Science.gov

Sample records for electromagnetic wave tails

  1. Electromagnetic ELF wave intensification associated with fast earthward flows in mid-tail plasma sheet

    NASA Astrophysics Data System (ADS)

    Liang, J.; Ni, B.; Cully, C. M.; Donovan, E. F.; Thorne, R. M.; Angelopoulos, V.

    2012-03-01

    In this study we perform a statistical survey of the extremely-low-frequency wave activities associated with fast earthward flows in the mid-tail central plasma sheet (CPS) based upon THEMIS measurements. We reveal clear trends of increasing wave intensity with flow enhancement over a broad frequency range, from below fLH (lower-hybrid resonant frequency) to above fce (electron gyrofrequency). We mainly investigate two electromagnetic wave modes, the lower-hybrid waves at frequencies below fLH, and the whistler-mode waves in the frequency range fLH < f < fce. The waves at f < fLH dramatically intensify during fast flow intervals, and tend to contain strong electromagnetic components in the high-plasma-beta CPS region, consistent with the theoretical expectation of the lower-hybrid drift instability in the center region of the tail current sheet. ULF waves with very large perpendicular wavenumber might be Doppler-shifted by the flows and also partly contribute to the observed waves in the lower-hybrid frequency range. The fast flow activity substantially increases the occurrence rate and peak magnitude of the electromagnetic waves in the frequency range fLH < f < fce, though they still tend to be short-lived and sporadic in occurrence. We also find that the electron pitch-angle distribution in the mid-tail CPS undergoes a variation from negative anisotropy (perpendicular temperature smaller than parallel temperature) during weak flow intervals, to more or less positive anisotropy (perpendicular temperature larger than parallel temperature) during fast flow intervals. The flow-related electromagnetic whistler-mode wave tends to occur in conjunction with positive electron anisotropy.

  2. Electromagnetic wave test

    NASA Astrophysics Data System (ADS)

    Matthews, R. K.; Stepanek, S. A.

    Electromagnetic wave testing, which represents a relatively new test technique that involves the union of several disciplines (aerothermodynamics, electromagnetics, materials/structures, and advanced diagnostics) is introduced. The essence of this new technique deals with the transmission and possible distortion of electromagnetic waves (RF or IR) as they pass through the bow shock, flow field, and electromagnetic window of a missile flying at hypersonic speeds. Variations in gas density along the optical path can cause significant distortion of the electromagnetic waves and, therefore the missile seeker system may not effectively track the target. Two specific test techniques are described. The first example deals with the combining of a wind tunnel and an RF range while the second example discusses the complexities of evaluating IR seeker system performance.

  3. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  4. "Hearing" Electromagnetic Waves

    ERIC Educational Resources Information Center

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  5. Tails of plane wave spacetimes: Wave-wave scattering in general relativity

    NASA Astrophysics Data System (ADS)

    Harte, Abraham I.

    2013-10-01

    One of the most important characteristics of light in flat spacetime is that it satisfies Huygens’ principle: Initial data for the vacuum Maxwell equations evolve sharply along null (and not timelike) geodesics. In flat spacetime, there are no tails which linger behind expanding wavefronts. Tails generically do exist, however, if the background spacetime is curved. The only nonflat vacuum geometries where electromagnetic fields satisfy Huygens’ principle are known to be those associated with gravitational plane waves. This paper investigates whether perturbations to the plane wave geometry itself also propagate without tails. First-order perturbations to all locally constructed curvature scalars are indeed found to satisfy Huygens’ principles. Despite this, gravitational tails do exist. Locally, they can only perturb one plane wave spacetime into another plane wave spacetime. A weak localized beam of gravitational radiation passing through an arbitrarily strong plane wave therefore leaves behind only a slight perturbation to the waveform of the background plane wave. The planar symmetry of that wave cannot be disturbed by any linear tail. These results are obtained by first deriving the retarded Green function for Lorenz-gauge metric perturbations and then analyzing its consequences for generic initial-value problems.

  6. Proposed electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  7. Millimeter Waves: Acoustic and Electromagnetic

    PubMed Central

    Ziskin, Marvin C.

    2012-01-01

    This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. PMID:22926874

  8. Millimeter waves: acoustic and electromagnetic.

    PubMed

    Ziskin, Marvin C

    2013-01-01

    This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects.

  9. Electromagnetic wave scattering by Schwarzschild black holes.

    PubMed

    Crispino, Luís C B; Dolan, Sam R; Oliveira, Ednilton S

    2009-06-12

    We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor, and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time. PMID:19658920

  10. Generating gravity waves with matter and electromagnetic waves

    SciTech Connect

    Barrabes, C.; Hogan, P A.

    2008-05-15

    If a homogeneous plane lightlike shell collides head on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision.

  11. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    SciTech Connect

    Sati, Priti; Tripathi, V. K.

    2012-12-15

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  12. Electromagnetic wave energy conversion research

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  13. Spheroidal Wave Functions in Electromagnetic Theory

    NASA Astrophysics Data System (ADS)

    Li, Le-Wei; Kang, Xiao-Kang; Leong, Mook-Seng

    2001-11-01

    The flagship monograph addressing the spheroidal wave function and its pertinence to computational electromagnetics Spheroidal Wave Functions in Electromagnetic Theory presents in detail the theory of spheroidal wave functions, its applications to the analysis of electromagnetic fields in various spheroidal structures, and provides comprehensive programming codes for those computations. The topics covered in this monograph include: Spheroidal coordinates and wave functions Dyadic Green's functions in spheroidal systems EM scattering by a conducting spheroid EM scattering by a coated dielectric spheroid Spheroid antennas SAR distributions in a spheroidal head model The programming codes and their applications are provided online and are written in Mathematica 3.0 or 4.0. Readers can also develop their own codes according to the theory or routine described in the book to find subsequent solutions of complicated structures. Spheroidal Wave Functions in Electromagnetic Theory is a fundamental reference for scientists, engineers, and graduate students practicing modern computational electromagnetics or applied physics.

  14. Parameters characterizing electromagnetic wave polarization

    PubMed

    Carozzi; Karlsson; Bergman

    2000-02-01

    In this paper, generalizations of the Stokes parameters and alternative characterizations of three-dimensional (3D) time-varying electromagnetic fields is introduced. One of these characteristics is the normal of the polarization plane, which, in many cases of interest, is parallel (or antiparallel) to the direction of propagation. Others are the two spectral density Stokes parameters which describe spectral intensity and circular polarization. The analysis is based on the spectral density tensor. This tensor is expanded in a base composed of the generators of the SU(3) symmetry group, as given by Gell-Mann and Y. Ne'eman [The Eight-fold Way (Benjamin, New York, 1964)] and the coefficients of this expansion are identified as generalized spectral density polarization parameters. The generators have the advantage that they obey the same algebra as the Pauli spin matrices, which is the base for expanding the 2D spectral density tensor with the Stokes parameters as coefficients. The polarization parameters introduced are formulated in the frequency domain, thereby further generalizing the theory to allow for wide-band electromagnetic waves in contrast to the traditional quasi-monochromatic formulation.

  15. Efficient transformer for electromagnetic waves

    DOEpatents

    Miller, R.B.

    A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.

  16. Generating electromagnetic waves from gravity waves in cosmology

    SciTech Connect

    Hogan, P. A.; O'Farrell, S.

    2009-05-15

    Examples of test electromagnetic waves on a Friedmann-Lemaitre-Robertson-Walker (FLRW) background are constructed from explicit perturbations of the FLRW space-times describing gravitational waves propagating in the isotropic universes. A possible physical mechanism for the production of the test electromagnetic waves is shown to be the coupling of the gravitational waves with a test magnetic field, confirming the observation of Marklund, Dunsby and Brodin [Phys. Rev. D 62, 101501(R) (2000)].

  17. Scattering theory of stochastic electromagnetic light waves.

    PubMed

    Wang, Tao; Zhao, Daomu

    2010-07-15

    We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.

  18. Detection of electromagnetic waves using MEMS antennas

    SciTech Connect

    Lavrik, Nickolay V; Tobin,; Bowland, Landon T

    2011-01-01

    We describe the design, fabrication and characterization of simple micromechanical structures that are capable of sensing static electric time varying electromagnetic fields. Time varying electric field sensing is usually achieved using an electromagnetic antenna and a receiver. However, these antenna-based approaches do not exhibit high sensitivity over a broad frequency (or wavelength) range. An important aspect of the present work is that, in contrast to traditional antennas, the dimensions of these micromechanical oscillators can be much smaller than the wavelength of the electromagnetic wave. We characterized the fabricated micromechanical oscillators by measuring their responses to time varying electric and electromagnetic fields.

  19. Relativistic particle motion in nonuniform electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Schmidt, G.; Wilcox, T.

    1973-01-01

    It is shown that a charged particle moving in a strong nonuniform electromagnetic wave suffers a net acceleration in the direction of the negative intensity gradient of the wave. Electrons will be expelled perpendicularly from narrow laser beams and various instabilities can result.

  20. Relativistic particle motion in nonuniform electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Schmidt, G.; Wilcox, T.

    1973-01-01

    A charged particle moving in a strong nonuniform electromagnetic wave which suffers a net acceleration in the direction of the negative intensity gradient of the wave was investigated. Electrons will be expelled perpendicularly from narrow laser beams and various instabilities result.

  1. Plane wave spectrum of electromagnetic beams

    NASA Astrophysics Data System (ADS)

    Doicu, A.; Wriedt, T.

    1997-02-01

    A plane wave spectrum method of Gaussian beams can be derived by using Davis' approximations for the vector potential. An equivalent vector potential is introduced by considering the inverse Fourier transform of the spectrum function of the original vector potential in a given plane. The electromagnetic field, which corresponds to the equivalent vector potential, satisfies Maxwell's equations and can be written as a sum of plane waves. The beam shape coefficients, or the expansion coefficients in terms of regular spherical vector wave functions, are expressed as simple integrals. This version of the plane wave spectrum method offers the possibility to compute higher-order corrections for Gaussian beams.

  2. Electromagnetic wave velocities: an experimental approach

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Santos, W. S.; Aguiar, C. E.

    2013-05-01

    We describe experiments with coaxial transmission lines for the study of some of the velocities used to characterize the propagation of electromagnetic waves in a medium, namely phase, group and signal velocities. The experiments are suitable for undergraduates at advanced laboratory level. Their purpose is to acquaint the students with the fact that in a dispersive medium there are many possible definitions for the speed of light, and that the measurement of these different velocities is important for general understanding of wave propagation.

  3. Emergent cosmological constant from colliding electromagnetic waves

    SciTech Connect

    Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O. E-mail: habib.mazhari@emu.edu.tr

    2014-11-01

    In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.

  4. Vector plane wave spectrum of an arbitrary polarized electromagnetic wave.

    PubMed

    Guo, Hanming; Chen, Jiabi; Zhuang, Songlin

    2006-03-20

    By using the method of modal expansions of the independent transverse fields, a formula of vector plane wave spectrum (VPWS) of an arbitrary polarized electromagnetic wave in a homogenous medium is derived. In this formula VPWS is composed of TM- and TE-mode plane wave spectrum, where the amplitude and unit polarized direction of every plane wave are separable, which has more obviously physical meaning and is more convenient to apply in some cases compared to previous formula of VPWS. As an example, the formula of VPWS is applied to the well-known radially and azimuthally polarized beam. In addition, vector Fourier-Bessel transform pairs of an arbitrary polarized electromagnetic wave with circular symmetry are also derived.

  5. Vector plane wave spectrum of an arbitrary polarized electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Guo, Hanming; Chen, Jiabi; Zhuang, Songlin

    2006-03-01

    By using the method of modal expansions of the independent transverse fields, a formula of vector plane wave spectrum (VPWS) of an arbitrary polarized electromagnetic wave in a homogenous medium is derived. In this formula VPWS is composed of TM- and TE-mode plane wave spectrum, where the amplitude and unit polarized direction of every plane wave are separable, which has more obviously physical meaning and is more convenient to apply in some cases compared to previous formula of VPWS. As an example, the formula of VPWS is applied to the well-known radially and azimuthally polarized beam. In addition, vector Fourier-Bessel transform pairs of an arbitrary polarized electromagnetic wave with circular symmetry are also derived.

  6. Obliquely Propagating Electromagnetic Waves in Magnetized Kappa Plasmas

    NASA Astrophysics Data System (ADS)

    Gaelzer, R.

    2015-12-01

    The effects of velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subjectof intense research by the space plasma community. Such functions, known as kappa or superthermal distributions, have beenfound to provide a better fitting to the VDF measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. An anisotropic kappa VDF contains a large amount of free energy that can excite waves in the solar wind. Conversely, the wave-particle interaction is important to determine the shape of theobserved particle distributions.In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, either isotropic or anisotropic, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation. Contributions for the general case of obliquely-propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities, such as the firehose, can operate simultaneously both in the parallel and oblique directions.In a recent work [1], we have obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. In the present work, we generalize the formalism introduced by [1] for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles.We employ an isotropic distribution, but the methods used here can be easily applied to more general anisotropic distributions,such as the bi-kappa or product-bi-kappa. [1] R. Gaelzer and L. F. Ziebell, Journal of Geophysical Research 119, 9334

  7. Principles of electromagnetic waves in metasurfaces

    NASA Astrophysics Data System (ADS)

    Luo, XianGang

    2015-09-01

    Metasurfaces are artificially structured thin films with unusual properties on demand. Different from metamaterials, the metasurfaces change the electromagnetic waves mainly by exploiting the boundary conditions, rather than the constitutive parameters in three dimensional (3D) spaces. Despite the intrinsic similarities in the operational principles of metasurfaces, there is not a universal theory available for the understanding and design of these devices. In this article, we propose the concept of metasurface waves (M-waves) and provide a general theory to describe the principles of such waves. Most importantly, it is shown that the M-waves share some fundamental properties such as extremely short wavelength, abrupt phase change and strong chromatic dispersion, which making them different from traditional bulk waves. We show that these properties can enable many important applications such as subwavelength imaging and lithography, planar optical devices, broadband anti-reflection, absorption and polarization conversion. Our results demonstrated unambiguously that traditional laws of diffraction, refraction, reflection and absorption can be overcome by using the novel properties of M-waves. The theory provided here may pave the way for the design of new electromagnetic devices and further improvement of metasurfaces.

  8. Electromagnetic wave collapse in a radiation background.

    PubMed

    Marklund, Mattias; Brodin, Gert; Stenflo, Lennart

    2003-10-17

    The nonlinear interaction, due to quantum electrodynamical (QED) effects between an electromagnetic pulse and a radiation background, is investigated by combining the methods of radiation hydrodynamics with the QED theory for photon-photon scattering. For the case of a single coherent electromagnetic pulse, we obtain a Zakharov-like system, where the radiation pressure of the pulse acts as a driver of acoustic waves in the photon gas. For a sufficiently intense pulse and/or background energy density, there is focusing and the subsequent collapse of the pulse. The relevance of our results for various astrophysical applications are discussed.

  9. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern

  10. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  11. Electromagnetic wave scattering by an external field

    NASA Astrophysics Data System (ADS)

    Sannikov, S. S.

    1995-08-01

    The quantum electrodynamics of bilocal fields is used to calculate the triangular Feynman diagrams describing the elastic scattering of a classical electromagnetic wave by an external Coulomb field. The total contribution of the diagrams is nonzero because of the violation of both the Furry theorem (CP or T symmetries) and the Ward identities. The cross section for this scattering process is found for low and high energies. A comparison with Compton scattering and Euler—Heisenberg scattering is given.

  12. Electromagnetic waves in a strong Schwarzschild plasma

    SciTech Connect

    Daniel, J.; Tajima, T.

    1996-11-01

    The physics of high frequency electromagnetic waves in a general relativistic plasma with the Schwarzschild metric is studied. Based on the 3 + 1 formalism, we conformalize Maxwell`s equations. The derived dispersion relations for waves in the plasma contain the lapse function in the plasma parameters such as in the plasma frequency and cyclotron frequency, but otherwise look {open_quotes}flat.{close_quotes} Because of this property this formulation is ideal for nonlinear self-consistent particle (PIC) simulation. Some of the physical consequences arising from the general relativistic lapse function as well as from the effects specific to the plasma background distribution (such as density and magnetic field) give rise to nonuniform wave equations and their associated phenomena, such as wave resonance, cutoff, and mode-conversion. These phenomena are expected to characterize the spectroscopy of radiation emitted by the plasma around the black hole. PIC simulation results of electron-positron plasma are also presented.

  13. Obliquely propagating electromagnetic waves in magnetized kappa plasmas

    NASA Astrophysics Data System (ADS)

    Gaelzer, R.; Ziebell, L. F.

    2016-02-01

    Velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subject of intense research by the plasma physics community. Such functions, known as kappa or superthermal distributions, have been found to provide a better fitting to the VDFs measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation, relative to the ambient magnetic field. Contributions to the general case of obliquely propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities can operate simultaneously both in the parallel and oblique directions. In a recent work, Gaelzer and Ziebell [J. Geophys. Res. 119, 9334 (2014)] obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. In the present work, the formalism is generalized for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles. An isotropic distribution is considered, but the methods used here can be easily applied to more general anisotropic distributions such as the bi-kappa or product-bi-kappa.

  14. Fermi energy-dependence of electromagnetic wave absorption in graphene

    NASA Astrophysics Data System (ADS)

    Shoufie Ukhtary, M.; Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Saito, Riichiro

    2015-05-01

    Undoped graphene is known to absorb 2.3% of visible light at a normal angle of incidence. In this paper, we theoretically demonstrate that the absorption of 10-100 GHz of an electromagnetic wave can be tuned from nearly 0 to 100% by varying the Fermi energy of graphene when the angle of incidence of the electromagnetic wave is kept within total internal reflection geometry. We calculate the absorption probability of the electromagnetic wave as a function of the Fermi energy of graphene and the angle of incidence of the wave. These results open up possibilities for the development of simple electromagnetic wave-switching devices operated by gate voltage.

  15. Electromagnetic waves in a polydisperse dusty plasma

    SciTech Connect

    Prudskikh, V. V.; Shchekinov, Yu. A.

    2013-10-15

    The properties of low-frequency electromagnetic waves in a polydisperse dusty plasma are studied. The dispersion relation for the waves propagating at an arbitrary angle to the external magnetic field is derived, with the coefficients explicitly determined by the dust-size distribution function. The dependence of wave dispersion on properties of the dust-size distribution function is analysed. It is shown that the cutoff for an oblique propagation in plasma with a wide scatter of dust sizes takes place at a much lower frequency than in a plasma with monosized dust particles. It is found that dispersion properties of a transversal magnetosonic wave mode around dust–cyclotron frequencies considerably differ from those in a plasma with monosized dust. In a plasma with low mass fraction of dust particles, the dispersion is smooth without the cutoff and the resonance intrinsic for a plasma with monosized dust. Increase of the dust fraction results in splitting of the dispersion curve on to two branches. Further increase of the dust fraction leads to emergence of the third branch located between the cutoffs and restricted from the lower and higher frequencies by two resonances. The dependence of the frequencies of cutoffs and resonances on the width of the dust-size distribution, its slope and the dust mass fraction are analysed. It is shown that the transparency frequency windows in a plasma with polydisperse dust are wider for transversal elecromagnetic waves, but narrower for longitudinal or oblique waves.

  16. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    SciTech Connect

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-04-15

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  17. Guidance of electromagnetic waves in the ionosphere and magnetosphere

    NASA Astrophysics Data System (ADS)

    Dobrowolny, M.

    1982-12-01

    Classical theory of guiding of electromagnetic waves along magnetic field lines is introduced for waves at frequencies below the electron cyclotron frequency (essentially to whistlers and low frequency hydromagnetic waves). Dielectric tensor and wave branches of a cold magnetoplasma; VLF and ELF waves; energy propagation of waves in anisotropic dispersive media; energy propagation of ELF-VLF waves in a homogeneous magnetoplasma; ray tracing; mode theory of guided wave theory; Bookers mode theory of electromagnetic wave guidance in the magnetosphere; and guidance of whistlers are treated.

  18. Electromagnetic wave interactions with a metamaterial cloak.

    PubMed

    Chen, Hongsheng; Wu, Bae-Ian; Zhang, Baile; Kong, Jin Au

    2007-08-10

    We establish analytically the interactions of electromagnetic wave with a general class of spherical cloaks based on a full wave Mie scattering model. We show that for an ideal cloak the total scattering cross section is absolutely zero, but for a cloak with a specific type of loss, only the backscattering is exactly zero, which indicates the cloak can still be rendered invisible with a monostatic (transmitter and receiver in the same location) detection. Furthermore, we show that for a cloak with imperfect parameters the bistatic (transmitter and receiver in different locations) scattering performance is more sensitive to eta(t)=square root micro(t)/epsilon(t) than n(t)=square root micro(t)epsilon(t). PMID:17930824

  19. Observations of ELF electromagnetic waves associated with equatorial spread F

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Holtet, J. A.; Tsurutani, B. T.

    1979-01-01

    Extreme low frequency electromagnetic waves have been observed below the F peak in the equatorial ionosphere by instruments onboard OGO-6. Electrostatic wave observations indicate that the steep gradient was unstable to the process which causes equatorial spread F above the region where the electromagnetic waves were observed. The data are very similar to observations near the polar cusp and give further evidence that ELF waves are excluded from regions of rapid and irregular density increases. Low level electromagnetic waves with similar properties were occasionally observed on the nightside by the OVI-17 electric field sensor and may be plasmaspheric hiss which has propagated to low altitude.

  20. High latitude electromagnetic plasma wave emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1983-01-01

    The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.

  1. Plasma wave aided two photon decay of an electromagnetic wave in a plasma

    SciTech Connect

    Kumar, K. K. Magesh; Singh, Rohtash; Krishan, Vinod

    2014-11-15

    The presence of a Langmuir wave in an unmagnetized plasma is shown to allow parametric decay of an electromagnetic wave into two electromagnetic waves, which is otherwise not allowed due to wave number mismatch. The decay occurs at plasma densities below one ninth the critical density and the decay waves propagate at finite angles to the pump laser. Above the threshold, the growth rate scales linearly with the amplitude of the Langmuir wave and the amplitude of the pump electromagnetic wave. The frequency ω of the lower frequency decay wave increases with the angle its propagation vector makes with that of the pump. The growth rate, however, decreases with ω.

  2. Flat Lenses for Circularly Polarized Electromagnetic Waves

    NASA Astrophysics Data System (ADS)

    Phillion, Rudi Henry

    2011-12-01

    A planar array of passive lens elements can be phased to approximate the effect of a curved dielectric lens. The rotational orientation of each element can provide the required phase shift for circular polarization. The array elements must be designed so that the hand of circular polarization changes as the electromagnetic wave passes through the lens. An element is presented that is based on an aperture-coupled microstrip patch antenna. Two lenses are designed; both operate in the Ku-band, have a diameter of 254 mm, and contain 349 lens elements. The elements have identical dimensions but the rotational orientation of each element is selected to provide a specific lens function. The first lens is designed to collimate radiation from a feed horn into a beam pointing 20° from broadside. The measured aperture efficiency is 48%, the cross-polarization discrimination ratio is 20 dB, and the --3-dB-gain bandwidth is 17%. A simulation technique that assumes local periodicity for each element is used to predict the antenna performance. Guidelines are given for predicting the radiation pattern, gain, bandwidth, and cross-polarization discrimination ratio of a much larger array. The second lens acts as a Wollaston-type prism. It splits an incident wave according to its circular polarization components. The prism effect occurs because of the equal but opposite phase shifts applied to each hand of incident circular polarization.

  3. High-energy tail distributions and resonant wave particle interaction

    NASA Technical Reports Server (NTRS)

    Leubner, M. P.

    1983-01-01

    High-energy tail distributions (k distributions) are used as an alternative to a bi-Lorentzian distribution to study the influence of energetic protons on the right- and left-hand cyclotron modes in a hot two-temperature plasma. Although the parameters are chosen to be in a range appropriate to solar wind or magnetospheric configurations, the results apply not only to specific space plasmas. The presence of energetic particles significantly alters the behavior of the electromagnetic ion cyclotron modes, leading to a wide range of unstable frequencies and increased growth rates. From the strongly enhanced growth rates it can be concluded that high-energy tail distributions should not show major temperature anisotropies, which is consistent with observations.

  4. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium.

    PubMed

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-01-01

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium.

  5. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium

    PubMed Central

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-01-01

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066

  6. Electromagnetic waves in optical fibres in a magnetic field

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Burdanova, M. G.

    2016-03-01

    A new method is reported of recording the secondary radiation of luminescent substances based on the use of capillary fibres of great length. Theoretical analysis of the dispersion curves of electromagnetic radiation in capillary fibres doped with erbium ions Er3+ has been established. The Lorentz model is used for describing the dispersion properties of electromagnetic waves in a homogeneous medium doped with rare-earth ions. The dispersion dependencies of polariton and axion-polariton waves in erbium nitrate hydrate are determined on the basis of the model of the interaction between electromagnetic waves and the resonance electronic states of erbium ions in the absence and presence of a magnetic field.

  7. Electromagnetic waves: Negative refraction by photonic crystals

    NASA Astrophysics Data System (ADS)

    Ozbay, Ekmel

    2004-03-01

    Recently left-handed materials (LHM) attracted great attention since these materials exhibit negative effective index, which is due to simultaneously negative permeability and permittivity. Pendry proposed that negative effective index in left-handed materials can be used for constructing a perfect lens, which is not limited by diffraction(J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. vol. 85, 3966 (2000)). Negative refraction is also achievable in a dielectric photonic crystal (PC) that has a periodically modulated positive permittivity and a permeability of unity. Luo et al. has studied negative refraction and subwavelength imaging in photonic crystals(C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, Subwavelength Imaging in Photonic Crystals Phys. Rev. B 68, 045115 (2003)). In this presentation, we report our experimental and theoretical investigation of negative refraction and subwavelength focusing of electromagnetic waves in a 2D PC. Our structure consists of a square array of dielectric rods in air. Transmission measurements are performed for experimentally verifying the predicted negative refraction behavior in our structure. Negative index of refraction determined from the experiment is -1.94 which is very close to the theoretical value of -2.06. Negative refraction is observed for the incidence angles of > 20°(Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, S. Foteinopolou, and Costas Soukoulis, Negative Refraction by Photonic Crystals, Nature, vol. 423, 604 (2003)). Since we know the optimum frequency for a broad angle negative refraction, we can use our crystal to test the superlensing effect that was predicted for negative refractive materials. Scanning transmission measurement technique is used to measure the spatial power distribution of the focused electromagnetic waves that radiate from a point source. Full width at half maximum of the focused beam is measured to be 0.21λ, which is in good agreement with the finite

  8. Electromagnetic shock wave in nonlinear vacuum: exact solution.

    PubMed

    Kovachev, Lubomir M; Georgieva, Daniela A; Kovachev, Kamen L

    2012-10-01

    An analytical approach to the theory of electromagnetic waves in nonlinear vacuum is developed. The evolution of the pulse is governed by a system of nonlinear wave vector equations. An exact solution with its own angular momentum in the form of a shock wave is obtained.

  9. Propagation of electromagnetic wave in coaxial conical transverse electromagnetic wave cell

    NASA Astrophysics Data System (ADS)

    Liu, Xingxun; Zhang, Tao; Qi, Wangquan

    2015-11-01

    In order to solve the problem of broadband field probes calibration with only selected discrete frequencies above 1 GHz, a sweep-frequency calibration technology based on a coaxial conical(co-conical) cell is researched. Existing research is only qualitative because of the complexity of theoretical calculations. For designing a high performance cell, a mathematic model of high-order modes transmission is built according to the geometrical construction of co-conical. The associated Legendre control functions of high-order modes are calculated by using recursion methodology and the numerical calculation roots are presented with different half angles of inner and outer conductor. Relationship between roots and high-order modes transmission is analyzed, when the half angles of inner conductor and outer conductor are θ 1=1.5136° and θ 2=8° respectively, the co-conical cell has better performance for fewer transmitting high-order modes. The propagation process of the first three transmitting modes wave is simulated in CST-MWS software from the same structured co-conical. The simulation plots show that transmission of high-order modes appears with electromagnetic wave reflection, then different high-order mode transmission has different cut-off region and each cut-off region is determined by its cut-off wavelength. This paper presents numerical calculation data and theoretical analysis to design key structural parameters for the co-conical transverse electromagnetic wave cell(co-conical TEM cell).

  10. Electromagnetic drift waves dispersion for arbitrarily collisional plasmas

    SciTech Connect

    Lee, Wonjae Krasheninnikov, Sergei I.; Angus, J. R.

    2015-07-15

    The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.

  11. Scattering of electromagnetic wave by dielectric cylinder in eikonal approximation

    NASA Astrophysics Data System (ADS)

    Syshchenko, V. V.

    2016-07-01

    The scattering of the plane electromagnetic wave on a spatially extended, fiber lake target is considered. The formula for the scattering cross section is obtained using the approximation analogous to eikonal one in quantum mechanics.

  12. Electromagnetic inhomogeneous waves at planar boundaries: tutorial.

    PubMed

    Frezza, Fabrizio; Tedeschi, Nicola

    2015-08-01

    In this review paper, we summarize the fundamental properties of inhomogeneous waves at the planar interface between two media. We point out the main differences between the wave types: lateral waves, surface waves, and leaky waves. We analyze each kind of inhomogeneous wave, giving a quasi-optical description and explaining the physical origin of some of their properties.

  13. Traveling waves and their tails in locally resonant granular systems

    DOE PAGES

    Xu, H.; Kevrekidis, P. G.; Stefanov, A.

    2015-04-22

    In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely themore » avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise.« less

  14. Traveling waves and their tails in locally resonant granular systems

    SciTech Connect

    Xu, H.; Kevrekidis, P. G.; Stefanov, A.

    2015-04-22

    In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely the avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise.

  15. Surface electromagnetic wave equations in a warm magnetized quantum plasma

    SciTech Connect

    Li, Chunhua; Yang, Weihong; Wu, Zhengwei; Chu, Paul K.

    2014-07-15

    Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.

  16. An Apparatus for Constructing an Electromagnetic Plane Wave Model

    ERIC Educational Resources Information Center

    Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William

    2015-01-01

    In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…

  17. Electromagnetic inertio-gravity waves in the Earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Kaladze, T. D.; Tsamalashvili, L. V.; Kahlon, L. Z.

    2011-05-01

    Propagation of electromagnetic inertio-gravity (IG) waves in the partially ionized ionospheric E- and F-layers is considered in the shallow water approximation. Accounting of the field-aligned current is the main novelty of the investigation. Existence of two new eigen-frequencies for fast and slow electromagnetic waves is revealed in the ionospheric E-layer. It is shown that in F-layer slowly damping new type of inertial-fast magnetosonic waves can propagate. Slowly damping low-frequency oscillations connected with the field-aligned conductivity are found. Broad spectrum of oscillations is investigated.

  18. Transition operators in electromagnetic-wave diffraction theory - General theory

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    1992-01-01

    A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.

  19. Electromagnetic envelope solitary waves with transverse perturbation in a plasma

    SciTech Connect

    Borhanian, J.

    2013-04-15

    The system of fluid-Maxwell equations governing the two-dimensional dynamics of electromagnetic waves in a plasma is analyzed by means of multiple scale perturbation method. It is shown that the evolution of the amplitude of wave field is governed by a two-dimensional nonlinear Schroedinger equation. The stability of bright envelope solitons is studied using the variational method. It is found that the development of transverse periodic perturbations on bright solitons is faster for a plasma with near critical density. Dynamics of electromagnetic bright solitons is investigated in the long-wave approximation. Our model predicts the appearance of collapse of electromagnetic waves in plasmas and describes the collapse dynamics at initial stages.

  20. Relativistic electromagnetic waves in an electron-ion plasma

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  1. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    PubMed Central

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-01-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891

  2. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    NASA Astrophysics Data System (ADS)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak

    2015-09-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  3. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    PubMed

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-01-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  4. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    PubMed

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-01-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891

  5. The momentum of an electromagnetic wave inside a dielectric

    NASA Astrophysics Data System (ADS)

    Testa, Massimo

    2013-09-01

    The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham-Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored.

  6. [Mechanisms of primary reception of electromagnetic waves of optical range].

