51.5E) probably were produced by interaction with two parallel submarine canyons off the Horn of Africa. Internal waves are packets of tidally generated waves traveling within the ocean at varying depths and are not detectable by any surface disturbance.
Jiang, Zhi Hao; Turpin, Jeremy P.; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H.
2015-01-01
Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. PMID:26217054
Seismo-Electromagnetic Emissions Related to Seismic Waves can Trigger TLEs
NASA Astrophysics Data System (ADS)
Sorokin, Leonid V.
2009-04-01
This paper deals with the rare high intensity electromagnetic pulses associated with earthquakes, whose spectrum signature differs from that of atmospherics produced by lightning discharges. On the basis of actual data records, cases of the generation of anomalous seismo-electromagnetic emissions are described. These natural sub-millisecond electromagnetic pulses were associated with the passage of seismic waves from earthquakes to Moscow, the place where the electromagnetic field observations were made. Space-time coupling has been revealed between exact seismic waves from the earthquakes, lightning triggering and Transient Luminous Events triggering.
NASA Astrophysics Data System (ADS)
Chi, P. J.; Russell, C. T.
2008-01-01
Magnetospheric ultra-low-frequency (ULF) waves (f = 1 mHz to 1 Hz) exhibit highly time-dependent characteristics due to the dynamic properties of these waves and, for observations in space, the spacecraft motion. These time-dependent features may not be properly resolved by conventional Fourier techniques. In this study we examine how the Wigner-Ville distribution (WVD) can be used to analyze ULF waves. We find that this approach has unique advantages over the conventional Fourier spectrograms and wavelet scalograms. In particular, for Pc1 wave packets, field line/cavity mode resonances in the Pc 3-4 band, and Pi2 pulsations, the start and end times of each wave packet can be well identified and the frequency better defined. In addition, we demonstrate that the Wigner-Ville distribution can be used to calculate the polarization of wave signals in triaxial magnetic field data in a way analogous to Fourier analysis. Motivated by the large amount of ULF wave observations, we have also developed a WVD-based algorithm to identify ULF waves as a way to facilitate the rapid processing of the data collected by satellite missions and the vast network of ground magnetometers.
Electrostatic solitary waves generated by beam injection in LAPD
NASA Astrophysics Data System (ADS)
Chen, L.; Gekelman, W. N.; Lefebvre, B.; Kintner, P. M.; Pickett, J. S.; Pribyl, P.; Vincena, S. T.
2011-12-01
Spacecraft data have revealed that electrostatic solitary waves are ubiquitous in non-equilibrium collisionless space plasmas. These solitary waves are often the main constituents of the observed electrostatic turbulence. The ubiquitous presence of these solitary waves in space motivated laboratory studies on their generation and evolution in the Large Plasma Device (LAPD) at UCLA. In order to observe these structures, microprobes with scale sizes of order of the Debye length (30 microns) had to be built using Mems technology. A suprathermal electron beam was injected into the afterglow plasma, and solitary waves as well as nonlinear wave packets were measured. The solitary waves are interpreted as BGK electron holes based on their width, amplitude, and velocity characteristics. The ensuing turbulence, including the solitary waves and wave packets, exhibits a band dispersion relation with its central line consistent with the electrostatic whistler mode. One surprise brought by the laboratory experiments is that the electron holes were not generated through resonant two-stream instabilities, but likely through an instability due to parallel currents. The characteristics of the LAPD electron holes and those observed in space will be compared to motivate further theoretical, simulation, and experimental work.
Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Ren-Hao; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn; Huang, Xian-Rong
2015-07-15
In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertzmore » ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.« less
NASA Astrophysics Data System (ADS)
Majkrzak, Charles F.; Metting, Christopher; Maranville, Brian B.; Dura, Joseph A.; Satija, Sushil; Udovic, Terrence; Berk, Norman F.
2014-03-01
The primary purpose of this investigation is to determine the effective coherent extent of the neutron wave packet transverse to its mean propagation vector k when it is prepared in a typical instrument used to study the structure of materials in thin film form via specular reflection. There are two principal reasons for doing so. One has to do with the fundamental physical interest in the characteristics of a free neutron as a quantum object, while the other is of a more practical nature, relating to the understanding of how to interpret elastic scattering data when the neutron is employed as a probe of condensed-matter structure on an atomic or nanometer scale. Knowing such a basic physical characteristic as the neutron's effective transverse coherence can dictate how to properly analyze specular reflectivity data obtained for material film structures possessing some amount of in-plane inhomogeneity. In this study we describe a means of measuring the effective transverse coherence length of the neutron wave packet by specular reflection from a series of diffraction gratings of different spacings. Complementary nonspecular measurements of the widths of grating reflections were also performed, which corroborate the specular results. (This paper principally describes measurements interpreted according to the theoretical picture presented in a companion paper.) Each grating was fabricated by lift-off photolithography patterning of a nickel film (approximately 1000 Å thick) formed by physical vapor deposition on a flat silicon crystal surface. The grating periods ranged from 10 μm (5 μm Ni stripe, 5 μm intervening space) to several hundred microns. The transverse coherence length, modeled as the width of the wave packet, was determined from an analysis of the specular reflectivity curves of the set of gratings.
Dynamic localization in optical and Zeeman lattices in the presence of spin-orbit coupling
NASA Astrophysics Data System (ADS)
Kartashov, Yaroslav V.; Konotop, Vladimir V.; Zezyulin, Dmitry A.; Torner, Lluis
2016-12-01
The dynamic localization of a two-level atom in a periodic potential under the action of spin-orbit coupling and a weak harmonically varying linear force is studied. We consider optical and Zeeman potentials that are either in phase or out of phase in two spinor components, respectively. The expectation value for the position of the atom after one oscillation period of the linear force is recovered in authentic resonances or in pseudoresonances. The frequencies of the linear force corresponding to authentic resonances are determined by the band structure of the periodic potential and are affected by the spin-orbit coupling. The width or dispersion of the wave packet in authentic resonances is usually minimal. The frequencies corresponding to pseudoresonances do not depend on the type of potential and on the strength of the spin-orbit coupling, while the evolution of excitations at the corresponding frequencies is usually accompanied by significant dispersion. Pseudoresonances are determined by the initial phase of the linear force and by the quasimomentum of the wave packet. Due to the spinor nature of the system, the motion of the atom is accompanied by periodic, but not harmonic, spin oscillations. Under the action of spin-orbit coupling the oscillations of the wave packet can be nearly completely suppressed in optical lattices. Dynamic localization in Zeeman lattices is characterized by doubling of the resonant oscillation periods due to band crossing at the boundary of the Brillouin zone. We also show that higher harmonics in the Fourier expansion of the energy band lead to effective dispersion, which can be strong enough to prevent dynamic localization of the Bloch wave packet.
Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.
Amin, M R
2015-09-01
Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.
Research on radiation characteristic of plasma antenna through FDTD method.
Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan
2014-01-01
The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic.
Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method
NASA Astrophysics Data System (ADS)
Lombardini, Richard; Nowara, Ewa; Johnson, Bruce
2015-03-01
The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.
Hyperbolic polaritons in nanoparticles
NASA Astrophysics Data System (ADS)
Sun, Zhiyuan; Rubio, Angel; Guinea, Francisco; Basov, Dimitri; Fogler, Michael
2015-03-01
Hyperbolic optical materials (HM) are characterized by permittivity tensor that has both positive and negative principal values. Collective electromagnetic modes (polaritons) of HM have novel properties promising for various applications including subdiffractional imaging and on-chip optical communication. Hyperbolic response is actively investigated in the context of metamaterials, anisotropic polar insulators, and layered superconductors. We study polaritons in spheroidal HM nanoparticles using Hamiltonian optics. The field equations are mapped to classical dynamics of fictitious particles (wave packets) of an indefinite Hamiltonian. This dynamics is quantized using the Einstein-Brillouin-Keller quantization rule. The eigenmodes are classified as either bulk or surface according to whether their transverse momenta are real or imaginary. To model how such hyperbolic polaritons can be probed by near-field experiments, we compute the field distribution induced inside and outside the spheroid by an external point dipole. At certain magic frequencies the field shows striking geometric patterns whose origin is traced to the classical periodic orbits. The theory is applied to natural hyperbolic materials hexagonal boron nitride and superconducting LaSrCuO.
NASA Technical Reports Server (NTRS)
Cairns, Iver H.; Robinson, P. A.
1998-01-01
Existing, competing theories for coronal and interplanetary type III solar radio bursts appeal to one or more of modulational instability, electrostatic (ES) decay processes, or stochastic growth physics to preserve the electron beam, limit the levels of Langmuir-like waves driven by the beam, and produce wave spectra capable of coupling nonlinearly to generate the observed radio emission. Theoretical constraints exist on the wavenumbers and relative sizes of the wave bandwidth and nonlinear growth rate for which Langmuir waves are subject to modulational instability and the parametric and random phase versions of ES decay. A constraint also exists on whether stochastic growth theory (SGT) is appropriate. These constraints are evaluated here using the beam, plasma, and wave properties (1) observed in specific interplanetary type III sources, (2) predicted nominally for the corona, and (3) predicted at heliocentric distances greater than a few solar radii by power-law models based on interplanetary observations. It is found that the Langmuir waves driven directly by the beam have wavenumbers that are almost always too large for modulational instability but are appropriate to ES decay. Even for waves scattered to lower wavenumbers (by ES decay, for instance), the wave bandwidths are predicted to be too large and the nonlinear growth rates too small for modulational instability to occur for the specific interplanetary events studied or the great majority of Langmuir wave packets in type III sources at arbitrary heliocentric distances. Possible exceptions are for very rare, unusually intense, narrowband wave packets, predominantly close to the Sun, and for the front portion of very fast beams traveling through unusually dilute, cold solar wind plasmas. Similar arguments demonstrate that the ES decay should proceed almost always as a random phase process rather than a parametric process, with similar exceptions. These results imply that it is extremely rare for modulational instability or parametric decay to proceed in type III sources at any heliocentric distance: theories for type III bursts based on modulational instability or parametric decay are therefore not viable in general. In contrast, the constraint on SGT can be satisfied and random phase ES decay can proceed at all heliocentric distances under almost all circumstances. (The contrary circumstances involve unusually slow, broad beams moving through unusually hot regions of the Corona.) The analyses presented here strongly justify extending the existing SGT-based model for interplanetary type III bursts (which includes SGT physics, random phase ES decay, and specific electromagnetic emission mechanisms) into a general theory for type III bursts from the corona to beyond 1 AU. This extended theory enjoys strong theoretical support, explains the characteristics of specific interplanetary type III bursts very well, and can account for the detailed dynamic spectra of type III bursts from the lower corona and solar wind.
Lin, Shi Ying; Guo, Hua; Lendvay, György; Xie, Daiqian
2009-06-21
We examine the impact of initial rotational excitation on the reactivity of the H + O(2)--> OH + O reaction. Accurate Chebyshev wave packet calculations have been carried out for the upsilon(i) = 0, j(i) = 9 initial state of O(2) and the J = 50 partial wave. In addition, we present Gaussian-weighted quasi-classical trajectory and phase space theory calculations of the integral cross section and thermal rate constant for the title reaction. These theoretical results suggest that the initial rotational excitation significantly enhances reactivity with an amount comparable to the effect of initial vibrational state excitation. The inclusion of internally excited reactants is shown to improve the agreement with experimental rate constant.
NASA Astrophysics Data System (ADS)
Sedova, I. E.; Chestnov, I. Yu.; Arakelian, S. M.; Kavokin, A. V.; Sedov, E. S.
2018-01-01
We considered the nonlinear dynamics of Bragg polaritons in a specially designed stratified semiconductor structure with embedded quantum wells, which possesses a convex dispersion. The model for the ensemble of single periodically arranged quantum wells coupled with the Bragg photon fields has been developed. In particular, the generalized Gross-Pitaevskii equation with the non-parabolic dispersion has been obtained for the Bragg polariton wave function. We revealed a number of dynamical regimes for polariton wave packets resulting from competition of the convex dispersion and the repulsive nonlinearity effects. Among the regimes are spreading, breathing and soliton propagation. When the control parameters including the exciton-photon detuning, the matter-field coupling and the nonlinearity are manipulated, the dynamical regimes switch between themselves.
Tuning the group delay of optical wave packets in liquid-crystal light valves
NASA Astrophysics Data System (ADS)
Bortolozzo, U.; Residori, S.; Huignard, J. P.
2009-05-01
By performing two-wave mixing experiments in a liquid-crystal light valve, optical pulses are slowed down to group velocities as slow as a few tenths of mm/s, corresponding to a very large group index. We present experiments and model of the slow-light process occurring in the liquid-crystal light valve, showing that this is characterized by multiple-beam diffraction in the Raman-Nath regime. Depending on the initial frequency detuning between pump and signal, the different output order beams are distinguished by different group delays. The group delay can be tuned by changing the main parameters of the experiment: the detuning between the pump and the input wave packet, the strength of the nonlinearity, and the intensity of the pump beam.
Shchurova, L Yu; Namiot, V A; Sarkisyan, D R
2015-01-01
Coherent sources of electromagnetic waves in the terahertz frequency range are very promising for various applications, including biology and medicine. In this paper we propose a scheme of a compact terahertz source, in which terahertz radiation is generated due to effective interaction of electrons in a quantum well with an electromagnetic wave of a corrugated waveguide. We have shown that the generation of electromagnetic waves with a frequency of 1012 sec(-1) and an output power of up to 25. mW is possible in the proposed scheme.
Isanin, A V; Bulanov, S S; Kamenets, F F; Pegoraro, F
2005-03-01
During the interaction of a low-frequency relativistic soliton with the electron density modulations of a wake plasma wave, part of the electromagnetic energy of the soliton is reflected in the form of an extremely short and ultraintense electromagnetic pulse. We calculate the spectra of the reflected and of the transmitted electromagnetic pulses analytically. The reflected wave has the form of a single cycle attosecond pulse.
Quantum superposition at the half-metre scale.
Kovachy, T; Asenbaum, P; Overstreet, C; Donnelly, C A; Dickerson, S M; Sugarbaker, A; Hogan, J M; Kasevich, M A
2015-12-24
The quantum superposition principle allows massive particles to be delocalized over distant positions. Though quantum mechanics has proved adept at describing the microscopic world, quantum superposition runs counter to intuitive conceptions of reality and locality when extended to the macroscopic scale, as exemplified by the thought experiment of Schrödinger's cat. Matter-wave interferometers, which split and recombine wave packets in order to observe interference, provide a way to probe the superposition principle on macroscopic scales and explore the transition to classical physics. In such experiments, large wave-packet separation is impeded by the need for long interaction times and large momentum beam splitters, which cause susceptibility to dephasing and decoherence. Here we use light-pulse atom interferometry to realize quantum interference with wave packets separated by up to 54 centimetres on a timescale of 1 second. These results push quantum superposition into a new macroscopic regime, demonstrating that quantum superposition remains possible at the distances and timescales of everyday life. The sub-nanokelvin temperatures of the atoms and a compensation of transverse optical forces enable a large separation while maintaining an interference contrast of 28 per cent. In addition to testing the superposition principle in a new regime, large quantum superposition states are vital to exploring gravity with atom interferometers in greater detail. We anticipate that these states could be used to increase sensitivity in tests of the equivalence principle, measure the gravitational Aharonov-Bohm effect, and eventually detect gravitational waves and phase shifts associated with general relativity.
Strong plasma turbulence in the earth's electron foreshock
NASA Technical Reports Server (NTRS)
Robinson, P. A.; Newman, D. L.
1991-01-01
A quantitative model is developed to account for the distribution in magnitude and location of the intense plasma waves observed in the earth's electron foreshock given the observed rms levels of waves. In this model, nonlinear strong-turbulence effects cause solitonlike coherent wave packets to form and decouple from incoherent background beam-excited weak turbulence, after which they convect downstream with the solar wind while collapsing to scales as short as 100 m and fields as high as 2 V/m. The existence of waves with energy densities above the strong-turbulence wave-collapse threshold is inferred from observations from IMP 6 and ISEE 1 and quantitative agreement is found between the predicted distribution of fields in an ensemble of such wave packets and the actual field distribution observed in situ by IMP 6. Predictions for the polarization of plasma waves and the bandwidth of ion-sound waves are also consistent with the observations. It is shown that strong-turbulence effects must be incorporated in any comprehensive theory of the propagation and evolution of electron beams in the foreshock. Previous arguments against the existence of strong turbulence in the foreshock are refuted.
Stabilization and Structure of wave packets in Rydberg atoms ionized by a strong light field.
Fedorov, M; Fedorov, S
1998-09-28
New features of the phenomenon of interference stabilization of Rydberg atoms are found to exist. The main of them are: (i) dynamical stabilization, which means that in case of pulses with a smooth envelope the time-dependent residual probability for an atom to survive in bound states remains almost constant in the middle part of a pulse (at the strongest fields); (ii) existence of the strong-field stabilization of the after-pulse residual probability in case of pulses longer than the classical Kepler period; and (iii) pulsation of the time-dependent Rydberg wave packet formed in the process of photoionization.
Holography and hydrodynamics in small systems
NASA Astrophysics Data System (ADS)
Chesler, Paul M.