    PubMed

    Huliar, S O; Lymans'kyĭ, Iu P

    2003-01-01

    An existence of separate functional system of regulation of electromagnetic balance of organism has been substantiated and a working conception of light therapy has been formulated. As a basis, there is a possibility to use the acupuncture points for input of biologically necessary electromagnetic waves into the system of their conductors in a body that might be considered as a transport facility for energy of the polarized electromagnetic waves. Zones-recipients are organs having an electromagnetic disbalance due to excess of biologically inadequate radiation and being the targets for peroxide oxidation. Foremost, a body has the neurohormonal and immune regulatory systems. Electromagnetic stimulation or modification of functions of the zones-recipients determines the achievement of therapeutic and useful effects, and their combination with local reparative processes allows to attain a clinical goal. We represent own and literary experimental data about the development of physiological responses (analgesia) to BIOPTRON-light exposure on the acupuncture points or biologically active zones. We show the experimental facts in support of a hypothesis that a living organism can perceive an action of the electromagnetic fields of optical range not only via the visual system, but also through the off-nerve receptors (specific energy-sensitive proteins detecting critical changes of energy in cells and functioning as the "sensory" cell systems), as well as via the acupuncture points. It confirms an important role of the electromagnetic waves of optical range in providing normal vital functions of living organisms. A current approach to BIOPTRON light therapy (by polarized polychromatic coherent low energy light) consists in combined (local and system) exposure of the electromagnetic waves within the biologically necessary range. PMID:12945112

  7. A metasurface carpet cloak for electromagnetic, acoustic and water waves.

    PubMed

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-29

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.

  8. A metasurface carpet cloak for electromagnetic, acoustic and water waves

    PubMed Central

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-01

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak. PMID:26822429

  9. A metasurface carpet cloak for electromagnetic, acoustic and water waves

    NASA Astrophysics Data System (ADS)

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-01

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.

  10. A metasurface carpet cloak for electromagnetic, acoustic and water waves.

    PubMed

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-01

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak. PMID:26822429

  11. Cell therapy for spinal cord injury informed by electromagnetic waves.

    PubMed

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.

  12. Left-Handed Interfaces for Electromagnetic Surface Waves

    NASA Astrophysics Data System (ADS)

    Kats, A. V.; Savel'Ev, Sergey; Yampol'Skii, V. A.; Nori, Franco

    2007-02-01

    We show that surface electromagnetic waves (SEMWs) propagating along two-dimensional (2D) interfaces separating different metamaterials can behave analogously to 3D electromagnetic waves in either usual or left-handed media, depending on the permeabilities and/or permittivities of the two materials forming the interface. We derive the conditions when SEMWs carry energy opposite to the phase velocity. In analogy to three-dimensional (3D) left-handed media, we derive both an anomalous Cherenkov emission and a reversed Doppler effect. We also predict a negative refraction at the boundary between two different interfaces, which can be useful for perfect 2D lensing.

  13. Cell therapy for spinal cord injury informed by electromagnetic waves.

    PubMed

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments. PMID:27599240

  14. Focusing of electromagnetic waves by periodic arrays of dielectric cylinders

    NASA Astrophysics Data System (ADS)

    Gupta, Bikash C.; Ye, Zhen

    2003-04-01

    By numerical simulations, we show that properly arranged two-dimensional periodic arrays, formed by dielectric cylinders embedded in parallel in a uniform medium, can indeed act as an optical lens to focus electromagnetic waves, in accordance with the recent conjecture in the literature. The numerical simulations are based on an exact multiple-scattering technique. The results suggest that the E-polarized waves are easier to be focused than the H-polarized waves. The robustness of the focusing against disorders is also studied. Comparison with the corresponding cases for acoustic waves is also discussed.

  15. Study of a condition for the mode conversion from purely perpendicular electrostatic waves to electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Kalaee, Mohammad Javad; Katoh, Yuto

    2016-07-01

    One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.

  16. Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.

    PubMed

    Masood, Waqas; Eliasson, Bengt; Shukla, Padma K

    2010-06-01

    A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars. PMID:20866534

  17. Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.

    PubMed

    Masood, Waqas; Eliasson, Bengt; Shukla, Padma K

    2010-06-01

    A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars.

  18. Molding acoustic, electromagnetic and water waves with a single cloak.

    PubMed

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien

    2015-06-09

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves.

  19. Molding acoustic, electromagnetic and water waves with a single cloak

    PubMed Central

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien

    2015-01-01

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. PMID:26057934

  20. Electromagnetic wave absorbing properties of amorphous carbon nanotubes.

    PubMed

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-07-10

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.

  1. Scattering of electromagnetic waves from a turbulent plasma slab.

    NASA Technical Reports Server (NTRS)

    Liu, C. H.

    1972-01-01

    Scattering of electromagnetic waves from a turbulent plasma slab is studied. Part of the effects of the multiple scattering is taken into account. The reflection coefficient is found to be increased and its variation with respect to the slab thickness is smoothed out by the random scattering.

  2. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes

    PubMed Central

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-01-01

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7–50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was −25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at −10 dB was up to 5.8 GHz within the frequency range of 2–18 GHz. PMID:25007783

  3. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    SciTech Connect

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.

  4. Multiple scattering of electromagnetic waves by rain

    NASA Technical Reports Server (NTRS)

    Tsolakis, A.; Stutzman, W. L.

    1982-01-01

    As the operating frequencies of communications systems move higher into the millimeter wave region, the effects of multiple scattering in precipitation media become more significant. In this paper, general formulations are presented for single, first-order multiple, and complete multiple scattering. Included specifically are distributions of particle size, shape, and orientation angle, as well as variation in the medium density along the direction of wave propagation. Calculations are performed for rain. It is shown that the effects of higher-order scattering are not noticeable in either attenuation or channel isolation on a dual-polarized system until frequencies of about 30 GHz are reached. The complete multiple-scattering formulation presented gives accurate results at high millimeter wave frequencies as well as including realistic medium parameter distributions. Furthermore, it is numerically efficient.

  5. Reflection of electromagnetic waves at a biaxial-isotropic interface

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.

    1983-01-01

    The reflection of electromagnetic waves at a plane boundary between isotropic and biaxial media has been investigated using the kDB approach. The general case has been considered in which the principal dielectric axes of the biaxial medium are oriented at an arbitrary angle to the normal of the plane boundary. In general, two characteristic waves propagate in the biaxial medium, leading to coupling of vertical and horizontal polarizations in the reflected waves. Some special cases are illustrated. The results have applications to problems in remote sensing and integrated optics.

  6. Reflection and interference of electromagnetic waves in inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Geiger, F. E.; Kyle, H. L.

    1973-01-01

    Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient.

  7. Nonlinear Self-Similar Beams of Electromagnetic Waves in Vacuum

    NASA Astrophysics Data System (ADS)

    Vlasov, S. N.

    2015-12-01

    We study nonlinear beams of electromagnetic waves in vacuum. Within the lowest approximation, their structure is determined by the cubic self-focusing nonlinearity, which manifests itself with the maximum intensity in the presence of counterpropagating waves. It is shown that the fields in the beams have no singularities if their power is less than the critical power of the self-focusing. The dependences of the eigenfrequencies of the modes of the quasioptical resonator on the beam power are found. The structure of the fields of these modes corresponds to self-similar wave beams.

  8. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  9. Scattering of electromagnetic light waves from a deterministic anisotropic medium

    NASA Astrophysics Data System (ADS)

    Li, Jia; Chang, Liping; Wu, Pinghui

    2015-11-01

    Based on the weak scattering theory of electromagnetic waves, analytical expressions are derived for the spectral densities and degrees of polarization of an electromagnetic plane wave scattered from a deterministic anisotropic medium. It is shown that the normalized spectral densities of scattered field is highly dependent of changes of the scattering angle and degrees of polarization of incident plane waves. The degrees of polarization of scattered field are also subjective to variations of these parameters. In addition, the anisotropic effective radii of the dielectric susceptibility can lead essential influences on both spectral densities and degrees of polarization of scattered field. They are highly dependent of the effective radii of the medium. The obtained results may be applicable to determine anisotropic parameters of medium by quantitatively measuring statistics of a far-zone scattered field.

  10. Reflective properties of electromagnet-optical waves in superconducting plasmas

    SciTech Connect

    Ohnuma, Toshiro; Ohno, J.

    1995-12-31

    Superconducting (SC) plasmas were discovered recently, the studies of which are becoming important. As for the SC plasmas, the penetration depth of magnetic fields to the superconductor due to the fundamental Meissner effect is given by {lambda} = c/{omega}{sub ps}, ({omega}{sub ps}: the SC electron plasma frequency). The investigations on the SC plasmas are discussed in this report. Electromagnet-optical field distributions near the SC plasma boundary are numerically investigated, when electromagnet-optical beam waves with finite size are radiated to SC plasma with ambient incident angle. Typical electric field patterns for TE incident wave are shown. The figure indicates the existence of the parallel shift of the reflective position of the beam wave for the case of the perfect reflection. The reflective shift is found to result from field penetrations to the superconductor which depend on the parameter of the SC plasmas.

  11. Electromagnetic Waves Broadcast by a VCR.

    ERIC Educational Resources Information Center

    Brown, Michael H.

    1996-01-01

    Presents experiments that use a video cassette recorder (VCR) to demonstrate polarization of radio waves using two dipole antennas and a spark gap transmitter tuned to a frequency of either 60-66 MHz or 66-72 MHz with wavelengths of 5 or 4.3 meters, close to the wavelengths of the original work done by Heinrich Hertz. (JRH)

  12. On the breaking of a plasma wave in a thermal plasma. II. Electromagnetic wave interaction with the breaking plasma wave

    SciTech Connect

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Pirozhkov, Alexander S.; Nakamura, Tatsufumi; Bulanov, Stepan S.; Schroeder, Carl B.; Esarey, Eric; Califano, Francesco; Pegoraro, Francesco

    2012-11-15

    In thermal plasma, the structure of the density singularity formed in a relativistically large amplitude plasma wave close to the wavebreaking limit leads to a refraction coefficient with discontinuous spatial derivatives. This results in a non-exponentially small above-barrier reflection of an electromagnetic wave interacting with the nonlinear plasma wave.

  13. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves

    SciTech Connect

    Erofeev, V. I.

    2015-09-15

    The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.

  14. Parametric instability of a relativistically strong electromagnetic wave.

    NASA Technical Reports Server (NTRS)

    Max, C. E.

    1973-01-01

    The stability of a circularly polarized electromagnetic wave that is strong enough to make plasma electrons, but not ions, relativistic is studied. Small perturbations are considered which propagate parallel to the large-amplitude driver. A relativistically strong wave can be unstable on time scales as short as twice its own oscillation period, and decays into a forward-going plasma oscillation and either one or two electromagnetic waves. Ion motion introduces an additional instability which can be important at short perturbation wavelengths, where the driver would otherwise be stable. The unstable ion and electron modes both have potential for producing anomalously large acceleration of relativistic particles, as well as significant amounts of backscattered light. These effects may be important in two applications: (1) the use of intense lasers to heat or compress plasma, and (2) the plasma surrounding a pulsar, if the pulsar is losing energy by radiation of electromagnetic waves at its rotation frequency. Instability persists in the nonrelativistic regime, reducing to stimulated Raman scattering as a special case.

  15. Electromagnetic ion cyclotron waves at proton cyclotron harmonics

    NASA Astrophysics Data System (ADS)

    Chaston, C. C.; Bonnell, J. W.; McFadden, J. P.; Ergun, R. E.; Carlson, C. W.

    2002-11-01

    Waves with frequencies in the vicinity of the proton cyclotron frequency and its harmonics are commonly observed from the Fast Auroral Snapshot spacecraft when traversing regions of auroral particle acceleration. In areas of upward current, large-amplitude electromagnetic waves with frequencies within 5% of the local proton gyrofrequency Ωp and its harmonics are often observed where upstreaming ion beams exist. These waves have electric field (E1) and magnetic field (B1) amplitudes of up to 1 V m-1 and 2 nT with the ratio E1/B1 as small as c. The waves occur in the low-altitude portion of the primary auroral acceleration potential, where plasma densities are ≤1 cm-3. It is shown how these waves grow through inverse Landau resonance with a cold field-aligned electron beam superimposed on an accelerated and magnetically mirrored plasma sheet electron component in the absence of any significant plasma densities at energies below ˜100 eV. Significantly, the drift velocity of the cold beam (voeb) is several times larger than its thermal velocity veb, and it is this feature that allows the wave to become electromagnetic at cyclotron harmonics while simultaneously giving rise to broadband electrostatic emissions spanning the first few cyclotron harmonics as is observed.

  16. The momentum of an electromagnetic wave inside a dielectric

    SciTech Connect

    Testa, Massimo

    2013-09-15

    The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham–Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored. -- Highlights: •We discuss an approximation to treat electrodynamics of a dielectric material. •We support the Abraham form for the electromagnetic momentum. •We deduce Snell’s law from the conservation of the Abraham momentum. •We show how to deal with the electric field discontinuity at the dielectric boundary.

  17. Electromagnetic wave extinction within a forested canopy

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1989-01-01

    A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.

  18. Collision of strong gravitational and electromagnetic waves in the expanding universe

    NASA Astrophysics Data System (ADS)

    Alekseev, G. A.

    2016-03-01

    An exact analytical model of the process of collision and nonlinear interaction of gravitational and/or electromagnetic soliton waves and strong nonsoliton electromagnetic traveling waves of arbitrary profile propagating in the expanding universe (the symmetric Kasner spacetime) is presented. In contrast to intuitive expectations that rather strong traveling waves can destroy the soliton, it occurs that the soliton survives during its interaction with electromagnetic waves of arbitrary amplitude and profile, but its parameters begin to evolve under the influence of this interaction. If a traveling electromagnetic wave possesses a finite duration, the soliton parameters after interaction take constant values again, but these values in general are different from those before the interaction. Based on exact solutions of the Einstein-Maxwell equations, our model demonstrates a series of nonlinear phenomena, such as (a) creation of gravitational waves in the collision of two electromagnetic waves, (b) creation of electromagnetic soliton waves in the collision of a gravitational soliton with traveling electromagnetic waves, (c) scattering of a part of a soliton wave in the direction of propagation of a traveling electromagnetic wave, and (d) quasiperiodic oscillating character of fields in the wave interaction region and multiple mutual transformations of gravitational and electromagnetic waves in this region. The figures illustrate these features of nonlinear wave interactions in general relativity.

  19. Full-wave simulations of electromagnetic cloaking structures

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Popa, Bogdan-Ioan; Schurig, David; Smith, David R.; Pendry, John

    2006-09-01

    Pendry have reported electromagnetically anisotropic and inhomogeneous shells that, in theory, completely shield an interior structure of arbitrary size from electromagnetic fields without perturbing the external fields. Neither the coordinate transformation-based analytical formulation nor the supporting ray-tracing simulation indicate how material perturbations and full-wave effects might affect the solution. We report fully electromagnetic simulations of the cylindrical version of this cloaking structure using ideal and nonideal (but physically realizable) electromagnetic parameters that show that the low-reflection and power-flow bending properties of the electromagnetic cloaking structure are not especially sensitive to modest permittivity and permeability variations. The cloaking performance degrades smoothly with increasing loss, and effective low-reflection shielding can be achieved with a cylindrical shell composed of an eight- (homogeneous) layer approximation of the ideal continuous medium. An imperfect but simpler version of the cloaking material is derived and is shown to reproduce the ray bending of the ideal material in a manner that may be easier to experimentally realize.

  20. Electromagnetic waves in a model with Chern-Simons potential

    NASA Astrophysics Data System (ADS)

    Pis'mak, D. Yu.; Pis'mak, Yu. M.; Wegner, F. J.

    2015-07-01

    We investigated the appearance of Chern-Simons terms in electrodynamics at the surface or interface of materials. The requirement of locality, gauge invariance, and renormalizability in this model is imposed. Scattering and reflection of electromagnetic waves in three different homogeneous layers of media is determined. Snell's law is preserved. However, the transmission and reflection coefficient depend on the strength of the Chern-Simons interaction (connected with Hall conductance), and parallel and perpendicular components are mixed.

  1. Broadband electromagnetic wave absorbers prepared by grading magnetic powder density

    NASA Astrophysics Data System (ADS)

    Itoh, Masahiro; Terada, Masao; Shogano, Fumiyoshi; Machida, Ken-ichi

    2010-09-01

    Resin compacts including iron-based magnetic powders were prepared using a centrifugal molding technique. Energy dispersive x-ray analyses demonstrated the formation of a concentration gradient of the magnetic powder in the resin compacts. The resultant concentration-graded resin compacts exhibited better broadband electromagnetic wave absorption than the homogeneous resin compacts prepared as a reference. This absorption ability was further enhanced by attaching a urethane foam plate to the absorber surface.

  2. Gradient instabilities of electromagnetic waves in Hall thruster plasma

    SciTech Connect

    Tomilin, Dmitry

    2013-04-15

    This paper presents a linear analysis of gradient plasma instabilities in Hall thrusters. The study obtains and analyzes the dispersion equation of high-frequency electromagnetic waves based on the two-fluid model of a cold plasma. The regions of parameters corresponding to unstable high frequency modes are determined and the dependence of the increments and intrinsic frequencies on plasma parameters is obtained. The obtained results agree with those of previously published studies.

  3. Electromagnetic waves in a model with Chern-Simons potential.

    PubMed

    Pis'mak, D Yu; Pis'mak, Yu M; Wegner, F J

    2015-07-01

    We investigated the appearance of Chern-Simons terms in electrodynamics at the surface or interface of materials. The requirement of locality, gauge invariance, and renormalizability in this model is imposed. Scattering and reflection of electromagnetic waves in three different homogeneous layers of media is determined. Snell's law is preserved. However, the transmission and reflection coefficient depend on the strength of the Chern-Simons interaction (connected with Hall conductance), and parallel and perpendicular components are mixed.

  4. Engineering biphoton wave packets with an electromagnetically induced grating

    SciTech Connect

    Wen Jianming; Xiao Min; Zhai Yanhua; Du Shengwang

    2010-10-15

    We propose to shape biphoton wave packets with an electromagnetically induced grating in a four-level double-{Lambda} cold atomic system. We show that the induced hybrid grating plays an essential role in directing the new fields into different angular positions, especially for the zeroth-order diffraction. A number of interesting features appears in the shaped two-photon wave forms. For example, broadening or narrowing the spectrum would be possible in the proposed scheme even without the use of a cavity.

  5. Electromagnetic ion cyclotron waves observed in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.; Murr, D.

    1991-01-01

    Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.

  6. Rydberg wave packets and half-cycle electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Raman, Chandra Shekar

    1997-08-01

    This dissertation summarizes an examination of the dynamics of atomic Rydberg wave packets with coherent pulses of THz electromagnetic radiation consisting of less than a single cycle of the electric field. The bulk of the energy is contained in just a half-cycle. Previous work (1, 10) has shown how these half-cycle pulses can be used to ionize the highly excited states of an atom, and that a classical view of electronic motion in the atom explains the ionization mechanism. To further probe the boundary between classical trajectories and quantum mechanics, in this work we investigate dynamical combinations of Rydberg states, or Rydberg wave packets, and how they ionize under the influence of a half-cycle electromagnetic pulse. With time-domain techniques we are able to extract the dynamics of the wave packet from the ionization rate. We then observe wave packet motion in both the electronic radial and angular coordinates, and can view it directly with the half-cycle pulse anywhere on its trajectory. This is the unique feature of half- cycle pulse ionization. Semiclassical ideas of ionization in conjunction with quantum descriptions of the wave packet, are capable of reproducing the main trends in our data, and in the absence of a rigorous model we rely on these. Experiments of this nature provide examples of the ongoing effort to use the coherent properties of radiation to control electronic motion in an atom, as well as to probe the boundaries between quantum and classical mechanics.

  7. Ring Current-Electromagnetic Ion Cyclotron Waves Coupling

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.

    2005-01-01

    The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.

  8. Early electromagnetic waves from earthquake rupturing: I. theoretical formulations

    NASA Astrophysics Data System (ADS)

    Gao, Yongxin; Chen, Xiaofei; Hu, Hengshan; Zhang, Jie

    2013-03-01

    Earthquake taking place in a fluid-saturated porous medium can generate electromagnetic (EM) waves because of the electrokinetic effect. These generated EM waves arrive at a distant observatory much earlier than the seismic waves because their velocities are much faster than those of the seismic waves. They may explain the early EM signals which have been detected before the detection of the seismic waves after the occurrences of earthquakes. In this study, we attempt to analyse such a kind of early EM signals induced by an earthquake because of the electrokinetic effect. The earthquake is assumed to be a fault slip and is modelled by a moment tensor point source. With Pride's equations quantifying the coupling between seismic and EM waves, we first present a real-axis integration (RAI) algorithm to calculate the seismoelectric wavefields in a layered porous formation. Although full waveforms can be calculated by such a RAI technique, individual waves cannot be easily separated from the full waveforms. The need to compute the individual waves is eminent for the purpose of investigating the early EM waves, because these EM waves are usually several orders weaker than and are masked by the EM signals accompanying the seismic waves in the full waveforms. Therefore, we further develop a branch-cut integration (BCI) algorithm, by transforming the original wavenumber integral along the real axis in the complex wavenumber plane for the RAI technique to a sum of integrals along the vertical branch cuts and the residues of the poles. For performing the integrations along the vertical branch cuts, determination of the Riemann sheets are explained and displayed. Finally, the seismoelectric wavefields are represented in forms allowing calculating individual waves.

  9. A differentiated plane wave as an electromagnetic vortex

    NASA Astrophysics Data System (ADS)

    Hannay, J. H.; Nye, J. F.

    2015-04-01

    Differentiating a complex scalar plane wave with respect to its direction produces an isolated straight vortex line and has a natural extension, described in earlier papers, to the vector waves of electromagnetism—a differentiated plane wave (DPW). It epitomizes destructive interference and will be shown to have the local structure of an electromagnetic vortex. In this paper its polarization structure and Poynting vector field are compared and contrasted with that of the family of linear polynomial waves, of which it is a special member. By definition this wider family has a general linear complex vector function of position multiplying a plane wave, but the function must be such that the combination satisfies Maxwell’s equations. This forces translational invariance of the function along the wavevector direction—in other words the wave is ‘non-diffracting’. In a natural sense all possible polarizations are exhibited once only. But the DPW has a distinctive polarization structure only partly explored previously. Both classes of waves share similar Poynting vector fields, which can be ‘elliptic’ (helix-like flow lines) or ‘hyperbolic’, of a repulsive nature, unexpected for a vortex. Both classes can be considered as a limit in the superposition of three closely parallel ordinary plane waves in destructive interference, and this derivation is supplied in full here.

  10. Descriptive Study of Electromagnetic Wave Distribution for Various Seating Positions: Using Digital Textbooks

    ERIC Educational Resources Information Center

    Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung

    2014-01-01

    To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating…

  11. Theoretical study of electromagnetic electron cyclotron waves in the presence of AC field in Uranian magnetosphere

    NASA Astrophysics Data System (ADS)

    Pandey, R. S.; Kaur, Rajbir

    2015-10-01

    Electromagnetic electron cyclotron (EMEC) waves with temperature anisotropy in the magnetosphere of Uranus have been studied in present work. EMEC waves are investigated using method of characteristic solution by kinetic approach, in presence of AC field. In 1986, Voyager 2 encounter with Uranus revealed that magnetosphere of Uranus exhibit non-Maxwellian high-energy tail distribution. So, the dispersion relation, real frequency and growth rate are evaluated using Lorentzian Kappa distribution function. Effect of temperature anisotropy, AC frequency and number density of particles is found. The study is also extended to oblique propagation of EMEC waves in presence and absence of AC field. Through comprehensive mathematical analysis it is found that when EMEC wave propagates parallel to intrinsic magnetic field of Uranus, its growth is more enhanced than in case of oblique propagation. Results are also discussed in context to magnetosphere of Earth and also gives theoretical explanation to existence of high energetic particles observed by Voyager 2 in the magnetosphere of Uranus. The results can present a further insight into the nature of electron-cyclotron instability condition for the whistler mode waves in the outer radiation belts of Uranus or other space plasmas.

  12. In-situ observations of nonlinear wave particle interaction of electromagnetic ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Miyoshi, Y.; Keika, K.; Katoh, Y.; Angelopoulos, V.; Nakamura, S.; Omura, Y.

    2014-12-01

    Direct measurement method for the electromagnetic wave and space plasma interaction has been suggested by a computer simulation study [Katoh et al., 2013], so-called Wave Particle Interaction Analysis (WPIA). We perform the WPIA for rising tone electromagnetic ion cyclotron (EMIC) waves (so-called EMIC triggered emissions), of which generation mechanism is essentially the same as the chorus emissions. THEMIS observation data (EFI, FGM, and ESA) are used for the WPIA. In the WPIA, we calculate (1) the inner product of the wave electric field and the velocity of the energetic protons: Wint, (2) the inner product of the wave magnetic field and the velocity of the energetic protons: WBint, and (3) the phase angle ζ between the wave magnetic field and the perpendicular velocity of the energetic protons. The values of (1) and (2) indicate the existence of the resonant currents inducing the nonlinear wave growth and the frequency change, respectively. We find the negative Wint and positive WBint at the nonlinear growing phase of the triggered emission as predicted in the theory [e.g. Omura and Nunn, 2011, Shoji and Omura, 2013]. In histogram of (3), we show the existence of the electromagnetic proton holes in the phase space generating the resonant currents. We also perform a hybrid simulation and evaluate WPIA method for EMIC waves. The simulation results show good agreement with the in-situ THEMIS observations.

  13. Propagation of electromagnetic waves in stochastic helical media.

    PubMed

    Mendez, David; Reyes, J Adrian

    2012-09-01

    We have developed a model for studying the axial propagation of elliptically polarized electromagnetic waves in a spatially random helical media. We start by writing Maxwell equations for a structurally chiral medium whose dielectric permittivities, polar, and helical angles contain both a stochastic contribution and a deterministic one. We write the electromagnetic equations into a Marcuvitz-Schwigner representation to transform them afterward in a simpler expression by using the Oseen transformation. We exhibit that in the Oseen frame the Marcuvitz-Schwigner equations turns out to be a linear vector stochastic system of differential equations with multiplicative noise. Applying to the resulting equation a formalism for treating stochastic differential equations, we find the governing equations for the first moments of the electromagnetic field amplitudes for a general autocorrelation function for the system diffractive indexes, and calculate their corresponding band structure for a particular spectral noise density. We have shown that the average resulting electromagnetic fields exhibit a decaying exponential dependence which stems from by dissipation and the presence of qualitative modifications in the band structure including a considerable widening of the band gap and the existence of new local maxima for the modes without a band gap. PMID:23030928

  14. On propagation of electromagnetic and gravitational waves in the expanding Universe

    NASA Astrophysics Data System (ADS)

    Gladyshev, V. O.

    2016-07-01

    The purpose of this study was to obtain an equation for the propagation time of electromagnetic and gravitational waves in the expanding Universe. The velocity of electromagnetic waves propagation depends on the velocity of the interstellar medium in the observer's frame of reference. Gravitational radiation interacts weakly with the substance, so electromagnetic and gravitational waves propagate from a remote astrophysical object to the terrestrial observer at different time. Gravitational waves registration enables the inverse problem solution - by the difference in arrival time of electromagnetic and gravitational-wave signal, we can determine the characteristics of the emitting area of the astrophysical object.

  15. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE PAGES

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  16. Propagation of electromagnetic waves in P T -symmetric hyperbolic structures

    NASA Astrophysics Data System (ADS)

    Shramkova, O. V.; Tsironis, G. P.

    2016-07-01

    We investigate theoretically and numerically the propagation of electromagnetic waves in P T -symmetric periodic stacks composed of hyperbolic metamaterial layers separated by dielectric media with balanced loss and gain. We derive the characteristic frequencies governing the dispersion properties of the eigenwaves of P T -symmetric semiconductor-dielectric stacks. By tuning the loss/gain level and thicknesses of the layers, we study the evolution of the dispersion dependencies. We show that the effective-medium approach does not adequately describe the propagating waves in the P T -symmetric hypercrystals, even for wavelengths that are about 100 times larger than the period of the stack. We demonstrate the existence of anisotropic transmission resonances and above-unity reflection in P T -symmetric hyperbolic systems. The P T -symmetry-breaking transition of the scattering matrix is strongly influenced by the constitutive and geometrical parameters of the layers and the angles of wave incidence.

  17. Nonresonant interaction of heavy ions with electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Gendrin, R.

    1985-01-01

    The motion of a heavy ion in the presence of an intense ultralow-frequency electromagnetic wave propagating along the dc magnetic field is analyzed. Starting from the basic equations of motion and from their associated two invariants, the heavy ion velocity-space trajectories are drawn. It is shown that after a certain time, particles whose initial phase angles are randomly distributed tend to bunch together, provided that the wave intensity b-sub-1 is sufficiently large. The importance of these results for the interpretation of the recently observed acceleration of singly charged He ions in conjunction with the occurrence of large-amplitude ion cyclotron waves in the equatorial magnetosphere is discussed.

  18. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    SciTech Connect

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.

  19. Scattering of electromagnetic waves from a randomly perturbed quasiperiodic surface

    NASA Technical Reports Server (NTRS)

    Shin, R. T.; Kong, J. A.

    1984-01-01

    Electromagnetic-wave scattering by a quasi-periodic surface with random perturbations (as in the remote sensing of plowed fields) is investigated analytically, applying the Kirchhoff approximation and modeling the plowed fields by means of Gaussian random variation, sinusoidal variation, and Gaussian random variation about the spatial frequency. Coherent and incoherent bistatic scattering coefficients are derived in closed form by evaluating the physical-optics integral and shown to be proportional, in the geometric-optics limit, to the occurrence probability of slopes which reflect the incident wave specularly in the direction of the scattered wave. Backscattering cross sections are plotted as functions of incidence angle for a number of cases, demonstrating the strong effect of row direction.

  20. Electromagnetic cyclotron waves in the solar wind: Wind observation and wave dispersion analysis

    NASA Astrophysics Data System (ADS)

    Jian, L. K.; Moya, P. S.; Viñas, A. F.; Stevens, M.

    2016-03-01

    Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and α-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.

  1. Rydberg Wave Packets and Half-Cycle Electromagnetic Pulses

    NASA Astrophysics Data System (ADS)

    Raman, Chandra S.

    1998-05-01

    This dissertation summarizes an examination of the dynamics of atomic Rydberg wave packets with coherent pulses of THz electromagnetic radiation consisting of less than a single cycle of the electric field. The bulk of the energy is contained in just a half-cycle. Previous work ( R. Jones, D. You, and P. Bucksbaum, ``Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,'' Phys. Rev. Lett.), vol. 70, 1993. had shown how these half-cycle pulses can be used to ionize the highly excited states of an atom, and that a classical view of electronic motion in the atom explains the ionization mechanism. To further probe the boundary between classical trajectories and quantum mechanics, in this work I investigate dynamical combinations of Rydberg states, or Rydberg wave packets, and how they ionize under the influence of a half-cycle electromagnetic pulse. With time-domain techniques I am able to extract the dynamics of the wave packet from the ionization rate, and to observe wave packet motion in both the electronic radial ( C. Raman, C. Conover, C. Sukenik, and P. Bucksbaum, ``Ionization of Rydberg wavepackets by sub-picosecond half-cycle electromagnetic pulses,'' Phys. Rev. Lett.), vol. 76, 1996.and angular ( C. Raman, T. Weinacht, and P. Bucksbaum, ``Stark wavepackets viewed with half cycle pulses.'' Phys. Rev. A), vol. 55, No. 6, 1997. coordinates. This is the first time a wavepacket technique has been used to view electron motion everywhere on its trajectory, and not just at the nucleus. This is the principal feature of half-cycle pulse ionization. Semiclassical ideas of ionization in conjunction with quantum descriptions of the wave packet, are capable of reproducing the main trends in the data, and in the absence of a rigorous model I rely on these. Experiments of this nature provide examples of the ongoing effort to use the coherent properties of radiation to control electronic motion in an atom, as well as to probe the boundaries between

  2. Role of surface electromagnetic waves in metamaterial absorbers.

    PubMed

    Chen, Wen-Chen; Cardin, Andrew; Koirala, Machhindra; Liu, Xianliang; Tyler, Talmage; West, Kevin G; Bingham, Christopher M; Starr, Tatiana; Starr, Anthony F; Jokerst, Nan M; Padilla, Willie J

    2016-03-21

    Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Experimental results are supported by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave. PMID:27136864

  3. Massively sub-wavelength guiding of electromagnetic waves.

    PubMed

    Hooper, I R; Tremain, B; Dockrey, J A; Hibbins, A P

    2014-01-01

    Recently a new form of ultra-thin flexible waveguide consisting of a conducting comb-like structure with a thickness of the order of 1/600(th) of the operating wavelength was presented. However, whilst the thickness of the guide was massively sub-wavelength, the remaining dimensions (the height and period of the comb) were much longer. In this paper we propose, and experimentally verify, that a modified guiding geometry consisting of a chain of ultra-thin conducting spirals allows guiding of electromagnetic waves with wavelengths that are many times (40+) longer than any characteristic dimension of the guide, enabling super-sub-wavelength guiding and localisation of electromagnetic energy.

  4. Electromagnetic Counterparts of Gravitational Wave Sources: Mergers of Compact Objects

    NASA Astrophysics Data System (ADS)

    Kamble, Atish; Kaplan, David L. A.

    2013-01-01

    Mergers of compact objects are considered prime sources of gravitational waves (GW) and will soon be targets of GW observatories such as the Advanced-LIGO and VIRGO. Finding electromagnetic counterparts of these GW sources will be important to understand their nature. We discuss possible electromagnetic signatures of the mergers. We show that the BH-BH mergers could have luminosities which exceed Eddington luminosity from unity to several orders of magnitude depending on the masses of the merging BHs. As a result these mergers could be explosive, release up to 1051 erg of energy and shine as radio transients. At any given time we expect about a few such transients in the sky at GHz frequencies, which could be detected to be about 300 Mpc. It has also been argued that these radio transients would look alike radio supernovae with comparable detection rates. Multi-band follow-up could, however, distinguish between the mergers and supernovae.

  5. Role of surface electromagnetic waves in metamaterial absorbers.

    PubMed

    Chen, Wen-Chen; Cardin, Andrew; Koirala, Machhindra; Liu, Xianliang; Tyler, Talmage; West, Kevin G; Bingham, Christopher M; Starr, Tatiana; Starr, Anthony F; Jokerst, Nan M; Padilla, Willie J

    2016-03-21

    Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Experimental results are supported by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave.

  6. Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level

    ERIC Educational Resources Information Center

    Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.

    2010-01-01

    A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…

  7. Surface waves in three-dimensional electromagnetic composites and their effect on homogenization.

    PubMed

    Xiong, Xiaoyan Y Z; Jiang, Li Jun; Markel, Vadim A; Tsukerman, Igor

    2013-05-01

    Reflection and transmission of electromagnetic waves at the boundaries of periodic composites (electromagnetic/optical metamaterials) depends in general on both bulk and surface waves. We investigate the interplay of these two contributions using three-dimensional full-wave numerical simulations and a recently developed non-asymptotic homogenization theory.

  8. Conversion of electrostatic plasma waves into electromagnetic waves - Numerical calculation of the dispersion relation for all wavelengths.

    NASA Technical Reports Server (NTRS)

    Oya, H.

    1971-01-01

    The dispersion curves have been computed for a wide range of wavelengths from electromagnetic waves to electrostatic waves in a magnetoactive warm plasma with a Maxwellian velocity distribution function. The computation was carried out mainly for the perpendicular propagation mode. The upper hybrid resonance is the connection point of the electrostatic waves and the electromagnetic waves. The electrostatic waves not associated with the upper hybrid resonance are subjected to electron cyclotron damping when the wavelength becomes long. Oblique propagation is allowed for the electrostatic waves in a frequency range from the plasma frequency to the upper hybrid resonance frequency in the long-wavelength region where Landau damping can be neglected and where the electrostatic mode smoothly connects to the electromagnetic X-mode. In a slightly inhomogeneous plasma, the Bernstein-mode electrostatic wave can escape by being converted into the O-mode electromagnetic wave; two reflections take place during this escape process.

  9. Electromagnetic form factors of the Δ with D-waves

    SciTech Connect

    Ramalho, Gilberto T.F.; Pena, Maria Teresa; Gross, Franz L.

    2010-06-01

    The electromagnetic form factors of the Δ baryon are evaluated within the framework of a covariant spectator quark model, where S and D-states are included in the Δ wave function. We predict all the four Δ multipole form factors: the electric charge GE0, the magnetic dipole GM1, the electric quadrupole GE2 and the magnetic octupole GM3. We compare our predictions with other theoretical calculations. Our results are compatible with the available experimental data and recent lattice QCD data.

  10. Dispersion relations for electromagnetic wave propagation in chiral plasmas

    SciTech Connect

    Gao, M. X.; Guo, B. Peng, L.; Cai, X.

    2014-11-15

    The dispersion relations for electromagnetic wave propagation in chiral plasmas are derived using a simplified method and investigated in detail. With the help of the dispersion relations for each eignwave, we explore how the chiral plasmas exhibit negative refraction and investigate the frequency region for negative refraction. The results show that chirality can induce negative refraction in plasmas. Moreover, both the degree of chirality and the external magnetic field have a significant effect on the critical frequency and the bandwidth of the frequency for negative refraction in chiral plasmas. The parameter dependence of the effects is calculated and discussed.

  11. Electromagnetic wave method for mapping subterranean earth formations

    DOEpatents

    Shuck, Lowell Z.; Fasching, George E.; Balanis, Constantine A.

    1977-01-01

    The present invention is directed to a method for remotely mapping subterranean coal beds prior to and during in situ gasification operations. This method is achieved by emplacing highly directional electromagnetic wave transmitters and receivers in bore holes penetrating the coal beds and then mapping the anomalies surrounding each bore hole by selectively rotating and vertically displacing the directional transmitter in a transmitting mode within the bore hole, and thereafter, initiating the gasification of the coal at bore holes separate from those containing the transmitters and receivers and then utilizing the latter for monitoring the burn front as it progresses toward the transmitters and receivers.

  12. Robust imaging with electromagnetic waves in noisy environments

    NASA Astrophysics Data System (ADS)

    Borcea, Liliana; Garnier, Josselin

    2016-10-01

    We study imaging with an array of sensors that probes a medium with single frequency electromagnetic waves and records the scattered electric field. The medium is known and homogenous except for some small and penetrable inclusions. The goal of inversion is to locate and characterize these inclusions from the data collected by the array, which are corrupted by additive noise. We use results from random matrix theory to obtain a robust inversion method. We assess its performance with numerical simulations and quantify the benefit of measuring more than one component of the scattered electric field.

  13. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices. PMID:27607498

  14. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  15. Modeling of electromagnetic E-layer waves before earthquakes

    NASA Astrophysics Data System (ADS)

    Meister, Claudia-Veronika; Hoffmann, Dieter H. H.

    2013-04-01

    A dielectric model for electromagnetic (EM) waves in the Earth's E-layer is developed. It is assumed that these waves are driven by acoustic-type waves, which are caused by earthquake precursors. The dynamics of the plasma system and the EM waves is described using the multi-component magnetohydrodynamic (MHD) theory. The acoustic waves are introduced as neutral gas wind. The momentum transfer between the charged particles in the MHD system is mainly caused via the collisions with the neutral gas. From the MHD system, relations for the velocity fluctuations of the particles are found, which consist of products of the electric field fluctuations times coefficients α which only depend on the plasma background parameters. A quick FORTRAN program is developed, to calculate these coefficients (solution of 9x9-matrix equations). Models of the altitudinal scales of the background plasma parameters and the fluctuations of the plasma parameters and the EM field are introduced. Besides, in case of the electric wave field, a method is obtained to calculate the altitudinal scale ? of the amplitude (based on the Poisson equation and knowing the coefficients α). Finally, a general dispersion relation is found, where α, ? and the altitudinal profile of ? appear as parameters (which were found in the numerical model before). Thus, the dispersion relations of EM waves caused by acoustic-type ones during times of seismic activity may be studied numerically. Besides, an expression for the related temperature fluctuations is derived, which depends on the dispersion of the excited EM waves, α, ? and the background plasma parameters. So, heating processes in the atmosphere may be investigated.

  16. Klein tunneling and supercollimation of pseudospin-1 electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Fang, A.; Zhang, Z. Q.; Louie, Steven G.; Chan, C. T.

    2016-01-01

    Pseudospin plays a central role in many novel physical properties of graphene and other artificial systems which have pseudospins of 1 /2 . Here we show that in certain photonic crystals (PCs) exhibiting conical dispersions at k =0 , the eigenmodes near the "Dirac-like point" can be described by an effective spin-orbit Hamiltonian with a higher dimension value S =1 , treating the wave propagation in positive index (upper cone), negative index (lower cone), and zero index (flat band) media within a unified framework. The three-component spinor gives rise to boundary conditions distinct from those of pseudospin 1 /2 , leading to wave transport behaviors as manifested in super Klein tunneling and supercollimation. For example, collimation can be realized more easily with pseudospin 1 than pseudospin 1 /2 . The effective medium description of the PCs allows us to further understand the physics of pseudospin-1 electromagnetic (EM) waves from the perspective of complementary materials. The special wave scattering properties of pseudospin-1 EM waves, in conjunction with the discovery that the effective photonic potential can be varied by a simple change of length scale, offer ways to control photon transport. As a useful platform to study pseudospin-1 physics, dielectric PCs are much easier to fabricate and characterize than ultracold atom systems proposed previously. The system also provides a platform to realize the concept of "complementary medium" using dielectric materials and has the unique advantage of low loss.

  17. Parametric decay of an extraordinary electromagnetic wave in relativistic plasma

    SciTech Connect

    Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.

    2015-03-15

    Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations shows that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.

  18. Parametric decay of an extraordinary electromagnetic wave in relativistic plasma

    NASA Astrophysics Data System (ADS)

    Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.

    2015-03-01

    Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron "thermal" mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations shows that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.

  19. Electromagnetic Ion Cyclotron Waves in the Helium Branch Induced by Multiple Electromagnetic Ion Cyclotron Triggered Emissions

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  20. High-efficiency passive full wave rectification for electromagnetic harvesters

    NASA Astrophysics Data System (ADS)

    Yilmaz, Mehmet; Tunkar, Bassam A.; Park, Sangtak; Elrayes, Karim; Mahmoud, Mohamed A. E.; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2014-10-01

    We compare the performance of four types of full-wave bridge rectifiers designed for electromagnetic energy harvesters based on silicon diodes, Schottky diodes, passive MOSFETs, and active MOSFETs. Simulation and experimental results show that MOSFET-type rectifiers are more efficient than diode-type rectifiers, reaching voltage and power efficiency of 99% for ideal voltage source with input amplitudes larger than 800 mV. Since active MOSFETs require extra components and an external DC power supply, we conclude that passive MOSFETs are superior for micro-power energy harvesting systems. We demonstrate passive MOSFET rectifiers implemented using discrete, off-shelf components and show that they outperform all electromagnetic harvester rectifiers hitherto reported obtaining a power efficiency of 95%. Furthermore, we show that passive MOSFET rectifiers do not affect the center frequency, harvesting bandwidth, or optimal resistance of electromagnetic harvesters. We demonstrate a complete power management module by adding a capacitor to the rectifier output terminal. We found that this configuration changed the optimal resistive load from 40 Ω to 55 Ω and decreased output power efficiency to 86%.

  1. Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media

    NASA Astrophysics Data System (ADS)

    Schmidt, Felix; Lünenschloss, Peter; Mai, Juliane; Wagner, Norman; Töpfer, Hannes; Bumberger, Jan

    2016-04-01

    The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections. Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric

  2. Optical analysis of human eye using electromagnetic wave theory.

    PubMed

    Can, Melih G; Oner, Bilgehan B; Kurt, Hamza

    2013-10-01

    We present a two-dimensional electromagnetic analysis of light propagation through the human eye to examine the eye's optical properties. The electromagnetic approach has intriguing advantages over the conventional and frequently implemented ray optics analysis. The chromatic, spherical, and coma aberrations and the intensity of the focused light at the retina are computed in this work via full-wave analysis. We also investigate the effects of the cornea's and lens's curved structures on the focusing mechanism. The focal length and chromatic and spherical aberrations are observed to change owing to age-related refractive index variation in the lens. In addition, the effects of the lens and curvatures of the human eye on focusing are analyzed. Consequently, for both young and old human eye lenses, the differences due to the aberration variations, curvature surfaces, and gradient index are explored by the wave approach. The intensity distributions on the retina for both on- and off-axis illumination are calculated. A strong correlation between the locations of the nerve fibers and the intensity distribution is confirmed. On the basis of the findings, we can conclude that visual impairment due to deterioration of the human eye structure is more dramatic than that due to aging.

  3. Excitation of planetary electromagnetic waves in the inhomogeneous ionosphere

    NASA Astrophysics Data System (ADS)

    Rapoport, Yu.; Selivanov, Yu.; Ivchenko, V.; Grimalsky, V.; Tkachenko, E.; Rozhnoi, A.; Fedun, V.

    2014-04-01

    In this paper we develop a new method for the analysis of excitation and propagation of planetary electromagnetic waves (PEMW) in the ionosphere of the Earth. The nonlinear system of equations for PEMW, valid for any height, from D to F regions, including intermediate altitudes between D and E and between E and F regions, is derived. In particular, we have found the system of nonlinear one-fluid MHD equations in the β-plane approximation valid for the ionospheric F region (Aburjania et al., 2003a, 2005). The series expansion in a "small" (relative to the local geomagnetic field) non-stationary magnetic field has been applied only at the last step of the derivation of the equations. The small mechanical vertical displacement of the media is taken into account. We have shown that obtained equations can be reduced to the well-known system with Larichev-Reznik vortex solution in the equatorial region (see e.g. Aburjania et al., 2002). The excitation of planetary electromagnetic waves by different initial perturbations has been investigated numerically. Some means for the PEMW detection and data processing are discussed.

  4. Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma

    SciTech Connect

    Niknam, A. R.; Rastbood, E.; Bafandeh, F.; Khorashadizadeh, S. M.

    2014-04-15

    The modulational instability of right-hand circularly polarized electromagnetic electron cyclotron (CPEM-EC) wave in a magnetized quantum plasma is studied taking into account the collisional effects. Employing quantum hydrodynamic and nonlinear Schrödinger equations, the dispersion relation of modulated CPEM-EC wave in a collisional plasma has been derived. It is found that this wave is unstable in such a plasma system and the growth rate of the associated instability depends on various parameters such as electron Fermi temperature, plasma number density, collision frequency, and modulation wavenumber. It is shown that while the increase of collision frequency leads to increase of the growth rate of instability, especially at large wavenumber limit, the increase of plasma number density results in more stable modulated CPEM-EC wave. It is also found that in contrast to collisionless plasma in which modulational instability is restricted to small wavenumbers, in collisional plasma, the interval of instability occurrence can be extended to a large domain.

  5. Zero-group-velocity propagation of electromagnetic wave through nanomaterial

    NASA Astrophysics Data System (ADS)

    Fan, Taian

    This research will investigate the problem on the propagation of electromagnetic wave through a specific nanomaterial. The nanomaterial analyzed is a material consisting of a field of Pt nanorods. This field of Pt nanorods are deposited on a substrate which consists of a RuO2 nano structure. When the nanorod is exposed to an electron beam emitted by a TEM (Transmission electron microscopy). A wave disturbance has been observed. A video taken within the chamber shows a wave with a speed in the scale of um/s (10-6 m/s), which is 14 orders of magnitude lower than speed of light in free space (approximate 3x108 m/s ). A physical and mathematical model is developed to explain this phenomenon. Due to the process of fabrication, the geometry of the decorated Pt nanorod field is assumed to be approximately periodic. The nanomaterials possess properties similar to a photonic crystal. Pt, as a noble metal, shows dispersive behaviours that is different from those ones of a perfect or good conductors. A FDTD algorithm is implemented to calculate the band diagram of the nanomaterials. To explore the dispersive properties of the Pt nanorod field, the FDTD algorithm is corrected with a Drude Model. The analysis of the corrected band diagram illustrates that the group velocity of the wave packet propagating through the nanomaterial can be positive, negative or zero. The possible zero-group velocity is therefore used to explain the extremely low velocity of wave (wave envelope) detected in the TEM.

  6. Temperature waves arising due to absorption of electromagnetic radiation in laminated media

    NASA Astrophysics Data System (ADS)

    Khabibullin, I. L.; Konovalova, S. I.; Sadykova, L. A.

    2015-05-01

    Propagation of electromagnetic radiation in a moving three-layer medium is studied. It is shown that travelling temperature waves are formed due to interference of the incident wave with the wave reflected from the interface between the layers with radiation energy dissipation. The frequency, length, and velocity of these waves are found to depend on the electromagnetic radiation frequency, electrophysical and thermophysical parameters of the medium, and velocity of medium motion.

  7. Examination of Bursty Electromagnetic Waves Observed During Intervals of Turbulent Magnetosheath Reconnection

    NASA Technical Reports Server (NTRS)

    Adrian, Mark L.; Wendel, D. E.

    2011-01-01

    We investigate observations of intense bursts of electromagnetic waves in association with magnetic reconnection in the turbulent magnetosheath. These structured, broadband bursts occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic waves and quantify their proximity to X- and O-nulls.

  8. Localized Electromagnetic Waves: Interactions with Surfaces and Nanostructures

    NASA Astrophysics Data System (ADS)

    Anderson, Nicholas R.

    The interaction of electromagnetic waves with nanostructures is an important area of research for signal processing devices, magnetic data storage, biosensors and a variety of other applications. In this work, we present analytic and numerical calculations for oscillating electric and magnetic fields coupling with excitations in magnetic materials as well as metallic and dielectric materials, near their resonance frequencies. One of the problems with the miniaturization of signal processing components is that there is a cutoff frequency associated with the transverse electric (TE) mode in waveguides. However, it is usually the TE mode which is used to achieve nonreciprocity for devices such as isolators. As a first step to circumvent this problem we looked at the absorption of electromagnetic waves in an antiferromagnet and a ferrite when the incident wave is at an arbitrary angle with respect to the magnetization direction. We calculated reflectivity and attenuated total reflectivity and found absorption and nonreciprocity, asymmetric behavior for waves traveling in opposite directions, for a broad range of propagation angles. Subsequently we also performed calculations for a transverse magnetic mode in a waveguide. The wave was allowed to propagate at an arbitrary angle with respect to the magnetization direction of the ferrite in the waveguide. We again found nonreciprocity for a wide range of angles. Our results show that this system could be used as an on-chip isolator with isolation values over 75 dB/cm in the 50 GHz range. We explored another signal processing device operating in the GHz range: a nonlinear phase shifter. Using Fe as the magnetic material allows the phase shifter to operate over a wide frequency and power range. We found a differential phase shift of greater than 50° over 3 cm for this device. The theoretical results compared well with experimental measurements. Finally, we study surface plasmon polaritons propagating along a metallic

  9. Electromagnetic Waves near the Proton Cyclotron Frequency: STEREO Observations

    NASA Astrophysics Data System (ADS)

    Jian, L. K.; Wei, H. Y.; Russell, C. T.; Luhmann, J. G.; Klecker, B.; Omidi, N.; Isenberg, P. A.; Goldstein, M. L.; Figueroa-Viñas, A.; Blanco-Cano, X.

    2014-05-01

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named "LFW storms." Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  10. Electromagnetic waves near the proton cyclotron frequency: Stereo observations

    SciTech Connect

    Jian, L. K.; Wei, H. Y.; Russell, C. T.; Luhmann, J. G.; Klecker, B.; Omidi, N.; Isenberg, P. A.; Goldstein, M. L.; Figueroa-Viñas, A.; Blanco-Cano, X.

    2014-05-10

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  11. Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Wong, H. K.

    1995-01-01

    DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.

  12. Electromagnetic wave propagation through an overdense magnetized collisional plasma layer

    NASA Astrophysics Data System (ADS)

    Thoma, C.; Rose, D. V.; Miller, C. L.; Clark, R. E.; Hughes, T. P.

    2009-08-01

    The results of investigations into the feasibility of using a magnetic window to propagate electromagnetic waves through a finite-sized overdense plasma slab are described. We theoretically calculate the transmission coefficients for right- and left-handed circularly polarized plane waves through a uniform magnetized plasma slab. Using reasonable estimates for the plasma properties expected to be found in the ionized shock layer surrounding a hypersonic aircraft traveling in the earth's upper atmosphere (radio blackout conditions), and assuming a 1 GHz carrier frequency for the radio communications channel, we find that the required magnetic field for propagation of right-handed circularly polarized, or whistler, waves is on the order of a few hundred gauss. Transmission coefficients are calculated as a function of sheath thickness and are shown to be quite sensitive to the electron collision frequency. One-dimensional particle-in-cell simulations are shown to be in good agreement with the theory. These simulations also demonstrate that Ohmic heating of the electrons can be considerable. Two- and three-dimensional particle-in-cell simulations using a simplified waveguide and antenna model illustrate the same general transmission behavior as the theory and one-dimensional simulations. In addition, a net focusing effect due to the plasma is also observed in two and three dimensions. These simulations can be extended to design and analyze more realistic waveguide and antenna models.

  13. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces

    NASA Astrophysics Data System (ADS)

    Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei

    2016-06-01

    Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the “On” state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the “Off” state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms.

  14. Electromagnetic wave propagation through an overdense magnetized collisional plasma layer

    SciTech Connect

    Thoma, C.; Rose, D. V.; Miller, C. L.; Clark, R. E.; Hughes, T. P.

    2009-08-15

    The results of investigations into the feasibility of using a magnetic window to propagate electromagnetic waves through a finite-sized overdense plasma slab are described. We theoretically calculate the transmission coefficients for right- and left-handed circularly polarized plane waves through a uniform magnetized plasma slab. Using reasonable estimates for the plasma properties expected to be found in the ionized shock layer surrounding a hypersonic aircraft traveling in the earth's upper atmosphere (radio blackout conditions), and assuming a 1 GHz carrier frequency for the radio communications channel, we find that the required magnetic field for propagation of right-handed circularly polarized, or whistler, waves is on the order of a few hundred gauss. Transmission coefficients are calculated as a function of sheath thickness and are shown to be quite sensitive to the electron collision frequency. One-dimensional particle-in-cell simulations are shown to be in good agreement with the theory. These simulations also demonstrate that Ohmic heating of the electrons can be considerable. Two- and three-dimensional particle-in-cell simulations using a simplified waveguide and antenna model illustrate the same general transmission behavior as the theory and one-dimensional simulations. In addition, a net focusing effect due to the plasma is also observed in two and three dimensions. These simulations can be extended to design and analyze more realistic waveguide and antenna models.

  15. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces

    PubMed Central

    Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei

    2016-01-01

    Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the “On” state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the “Off” state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms. PMID:27272350

  16. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces.

    PubMed

    Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei

    2016-01-01

    Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the "On" state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the "Off" state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms.

  17. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces.

    PubMed

    Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei

    2016-01-01

    Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the "On" state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the "Off" state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms. PMID:27272350

  18. In-plane propagation of electromagnetic waves in planar metamaterials

    NASA Astrophysics Data System (ADS)

    Yi, Changhyun; Rhee, Joo Yull; Kim, Ki Won; Lee, YoungPak

    2016-08-01

    Some planar metamaterials (MMs) or subwavelength antenna/hole arrays have a considerable amount of in-plane propagation when certain conditions are met. In this paper, the in-plane propagation caused by a wave incident on a MM absorber was studied by using a finite-difference time-domain (FDTD) technique. By using a FDTD simulation, we were able to observe a nonnegligible amount of in-plane propagation after the incident wave had arrived at the surface of the planar structure and gradually decreased propagation of the electromagnetic wave in the planar direction gradually decreased. We performed the FDTD simulation carefully to reproduce valid results and to verify the existence of in-plane propagation. For verification of the in-plane propagation explicitly, Poynting vectors were calculated and visualized inside the dielectric substrate between the metallic back-plate and an array of square patches. We also investigated several different structures with resonators of various shapes and found that the amount of facing edges of adjacent metallic patches critically determined the strength of the in-plane propagation. Through this study, we could establish the basis for the existence of in-plane propagation in MMs.

  19. Finite Element Modeling of scattered electromagnetic waves for stroke analysis.

    PubMed

    Priyadarshini, N; Rajkumar, E R

    2013-01-01

    Stroke has become one of the leading causes of mortality worldwide and about 800 in every 100,000 people suffer from stroke each year. The occurrence of stroke is ranked third among the causes of acute death and first among the causes for neurological dysfunction. Currently, Neurological examinations followed by medical imaging with CT, MRI or Angiography are used to provide better identification of the location and the type of the stroke, however they are neither fast, cost-effective nor portable. Microwave technology has emerged to complement these modalities to diagnose stroke as it is sensitive to the differences between the distinct dielectric properties of the brain tissues and blood. This paper investigates the possibility of diagnosing the type of stroke using Finite Element Analysis (FEA). The object of interest is a simulated head phantom with stroke, created with its specifying material characteristics like electrical conductivity and relative permittivity. The phantom is then placed in an electromagnetic field generated by a dipole antenna radiating at 1 GHz. The FEM forward model solver computes the scattered electromagnetic field by finding the solution for the Maxwell's wave equation in the head volume. Subsequently the inverse scattering problem is solved using the Contrast Source Inversion (CSI) method to reconstruct the dielectric profile of the head phantom.

  20. Electromagnetic Wave Propagation Through the ZR Z-Pinch Accelerator

    SciTech Connect

    Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.; Stygar, W. A.; Struve, K.; Corcoran, P. A.; Whitney, B.

    2009-01-21

    A fully three-dimensional electromagnetic model of the major pulsed power components of the 26-MA ZR accelerator is presented. This large-scale simulation model tracks the evolution of electromagnetic waves through the intermediate storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, tri-plate transmission lines, and water convolute to the vacuum insulator stack. The plates at the insulator stack are coupled to a transmission line circuit model of the four-level magnetically-insulated transmission line section and post-hole convolutes. The vacuum section circuit model is terminated by either a short-circuit load or dynamic models of imploding z-pinch loads. The simulations results are compared with electrical measurements made throughout the ZR accelerator and good agreement is found, especially for times before and up to peak load power. This modeling effort represents new opportunities for modeling existing and future large-scale pulsed power systems used in a variety of high energy density physics and radiographic applications.

  1. Nanofocusing of mid-infrared electromagnetic waves on graphene monolayer

    SciTech Connect

    Qiu, Weibin E-mail: wqiu@semi.ac.cn; Liu, Xianhe; Zhao, Jing; He, Shuhong; Ma, Yuhui; Wang, Jia-Xian; Pan, Jiaoqing

    2014-01-27

    Nanofocusing of mid-infrared (MIR) electromagnetic waves on graphene monolayer with gradient chemical potential is investigated with numerical simulation. On an isolated freestanding monolayer graphene sheet with spatially varied chemical potential, the focusing spot sizes of frequencies between 44 THz and 56 THz can reach around 1.6 nm and the intensity enhancement factors are between 2178 and 654. For 56 THz infrared, a group velocity as slow as 5×10{sup −5} times of the light speed in vacuum is obtained at the focusing point. When the graphene sheet is placed on top of an aluminum oxide substrate, the focusing spot size of 56 THz infrared reduces to 1.1 nm and the intensity enhancement factor is still as high as 220. This structure offers an approach for focusing light in the MIR regime beyond the diffraction limit without complicated device geometry engineering.

  2. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1977-01-01

    The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  3. Identifying Electromagnetic Counterparts to Gravitational Wave Triggers With DECam

    NASA Astrophysics Data System (ADS)

    Cowperthwaite, Philip

    2016-03-01

    Identifying the electromagnetic counterpart to a gravitational wave (GW) event is one of the great observational challenges in modern astronomy. We report on our work to overcome this challenge by investigating the theoretical and practical issues associated with optical follow-up of a GW event. This includes a systematic study of the potential contaminant population and their impact on counterpart detectability in simulated observations. Additionally, we utilize data taken with the Dark Energy Camera (DECam) on the Blanco 4-m telescope at CTIO. These data serve as a mock follow-up to a GW event and assist in the characterization of contamination not captured in simulations. P.S.C. is grateful for support provided by the NSF through the Graduate Research Fellowship Program, Grant DGE1144152.

  4. Electromagnetic internal gravity waves in the Earth's ionospheric E-layer

    NASA Astrophysics Data System (ADS)

    Kaladze, T. D.; Tsamalashvili, L. V.; Kaladze, D. T.

    2011-12-01

    In the Earth's ionospheric E-layer existence of the new waves connecting with the electromagnetic nature of internal gravity waves is shown. They represent the mixture of the ordinary internal gravity waves and the new type of dispersive Alfven waves.

  5. Semiannual Status Report. [excitation of electromagnetic waves in the whistler frequency range

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the last six months, we have continued our study of the excitation of electromagnetic waves in the whistler frequency range and the role that these waves will play in the acceleration of electrons and ions in the auroral region. A paper entitled 'Electron Beam Excitation of Upstream Waves in the Whistler Mode Frequency Range' was listed in the Journal of Geophysical Research. In this paper, we have shown that an anisotropic electron beam (or gyrating electron beam) is capable of generating both left-hand and right-hand polarized electromagnetic waves in the whistler frequency range. Since right-hand polarized electromagnetic waves can interact with background electrons and left-hand polarized waves can interact with background ions through cyclotron resonance, it is possible that these beam generated left-hand and right-hand polarized electromagnetic waves can accelerate either ions or electrons (or both), depending on the physical parameters under consideration. We are currently carrying out a comprehensive study of the electromagnetic whistler and lower hybrid like waves observed in the auroral zone using both wave and particle data. Our first task is to identify these wave modes and compare it with particle observations. Using both the DE-1 particle and wave measurements, we can positively identify those electromagnetics lower hybrid like waves as fast magnetosonic waves and the upper cutoff of these waves is the local lower hybrid frequency. From the upper cutoff of the frequency spectrum, one can infer the particle density and the result is in very good agreement with the particle data. Since these electromagnetic lower hybrid like waves can have frequencies extended down to the local ion cyclotron frequency, it practically confirms that they are not whistler waves.

  6. High-informative version of nonlinear transformation of Langmuir waves to electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Erofeev, Vasily I.; Erofeev

    2014-04-01

    The concept of informativeness of nonlinear plasma physical scenario is discussed. Basic principles for heightening the informativeness of plasma kinetic models are explained. Former high-informative correlation analysis of plasma kinetics (Erofeev, V. 2011 High-Informative Plasma Theory, Saarbrücken: LAP) is generalized for studies of weakly turbulent plasmas that contain fields of solenoidal plasma waves apart from former potential ones. Respective machinery of plasma kinetic modeling is applied to an analysis of fusion of Langmuir waves with transformation to electromagnetic waves. It is shown that the customary version of this phenomenon (Terashima, Y. and Yajima, N. 1963 Prog. Theor. Phys. 30, 443; Akhiezer, I. A., Danelia, I. A. and Tsintsadze, N. L. 1964 Sov. Phys. JETP 19, 208; Al'tshul', L. M. and Karpman, V. I. 1965 Sov. Phys. JETP 20, 1043) substantially distorts the picture of merging of Langmuir waves with long wavelengths (λ >~ c/ωpe ).