2016-12-01
Using holographic duality, we present results for the off-center collision of Gaussian wave packets in strongly coupled N = 4 supersymmetric Yang-Mills theory. The wave packets are thin along the collision axis and superficially at least resemble Lorentz contracted colliding protons. The collision results in the formation of a droplet of liquid of size R ∼ 1 /Teff where Teff is the effective temperature, which is the characteristic microscopic scale in strongly coupled plasma. These results demonstrate the applicability of hydrodynamics to microscopically small systems and bolster the notion that hydrodynamics can be applied to heavy-light ion collisions as well as proton-proton collisions.
Kapitza resistance of Si/SiO2 interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen Deng; Aleksandr Chenatynskiy; Marat Khafizov
2014-02-01
A phonon wave packet dynamics method is used to characterize the Kapitza resistance of a Si/SiO2 interface in a Si/SiO2/Si heterostructure. By varying the thickness of SiO2 layer sandwiched between two Si layers, we determine the Kapitza resistance for the Si/SiO2 interface from both wave packet dynamics and a direct, non-equilibrium molecular dynamics approach. The good agreement between the two methods indicates that they have each captured the anharmonic phonon scatterings at the interface. Moreover, detailed analysis provides insights as to how individual phonon mode scatters at the interface and their contribution to the Kapitza resistance.
Anderson localization of a Tonks-Girardeau gas in potentials with controlled disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radic, J.; Bacic, V.; Jukic, D.
We theoretically demonstrate features of Anderson localization in a Tonks-Girardeau gas confined in one-dimensional potentials with controlled disorder. That is, we investigate the evolution of the single-particle density and correlations of a Tonks-Girardeau wave packet in such disordered potentials. The wave packet is initially trapped, the trap is suddenly turned off, and after some time the system evolves into a localized steady state due to Anderson localization. The density tails of the steady state decay exponentially, while the coherence in these tails increases. The latter phenomenon corresponds to the same effect found in incoherent optical solitons.
NASA Astrophysics Data System (ADS)
Romera, E.; Bolívar, J. C.; Roldán, J. B.; de los Santos, F.
2016-07-01
We have studied the time evolution of electron wave packets in silicene under perpendicular magnetic and electric fields to characterize topological-band insulator transitions. We have found that at the charge neutrality points, the periodicities exhibited by the wave packet dynamics (classical and revival times) reach maximum values, and that the electron currents reflect the transition from a topological insulator to a band insulator. This provides a signature of topological phase transition in silicene that can be extended to other 2D Dirac materials isostructural to graphene and with a buckled structure and a significant spin-orbit coupling.
do N Varella, Márcio T; Arasaki, Yasuki; Ushiyama, Hiroshi; Takatsuka, Kazuo; Wang, Kwanghsi; McKoy, Vincent
2007-02-07
The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface.
Koner, Debasish; Barrios, Lizandra; González-Lezana, Tomás; Panda, Aditya N
2014-09-21
A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH(+) (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.
NASA Astrophysics Data System (ADS)
Subotnik, Joseph E.; Shenvi, Neil
2011-06-01
Fewest-switches surface hopping (FSSH) is a popular nonadiabatic dynamics method which treats nuclei with classical mechanics and electrons with quantum mechanics. In order to simulate the motion of a wave packet as accurately as possible, standard FSSH requires a stochastic sampling of the trajectories over a distribution of initial conditions corresponding, e.g., to the Wigner distribution of the initial quantum wave packet. Although it is well-known that FSSH does not properly account for decoherence effects, there is some confusion in the literature about whether or not this averaging over a distribution of initial conditions can approximate some of the effects of decoherence. In this paper, we not only show that averaging over initial conditions does not generally account for decoherence, but also why it fails to do so. We also show how an apparent improvement in accuracy can be obtained for a fortuitous choice of model problems, even though this improvement is not possible, in general. For a basic set of one-dimensional and two-dimensional examples, we find significantly improved results using our recently introduced augmented FSSH algorithm.
Karlovets, Dmitry V; Serbo, Valeriy G
2017-10-27
Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.
Gryz, Krzysztof; Karpowicz, Jolanta
2014-01-01
Electromagnetic fields used in physiotherapeutic treatment affect not only patients, but also physiotherapists, patients not undergoing treatment and electronic medical equipment. The aim of the work was to study the parameters of the electromagnetic fields of physiotherapeutic devices with respect to requirements regarding the protection of electronic devices, including medical implants, against electromagnetic intererence, and the protection of the general public (patients not undergoing treatment and bystanders), as well as medical personnel, against the health hazards caused by electromagnetic exposure. The spatial distribution of electric and magnetic field strength was investigated near 3 capacitive short-wave and 3 long-wave diathermies and 3 ultrasound therapy units, as along with the capacitive electric currents caused by electromagnetic field interaction in the upper limbs of the physiotherapists operating these devices. The physiotherapists' exposure to electromagnetic fields depends on the spatial organisation of the workspace and their location during treatment. Electric fields able to interfere with the function of electronic medical implants and in whic anyone not undergoing treatment should not be present were measured up to 150-200 cm away from active applicators of short-wave diathermy, and up to 40-45 cm away from long-wave diathermy ones. Electric fields in which workers should not be present were measured up to 30-40 cm away from the applicators and cables of active short-wave diathermy devices. A capacitive electric current with a strength exceeding many times the international recommendations regarding workers protection was measured in the wrist while touching applicators and cables of active short-wave diathermy devices. The strongest environmental electromagnetic hazards occur near short-wave diathermy devices, and to a lesser degree near long-wave diathermy devices, but were not found near ultrasound therapy units.
NASA Astrophysics Data System (ADS)
Vemuri, SH. S.; Bosworth, R.; Morrison, J. F.; Kerrigan, E. C.
2018-05-01
The growth of Tollmien-Schlichting (TS) waves is experimentally attenuated using a single-input and single-output (SISO) feedback system, where the TS wave packet is generated by a surface point source in a flat-plate boundary layer. The SISO system consists of a single wall-mounted hot wire as the sensor and a miniature speaker as the actuator. The actuation is achieved through a dual-slot geometry to minimize the cavity near-field effects on the sensor. The experimental setup to generate TS waves or wave packets is very similar to that used by Li and Gaster [J. Fluid Mech. 550, 185 (2006), 10.1017/S0022112005008219]. The aim is to investigate the performance of the SISO control system in attenuating single-frequency, two-dimensional disturbances generated by these configurations. The necessary plant models are obtained using system identification, and the controllers are then designed based on the models and implemented in real-time to test their performance. Cancellation of the rms streamwise velocity fluctuation of TS waves is evident over a significant domain.
Wave packet analysis and break-up length calculations for an accelerating planar liquid jet
NASA Astrophysics Data System (ADS)
Turner, M. R.; Healey, J. J.; Sazhin, S. S.; Piazzesi, R.
2012-02-01
This paper examines the process of transition to turbulence within an accelerating planar liquid jet. By calculating the propagation and spatial evolution of disturbance wave packets generated at a nozzle where the jet emerges, we are able to estimate break-up lengths and break-up times for different magnitudes of acceleration and different liquid to air density ratios. This study uses a basic jet velocity profile that has shear layers in both air and the liquid either side of the fluid interface. The shear layers are constructed as functions of velocity which behave in line with our CFD simulations of injecting diesel jets. The non-dimensional velocity of the jet along the jet centre-line axis is assumed to take the form V (t) = tanh(at), where the parameter a determines the magnitude of the acceleration. We compare the fully unsteady results obtained by solving the unsteady Rayleigh equation to those of a quasi-steady jet to determine when the unsteady effects are significant and whether the jet can be regarded as quasi-steady in typical operating conditions for diesel engines. For a heavy fluid injecting into a lighter fluid (density ratio ρair/ρjet = q < 1), it is found that unsteady effects are mainly significant at early injection times where the jet velocity profile is changing fastest. When the shear layers in the jet thin with time, the unsteady effects cause the growth rate of the wave packet to be smaller than the corresponding quasi-steady jet, whereas for thickening shear layers the unsteady growth rate is larger than that of the quasi-steady jet. For large accelerations (large a), the unsteady effect remains at later times but its effect on the growth rate of the wave packet decreases as the time after injection increases. As the rate of acceleration is reduced, the range of velocity values for which the jet can be considered as quasi-steady increases until eventually the whole jet can be considered quasi-steady. For a homogeneous jet (q = 1), the range of values of a for which the jet can be considered completely quasi-steady increases to larger values of a. Finally, we investigate approximating the wave packet break-up length calculations with a method that follows the most unstable disturbance wave as the jet accelerates. This approach is similar to that used in CFD simulations as it greatly reduces computational time. We investigate whether or not this is a good approximation for the parameter values typically used in diesel engines.
Electromagnetic wave absorbing properties of amorphous carbon nanotubes.
Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing
2014-07-10
Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.
Bai, Zhengyang; Xu, Datang; Huang, Guoxiang
2017-01-23
We propose a scheme to realize the storage and retrieval of high-dimensional electromagnetic waves with orbital angular momentum (OAM) via plasmon-induced transparency (PIT) in a metamaterial, which consists of an array of meta-atoms constructed by a metallic structure loaded with two varactors. We show that due to PIT effect the system allows the existence of shape-preserving dark-mode plasmonic polaritons, which are mixture of electromagnetic-wave modes and dark oscillatory modes of the meta-atoms and may carry various OAMs. We demonstrate that the slowdown, storage and retrieval of multi-mode electromagnetic waves with OAMs can be achieved through the active manipulation of a control field. Our work raises the possibility for realizing PIT-based spatial multi-mode memory of electromagnetic waves and is promising for practical application of information processing with large capacity by using room-temperature metamaterials.
First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kranz, O.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McWilliams, S.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sainathan, P.; Salemi, F.; Sammut, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Stein, L. C.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tseng, K.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-05-01
Aims: The detection and measurement of gravitational-waves from coalescing neutron-star binary systems is an important science goal for ground-based gravitational-wave detectors. In addition to emitting gravitational-waves at frequencies that span the most sensitive bands of the LIGO and Virgo detectors, these sources are also amongst the most likely to produce an electromagnetic counterpart to the gravitational-wave emission. A joint detection of the gravitational-wave and electromagnetic signals would provide a powerful new probe for astronomy. Methods: During the period between September 19 and October 20, 2010, the first low-latency search for gravitational-waves from binary inspirals in LIGO and Virgo data was conducted. The resulting triggers were sent to electromagnetic observatories for followup. We describe the generation and processing of the low-latency gravitational-wave triggers. The results of the electromagnetic image analysis will be described elsewhere. Results: Over the course of the science run, three gravitational-wave triggers passed all of the low-latency selection cuts. Of these, one was followed up by several of our observational partners. Analysis of the gravitational-wave data leads to an estimated false alarm rate of once every 6.4 days, falling far short of the requirement for a detection based solely on gravitational-wave data.
Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H
2015-08-28
Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Akylas, Triantaphyllos R.; Kim, Boguk
2004-11-01
In dispersive wave systems, it is known that 1-D plane solitary waves can bifurcate from linear sinusoidal wavetrains at particular wave numbers k = k0 where the phase speed c(k) happens to be an extremum (dc/dk| _0=0) and equals the group speed c_g(k_0). Two distinct possibilities thus arise: either the extremum occurs in the long-wave limit (k_0=0) and, as in shallow water, the bifurcating solitary waves are of the KdV type; or k0 ne 0 and the solitary waves are in the form of packets, described by the NLS equation to leading order, as for gravity-capillary waves in deep water. Here it is pointed out that an entirely analogous scenario is valid for the genesis of 2-D solitary waves or `lumps'. Lumps also may bifurcate at extrema of the phase speed and do so when 1-D solitary waves happen to be unstable to transverse perturbations; moreover, they have algebraically decaying tails and are either of the KPI type (e.g. in shallow water in the presence of strong surface tension) or of the wave packet type (e.g. in deep water) and are described by an elliptic-elliptic Davey-Stewartson equation system to leading order. Examples of steady lump profiles are presented and their dynamics is discussed.
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu; Angus, J. R.
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionlessmore » and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.« less
Effects of chronic exposure to electromagnetic waves on the auditory system.
Özgür, Abdulkadir; Tümkaya, Levent; Terzi, Suat; Kalkan, Yıldıray; Erdivanlı, Özlem Çelebi; Dursun, Engin
2015-08-01
The results support that chronic electromagnetic field exposure may cause damage by leading to neuronal degeneration of the auditory system. Numerous researches have been done about the risks of exposure to the electromagnetic fields that occur during the use of these devices, especially the effects on hearing. The aim of this study is to evaluate the effects of the electromagnetic waves emitted by the mobile phones through the electrophysiological and histological methods. Twelve adult Wistar albino rats were included in the study. The rats were divided into two groups of six rats. The study group was exposed to the electromagnetic waves over a period of 30 days. The control group was not given any exposure to the electromagnetic fields. After the completion of the electromagnetic wave application, the auditory brainstem responses of both groups were recorded under anesthesia. The degeneration of cochlear nuclei was graded by two different histologists, both of whom were blinded to group information. The histopathologic and immunohistochemical analysis showed neuronal degeneration signs, such as increased vacuolization in the cochlear nucleus, pyknotic cell appearance, and edema in the group exposed to the electromagnetic fields compared to the control group. The average latency of wave in the ABR was similar in both groups (p > 0.05).
Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M.
Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. Itmore » is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental interest and of relevance to loop antennas in space.« less
GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor
2013-07-01
It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Clustermore » spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heifetz, A.; Bakhtiari, S.; Huang, X.
The objective of this project is to develop and demonstrate methods for transmission of information in nuclear facilities by acoustic means along existing in-place metal piping infrastructure. Pipes are omnipresent in a nuclear facility, and penetrate enclosures and partitions, such as the containment building wall. In the envisioned acoustic communication (AC) system, packets of information will be transmitted as guided acoustic waves along pipes. Performance of AC hardware and network protocols for efficient and secure communications under development in this project will be eventually evaluated in a representative nuclear power plant environment. Research efforts in the first year of thismore » project have been focused on identification of appropriate transducers, and evaluation of their performance for information transmission along nuclear-grade metallic pipes. COMSOL computer simulations were performed to study acoustic wave generation, propagation, and attenuation on pipes. An experimental benchtop system was used to evaluate signal attenuation and spectral dispersion using piezo-electric transducers (PZTs) and electromagnetic acoustic transducers (EMATs). Communication protocols under evaluation consisted on-off keying (OOK) signal modulation, in particular amplitude shift keying (ASK) and phase shift keying (PSK). Tradeoffs between signal power and communication data rate were considered for ASK and PSK coding schemes.« less
Laser-driven deflection arrangements and methods involving charged particle beams
Plettner, Tomas [San Ramon, CA; Byer, Robert L [Stanford, CA
2011-08-09
Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.
Research on Radiation Characteristic of Plasma Antenna through FDTD Method
Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan
2014-01-01
The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic. PMID:25114961
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-01-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
NASA Astrophysics Data System (ADS)
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak
2015-09-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-09-10
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.
Confined states in photonic-magnonic crystals with complex unit cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dadoenkova, Yu. S.; Novgorod State University, 173003 Veliky Novgorod; Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk
2016-08-21
We have investigated multifunctional periodic structures in which electromagnetic waves and spin waves can be confined in the same areas. Such simultaneous localization of both sorts of excitations can potentially enhance the interaction between electromagnetic waves and spin waves. The system we considered has a form of one dimensional photonic-magnonic crystal with two types of magnetic layers (thicker and thinner ones) separated by sections of the dielectric photonic crystals. We focused on the electromagnetic defect modes localized in the magnetic layers (areas where spin waves can be excited) and decaying in the sections of conventional (nonmagnetic) photonic crystals. We showedmore » how the change of relative thickness of two types of the magnetic layers can influence on the spectrum of spin waves and electromagnetic defect modes, both localized in magnetic parts of the system.« less
Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong
2015-07-01
In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertzmore » ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies.« less
Quantum mechanics of neutrino oscillations - hand waving for pedestrians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipkin, H. J.
1998-12-22
Why Hand Waving? All calculations in books describe oscillations in time. But real experiments don't measure time. Hand waving is used to convert the results of a ''gedanken time experiment'' to the result of a real experiment measuring oscillations in space. Right hand waving gives the right answer; wrong hand waving gives the wrong answer. Many papers use wrong handwaving to get wrong answers. This talk explains how to do it right and also answers the following questions: (1) A neutrino which is a mixture of two mass eigenstates is emitted with muon in the decay of a pion atmore » rest. This is a ''missing mass experiment'' where the muon energy determines the neutrino mass. Why are the two mass states coherent? (2) A neutrino which is a mixture of two mass eigenstates is emitted at time t=0. The two mass eigenstates move with different velocities and arrive at the detector at different times. Why are the two mass states coherent? (3) A neutrino is a mixture of two overlapping wave packets with different masses moving with different velocities. Will the wave packets eventually separate? If yes, when?« less
NASA Astrophysics Data System (ADS)
Wu, Xianyun; Wu, Ru-Shan
A seismic wave is a mechanical disturbance or energy packet that can propagate from point to point in the Earth. Seismic waves can be generated by a sudden release of energy such as an earthquake, volcanic eruption, or chemical explosion. There are several types of seismic waves, often classified as body waves, which propagate through the volume of the Earth, and surface waves, which travel along the surface of the Earth. Compressional and shear waves are the two main types of body wave and Rayleigh and Love waves are the most common forms of surface wave.
Internal swells in the tropics: Near-inertial wave energy fluxes and dissipation during CINDY
NASA Astrophysics Data System (ADS)
Soares, S. M.; Natarov, A.; Richards, K. J.
2016-05-01
A developing MJO event in the tropical Indian Ocean triggered wind disturbances that generated inertial oscillations in the surface mixed layer. Subsequent radiation of near-inertial waves below the mixed layer produced strong turbulence in the pycnocline. Linear plane wave dynamics and spectral analysis are used to explain these observations, with the ultimate goal of estimating the wave energy flux in relation to both the energy input by the wind and the dissipation by turbulence. The results indicate that the wave packets carry approximately 30-40% of the wind input of inertial kinetic energy, and propagate in an environment conducive to the occurrence of a critical level set up by a combination of vertical gradients in background relative vorticity and Doppler shifting of wave frequency. Turbulent kinetic energy dissipation measurements demonstrate that the waves lose energy as they propagate in the transition layer as well as in the pycnocline, where approaching this critical level may have dissipated approximately 20% of the wave packet energy in a single event. Our analysis, therefore, supports the notion that appreciable amounts of wind-induced inertial kinetic energy escape the surface boundary layer into the interior. However, a large fraction of wave energy is dissipated within the pycnocline, limiting its penetration into the abyssal ocean.
Electromagnetic wave energy converter
NASA Technical Reports Server (NTRS)
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
A Versatile Applet to Explore the Wave Behaviour of Particles
ERIC Educational Resources Information Center
Fernandez Palop, J. I.
2009-01-01
A pedagogical tool that consists of a Java applet has been developed so that undergraduate students in physics can explore the wave behaviour of particles. The applet executes a simulation in which a two-dimensional wave packet moves towards a slit and an obstacle with variable widths. By changing three parameters, slit width, obstacle width and…
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic waves in association with magnetic reconnection in the turbulent magnetosheath. These structured, broadband bursts occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic waves and quantify their proximity to X- and O-nulls.
Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, L. C. C.; Yahya, N.; Daud, H.
The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMSmore » with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.« less
Electromagnetic radiation from beam-plasma instabilities
NASA Technical Reports Server (NTRS)
Stenzel, R. L.; Whelan, D. A.
1982-01-01
The mechanism by which unstable electrostatic waves of an electron-beam plasma system are converted into observed electromagnetic waves is of great current interest in space plasma physics. Electromagnetic radiation arises from both natural beam-plasma systems, e.g., type III solar bursts and kilometric radiation, and from man-made electron beams injected from rockets and spacecraft. In the present investigation the diagnostic difficulties encountered in space plasmas are overcome by using a large laboratory plasma. A finite diameter (d approximately equal to 0.8 cm) electron beam is injected into a uniform quiescent magnetized afterglow plasma of dimensions large compared with electromagnetic wavelength. Electrostatic waves grow, saturate and decay within the uniform central region of the plasma volume so that linear mode conversion on density gradients can be excluded as a possible generation mechanism for electromagnetic waves.
Artificial excitation of ELF waves with frequency of Schumann resonance
NASA Astrophysics Data System (ADS)
Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.
2014-11-01
We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.
Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces
Hashemi, Mohammed Reza M.; Yang, Shang-Hua; Wang, Tongyu; Sepúlveda, Nelson; Jarrahi, Mona
2016-01-01
Engineered metamaterials offer unique functionalities for manipulating the spectral and spatial properties of electromagnetic waves in unconventional ways. Here, we report a novel approach for making reconfigurable metasurfaces capable of deflecting electromagnetic waves in an electronically controllable fashion. This is accomplished by tilting the phase front of waves through a two-dimensional array of resonant metasurface unit-cells with electronically-controlled phase-change materials embedded inside. Such metasurfaces can be placed at the output facet of any electromagnetic radiation source to deflect electromagnetic waves at a desired frequency, ranging from millimeter-wave to far-infrared frequencies. Our design does not use any mechanical elements, external light sources, or reflectarrays, creating, for the first time, a highly robust and fully-integrated beam-steering device solution. We demonstrate a proof-of-concept beam-steering metasurface optimized for operation at 100 GHz, offering up to 44° beam deflection in both horizontal and vertical directions. Dynamic control of electromagnetic wave propagation direction through this unique platform could be transformative for various imaging, sensing, and communication applications, among others. PMID:27739471
Geesink, J H; Meijer, D K F
2017-01-01
Solitons, as self-reinforcing solitary waves, interact with complex biological phenomena such as cellular self-organization. A soliton model is able to describe a spectrum of electromagnetism modalities that can be applied to understand the physical principles of biological effects in living cells, as caused by endogenous and exogenous electromagnetic fields and is compatible with quantum coherence. A bio-soliton model is proposed, that enables to predict which eigen-frequencies of non-thermal electromagnetic waves are life-sustaining and which are, in contrast, detrimental for living cells. The particular effects are exerted by a range of electromagnetic wave eigen-frequencies of one-tenth of a Hertz till Peta Hertz that show a pattern of 12 bands, and can be positioned on an acoustic reference frequency scale. The model was substantiated by a meta-analysis of 240 published articles of biological electromagnetic experiments, in which a spectrum of non-thermal electromagnetic waves were exposed to living cells and intact organisms. These data support the concept of coherent quantized electromagnetic states in living organisms and the theories of Fröhlich, Davydov and Pang. It is envisioned that a rational control of shape by soliton-waves and related to a morphogenetic field and parametric resonance provides positional information and cues to regulate organism-wide systems properties like anatomy, control of reproduction and repair.
Infrared laser driven double proton transfer. An optimal control theory study
NASA Astrophysics Data System (ADS)
Abdel-Latif, Mahmoud K.; Kühn, Oliver
2010-02-01
Laser control of ultrafast double proton transfer is investigated for a two-dimensional model system describing stepwise and concerted transfer pathways. The pulse design has been done by employing optimal control theory in combination with the multiconfiguration time-dependent Hartree wave packet propagation. The obtained laser fields correspond to multiple pump-dump pulse sequences. Special emphasis is paid to the relative importance of stepwise and concerted transfer pathways for the driven wave packet and its dependence on the parameters of the model Hamiltonian as well as on the propagation time. While stepwise transfer is dominating in all cases considered, for high barrier systems concerted transfer proceeding via tunneling can make a contribution.
Quantum solitonic wave-packet of a meso-scopic system in singularity free gravity
NASA Astrophysics Data System (ADS)
Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam
2018-06-01
In this paper we will discuss how to localise a quantum wave-packet due to self-gravitating meso-scopic object by taking into account gravitational self-interaction in the Schrödinger equation beyond General Relativity. In particular, we will study soliton-like solutions in infinite derivative ghost free theories of gravity, which resolves the gravitational 1 / r singularity in the potential. We will show a unique feature that the quantum spread of such a gravitational system is larger than that of the Newtonian gravity, therefore enabling us a window of opportunity to test classical and quantum properties of such theories of gravity in the near future at a table-top experiment.
Electronic transport in disordered chains with saturable nonlinearity
NASA Astrophysics Data System (ADS)
dos Santos, J. L. L.; Nguyen, Ba Phi; de Moura, F. A. B. F.
2015-10-01
In this work we study numerically the dynamics of an initially localized wave packet in one-dimensional disordered chains with saturable nonlinearity. By using the generalized discrete nonlinear Schrödinger equation, we calculate two different physical quantities as a function of time, which are the participation number and the mean square displacement from the excitation site. From detailed numerical analysis, we find that the saturable nonlinearity can promote a sub-diffusive spreading of the wave packet even in the presence of diagonal disorder for a long time. In addition, we also investigate the effect of the saturated nonlinearity for initial times of the electronic evolution thus showing the possibility of mobile breather-like modes.
NASA Astrophysics Data System (ADS)
Ishii, Hiroyuki; Honma, Keisuke; Kobayashi, Nobuhiko; Hirose, Kenji
2012-06-01
We present a methodology to study the charge-transport properties of organic semiconductors by the time-dependent wave-packet diffusion method, taking the polaron effects into account. As an example, we investigate the transport properties of single-crystal pentacene organic semiconductors coupled with inter- and intramolecular vibrations within the mixed Holstein and Peierls model, which describes both hopping and bandlike transport behaviors due to small and large polaron formations. Taking into account static disorders, which inevitably exist in the molecular crystals, we present the temperature dependence of charge-transport properties in competition among the thermal fluctuation of molecular motions, the polaron formation, and the static disorders.
Li, H; Mignolet, B; Wachter, G; Skruszewicz, S; Zherebtsov, S; Süssmann, F; Kessel, A; Trushin, S A; Kling, Nora G; Kübel, M; Ahn, B; Kim, D; Ben-Itzhak, I; Cocke, C L; Fennel, T; Tiggesbäumker, J; Meiwes-Broer, K-H; Lemell, C; Burgdörfer, J; Levine, R D; Remacle, F; Kling, M F
2015-03-27
Strong laser fields can be used to trigger an ultrafast molecular response that involves electronic excitation and ionization dynamics. Here, we report on the experimental control of the spatial localization of the electronic excitation in the C_{60} fullerene exerted by an intense few-cycle (4 fs) pulse at 720 nm. The control is achieved by tailoring the carrier-envelope phase and the polarization of the laser pulse. We find that the maxima and minima of the photoemission-asymmetry parameter along the laser-polarization axis are synchronized with the localization of the coherent electronic wave packet at around the time of ionization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hader, K.; Engel, V., E-mail: voen@phys-chemie.uni-wuerzburg.de
2014-05-14
We study laser excitation processes in a double well potential. The possibility to influence localization via the carrier-envelope phase (CEP) of a laser pulse is investigated for various situations which differ in the nature of the initial state prior to the laser interactions. In more detail, the CEP-dependence of asymmetries in the case where initially the system is described by localized wave packets, eigenstates, or incoherent mixtures are calculated and interpreted within time-dependent perturbation theory. It is investigated which contributions to the asymmetry exist and how they can be modified to reveal a more or less pronounced CEP-effect.
Hader, K; Engel, V
2014-05-14
We study laser excitation processes in a double well potential. The possibility to influence localization via the carrier-envelope phase (CEP) of a laser pulse is investigated for various situations which differ in the nature of the initial state prior to the laser interactions. In more detail, the CEP-dependence of asymmetries in the case where initially the system is described by localized wave packets, eigenstates, or incoherent mixtures are calculated and interpreted within time-dependent perturbation theory. It is investigated which contributions to the asymmetry exist and how they can be modified to reveal a more or less pronounced CEP-effect.
Elastic scattering losses from colliding Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zin Pawel; Chwedenczuk, Jan; Trippenbach, Marek
2006-03-15
Bragg diffraction divides a Bose-Einstein condensate into two overlapping components, moving with respect to each other with high momentum. Elastic collisions between atoms from distinct wave packets can significantly deplete the condensate. Recently, Zin et al. [Phys. Rev. Lett. 94, 200401 (2005)] introduced a model of two counterpropagating atomic Gaussian wave packets incorporating the dynamics of the incoherent scattering processes. Here we study the properties of this model in detail, including the nature of the transition from spontaneous to stimulated scattering. Within the first-order approximation, we derive analytical expressions for the density matrix and anomalous density that provide excellent insightmore » into correlation properties of scattered atoms.« less
Ramsey method for Auger-electron interference induced by an attosecond twin pulse
NASA Astrophysics Data System (ADS)
Buth, Christian; Schafer, Kenneth J.
2015-02-01
We examine the archetype of an interference experiment for Auger electrons: two electron wave packets are launched by inner-shell ionizing a krypton atom using two attosecond light pulses with a variable time delay. This setting is an attosecond realization of the Ramsey method of separated oscillatory fields. Interference of the two ejected Auger-electron wave packets is predicted, indicating that the coherence between the two pulses is passed to the Auger electrons. For the detection of the interference pattern an accurate coincidence measurement of photo- and Auger electrons is necessary. The method allows one to control inner-shell electron dynamics on an attosecond timescale and represents a sensitive indicator for decoherence.
Wave-packet rectification in nonlinear electronic systems: A tunable Aharonov-Bohm diode
Li, Yunyun; Zhou, Jun; Marchesoni, Fabio; Li, Baowen
2014-01-01
Rectification of electron wave-packets propagating along a quasi-one dimensional chain is commonly achieved via the simultaneous action of nonlinearity and longitudinal asymmetry, both confined to a limited portion of the chain termed wave diode. However, it is conceivable that, in the presence of an external magnetic field, spatial asymmetry perpendicular to the direction of propagation suffices to ensure rectification. This is the case of a nonlinear ring-shaped lattice with different upper and lower halves (diode), which is attached to two elastic chains (leads). The resulting device is mirror symmetric with respect to the ring vertical axis, but mirror asymmetric with respect to the chain direction. Wave propagation along the two diode paths can be modeled for simplicity by a discrete Schrödinger equation with cubic nonlinearities. Numerical simulations demonstrate that, thanks to the Aharonov-Bohm effect, such a diode can be operated by tuning the magnetic flux across the ring. PMID:24691462
Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes
Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing
2014-01-01
Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7–50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was −25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at −10 dB was up to 5.8 GHz within the frequency range of 2–18 GHz. PMID:25007783
Molding acoustic, electromagnetic and water waves with a single cloak
Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien
2015-01-01
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. PMID:26057934
Molding acoustic, electromagnetic and water waves with a single cloak.
Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien
2015-06-09
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves.
Patra, Subir; Banerjee, Sourav
2017-12-16
Detection of precursor damage followed by the quantification of the degraded material properties could lead to more accurate progressive failure models for composite materials. However, such information is not readily available. In composite materials, the precursor damages-for example matrix cracking, microcracks, voids, interlaminar pre-delamination crack joining matrix cracks, fiber micro-buckling, local fiber breakage, local debonding, etc.-are insensitive to the low-frequency ultrasonic guided-wave-based online nondestructive evaluation (NDE) or Structural Health Monitoring (SHM) (~100-~500 kHz) systems. Overcoming this barrier, in this article, an online ultrasonic technique is proposed using the coda part of the guided wave signal, which is often neglected. Although the first-arrival wave packets that contain the fundamental guided Lamb wave modes are unaltered, the coda wave packets however carry significant information about the precursor events with predictable phase shifts. The Taylor-series-based modified Coda Wave Interferometry (CWI) technique is proposed to quantify the stretch parameter to compensate the phase shifts in the coda wave as a result of precursor damage in composites. The CWI analysis was performed on five woven composite-fiber-reinforced-laminate specimens, and the precursor events were identified. Next, the precursor damage states were verified using high-frequency Scanning Acoustic Microscopy (SAM) and optical microscopy imaging.
Liu, Jun; Chen, Yu; Tang, Pinghua; Xu, Changwen; Zhao, Chujun; Zhang, Han; Wen, Shuangchun
2015-03-09
In a passively mode-locked Erbium-doped fiber laser with large anomalous-dispersion, we experimentally demonstrate the formation of noise-like square-wave pulse, which shows quite different features from conventional dissipative soliton resonance (DSR). The corresponding temporal and spectral characteristics of a variety of operation states, including Q-switched mode-locking, continuous-wave mode-locking and Raman-induced noise-like pulse near the lasing threshold, are also investigated. Stable noise-like square-wave mode-locked pulses can be obtained at a fundamental repetition frequency of 195 kHz, with pulse packet duration tunable from 15 ns to 306 ns and per-pulse energy up to 200 nJ. By reducing the linear cavity loss, stable higher-order harmonic mode-locking had also been observed, with pulse duration ranging from 37 ns at the 21st order harmonic wave to 320 ns at the fundamental order. After propagating along a piece of long telecom fiber, the generated square-wave pulses do not show any obvious change, indicating that the generated noise-like square-wave pulse can be considered as high-energy pulse packet for some promising applications. These experimental results should shed some light on the further understanding of the mechanism and characteristics of noise-like square-wave pulses.
Relativistic electromagnetic waves in an electron-ion plasma
NASA Technical Reports Server (NTRS)
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
Attosecond vacuum UV coherent control of molecular dynamics
Ranitovic, Predrag; Hogle, Craig W.; Rivière, Paula; Palacios, Alicia; Tong, Xiao-Ming; Toshima, Nobuyuki; González-Castrillo, Alberto; Martin, Leigh; Martín, Fernando; Murnane, Margaret M.; Kapteyn, Henry
2014-01-01
High harmonic light sources make it possible to access attosecond timescales, thus opening up the prospect of manipulating electronic wave packets for steering molecular dynamics. However, two decades after the birth of attosecond physics, the concept of attosecond chemistry has not yet been realized; this is because excitation and manipulation of molecular orbitals requires precisely controlled attosecond waveforms in the deep UV, which have not yet been synthesized. Here, we present a unique approach using attosecond vacuum UV pulse-trains to coherently excite and control the outcome of a simple chemical reaction in a deuterium molecule in a non-Born–Oppenheimer regime. By controlling the interfering pathways of electron wave packets in the excited neutral and singly ionized molecule, we unambiguously show that we can switch the excited electronic state on attosecond timescales, coherently guide the nuclear wave packets to dictate the way a neutral molecule vibrates, and steer and manipulate the ionization and dissociation channels. Furthermore, through advanced theory, we succeed in rigorously modeling multiscale electron and nuclear quantum control in a molecule. The observed richness and complexity of the dynamics, even in this very simplest of molecules, is both remarkable and daunting, and presents intriguing new possibilities for bridging the gap between attosecond physics and attochemistry. PMID:24395768
Acoustic wave propagation and intensity fluctuations in shallow water 2006 experiment
NASA Astrophysics Data System (ADS)
Luo, Jing
Fluctuations of low frequency sound propagation in the presence of nonlinear internal waves during the Shallow Water 2006 experiment are analyzed. Acoustic waves and environmental data including on-board ship radar images were collected simultaneously before, during, and after a strong internal solitary wave packet passed through a source-receiver acoustic track. Analysis of the acoustic wave signals shows temporal intensity fluctuations. These fluctuations are affected by the passing internal wave and agrees well with the theory of the horizontal refraction of acoustic wave propagation in shallow water. The intensity focusing and defocusing that occurs in a fixed source-receiver configuration while internal wave packet approaches and passes the acoustic track is addressed in this thesis. Acoustic ray-mode theory is used to explain the modal evolution of broadband acoustic waves propagating in a shallow water waveguide in the presence of internal waves. Acoustic modal behavior is obtained from the data through modal decomposition algorithms applied to data collected by a vertical line array of hydrophones. Strong interference patterns are observed in the acoustic data, whose main cause is identified as the horizontal refraction referred to as the horizontal Lloyd mirror effect. To analyze this interference pattern, combined Parabolic Equation model and Vertical-mode horizontal-ray model are utilized. A semi-analytic formula for estimating the horizontal Lloyd mirror effect is developed.