  7. Design of Metamaterials for control of electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Koschny, Thomas

    2014-03-01

    Metamaterials are artificial effective media supporting propagating waves that derive their properties form the average response of deliberately designed and arranged, usually resonant scatterers with structural length-scales much smaller than the wavelength inside the material. Electromagnetic metamaterials are the most important implementation of metamaterials, which are made from deeply sub-wavelength electric, magnetic and chiral resonators and can be designed to work from radio frequencies all the way to visible light. Metamaterials have been major new development in physics and materials science over the last decade and are still attracting more interest as they enable us to create materials with unique properties like negative refraction, flat and super lenses, impedance matching eliminating reflection, perfect absorbers, deeply sub-wavelength sized wave guides and cavities, tunability, enhanced non-linearity and gain, chirality and huge optical activity, control of Casimir forces, and spontaneous emission, etc. In this talk, I will discuss the design, numerical simulation, and mathematical modeling of metamaterials. I will survey the current state of the art and discuss challenges, possible solutions and perspectives. In particular, the problem of dissipative loss and their possible compensation by incorporating spatially distributed gain in metamaterials. If the gain sub-system is strongly coupled to the sub-wavelength resonators of the metamaterial loss compensation and undamping of the resonant response of the metamaterials can occur. I will explore new, alternative dielectric low loss resonators for metamaterials as well as the potential of new conducting materials such as Graphene to replace metals as the conducting material in resonant metamaterials. Two dimensional metamaterials or metasurfaces, implementations of effective electromagnetic current sheets in which both electric and magnetic sheet conductivities are controlled by the average response

  8. Induced electromagnetic field by seismic waves in Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Gao, Yongxin; Chen, Xiaofei; Hu, Hengshan; Wen, Jian; Tang, Ji; Fang, Guoqing

    2014-07-01

    Studied in this article are the properties of the electromagnetic (EM) fields generated by an earthquake due to the motional induction effect, which arises from the motion of the conducting crust across the Earth's magnetic field. By solving the governing equations that couple the elastodynamic equations with Maxwell equations, we derive the seismoelectromagnetic wavefields excited by a single-point force and a double-couple source in a full space. Two types of EM disturbances can be generated, i.e., the coseismic EM field accompanying the seismic wave and the independently propagating EM wave which arrives much earlier than the seismic wave. Simulation of an Mw6.1 earthquake shows that at a receiving location where the seismic acceleration is on the order of 0.1 m/s2, the coseismic electric and magnetic fields are on the orders of 1 μV/m and 0.1 nT, respectively, agreeing with the EM data observed in 2008 Mw6.1 Qingchuan earthquake, China, and indicating that the motional induction effect is effective enough to generate observable EM signal. We also simulated the EM signals observed by Haines et al. which were called the Lorentz fields and cannot be explained by the electrokinetic effect. The result shows that the EM wave generated by a horizontal force can explain the data well, suggesting that the motional induction effect is responsible for the Lorentz fields. The motional induction effect is compared with the electrokinetic effect, showing the overall conclusion that the former dominates the mechanoelectric conversion under low-frequency and high-conductivity conditions while the latter dominates under high-frequency and low-conductivity conditions.

  9. Electromagnetic millimeter wave induced hypoalgesia: frequency dependence and involvement of endogenous opioids.

    PubMed

    Radzievsky, A A; Gordiienko, O V; Alekseev, S; Szabo, I; Cowan, A; Ziskin, M C

    2008-05-01

    Millimeter wave treatment (MMWT) is based on the systemic biological effects that develop following local skin exposure to low power electromagnetic waves in the millimeter range. In the present set of experiments, the hypoalgesic effect of this treatment was analyzed in mice. The murine nose area was exposed to MMW of "therapeutic" frequencies: 42.25, 53.57, and 61.22 GHz. MMWT-induced hypoalgesia was shown to be frequency dependent in two experimental models: (1) the cold water tail-flick test (chronic non-neuropathic pain), and (2) the wire surface test (chronic neuropathic pain following unilateral constriction injury to the sciatic nerve). Maximum hypoalgesic effect was obtained when the frequency was 61.22 GHz. Other exposure parameters were: incident power density = 13.3 mW/cm(2), duration of each exposure = 15 min. Involvement of delta and kappa endogenous opioids in the MMWT-induced hypoalgesia was demonstrated using selective blockers of delta- and kappa-opioid receptors and the direct ELISA measurement of endogenous opioids in CNS tissue. Possible mechanisms of the effect and the perspectives of the clinical application of MMWT are discussed.

  10. The spartial distribution of the particles of the beam interacting with an inhomogeneous electromagnetic wave

    SciTech Connect

    Serov, A.V.

    1995-12-31

    The time variation of the spartial distribution of an electron beam reflected by an inhomogeneous wave or traverse the wave was investigated. The injected beam is perpendicular to the direction of propagation of the wave. The interaction between an electron beam and an electromagnetic wave not only produces electron oscillation but also substantially changes the electron phase and energy distribution. It is shown that under specific conditions one part of particles are reflected by an electromagnetic wave and other part of particles traverse the wave.

  11. Electromagnetic Waves and Bursty Electron Acceleration: Implications from Freja

    NASA Technical Reports Server (NTRS)

    Andersson, Laila; Ivchenko, N.; Wahlund, J.-E.; Clemmons, J.; Gustavsson, B.; Eliasson, L.

    2000-01-01

    Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about I keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). The broadband emissions are observed to become more electrostatic towards higher frequencies. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E- and B-field fluctuations below 64 Hz (the dc instrument's upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energization of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvenic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfven waves set up these local field-aligned current regions and in turn trigger more electrostatic emissions during certain conditions. In these regions ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.

  12. Integral wave-migration method applied to electromagnetic data

    SciTech Connect

    Bartel, L.C.

    1994-12-31

    Migration of the electromagnetic (EM) wave field will be discussed as a solution of the wave equation in which surface magnetic field measurements are the known boundary values. This approach is similar to classical optical diffraction theory. Here data is taken on a aperture, migrated (extrapolated), and deconvolved with a source function. The EM image is formed when the imaginary part of the Fourier transformed migrated field at time zero is zero or at least a minimum. The integral formulation for migration is applied to model data for surface magnetic fields calculated for a grounded, vertical electric source (VES). The conductivity structure is determined from comparing the measured migrated fields to calculated migrated fields for a yet to be determined conductivity structure. This comparison results in solving a Fredholm integral equation of the first kind for the conductivity structure. Solutions are obtained using the conjugate gradient method. The imaging method used here is similar to the EM holographic method reported earlier, except here the magnitudes, as well as the phases, of the extrapolated fields are preserved so that material properties can be determined.

  13. Scalar Decomposition of the Electromagnetic Vector Wave Equation

    NASA Astrophysics Data System (ADS)

    Franke, Carlos Rodolfo

    The accepted definition of separability of the electromagnetic vector wave equation requires that only one scalar field component exists in a scalar partial differential equation of no higher order than the second, for at least one of the scalar field components. The second order constraint so tightly restricts the mathematics that only the rectangular, the three cylindrical, and the spherical and conical coordinates can be separated. The constraint also permits separation of one scalar field component in prolate and oblate spheroidal coordinates, and paraboloidal coordinates, in that absence of azimuthal variations. The definition of separability makes it a particular attribute of a particular coordinate in a particular coordinate system, and not a general property of the coordinate system as a whole. The second order constraint on the scalar partial differential equation is now lifted, permitting the vector wave equation in any orthogonal curvilinear coordinate system to be completely separated into three scalar partial differential equations. The treatment is carried out for the circular-cylindrical and spherical coordinates, and the analysis indicates that the highest order of at least one of the uncoupled scalar partial differential equations in a given orthogonal curvilinear coordinate system is equal to twice the number of curvilinear coordinates.

  14. Interaction of High Intensity Electromagnetic Waves with Plasmas

    SciTech Connect

    G. Shvets

    2008-10-03

    The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.

  15. Seismo-Electromagnetic Emissions Related to Seismic Waves can Trigger TLEs

    SciTech Connect

    Sorokin, Leonid V.

    2009-04-27

    This paper deals with the rare high intensity electromagnetic pulses associated with earthquakes, whose spectrum signature differs from that of atmospherics produced by lightning discharges. On the basis of actual data records, cases of the generation of anomalous seismo-electromagnetic emissions are described. These natural sub-millisecond electromagnetic pulses were associated with the passage of seismic waves from earthquakes to Moscow, the place where the electromagnetic field observations were made. Space-time coupling has been revealed between exact seismic waves from the earthquakes, lightning triggering and Transient Luminous Events triggering.

  16. Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities

    NASA Technical Reports Server (NTRS)

    Bell, T. F.; Ngo, H. D.

    1990-01-01

    This paper presents a theoretical model for electrostatic lower hybrid waves excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and the topside ionosphere, where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. In this model, the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. Results indicate that high-amplitude short-wavelength (5 to 100 m) quasi-electrostatic whistler mode waves can be excited when electromagnetic whistler mode waves scatter from small-scale planar magnetic-field-aligned plasma density irregularities in the topside ionosphere and magnetosphere.

  17. Properties of electrons scattered by a strong plane electromagnetic wave with a linear polarization: Semiclassical treatment

    NASA Astrophysics Data System (ADS)

    Bogdanov, O. V.; Kazinski, P. O.

    2015-02-01

    The problem of scattering of ultrarelativistic electrons by a strong plane electromagnetic wave of a low (optical) frequency and linear polarization is solved in the semiclassical approximation, when the electron wave packet size is much smaller than the wavelength of electromagnetic wave. The exit momenta of ultrarelativistic electrons scattered are found using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of electrons traversed the electromagnetic wave depend weakly on the initial values of momenta. These electrons are mostly scattered at small angles to the propagation direction of the electromagnetic wave. The maximum Lorentz factor of electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momentum. The momentum component parallel to the electric field vector of the electromagnetic wave is determined solely by the laser beam diameter measured in the units of the classical electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic. A reflection law that relates the incident and reflection angles and is independent of any parameters is found.

  18. Interfacial synthesis of polypyrrole microparticles for effective dissipation of electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Xie, Aming; Jiang, Wanchun; Wu, Fan; Dai, Xiaoqing; Sun, Mengxiao; Wang, Yuan; Wang, Mingyang

    2015-11-01

    A strategy has been adopted to regulate the dielectric properties of polypyrrole microparticles for good electromagnetic absorption performance through an interfacial synthesis process. Classical Debye relaxation theory and resistor-capacitor model have been employed to illustrate the electromagnetic dissipation mechanism of polypyrrole microparticles. The prepared polypyrrole microparticles exhibit an effective electromagnetic absorption bandwidth 5.48 GHz (deeper than -10 dB) from 12.52 to 18 GHz with a filler loading of 15 wt. % in paraffin. It was demonstrated that the morphologies of conducting polymers can significantly affect the dissipation of electromagnetic waves, supplying a strategy for the design of effective electromagnetic absorption materials.

  19. Risk perception and public concerns of electromagnetic waves from cellular phones in Korea.

    PubMed

    Kim, Kyunghee; Kim, Hae-Joon; Song, Dae Jong; Cho, Yong Min; Choi, Jae Wook

    2014-05-01

    In this study, the difference between the risk perception of electromagnetic waves from cellular phones and the risk perception of other factors such as environment and food was analyzed. The cause of the difference in the psychological and social factors that affect the group with high risk perception of electromagnetic waves was also analyzed. A questionnaire survey on the risk perception of electromagnetic waves from cellular phones was carried out on 1001 subjects (men and women) over the age of 20. In the group with high risk perception of electromagnetic waves from cellular phones, women had higher risk perception than men. Logistic regression analysis, where the group with high risk perception of electromagnetic waves and the group with low risk perception were used as dependent variables, indicated that the risk perception of electromagnetic waves in women was 1.815 times statistically significantly higher than the risk perception of men (95% CI: 1.340-2.457). Also, high risk perception of electromagnetic waves from cellular phones was observed when the subjects considered that they had more personal knowledge (OR: 1.416, 95% CI: 1.216-1.648), that the seriousness of the risk to future generations was high (OR: 1.410, 95% CI: 1.234-1.611), and their outrage for the occurrence of accidents related to electromagnetic waves was high (OR: 1.460, 95% CI: 1.264-1.686). The results of this study need to be sufficiently considered and reflected in designing the risk communication strategies and communication methods for the preventive measures and advice on electromagnetic waves from cellular phones.

  20. Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma.

    PubMed

    Vladimirov, S V; Ishihara, O

    2016-07-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed.

  1. Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma.

    PubMed

    Vladimirov, S V; Ishihara, O

    2016-07-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed. PMID:27575225

  2. A review of nondestructive testing approaches using mechanical and electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Lau, Denvid; Qiu, Qiwen

    2016-04-01

    Mechanical and electromagnetic waves are commonly used in nondestructive testing (NDT) techniques for evaluating the materials and structures in civil engineering industry, due to their good examination of defects inside the matter. However, the individual use of mechanical wave or electromagnetic wave in NDT methods sometimes does not fulfill the satisfactory detection in practice because of the operational inconvenience and low sensitivity. It has been demonstrated that the combination of using both types of waves can achieve a better performance for NDT application and would be the future direction for defect detection, as the advantages of each physical wave are picked out whereas the weaknesses are mitigated. This paper discusses the fundamental mechanisms and the current applications of using mechanical and electromagnetic waves for defect detection, with the goal of providing the physical knowledge and the perspectives of developing the NDT applications with these two types of waves. Typical mechanical-wave-based NDT methods such as acoustic emission, ultrasonic technique, and impact-echo method are reviewed. In addition, NDT methods using electromagnetic wave, which include optical fiber sensing technique, laser speckle interferometry and laser reflection technique are discussed. Advantages and disadvantages of these methods are outlined. In particular, we focus on a recent NDT method called acoustic-laser technique, which utilizes both the mechanical and electromagnetic waves. The basic principles and some important experimental data recorded by the acoustic-laser technique are described and its future development in the field of defect detection in civil infrastructure is presented.

  3. Three-wave mixing of ordinary and backward electromagnetic waves: extraordinary transients in the nonlinear reflectivity and parametric amplification.

    PubMed

    Slabko, Vitaly V; Popov, Alexander K; Tkachenko, Viktor A; Myslivets, Sergey A

    2016-09-01

    Three-wave mixing of ordinary and backward electromagnetic waves in a pulsed regime is investigated in the metamaterials that enable the coexistence and phase-matching of such waves. It is shown that the opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes due to greatly enhanced optical parametric amplification and frequency up- and down-shifting nonlinear reflectivity. The differences are illustrated through comparison with the counterparts in ordinary, co-propagating settings.

  4. Leaky surface electromagnetic waves on a high-index dielectric grating.

    PubMed

    Maradudin, A A; Simonsen, I; Zierau, W

    2016-05-15

    We show theoretically that the periodically corrugated surface of a high-index dielectric medium can support a leaky surface electromagnetic wave. This wave is bound to the surface in the vacuum, but radiates into the dielectric. Despite this radiative damping, the surface wave can have a long lifetime.

  5. Damping and scattering of electromagnetic waves by small ferrite spheres suspended in an insulator

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W.

    1992-01-01

    The intentional degradation of electromagnetic waves by their penetration into a media comprised of somewhat sparsely distributed energy absorbing ferrite spheres suspended in an electrical insulator is investigated. Results are presented in terms of generalized parameters involving wave length and sphere size, sphere resistivity, permeability, and spacing; their influence on dissipation of wave power by eddy currents, magnetic hysteresis, and scattering is shown.

  6. Modulational instability of a Langmuir wave in plasmas with energetic tails of superthermal electrons

    SciTech Connect

    Timofeev, I. V.

    2013-01-15

    The impact of superthermal electrons on dispersion properties of isotropic plasmas and on the modulational instability of a monochromatic Langmuir wave is studied for the case when the power-law tail of the electron distribution function extends to relativistic velocities and contains most of the plasma kinetic energy. Such an energetic tail of electrons is shown to increase the thermal correction to the Langmuir wave frequency, which is equivalent to the increase of the effective electron temperature in the fluid approach, and has almost no impact on the dispersion of ion-acoustic waves, in which the role of temperature is played by the thermal spread of low-energy core electrons. It is also found that the spectrum of modulational instability in the non-maxwellian plasma narrows significantly, as compared to the equilibrium case, without change of the maximum growth rate and the corresponding wavenumber.

  7. Excitation of surface electromagnetic waves in a graphene-based Bragg grating

    PubMed Central

    Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting

    2012-01-01

    Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc. PMID:23071901

  8. Excitation of surface electromagnetic waves in a graphene-based Bragg grating.

    PubMed

    Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting

    2012-01-01

    Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc. PMID:23071901

  9. Excitation of surface electromagnetic waves in a graphene-based Bragg grating.

    PubMed

    Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting

    2012-01-01

    Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.

  10. Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    SciTech Connect

    Komar, A.; Pokol, G. I.; Fueloep, T.

    2013-01-15

    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

  11. Electromagnetic ion beam instabilities - Growth at cyclotron harmonic wave numbers

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Gary, S. Peter

    1987-01-01

    The linear theory of electromagnetic ion beam instabilities for arbitrary angles of propagation is studied, with an emphasis on the conditions necessary to generate unstable modes at low harmonics of the ion cyclotron resonance condition. The present results extend the analysis of Smith et al. (1985). That paper considered only the plasma parameters at a time during which harmonic wave modes were observed in the earth's foreshock. The parameters of that paper are used as the basis of parametric variations here to establish the range of beam properties which may give rise to observable harmonic spectra. It is shown that the growth rates of both left-hand and right-hand cyclotron harmonic instabilities are enhanced by an increase in the beam temperature anisotropy and/or the beam speed. Decreases in the beam density and/or the core-ion beta reduce the overall growth of the cyclotron harmonic instabilities but favor the growth of these modes over the growth of the nonresonant instability and thereby enhance the observability of the harmonics.

  12. Coupling interaction of electromagnetic wave in a groove doublet configuration.

    PubMed

    Ding, Lan; Liu, Jinsong; Wang, Dong; Wang, Kejia

    2010-09-27

    Based on the waveguide mode (WGM) method, coupling interaction of electromagnetic wave in a groove doublet configuration is studied. The formulation obtained by WGM method for a single groove [Prog. Electromagn. Res. 18, 1-17 (1998)] is extended to two grooves. By exploring the total scattered field of the configuration, coupling interaction ratios are defined to describe the interaction between grooves quantitatively. Since each groove in this groove doublet configuration is regarded as the basic unit, the effects of coupling interaction on the scattered fields of each groove can be investigated respectively. Numerical results show that an oscillatory behavior of coupling interaction is damped with increasing groove spacing. The incident and scattering angle dependence of coupling interaction is symmetrical when the two grooves are the same. For the case of two subwavelength grooves, the coupling interaction is not sensitive to the incident angle and scattering angle. Although the case of two grooves is discussed for simplicity, the formulation developed in this article can be generalized to arbitrary number of grooves. Moreover, our study offers a simple alternative to investigate and design metallic gratings, compact directional antennas, couplers, and other devices especially in low frequency regime such as THz and microwave domain. PMID:20941004

  13. Atmospheric Refractive Electromagnetic Wave Bending and Propagation Delay

    NASA Astrophysics Data System (ADS)

    Mangum, Jeffrey G.; Wallace, Patrick

    2015-01-01

    In this tutorial we summarize the physics and mathematics behind refractive electromagnetic wave bending and delay. Refractive bending and delay through the Earth's atmosphere at both radio/millimetric and optical/IR wavelengths are discussed, but with most emphasis on the former, and with Atacama Large Millimeter Array (ALMA) applications in mind. As modern astronomical measurements often require subarcsecond position accuracy, care is required when selecting refractive bending and delay algorithms. For the spherically-uniform model atmospheres generally used for all refractive bending and delay algorithms, positional accuracies lsim1'' are achievable when observing at zenith angles lsim75°. A number of computationally economical approximate methods for atmospheric refractive bending and delay calculation are presented, appropriate for astronomical observations under these conditions. For observations under more realistic atmospheric conditions, for zenith angles lsim75°, or when higher positional accuracy is required, more rigorous refractive bending and delay algorithms must be employed. For accurate calculation of the refractive bending, we recommend the Auer and Standish method, using numerical integration to ray-trace through a two-layer model atmosphere, with an atmospheric model determination of the atmospheric refractivity. For the delay calculation we recommend numerical integration through a model atmosphere.

  14. Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Cheng, Qiang; Jiang, Wei Xiang; Cui, Tie Jun

    2010-08-01

    We show experimentally that a line source in an anisotropic metamaterial directly radiates planar electromagnetic waves instead of cylindrical waves, when one component of the permeability tensor approaches zero. The impedance of this material can be perfectly matched to that of free space, which can significantly reduce the reflections between the source and the superstrate, as in traditional highly directive antennas based on zero index metamaterials. Such a unique property determines the two-way propagation of electromagnetic waves excited by a line source, instead of all-way propagation. From this feature, a highly directive emission of electromagnetic waves is achieved using the anisotropic metamaterial with arbitrary shape. We have designed and fabricated the anisotropic metamaterial in the microwave region, and observed the generation of plane waves and their highly directive emission. The proposed plane-wave emission is independent of the shape variance of the anisotropic metamaterial, which can be utilized in the design of conformal antennas.

  15. Vector-based plane-wave spectrum method for the propagation of cylindrical electromagnetic fields.

    PubMed

    Shi, S; Prather, D W

    1999-11-01

    We present a vector-based plane-wave spectrum (VPWS) method for efficient propagation of cylindrical electromagnetic fields. In comparison with electromagnetic propagation integrals, the VPWS method significantly reduces time of propagation. Numerical results that illustrate the utility of this method are presented.

  16. The difference of detecting water mist and smoke by electromagnetic wave in simulation experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdi; Cui, Bing; Xiao, Si

    2015-10-01

    Although mist is similar to smoke in morphology, their compositions are very different. Therefore there is a significant difference between mist and smoke when detected by electromagnetic wave. This paper puts forward a kind of feasible solution based on Ansoft HFSS software about how to determine the forest fire by distinguishing mist and smoke above the forest. The experiments simulate the difference between mist and smoke model when detected by electromagnetic wave in different wavelengths. We find the mist and smoke model cannot absorb or reflect electromagnetic wave efficiently in Megahertz band. While in Gigahertz band mist model began to absorb and reflect electromagnetic wave above 650 Gigahertz band, but no change in smoke model. And the biggest difference appears in Terahertz band.

  17. Attenuation of an electromagnetic wave by charged dust particles in a sandstorm.

    PubMed

    Xie, Li; Li, Xingcai; Zheng, Xiaojing

    2010-12-10

    We calculate the light scattering properties of the partially charged dust particles with the Mie theory for electromagnetic waves with different frequencies, and the attenuation coefficients of an electromagnetic wave propagating in a sandstorm are also calculated. The results show that the electric charges distributed on the sand surface have a significant effect on the attenuation of the electromagnetic wave, especially for a frequency lower than 40 GHz, and attenuation coefficients increase with the magnitude of charges carried by the dust particles (expressed by the charge-to-mass ratio in this paper). For the higher frequency electromagnetic wave, such as visible light, the effect of charges carried by sand particles on its attenuation is very little, which can be ignored. PMID:21151232

  18. Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.

    PubMed

    Wang, Ken Kang-Hsin; Ye, Zhen

    2003-12-01

    We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.

  19. Electromagnetic-wave excitation in a large laboratory beam-plasma system

    NASA Technical Reports Server (NTRS)

    Whelan, D. A.; Stenzel, R. L.

    1981-01-01

    The mechanism by which unstable electrostatic waves of a beam-plasma system are converted into observed electromagnetic waves is of current interest in space physics and in tokamak fusion research. The process involved in the conversion of electrostatic to electromagnetic waves at the critical layer is well understood. However, the radiation from uniform plasmas cannot be explained on the basis of this process. In connection with certain difficulties, it has not yet been possible to establish the involved emission processes by means of experimental observations. In the considered investigation these difficulties are overcome by employing a large laboratory plasma in a parameter range suitable for detailed diagnostics. A finite-diameter electron beam is injected into a uniform quiescent afterglow plasma of dimensions large compared with electromagnetic wavelengths. The considered generation mechanism concerning the electromagnetic waves is conclusively confirmed by observing the temporal evolution of an instability

  20. Influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction

    SciTech Connect

    Forsberg, M.; Brodin, G.; Papadopoulos, D.

    2010-07-15

    The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the QED effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.

  1. Condition for invariant spectral degree of coherence of an electromagnetic plane wave on scattering

    NASA Astrophysics Data System (ADS)

    Li, Jia; Chen, Yanru; Xu, Shixue; Wang, Yongqing; Zhou, Muchun; Zhao, Qi; Xin, Yu; Chen, Feinan

    2011-02-01

    Within the accuracy of the first-order Born approximation, the condition for invariant spectral degree of coherence of an electromagnetic plane wave scattered from random media is presented. The condition for the electromagnetic plane wave is different from the one for the scalar plane wave. Results also indicate that, different polarizations of the incident plane wave would have essential effects on analytical forms of the condition. These effects may be due to the correlation-induced changes in the scattered spectral degree of coherence.

  2. Excitation of Rossby waves by HF electromagnetic seismic origin emissions in the earth's mesosphere

    NASA Astrophysics Data System (ADS)

    Tsintsadze, N. L.; Kaladze, T. D.; Tsamalashvili, L. V.

    2009-12-01

    Interaction of high-frequency seismo-electromagnetic emissions with the weakly ionized gas of the ionospheric D-layer is considered. It is shown that through the earth's ionosphere weakly damped high-frequency electron cyclotron electromagnetic waves can propagate. These new type of waves easily reach the ionospheric D-layer where they interact with the existing electrons and ions. Acting on electrons ponderomotive force is taken into account and corresponding modified Charney equation is obtained. It is shown that only nonlinear vortical structures with negative vorticity (anticyclone) can be excited. The amplitude modulation of electromagnetic waves can lead to the excitation of Rossby waves in the weakly ionized gas. The corresponding growth rate is defined. Depending on the intensity of the pumping waves generated by seismic activity different stable and unstable branches of oscillations are found. Detection of the new oscillation branches and energetically reinforcing Rossby solitary vortical anticyclone structures may be serve as precursors to earthquake.

  3. Trapping of electrons in troughs of self generated electromagnetic standing waves in a bounded plasma column

    SciTech Connect

    Bhattacharjee, Sudeep; Sahu, Debaprasad; Pandey, Shail; Chatterjee, Sanghomitro; Dey, Indranuj; Roy Chowdhury, Krishanu

    2014-01-15

    Observations and measurements are reported on electron trapping in troughs of self-generated electromagnetic standing waves in a bounded plasma column confined in a minimum-B field. The boundaries are smaller than the free space wavelength of the waves. Earlier work of researchers primarily focused upon electron localization effects induced by purely electrostatic perturbation. We demonstrate the possibility in the presence of electromagnetic standing waves generated in the bounded plasma column. The electron trapping is verified with electrostatic measurements of the plasma floating potential, electromagnetic measurements of the wave field profile, and optical intensity measurements of Argon ionic line at 488 nm. The experimental results show a reasonably good agreement with predictions of a Monte Carlo simulation code that takes into account all kinematical and dynamical effects in the plasma in the presence of bounded waves and external fields.

  4. Surface electromagnetic wave coupling efficiencies for several excitation techniques.

    PubMed

    Davarpanah, M; Goben, C A; Begley, D L; Griffith, S L

    1976-12-01

    The excitation efficiencies for coupling surface electromagnetic waves onto aluminum at a microwave frequency (f = 8.445 GHz, lambda = 3.55 cm) were studied experimentally for several different standard microwave techniques as well as two optical techniques (prism and grating) applied to the microwave frequency region and two new techniques (hump and valley). The peak measured efficiencies found were: for the standard rectangular waveguide, 92%; for the horn antenna, 73%; for the right angle prism properly gapped above the metal, 60%; for the hump of 10-wavelength radius of curvature, 35%; for the thin grating strips on polystyrene coated metal, 30%; for the grating bars gapped (1/2) wavelength above the metal, 26%; and, for the valley of 10-wavelength radius, 12%. The measurement of the excitation efficiencies for prism and grating coupling techniques sometimes required that the prism or grating be in the near field of the antenna. In addition to measuring peak efficiencies, the efficiencies were measured as functions of the gap heights, the angular orientations, the different diffraction modes, the shapes, and the materials of the grating bars. The coupling efficiencies for both prism and grating couplers show a strong dependence on gap height above the metal. Dielectric grating bars were found to be inefficient compared to solid or hollow metallic bars, or thin metallic strips. The distance between the target point of the center line of the microwave horn antenna and the corner of the prism was found to be about 1 wavelength for maximum prism coupling efficiency. PMID:20168392

  5. Descriptive study of electromagnetic wave distribution for various seating positions: using digital textbooks.

    PubMed

    Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung

    2014-04-01

    To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in an elementary school that uses digital textbooks. Electric and magnetic fields from TPCs were measured using the HI-3603 Visual Display Terminal/ Very Low Frequency (VDT/VLF) radiation measurement system. Electromagnetic field values from TPCs measured at a student's seat and at a teacher's computer were deemed not harmful to health. However, electromagnetic field values varied based on the distance between students, other electronic devices such as a desktop computers, and student posture while using a TPC. Based on these results, it is necessary to guide students to observe proper posture and to arrange seats at an appropriate distance in the classroom.

  6. Continuity equation for momentum of the electromagnetic wave in a lossy dispersive magnetoelectric medium

    NASA Astrophysics Data System (ADS)

    Vorobyev, O. B.

    2015-09-01

    Continuity equation for the canonical pseudomomentum density in a magnetoelectric medium with dispersive losses is examined using consistent microscopic description of the electromagnetic wave energy. Accordingly, the canonical pseudomomentum is presented by the kinetic momentum of the electromagnetic field and pseudomomentum of oscillating bound charges, which is identified as a combination of the medium and electromagnetic pseudomomenta in contrast with previous quasi-static approaches. The ponderomotive and reaction forces are defined by the time derivatives of the medium and electromagnetic pseudomomenta, which depend on the "hidden momentum" in the case of a magnetoelectric medium. Properties of medium-field interaction are connected with translational invariance of the pseudomomentum in relation to a homogeneous lossless medium. Transport of the canonical pseudomomentum is explained by the kinetic momentum flux corresponding to the energy flux as well as translational invariance of the pseudomomentum, which are illustrated using the relativistic and effective mass densities of the electromagnetic wave. The optical pseudomomentum of the electromagnetic wave is defined in accordance with conducted analysis of energy and momentum transport while fallacies of approaches based on the Abraham, Minkowski, and total momenta are specified. Structure of the full momentum density of a closed medium-field system comprised of the densities of the optical pseudomomentum of the electromagnetic wave as well as the mechanical momentum and pseudomomentum of a host medium is expounded using description of medium-field interaction.

  7. Interface electromagnetic waves between Kronig-Penney photonic crystals

    NASA Astrophysics Data System (ADS)

    Mehrany, Khashayar; Momeni, Babak; Khorasani, Sina; Rashidian, Bizhan

    2003-02-01

    The electromagnetic interface states formed in a heterostructure composed of two semi-infinite Kronig-Penny photonic crystals have been studied. Modified transfer matrices have been used for study of Kronig-Penny photonic crystals (heterostructures with conducting interfaces) to show strong similarity between solid-state physics and electromagnetics. Our calculations are limited to TE polarization.

  8. Elastic metamaterials for tuning circular polarization of electromagnetic waves

    PubMed Central

    Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.

    2016-01-01

    Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed. PMID:27320212

  9. Elastic metamaterials for tuning circular polarization of electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.

    2016-06-01

    Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.

  10. Elastic metamaterials for tuning circular polarization of electromagnetic waves.

    PubMed

    Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A

    2016-01-01

    Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.

  11. TE and TM beam decomposition of time-harmonic electromagnetic waves.

    PubMed

    Melamed, Timor

    2011-03-01

    The present contribution is concerned with applying beam-type expansion to planar aperture time-harmonic electromagnetic field distribution in which the propagating elements, the electromagnetic beam-type wave objects, are decomposed into transverse electric (TE) and transverse magnetic (TM) field constituents. This procedure is essential for applying Maxwell's boundary conditions for solving different scattering problems. The propagating field is described as a discrete superposition of tilted and shifted TE and TM electromagnetic beams over the frame-based spatial-directional expansion lattice. These vector wave objects are evaluated either by applying differential operators to scalar beam propagators, or by using plane-wave spectral representations. Explicit asymptotic expressions for scalar, as well as for electromagnetic, Gaussian beam propagators are presented as well. PMID:21383822

  12. TE and TM beam decomposition of time-harmonic electromagnetic waves.

    PubMed

    Melamed, Timor

    2011-03-01

    The present contribution is concerned with applying beam-type expansion to planar aperture time-harmonic electromagnetic field distribution in which the propagating elements, the electromagnetic beam-type wave objects, are decomposed into transverse electric (TE) and transverse magnetic (TM) field constituents. This procedure is essential for applying Maxwell's boundary conditions for solving different scattering problems. The propagating field is described as a discrete superposition of tilted and shifted TE and TM electromagnetic beams over the frame-based spatial-directional expansion lattice. These vector wave objects are evaluated either by applying differential operators to scalar beam propagators, or by using plane-wave spectral representations. Explicit asymptotic expressions for scalar, as well as for electromagnetic, Gaussian beam propagators are presented as well.

  13. Wave mode identification of electrostatic noise observed with ISEE 3 in the deep tail boundary layer

    NASA Technical Reports Server (NTRS)

    Tsutsui, M.; Matsumoto, H.; Strangeway, R. J.; Tsurutani, B. T.; Phillips, J. L.

    1991-01-01

    The characteristics of the VLF electrostatic noise observed with ISEE 3 in the low-latitude boundary layer of distant geomagnetic tail are examined using a display format for the wave dynamic spectra different from that used by Scarf et al. (1984). It is shown that the observed noise is composed of impulsive bursts. The results of the detailed analysis of the noise parameters are used to develop a model of plasma wave behavior in the plasma rest frame. A hypothesis is proposed that the wide frequency extent of the noise spectra is composed of Doppler effects of waves propagating nearly omnidirectionally within the plasma rest frame, which is moving with the electron bulk speed. On the basis of this hypothesis, the wavelength of the observed waves were determined from the width of the frequency extent and the measured electron bulk speed. It is shown that the wavelength ranges from 2 to 8 times the plasma Debye length.

  14. Evidence of local power deposition and electron heating by a standing electromagnetic wave in electron-cyclotron-resonance plasma.

    PubMed

    Durocher-Jean, A; Stafford, L; Dap, S; Makasheva, K; Clergereaux, R

    2014-09-01

    Microwave plasmas excited at electron-cyclotron resonance were studied in the 0.5-15 mTorr pressure range. In contrast with low-limit pressure conditions where the plasma emission highlights a fairly homogeneous spatial structure, a periodic spatial modulation (period ∼6.2 cm) appeared as pressure increased. This feature is ascribed to a local power deposition (related to the electron density) due to the presence of a standing electromagnetic wave created by the feed electromagnetic field (2.45 GHz) in the cavity formed by the reactor walls. Analysis of the electron energy probability function by Langmuir probe and optical emission spectroscopy further revealed the presence of a high-energy tail that showed strong periodic spatial modulation at higher pressure. The spatial evolution of the electron density and of the characteristic temperature of these high-energy electrons coincides with the nodes (maximum) and antinodes (minimum) of the standing wave. These spatially-modulated power deposition and electron heating mechanisms are then discussed.

  15. Evidence of local power deposition and electron heating by a standing electromagnetic wave in electron-cyclotron-resonance plasma.

    PubMed

    Durocher-Jean, A; Stafford, L; Dap, S; Makasheva, K; Clergereaux, R

    2014-09-01

    Microwave plasmas excited at electron-cyclotron resonance were studied in the 0.5-15 mTorr pressure range. In contrast with low-limit pressure conditions where the plasma emission highlights a fairly homogeneous spatial structure, a periodic spatial modulation (period ∼6.2 cm) appeared as pressure increased. This feature is ascribed to a local power deposition (related to the electron density) due to the presence of a standing electromagnetic wave created by the feed electromagnetic field (2.45 GHz) in the cavity formed by the reactor walls. Analysis of the electron energy probability function by Langmuir probe and optical emission spectroscopy further revealed the presence of a high-energy tail that showed strong periodic spatial modulation at higher pressure. The spatial evolution of the electron density and of the characteristic temperature of these high-energy electrons coincides with the nodes (maximum) and antinodes (minimum) of the standing wave. These spatially-modulated power deposition and electron heating mechanisms are then discussed. PMID:25314546

  16. Interaction of electromagnetic waves with granular agricultural product and insects.

    PubMed

    Rashkovan, V M; Khizhnyak, N A; Basteev, A V; Bazyma, L A; Niño de Rivera, Luis; Ponomaryova, I A

    2003-01-01

    The basic correlation is defined which characterizes an influence of electromagnetic radiation on a system of individual particles of ellipsoidal geometry dispersed into some volume (chaotic arrangement) of another medium. The field intensity inside one isolated particle is determined depending on the parameters of the external (relative to the volume) electromagnetic field. Energy loss in an isolated particle is calculated. The shielding effect of a field in an isolated particle by other surrounding particles is taken into account. The relative dielectric permittivity and the relative loss tangent as a function of grain moisture content are measured. Drying and disinfestation of wheat grain by electromagnetic methods are observed.

  17. The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence

    ERIC Educational Resources Information Center

    Smith, Glenn S.

    2012-01-01

    In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…

  18. Electromagnetic Waves with Frequencies Near the Local Proton Gryofrequency: ISEF-3 1 AU Observations

    NASA Technical Reports Server (NTRS)

    Tsurutani, B.

    1993-01-01

    Low Frequency electromagnetic waves with periods near the local proton gyrofrequency have been detected near 1 AU by the magnetometer onboard ISEE-3. For these 1 AU waves two physical processes are possible: solar wind pickup of nuetral (interstellar?) particles and generation by relativistic electron beams propagating from the Sun.

  19. Teaching the Common Aspects in Mechanical, Electromagnetic and Quantum Waves at Interfaces and Waveguides

    ERIC Educational Resources Information Center

    Rojas, R.; Robles, P.

    2011-01-01

    We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…

  20. Structure of Langmuir and electromagnetic collapsing wave packets in two-dimensional strong plasma turbulence

    NASA Astrophysics Data System (ADS)

    Alinejad, H.; Robinson, P. A.; Cairns, I. H.; Skjaeraasen, O.; Sobhanian, S.

    2007-07-01

    Nucleating and collapsing wave packets relevant to electromagnetic strong plasma turbulence are studied theoretically in two dimensions. Model collapsing Langmuir and transverse potentials are constructed as superpositions of approximate eigenstates of a spherically symmetric density well. Electrostatic and electromagnetic potentials containing only components with azimuthal quantum numbers m =0, 1, 2 are found to give a good representation of the electric fields of nucleating collapsing wave packets in turbulence simulations. The length scales of these trapped states are related to the electron thermal speed ve and the length scale of the density well. It is shown analytically that the electromagnetic trapped states change with ve and that for ve≲0.17c they are delocalized, in accord with recent simulations. In this case, the Langmuir mode collapses independently, as in electrostatic plasma turbulence. For ve≳0.17c, the Langmuir and transverse modes remain coupled during collapse, with autocorrelation lengths in a constant ratio. An investigation of energy transfer to packets localized in density wells shows that the strongest power transfer to the nucleating state occurs for Langmuir waves. Energy transitions between different trapped and free states for collapsing wave packets are studied, and the transition rate from trapped Langmuir to free plane electromagnetic waves is calculated and related to the emission of electromagnetic waves at the plasma frequency.

  1. Polarities of Electromagnetic-Wave Modes in a Magnetoplasma-Filled Cylindrical Waveguide

    NASA Astrophysics Data System (ADS)

    Ding, Zhenfeng; Liu, Xufeng; Ma, Tengcai

    2001-02-01

    Polarities of several ultra-low-electromagnetic-wave modes propagating in a magnetoplasma-filled cylindrical waveguide under typical conditions are studied. Analytical and numerical results show that the polarity of a wave mode determined using a conventional propagation factor is reasonable only in some limited parameter regions, and thus must be analyzed using rotational direction of the resultant transverse components of an electromagnetic-wave electric field along the force line of an external magnetic field. EHp modes appearing in the range of ωpe>ω are physical dominant right-hand polarized modes.

  2. Finite element analysis of electromagnetic propagation in an absorbing wave guide

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1986-01-01

    Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.

  3. Electromagnetic wave propagation in a random distribution of C{sub 60} molecules

    SciTech Connect

    Moradi, Afshin

    2014-10-15

    Propagation of electromagnetic waves in a random distribution of C{sub 60} molecules are investigated, within the framework of the classical electrodynamics. Electronic excitations over the each C{sub 60} molecule surface are modeled by a spherical layer of electron gas represented by two interacting fluids, which takes into account the different nature of the π and σ electrons. It is found that the present medium supports four modes of electromagnetic waves, where they can be divided into two groups: one group with shorter wavelength than the light waves of the same frequency and the other with longer wavelength than the free-space radiation.

  4. Self-generation and management of spin-electromagnetic wave solitons and chaos

    SciTech Connect

    Ustinov, Alexey B.; Kondrashov, Alexandr V.; Nikitin, Andrey A.; Kalinikos, Boris A.

    2014-06-09

    Self-generation of microwave spin-electromagnetic wave envelope solitons and chaos has been observed and studied. For the investigation, we used a feedback active ring oscillator based on artificial multiferroic, which served as a nonlinear waveguide. We show that by increasing the wave amplification in the feedback ring circuit, a transition from monochromatic auto-generation to soliton train waveform and then to dynamical chaos occurs in accordance with the Ruelle-Takens scenario. Management of spin-electromagnetic-wave solitons and chaos parameters by both dielectric permittivity and magnetic permeability of the multiferroic waveguiding structure is demonstrated.

  5. Dispersion characteristics of spin-electromagnetic waves in planar multiferroic structures

    SciTech Connect

    Nikitin, Andrey A.; Ustinov, Alexey B.; Vitko, Vitaliy V.; Semenov, Alexander A.; Mironenko, Igor G.; Belyavskiy, Pavel Yu.; Kalinikos, Boris A.; Stashkevich, Andrey A.; Lähderanta, E.

    2015-11-14

    A method of approximate boundary conditions is used to derive dispersion relations for spin-electromagnetic waves (SEWs) propagating in thin ferrite films and in multiferroic layered structures. A high accuracy of this method is proven. It was shown that the spin-electromagnetic wave propagating in the structure composed of a thin ferrite film, a thin ferroelectric film, and a slot transmission line is formed as a result of hybridization of the surface spin wave in the ferrite film and the electromagnetic wave in the slot-line. The structure demonstrates dual electric and magnetic field tunability of the SEW spectrum. The electric field tunability is provided by the thin ferroelectric film. Its efficiency increases with an increase in the thicknesses of the ferrite and ferroelectric films and with a decrease in the slot-line gap width. The theory is confirmed by experimental data.

  6. Nonrelativistic electromagnetic surface waves: dispersion properties in a magnetized dusty electron-positron plasma

    PubMed

    Cho; Lee; Kim

    2000-04-01

    Nonrelativistic electromagnetic surface waves propagating on the plane interface between dusty electron-positron plasma and vacuum are investigated by specular reflection procedure. In the presence of an applied magnetic field (B(0)=B(0)yinsertion mark) directed perpendicular to both the interface normal and the wave vector, transverse electromagnetic modes are studied in terms of the dispersion relation. The analytic modes are derived and discussed with the aid of some numerical analysis. The cold electromagnetic surface wave dispersion relation considering the effect of dust particle shows that possible modes appear only when the normalized frequency (omega;) and the wave vector (&Kmacr;) satisfy the condition Omega;Omega;, where delta(=n(0-)/n(0+)) is the parameter of charge imbalance in the plasma and Omega; is the normalized cyclotron frequency.

  7. Electromagnetic waves propagation nearby rotating gravitating astrophysical object with atmosphere

    NASA Astrophysics Data System (ADS)

    Gladyshev, V. O.; Tereshin, A. A.; Fomin, I. V.; Chelnokov, M. B.; Kauts, V. L.; Gladysheva, T. M.; Bazleva, D. D.

    The aim of the article to explore the effects of gravitational lensing and attraction of electromagnetic radiation in the description of the propagation of radiation nearby the atmospheres of rotating astrophysical objects.

  8. Electromagnetic follow-up of gravitational wave candidates

    NASA Astrophysics Data System (ADS)

    Nuttall, L. K.

    Observations of astrophysical systems in different wavelengths can reveal insights in to systems which are not available from a single wavelength. The same can be expected from multi-channel observations of systems which also produce gravitational waves (GWs). The most likely source of strong, detectable GWs, which will also produce an electromagnetic (EM) signature, is the merger of compact objects containing neutron stars (NS) and black holes (BH), namely NS-NS and NS-BH systems. The focus of this thesis is to summarise current and past efforts to detect an EM counterpart of a GW event, with emphasis on compact merger sources. To begin, the formulation of GWs in general relativity is brie y discussed, as well as the main classes of GW sources. The global networks of GW interferometers in the recent past and near future are described, together with brief explanations of operational principles and the main challenges GW detectors face to make a confident detection. Current literature is reviewed to give a brief summary of the most promising sources which produce both GW and EM signals. Emphasis is given to gamma-ray bursts (GRBs), their afterglows, and kilonovae. In addition a brief description of GW searches triggered by an external source (such as a GRB) is given. A new form of search is then discussed in which GW events are used to point conventional EM telescopes, with emphasis on rapidly slewing, wide field of view optical telescopes. The main challenge in this form of search is that timing information from a network of GW interferometers yields large error regions for the source sky direction making it diffcult to locate an EM transient. Therefore a new statistic is presented in which galaxies (taken from a galaxy catalogue) within this search region are ranked. The probability of identifying the host galaxy of a GW signal from NS-NS and NS-BH systems is investigated and results presented for past and future GW detector configurations. The ROTSE-III telescope

  9. Cluster observations of Shear-mode surface waves diverging from Geomagnetic Tail reconnection

    NASA Astrophysics Data System (ADS)

    Dai, L.; Wygant, J. R.; Dombeck, J. P.; Cattell, C. A.; Thaller, S. A.; Mouikis, C.; Balogh, A.; Reme, H.

    2010-12-01

    We present the first Cluster spacecraft study of the intense (δB/B~0.5, δE/VAB~0.5) equatorial plane surface waves diverging from magnetic reconnection in the geomagnetic tail at ~17 Re. Using phase lag analysis with multi-spacecraft measurements, we quantitatively determine the wavelength and phase velocity of the waves with spacecraft frame frequencies from 0.03 Hz to 1 Hz and wavelengths from much larger (4Re) than to comparable to the H+ gyroradius (~300km). The phase velocities track the strong variations in the equatorial plane projection of the reconnection outflow velocity perpendicular to the magnetic field. The propagation direction and wavelength of the observed surface waves resemble those of flapping waves of the magnetotail current sheet, suggesting a same origin shared by both of these waves. The observed waves appear ubiquitous in the outflows near magnetotail reconnection. Evidence is found that the observed waves are associated with velocity shear in reconnection outflows. Analysis shows that observed waves are associated with strong field-aligned Alfvenic Poynting flux directed away from the reconnection region toward Earth. These observations present a scenario in which the observed surface waves are driven and convected through a velocity-shear type instability by high-speed (~1000km) reconnection outflows tending to slow down due to power dissipation through Poynting flux. The mapped Poynting flux (100ergs/cm2s) and longitudinal scales (10-100 km) to 100km altitude suggest that the observed waves and their motions are an important boundary condition for night-side aurora. Figure: a) The BX-GSM in the geomagnetic tail current sheet. b) The phase difference wavelet spectrum between Bz_GSM from SC2 and SC3, used to determine the wave phase velocity, is correlated with the reconnection outflow velocity (represented by H+ VX-GSM) c) The spacecraft trajectory through magnetotail reconnection. d) The observed equatorial plane surface wave

  10. Instabilities of low frequency, parallel propagating electromagnetic waves in the earth's foreshock region

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.; Edmiston, J. P.; Frank, L. A.

    1981-01-01

    An instability analysis is presented for parallel and antiparallel propagating electromagnetic waves generated by reflected and diffuse suprathermal ions upstream of the earth's bow shock. Calculations are performed on the basis of upstream particle observations made by the ISEE 1 Quadrispheric Lepedea instrument and low-energy electron measurements made by the ISEE 1 electron spectrometer for a single period. The electromagnetic dispersion relation is computed and the unstable modes and growth times of the fastest growing waves are determined. It is found that the reflected ions destabilize the plasma most strongly at a wave frequency 0.1 that of the ion gyrofrequency by a resonant ion beam instability for waves propagating upstream and by a nonresonant firehose-like instability for waves propagating downstream. The diffuse ions also destabilize the plasma most strongly at the same frequency by means of resonant instabilities of both right- and left-hand polarized waves propagating away from the bow shock.

  11. The spectral-angular and polarization characteristics of radiation from an electron beam traversing an inhomogeneous electromagnetic wave

    SciTech Connect

    Koltsov, A.V.; Serov, A.V.

    1995-12-31

    The generation of frequency harmonics of a radiation when the electron beam traverse the inhomogeneous electromagnetic wave was investigated. The electromagnetic wave are linearly polarized. The plane beam of particles enters the wave at right angle with respect to the direction of propogation of the wave and the vector E of the wave. The spartial distribution of radiation from the higher harmonics and the power density contours are caculated.

  12. Electromagnetic backscattering from one-dimensional drifting fractal sea surface I: Wave-current coupled model

    NASA Astrophysics Data System (ADS)

    Tao, Xie; Shang-Zhuo, Zhao; William, Perrie; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-06-01

    To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.

  13. Numerical study of electromagnetic waves generated by a prototype dielectric logging tool

    USGS Publications Warehouse

    Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.

    2004-01-01

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.

  14. Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.

    PubMed

    Amin, M R

    2015-09-01

    Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.

  15. Three-wave mixing of ordinary and backward electromagnetic waves: extraordinary transients in the nonlinear reflectivity and parametric amplification.

    PubMed

    Slabko, Vitaly V; Popov, Alexander K; Tkachenko, Viktor A; Myslivets, Sergey A

    2016-09-01

    Three-wave mixing of ordinary and backward electromagnetic waves in a pulsed regime is investigated in the metamaterials that enable the coexistence and phase-matching of such waves. It is shown that the opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes due to greatly enhanced optical parametric amplification and frequency up- and down-shifting nonlinear reflectivity. The differences are illustrated through comparison with the counterparts in ordinary, co-propagating settings. PMID:27607951

  16. Coupling of electromagnetic waves and space charge waves in type O traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Ricci, P.

    1978-01-01

    H. Derfler observed that a parameter defined by Pierce's perturbation method does not have the same physical significance as an analogous parameter described by a differently derived equation of W. Kleen. A modification of Pierce's method is proposed, which yields an equation of Derfler's type, and also allows quicker and easier calculation of a given traveling wave tube's parameters.

  17. Large-amplitude circularly polarized electromagnetic waves in magnetized plasma

    SciTech Connect

    Vasko, I. Y. Artemyev, A. V.; Zelenyi, L. M.

    2014-05-15

    We consider large-amplitude circularly polarized (LACP) waves propagating in a magnetized plasma. It is well-known that the dispersion relation for such waves coincides with the dispersion relation given by the linear theory. We develop the model of LACP wave containing a finite population of Cerenkov resonant particles. We find that the current of resonant particles modifies the linear dispersion relation. Dispersion curves of low-frequency (i.e., whistler and magnetosonic) waves are shifted toward larger values of the wave vector, i.e., waves with arbitrarily large wavelengths do not exist in this case. Dispersion curves of high-frequency waves are modified so that the wave phase velocity becomes smaller than the speed of light.

  18. Application of Iterative Time-Reversal for Electromagnetic Wave Focusing in a Wave Chaotic System

    NASA Astrophysics Data System (ADS)

    Taddese, Biniyam; Antonsen, Thomas; Ott, Edward; Anlage, Steven

    2011-03-01

    Time-reversal mirrors exploit the time-reversal invariance of the wave equation to achieve spatial and temporal focusing, and they have been shown to be very effective sensors of perturbations to wave chaotic systems. The sensing technique is based on a classical analogue of the Loschmidt echo. However, dissipation results in an imperfect focusing, hence we created a sensing technique employing exponential amplification to overcome this limitation [1,2]. We now apply the technique of iterative time-reversal, which had been demonstrated in a dissipative acoustic system, to an electromagnetic time-reversal mirror, and experimentally demonstrate improved temporal focusing. We also use a numerical model of a network of transmission lines to demonstrate improved focusing by the iterative technique for various degrees and statistical distributions of loss in the system. The application of the iterative technique to improve the performance and practicality of our sensor is explored. This work is supported by an ONR MURI Grant No. N000140710734, AFOSR Grant No. FA95501010106, and the Maryland CNAM.

  19. Full-wave model and numerical study of electromagnetic plane wave scattering by multilayered, fiber-based periodic composites

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; Lesselier, D.; Zhong, Y.

    2015-07-01

    The present work aims at building up a full-wave computational model of electromagnetic nondestructive testing of composite materials produced by stacking up dielectric slabs one over the other. In each such dielectric slab, a periodic array of infinite cylindrical fibers is embedded. Electromagnetic scattering of such a multilayered, fiber-based periodic composite is investigated here for an obliquely incident plane wave, the plane of incidence of which differs from the plane orthogonal to the fibers' axes. Full-wave field representations are given first by multipole and plane wave expansions. Mode matching at boundaries between layers then yields the propagating matrices, which are applied to connect reflection and transmission coefficients of the longitudinal field components. Power reflection and transmission coefficients are obtained from time-averaged Poynting vectors. Numerical experiments with comparisons with known results illustrate the accuracy of the model proposed.

  20. Heating of ions by high frequency electromagnetic waves in magnetized plasmas

    SciTech Connect

    Zestanakis, P. A.; Kominis, Y.; Hizanidis, K.; Ram, A. K.

    2013-07-15

    The heating of ions by high frequency electrostatic waves in magnetically confined plasmas has been a paradigm for studying nonlinear wave-particle interactions. The frequency of the waves is assumed to be much higher than the ion cyclotron frequency and the waves are taken to propagate across the magnetic field. In fusion type plasmas, electrostatic waves, like the lower hybrid wave, cannot access the core of the plasma. That is a domain for high harmonic fast waves or electron cyclotron waves—these are primarily electromagnetic waves. Previous studies on heating of ions by two or more electrostatic waves are extended to two electromagnetic waves that propagate directly across the confining magnetic field. While the ratio of the frequency of each wave to the ion cyclotron frequency is large, the frequency difference is assumed to be near the ion cyclotron frequency. The nonlinear wave-particle interaction is studied analytically using a two time-scale canonical perturbation theory. The theory elucidates the effects of various parameters on the gain in energy by the ions—parameters such as the amplitudes and polarizations of the waves, the ratio of the wave frequencies to the cyclotron frequency, the difference in the frequency of the two waves, and the wave numbers associated with the waves. For example, the ratio of the phase velocity of the envelope formed by the two waves to the phase velocity of the carrier wave is important for energization of ions. For a positive ratio, the energy range is much larger than for a negative ratio. So waves like the lower hybrid waves will impart very little energy to ions. The theoretical results are found to be in good agreement with numerical simulations of the exact dynamical equations. The analytical results are used to construct mapping equations, simplifying the derivation of the motion of ions, which are, subsequently, used to follow the evolution of an ion distribution function. The heating of ions can then be

  1. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  2. Surfing effect in the interaction of electromagnetic and gravitational waves: Limits on the speed of gravitational waves

    SciTech Connect

    Polnarev, A. G.; Baskaran, D.

    2008-06-15

    In the current work we investigate the propagation of electromagnetic waves in the field of gravitational waves. Starting with the simple case of an electromagnetic wave traveling in the field of a plane monochromatic gravitational wave, we introduce the concept of the surfing effect and analyze its physical consequences. We then generalize these results to an arbitrary gravitational wave field. We show that, due to the transverse nature of gravitational waves, the surfing effect leads to significant observable consequences only if the velocity of gravitational waves deviates from the speed of light. This fact can help to place an upper limit on the deviation of gravitational wave velocity from the speed of light. The microarcsecond resolution promised by the upcoming precision interferometry experiments allow one to place stringent upper limits on {epsilon}=(v{sub gw}-c)/c as a function of the energy density parameter for gravitational waves {omega}{sub gw}. For {omega}{sub gw}{approx_equal}10{sup -10} this limit amounts to {epsilon} < or approx. 2{center_dot}10{sup -2}.

  3. Generation of electromagnetic waves in the very low frequency band by velocity gradient

    SciTech Connect

    Ganguli, G. Tejero, E.; Crabtree, C.; Amatucci, W.; Rudakov, L.

    2014-01-15

    It is shown that a magnetized plasma layer with a velocity gradient in the flow perpendicular to the ambient magnetic field is unstable to waves in the Very Low Frequency band that spans the ion and electron gyrofrequencies. The waves are formally electromagnetic. However, depending on wave vector k{sup ¯}=kc/ω{sub pe} (normalized by the electron skin depth) and the obliqueness, k{sub ⊥}/k{sub ||}, where k{sub ⊥,||} are wave vectors perpendicular and parallel to the magnetic field, the waves are closer to electrostatic in nature when k{sup ¯}≫1 and k{sub ⊥}≫k{sub ||} and electromagnetic otherwise. Inhomogeneous transverse flows are generated in plasma that contains a static electric field perpendicular to the magnetic field, a configuration that may naturally arise in the boundary layer between plasmas of different characteristics.

  4. A laboratory study of the electromagnetic bias of rough surface scattering by water waves

    NASA Technical Reports Server (NTRS)

    Parsons, Chester L.; Miller, Lee S.

    1990-01-01

    The design, development, and use of a focused-beam radar to measure the electromagnetic bias introduced by the scattering of radar waves by a roughened water surface are discussed. The bias measurements were made over wide ranges of environmental conditions in a wavetank laboratory. Wave-elevation data were provided by standard laboratory capacitance probes. Backscattered radar power measurements coincident in time and space with the elevation data were produced by the radar. The two data sets are histogrammed to produce probability density functions for elevation and radar reflectivity, from which the electromagnetic bias is computed. The experimental results demonstrate that the electromagnetic bias is quite variable over the wide range of environmental conditions that can be produced in the laboratory. The data suggest that the bias is dependent upon the local wind field and on the amplitude and frequency of any background wave field that is present.

  5. Parametric study of electromagnetic waves propagating in absorbing curved S ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1989-01-01

    A finite-element Galerkin formulation has been developed to study attenuation of transverse magnetic (TM) waves propagating in two-dimensional S-curved ducts with absorbing walls. In the frequency range where the duct diameter and electromagnetic wave length are nearly equal, the effect of duct length, curvature (duct offset), and absorber wall thickness was examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. For a straight and a curved duct with perfect electric conductor terminations, power attenuation contours were examined to determine electromagnetic wall properties associated with maximum input signal absorption. Offset of the S-duct was found to significantly affect the value of the wall permittivity associated with the optimal attenuation of the incident electromagnetic wave.

  6. Superradiant scattering of electromagnetic waves emitted from disk around Kerr black holes

    SciTech Connect

    Kobayashi, Taichi; Tomimatsu, Akira

    2010-10-15

    We study electromagnetic perturbations around a Kerr black hole surrounded by a thin disk on the equatorial plane. Our main purpose is to reveal the black hole superradiance of electromagnetic waves emitted from the disk surface. The outgoing Kerr-Schild field is used to describe the disk emission, and the superradiant scattering is represented by a vacuum wave field which is added to satisfy the ingoing condition on the horizon. The formula to calculate the energy flux on the disk surface is presented, and the energy transport in the disk-black hole system is investigated. Within the low-frequency approximation we find that the energy extracted from the rotating black hole is mainly transported back to the disk, and the energy spectrum of electromagnetic waves observed at infinity is also discussed.

  7. Propagation of electromagnetic waves in resistive pair plasma and causal relativistic magnetohydrodynamics

    SciTech Connect

    Koide, Shinji

    2008-12-15

    We investigate the propagation of electromagnetic waves in resistive e{sup {+-}} pair plasmas using a one-fluid theory derived from the relativistic two-fluid equations. When the resistivity normalized by the electron/positron inertia variable exceeds a critical value, the dispersion relation for electromagnetic waves shows that the group velocity is larger than the light speed in vacuum. However, in such a case, it also is found that the plasma parameter is less than unity: that is, the electron-positron pair medium no longer can be treated as plasma. Thus, the simple two-fluid approximation is invalid. This confirms that superluminal propagation of electromagnetic wave is forbidden in a plasma--a conclusion consistent with the relativistic principle of causality. As an alternative, we propose a new set of equations for ''causal relativistic magnetohydrodynamics,'' which both have nonzero resistivity and yet are consistent with the causality principle.

  8. On the possibility of the autoresonant motion of an electron in a slow electromagnetic wave

    SciTech Connect

    Milantiev, V.P.

    1994-12-31

    By autoresonant motion one usually means the motion when the condition of cyclotron resonance of gyrating particle with electromagnetic wave is conserved during all the time of the motion in spite of the relativistic mass increase. Such a motion takes place only in the case of vacuum wave, when the phase velocity {nu}{sub p} is equal to the speed of light in a vacuum C. Otherwise autoresonance is impossible, and energy of the particle oscillates in time. The authors now discuss the possibility of the autoresonance in a slow electromagnetic wave ({nu}{sub p} < c) propagating along the straight lines of the external magnetic field. It turns out that the autoresonant regime of the motion in a slow electromagnetic wave possible if some rather restrictive relations between the electric drift velocity and the phase velocity of wave take place. It depends also on the polarization of wave. The general case of the elliptical polarization is considered. The optimal regime corresponds to the wave with linear polarization in the direction of the constant electric field. For this case the calculations show that energy of the particle can unlimitedly increase (or decrease). The rate of acceleration can be even larger than in the case of vacuum wave. Radiation forces will restrict this process.

  9. A statistical model for relativistic quantum fluids interacting with an intense electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh M.; Asenjo, Felipe A.

    2016-05-01

    A statistical model for relativistic quantum fluids interacting with an arbitrary amplitude circularly polarized electromagnetic wave is developed in two steps. First, the energy spectrum and the wave function for a quantum particle (Klein Gordon and Dirac) embedded in the electromagnetic wave are calculated by solving the appropriate eigenvalue problem. The energy spectrum is anisotropic in the momentum K and reflects the electromagnetic field through the renormalization of the rest mass m to M =√{m2+q2A2 } . Based on this energy spectrum of this quantum particle plus field combination (QPF), a statistical mechanics model of the quantum fluid made up of these weakly interacting QPF is developed. Preliminary investigations of the formalism yield highly interesting results—a new scale for temperature, and fundamental modification of the dispersion relation of the electromagnetic wave. It is expected that this formulation could, inter alia, uniquely advance our understanding of laboratory as well as astrophysical systems where one encounters arbitrarily large electromagnetic fields.

  10. Security considerations in blinded exposure experiments using electromagnetic waves.

    PubMed

    Wolf, Christian

    2008-12-01

    Whether exposure to electromagnetic fields well below accepted exposure limits has a cytogenetic effect on human cells has long been debated. It is widely published and generally accepted that the exposure unit invariably used in these experiments is capable of providing blinded exposure conditions. The following short report illustrates, however, that exposure conditions might not always be as effectively masked as is generally assumed.

  11. Adiabatic description of capture into resonance and surfatron acceleration of charged particles by electromagnetic waves.

    PubMed

    Artemyev, A V; Neishtadt, A I; Zelenyi, L M; Vainchtein, D L

    2010-12-01

    We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere.

  12. Adiabatic description of capture into resonance and surfatron acceleration of charged particles by electromagnetic waves.

    PubMed

    Artemyev, A V; Neishtadt, A I; Zelenyi, L M; Vainchtein, D L

    2010-12-01

    We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere. PMID:21198098

  13. Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma.

    PubMed

    Tejero, E M; Crabtree, C; Blackwell, D D; Amatucci, W E; Mithaiwala, M; Ganguli, G; Rudakov, L

    2015-01-01

    We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10(-6) times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth's plasma environment. PMID:26647962

  14. Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma.

    PubMed

    Tejero, E M; Crabtree, C; Blackwell, D D; Amatucci, W E; Mithaiwala, M; Ganguli, G; Rudakov, L

    2015-01-01

    We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10(-6) times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth's plasma environment.

  15. Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma

    PubMed Central

    Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.

    2015-01-01

    We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10−6 times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth’s plasma environment. PMID:26647962

  16. Steady-state solutions for relativistically strong electromagnetic waves in plasmas.

    NASA Technical Reports Server (NTRS)

    Max, C. E.

    1973-01-01

    New steady-state solutions are derived which describe electromagnetic waves strong enough to make plasma ions and electrons relativistic. A two-fluid model is used throughout. The following solutions are studied: (1) linearly polarized waves with phase velocity much greater than c; (2) arbitrarily polarized waves with phase velocity near c, in a cold uniform plasma; (3) circularly polarized waves in a uniform plasma characterized by a scalar pressure tensor. All of these waves are capable of propagating in normally overdense plasmas, due to nonlinearities introduced by relativistic effects. The propagation of relativistically strong waves in a density gradient is examined, for the example of a circularly polarized wave strong enough to make electrons but not ions relativistic. It is shown that such a wave propagates at constant energy flux despite the nonlinearity of the system.