Artificial Excitation of Schumann Resonance with HAARP
NASA Astrophysics Data System (ADS)
Streltsov, A. V.; Chang, C. L.
2014-12-01
We report results from the experiment aimed at the artificial excitation of extremely-low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance (typically, 7.5 - 8.0 Hz frequency range). Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated by the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range of the Schumann resonance, when the ionosphere has a strong F-layer and an electric field greater than 5 mV/m is present in the E-region.
Transition operators in electromagnetic-wave diffraction theory - General theory
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Physics of Electronic Materials
NASA Astrophysics Data System (ADS)
Rammer, Jørgen
2017-03-01
1. Quantum mechanics; 2. Quantum tunneling; 3. Standard metal model; 4. Standard conductor model; 5. Electric circuit theory; 6. Quantum wells; 7. Particle in a periodic potential; 8. Bloch currents; 9. Crystalline solids; 10. Semiconductor doping; 11. Transistors; 12. Heterostructures; 13. Mesoscopic physics; 14. Arithmetic, logic and machines; Appendix A. Principles of quantum mechanics; Appendix B. Dirac's delta function; Appendix C. Fourier analysis; Appendix D. Classical mechanics; Appendix E. Wave function properties; Appendix F. Transfer matrix properties; Appendix G. Momentum; Appendix H. Confined particles; Appendix I. Spin and quantum statistics; Appendix J. Statistical mechanics; Appendix K. The Fermi-Dirac distribution; Appendix L. Thermal current fluctuations; Appendix M. Gaussian wave packets; Appendix N. Wave packet dynamics; Appendix O. Screening by symmetry method; Appendix P. Commutation and common eigenfunctions; Appendix Q. Interband coupling; Appendix R. Common crystal structures; Appendix S. Effective mass approximation; Appendix T. Integral doubling formula; Bibliography; Index.
Multi-Orbital contributions in High Harmonic Generation
NASA Astrophysics Data System (ADS)
Guehr, Markus
2009-05-01
The high harmonic spectrum generated from atoms or molecules in a strong laser field contains information about the electronic structure of the generation medium. In the high harmonic generation (HHG) process, a free electron wave packet tunnel-ionizes from the molecular orbital in a strong laser field. After being accelerated by the laser electric field, the free electron wave packet coherently recombines to the orbital from which is was initially ionized, thereby emitting the harmonic spectrum. Interferences between the free electron wave packet and the molecular orbital will shape the spectrum in a characteristic way. These interferences have been used to tomographically image the highest occupied molecular orbital (HOMO) of N2 [1]. Molecular electronic states energetically below the HOMO should contribute to laser-driven high harmonic generation (HHG), but this behavior has not been observed previously. We have observed evidence of HHG from multiple orbitals in aligned N2 [2]. The tunneling ionization (and therefore the harmonic generation) is most efficient if the orbital has a large extension in the direction of the harmonic generation polarization. The HOMO with its σg symmetry therefore dominates the harmonic spectrum if the molecular axis is parallel to the harmonic generation polarization, the lower bound πu HOMO-1 dominates in the perpendicular case. The HOMO contributions appear as a regular plateau with a cutoff in the HHG spectrum. In contrast, the HOMO-1 signal is strongly peaked in the cutoff region. We explain this by semi-classical simulations of the recombination process that show constructive interferences between the HOMO-1 and the recombining wave packet in the cutoff region. The ability to monitor several orbitals opens the route to imaging coherent superpositions of electronic orbitals. [1] J. Itatani et al., Nature 432, 867 (2004)[2] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum and M. Gühr, Science 322, 1232 (2008)
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Scully, Robert C. (Inventor)
2006-01-01
A deployable antenna and method for using wherein the deployable antenna comprises a collapsible membrane having at least one radiating element for transmitting electromagnetic waves, receiving electromagnetic waves, or both.
Transversality of electromagnetic waves in the calculus-based introductory physics course
NASA Astrophysics Data System (ADS)
Burko, Lior M.
2008-11-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes.
Estimation of the Kelvin wave contribution to the semiannual oscillation
NASA Technical Reports Server (NTRS)
Hitchman, Matthew H.; Leovy, Conway B.
1988-01-01
Daily temperature data acquired during the Limb Infrared Monitor of the Stratosphere experiment are used to study the behavior of Kelvin waves in the equatorial middle atmosphere. It is suggested that Kelvin wave packets of different zonal wave numbers propagate separately and may be forced separately. Two Kelvin wave regimes were identified during the October 1978 to May 1979 data period. Most of the properties of the observed waves are shown to be consistent with slowly-varying theory. Results suggest that gravity waves may contribute significantly to the equatorial stratopause semiannual oscillation.
Binary black holes' effects on electromagnetic fields.
Palenzuela, Carlos; Anderson, Matthew; Lehner, Luis; Liebling, Steven L; Neilsen, David
2009-08-21
In addition to producing gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as a possible enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.
Method for plasma formation for extreme ultraviolet lithography-theta pinch
Hassanein, Ahmed [Naperville, IL; Konkashbaev, Isak [Bolingbrook, IL; Rice, Bryan [Hillsboro, OR
2007-02-20
A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.
Dynamique et interférence de paquets d'ondes dans les atomes et dimères d'alcalins
NASA Astrophysics Data System (ADS)
Bouchene, M. A.
2002-11-01
Wave packet dynamics and interference experiments in alkaline atoms and dimers This work deals with time resolved experimental study of the dynamics of atomic and molecular processes occurring on a femtosecond time scale. The first part concerns with wave packet dynamics in alkaline atoms and dimers (K, K2) studied by pump-probe methods. In the case of potassium atoms, the wave packet is a superposition of fine structure states of 4p level and represents an electronic spin wave packet. We study the temporal dynamics of this wave packet and we show that it corresponds to a spin flip. We show that the bright state-dark state formalism is appropriate to describe the dynamics in this case and we present an original method that utilises this spin flip to produce spin-polarized electrons on the femtosecond scale. In the case of molecules, the wave packet created is a superposition of vibrational states. We present the results of the study of the vibrational wave packet dynamics in states A^1Σ^+_u et 2^1Pi_g. The pump-probe signal depends on the competition between the various wave packets dynamics in the two electronic states. The second part deals with wave packets interference experiments in similar systems (K, Cs, Cs2). This technique, complementary with the first one, is based on the interaction of two identical pulses with an atomic or molecular system. This gives rise to the interference of two wave packets created by the two laser pulses. This interference allows us to control coherently the excitation probability. In the case of atoms, we present the results of experiments obtained when exciting one photon transition 4s 4p in potassium and two-photon transition 6s 7d in cesium. Two kinds of interference are identified: the optical interference regime that occurs when the two pulses overlap in time and the regime of quantum interference that occurs when the two pulses are well separated. We investigate the behaviour of these interference in many new situations (saturation regime, chirped pulse, ...) that allow us to determine the advantages and limits of this technique. In the case of molecules, the interaction of the two-pulse sequence leads to the interference of vibrational wave packets. We analyse and discuss in this case the effects of a thermal distribution of initial states on the temporal coherent control signal. Ce travail porte sur l'étude expérimentale résolue en temps de la dynamique atomique et moléculaire prenant place sur une échelle de temps femtoseconde. Il présente deux orientations distinctes et complémentaires. La première concerne l'étude de la dynamique de paquets d'ondes dans des atomes et dimères d'alcalins (K, K2) par des méthodes pompe-sonde. Dans le cas du potassium atomique le paquet d'ondes est une superposition des états de structure fine de l'état 4p et représente un paquet de spin électronique. Nous observons la dynamique de ce paquet d'ondes au cours du temps et montrons que celle-ci correspond à une inversion du sens d'orientation du spin. Le formalisme théorique des états brillants et noirs est particulièrement adapté à la description de ce type de dynamique. Nous présentons alors une méthode originale qui, tirant avantage du mouvement d'inversion du spin, permet de produire des électrons polarisés en spin à l'échelle femtoseconde. Dans le cas des molécules, le paquet d'ondes créé est une superposition d'états vibrationnels. Nous présentons les résultats d'une étude systématique de la dynamique de paquet d'ondes vibrationnel dans les états électroniques A^1Σ^+_u et 2^1Pi_g. Le signal pompe-sonde dépend alors de la compétition entre les dynamiques associées aux paquets d'ondes créés dans les deux états électroniques. La deuxième partie traite d'expériences d'interférences de paquets d'ondes dans des systèmes similaires (K, Cs, Cs2). Cette technique, complémentaire de la première, consiste à faire interagir une séquence de deux impulsions identiques avec un système atomique ou moléculaire. Cette interaction résulte de l'interférence des deux paquets d'ondes créés par les deux impulsions laser. Ces interférences permettent de réaliser le contrôle cohérent de la probabilité d'excitation. Dans le cas des atomes, nous présentons les résultats des expériences réalisés sur la transition à un photon 4s 4p du potassium et à deux photons 6s 7d du césium. Deux régimes d'interférences sont mis en évidence : le régime d'interférences optiques qui se produit quand les deux impulsions se chevauchent dans le temps et le régime d'interférences quantiques qui se produit quand les deux impulsons sont séparés dans le temps. Nous explorons le comportement de ces deux types d'interférences dans un grand nombre de situations originales (régime saturé, cas d'impulsions à dérive de fréquence, etc.) qui nous permettent de mieux comprendre les avantages et les limites de cette technique. Dans le cas des molécules, l'interaction de la séquence des deux impulsions conduit à l'interférence des paquets d'ondes vibrationnels. Nous analysons et discutons dans ce cas-là des effets d'une distribution thermique dans l'état initial sur le signal de contrôle cohérent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.
2011-01-04
We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency changemore » due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.« less
Magnetic antenna excitation of whistler modes. III. Group and phase velocities of wave packets
NASA Astrophysics Data System (ADS)
Urrutia, J. M.; Stenzel, R. L.
2015-07-01
The properties of whistler modes excited by single and multiple magnetic loop antennas have been investigated in a large laboratory plasma. A single loop excites a wavepacket, but an array of loops across the ambient magnetic field B0 excites approximate plane whistler modes. The single loop data are measured. The array patterns are obtained by linear superposition of experimental data shifted in space and time, which is valid in a uniform plasma and magnetic field for small amplitude waves. Phasing the array changes the angle of wave propagation. The antennas are excited by an rf tone burst whose propagating envelope and oscillations yield group and phase velocities. A single loop antenna with dipole moment across B0 excites wave packets whose topology resembles m = 1 helicon modes, but without radial boundaries. The phase surfaces are conical with propagation characteristics of Gendrin modes. The cones form near the antenna with comparable parallel and perpendicular phase velocities. A physical model for the wave excitation is given. When a wave burst is applied to a phased antenna array, the wave front propagates both along the array and into the plasma forming a "whistler wing" at the front. These laboratory observations may be relevant for excitation and detection of whistler modes in space plasmas.
Enhanced transmission by a grating composed of left-handed materials
NASA Astrophysics Data System (ADS)
Premlal, Prabhakaran Letha; Tiwari, Dinesh Chandra; Chaturvedi, Vandana
2018-04-01
We present a detailed theoretical analysis about the influence of surface polaritons on the transmission properties of electromagnetic waves at the periodically corrugated interface between the vacuum and left-handed material by using nonlinear boundary condition approach. The principle behind this approach is to match the wave fields across the grating interface by using a set of linear wave equation with nonlinear boundary conditions. The resonant transmission of the incident electromagnetic radiation in this structure is feasible within a certain frequency band, where there is a range of frequency over which both the electric permittivity and the magnetic permeability are simultaneously negative. The enhanced transmission is attributed to the coupling of the incident electromagnetic wave with the excited surface polaritons on grating interface. Finally, we present the numerical results illustrating the effect of the structural parameters and angle of incidence on the transmission spectra of a TM polarized electromagnetic wave.
Tang, Zhanghong; Wang, Qun; Ji, Zhijiang; Shi, Meiwu; Hou, Guoyan; Tan, Danjun; Wang, Pengqi; Qiu, Xianbo
2014-12-01
With the increasing city size, high-power electromagnetic radiation devices such as high-power medium-wave (MW) and short-wave (SW) antennas have been inevitably getting closer and closer to buildings, which resulted in the pollution of indoor electromagnetic radiation becoming worsened. To avoid such radiation exceeding the exposure limits by national standards, it is necessary to predict and survey the electromagnetic radiation by MW and SW antennas before constructing the buildings. In this paper, a modified prediction method for the far-field electromagnetic radiation is proposed and successfully applied to predict the electromagnetic environment of an area close to a group of typical high-power MW and SW wave antennas. Different from currently used simplified prediction method defined in the Radiation Protection Management Guidelines (H J/T 10. 3-1996), the new method in this article makes use of more information such as antennas' patterns to predict the electromagnetic environment. Therefore, it improves the prediction accuracy significantly by the new feature of resolution at different directions. At the end of this article, a comparison between the prediction data and the measured results is given to demonstrate the effectiveness of the proposed new method. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Ullah Manzoor, Habib; Manzoor, Tareq; Hussain, Masroor; Manzoor, Sanaullah; Nazar, Kashif
2018-04-01
Surface electromagnetic waves are the solution of Maxwell’s frequency domain equations at the interface of two dissimilar materials. In this article, two canonical boundary-value problems have been formulated to analyze the multiplicity of electromagnetic surface waves at the interface between two dissimilar materials in the visible region of light. In the first problem, the interface between two semi-infinite rugate filters having symmetric refractive index profiles is considered and in the second problem, to enhance the multiplicity of surface electromagnetic waves, a homogeneous dielectric slab of 400 nm is included between two semi-infinite symmetric rugate filters. Numerical results show that multiple Bloch surface waves of different phase speeds, different polarization states, different degrees of localization and different field profiles are propagated at the interface between two semi-infinite rugate filters. Having two interfaces when a homogeneous dielectric layer is placed between two semi-infinite rugate filters has increased the multiplicity of electromagnetic surface waves.
Theory of time-resolved x-ray photoelectron diffraction from transient conformational molecules
NASA Astrophysics Data System (ADS)
Tsuru, Shota; Sako, Tokuei; Fujikawa, Takashi; Yagishita, Akira
2017-04-01
We formulate x-ray photoelectron diffraction (XPD) from molecules undergoing photochemical reactions induced by optical laser pulses, and then apply the formula to the simulation of time-dependent XPD profiles from both dissociating I2 molecules and bending C S2 molecules. The dependence of nuclear wave-packet motions on the intensity and shape of the optical laser pulses is examined. As a result, the XPD simulations based on such nuclear wave-packet calculations are observed to exhibit characteristic features, which are compared with the XPD profiles due to classical trajectories of nuclear motions. The present study provides a methodology toward creating "molecular movies" of ultrafast photochemical reactions by means of femtosecond XPD with x-ray free-electron lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, L.-Y.; Starace, Anthony F.
2007-10-15
We analyze carrier-envelope phase (CEP) effects on electron wave-packet momentum and energy spectra produced by one or two few-cycle attosecond xuv pulses. The few-cycle attosecond pulses are assumed to have arbitrary phases. We predict CEP effects on ionized electron wave-packet momentum distributions produced by attosecond pulses having durations comparable to those obtained by Sansone et al. [Science 314, 443 (2006)]. The onset of significant CEP effects is predicted to occur for attosecond pulse field strengths close to those possible with current experimental capabilities. Our results are based on single-active-electron solutions of the three-dimensional, time-dependent Schroedinger equation including atomic potentials appropriatemore » for the H and He atoms.« less
Recovery time in quantum dynamics of wave packets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strekalov, M. L., E-mail: strekalov@kinetics.nsc.ru
2017-01-15
A wave packet formed by a linear superposition of bound states with an arbitrary energy spectrum returns arbitrarily close to the initial state after a quite long time. A method in which quantum recovery times are calculated exactly is developed. In particular, an exact analytic expression is derived for the recovery time in the limiting case of a two-level system. In the general case, the reciprocal recovery time is proportional to the Gauss distribution that depends on two parameters (mean value and variance of the return probability). The dependence of the recovery time on the mean excitation level of themore » system is established. The recovery time is the longest for the maximal excitation level.« less
Relativistically strong electromagnetic radiation in a plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V., E-mail: svbulanov@gmail.com, E-mail: bulanov.sergei@jaea.go.jp; Esirkepov, T. Zh.; Kando, M.
Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated inmore » the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron–positron pairs, which is described within quantum electrodynamics theory.« less
Efthimion, Philip C.; Helfritch, Dennis J.
1989-11-28
An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.
Real-time holographic surveillance system
Collins, H. Dale; McMakin, Douglas L.; Hall, Thomas E.; Gribble, R. Parks
1995-01-01
A holographic surveillance system including means for generating electromagnetic waves; means for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; means for receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; means for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and means for displaying the processed information to determine nature of the target. The means for processing the electrical signals includes means for converting analog signals to digital signals followed by a computer means to apply a backward wave algorithm.
Real-time wideband holographic surveillance system
Sheen, David M.; Collins, H. Dale; Hall, Thomas E.; McMakin, Douglas L.; Gribble, R. Parks; Severtsen, Ronald H.; Prince, James M.; Reid, Larry D.
1996-01-01
A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm.
Real-time wideband holographic surveillance system
Sheen, D.M.; Collins, H.D.; Hall, T.E.; McMakin, D.L.; Gribble, R.P.; Severtsen, R.H.; Prince, J.M.; Reid, L.D.
1996-09-17
A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm. 28 figs.
LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krafft, C.; Volokitin, A. S.; Krasnoselskikh, V. V., E-mail: catherine.krafft@u-psud.fr
2015-08-20
Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuationsmore » lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.« less
Pitch Angle Scattering of Energetic Electrons by Plasmaspheric Hiss Emissions
NASA Astrophysics Data System (ADS)
Tobita, M.; Omura, Y.; Summers, D.
2017-12-01
We study scattering of energetic electrons in pitch angles and kinetic energies through their resonance with plasmaspheric hiss emissions consisting of many coherent discrete whistler-mode wave packets with rising and falling frequencies [1,2,3]. Using test particle simulations, we evaluate the efficiency of scattering, which depends on the inhomogeneity ratio S of whistler mode wave-particle interaction [4]. The value of S is determined by the wave amplitude, frequency sweep rate, and the gradient of the background magnetic field. We first modulate those parameters and observe variations of pitch angles and kinetic energies of electrons with a single wave under various S values so as to obtain basic understanding. We then include many waves into the system to simulate plasmaspheric hiss emissions. As the wave packets propagate away from the magnetic equator, the nonlinear trapping potential at the resonance velocity is deformed, making a channel of gyrophase for untrapped electrons to cross the resonance velocity, and causing modulations in their pitch angles and kinetic energies. We find efficient scattering of pitch angles and kinetic energies because of coherent nonlinear wave-particle interaction, resulting in electron precipitations into the polar atmosphere. We compare the results with the bounce averaged pitch angle diffusion coefficient based on quasi-linear theory, and show that the nonlinear wave model with many coherent packets can cause scattering of resonant electrons much faster than the quasi-linear diffusion process. [1] Summers, D., Omura, Y., Nakamura, S., and C. A. Kletzing (2014), Fine structure of plasmaspheric hiss, J. Geophys. Res., 119, 9134-9149. [2] Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562. [3] Nakamura, S., Y. Omura, D. Summers, and C. A. Kletzing (2016), Observational evidence of the nonlinear wave growth theory of plasmaspheric hiss, Geophys. Res. Lett., 43, 10,040-10,049. [4] Omura, Y., Katoh, Y., and Summers, D., Theory and simulation of the generation of whistler-mode chorus (2008), J. Geophys. Res., 113, A04223.
Cup waveguide antenna with integrated polarizer and OMT
NASA Technical Reports Server (NTRS)
Kory, Carol (Inventor); Acosta, Roberto J. (Inventor); Lambert, Kevin M. (Inventor)
2011-01-01
A cup waveguide antenna with integrated polarizer and OMT for simultaneously communicating left and right hand circularly polarized electromagnetic waves is adjustable to obtain efficient propagation and reception of electromagnetic waves. The antenna includes a circular waveguide having an orthomode transducer utilizing first and second pins longitudinally spaced apart and oriented orthogonally with respect to each other. Six radially-oriented adjustable polarizer screws extend from the exterior to the interior of the waveguide. A septum intermediate the first and second pins is aligned with the first pin. Adjustment of the polarizer screws enables maximized propagation of and/or response to left hand circularly polarized electromagnetic waves by the first pin while simultaneously enabling maximized propagation of and/or response to right hand circularly polarized electromagnetic waves by the second pin.
Footwear scanning systems and methods
Fernandes, Justin L.; McMakin, Douglas L.; Sheen, David M.; Tedeschi, Jonathan R.
2017-07-25
Methods and apparatus for scanning articles, such as footwear, to provide information regarding the contents of the articles are described. According to one aspect, a footwear scanning system includes a platform configured to contact footwear to be scanned, an antenna array configured to transmit electromagnetic waves through the platform into the footwear and to receive electromagnetic waves from the footwear and the platform, a transceiver coupled with antennas of the antenna array and configured to apply electrical signals to at least one of the antennas to generate the transmitted electromagnetic waves and to receive electrical signals from at least another of the antennas corresponding to the electromagnetic waves received by the others of the antennas, and processing circuitry configured to process the received electrical signals from the transceiver to provide information regarding contents within the footwear.
Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung
2014-04-01
To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in an elementary school that uses digital textbooks. Electric and magnetic fields from TPCs were measured using the HI-3603 Visual Display Terminal/ Very Low Frequency (VDT/VLF) radiation measurement system. Electromagnetic field values from TPCs measured at a student's seat and at a teacher's computer were deemed not harmful to health. However, electromagnetic field values varied based on the distance between students, other electronic devices such as a desktop computers, and student posture while using a TPC. Based on these results, it is necessary to guide students to observe proper posture and to arrange seats at an appropriate distance in the classroom.
Gravitational Waves and Time Domain Astronomy
NASA Technical Reports Server (NTRS)
Centrella, Joan; Nissanke, Samaya; Williams, Roy
2012-01-01
The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.
Lorentz-boosted evanescent waves
NASA Astrophysics Data System (ADS)
Bliokh, Konstantin Y.
2018-06-01
Polarization, spin, and helicity are important properties of electromagnetic waves. It is commonly believed that helicity is invariant under the Lorentz transformations. This is indeed so for plane waves and their localized superpositions. However, this is not the case for evanescent waves, which are well-defined only in a half-space, and are characterized by complex wave vectors. Here we describe transformations of evanescent electromagnetic waves and their polarization/spin/helicity properties under the Lorentz boosts along the three spatial directions.
Exploring Divisibility and Summability of 'Photon' Wave Packets in Nonlinear Optical Phenomena
NASA Technical Reports Server (NTRS)
Prasad, Narasimha; Roychoudhuri, Chandrasekhar
2009-01-01
Formulations for second and higher harmonic frequency up and down conversions, as well as multi photon processes directly assume summability and divisibility of photons. Quantum mechanical (QM) interpretations are completely congruent with these assumptions. However, for linear optical phenomena (interference, diffraction, refraction, material dispersion, spectral dispersion, etc.), we have a profound dichotomy. Most optical engineers innovate and analyze all optical instruments by propagating pure classical electromagnetic (EM) fields using Maxwell s equations and gives only lip-service to the concept "indivisible light quanta". Further, irrespective of linearity or nonlinearity of the phenomena, the final results are always registered through some photo-electric or photo-chemical effects. This is mathematically well modeled by a quadratic action (energy absorption) relation. Since QM does not preclude divisibility or summability of photons in nonlinear & multi-photon effects, it cannot have any foundational reason against these same possibilities in linear optical phenomena. It implies that we must carefully revisit the fundamental roots behind all light-matter interaction processes and understand the common origin of "graininess" and "discreteness" of light energy.
Study of plasma environments for the integrated Space Station electromagnetic analysis system
NASA Technical Reports Server (NTRS)
Singh, Nagendra
1992-01-01
The final report includes an analysis of various plasma effects on the electromagnetic environment of the Space Station Freedom. Effects of arcing are presented. Concerns of control of arcing by a plasma contactor are highlighted. Generation of waves by contaminant ions are studied and amplitude levels of the waves are estimated. Generation of electromagnetic waves by currents in the structure of the space station, driven by motional EMF, is analyzed and the radiation level is estimated.
Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave
Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.; Boardsen, Scott A.; Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; Saito, Yoshifumi; Paterson, William R.; Fuselier, Stephen A.; Ergun, Robert E.; Strangeway, Robert J.; Russell, Christopher T.; Giles, Barbara L.; Pollock, Craig J.; Torbert, Roy B.; Burch, James L.
2017-01-01
Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations. PMID:28361881
Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave.
Gershman, Daniel J; F-Viñas, Adolfo; Dorelli, John C; Boardsen, Scott A; Avanov, Levon A; Bellan, Paul M; Schwartz, Steven J; Lavraud, Benoit; Coffey, Victoria N; Chandler, Michael O; Saito, Yoshifumi; Paterson, William R; Fuselier, Stephen A; Ergun, Robert E; Strangeway, Robert J; Russell, Christopher T; Giles, Barbara L; Pollock, Craig J; Torbert, Roy B; Burch, James L
2017-03-31
Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.
Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave
NASA Technical Reports Server (NTRS)
Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.;
2017-01-01
Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erokhin, A. N.; Erokhin, N. S.; Milant'ev, V. P.
2012-05-15
The phenomenon of trapping of weakly relativistic charged particles (with kinetic energies on the order of mc{sup 2}) into a regime of surfatron acceleration by an electromagnetic wave that propagates in plasma across a weak external magnetic field has been studied using nonlinear numerical calculations based on a solution of the relativistic equations of motion. Analysis showed that, for the wave amplitude above a certain threshold value and the initial wave phase outside the interval favorable for the surfing regime, the trajectory of a charged particle initially corresponds to its cyclotron rotation in the external magnetic field. For the initialmore » particle energies studied, the period of this rotation is relatively short. After a certain number (from several dozen to several thousand and above) of periods of rotation, the wave phase takes a value that is favorable for trapping of the charged particle on its trajectory by the electromagnetic wave, provided the Cherenkov resonance conditions are satisfied. As a result, the wave traps the charged particle and imparts it an ultrarelativistic acceleration. In momentum space, the region of trapping into the regime of surfing on an electromagnetic wave turns out to be rather large.« less
NASA Astrophysics Data System (ADS)
Shoji, Masafumi; Miyoshi, Yoshizumi; Katoh, Yuto; Keika, Kunihiro; Angelopoulos, Vassilis; Kasahara, Satoshi; Asamura, Kazushi; Nakamura, Satoko; Omura, Yoshiharu
2017-09-01
Electromagnetic plasma waves are thought to be responsible for energy exchange between charged particles in space plasmas. Such an energy exchange process is evidenced by phase space holes identified in the ion distribution function and measurements of the dot product of the plasma wave electric field and the ion velocity. We develop a method to identify ion hole formation, taking into consideration the phase differences between the gyromotion of ions and the electromagnetic ion cyclotron (EMIC) waves. Using this method, we identify ion holes in the distribution function and the resulting nonlinear EMIC wave evolution from Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. These ion holes are key to wave growth and frequency drift by the ion currents through nonlinear wave-particle interactions, which are identified by a computer simulation in this study.
[Acoustic detection of absorption of millimeter-band electromagnetic waves in biological objects].
Polnikov, I G; Putvinskiĭ, A V
1988-01-01
Principles of photoacoustic spectroscopy were applied to elaborate a new method for controlling millimeter electromagnetic waves absorption in biological objects. The method was used in investigations of frequency dependence of millimeter wave power absorption in vitro and in vivo in the commonly used experimental irradiation systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Light, Max Eugene
This report outlines the theory underlying electromagnetic (EM) wave propagation in an unmagnetized, inhomogeneous plasma. The inhomogeneity is given by a spatially nonuniform plasma electron density n e(r), which will modify the wave propagation in the direction of the gradient rn e(r).
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing
2016-06-22
Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing
2016-01-01
Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules. PMID:27329071
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; ...
2016-06-22
Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. Inmore » addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. Here, we showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.« less
Control of chemical dynamics by lasers: theoretical considerations.
Kondorskiy, Alexey; Nanbu, Shinkoh; Teranishi, Yoshiaki; Nakamura, Hiroki
2010-06-03
Theoretical ideas are proposed for laser control of chemical dynamics. There are the following three elementary processes in chemical dynamics: (i) motion of the wave packet on a single adiabatic potential energy surface, (ii) excitation/de-excitation or pump/dump of wave packet, and (iii) nonadiabatic transitions at conical intersections of potential energy surfaces. A variety of chemical dynamics can be controlled, if we can control these three elementary processes as we desire. For (i) we have formulated the semiclassical guided optimal control theory, which can be applied to multidimensional real systems. The quadratic or periodic frequency chirping method can achieve process (ii) with high efficiency close to 100%. Concerning process (iii) mentioned above, the directed momentum method, in which a predetermined momentum vector is given to the initial wave packet, makes it possible to enhance the desired transitions at conical intersections. In addition to these three processes, the intriguing phenomenon of complete reflection in the nonadiabatic-tunneling-type of potential curve crossing can also be used to control a certain class of chemical dynamics. The basic ideas and theoretical formulations are provided for the above-mentioned processes. To demonstrate the effectiveness of these controlling methods, numerical examples are shown by taking the following processes: (a) vibrational photoisomerization of HCN, (b) selective and complete excitation of the fine structure levels of K and Cs atoms, (c) photoconversion of cyclohexadiene to hexatriene, and (d) photodissociation of OHCl to O + HCl.
Frauenfelder, Hans; Young, Robert D.; Fenimore, Paul W.
2017-01-01
We recently introduced a model of incoherent quasielastic neutron scattering (QENS) that treats the neutrons as wave packets of finite length and the protein as a random walker in the free energy landscape. We call the model ELM for “energy landscape model.” In ELM, the interaction of the wave packet with a proton in a protein provides the dynamic information. During the scattering event, the momentum Q(t) is transferred by the wave packet to the struck proton and its moiety, exerting the force F(t)=dQ(t)/dt. The resultant energy E⋆ is stored elastically and returned to the neutron as it exits. The energy is given by E⋆=kB(T0+χQ), where T0 is the ambient temperature and χ (≈ 91 K Å) is a new elastobaric coefficient. Experiments yield the scattering intensity (dynamic structure factor) S(Q;T) as a function of Q and T. To test our model, we use published data on proteins where only thermal vibrations are active. ELM competes with the currently accepted theory, here called the spatial motion model (SMM), which explains S(Q,T) by motions in real space. ELM is superior to SMM: It can explain the experimental angular and temperature dependence, whereas SMM cannot do so. PMID:28461503
Ultrafast time-resolved pump-probe spectroscopy of PYP by a sub-8 fs pulse laser at 400 nm.
Liu, Jun; Yabushita, Atsushi; Taniguchi, Seiji; Chosrowjan, Haik; Imamoto, Yasushi; Sueda, Keiichi; Miyanaga, Noriaki; Kobayashi, Takayoshi
2013-05-02
Impulsive excitation of molecular vibration is known to induce wave packets in both the ground state and excited state. Here, the ultrafast dynamics of PYP was studied by pump-probe spectroscopy using a sub-8 fs pulse laser at 400 nm. The broadband spectrum of the UV pulse allowed us to detect the pump-probe signal covering 360-440 nm. The dependence of the vibrational phase of the vibrational mode around 1155 cm(-1) on the probe photon energy was observed for the first time to our knowledge. The vibrational mode coupled to the electronic transition observed in the probe spectral ranges of 2.95-3.05 and 3.15-3.35 eV was attributed to the wave packets in the ground state and the excited state, respectively. The frequencies in the ground state and excited state were determined to be 1155 ± 1 and 1149 ± 1 cm(-1), respectively. The frequency difference is due to change after photoexcitation. This means a reduction of the bond strength associated with π-π* excitation, which is related to the molecular structure change associated with the primary isomerization process in the photocycle in PYP. Real-time vibrational modes at low frequency around 138, 179, 203, 260, and 317 cm(-1) were also observed and compared with the Raman spectrum for the assignment of the vibrational wave packet.
Acoustic wave generation by microwaves and applications to nondestructive evaluation.
Hosten, Bernard; Bacon, Christophe; Guilliorit, Emmanuel
2002-05-01
Although acoustic wave generation by electromagnetic waves has been widely studied in the case of laser-generated ultrasounds, the literature on acoustic wave generation by thermal effects due to electromagnetic microwaves is very sparse. Several mechanisms have been suggested to explain the phenomenon of microwave generation, i.e. radiation pressure, electrostriction or thermal expansion. Now it is known that the main cause is the thermal expansion due to the microwave absorption. This paper will review the recent advances in the theory and experiments that introduce a new way to generate ultrasonic waves without contact for the purpose of nondestructive evaluation and control. The unidirectional theory based on Maxwell's equations, heat equation and thermoviscoelasticity predicts the generation of acoustic waves at interfaces and inside stratified materials. Acoustic waves are generated by a pulsed electromagnetic wave or a burst at a chosen frequency such that materials can be excited with a broad or narrow frequency range. Experiments show the generation of acoustic waves in water, viscoelastic polymers and composite materials shaped as rod and plates. From the computed and measured accelerations at interfaces, the viscoelastic and electromagnetic properties of materials such as polymers and composites can be evaluated (NDE). Preliminary examples of non-destructive testing applications are presented.
Saturation of Langmuir waves in laser-produced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, K.L.