  17. Self-focusing of intense high frequency electromagnetic waves in a collisional magnetoactive plasma

    SciTech Connect

    Niknam, A. R.; Hashemzadeh, M.; Aliakbari, A.; Majedi, S.; Haji Mirzaei, F.

    2011-11-15

    The self-focusing of an intense electromagnetic beam in a collisional magnetoactive plasma has been investigated by the perturbation method. Considering the relativistic and ponderomotive nonlinearities and the first three terms of perturbation expansion for the electron density and velocity, the nonlinear wave equation is obtained. This wave equation is solved by applying the source dependent expansion method and the evolution of electromagnetic beam spot-size is discussed. It is shown that the laser spot-size decreases with increasing the collision frequency and external magnetic field strength.

  18. Condition for invariant spectrum of an electromagnetic wave scattered from an anisotropic random media.

    PubMed

    Li, Jia; Wu, Pinghui; Chang, Liping

    2015-08-24

    Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.

  19. A theoretical study of hot plasma spheroids in the presence of low-frequency electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Ahmadizadeh, Y.; Jazi, B.; Barjesteh, S.

    2016-07-01

    While taking into account thermal motion of electrons, scattering of electromagnetic waves with low frequency from hot plasma spheroids is investigated. In this theoretical research, ions are heavy to respond to electromagnetic fluctuations. The solution of scalar wave equation in spheroidal coordinates for electric potential inside the plasma spheroids are obtained. The variations of resonance frequencies vs. Debye length are studied and consistency between the obtained results in this paper and the results for the well-known plasma objects such as plasma column and spherical plasma have been proved.

  20. Propagation of ultra-intense electromagnetic waves through electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Rozina, Ch.; Tsintsadze, N. L.; Jamil, M.

    2016-07-01

    A kinetic approach is used to study the propagation of ultrarelativistic (amplitude) electromagnetic waves through electron-positron-ion plasma. For our purposes, we formulate a new plasma particle distribution function in the presence of ultrarelativistically intense circularly polarized electromagnetic (EM) waves. An effective dispersion relation of constant amplitude ultrarelativistic EM wave is derived, skin depth is calculated in particular, frequency regimes and has shown numerically that the penetration depth increases with the amplitude of ultra-intense electromagnetic waves, λ s k ˜ a /1 2 , i.e., plasma will be heated more in the region of skin depth. Next, we have found that the nonlinear interaction of ultrarelativistically intense EM waves of time and space varying amplitude leads to construct kinetic nonlinear Schrödinger equation (KNSE), containing both local and non-local nonlinear terms, where nonlocal nonlinear term appears due to density perturbations of plasma species. Taking the effects of the latter into consideration, nonlinear Landau damping is discussed for KNSE, damping rate is computed, and numerically ultrarelativistic EM waves are shown to decay exponentially. The present results should be helpful to understand the specific properties of the ultrarelativistic EM waves in astrophysical plasmas, e.g., pulsars, black holes, and neutron stars.

  1. Simulation studies of plasma waves in the electron foreshock - The generation of Langmuir waves by a gentle bump-on-tail electron distribution

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to study the basic physical ingredients needed for building a global model of foreshock wave phenomena. In particular, the generation of Langmuir waves by a gentle bump-on-tail electron distribution is analyzed. It is shown that, with appropriately designed simulations experiments, quasi-linear theory can be quantitatively verified for parameters corresponding to the electron foreshock.

  2. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves: Waves in Multi-Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves (Khazanov et al., 2003) is presented In order to adequately take into account wave propagation and refraction in a multi-ion magnetosphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate the spatial, temporal, and spectral evolution of the ring current and of electromagnetic ion cyclotron waves To demonstrate the effects of EMIC wave propagation and refraction on the wave energy distribution and evolution, we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, owing to the density gradient at the plasmapause, the net wave refraction is suppressed, and He+-mode grows preferably at the plasmapause. This result is in total agreement with previous ray tracing studies and is very clearly found in presented B field spectrograms. Second, comparison of global wave distributions with the results from another ring current model (Kozyra et al., 1997) reveals that this new model provides more intense and more highly plasmapause-organized wave distributions during the May 1998 storm period Finally, it is found that He(+)-mode energy distributions are not Gaussian distributions and most important that wave energy can occupy not only the region of generation, i.e., the region of small wave normal angles, but all wave normal angles, including those to near 90 . The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping and subsequent downward heat transport and excitation of stable auroral red arcs.

  3. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Rowland, H. L.

    1993-01-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  4. Generation of large scale field-aligned density irregularities in ionospheric heating experiments. [electromagnetic wave decay

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.

    1974-01-01

    Threshold and growth rate for stimulated Brillouin scattering are calculated for a uniform magnetoplasma. These are then compared with the threshold and growth rate of a new thermal instability in which the nonlinear Lorentz force felt by the electrons at the beat frequency of the two electromagnetic waves is replaced by a pressure force due to differential heating in the interference pattern of the pump wave and the generated electromagnetic wave. This thermal instability, which is still essentially stimulated Brillouin scattering, has a threshold which is especially low when the propagation vector of the beat wave is almost normal to the magnetic field. The threshold is then considerably lower than the threshold for normal stimulated Brillouin scattering and therefore this new instability is probably responsible for the generation of large scale field aligned irregularities and ionospheric spread F.

  5. Interference pattern generation in evanescent electromagnetic waves for nanoscale lithography using waveguide diffraction gratings

    SciTech Connect

    Bezus, E A; Doskolovich, L L; Kazanskii, N L

    2011-08-31

    The generation of interference patterns of evanescent electromagnetic waves with an essentially subwavelength period using dielectric waveguide diffraction gratings is considered. Using simulations within the framework of the electromagnetic theory, the possibility of obtaining high-quality interference patterns due to enhancement of evanescent diffraction orders under resonance conditions is demonstrated. The contrast of the interference patterns in the case of TE polarisation of the incident wave is close to unity. The field intensity in the near-field interference maxima exceeds the intensity of the incident wave by 25-100 times. The possibility of generation of the interference patterns of evanescent waves corresponding to higher diffraction orders is shown. The use of higher orders reduces the requirements to the fabrication technology and allows generation of interference patterns with a high spatial frequency, using diffraction gratings with a low spatial frequency. Examples of generating interference patters with periods six times smaller than those of the used diffraction gratings are presented. (nanolithography)

  6. A novel protocol to measure the attenuation of electromagnetic waves through smoke

    NASA Astrophysics Data System (ADS)

    Yan-wu, Li; Hong-yong, Yuan; Yang, Lu; Xiaoxiang, Zhang; Ru-feng, Xu; Ming, Fu

    2016-06-01

    The electromagnetic properties of smoke from a structure fire are important in terms of their relation to the stability of wireless communication systems used in fire rescue. As it is hard to make a measurable electromagnetic environment for particles in the air, compressed and bulk samples are used instead to measure sand storms and smoke plumes. In this paper, an experiment system was designed to measure smoke particles in the air, in consideration of both smoke control and electromagnetic measurement. Several measures had been taken to create a fulfilled smoke environment. The simulated and measured transmission parameters of the electromagnetic testing area were approximate and the electromagnetic wave frequencies were set from 350 to 400 MHz. Repeated experiments have been conducted to test the stability of the results and they showed that there was no obvious attenuation until the smoke concentration was more than 10 dB m-1. It was found that the frequency around 355 and 360 MHz had a larger attenuation coefficient. The relationship between the attenuation coefficient and the smoke concentration was concluded to be linear. The results may help us understand the attenuation of electromagnetic waves within a smoke column.

  7. The oblique behavior of low-frequency electromagnetic waves excited by newborn cometary ions

    NASA Technical Reports Server (NTRS)

    Brinca, Armando L.; Tsurutani, Bruce T.

    1989-01-01

    The free energy in oxygen or hydrogen ions freshly created in the solar wind stimulates low-frequency electromagnetic waves whose growth does not always maximize at parallel propagation. Exploration of the wave vector plane discloses the frequent occurrence of islets of oblique growth unconnected to the unstable parallel modes. Contour plots of the growth rate, real frequency, polarization, and magnetic compression characterize the oblique wave behavior for large values of the initial pitch angle of the cometary particles. Although wave-particle (Landau and cyclotron) resonances feed most of the surveyed oblique instabilities, some are seemingly fluidlike. The results, obtained from the numerical solution of the kinetic dispersion and wave equations, imply that newborn ions can easily excite significant oblique hydromagnetic wave activity. Cometary environments provide the adopted plasma model, but the study is helpful in the interpretation of other low-frequency wave observations in space.

  8. Optical theorem for electromagnetic field scattering by dielectric structures and energy emission from the evanescent wave.

    PubMed

    Gulyaev, Yu V; Barabanenkov, Yu N; Barabanenkov, M Yu; Nikitov, S A

    2005-08-01

    We present an optical theorem for evanescent (near field) electromagnetic wave scattering by a dielectric structure. The derivation is based on the formalism of angular spectrum wave amplitudes and block scattering matrix. The optical theorem shows that an energy flux is emitted in the direction of the evanescent wave decay upon scattering. The energy emission effect from an evanescent wave is illustrated in two examples of evanescent wave scattering, first, by the electrical dipole and, second, one-dimensional grating with line-like rulings. Within the latter example, we show that an emitted energy flux upon evanescent wave scattering can travel through a dielectric structure even if the structure has a forbidden gap in the transmission spectrum of incident propagating waves.

  9. An invisible medium for circularly polarized electromagnetic waves.

    PubMed

    Tamayama, Y; Nakanishi, T; Sugiyama, K; Kitano, M

    2008-12-01

    We study the no reflection condition for a planar boundary between vacuum and an isotropic chiral medium. In general chiral media, elliptically polarized waves incident at a particular angle satisfy the no reflection condition. When the wave impedance and wavenumber of the chiral medium are equal to the corresponding parameters of vacuum, one of the circularly polarized waves is transmitted to the medium without reflection or refraction for all angles of incidence. We propose a circular polarizing beam splitter as a simple application of the no reflection effect.

  10. Scattering-induced changes in the degree of polarization of a stochastic electromagnetic plane-wave pulse.

    PubMed

    Ding, Chaoliang; Cai, Yangjian; Zhang, Yongtao; Pan, Liuzhan

    2012-06-01

    The scattering of a stochastic electromagnetic plane-wave pulse on a deterministic spherical medium is investigated. An analytical formula for the degree of polarization (DOP) of the scattered field in the far zone is derived. Letting pulse duration T(0) → ∞, our formula can be applied to study the scattering of a stationary stochastic electromagnetic light wave. Numerical results show that the DOP of the far zone field is closely determined by the size of the spherical medium when the incident field is a stochastic electromagnetic plane-wave pulse. This is much different from the case when the incident field is a stationary stochastic electromagnetic light wave, where the DOP of the far zone field is independent of the size of the medium. One may obtain the information of the spherical medium by measuring the scattering-induced changes in the DOP of a stochastic electromagnetic plane-wave pulse.

  11. Numerical study for electromagnetic wave emission from intrinsic Josephson junction stacks with a dielectric cover

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Matsumoto, H.; Ota, Y.; Machida, M.

    2013-08-01

    Electromagnetic (EM) wave emission from the intrinsic Josephson junction stacks (IJJ’s) covered with a thin dielectric medium is numerically investigated, using the multi-scale simulation method developed in our previous paper. It is shown that the power of emitted EM waves is considerably increased in the IJJ’s with a dielectric cover. The emission from the n = 2 resonance mode is greatly enhanced. The enhancement is caused by the excitation of a solitonic mode.

  12. Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma

    SciTech Connect

    Jian Liu and Hong Qin

    2011-11-07

    The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.

  13. Geometric phases of the Faraday rotation of electromagnetic waves in magnetized plasmas

    SciTech Connect

    Liu Jian; Qin Hong

    2012-10-15

    Geometric phases of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase are investigated. The influence of the geometric phase to plasma diagnostics using the Faraday rotation is discussed as an application of the theory.

  14. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 1; Waves in Multi Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gumayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2003] is presented. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate spatial, temporal, and spectral evolutions of the ring current and electromagnetic ion cyclotron waves. To demonstrate the effects of EMIC wave propagation and refraction on the EMIC wave energy distributions and evolution we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, due to the density gradient at the plasmapause, the net wave refraction is suppressed, and He(+)-mode grows preferably at plasmapause. This result is in a total agreement with the previous ray tracing studies, and very clear observed in presented B-field spectrograms. Second, comparison the global wave distributions with the results from other ring current model [Kozyra et al., 1997] reveals that our model provides more intense and higher plasmapause organized distributions during the May, 1998 storm period. Finally, the found He(+)-mode energy distributions are not Gaussian distributions, and most important that wave energy can occupy not only the region of generation, i. e. the region of small wave normal angles, but the entire wave normal angle region and even only the region near 90 degrees. The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping, and subsequent downward heat transport and excitation of stable auroral red arcs.

  15. Spin-down of Pulsars, and Their Electromagnetic and Gravitational Wave Radiations

    NASA Astrophysics Data System (ADS)

    Yue-zhu, Zhang; Yan-yan, Fu; Yi-huan, Wei; Cheng-min, Zhang; Shao-hua, Yu; Yuan-yue, Pan; Yuan-qi, Guo; De-hua, Wang

    2016-04-01

    Pulsars posses extremely strong magnetic fields, and their magnetic axis does not coincide with their rotation axis, this causes the pulsars to emit electromagnetic radiations. Pulsars rely on their rotational energy to compensate for the energy loss caused by the electromagnetic radiation, which leads to the gradually decelerated spin of pulsars. According to the theoretical deduction, we have calculated the initial period of the Crab Nebula pulsar, and derived the period evolution of the pulsar at any time in the future under the effect of the electromagnetic radiation. Considered the possible existence of quadrupole moment in the mass distribution of a pulsar, the gravitational wave radiation will also make the pulsar spin down, hence the variation of spin period of the Crab pulsar under the effect of gravitational wave radiation is further analyzed. Finally, combining the two kinds of radiation mechanisms, the evolution of spin period of the Crab pulsar under the joint action of these two kinds of radiation mechanisms is analyzed.

  16. On electromagnetic waves with a negative group velocity

    SciTech Connect

    Makarov, V. P.; Rukhadze, A. A.; Samokhin, A. A.

    2010-12-15

    Recent publications devoted to the electrodynamics of media in which waves with a negative group velocity can exist are discussed. The properties of such waves have been studied from the beginning of the past century, and the most important results in this field were obtained by Soviet physicists in the 1940s-1950s. However, in most recent publications, this circumstance has not been taken into account.

  17. Student Understanding of Light as an Electromagnetic Wave: Relating the Formalism to Physical Phenomena.

    ERIC Educational Resources Information Center

    Ambrose, Bradley S.; Heron, Paula R. L.; Vokos, Stamatis; McDermott, Lillian C.

    1999-01-01

    Some serious difficulties that students have in understanding physical optics may be due in part to a lack of understanding of light as an electromagnetic wave. Describes the development and use of tutorials designed to address students' conceptual difficulties. (Contains over 15 references.) (Author/WRM)

  18. Experimental verification of effect of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation

    NASA Astrophysics Data System (ADS)

    Shi, Yang; Kun-De, Yang; Yi-Xin, Yang; Yuan-Liang, Ma

    2015-04-01

    The evaporation duct which forms above the ocean surface has a significant influence on electromagnetic wave propagation above 2 GHz over the ocean. The effects of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation are investigated, both in numerical simulation and experimental observation methods, in this paper. Firstly, the features of the horizontal inhomogeneity of the evaporation duct are discussed. Then, two typical inhomogeneous cases are simulated and compared with the homogeneous case. The result shows that path loss is significantly higher than that in the homogeneous case when the evaporation duct height (EDH) at the receiver is lower than that at the transmitter. It is also concluded that the horizontal inhomogeneity of the evaporation duct has a significant influence when the EDH is low or when the electromagnetic wave frequency is lower than 13 GHz. Finally, experimental data collected on a 149-km long propagation path in the South China Sea in 2013 are used to verify the conclusion. The experimental results are consistent with the simulation results. The horizontal inhomogeneity of evaporation duct should be considered when modeling electromagnetic wave propagation over the ocean. Project supported by the National Natural Science Foundation of China (Grant No. 11174235) and the Fundamental Research Funds for the Central Universities (Grant No. 3102014JC02010301).

  19. Low-frequency electromagnetic plasma waves at comet P/Grigg-Skjellerup: Analysis and interpretation

    NASA Technical Reports Server (NTRS)

    Neubauer, Fritz M.; Glassmeier, Karl-Heinz; Coates, A. J.; Johnstone, A. D.

    1993-01-01

    The propagation and polarization characteristic of low-frequency electromagnetic wave fields near comet P/Grigg-Skjellerup (P/GS) are analyzed using magnetic field and plasma observations obtained by the Giotto magnetometer experiment and the Johnstone plasma analyzer during the encounter at the comet on July 10, 1992. The results have been physically interpreted.

  20. NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL

    EPA Science Inventory

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a
    numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...

  1. Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course

    ERIC Educational Resources Information Center

    Burko, Lior M.

    2008-01-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…

  2. Terahertz electromagnetic wave generation and amplification by an electron beam in the elliptical plasma waveguides with dielectric rod

    SciTech Connect

    Rahmani, Z. Jazi, B.; Heidari-Semiromi, E.

    2014-09-15

    The propagation of electromagnetic waves in an elliptical plasma waveguide including strongly magnetized plasma column and a dielectric rod is investigated. The dispersion relation of guided hybrid electromagnetic waves is obtained. Excitation of the waves by a thin annular relativistic elliptical electron beam will be studied. The time growth rate of electromagnetic waves is obtained. The effects of relative permittivity constant of dielectric rod, radius of dielectric rod, accelerating voltage, and current density of the annular elliptical beam on the growth rate and the frequency spectra are numerically presented.

  3. All-thin-film multilayered multiferroic structures with a slot-line for spin-electromagnetic wave devices

    SciTech Connect

    Nikitin, Andrey A.; Ustinov, Alexey B.; Semenov, Alexander A.; Kalinikos, Boris A.; Lähderanta, E.

    2014-03-03

    Spin-electromagnetic waves propagating in thin-film multilayered multiferroic structures containing a slot transmission line have been investigated both experimentally and theoretically. The thin-film structure was composed of a ferrite film, a ferroelectric film, and a slot-line. It was shown that the spectrum of the spin-electromagnetic wave was formed as a result of hybridization of the spin wave in the ferrite film with the electromagnetic wave in the slot-line and was electrically and magnetically tunable. For the experimental investigations, a microwave phase shifter based on the multiferroic structure has been fabricated. Performance characteristics are presented.

  4. Hanbury Brown-Twiss effect with electromagnetic waves.

    PubMed

    Hassinen, T; Tervo, J; Setälä, T; Friberg, A T

    2011-08-01

    The classic Hanbury Brown-Twiss experiment is analyzed in the space-frequency domain by taking into account the vectorial nature of the radiation. We show that as in scalar theory, the degree of electromagnetic coherence fully characterizes the fluctuations of the photoelectron currents when a random vector field with Gaussian statistics is incident onto the detectors. Interpretation of this result in terms of the modulations of optical intensity and polarization state in two-beam interference is discussed. We demonstrate that the degree of cross-polarization may generally diverge. We also evaluate the effects of the state of polarization on the correlations of intensity fluctuations in various circumstances.

  5. Transduction of DNA information through water and electromagnetic waves.

    PubMed

    Montagnier, Luc; Del Giudice, Emilio; Aïssa, Jamal; Lavallee, Claude; Motschwiller, Steven; Capolupo, Antonio; Polcari, Albino; Romano, Paola; Tedeschi, Alberto; Vitiello, Giuseppe

    2015-01-01

    The experimental conditions by which electromagnetic signals (EMS) of low frequency can be emitted by diluted aqueous solutions of some bacterial and viral DNAs are described. That the recorded EMS and nanostructures induced in water carry the DNA information (sequence) is shown by retrieval of that same DNA by classical PCR amplification using the TAQ polymerase, including both primers and nucleotides. Moreover, such a transduction process has also been observed in living human cells exposed to EMS irradiation. These experiments suggest that coherent long-range molecular interaction must be present in water to observe the above-mentioned features. The quantum field theory analysis of the phenomenon is presented in this article.

  6. Hanbury Brown-Twiss effect with electromagnetic waves.

    PubMed

    Hassinen, T; Tervo, J; Setälä, T; Friberg, A T

    2011-08-01

    The classic Hanbury Brown-Twiss experiment is analyzed in the space-frequency domain by taking into account the vectorial nature of the radiation. We show that as in scalar theory, the degree of electromagnetic coherence fully characterizes the fluctuations of the photoelectron currents when a random vector field with Gaussian statistics is incident onto the detectors. Interpretation of this result in terms of the modulations of optical intensity and polarization state in two-beam interference is discussed. We demonstrate that the degree of cross-polarization may generally diverge. We also evaluate the effects of the state of polarization on the correlations of intensity fluctuations in various circumstances. PMID:21934881

  7. Modal Ring Method for the Scattering of Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1993-01-01

    The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.

  8. Electromagnetic cyclotron waves near the proton cyclotron frequency in the solar wind

    NASA Astrophysics Data System (ADS)

    Jian, Lan K.; Boardsen, Scott; Moya, Pablo; Stevens, Michael; Alexander, Robert; Vinas, Adolfo

    2015-04-01

    Strong narrow-band electromagnetic waves around the proton cyclotron frequency (fpc) have been found sporadically in the solar wind from 0.3 to 0.7 AU during MESSENGER spacecraft’s cruise phase. These waves are transverse and circularly polarized, and they propagate in directions quasi-parallel to the magnetic field. The wave power decreases quadratically with heliocentric distance, faster than the trend if assuming the conservation of Poynting flux for wave packets, suggesting there is energy dissipation from the waves, which could contribute to the heating and acceleration of solar wind plasma. Although the wave frequency is a few times of fpc in the spacecraft frame, it is a fraction of fpc in the solar wind plasma frame after removing the Doppler shift effect. In this frequency range, the waves can be left-hand (LH) polarized ion cyclotron waves or right-hand (RH) polarized magnetosonic waves. Because the waves are LH or RH polarized in the spacecraft frame with otherwise nearly identical characteristics, they could be due to Doppler shift of a same type of waves or a mixture of waves with intrinsically different polarizations. Through the assistance of audification, we have studied the long-lasting wave events in 2005 using high-cadence magnetic field data from the Wind mission. Statistically, in contrast with general solar wind, the protons at these waves are distributed closer to the proton instability thresholds, while the alpha particles at these waves are distributed further away from the alpha instability thresholds. For selected events of extensive waves, the ion distribution is analyzed in detail. A mixture of temperature anisotropies for core protons, beam protons, and alpha particles, as well as proton beam drift are often found in such events. We conduct linear wave dispersion analysis using these ion moments to examine whether these waves can be explained by the local generation of kinetic instabilities such as the LH ion cyclotron, the RH

  9. Electromagnetic wave emitting products and "Kikoh" potentiate human leukocyte functions.

    PubMed

    Niwa, Y; Iizawa, O; Ishimoto, K; Jiang, X; Kanoh, T

    1993-09-01

    Tourmaline (electric stone, a type of granite stone), common granite stone, ceramic disks, hot spring water and human palmar energy (called "Kikoh" in Japan and China), all which emit electromagnetic radiation in the far infrared region (wavelength 4-14 microns). These materials were thus examined for effects on human leukocyte activity and on lipid peroxidation of unsaturated fatty acids. It was revealed that these materials significantly increased intracellular calcium ion concentration, phagocytosis, and generation of reactive oxygen species in neutrophils, and the blastogenetic response of lymphocytes to mitogens. Chemotactic activity by neutrophils was also enhanced by exposure to tourmaline and the palm of "Kikohshi" i.e., a person who heals professionally by the laying on of hands. Despite the increase in reactive oxygen species generated by neutrophils, lipid peroxidation from unsaturated fatty acid was markedly inhibited by these four materials. The results suggest that materials emitting electromagnetic radiation in the far infrared range, which are widely used in Japan for cosmetic, therapeutic, and preservative purposes, appear capable of potentiating leukocyte functions without promoting oxidative injury. PMID:8406976

  10. Mid-Latitude Plasma Density Irregularities and Electromagnetic Wave Scattering

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Mishin, E.; Rose, D.; Paraschiv, I.

    2015-11-01

    Ionospheric irregularities cause scintillations of electromagnetic signals that can severely affect navigation and transionospheric communication, in particular during space storms. At midlatitudes, such space weather events are caused mainly by subauroral electric field structures (SAID/SAPS) SAID/SAPS -related shear flows and plasma density troughs point to interchange and Kelvin-Helmholtz type instabilities as a possible source of plasma irregularities. A model of nonlinear development of these instabilities based on the two-fluid hydrodynamic description with inclusion of finite Larmor radius effects will be presented. The high-resolution simulations with continuous density and velocity profiles will be driven by the ambient conditions corresponding to the in situ Defense Meteorological Satellite Program (DMSP) satellite low-resolution data during UHF/GPS L-band subauroral scintillation events. These types of density irregularities play important roles in refraction and scattering of high frequency electromagnetic signals propagating in the Earth's ionosphere, inside the plasma sheath of reentry and hypersonic vehicles, and in many other applications.

  11. Frequency Management for Electromagnetic Continuous Wave Conductivity Meters.

    PubMed

    Mazurek, Przemyslaw; Putynkowski, Grzegorz

    2016-01-01

    Ground conductivity meters use electromagnetic fields for the mapping of geological variations, like the determination of water amount, depending on ground layers, which is important for the state analysis of embankments. The VLF band is contaminated by numerous natural and artificial electromagnetic interference signals. Prior to the determination of ground conductivity, the meter's working frequency is not possible, due to the variable frequency of the interferences. Frequency management based on the analysis of the selected band using track-before-detect (TBD) algorithms, which allows dynamical frequency changes of the conductivity of the meter transmitting part, is proposed in the paper. Naive maximum value search, spatio-temporal TBD (ST-TBD), Viterbi TBD and a new algorithm that uses combined ST-TBD and Viterbi TBD are compared. Monte Carlo tests are provided for the numerical analysis of the properties for a single interference signal in the considered band, and a new approach based on combined ST-TBD and Viterbi algorithms shows the best performance. The considered algorithms process spectrogram data for the selected band, so DFT (Discrete Fourier Transform) could be applied for the computation of the spectrogram. Real-time properties, related to the latency, are discussed also, and it is shown that TBD algorithms are feasible for real applications.

  12. Electromagnetic wave emitting products and "Kikoh" potentiate human leukocyte functions.

    PubMed

    Niwa, Y; Iizawa, O; Ishimoto, K; Jiang, X; Kanoh, T

    1993-09-01

    Tourmaline (electric stone, a type of granite stone), common granite stone, ceramic disks, hot spring water and human palmar energy (called "Kikoh" in Japan and China), all which emit electromagnetic radiation in the far infrared region (wavelength 4-14 microns). These materials were thus examined for effects on human leukocyte activity and on lipid peroxidation of unsaturated fatty acids. It was revealed that these materials significantly increased intracellular calcium ion concentration, phagocytosis, and generation of reactive oxygen species in neutrophils, and the blastogenetic response of lymphocytes to mitogens. Chemotactic activity by neutrophils was also enhanced by exposure to tourmaline and the palm of "Kikohshi" i.e., a person who heals professionally by the laying on of hands. Despite the increase in reactive oxygen species generated by neutrophils, lipid peroxidation from unsaturated fatty acid was markedly inhibited by these four materials. The results suggest that materials emitting electromagnetic radiation in the far infrared range, which are widely used in Japan for cosmetic, therapeutic, and preservative purposes, appear capable of potentiating leukocyte functions without promoting oxidative injury.

  13. Frequency Management for Electromagnetic Continuous Wave Conductivity Meters

    PubMed Central

    Mazurek, Przemyslaw; Putynkowski, Grzegorz

    2016-01-01

    Ground conductivity meters use electromagnetic fields for the mapping of geological variations, like the determination of water amount, depending on ground layers, which is important for the state analysis of embankments. The VLF band is contaminated by numerous natural and artificial electromagnetic interference signals. Prior to the determination of ground conductivity, the meter’s working frequency is not possible, due to the variable frequency of the interferences. Frequency management based on the analysis of the selected band using track-before-detect (TBD) algorithms, which allows dynamical frequency changes of the conductivity of the meter transmitting part, is proposed in the paper. Naive maximum value search, spatio-temporal TBD (ST-TBD), Viterbi TBD and a new algorithm that uses combined ST-TBD and Viterbi TBD are compared. Monte Carlo tests are provided for the numerical analysis of the properties for a single interference signal in the considered band, and a new approach based on combined ST-TBD and Viterbi algorithms shows the best performance. The considered algorithms process spectrogram data for the selected band, so DFT (Discrete Fourier Transform) could be applied for the computation of the spectrogram. Real–time properties, related to the latency, are discussed also, and it is shown that TBD algorithms are feasible for real applications. PMID:27070608

  14. Cylindrical-Wave Approach for electromagnetic scattering by subsurface metallic targets in a lossy medium

    NASA Astrophysics Data System (ADS)

    Frezza, F.; Pajewski, L.; Ponti, C.; Schettini, G.; Tedeschi, N.

    2013-10-01

    An analytical solution is developed to the two-dimensional scattering problem of a plane-wave propagating in air, impinging on the interface with a dissipative soil, and interacting with a finite set of subsurface metallic targets. The Cylindrical Wave Approach is applied, the electromagnetic field scattered by the targets is expanded into cylindrical waves and use is made of the plane-wave spectrum to take into account the interaction of such waves with the planar interface between air and soil. The theoretical solution is implemented in a Fortran code. The numerical evaluation of the spectral integral relevant to reflected and transmitted cylindrical wave functions in the presence of lossy media is performed by means of Gaussian adaptive quadrature formulas. The method may return the field values in each point of the space, both in the near and far zones; moreover it may be applied for any polarization, and for arbitrary values of the cylinder sizes and positions.

  15. Resonant interactions between cometary ions and low frequency electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Tsurutani, Bruce T.

    1987-01-01

    The conditions for resonant wave amplification in a plasma with a ring-beam distribution which is intended to model pick-up ions in a cometary environment are investigated. The inclination between the interplanetary field and the solar wind is found to play a crucial role in governing both the resonant frequency and the growth rate of any unstable mode. It is suggested that the low-frequency MHD mode should experience the most rapid amplification for intermediate inclination. In the frame of the solar wind, such waves should propagate along the field in the direction upstream toward the sun with a phase speed lower than the beaming velocity of the pick-up ions. This mechanism may account for the presence of the interior MHD waves noted by satellites over a region surrounding comets Giacobini-Zinner and Halley.

  16. Nonlinear propagation of coherent electromagnetic waves in a dense magnetized plasma

    SciTech Connect

    Shukla, P. K.; Eliasson, B.; Stenflo, L.

    2012-07-15

    We present an investigation of the nonlinear propagation of high-frequency coherent electromagnetic waves in a uniform quantum magnetoplasma. Specifically, we consider nonlinear couplings of right-hand circularly polarized electromagnetic-electron-cyclotron (CPEM-EC) waves with dispersive shear Alfven (DSA) and dispersive compressional Alfven (DCA) perturbations in plasmas composed of degenerate electron fluids and non-degenerate ion fluids. Such interactions lead to amplitude modulation of the CPEM-EC wave packets, the dynamics of which is governed by a three-dimensional nonlinear Schroedinger equation (NLSE) with the frequency shift arising from the relativistic electron mass increase in the CPEM-EC fields and density perturbations associated with the DSA and DCA perturbations. Accounting for the electromagnetic and quantum forces, we derive the evolution equation for the DSA and DCA waves in the presence of the magnetic field-aligned ponderomotive force of the CPEM-EC waves. The NLSE and the driven DSA and DCA equations are then used to investigate the modulational instability. The relevance of our investigation to laser-plasma interaction experiments and the cores of white dwarf stars is pointed out.

  17. Nonlinear propagation of electromagnetic waves in a plasma containing random irregularities.

    NASA Technical Reports Server (NTRS)

    Liu, C. H.