1996-04-01
This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments aremore » proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser.« less
Parametric study of electromagnetic waves propagating in absorbing curved S ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1989-01-01
A finite-element Galerkin formulation has been developed to study attenuation of transverse magnetic (TM) waves propagating in two-dimensional S-curved ducts with absorbing walls. In the frequency range where the duct diameter and electromagnetic wave length are nearly equal, the effect of duct length, curvature (duct offset), and absorber wall thickness was examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. For a straight and a curved duct with perfect electric conductor terminations, power attenuation contours were examined to determine electromagnetic wall properties associated with maximum input signal absorption. Offset of the S-duct was found to significantly affect the value of the wall permittivity associated with the optimal attenuation of the incident electromagnetic wave.
Numerical study of electromagnetic waves generated by a prototype dielectric logging tool
Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.
2004-01-01
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.
Finite element analysis of electromagnetic propagation in an absorbing wave guide
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1986-01-01
Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.
Real-time holographic surveillance system
Collins, H.D.; McMakin, D.L.; Hall, T.E.; Gribble, R.P.
1995-10-03
A holographic surveillance system is disclosed including means for generating electromagnetic waves; means for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; means for receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; means for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and means for displaying the processed information to determine nature of the target. The means for processing the electrical signals includes means for converting analog signals to digital signals followed by a computer means to apply a backward wave algorithm. 21 figs.
Broadband Metamaterial for Nonresonant Matching of Acoustic Waves
2012-03-28
35898, USA. Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle ...metamaterial possessing a Brewster -like angle that is completely transparent to sound waves over an ultra-broadband frequency range with .100% bandwidth...Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle , but it is
The gyrotron - a natural source of high-power orbital angular momentum millimeter-wave beams
NASA Astrophysics Data System (ADS)
Thumm, M.; Sawant, A.; Choe, M. S.; Choi, E. M.
2017-08-01
Orbital angular momentum (OAM) of electromagnetic-wave beams provides further diversity to multiplexing in wireless communication. The present report shows that higher-order mode gyrotrons are natural sources of high-power OAM millimeter (mm) wave beams. The well-defined OAM of their rotating cavity modes operating at near cutoff frequency has been derived by photonic and electromagnetic wave approaches.
SEQUENCING of TSUNAMI WAVES: Why the first wave is not always the largest?
NASA Astrophysics Data System (ADS)
Synolakis, C.; Okal, E.
2016-12-01
We discuss what contributes to the `sequencing' of tsunami waves in the far field, that is, to the distribution of the maximum sea surface amplitude inside the dominant wave packet constituting the primary arrival at a distant harbour. Based on simple models of sources for which analytical solutions are available, we show that, as range is increased, the wave pattern evolves from a regime of maximum amplitude in the first oscillation to one of delayed maximum, where the largest amplitude takes place during a subsequent oscillation. In the case of the simple, instantaneous uplift of a circular disk at the surface of an ocean of constant depth, the critical distance for transition between those patterns scales as r 30 /h2 where r0 is the radius of the disk and h the depth of the ocean. This behaviour is explained from simple arguments based on a model where sequencing results from frequency dispersion in the primary wave packet, as the width of its spectrum around its dominant period T0 becomes dispersed in time in an amount comparable to T0 , the latter being controlled by a combination of source size and ocean depth. The general concepts in this model are confirmed in the case of more realistic sources for tsunami excitation by a finite-time deformation of the ocean floor, as well as in real-life simulations of tsunamis excited by large subduction events, for which we find that the influence of fault width on the distribution of sequencing is more important than that of fault length. Finally, simulation of the major events of Chile (2010) and Japan (2011) at large arrays of virtual gauges in the Pacific Basin correctly predicts the majority of the sequencing patterns observed on DART buoys during these events. By providing insight into the evolution with time of wave amplitudes inside primary wave packets for far field tsunamis generated by large earthquakes, our results stress the importance, for civil defense authorities, of issuing warning and evacuation orders of sufficient duration to avoid the hazard
Sequencing of tsunami waves: why the first wave is not always the largest
NASA Astrophysics Data System (ADS)
Okal, Emile A.; Synolakis, Costas E.
2016-02-01
This paper examines the factors contributing to the `sequencing' of tsunami waves in the far field, that is, to the distribution of the maximum sea surface amplitude inside the dominant wave packet constituting the primary arrival at a distant harbour. Based on simple models of sources for which analytical solutions are available, we show that, as range is increased, the wave pattern evolves from a regime of maximum amplitude in the first oscillation to one of delayed maximum, where the largest amplitude takes place during a subsequent oscillation. In the case of the simple, instantaneous uplift of a circular disk at the surface of an ocean of constant depth, the critical distance for transition between those patterns scales as r_0^3 / h^2 where r0 is the radius of the disk and h the depth of the ocean. This behaviour is explained from simple arguments based on a model where sequencing results from frequency dispersion in the primary wave packet, as the width of its spectrum around its dominant period T0 becomes dispersed in time in an amount comparable to T0, the latter being controlled by a combination of source size and ocean depth. The general concepts in this model are confirmed in the case of more realistic sources for tsunami excitation by a finite-time deformation of the ocean floor, as well as in real-life simulations of tsunamis excited by large subduction events, for which we find that the influence of fault width on the distribution of sequencing is more important than that of fault length. Finally, simulation of the major events of Chile (2010) and Japan (2011) at large arrays of virtual gauges in the Pacific Basin correctly predicts the majority of the sequencing patterns observed on DART buoys during these events. By providing insight into the evolution with time of wave amplitudes inside primary wave packets for far field tsunamis generated by large earthquakes, our results stress the importance, for civil defense authorities, of issuing warning and evacuation orders of sufficient duration to avoid the hazard inherent in premature calls for all-clear.
Nonparaxial wave beams and packets with general astigmatism
NASA Astrophysics Data System (ADS)
Kiselev, A. P.; Plachenov, A. B.; Chamorro-Posada, P.
2012-04-01
We present exact solutions of the wave equation involving an arbitrary wave form with a phase closely similar to the general astigmatic phase of paraxial wave optics. Special choices of the wave form allow general astigmatic beamlike and pulselike waves with a Gaussian-type unrestricted localization in space and time. These solutions are generalizations of the known Bateman-type waves obtained from the connection existing between beamlike solutions of the paraxial parabolic equation and relatively undistorted wave solutions of the wave equation. As a technical tool, we present a full description of parametrizations of 2×2 symmetric matrices with positive imaginary part, which arise in the theory of Gaussian beams.
ERIC Educational Resources Information Center
Rojas, R.; Robles, P.
2011-01-01
We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…
New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten
1994-01-01
We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.
Kuznetsov-Ma waves train generation in a left-handed material
NASA Astrophysics Data System (ADS)
Atangana, Jacques; Giscard Onana Essama, Bedel; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Crépin Kofane, Timoléon
2015-03-01
We analyze the behavior of an electromagnetic wave which propagates in a left-handed material. Second-order dispersion and cubic-quintic nonlinearities are considered. This behavior of an electromagnetic wave is modeled by a nonlinear Schrödinger equation which is solved by collective coordinates theory in order to characterize the light pulse intensity profile. More so, a specific frequency range has been outlined where electromagnetic wave behavior will be investigated. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton. When the quintic nonlinearity comes into play, it provokes strong and long internal perturbations which lead to Benjamin-Feir instability. This phenomenon, also called modulational instability, induces appearance of a Kuznetsov-Ma waves train. We numerically verify the validity of Kuznetsov-Ma theory by presenting physical conditions which lead to Kuznetsov-Ma waves train generation. Thereafter, some properties of such waves train are also verified.
Food collection and response to pheromones in an ant species exposed to electromagnetic radiation.
Cammaerts, Marie-Claire; Rachidi, Zoheir; Bellens, François; De Doncker, Philippe
2013-09-01
We used the ant species Myrmica sabuleti as a model to study the impact of electromagnetic waves on social insects' response to their pheromones and their food collection. We quantified M. sabuleti workers' response to their trail, area marking and alarm pheromone under normal conditions. Then, we quantified the same responses while under the influence of electromagnetic waves. Under such an influence, ants followed trails for only short distances, no longer arrived at marked areas and no longer orientated themselves to a source of alarm pheromone. Also when exposed to electromagnetic waves, ants became unable to return to their nest and recruit congeners; therefore, the number of ants collecting food increases only slightly and slowly. After 180 h of exposure, their colonies deteriorated. Electromagnetic radiation obviously affects social insects' behavior and physiology.
Electromagnetic Modeling of Human Body Using High Performance Computing
NASA Astrophysics Data System (ADS)
Ng, Cho-Kuen; Beall, Mark; Ge, Lixin; Kim, Sanghoek; Klaas, Ottmar; Poon, Ada
Realistic simulation of electromagnetic wave propagation in the actual human body can expedite the investigation of the phenomenon of harvesting implanted devices using wireless powering coupled from external sources. The parallel electromagnetics code suite ACE3P developed at SLAC National Accelerator Laboratory is based on the finite element method for high fidelity accelerator simulation, which can be enhanced to model electromagnetic wave propagation in the human body. Starting with a CAD model of a human phantom that is characterized by a number of tissues, a finite element mesh representing the complex geometries of the individual tissues is built for simulation. Employing an optimal power source with a specific pattern of field distribution, the propagation and focusing of electromagnetic waves in the phantom has been demonstrated. Substantial speedup of the simulation is achieved by using multiple compute cores on supercomputers.
Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann
2009-09-21
We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.
Selective wave-transmitting electromagnetic absorber through composite metasurface
NASA Astrophysics Data System (ADS)
Sun, Zhiwei; Zhao, Junming; Zhu, Bo; Jiang, Tian; Feng, Yijun
2017-11-01
Selective wave-transmitting absorbers which have one or more narrow transmission bands inside a wide absorption band are often demanded in wireless communication and radome applications for reducing the coupling between different systems, improving anti-jamming capability, and reducing antennas' radar cross section. Here we propose a feasible method that utilizing composite of two metasurfaces with different polarization dependent characteristics, one works as electromagnetic polarization rotator and the other as a wideband polarization dependent electromagnetic wave absorber. The polarization rotator produces a cross polarization output in the wave-transmitting band, while preserves the polarization of the incidence outside the band. The metasurface absorber works for certain linear polarization with a much wider absorption band covering the wave-transmitting frequency. When combining these two metasurfaces properly, the whole structure behaves as a wideband absorber with a certain frequency transmission window. The proposal may be applied in radome designs to reduce the radar cross section of antenna or improving the electromagnetic compatibility in communication devices.
Electromagnetic and electrostatic emissions at the cusp-magnetosphere interface during substorms
NASA Technical Reports Server (NTRS)
Curtis, S. A.; Fairfield, D. H.; Wu, C. S.
1979-01-01
Strongly peaked electrostatic emissions near 10.0 kHz and electromagnetic emissions near 0.56 kHz have been observed by the VLF wave detector on board Imp 6 on crossings from the earth's magnetosphere into the polar cusp during the occurrence of large magnetospheric substorms. The electrostatic emissions were observed to be closely confined to the cusp-magnetosphere interface. The electromagnetic emissions were of somewhat broader spatial extent and were seen on higher-latitude field lines within the cusp. Using these plasma wave observations and additional information provided by plasma, magnetometer and particle measurements made simultaneously on Imp 6, theories are constructed to explain each of the two classes of emission. The electromagnetic waves are modeled as whistlers, and the electrostatic waves as electron-cyclotron harmonics. The resulting growth rates predict power spectra similar to those observed for both emission classes. The electrostatic waves may play a significant role via enhanced diffusion in the relaxation of the sharp substorm time cusp-magnetosphere boundary to a more diffuse quiet time boundary.
Preparation and characterization of TiO2 coated Fe nanofibers for electromagnetic wave absorber.
Jang, Dae-Hwan; Song, Hanbok; Lee, Young-In; Lee, Kun-Jae; Kim, Ki Hyeon; Oh, Sung-Tag; Lee, Sang-Kwan; Choa, Yong-Ho
2011-01-01
Recently, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) have become serious problems due to the growth of electronic device and next generation telecommunication. It is necessary to develop new electromagnetic wave absorbing material to overcome the limitation of electromagnetic wave shielding materials. The EMI attenuation is normally related to magnetic loss and dielectric loss. Therefore, magnetic material coating dielectric materials are required in this reason. In this study, TiO2 coated Fe nanofibers were prepared to improve their properties for electromagnetic wave absorption. Poly(vinylpyrrolidone) (PVP) and Iron (III) nitrate nonahydrate (Fe(NO3)3 x 9H2O) were used as starting materials for the synthesis of Fe oxide nanofibers. Fe oxide nanofibers were prepared by electrospinning in an electric field and heat treatment. TiO2 layer was coated on the surface of Fe oxide nanofibers using sol-gel process. After the reduction of TiO2 coated Fe oxide nanofibers, Fe nanofibers with a TiO2 coating layer of about 10 nm were successfully obtained. The morphology and structure of fibers were characterized by SEM, TEM, and XRD. In addition, the absorption properties of TiO2 coated Fe nanofibers were measured by network analyzer.
Modulated wave formation in myocardial cells under electromagnetic radiation
NASA Astrophysics Data System (ADS)
Takembo, Clovis N.; Mvogo, A.; Ekobena Fouda, H. P.; Kofané, T. C.
2018-06-01
We exclusively analyze the onset and condition of formation of modulated waves in a diffusive FitzHugh-Nagumo model for myocardial cell excitations. The cells are connected through gap junction coupling. An additive magnetic flux variable is used to describe the effect of electromagnetic induction, while electromagnetic radiation is imposed on the magnetic flux variable as a periodic forcing. We used the discrete multiple scale expansion and obtained, from the model equations, a single differential-difference amplitude nonlinear equation. We performed the linear stability analysis of this equation and found that instability features are importantly influenced by the induced electromagnetic gain. We present the unstable and stable regions of modulational instability (MI). The resulting analytic predictions are confirmed by numerical experiments of the generic equations. The results reveal that due to MI, an initial steady state that consisted of a plane wave with low amplitude evolves into a modulated localized wave patterns, soliton-like in shape, with features of synchronization. Furthermore, the formation of periodic pulse train with breathing motion presents a disappearing pattern in the presence of electromagnetic radiation. This could provide guidance and better understanding of sudden heart failure exposed to heavily electromagnetic radiation.
NASA Astrophysics Data System (ADS)
Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.
2013-09-01
We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.
Time operators in stroboscopic wave-packet basis and the time scales in tunneling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokes, P.
2011-03-15
We demonstrate that the time operator that measures the time of arrival of a quantum particle into a chosen state can be defined as a self-adjoint quantum-mechanical operator using periodic boundary conditions and applied to wave functions in energy representation. The time becomes quantized into discrete eigenvalues; and the eigenstates of the time operator, i.e., the stroboscopic wave packets introduced recently [Phys. Rev. Lett. 101, 046402 (2008)], form an orthogonal system of states. The formalism provides simple physical interpretation of the time-measurement process and direct construction of normalized, positive definite probability distribution for the quantized values of the arrival time.more » The average value of the time is equal to the phase time but in general depends on the choice of zero time eigenstate, whereas the uncertainty of the average is related to the traversal time and is independent of this choice. The general formalism is applied to a particle tunneling through a resonant tunneling barrier in one dimension.« less
Observations of a Unique Type of ULF Wave by Low-Altitude Space Technology 5 Satellites
NASA Technical Reports Server (NTRS)
Le, G.; Chi, P. J.; Strangeway, R. J.; Slavin, J. A.
2011-01-01
We report a unique type of ULF waves observed by low-altitude Space Technology 5 (ST-5) constellation mission. ST-5 is a three-microsatellite constellation deployed into a 300 x 4500 km dawn-dusk and Sun-synchronous polar orbit with 105.6deg inclination angle. Because of the Earth's rotation and the dipole tilt effect, the spacecraft's dawn-dusk orbit track can reach as low as subauroral latitudes during the course of a day. Whenever the spacecraft traverse the dayside closed field line region at subauroral latitudes, they frequently observe strong transverse oscillations at 30-200 mHz, or in the Pc2-3 frequency range. These Pc2-3 waves appear as wave packets with durations in the order of 5-10 min. As the maximum separations of the ST-5 spacecraft are in the order of 10 min, the three ST-5 satellites often observe very similar wave packets, implying these wave oscillations occur in a localized region. The coordinated ground-based magnetic observations at the spacecraft footprints, however, do not see waves in the Pc2-3 band; instead, the waves appear to be the common Pc4-5 waves associated with field line resonances. We suggest that these unique Pc2-3 waves seen by ST-5 are in fact the Doppler-shifted Pc4-5 waves as a result of rapid traverse of the spacecraft across the resonant field lines azimuthally at low altitudes. The observations with the unique spacecraft dawn-dusk orbits at proper altitudes and magnetic latitudes reveal the azimuthal characteristics of field line resonances.