    1973-01-01

    The problem of propagation of finite-amplitude electromagnetic waves in a plasma containing random irregularities is studied. Using a recently developed perturbation technique, a general equation for finite amplitude coherent waves is derived. Included in this equation are both the effects of quasi-harmonic nonlinear heating of electrons and random scattering by irregularities. The equation is solved in general by the equivalent linearization procedure. The amplitude of the coherent wave is found to be attenuated by collision and scattering. Both attenuation are affected by the nonlinear heating of the electrons. Curves showing the results for a specific example will be presented.

  18. The electromagnetic-trait imaging computation of traveling wave method in breast tumor microwave sensor system.

    PubMed

    Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng

    2011-01-01

    Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.

  19. Scattering of electromagnetic waves from a magnetized plasma column at oblique incidence

    SciTech Connect

    Ghaffari-Oskooei, Sara S.; Aghamir, Farzin M.

    2015-07-14

    Scattering of electromagnetic waves from a magnetized plasma column is investigated using Maxwell's equations and applying boundary conditions. Backscattering cross section is evaluated by analytic solution of electric fields inside and outside of plasma column. Plots of backscattering cross section versus frequency, for the range up to J band, reveal two main peaks and two sidebands. Effects of plasma density and radius, as main parameters determining the characteristics of plasma column, on backscattering are discussed. Furthermore, the effect of electromagnetic wave incidence angle on backscattering of plasma column is included in the analysis. The influence of wave incidence angle and frequency, as well as, plasma density and radius on scattering pattern, which is an indicator of the distribution of scattered power in different azimuthal angles, is discussed.

  20. Method for locating underground anomalies by diffraction of electromagnetic waves passing between spaced boreholes

    DOEpatents

    Lytle, R. Jeffrey; Lager, Darrel L.; Laine, Edwin F.; Davis, Donald T.

    1979-01-01

    Underground anomalies or discontinuities, such as holes, tunnels, and caverns, are located by lowering an electromagnetic signal transmitting antenna down one borehole and a receiving antenna down another, the ground to be surveyed for anomalies being situated between the boreholes. Electronic transmitting and receiving equipment associated with the antennas is activated and the antennas are lowered in unison at the same rate down their respective boreholes a plurality of times, each time with the receiving antenna at a different level with respect to the transmitting antenna. The transmitted electromagnetic waves diffract at each edge of an anomaly. This causes minimal signal reception at the receiving antenna. Triangulation of the straight lines between the antennas for the depths at which the signal minimums are detected precisely locates the anomaly. Alternatively, phase shifts of the transmitted waves may be detected to locate an anomaly, the phase shift being distinctive for the waves directed at the anomaly.

  1. Self-precession and frequency shift for electromagnetic waves in homogeneous plasmas

    NASA Technical Reports Server (NTRS)

    Arons, J.; Max, C. E.

    1974-01-01

    The nonlinear propagation of an arbitrarily polarized electromagnetic wave in a uniform plasma is studied. It is shown that nonlinear effects cause precession of the polarization ellipse as the wave propagates. The ellipticity remains constant, but the orientation of the principal axes is rotated relative to its initial value. A relativistic Vlasov model is used to study nonlinear frequency shifts as well as self-precession, in a plasma of arbitrary temperature. Even when the electron temperature is much greater than the product of the electron mass times the square of the velocity of light, the qualitative nature of these two processes remains unchanged, although their dependence on the plasma density is altered in significant ways. Implications of these effects for plasma instabilities driven by strong electromagnetic waves are briefly discussed.

  2. Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals.

    PubMed

    Yu, Tianbao; Wang, Zhong; Liu, Wenxing; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua

    2016-04-18

    We report numerically large and complete photonic and phononic band gaps that simultaneously exist in eight-fold phoxonic quasicrystals (PhXQCs). PhXQCs can possess simultaneous photonic and phononic band gaps over a wide range of geometric parameters. Abundant localized modes can be achieved in defect-free PhXQCs for all photonic and phononic polarizations. These defect-free localized modes exhibit multiform spatial distributions and can confine simultaneously electromagnetic and elastic waves in a large area, thereby providing rich selectivity and enlarging the interaction space of optical and elastic waves. The simulated results based on finite element method show that quasiperiodic structures formed of both solid rods in air and holes in solid materials can simultaneously confine and tailor electromagnetic and elastic waves; these structures showed advantages over the periodic counterparts.

  3. Electromagnetic wave interactions with a conducting medium: A graphic illustration of dispersive properties

    NASA Astrophysics Data System (ADS)

    Shen, M. K.; Chu, K. R.

    2014-02-01

    Electromagnetic wave behavior in a conducting medium is a thought-provoking subject for a graduate-level electrodynamics course. Here, we focus on electromagnetic waves incident upon a conductor and highlight how the same dispersion relation, spanning 20 orders of magnitude in frequency, transforms the conductor from a perfectly reflecting to a perfectly transparent medium according to the classical free-electron model. We show that the spectral responses of the conductor can be divided into three radically different regimes. This article presents a graphic illustration of wave reflection, transmission, and penetration properties for copper in these regimes, along with physical interpretations and a brief discussion on the limitations of the free-electron model.

  4. Electromagnetic wave propagation in rain and polarization effects

    PubMed Central

    OKAMURA, Sogo; OGUCHI, Tomohiro

    2010-01-01

    This paper summarizes our study on microwave and millimeter-wave propagation in rain with special emphasis on the effects of polarization. Starting from a recount of our past findings, we will discuss developments with these and how they are connected with subsequent research. PMID:20551593

  5. Observations of Electrostatic and Electromagnetic Waves in the Earth's Magnetosphere.

    NASA Astrophysics Data System (ADS)

    Filbert, Paul Charles

    Using data from the University of Minnesota Plasma Wave Experiment aboard the IMP-6 (Explorer 43) satellite, three topics are addressed. The first concerns the wave lengths of certain electrostatic waves in the earth's magnetosphere. Using the fact that the X and Y dipole antennas on IMP-6 are of unequal length, the antenna response to electrostatic waves is calculated as a function of wavelength. This result is used to experimentally determine the wavelengths of Bernstein mode waves observed just beyond the plasmapause. These wavelengths are then used in conjunction with present theoretical models to determine the energy of the electrons driving these waves and a range of energies between (TURN) several tens to (TURN) several hundreds of electron volts is found. This procedure is also applied to Langmuir waves observed upstream of the earth's bow shock and the results are in good agreement with theoretical predictions. Second it is demonstrated that enhanced levels of the so-called continuum radiation are correlated with AE enhancements. In addition, a source region of continuum radiation is directly observed and movement of the source region is seen which is consistent with a cloud of electrons having been injected into the night side magnetosphere and undergoing gradient drifts in an eastward direction towards local dawn. This drift movement is then used to estimate the energy of the electrons which produce the observed continuum enhancement and a range between 10 kev to 50 kev is found. Spectral properties of the directly observed source are also presented, and indicate a high frequency spectral index of (TURN)f('-5.5). A new type of continuum radiation which correlates with TKR on a time scale of (TURN)1 minute is also observed and is found to have a source region distinct from that mentioned above. Third, a correlation between TKR and VLF auroral hiss has been observed for several high latitude passes of IMP-6 through the midnight auroral zone. This

  6. Theory of a ring laser. [electromagnetic field and wave equations

    NASA Technical Reports Server (NTRS)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1973-01-01

    Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.

  7. Electromagnetic waves and living cells: A kinetic thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2016-11-01

    Cells are complex thermodynamic systems. Their energy transfer, thermo-electro-chemical processes and transports phenomena can occur across the cells membranes, the border of the complex system. Moreover, cells can also actively modify their behaviours in relation to any change of their environment. All the living systems waste heat, which is no more than the result of their internal irreversibility. This heat is dissipated into their environment. But, this wasted heat represents also a sort of information, which outflows from the cell towards its environment, completely accessible to any observer. The analysis of irreversibility related to this wasted heat can represent a new useful approach to the study of the cells behaviour. This approach allows us to consider the living systems as black boxes and analyse only the inflows and outflows and their changes in relation to any environmental change. This analysis allows also the explanation of the effects of electromagnetic fields on the cell behaviour.

  8. Finite element modeling of electromagnetic fields and waves using NASTRAN

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  9. Some consequences of intense electromagnetic wave injection into space plasmas

    NASA Technical Reports Server (NTRS)

    Burke, William J.; Rothwell, Paul L.; Rothwell, Paul L.; Rothwell, Paul L.

    1986-01-01

    The future possibility of actively testing the current understanding of how energetic particles may be accelerated in space or dumped from the radiation belts using intense electromagnetic energy from ground based antennas is discussed. The ground source of radiation is merely a convenience. A space station source for radiation that does not have to pass through the atmosphere and lower ionosphere, is an attractive alternative. The text is divided into two main sections addressing the possibilities of: (1) accelerating electrons to fill selected flux tubes above the Kennel-Petscheck limit for stably trapped fluxes, and (2) using an Alfven maser to cause rapid depletion of energetic protons or electrons from the radiation belts.

  10. Impurity transport due to electromagnetic drift wave turbulence

    NASA Astrophysics Data System (ADS)

    Moradi, S.; Pusztai, I.; Mollén, A.; Fülöp, T.

    2012-03-01

    Finite β effects on impurity transport are studied through local linear gyrokinetic simulations with GYRO [J. Candy and E. Belli, General Atomics Report No. GA-A26818, 2011]; in particular, we investigate the parametric dependences of the impurity peaking factor (zero-flux density gradient) and the onset of the kinetic ballooning modes (KBMs). We find that electromagnetic effects even at low β can have significant impact on the impurity transport. The KBM instability threshold depends on the plasma parameters, particularly strongly on plasma shape. We have shown that magnetic geometry significantly influences the results, and the commonly used s-α model overestimates the KBM growth rates and ITG stabilization at high β. In the β range, where the KBM is the dominant instability the impurity peaking factor is strongly reduced, with very little dependence on β and the impurity charge.

  11. Impurity transport due to electromagnetic drift wave turbulence

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Pusztai, Istvan; Mollén, Albert; Fülöp, Tünde

    2012-10-01

    In the view of an increasing interest in high β operation scenarios, such as hybrid scenarios for ITER the question of finite β effects on the impurity transport is a critical issue due to possible fuel dilution and radiative cooling in the core. Here, electromagnetic effects at finite β on impurity transport are studied through local linear gyro-kinetic simulations with gyro [J. Candy and E. Belli, General Atomics Report GA-A26818 (2011)]; in particular we investigate the parametric dependences of the impurity peaking factor (zero-flux density gradient) and the onset of the kinetic ballooning modes (KBM) and micro-tearing modes (MTM) in spherical (NSTX) and standard tokamaks (AUG and JET).

  12. Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering

    PubMed Central

    Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian

    2016-01-01

    Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence. PMID:27775064

  13. Interaction of relativistically strong electromagnetic waves with a layer of overdense plasma

    SciTech Connect

    Korzhimanov, A. V.; Eremin, V. I. Kim, A. V.; Tushentsov, M. R.

    2007-10-15

    Plasma-field structures that arise under the interaction between a relativistically strong electromagnetic wave and a layer of overdense plasma are considered within a quasistationary approximation. It is shown that, together with known solutions, which are nonlinear generalizations of skin-layer solutions, multilayer structures containing cavitation regions with completely removed electrons (ion layers) can be excited when the amplitude of the incident field exceeds a certain threshold value. Under symmetric irradiation, these cavitation regions, which play the role of self-consistent resonators, may amplify the field and accumulate electromagnetic energy.

  14. Stimulated Raman up-conversion of electromagnetic waves by a gyrating electron beam

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Patel, V. L.

    1983-01-01

    A gyrating electron beam supports negative energy modes near the harmonics of electron-cyclotron frequency. An electromagnetic wave passing through such a beam parametrically up-converts into high-frequency electromagnetic modes separated from the pump frequency by the electron-cyclotron harmonics. The growth rate for this process varies directly as the oscillatory velocity of beam electrons caused by the pump and as square root of the beam density. It has a maximum at values of scattering angle close to 180 deg and is also implicitly dependent on the beam veocity and the cyclotron frequency of electrons. The effect of a cold electron component is to reduce the growth rate.

  15. Bursty, Broadband Electromagnetic Waves Associated with Thin Current Layers and Turbulent Magnetosheath Reconnection

    NASA Technical Reports Server (NTRS)

    Adrian, M. L.; Wendel, D. E.

    2011-01-01

    We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X- and O-nulls, as well as their correlation to the amount of magnetic energy converted by the process of magnetic reconnection.

  16. The SEM description of interaction of a transient electromagnetic wave with an object

    NASA Technical Reports Server (NTRS)

    Pearson, L. W.; Wilton, D. R.

    1980-01-01

    The singularity expansion method (SEM), proposed as a means for determining and representing the transient surface current density induced on a scatterer by a transient electromagnetic wave is described. The resulting mathematical description of the transient surface current on the object is discussed. The data required to represent the electromagnetic scattering properties of a given object are examined. Experimental methods which were developed for the determination of the SEM description are discussed. The feasibility of characterizing the surface current induced on aircraft flying in proximity to a lightning stroke by way of SEM is examined.

  17. Nonlinear dust acoustic waves in a mixed nonthermal high energy-tail electron distribution

    SciTech Connect

    Younsi, Smain; Tribeche, Mouloud

    2008-07-15

    Large amplitude as well as weakly nonlinear dust acoustic waves in a mixed nonthermal high-energy-tail electron distribution are investigated. The effects of charge variation and electron deviation from Boltzmann distribution on the large amplitude dust acoustic soliton are then considered. The dust charge variation leads to an additional enlargement of the dust acoustic soliton, which is more pronounced as the electrons evolve far away from Maxwell-Boltzmann distribution. Under certain conditions, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation, the strength of which becomes important and may prevail over that of dispersion as the suprathermal character of the plasma becomes important. The results complement and provide new insights into our previously published results on this problem [K. Aoutou, M. Tribeche, and T. H. Zerguini, Phys. Plasmas 15, 013702 (2008)].

  18. Mechanism of terahertz electromagnetic wave emission from intrinsic Josephson junctions.

    PubMed

    Tachiki, Masashi; Fukuya, Shouta; Koyama, Tomio

    2009-03-27

    Using a 3D parallelepiped model of the stack of intrinsic Josephson junctions, we calculate the cavity resonance modes of Josephson plasma waves excited by external electric currents. The cavity modes accompanied by static phase kinks of the order parameter have been intensively investigated. Our calculation shows that the kink phase state is unfavorable, since the static phase kinks reduce the order parameter amplitude and thus the superconducting condensation energy. We point out that the oscillating magnetic field of the cavity mode penetrates the vacuum from the sample surfaces and the energy of the magnetic field plays an important role to determine the orientation of the cavity resonance mode. On the basis of the above discussions, we calculate the I-V characteristic curve, the THz wave emission intensity and the other physical quantities.

  19. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    SciTech Connect

    Wong, Alfred Y.

    1999-09-20

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO{sub 2} through the use of ion cyclotron resonant heating.

  20. Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas.

    PubMed

    Shukla, P K; Eliasson, B

    2007-08-31

    We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.

  1. Low-frequency electromagnetic waves driven by gyrotropic gyrating ion beams

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Patel, V. L.

    1986-01-01

    The origin of left- and right-hand-polarized low-frequency waves in space plasmas is analyzed. It has been shown that a gyrotropic gyrating ion beam, a ring in velocity space, can excite electromagnetic modes in the plasma near the beam gyrofrequency. It excites left-hand-polarized shear Alfven waves and their harmonics via the coupling of Alfven modes with the beam modes. It can also excite right-hand-polarized fast-mode magnetosonic waves and their harmonics as well. The excitation is possible for beam ions heavier than the plasma ions. The growth rate varies as one-third power of the beam density and decreases with the angle of wave propagation with respect to the ambient magnetic field. The nonlocality has a stabilizing effect on the instability. The predicted values of the wave frequencies compare reasonably well with those observed in satellite data.

  2. Impact of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    Effect of the ring current ions in the real part of electromagnetic ion Cyclotron wave dispersion relation is studied on global scale. Recent Cluster observations by Engebretson et al. showed that although the temperature anisotropy of is energetic (> 10 keV) ring current protons was high during the entire 22 November 2003 perigee pass, electromagnetic ion cyclotron waves were observed only in conjunction with intensification of the ion fluxes below 1 keV by over an order of magnitude. To study the effect of the ring current ions on the wave dispersive properties and the corresponding global wave redistribution, we use a self-consistent model of interacting ring current and electromagnetic ion cyclotron waves, and simulate the May 1998 storm. The main findings of our simulation can be summarized as follows: First, the plasma density enhancement in the night MLT sector during the main and recovery storm phases is mostly caused by injection of suprathermal plasma sheet H + (approximately < 1 keV), which dominate the thermal plasma density. Second, during the recovery storm phases, the ring current modification of the wave dispersion relation leads to a qualitative change of the wave patterns in the postmidnight-dawn sector for L > 4.75. This "new" wave activity is well organized by outward edges of dense suprathermal ring current spots, and the waves are not observed if the ring current ions are not included in the real part of dispersion relation. Third, the most intense wave-induced ring current precipitation is located in the night MLT sector and caused by modification of the wave dispersion relation. The strongest precipitating fluxes of about 8 X 10(exp 6)/ (cm(exp 2) - s X st) are found near L=5.75, MLT=2 during the early recovery phase on 4 May. Finally, the nightside precipitation is more intense than the dayside fluxes, even if there are less intense waves, because the convection field moves ring current ions into the loss cone on the nightside, but drives

  3. Dispersion characteristics of the electromagnetic waves in a relativistic electron beam guided by the ion channel

    SciTech Connect

    Mirzanejhad, Saeed; Sohbatzadeh, Farshad; Ghasemi, Maede; Sedaghat, Zeinab; Mahdian, Zeinab

    2010-05-15

    In this article, the dispersion characteristics of the paraxial (near axis) electromagnetic (EM) waves in a relativistic electron beam guided by the ion channel are investigated. Equilibrium fields such as ion-channel electrostatic field and self-fields of relativistic electron beam are included in this formalism. In accordance with the equilibrium field structure, radial and azimuthal waves are selected as base vectors for EM waves. It is shown that the dispersion of the radially polarized EM and space charge waves are influenced by the equilibrium fields, but azimuthally polarized wave remain unaffected. In some wave number domains, the radially polarized EM and fast space charge waves are coupled. In these regions, instability is analyzed as a function of equilibrium structure. It is shown that the total equilibrium radial force due to the ion channel and electron beam and also relativistic effect play a key role in the coupling of the radially polarized EM wave and space charge wave. Furthermore, some asymptotic behaviors such as weak and strong ion channel, nonrelativistic case and cutoff frequencies are discussed. This instability could be used as an amplification mechanism for radially polarized EM waves in a beam-plasma system where a relativistic electron beam is guided by the ion channel.

  4. A wave-chaotic approach to predicting and measuring electromagnetic field quantities in complicated enclosures

    NASA Astrophysics Data System (ADS)

    Hemmady, Sameer D.

    The coupling of short-wavelength electromagnetic waves into large complicated enclosures is of great interest in the field of electromagnetic compatibility engineering. The intent is to protect sensitive electronic devices housed within these enclosures from the detrimental effects of high-intensity external electromagnetic radiation penetrating into the enclosure (which acts as a resonant cavity) through various coupling channels (or ports). The Random Coupling Model introduced by Zheng, Antonsen and Ott is a stochastic model where the mechanism of the coupling process is quantified by the non-statistical "radiation impedance" of the coupling-port, and the field variations within the cavity are conjectured to be explained in a statistical sense through Random Matrix Theory---by assuming that the waves possess chaotic ray-dynamics within the cavity. The Random Coupling Model in conjunction with Random Matrix Theory thus makes explicit predictions for the statistical aspect (Probability Density Functions---PDFs) of the impedance, admittance and scattering fluctuations of waves within such wave-chaotic cavities. More importantly, these fluctuations are expected to be universal in that their statistical description depends only upon the value of a single dimensionless cavity loss-parameter. This universality in the impedance, admittance and scattering properties is not restricted to electromagnetic systems, but is equally applicable to analogous quantities in quantum-mechanical or acoustic systems, which also comprise of short-wavelength waves confined within complicated-shaped potential wells or acoustic-resonators. In this dissertation, I will experimentally show the validity of the "radiation impedance" to accurately quantify the port-coupling characteristics. I will experimentally prove the existence of these universal fluctuations in the impedance, admittance and scattering properties of quasi-two-dimensional and three-dimensional wave-chaotic systems driven by

  5. Nonstationary random acoustic and electromagnetic fields as wave diffusion processes

    NASA Astrophysics Data System (ADS)

    Arnaut, L. R.

    2007-07-01

    We investigate the effects of relatively rapid variations of the boundaries of an overmoded cavity on the stochastic properties of its interior acoustic or electromagnetic field. For quasi-static variations, this field can be represented as an ideal incoherent and statistically homogeneous isotropic random scalar or vector field, respectively. A physical model is constructed showing that the field dynamics can be characterized as a generalized diffusion process. The Langevin-It\\hato and Fokker-Planck equations are derived and their associated statistics and distributions for the complex analytic field, its magnitude and energy density are computed. The energy diffusion parameter is found to be proportional to the square of the ratio of the standard deviation of the source field to the characteristic time constant of the dynamic process, but is independent of the initial energy density, to first order. The energy drift vanishes in the asymptotic limit. The time-energy probability distribution is in general not separable, as a result of nonstationarity. A general solution of the Fokker-Planck equation is obtained in integral form, together with explicit closed-form solutions for several asymptotic cases. The findings extend known results on statistics and distributions of quasi-stationary ideal random fields (pure diffusions), which are retrieved as special cases. A summary of selected results in this paper appeared in [1].

  6. Propagation of electromagnetic waves in a turbulent medium

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Hartke, G. J.

    1986-01-01

    Theoretical modeling of the wealth of experimental data on propagation of electromagnetic radiation through turbulent media has centered on the use of the Heisenberg-Kolmogorov (HK) model, which is, however, valid only for medium to small sized eddies. Ad hoc modifications of the HK model to encompass the large-scale region of the eddy spectrum have been widely used, but a sound physical basis has been lacking. A model for large-scale turbulence that was recently proposed is applied to the above problem. The spectral density of the temperature field is derived and used to calculate the structure function of the index of refraction N. The result is compared with available data, yielding a reasonably good fit. The variance of N is also in accord with the data. The model is also applied to propagation effects. The phase structure function, covariance of the log amplitude, and variance of the log intensity are calculated. The calculated phase structure function is in excellent agreement with available data.

  7. Propagation and Generation of Electromagnetic Waves at Proton Gyrofrequencies in a Relativistic Electron-Positron Plasma. II. Excitation of Electromagnetic Waves

    NASA Astrophysics Data System (ADS)

    Zheleznyakov, V. V.; Bespalov, P. A.

    2016-04-01

    In part I of this work [1], we study the dispersion characteristics of low-frequency waves in a relativistic electron-positron plasma. In part II, we examine the electromagnetic wave instability in this plasma caused by an admixture of nonrelativistic protons with energy comparable with the energy of relativistic low-mass particles. The instability occurs in the frequency band between the fundamental harmonic of proton gyrofrequency and the fundamental harmonic of relativistic electron gyrofrequency. The results can be used for the interpretation of known observations of the pulsar emissions obtained with a high time and frequency resolution. The considered instability can probably be the initial stage of the microwave radio emission nanoshots typical of the pulsar in the Crab Nebula.

  8. Emission of terahertz electromagnetic waves by vortex flow in high- Tc superconductors

    NASA Astrophysics Data System (ADS)

    Tachiki, Masashi; Iizuka, Mikio; Minami, Kazuo; Tejima, Shogo; Nakamura, Hisashi

    2006-05-01

    Continuous terahertz electromagnetic waves have new applications in scientific and industrial fields such as medicine and information technology. Cuprate high-temperature superconductors have a layer structure, and form a naturally multi-connected Josephson junction system called intrinsic Josephson junction (IJJ). In IJJ, there appears a new excitation called the Josephson plasma. Its frequency is in the region of terahertz inside the superconducting energy gap. The excited plasma wave is converted into an electromagnetic wave at sample surfaces. Therefore the IJJ has a great potential to generate terahertz continuous wave. Here we report the results of simulations to find the optimum condition for obtaining the strongest emission power of the terahertz waves. The simulations were carried out using our theory. Since the simulation uses very large-sized coupled nonlinear equations therefore difficult to compute, we used the fastest supercomputer named as Earth Simulator. We found that the quite intense continuous terahertz coherent wave is emitted from a small sample with high-energy efficiency.

  9. Study of Rotating-Wave Electromagnetic Modes for Applications in Space Exploration

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.

    2016-08-01

    Rotating waves are circularly polarized electromagnetic wave fields that behave like traveling waves but have discrete resonant frequencies of standing waves. In JPL's Communications Ground Systems Section (333), we are making use of this peculiar type of electromagnetic modes to develop a new generation of devices and instruments for direct applications in space exploration. In this article, we present a straightforward analysis about the phase velocity of these wave modes. A derivation is presented for the azimuthal phase velocity of transverse magnetic rotating modes inside cylindrical cavity resonators. Computer simulations and experimental measurements are also presented that corroborate the theory developed. It is shown that the phase velocity of rotating waves inside cavity resonators increases with radial position within the cavity and decreases when employing higher-order operating modes. The exotic features of rotating modes, once better understood, have the potential to enable the implementation of a plethora of new devices that range from amplifiers and frequency multipliers to electron accelerators and ion thrusters.

  10. Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine.

    PubMed

    Sivachenko, I B; Medvedev, D S; Molodtsova, I D; Panteleev, S S; Sokolov, A Yu; Lyubashina, O A

    2016-02-01

    Effects of millimeter-wave electromagnetic radiation (40 GHz frequency, 0.01 mW power) on the spontaneous fi ring of convergent neurons of the spinal trigeminal nucleus and their responses to electrical stimulation of the dura mater were studied in neurophysiological experiments on rats. Irradiation of the area of cutaneous receptive fields of spinal trigeminal nucleus reversibly inhibited both spontaneous discharges and activity induced by electrical stimulation of the dura mater. The second and third exposures to electromagnetic radiation with an interval of 10 min were ineffective. These results suggest that suppression of neuronal excitability in the spinal trigeminal ganglion can be a mechanism of the anti-migraine effects of electromagnetic radiation observed in clinical practice.

  11. Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1997-01-01

    We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.

  12. 2D modeling of electromagnetic waves in cold plasmas

    SciTech Connect

    Crombé, K.; Van Eester, D.; Koch, R.; Kyrytsya, V.

    2014-02-12

    The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.

  13. Antenna-coupled silicon-organic hybrid integrated photonic crystal modulator for broadband electromagnetic wave detection

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyu; Hosseini, Amir; Subbaraman, Harish; Wang, Shiyi; Zhan, Qiwen; Luo, Jingdong; Jen, Alex K.; Chung, Chi-jui; Yan, Hai; Pan, Zeyu; Nelson, Robert L.; Lee, Charles Y.; Chen, Ray T.

    2015-03-01

    The detection and measurement of electromagnetic fields have attracted significant amounts of attention in recent years. Traditional electronic electromagnetic field sensors use large active conductive probes which perturb the field to be measured and also make the devices bulky. In order to address these problems, integrated photonic electromagnetic field sensors have been developed, in which an optical signal is modulated by an RF signal collected by a miniaturized antenna. In this work, we design, fabricate and characterize a compact, broadband and highly sensitive integrated photonic electromagnetic field sensor based on a silicon-organic hybrid modulator driven by a bowtie antenna. The large electro-optic (EO) coefficient of organic polymer, the slow-light effects in the silicon slot photonic crystal waveguide (PCW), and the broadband field enhancement provided by the bowtie antenna, are all combined to enhance the interaction of microwaves and optical waves, enabling a high EO modulation efficiency and thus a high sensitivity. The modulator is experimentally demonstrated with a record-high effective in-device EO modulation efficiency of r33=1230pm/V. Modulation response up to 40GHz is measured, with a 3-dB bandwidth of 11GHz. The slot PCW has an interaction length of 300μm, and the bowtie antenna has an area smaller than 1cm2. The bowtie antenna in the device is experimentally demonstrated to have a broadband characteristics with a central resonance frequency of 10GHz, as well as a large beam width which enables the detection of electromagnetic waves from a large range of incident angles. The sensor is experimentally demonstrated with a minimum detectable electromagnetic power density of 8.4mW/m2 at 8.4GHz, corresponding to a minimum detectable electric field of 2.5V/m and an ultra-high sensitivity of 0.000027V/m Hz-1/2 ever demonstrated. To the best of our knowledge, this is the first silicon-organic hybrid device and also the first PCW device used for the

  14. Determining Green's Functions for Coupled Elastic Waves and Electromagnetic Fields in a Homogeneous Porous Medium

    NASA Astrophysics Data System (ADS)

    Slob, E. C.; Grobbe, N.

    2014-12-01

    The theory of coupled elastic waves and electromagnetic fields in porous media exists for two decades. Several modeling codes have been developed and some field work has been carried out with mixed success. Modeling the so-called electroseismic and seismo-electromagnetic wavefields is tricky because of the strong elastic fields generated by mechanical sources and strong electromagnetic fields generated by electromagnetic sources, while the coupled fields have relatively small amplitudes. A second difficulty is the fact that the elastic field is essentially a wavefield, while the electromagnetic field is a diffusive field. The slow P-wave is usually also a diffusive field depending on the frequency bandwidth of the data. On the other hand, for porous soils and rocks, laboratory measurements have been carried out to experimentally validate the current theoretical model and to some extent this has been successful. To be able to understand measured data it is crucially important that we have good control on the accuracy of modeled data. Today we don't have this control, which makes it hard to judge the quality of the modeled data and trust the experimental validation of the theory. It is therefore important that exact solutions are found to validate modeling codes in simple configurations. These modeling codes can then numerically validate the theory by matching the results obtained in laboratory or field experiments. The simplest configuration is the homogeneous space and we show exact solutions for the governing equations for point sources and point receivers. These Green's functions are obtained for any type of point source and any type of receiver. We reduce the coupled equations to two scalar equations for the electric field and the particle velocity vectors. Solutions for longitudinal and transverse waves are obtained separately and these are combined to obtain the Green's functions for the electric field and the particle velocity, from which the solutions for

  15. Transmission and total reflection of subhertz electromagnetic waves at the earth-atmosphere interface

    SciTech Connect

    Shiozawa, Toshiyuki

    2010-12-15

    For the purpose of providing for a theoretical background for the study of electromagnetic fields generated by precursory effects of earthquakes, the problem of transmission and total reflection at the earth-atmosphere interface is investigated in detail for a subhertz plane electromagnetic wave incident from the earth's crust. The term ''subhertz'' means 'below 1 Hz'. First, for the special case of normal incidence, the overall power transmission coefficient at the earth-atmosphere interface is found to take a maximum value at a definite frequency f{sub 0} which is inversely proportional to the square of the depth of a virtual hypocenter. A typical value of f{sub 0} falls around 0.01 Hz. For oblique incidence as well, this feature of the overall power transmission coefficient is retained except in the vicinity of the critical angle of incidence for the H-wave. At the critical angle of incidence, the power flow carried by a surface wave along the interface becomes anomalously large for the H-wave. However, over a wide range of angles of incidence greater than the critical angle, the power flow carried by the E-wave exceeds that carried by the H-wave by orders of magnitude. Finally, the energy conservation relations for the incident, reflected, and transmitted waves at the earth-atmosphere interface are discussed. For an incident wave coming from the earth's crust, the interactive power between the incident and reflected waves plays a crucial role for the conservation of energy at the interface.

  16. Computational modeling of a single microdischarge and its interactions with high frequency electromagnetic waves

    NASA Astrophysics Data System (ADS)

    PanneerChelvam, Premkumar; Raja, Laxminarayan L.; Upadhyay, Rochan R.