First tomographic observations of gravity waves by the infrared limb imager GLORIA
NASA Astrophysics Data System (ADS)
Krisch, Isabell; Preusse, Peter; Ungermann, Jörn; Dörnbrack, Andreas; Eckermann, Stephen D.; Ern, Manfred; Friedl-Vallon, Felix; Kaufmann, Martin; Oelhaf, Hermann; Rapp, Markus; Strube, Cornelia; Riese, Martin
2017-12-01
Atmospheric gravity waves are a major cause of uncertainty in atmosphere general circulation models. This uncertainty affects regional climate projections and seasonal weather predictions. Improving the representation of gravity waves in general circulation models is therefore of primary interest. In this regard, measurements providing an accurate 3-D characterization of gravity waves are needed. Using the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), the first airborne implementation of a novel infrared limb imaging technique, a gravity wave event over Iceland was observed. An air volume disturbed by this gravity wave was investigated from different angles by encircling the volume with a closed flight pattern. Using a tomographic retrieval approach, the measurements of this air mass at different angles allowed for a 3-D reconstruction of the temperature and trace gas structure. The temperature measurements were used to derive gravity wave amplitudes, 3-D wave vectors, and direction-resolved momentum fluxes. These parameters facilitated the backtracing of the waves to their sources on the southern coast of Iceland. Two wave packets are distinguished, one stemming from the main mountain ridge in the south of Iceland and the other from the smaller mountains in the north. The total area-integrated fluxes of these two wave packets are determined. Forward ray tracing reveals that the waves propagate laterally more than 2000 km away from their source region. A comparison of a 3-D ray-tracing version to solely column-based propagation showed that lateral propagation can help the waves to avoid critical layers and propagate to higher altitudes. Thus, the implementation of oblique gravity wave propagation into general circulation models may improve their predictive skills.
Damping and scattering of electromagnetic waves by small ferrite spheres suspended in an insulator
NASA Technical Reports Server (NTRS)
Englert, Gerald W.
1992-01-01
The intentional degradation of electromagnetic waves by their penetration into a media comprised of somewhat sparsely distributed energy absorbing ferrite spheres suspended in an electrical insulator is investigated. Results are presented in terms of generalized parameters involving wave length and sphere size, sphere resistivity, permeability, and spacing; their influence on dissipation of wave power by eddy currents, magnetic hysteresis, and scattering is shown.
Autogenerator of beams of charged particles
Adler, Richard J.; Mazarakis, Michael G.; Miller, Robert B.; Shope, Steven L.; Smith, David L.
1986-01-01
An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.
Autogenerator of beams of charged particles
Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.
1983-10-31
An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.
A laboratory study of the electromagnetic bias of rough surface scattering by water waves
NASA Technical Reports Server (NTRS)
Parsons, Chester L.; Miller, Lee S.
1990-01-01
The design, development, and use of a focused-beam radar to measure the electromagnetic bias introduced by the scattering of radar waves by a roughened water surface are discussed. The bias measurements were made over wide ranges of environmental conditions in a wavetank laboratory. Wave-elevation data were provided by standard laboratory capacitance probes. Backscattered radar power measurements coincident in time and space with the elevation data were produced by the radar. The two data sets are histogrammed to produce probability density functions for elevation and radar reflectivity, from which the electromagnetic bias is computed. The experimental results demonstrate that the electromagnetic bias is quite variable over the wide range of environmental conditions that can be produced in the laboratory. The data suggest that the bias is dependent upon the local wind field and on the amplitude and frequency of any background wave field that is present.
Transversality of Electromagnetic Waves in the Calculus--Based Introductory Physics Course
NASA Astrophysics Data System (ADS)
Burko, Lior M.
2009-05-01
Introductory calculus--based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation), and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes. We have successfully integrated this approach in the calculus--based introductory physics course at the University of Alabama in Huntsville.
NASA Astrophysics Data System (ADS)
Seki, A.; Tobo, I.; Omori, Y.; Muto, J.; Nagahama, H.
2013-12-01
Anomalous luminous phenomena and electromagnetic wave emission before or during earthquakes have been reported (e.g., the 1965 Matsushiro earthquake swarm). However, their mechanism is still unsolved, in spite of many models for these phenomena. Here, we propose a new model about luminous phenomena and electromagnetic wave emission during earthquake by focusing on atmospheric radon (Rn-222) and its daughter nuclides (Po-218 and Po-214). Rn-222, Po-218 and Po-214 are alpha emitters, and these alpha particles ionize atmospheric molecules. A light emission phenomenon, called 'the air luminescence', is caused by de-excitation of the ionized molecules of atmospheric nitrogen due to electron impact ionization from alpha particles. The de-excitation is from the second positive system of neutral nitrogen molecules and the first negative system of nitrogen molecule ion. Wavelengths of lights by these transitions include the visible light wavelength. So based on this mechanism, we proposed a new luminous phenomenon model before or during earthquake: 1. The concentration of atmospheric radon and its daughter nuclides increase anomalously before or during earthquakes, 2. Nitrogen molecules and their ions are excited by alpha particles emitted from Rn-222, Po-218 and Po-214, and air luminescence is generated by their de-excitation. Similarly, electromagnetic VHF wave emission can be explained by ionizing effect of radon and its daughter nuclides. Boyarchuk et al. (2005) proposed a model that electromagnetic VHF wave emission is originated when excited state of neutral clusters changes. Radon gas ionizes atmosphere and forms positively and negatively charged heavy particles. The process of ion hydration in ordinary air can be determined by the formation of complex chemically active structures of the various types of ion radicals. As a result of the association of such hydration radical ions, a neutral cluster, which is dipole quasi-molecules, is formed. A neutral cluster's rotation-rotation transition causes electromagnetic VHF wave emission. We also discuss a possibility of electromagnetic VHF wave emission from excitation of polyatomic molecules by alpha particles from Rn-222 and its daughter nuclides, similar to air luminescence by excitation of nitrogen molecule in the viewpoint of electromagnetic radiation in quantum theory.
Detection of Nuclear Weapons and Materials: Science, Technologies, Observations
2009-08-04
use of photons, packets of energy with no rest mass and no electrical charge. Electromagnetic radiation consists of photons, and may be measured as...density is a bulk property, expressed as mass per unit volume. In general, the densest materials are those of high Z. These properties may be used...generally dictate detection threshold settings through their impact on innocent alarm rates. Characterization of these factors is critical to
Multicarrier airborne ultrasound transmission with piezoelectric transducers.
Ens, Alexander; Reindl, Leonhard M
2015-05-01
In decentralized localization systems, the received signal has to be assigned to the sender. Therefore, longrange airborne ultrasound communication enables the transmission of an identifier of the sender within the ultrasound signal to the receiver. Further, in areas with high electromagnetic noise or electromagnetic free areas, ultrasound communication is an alternative. Using code division multiple access (CDMA) to transmit data is ineffective in rooms due to high echo amplitudes. Further, piezoelectric transducers generate a narrow-band ultrasound signal, which limits the data rate. This work shows the use of multiple carrier frequencies in orthogonal frequency division multiplex (OFDM) and differential quadrature phase shift keying modulation with narrowband piezoelectric devices to achieve a packet length of 2.1 ms. Moreover, the adapted channel coding increases data rate by correcting transmission errors. As a result, a 2-carrier ultrasound transmission system on an embedded system achieves a data rate of approximately 5.7 kBaud. Within the presented work, a transmission range up to 18 m with a packet error rate (PER) of 13% at 10-V supply voltage is reported. In addition, the transmission works up to 22 m with a PER of 85%. Moreover, this paper shows the accuracy of the frame synchronization over the distance. Consequently, the system achieves a standard deviation of 14 μs for ranges up to 10 m.
The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence
ERIC Educational Resources Information Center
Smith, Glenn S.
2012-01-01
In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…
Electromagnetic Waves with Frequencies Near the Local Proton Gryofrequency: ISEF-3 1 AU Observations
NASA Technical Reports Server (NTRS)
Tsurutani, B.
1993-01-01
Low Frequency electromagnetic waves with periods near the local proton gyrofrequency have been detected near 1 AU by the magnetometer onboard ISEE-3. For these 1 AU waves two physical processes are possible: solar wind pickup of nuetral (interstellar?) particles and generation by relativistic electron beams propagating from the Sun.
Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave
Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.; ...
2017-03-31
Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electronsmore » confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. As a result, the investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.« less
Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.
Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electronsmore » confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. As a result, the investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.« less
Rogue waves generation in a left-handed nonlinear transmission line with series varactor diodes
NASA Astrophysics Data System (ADS)
Onana Essama, B. G.; Atangana, J.; Biya Motto, F.; Mokhtari, B.; Cherkaoui Eddeqaqi, N.; Kofane, Timoleon C.
2014-07-01
We investigate the electromagnetic wave behavior and its characterization using collective variables technique. Second-order dispersion, first- and second-order nonlinearities, which strongly act in a left-handed nonlinear transmission line with series varactor diodes, are taken into account. Four frequency ranges have been found. The first one gives the so-called energetic soliton due to a perfect combination of second-order dispersion and first-order nonlinearity. The second frequency range presents a dispersive soliton leading to the collapse of the electromagnetic wave at the third frequency range. But the fourth one shows physical conditions which are able to provoke the appearance of wave trains generation with some particular waves, the rogue waves. Moreover, we demonstrate that the number of rogue waves increases with frequency. The soliton, thereafter, gains a relative stability when second-order nonlinearity comes into play with some specific values in the fourth frequency range. Furthermore, the stability conditions of the electromagnetic wave at high frequencies have been also discussed.
NASA Technical Reports Server (NTRS)
Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey
2012-01-01
Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.
1998-09-01
potential of the surface wave electromagnetic field; ea is the unit of the polarization vectors : ex = ela. = e2x= (qx/\\q\\)\\/L\\q\\/(ei + e0), ely... polarization basis of the incident wave: EB°=eB^(/kr), (1) where e„ is the cyclic unit vector , n = ±1, k is the wave vector . The equation describing...rectangular grid. From the direction determined by wave vector k0, the plane electromagnetic wave of linear polarization incidents onto the array. It
Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis
NASA Technical Reports Server (NTRS)
Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.
2016-01-01
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
Electromagnetic cyclotron waves in the solar wind: Wind observation and wave dispersion analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian, L. K., E-mail: lan.jian@nasa.gov; Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771; Moya, P. S.
2016-03-25
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and α-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
The Harp probe - An in situ Bragg scattering sensor
NASA Technical Reports Server (NTRS)
Mollo-Christensen, E.; Huang, N. E.; Long, S. R.; Bliven, L. F.
1984-01-01
A wave sensor, consisting of parallel, evenly spaced capacitance wires, whose output is the sum of the water surface deflections at the wires, has been built and tested in a wave tank. The probe output simulates Bragg scattering of electromagnetic waves from a water surface with waves; it can be used to simulate electromagnetic probing of the sea surface by radar. The study establishes that the wave probe, called the 'Harp' for short, will simulate Bragg scattering and that it can also be used to study nonlinear wave processes.
Introduction to Radar Polarimetry
1991-04-23
Coulomb force 11 1,2 Static etectric fields 13 1.3 Summary 15 2 ELECTROMAGNETIC WAVES 16 2.1 Harmonic plane waves 16 2.2 The average intensity of a...harmonic plane wave 17 2.3 Spherical harmonic waves 18 2.4 Summary 19 3 THE POLARIZATION OF AN ELECTROMAGNETIC WAVE 20 3.1 The polarization ellipse 20 3.2...CHANGE OF POLARIZATION 31 4.1 Simple examples 31 4.2 Scattering at a plane interface 33 4.3 Summary 36 5 THE SCATTERING MATRIX 37 5.1 Transmission
Wound diagnostics with microwaves.
Schertlen, Ralph; Pivit, Florian; Wiesbeck, Werner
2002-01-01
The reflection of electromagnetic waves on material surfaces is very depending on the electric and magnetic properties of these materials, on their structure and on the surface texture. Therefore the different layers and dielectric properties of healthy and unsound body tissue also show different reflection behavior towards incidentating electromagnetic waves. By analyzing the reflected signals of incident electromagnetic waves, it is possible to get information about the inner structure of the reflecting body tissue. This effect could then be used for a contactless analysis of body tissue e.g. to gain crucial medical information about healing processes. In this paper the results of several full wave simulations of various tissue structures are presented and the significance and usability of this method is shown.
NASA Technical Reports Server (NTRS)
Huba, J. D.; Rowland, H. L.
1993-01-01
The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.
Bulanov, S S; Esirkepov, T Zh; Kamenets, F F; Pegoraro, F
2006-03-01
The interaction of regular nonlinear structures (such as subcycle solitons, electron vortices, and wake Langmuir waves) with a strong wake wave in a collisionless plasma can be exploited in order to produce ultrashort electromagnetic pulses. The electromagnetic field of the nonlinear structure is partially reflected by the electron density modulations of the incident wake wave and a single-cycle high-intensity electromagnetic pulse is formed. Due to the Doppler effect the length of this pulse is much shorter than that of the nonlinear structure. This process is illustrated with two-dimensional particle-in-cell simulations. The considered laser-plasma interaction regimes can be achieved in present day experiments and can be used for plasma diagnostics.
[Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].
Yuan, Jun; Xiao, Dongping; Jian, Xin
2010-11-01
The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.
Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian
2016-10-24
Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence.
Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian
2016-01-01
Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence. PMID:27775064
THz electromagnetic radiation driven by intense relativistic electron beam based on ion focus regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qing; Xu, Jin; Zhang, Wenchao
The simulation study finds that the relativistic electron beam propagating through the plasma background can produce electromagnetic (EM) radiation. With the propagation of the electron beam, the oscillations of the beam electrons in transverse and longitudinal directions have been observed simultaneously, which provides the basis for the electromagnetic radiation. The simulation results clearly show that the electromagnetic radiation frequency can reach up to terahertz (THz) wave band which may result from the filter-like property of plasma background, and the electromagnetic radiation frequency closely depends on the plasma density. To understand the above simulation results physically, the dispersion relation of themore » beam-plasma system has been derived using the field-matching method, and the dispersion curves show that the slow wave modes can couple with the electron beam effectively in THz wave band, which is an important theoretical evidence of the EM radiation.« less
NASA Technical Reports Server (NTRS)
Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.
1994-01-01
We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.
NASA Astrophysics Data System (ADS)
Gros, J.-B.; Kuhl, U.; Legrand, O.; Mortessagne, F.
2016-03-01
The effective Hamiltonian formalism is extended to vectorial electromagnetic waves in order to describe statistical properties of the field in reverberation chambers. The latter are commonly used in electromagnetic compatibility tests. As a first step, the distribution of wave intensities in chaotic systems with varying opening in the weak coupling limit for scalar quantum waves is derived by means of random matrix theory. In this limit the only parameters are the modal overlap and the number of open channels. Using the extended effective Hamiltonian, we describe the intensity statistics of the vectorial electromagnetic eigenmodes of lossy reverberation chambers. Finally, the typical quantity of interest in such chambers, namely, the distribution of the electromagnetic response, is discussed. By determining the distribution of the phase rigidity, describing the coupling to the environment, using random matrix numerical data, we find good agreement between the theoretical prediction and numerical calculations of the response.
Proposed electromagnetic wave energy converter
NASA Technical Reports Server (NTRS)
Bailey, R. L.
1973-01-01
Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.
NASA Astrophysics Data System (ADS)
Liu, Changsheng; Lin, Jun; Zhou, Fengdao; Hu, Ruihua; Sun, Caitang
2013-12-01
The frequency-domain controlled-source electromagnetic method (FDCSEM) has played an important role in the terrestrial and oceanic exploration. However, the measuring manners and the detecting abilities in two kinds of environment are much different. This paper analyses the electromagnetic theories of the FDCSEM exploration on land and in ocean, simulates the electromagnetic responses in the two cases based on a united physical and mathematical model, and studies the physical mechanism leading to these differences. In this study, the relationship between the propagation paths and the detecting ability is illuminated and the way to improve the detecting ability of FDCSEM is brought forward. In terrestrial exploration, FDCSEM widely adopts the measuring manner of controlled-source audio-frequency magnetotelluric method (CSAMT), which records the electromagnetic fields in the far zone in the broadside direction of an electric dipole source. This manner utilizes the airwave (i.e. the Earth surface wave) and takes the stratum wave as interference. It is sensitive to the conductive target but insensitive to the resistive one. In oceanic exploration, FDCSEM usually adopts the measuring manner of marine controlled-source electromagnetic method (MCSEM), which records the electromagnetic fields, commonly the horizontal electric fields, in the in-line direction of the electric dipole source. This manner utilizes the stratum wave (i.e. the seafloor wave and the guided wave in resistive targets) and takes the airwave as interference. It is sensitive to the resistive target but relatively insensitive to the conductive one. The numerical simulation shows that both the airwave and the stratum wave contribute to the FDCSEM exploration. United utilization of them will enhance the anomalies of targets and congregate the advantages of CSAMT and MCSEM theories. At different azimuth and different offset, the contribution of the airwave and the stratum wave to electromagnetic anomaly is different. Observation at moderate offset in the in-line direction is the best choice for the exploration of resistive targets, no matter the environment is land or shallow sea. It is also the best choice for the exploration of conductive targets in terrestrial environment. As for the conductive targets in shallow sea, observation at moderate offset in the broadside direction is better. Synthetic and felicitous utilization of the airwave and the stratum wave will optimize the performance of FDCSEM.
NASA Technical Reports Server (NTRS)
Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig
2016-01-01
Highly energetic electrons in the Earths Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity, respectively. Results show that the average scale size of chorus wave packets is approximately 13002300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.
Quantum Emulation of Gravitational Waves.
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-07-14
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.
Broad band waveguide spectrometer
Goldman, Don S.
1995-01-01
A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.
NASA Technical Reports Server (NTRS)
Balmain, K. G.; James, H. G.; Bantin, C. C.
1991-01-01
A recent space experiment confirmed sheath-wave propagation of a kilometer-long insulated wire in the ionosphere, oriented parallel to the Earth's magnetic field. This space tether experiment, Oedipus-A, showed a sheath-wave passband up to about 2 MHz and a phase velocity somewhat slower than the velocity of light in a vacuum, and also demonstrated both ease of wave excitation and low attenuation. The evidence suggests that, on any large structure in low Earth orbit, transient or continuous wave electromagnetic interference, once generated, could propagate over the structure via sheath waves, producing unwanted signal levels much higher than in the absence of the ambient plasma medium. Consequently, there is a need for a review of both electromagnetic interference/electromagnetic compatibility standards and ground test procedures as they apply to large structures in low Earth orbit.
A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves
NASA Astrophysics Data System (ADS)
Erofeev, V. I.
2015-09-01
The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.
NASA Astrophysics Data System (ADS)
Kukhar, Egor I.
2018-01-01
Quasienergy spectrum of electrons in biased bigraphene subjected to the linear polarized high-frequency electromagnetic radiation has been derived. Quasienergy bands of ac-driven bigraphene have been investigated. Dynamical appearing of the saddle points in band structure of biased bigraphene and energy gap modification have been predicted. Electromagnetic field equation has been written using obtained quasienergy spectrum. The solution corresponding to the soliton-like electromagnetic wave has been obtained. The conditions of soliton-like wave generation in ac-driven bigraphene have been discussed.
NASA Astrophysics Data System (ADS)
Vafin, S.; Schlickeiser, R.; Yoon, P. H.
2016-05-01
The general electromagnetic fluctuation theory for magnetized plasmas is used to calculate the steady-state wave number spectra and total electromagnetic field strength of low-frequency collective weakly damped eigenmodes with parallel wavevectors in a Maxwellian electron-proton plasma. These result from the equilibrium of spontaneous emission and collisionless damping, and they represent the minimum electromagnetic fluctuations guaranteed in quiet thermal space plasmas, including the interstellar and interplanetary medium. Depending on the plasma beta, the ratio of |δB |/B0 can be as high as 10-12 .
Submillimeter wave heterodyne receiver
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam (Inventor); Manohara, Harish (Inventor); Siegel, Peter H. (Inventor); Ward, John (Inventor)
2011-01-01
In an embodiment, a submillimeter wave heterodyne receiver includes a finline ortho-mode transducer comprising thin tapered metallic fins deposited on a thin dielectric substrate to separate a vertically polarized electromagnetic mode from a horizontally polarized electromagnetic mode. Other embodiments are described and claimed.
WKB solution 4×4 for electromagnetic waves in a planar magnetically anisotropic inhomogeneous layer
NASA Astrophysics Data System (ADS)
Moiseeva, Natalya Michailovna; Moiseev, Anton Vladimirovich
2018-04-01
In the paper, an oblique incidence of a plane electromagnetic wave on a planar magnetically anisotropic inhomogeneous layer is considered. We consider the case when all the components of the magnetic permeability tensor are non zero and vary with distance from the interface of media. The WKB method gives a matrix 4 × 4 solution for the projections of the electromagnetic wave fields during its propagation. The dependence of the cross-polarized components on the orientation of the anisotropic medium relative to the plane of incidence of the medium is analyzed.
Electromagnetic wave propagating along a space curve
NASA Astrophysics Data System (ADS)
Lai, Meng-Yun; Wang, Yong-Long; Liang, Guo-Hua; Wang, Fan; Zong, Hong-Shi
2018-03-01
By using the thin-layer approach, we derive the effective equation for the electromagnetic wave propagating along a space curve. We find intrinsic spin-orbit, extrinsic spin-orbit, and extrinsic orbital angular-momentum and intrinsic orbital angular-momentum couplings induced by torsion, which can lead to geometric phase, spin, and orbital Hall effects. And we show the helicity inversion induced by curvature that can convert a right-handed circularly polarized electromagnetic wave into a left-handed polarized one, vice versa. Finally, we demonstrate that the gauge invariance of the effective dynamics is protected by the geometrically induced gauge potential.
Real-time wideband cylindrical holographic surveillance system
Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.; Severtsen, Ronald H.
1999-01-01
A wideband holographic cylindrical surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply Fast Fourier Transforms and obtain a three dimensional cylindrical image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aburjania, G. D.; Machabeli, G. Z.; Kharshiladze, O. A.
2006-07-15
The modulational instability in a plasma in a strong constant external magnetic field is considered. The plasmon condensate is modulated not by conventional low-frequency ion sound but by the beatings of two high-frequency transverse electromagnetic waves propagating along the magnetic field. The instability reduces the spatial scales of Langmuir turbulence along the external magnetic field and generates electromagnetic fields. It is shown that, for a pump wave with a sufficiently large amplitude, the effect described in the present paper can be a dominant nonlinear process.
A theoretical study of hot plasma spheroids in the presence of low-frequency electromagnetic waves
NASA Astrophysics Data System (ADS)
Ahmadizadeh, Y.; Jazi, B.; Barjesteh, S.
2016-07-01
While taking into account thermal motion of electrons, scattering of electromagnetic waves with low frequency from hot plasma spheroids is investigated. In this theoretical research, ions are heavy to respond to electromagnetic fluctuations. The solution of scalar wave equation in spheroidal coordinates for electric potential inside the plasma spheroids are obtained. The variations of resonance frequencies vs. Debye length are studied and consistency between the obtained results in this paper and the results for the well-known plasma objects such as plasma column and spherical plasma have been proved.
The Massachusetts Bay internal wave experiment, August 1998: data report
Butman, Bradford; Alexander, P. Soupy; Anderson, Steven P.; Lightsom, Frances L.; Scotti, Alberto; Beardsley, Robert C.
2006-01-01
This data report presents oceanographic observations made in Massachusetts Bay (fig. 1) in August 1998 as part of the Massachusetts Bay Internal Wave Experiment (MBIWE98). MBIWE98 was carried out to characterize large-amplitude internal waves in Massachusetts Bay and to investigate the possible resuspension and transport of bottom sediments caused by these waves. This data report presents a description of the field program and instrumentation, an overview of the data through summary plots and statistics, and the time-series data in NetCDF format. The objective of this report is to make the data available in digital form and to provide summary plots and statistics to facilitate browsing of the data set. The existence of large-amplitude internal waves in Massachusetts Bay was first described by Halpern (1971). In summer when the water is stratified, packets of waves propagate westward into the bay on the flood (westward flowing) tide at about 0.5 m/s. The internal waves are observed in packets of 5-10 waves, have periods of 5-10 minutes and wavelengths of 200-400 m, and cause downward excursions of the thermocline of as much as 30 m. The waves are generated by interaction of the barotropic tide with Stellwagen Bank (Haury and others (1979). Several papers present analyses and interpretations of the data collected during the MBIWE98. Grosenbaugh and others (2002) report on the results of the horizontal array, Scotti and others (2005) describe a strategy for processing observations made by Acoustic Doppler Current Profilers (ADCPs) in the presence of short-wavelength internal waves, Butman and others (in press) describe the effect of these waves on sediment transport, and Scotti and others (in press) describe the energetics of the internal waves.
An Apparatus for Constructing an Electromagnetic Plane Wave Model
ERIC Educational Resources Information Center
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
Full PIC simulations of solar radio emission
NASA Astrophysics Data System (ADS)
Sgattoni, A.; Henri, P.; Briand, C.; Amiranoff, F.; Riconda, C.
2017-12-01
Solar radio emissions are electromagnetic (EM) waves emitted in the solar wind plasma as a consequence of electron beams accelerated during solar flares or interplanetary shocks such as ICMEs. To describe their origin, a multi-stage model has been proposed in the 60s which considers a succession of non-linear three-wave interaction processes. A good understanding of the process would allow to infer the kinetic energy transfered from the electron beam to EM waves, so that the radio waves recorded by spacecraft can be used as a diagnostic for the electron beam.Even if the electrostatic problem has been extensively studied, full electromagnetic simulations were attempted only recently. Our large scale 2D-3V electromagnetic PIC simulations allow to identify the generation of both electrostatic and EM waves originated by the succession of plasma instabilities. We tested several configurations varying the electron beam density and velocity considering a background plasma of uniform density. For all the tested configurations approximately 105 of the electron-beam kinetic energy is transfered into EM waves emitted in all direction nearly isotropically. With this work we aim to design experiments of laboratory astrophysics to reproduce the electromagnetic emission process and test its efficiency.
Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes
NASA Technical Reports Server (NTRS)
Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.
1997-01-01
Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low- frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.
Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes
NASA Technical Reports Server (NTRS)
Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.
1997-01-01
Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.
Self-compression of spatially limited laser pulses in a system of coupled light-guides
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.
2018-04-01
The self-action features of wave packets propagating in a 2D system of equidistantly arranged fibers are studied analytically and numerically on the basis of the discrete nonlinear Schrödinger equation. Self-consistent equations for the characteristic scales of a Gaussian wave packet are derived on the basis of the variational approach, which are proved numerically for powers P < 10 P_cr , slightly exceeding the critical one for self-focusing. At higher powers, the wave beams become filamented, and their amplitude is limited due to the nonlinear breaking of the interaction between neighboring light-guides. This makes it impossible to collect a powerful wave beam in a single light-guide. Variational analysis shows the possibility of the adiabatic self-compression of soliton-like laser pulses in the process of 3D self-focusing on the central light-guide. However, further increase of the field amplitude during self-compression leads to the development of longitudinal modulation instability and the formation of a set of light bullets in the central fiber. In the regime of hollow wave beams, filamentation instability becomes predominant. As a result, it becomes possible to form a set of light bullets in optical fibers located on the ring.
Colosi, John A
2008-09-01
While many results have been intuited from numerical simulation studies, the precise connections between shallow-water acoustic variability and the space-time scales of nonlinear internal waves (NLIWs) as well as the background environmental conditions have not been clearly established analytically. Two-dimensional coupled mode propagation through NLIWs is examined using a perturbation series solution in which each order n is associated with nth-order multiple scattering. Importantly, the perturbation solution gives resonance conditions that pick out specific NLIW scales that cause coupling, and seabed attenuation is demonstrated to broaden these resonances, fundamentally changing the coupling behavior at low frequency. Sound-speed inhomogeneities caused by internal solitary waves (ISWs) are primarily considered and the dependence of mode coupling on ISW amplitude, range width, depth structure, location relative to the source, and packet characteristics are delineated as a function of acoustic frequency. In addition, it is seen that significant energy transfer to modes with initially low or zero energy involves at least a second order scattering process. Under moderate scattering conditions, comparisons of first order, single scattering theoretical predictions to direct numerical simulation demonstrate the accuracy of the approach for acoustic frequencies upto 400 Hz and for single as well as multiple ISW wave packets.
Ten reasons why a thermalized system cannot be described by a many-particle wave function
NASA Astrophysics Data System (ADS)
Drossel, Barbara
2017-05-01
It is widely believed that the underlying reality behind statistical mechanics is a deterministic and unitary time evolution of a many-particle wave function, even though this is in conflict with the irreversible, stochastic nature of statistical mechanics. The usual attempts to resolve this conflict for instance by appealing to decoherence or eigenstate thermalization are riddled with problems. This paper considers theoretical physics of thermalized systems as it is done in practice and shows that all approaches to thermalized systems presuppose in some form limits to linear superposition and deterministic time evolution. These considerations include, among others, the classical limit, extensivity, the concepts of entropy and equilibrium, and symmetry breaking in phase transitions and quantum measurement. As a conclusion, the paper suggests that the irreversibility and stochasticity of statistical mechanics should be taken as a real property of nature. It follows that a gas of a macroscopic number N of atoms in thermal equilibrium is best represented by a collection of N wave packets of a size of the order of the thermal de Broglie wave length, which behave quantum mechanically below this scale but classically sufficiently far beyond this scale. In particular, these wave packets must localize again after scattering events, which requires stochasticity and indicates a connection to the measurement process.
Yao, Cui-Xia; Zhang, Pei-Yu
2014-07-10
The dynamics of the Ne + D2(+) (v0 = 0-2, j0 = 0) → NeD(+) + D reaction has been investigated in detail by using an accurate time-dependent wave-packet method on the ground 1(2)A' potential energy surface. Comparisons between the Coriolis coupling results and the centrifugal-sudden ones reveal that Coriolis coupling effect can influence reaction dynamics of the NeD2(+) system. Integral cross sections have been evaluated for the Ne + D2(+) reaction and its isotopic variant Ne + H2(+), and a considerable intermolecular isotopic effect has been found. Also obvious is the great enhancement of the reactivity due to the reagent vibrational excitation. Besides, a comparison with previous theoretical results is also presented and discussed.
Strong quantum scarring by local impurities
Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa
2016-01-01
We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications. PMID:27892510
Hyeon-Deuk, Kim; Ando, Koji
2014-05-07
Liquid para-hydrogen (p-H2) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H2. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of p-H2 liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.
Quasi-soliton scattering in quantum spin chains
NASA Astrophysics Data System (ADS)
Vlijm, R.; Ganahl, M.; Fioretto, D.; Brockmann, M.; Haque, M.; Evertz, H. G.; Caux, J.-S.
2015-12-01
The quantum scattering of magnon bound states in the anisotropic Heisenberg spin chain is shown to display features similar to the scattering of solitons in classical exactly solvable models. Localized colliding Gaussian wave packets of bound magnons are constructed from string solutions of the Bethe equations and subsequently evolved in time, relying on an algebraic Bethe ansatz based framework for the computation of local expectation values in real space-time. The local magnetization profile shows the trajectories of colliding wave packets of bound magnons, which obtain a spatial displacement upon scattering. Analytic predictions on the displacements for various values of anisotropy and string lengths are derived from scattering theory and Bethe ansatz phase shifts, matching time-evolution fits on the displacements. The time-evolved block decimation algorithm allows for the study of scattering displacements from spin-block states, showing similar scattering displacement features.
Quasi-soliton scattering in quantum spin chains
NASA Astrophysics Data System (ADS)
Fioretto, Davide; Vljim, Rogier; Ganahl, Martin; Brockmann, Michael; Haque, Masud; Evertz, Hans-Gerd; Caux, Jean-Sébastien
The quantum scattering of magnon bound states in the anisotropic Heisenberg spin chain is shown to display features similar to the scattering of solitons in classical exactly solvable models. Localized colliding Gaussian wave packets of bound magnons are constructed from string solutions of the Bethe equations and subsequently evolved in time, relying on an algebraic Bethe ansatz based framework for the computation of local expectation values in real space-time. The local magnetization profile shows the trajectories of colliding wave packets of bound magnons, which obtain a spatial displacement upon scattering. Analytic predictions on the displacements for various values of anisotropy and string lengths are derived from scattering theory and Bethe ansatz phase shifts, matching time evolution fits on the displacements. The TEBD algorithm allows for the study of scattering displacements from spin-block states, showing similar displacement scattering features.
Schrödinger–Langevin equation with quantum trajectories for photodissociation dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
The Schrödinger–Langevin equation is integrated to study the wave packet dynamics of quantum systems subject to frictional effects by propagating an ensemble of quantum trajectories. The equations of motion for the complex action and quantum trajectories are derived from the Schrödinger–Langevin equation. The moving least squares approach is used to evaluate the spatial derivatives of the complex action required for the integration of the equations of motion. Computational results are presented and analyzed for the evolution of a free Gaussian wave packet, a two-dimensional barrier model, and the photodissociation dynamics of NOCl. The absorption spectrum of NOCl obtained from themore » Schrödinger–Langevin equation displays a redshift when frictional effects increase. This computational result agrees qualitatively with the experimental results in the solution-phase photochemistry of NOCl.« less
The Liouville equation for flavour evolution of neutrinos and neutrino wave packets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Rasmus Sloth Lundkvist; Smirnov, Alexei Yu., E-mail: rasmus@mpi-hd.mpg.de, E-mail: smirnov@mpi-hd.mpg.de
We consider several aspects related to the form, derivation and applications of the Liouville equation (LE) for flavour evolution of neutrinos. To take into account the quantum nature of neutrinos we derive the evolution equation for the matrix of densities using wave packets instead of Wigner functions. The obtained equation differs from the standard LE by an additional term which is proportional to the difference of group velocities. We show that this term describes loss of the propagation coherence in the system. In absence of momentum changing collisions, the LE can be reduced to a single derivative equation over amore » trajectory coordinate. Additional time and spatial dependence may stem from initial (production) conditions. The transition from single neutrino evolution to the evolution of a neutrino gas is considered.« less
Real-time dynamics of Auger wave packets and decays in ultrafast charge migration processes
NASA Astrophysics Data System (ADS)
Covito, F.; Perfetto, E.; Rubio, A.; Stefanucci, G.
2018-06-01
The Auger decay is a relevant recombination channel during the first few femtoseconds of molecular targets impinged by attosecond XUV or soft x-ray pulses. Including this mechanism in time-dependent simulations of charge-migration processes is a difficult task, and Auger scatterings are often ignored altogether. In this work we present an advance of the current state-of-the-art by putting forward a real-time approach based on nonequilibrium Green's functions suitable for first-principles calculations of molecules with tens of active electrons. To demonstrate the accuracy of the method we report comparisons against accurate grid simulations of one-dimensional systems. We also predict a highly asymmetric profile of the Auger wave packet, with a long tail exhibiting ripples temporally spaced by the inverse of the Auger energy.
Strong quantum scarring by local impurities
NASA Astrophysics Data System (ADS)
Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa
2016-11-01
We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.