    2016-09-01

    We discuss the computational modeling of a single microplasma and its interaction with high frequency electromagnetic waves in a microwave regime. The work is motivated by a strong recent interest in the area of reconfigurable plasma-based metamaterials (MM) and photonic crystals (PC) where the interaction of electromagnetic waves with plasma elements (e.g. microdischarges) forms the basis for the MM/PC operation. In this work the microplasma is assumed to be driven by a 1 GHz microwave source in a parallel plate electrode configuration. Its structure and properties are described using a fluid plasma model. The interaction of the microplasma with a 100 GHz transverse magnetic (TM) and transverse electric (TE) polarized microwave propagating in a rectangular waveguide is studied. Two operational regimes of the plasma discharge are considered. One in which the peak electron density is less than the critical density (under-dense) for the interacting wave and the other in which it is higher (over-dense). The under-dense plasma with positive less than unity dielectric constant has sufficient dielectric contrast from the surrounding medium that a slight perturbation of the incident wave and bending of wave path lines through the discharge is realized. The over-dense plasma interacts strongly with the TM polarized wave because of epsilon-zero resonance at the critical density locations and the wave path lines are observed to reverse their direction near the regions of critical plasma density. The transverse electric (TE) polarized wave does not exhibit epsilon-zero resonance and the interactions are weaker than the TM wave.

  17. Propagation of Rossby-Khantadze Electromagnetic Planetary Waves in the Ionospheric E-Layer

    NASA Astrophysics Data System (ADS)

    Futatani, S.; Kaladze, T.; Horton, W.; Benkadda, S.

    2013-10-01

    Nonlinear vortex propagation of electromagnetic coupled Rossby and Khantadze planetary waves in the weakly ionized E-layer of the ionosphere are investigated with numerical simulations. For each k-vector the linear dispersion relation has two eigenmodes corresponding to the slow magnetized Rossby wave and the fast magnetic Khantadze wave. Both waves propagate westward with speeds of order 10-20 m/s for the slow wave and of order 500-1000 km/s for the fast wave. We show that for finite amplitudes there are dipole solitary vortex structures emitted from general initial conditions. These structures are the neutrally stable, nonlinear states that avoid radiating waves by propagating faster than the corresponding linear wave speeds. The condition for these coherent structures to occur is that their amplitudes be such that the nonlinear convection around the core of the disturbance is faster that the linear wave speed for the corresponding dominant Fourier components of the initial disturbance. The presence of the solitary vortex states are indicative of an initial strong disturbance such that arising from a solar storm, a tectonic plate movements or volcanic eruptions. Supported by NSF Grant 0964692 to the University of Texas at Austin; PIIM/CNRS at Aix-Marseille University, and by IMeRA Grant for Advanced Research.

  18. Nonlinear propagation of Rossby-Khantadze electromagnetic planetary waves in the ionospheric E-layer

    NASA Astrophysics Data System (ADS)

    Futatani, S.; Horton, W.; Kaladze, T. D.

    2013-10-01

    Nonlinear vortex propagation of electromagnetic coupled Rossby and Khantadze planetary waves in the weakly ionized ionospheric E-layer is investigated with numerical simulations. Large scale, finite amplitude vortex structures are launched as initial conditions at low, mid, and high latitudes. For each k-vector the linear dispersion relation has two eigenmodes corresponding to the slow magnetized Rossby wave and the fast magnetic Khantadze wave. Both waves propagate westward with local speeds of the order of 10-20 m/s for the slow wave and of the order of 500-1000 km/s for the fast wave. We show that for finite amplitudes there are dipole solitary structures emitted from the initial conditions. These structures are neutrally stable, nonlinear states that avoid radiating waves by propagating faster than the corresponding linear wave speeds. The condition for these coherent structures to occur is that their amplitudes are such that the nonlinear convection around the core of the disturbance is faster than the linear wave speed for the corresponding dominant Fourier components of the initial disturbance. The presence of the solitary vortex states is indicative of an initial strong disturbance such as that from a solar storm or a tectonic plate movement. We show that for generic, large amplitude initial disturbances both slow and fast vortex structures propagate out of the initial structure.

  19. Low-frequency electromagnetic plasma waves at comet P/Grigg-Skjellerup: Overview and spectral characteristics

    NASA Technical Reports Server (NTRS)

    Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1993-01-01

    Large-amplitude electromagnetic plasma waves are one of the dominant features of the solar wind-comet interaction. Wave characteristics strongly depend on parameters such as the solar wind flow and Alfven velocities and the angle between flow and interplanetary magnetic field as well as the production rate. With respect to the latter the flyby of the spacecraft Giotto at comet P/Griff-Skjellerup provides a unique possibility to study such waves in further detail. Pickup ion-related wave signatures have been observed up to a distance of 600,000 km from the nucleus. Peak spectral power in the spacecraft frame of reference occurs at frequencies mainly somewhat below the water group ion gyrofrequency. From this the waves are determined to be mainly left-hand polarized waves, causing one-sided pitch angle diffusion outbound. The wave activity strongly increases close to the comet; upstream it exhibits a quadratic dependence on the water group pickup ion free energy. Furthermore, a phenomenological study of the wave characteristics provides a unique description of the fine-structure of the interaction region. Indications of steepened magnetosonic waves have been found in the outbound magnetosheath region.

  20. Nonlinear propagation of Rossby-Khantadze electromagnetic planetary waves in the ionospheric E-layer

    SciTech Connect

    Futatani, S.; Horton, W.; Kaladze, T. D.

    2013-10-15

    Nonlinear vortex propagation of electromagnetic coupled Rossby and Khantadze planetary waves in the weakly ionized ionospheric E-layer is investigated with numerical simulations. Large scale, finite amplitude vortex structures are launched as initial conditions at low, mid, and high latitudes. For each k-vector the linear dispersion relation has two eigenmodes corresponding to the slow magnetized Rossby wave and the fast magnetic Khantadze wave. Both waves propagate westward with local speeds of the order of 10–20 m/s for the slow wave and of the order of 500–1000 km/s for the fast wave. We show that for finite amplitudes there are dipole solitary structures emitted from the initial conditions. These structures are neutrally stable, nonlinear states that avoid radiating waves by propagating faster than the corresponding linear wave speeds. The condition for these coherent structures to occur is that their amplitudes are such that the nonlinear convection around the core of the disturbance is faster than the linear wave speed for the corresponding dominant Fourier components of the initial disturbance. The presence of the solitary vortex states is indicative of an initial strong disturbance such as that from a solar storm or a tectonic plate movement. We show that for generic, large amplitude initial disturbances both slow and fast vortex structures propagate out of the initial structure.

  1. The emission mechanism of THz electromagnetic waves from Bi2212 mesa device

    NASA Astrophysics Data System (ADS)

    Watanabe, Chiharu; Minami, Hidetoshi; Kitamura, Takeo; Kashiwagi, Takanari; Klemm, Richard; Kadowaki, Kazuo

    From the detailed study of the severe temperature inhomogeneity of the Bi2212 IJJ mesa structure often forming ``hot-spot'' at relatively higher bias current region, while the electromagnetic waves are emitted, multi terminal potential measurement of the mesa device has revealed that the equipotential part of the mesa can only give universal ac-Josephson relationship between the potential difference and the frequency measured by the FT-IR spectrometer, and it is violated as the potential is measured in the region where the hot-spot is formed. This means that the deviation of the emission frequency from the ac-Josephson effect comes from a gradient of the electrical potential distribution. This strongly suggests that the electromagnetic waves at THz frequency may be generated in the superconducting part of the mesa, where the static electric potential is uniform, satisfying the ac-Josephson relation universally no matter how much temperature gradient is.

  2. Effect of Electromagnetic Wave on Bone Healing in Fixed and Unfixed Conditions.

    PubMed

    Onger, Mehmet Emin; Göçer, Hasan; Çirakli, Alper; Büyükceran, Ismail; Kiliç, Mesut; Kaplan, Süleyman

    2016-09-01

    Mobile phones have come into daily life and are now one of the most frequently used devices for communication. The aim of this study was to evaluate possible effect of electromagnetic wave (EMW) with and without fixation material on bone healing.Forty male rats were exposed to fracture on tibia bone and were randomly divided into 4 groups as E(+)K(+), E(+)K(-), E(-)K(+), and E(-)K(-) where E(+) means EMW exposure and K(+) means Kirschner wire fixation. At the end of study tibia samples were taken from all the groups for the quantitative evaluation of regeneration.Significant difference was found between Group E(+)K(+) and E(-)K(+) in terms of both new bone and capillary volume.Electromagnetic wave may be harmful for bone healing with fixation whereas it has no same effect on bone regeneration without fixation.

  3. Hybrid electrodynamics and kinetics simulation for electromagnetic wave propagation in weakly ionized hydrogen plasmas.

    PubMed

    Chen, Qiang; Chen, Bin

    2012-10-01

    In this paper, a hybrid electrodynamics and kinetics numerical model based on the finite-difference time-domain method and lattice Boltzmann method is presented for electromagnetic wave propagation in weakly ionized hydrogen plasmas. In this framework, the multicomponent Bhatnagar-Gross-Krook collision model considering both elastic and Coulomb collisions and the multicomponent force model based on the Guo model are introduced, which supply a hyperfine description on the interaction between electromagnetic wave and weakly ionized plasma. Cubic spline interpolation and mean filtering technique are separately introduced to solve the multiscalar problem and enhance the physical quantities, which are polluted by numerical noise. Several simulations have been implemented to validate our model. The numerical results are consistent with a simplified analytical model, which demonstrates that this model can obtain satisfying numerical solutions successfully.

  4. Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass

    SciTech Connect

    Dorofeev, O.F.; Lobanov, A.E.

    2005-06-01

    Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'.

  5. Synthesis, Morphology Control and Electromagnetic Wave Absorption Properties of Electrospun FeCo Alloy Nanofibers.

    PubMed

    Lee, Young-In; Jang, Dae-Hwan; Choa, Yong-Ho

    2016-05-01

    Recently, increasing interest has been focused on one-dimensional (1 D) magnetic nanomaterials that have significant anisotropic electromagnetic parameters and size effects that can be used to achieve improved shielding efficiency. In this study, the simple, low-cost and scalable synthesis of FeCo nanofibers is demonstrated by combining an electrospinning process with sequential thermal treatment involving calcination in air followed by reduction in H2 atmosphere. A citric acid has an influence on the morphology of the electrospun product. The as-spun precursor nanofibers are transformed into CoFe2O4 and FeCo phases through the sequential thermal treatment while maintaining the fibrous shapes. To evaluate the electromagnetic (EM) wave-absorbing abilities of the FeCo nanofibers, epoxy matrix composites with the nanofibers are fabricated. The composites show excellent EM wave absorption properties where the power loss of the FeCo nanofibers increased to 20 GHz without any degradation. PMID:27483898

  6. Negative refraction and focusing of electromagnetic wave through two-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Dong

    2006-12-01

    The negative refraction of electromagnetic waves in photonic crystals was recently demonstrated experimentally, and the physical properties were analyzed. Microsuperlenses based on two-dimensional photonic crystals were designed and the subwavelength images were observed. In this review, after providing a brief history of the research related to the above phenomena, we will summarize our research works in this field including the method of creating a negative refraction region, generating an absolute negative refraction, the focusing of unpolarized electromagnetic waves, and the effect of interface and disorder on the image by the two-dimensional photonic crystal flat lens. The discussion on the negative refraction and the focusing by high symmetric quasicrystals is also presented.

  7. Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles

    NASA Astrophysics Data System (ADS)

    Zhou, You-He; Shu He, Qin; Zheng, Xiao Jing

    2005-06-01

    A theoretical approach for predicting the attenuation of microwave propagation in sandstorms is presented, with electric charges generated on the sand grains taken into account. It is found that the effect of electric charges distributed partially on the sand surface is notable. The calculated attenuation is in good agreement with that measured in certain conditions. The distribution of electric charges on the surface of sand grains, which is not easy to measure, can be approximately determined by measuring the attenuation value of electromagnetic waves. Some effects of sand radius, dielectric permittivity, frequency of electromagnetic wave, and visibility of sandstorms on the attenuation are also discussed quantitatively. Finally, a new electric parameter is introduced to describe the roles of scattering, absorption and effect of charges in attenuation.

  8. Breatherlike electromagnetic wave propagation in an antiferromagnetic medium with Dzyaloshinsky-Moriya interaction

    SciTech Connect

    Kavitha, L.; Saravanan, M.; Srividya, B.; Gopi, D.

    2011-12-15

    We investigate the nature of propagation of electromagnetic waves (EMWs) in an antiferromagnetic medium with Dzyaloshinsky-Moriya (DM) interaction environment. The interplay of bilinear and DM exchange spin coupling with the magnetic field component of the EMW has been studied by solving Maxwell's equations coupled with a nonlinear spin equation for the magnetization of the medium. We made a nonuniform expansion of the magnetization and magnetic field along the direction of propagation of EMW, in the framework of reductive perturbation method, and the dynamics of the system is found to be governed by a generalized derivative nonlinear Schroedinger (DNLS) equation. We employ the Jacobi-elliptic function method to solve the DNLS equation, and the electromagnetic wave propagation in an antiferromagnetic medium is governed by the breatherlike spatially and temporally coherent localized modes under the influence of DM interaction parameter.

  9. Low-frequency electromagnetic waves in a Hall-magnetohydrodynamic plasma with charged dust macroparticles

    SciTech Connect

    Shukla, P.K.; Kourakis, I.; Stenflo, L.

    2005-02-01

    A linear theory for intermediate-frequency [much smaller (larger) than the electron gyrofrequency (dust plasma and dust gyrofrequencies)], long wavelength (in comparison with the ion gyroradius and the electron skin depth) electromagnetic waves in a multicomponent, homogeneous electron-ion-dust magnetoplasma is presented. For this purpose, the generalized Hall-magnetohydrodynamic (GH-MHD) equations are derived for the case with immobile charged dust macroparticles. The GH-MHD equations in a quasineutral plasma consist of the ion continuity equation, the generalized ion momentum equation, and Faraday's law with the Hall term. The GH-MHD equations are Fourier transformed and combined to obtain a general dispersion relation. The latter is analyzed to understand the influence of immobile charged dust grains on various electromagnetic wave modes in a magnetized dusty plasma.

  10. Effect of Electromagnetic Wave on Bone Healing in Fixed and Unfixed Conditions.

    PubMed

    Onger, Mehmet Emin; Göçer, Hasan; Çirakli, Alper; Büyükceran, Ismail; Kiliç, Mesut; Kaplan, Süleyman

    2016-09-01

    Mobile phones have come into daily life and are now one of the most frequently used devices for communication. The aim of this study was to evaluate possible effect of electromagnetic wave (EMW) with and without fixation material on bone healing.Forty male rats were exposed to fracture on tibia bone and were randomly divided into 4 groups as E(+)K(+), E(+)K(-), E(-)K(+), and E(-)K(-) where E(+) means EMW exposure and K(+) means Kirschner wire fixation. At the end of study tibia samples were taken from all the groups for the quantitative evaluation of regeneration.Significant difference was found between Group E(+)K(+) and E(-)K(+) in terms of both new bone and capillary volume.Electromagnetic wave may be harmful for bone healing with fixation whereas it has no same effect on bone regeneration without fixation. PMID:27526232

  11. Superior analytical sensitivity of electromagnetic excitation compared to contact electrode instigation of transverse acoustic waves.

    PubMed

    Ballantyne, Scott M; Thompson, Michael

    2004-03-01

    Quartz disks incorporated into an electrolyte flow-through configuration have been excited by both direct electrode contact and electromagnetic fields to generate propagating transverse acoustic waves in to the fluid. The conventional thickness-mode device was operated at the first harmonic (9 MHz) whereas the EM excited structure functioned successfully at 453 MHz (nominal 49th harmonic). The nature of signals produced by the two devices and potential contributions to noise are evaluated. A comparison of the response of the higher frequency sensor to the introduction of the protein neutravidin to the system reveals at least a seven times higher signal-to-noise ratio than is the result for the conventional bulk-acoustic wave structure. This increase in sensitivity coupled with the possibilities for tuning the frequency of the electromagnetic device and its potential for non-contact excitation offer significant advantages in terms of analytical sensor technology.

  12. Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.

    NASA Astrophysics Data System (ADS)

    Bozeman, Steven Paul

    The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in

  13. Role of hybrid wave in electromagnetic enhancement by a metallic groove doublet.

    PubMed

    Zhang, Siwen; Liu, Haitao; Sun, Xiaodong

    2014-06-01

    We provide an elaborate investigation on the role of a hybrid wave (HW) in electromagnetic enhancement by a groove doublet in metallic substrate. A simple HW model is built to explore the detailed effect of HW on electromagnetic enhancement. The effective range of electromagnetic enhancement is obtained within 0.1λ away from a metal surface. The excitation of HW by a single groove has a gentle growth (from 0.03 to 0.26) as the groove gets wide, which implies that the emerging field of HW launched by a single groove is quite weak for narrow ones. HW, being like an "energy porter," takes away partial energy from the Fabry-Perot resonance, which will be further coupled into the fundamental mode in the other groove after traveling along the metal surface. Our analysis reveals a compensation of electromagnetic enhancement for wide grooves attributed to the appearance of HW. The dependence of HW and electromagnetic enhancement on the noble metal type is also discussed.

  14. Extracorporeal shock wave therapy for chronic painful heel syndrome: a prospective, double blind, randomized trial assessing the efficacy of a new electromagnetic shock wave device.

    PubMed

    Gollwitzer, Hans; Diehl, Peter; von Korff, Alexej; Rahlfs, Volker W; Gerdesmeyer, Ludger

    2007-01-01

    Published data describing the efficacy of extracorporeal shock wave therapy for the treatment of plantar heel pain provide conflicting results, and optimal treatment guidelines are yet to be determined. To assess the efficacy and safety of extracorporeal shockwave therapy compared with placebo in the treatment of chronic painful heel syndrome with a new electromagnetic device, we undertook a prospective, double-blind, randomized, placebo-controlled trial conducted among 40 participants who were randomly allocated to either active, focused extracorporeal shockwave therapy (0.25 mJ/mm(2)) or sham shockwave therapy. Both groups received 3 applications of 2000 shockwave impulses, each session 1 week apart. The primary outcome was the change in composite heel pain (morning pain, pain with activities of daily living, and pain upon application of pressure with a focal force meter) as quantified using a visual analog pain scale at 12 weeks after completion of the interventions compared with baseline. Secondary endpoints included changes in morning pain, pain with activities of daily living, and pain upon application of pressure with a focal force meter, as measured on a visual analog pain scale, as well as the change in the Roles and Maudsley score, at 12 weeks after the baseline measurement. Active extracorporeal shockwave therapy resulted in a 73.2% reduction in composite heel pain, and this was a 32.7% greater reduction than that achieved with placebo. The difference was not statistically significant (1-tailed Wilcoxon Mann-Whitney U test, P =.0302), but reached clinical relevance (Mann-Whitney effect size = 0.6737). In regard to the secondary outcomes, active extracorporeal shockwave therapy displayed relative superiority in comparison with the sham intervention. No relevant adverse events occurred in either intervention group. The results of the present study support the use of electromagnetically generated extracorporeal shockwave therapy for the treatment of

  15. Electromagnetic Wave Absorption Property of Graphene with FeO4 Nanoparticles.

    PubMed

    Yang, Cheng; Dai, Shenglong; Zhang, Xiaoyan; Zhao, Tianyu; Yan, Shaojiu; Zhao, Xiuying

    2016-02-01

    Nanomaterials consisting of various ratios of Fe3O4 and graphene (defined C-Fe3O4/GR) were pre- pared by an in situ coordination complex hydro-thermal synthesis method. The structure and morphology of the nanomaterials C-Fe3O4/GR obtained were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). It was found that the Fe3O4 nanoparticles distributed on the surfaces of graphene, and had a spinel structure and a uniform chemical phase when the weight ratios of Fe3O4 to graphene oxide (GO) were 9:1 or 9:2. It was suggested that GO had been successfully reduced to graphene and the Fe3O4 nanoparticles were chemically bonded to graphene. The SQUID vibrating sample magnetometer (SQUID-VSM) indicated that the maximum of the saturation magnetization was 83.6 emmicro g(-1) when the mass ratio of Fe3O4 to GO was 9:2. Electromagnetic wave absorption showed that the chemical compound of Fe3O4 and graphene had a better electromagnetic property than the mechanical blend of Fe3O4 and graphene (M-Fe3O4/GR). The C-Fe3O4/GR had a reflection loss larger than -10 dB in the frequency range 12.9-17.0 GHz for an absorber thickness of 3 mm, and a maximum reflection loss of -12.3 dB at 14.8 GHz and a maximum reflection loss of -31.2 dB at 10.5 GHz for an absorber thickness of 10 mm. Theoretical analysis showed that the electromagnetic wave absorption behavior obeyed the quarter-wave principles. These results showed that the C-Fe3O4/GR nanomaterials can meet the requirements for some engineering applications, showing great application potential in electromagnetic wave absorption.

  16. Electromagnetic wave propagation with negative phase velocity in regular black holes

    SciTech Connect

    Sharif, M. Manzoor, R.

    2012-12-15

    We discuss the propagation of electromagnetic plane waves with negative phase velocity in regular black holes. For this purpose, we consider the Bardeen model as a nonlinear magnetic monopole and the Bardeen model coupled to nonlinear electrodynamics with a cosmological constant. It turns out that the region outside the event horizon of each regular black hole does not support negative phase velocity propagation, while its possibility in the region inside the event horizon is discussed.

  17. Four-wave mixing in a three-level bichromatic electromagnetically induced transparency system

    SciTech Connect

    Yang, G. Q.; Xu, P.; Wang, J.; Zhan, M. S.; Zhu Yifu

    2010-10-15

    We investigate the four-wave mixing (FWM) phenomenon in a three-level bichromatic electromagnetically induced transparency system. Theoretical results predict that the FWM will exhibit a multipeak structure under bichromatic coupling fields. The stronger the coupling fields are, the more FWM the peaks should exhibit. Results of an experiment carried out with cold {sup 87}Rb atoms in a magneto-optical trap agree with the theoretical prediction.

  18. [Effect of electromagnetic radiation of millimetric wave band on genome of somatic cells].

    PubMed

    Konoplia, E F; Nikolaevich, L N; Shalatonin, V I

    2004-01-01

    The paper presents the characteristic of molecular-genetic processes occurring in populations of cells bone marrow, blood, thymus and spleen of animals exposed to electromagnetic radiation of millimetric wave band. Disturbances in the processes of cell cycle, DNA replication and repair, changes in the frequency of cells with micronuclei and cell death by apoptosis mechanism were shown to depend on the degree of differentiation and mitotic activity of cells.

  19. Hamiltonian description of a self-consistent interaction between charged particles and electromagnetic waves.

    PubMed

    Bachelard, R; Chandre, C; Vittot, M

    2008-09-01

    The Hamiltonian description of the self-consistent interaction between an electromagnetic plane wave and a copropagating beam of charged particles is considered. We show how the motion can be reduced to a one-dimensional Hamiltonian model (in a canonical setting) from the Vlasov-Maxwell Poisson brackets. The reduction to this paradigmatic Hamiltonian model is performed using a Lie algebraic formalism which allows us to preserve the Hamiltonian character at each step of the derivation.

  20. The approximate analysis of the electromagnetic characters of 3-D radome by complex astigmatic wave theory

    NASA Astrophysics Data System (ADS)

    Wang, Yueqing; Wu, Guisheng; Chen, Zhenyang

    The complex astigmatic wave, which imitates the 3-D beam in high-frequency, is an effective method to analyze the electromagnetic characters of the 3-D arbitrarily curved radome. A number of calculations for the ellipsoidal sandwich radome are performed, and the stereoscopic graphics of the results are constructed. Comparing with the experiments, it is shown that this method can be used to simplify analysis and optimization design for many kinds of 3-D radome.

  1. Comment on "Rigorous solution for transient propagation of electromagnetic waves through a medium: causality plus diffraction in time".

    PubMed

    Weiglhofer, W S; Lakhtakia, A

    2001-08-15

    In a previous Letter [Opt. Lett. 25, 995 (2000)], Xiao claimed to have found a "rigorous solution for transient propagation of electromagnetic waves through a medium." We show that Xiao's results apply strictly only to vacuum, which serves as a reference medium in classical electromagnetics.

  2. Relativistic Two-Boson System in Presence of Electromagnetic Plane Wave

    NASA Astrophysics Data System (ADS)

    Droz-Vincent, Ph.

    2016-09-01

    The relativistic two-body problem is considered for spinless particles subject to an external electromagnetic field. When this field is made of the monochromatic superposition of two counter-propagating plane waves (and provided the mutual interaction between particles is known), it is possible to write down explicitly a pair of coupled wave equations (corresponding to a pair of mass-shell constraints) which takes into account also the field contribution. These equations are manifestly covariant; constants of the motion are exhibited, so one ends up with a reduced problem involving five degrees of freedom.

  3. Spectral and variational principles of electromagnetic field excitation in wave guides [rapid communication

    NASA Astrophysics Data System (ADS)

    Yahalom, Asher; Pinhasi, Yosef; Lurie, Yuri

    2005-08-01

    Possible variational principles for excitation of an electromagnetic field in a wave guide are discussed. Our emphasis is not on the calculation of the modal shapes, which is common in previous art, but rather on the calculation of modal amplitude evolution, which are important in electron devices such as free electron lasers and gyrotrons. Variational principles have considerable importance in theoretical physics and are used among other things to derive numerical solution schemes, conservation laws via the Noether theorem and correct boundary conditions for the derived equations including the important effects of the backward waves amplitudes.

  4. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA. PMID:19257596

  5. Theory of electromagnetic cyclotron wave growth in a time-varying magnetoplasma

    NASA Technical Reports Server (NTRS)

    Gail, William B.

    1990-01-01

    The effect of a time-dependent perturbation in the magnetoplasma on the wave and particle populations is investigated using the Kennel-Petchek (1966) approach. Perturbations in the cold plasma density, energetic particle distribution, and resonance condition are calculated on the basis of the ideal MHD assumption given an arbitrary compressional magnetic field perturbation. An equation is derived describing the time-dependent growth rate for parallel propagating electromagnetic cyclotron waves in a time-varying magnetoplasma with perturbations superimposed on an equilibrium configuration.

  6. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    SciTech Connect

    Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  7. Propagation of shear elastic and electromagnetic waves in one dimensional piezoelectric and piezomagnetic composites.

    PubMed

    Shi, P; Chen, C Q; Zou, W N

    2015-01-01

    Coupled shear (SH) elastic and electromagnetic (EM) waves propagating oblique to a one dimensional periodic piezoelectric and piezomagnetic composite are investigated using the transfer matrix method. Closed-form expression of the dispersion relations is derived. We find that the band structures of the periodic composite show simultaneously the features of phononic and photonic crystals. Strong interaction between the elastic and EM waves near the center of the Brillouin zone (i.e., phonon-polariton) is revealed. It is shown the elastic branch of the band structures is more sensitive to the piezoelectric effect while the phonon-polariton is more sensitive to the piezomagnetic effect of the composite.

  8. Dispersion Relation of Electromagnetic Waves in One-Dimensional Plasma Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Hojo, Hitoshi; Mase, Atsushi

    The dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals is studied. The plasma photonic crystal is a periodic array composed of alternating thin plasma and dielectric material. The dispersion relation is obtained by solving a Maxwell wave equation using a method analogous to Kronig-Penny’s problem in quantum mechanics, and it is found that the frequency gap and cut-off appear in the dispersion relation. The frequency gap is shown to become larger with the increase of the plasma density as well as plasma width.

  9. Heating of solar chromosphere by electromagnetic wave absorption in a plasma slab model

    SciTech Connect

    Tsiklauri, D.; Pechhacker, R.

    2011-04-15

    The heating of solar chromospheric internetwork regions by means of the absorption of electromagnetic (EM) waves that originate from the photospheric blackbody radiation is studied in the framework of a plasma slab model. The absorption is provided by the electron-neutral collisions in which electrons oscillate in the EM wave field and electron-neutral collisions damp the EM wave. Given the uncertain nature of the collision cross-section due to the plasma microturbulence, it is shown that for plausible physical parameters, the heating flux produced by the absorption of EM waves in the chromosphere is between 20% and 45% of the chromospheric radiative loss flux requirement. It is also established that there is an optimal value for the collision cross-section, 5x10{sup -18} m{sup 2}, which produces the maximal heating flux of 1990 W m{sup -2}.

  10. Influence of multiple ion species on low-frequency electromagnetic wave instabilities

    SciTech Connect

    Brinca, A.L.; Tsurutani, B.T. )

    1989-10-01

    Analysis of the stability of low-frequency electromagnetic modes excited by coexisting newborn ion species shows that the effect to multiple (singly ionized) ions on wave growth, for given background magnetoplasma conditions and relative densities, depends not only on their mass but also on the physical nature of the wave modes. Whereas each one of the coexisting ion beams tends to stimulate instabilities without undue influence from the other species, if ion masses are disparate, newborn ions of similar masses can strongly catalyze wave growth of fluidlike, nonresonant modes, but only bring about weak growth enhancements in cyclotron resonant instabilities. The authors contrast wave characteristics due to the coexistence of hydronium, water vapor, and oxygen newborn ions with previous results involving cometary hydrogen and oxygen ions and provide a physical interpretation of the results.

  11. Influence of multiple ion species on low-frequency electromagnetic wave instabilities. [in solar wind

    NASA Technical Reports Server (NTRS)

    Brinca, Armando L.; Tsurutani, Bruce T.

    1989-01-01

    The effect of multiple (singly ionized) coexisting newborn ion species on the stability of low-frequency electromagnetic waves was investigated using a plasma model in which solar wind magnetoplasma is made up of isotropic Maxwellian electron and proton populations with a common number density of 4.95/cu cm and temperatures equal to 17.2 eV and 6.9 eV, respectively. It is shown that the effect of multiple ions on wave growth, for given background magnetoplasma conditions and relative densities, depends not only on their mass but also on the physical nature of the wave modes. If the ion masses are disparate, each one of the coexisting ion beams tends to stimulate instabilities without undue influence from the other species. If the masses of newborn ions are similar, they can strongly catalyze wave growth of fluidlike nonresonant modes, but bring about weak growth enhancements in cyclotron resonant instabilities.

  12. Teaching the common aspects in mechanical, electromagnetic and quantum waves at interfaces and waveguides

    NASA Astrophysics Data System (ADS)

    Rojas, R.; Robles, P.

    2011-11-01

    We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and an elementary connection of results for a plane interface to experiments in graphene where the Klein paradox could be tested. The paper is intended for undergraduate level, and a basic knowledge of waves, relativity and quantum physics is required. Its educational purpose is to provide an integrated discussion of waves in order to fit the teaching to the requirement of a shorter sequence of university physics courses.

  13. Vector wave analysis of an electromagnetic high-order Bessel vortex beam of fractional type α.

    PubMed

    Mitri, F G

    2011-03-01

    The scalar wave theory of nondiffracting electromagnetic (EM) high-order Bessel vortex beams of fractional type α has been recently explored, and their novel features and promising applications have been revealed. However, complete characterization of the properties for this new type of beam requires a vector analysis to determine the fields' components in space because scalar wave theory is inadequate to describe such beams, especially when the central spot is comparable to the wavelength (k(r)/k≈1, where k(r) is the radial component of the wavenumber k). Stemming from Maxwell's vector equations and the Lorenz gauge condition, a full vector wave analysis for the electric and magnetic fields is presented. The results are of particular importance in the study of EM wave scattering of a high-order Bessel vortex beam of fractional type α by particles.

  14. A carbonyl iron/carbon fiber material for electromagnetic wave absorption.

    PubMed

    Youh, Meng-Jey; Wu, Hung-Chih; Lin, Wang-Hua; Chiu, Sheng-Cheng; Huang, Chien-Fa; Yu, Hsin-Chih; Hsu, Jen-Sung; Li, Yuan-Yao

    2011-03-01

    A carbonyl iron/carbon fiber material consisting of carbon fibers grown on micrometer-sized carbonyl iron sphere, was synthesized by chemical vapor deposition using a mixture of C2H2 and H2. The hollow-core carbon fibers (outer diameter: 140 nm and inner diameter: 40 nm) were composed of well-ordered graphene layers which were almost parallel to the long axis of the fibers. A composite (2 mm thick) consisting of the carbonyl iron/carbon fibers and epoxy resin demonstrated excellent electromagnetic (EM) wave absorption. Minimum reflection losses of -36 dB (99.95% of EM wave absorption) at 7.6 GHz and -32 dB (99.92% of EM wave absorption) at 34.1 GHz were achieved. The well-dispersed and network-like carbon fibers in the resin matrix affected the dielectric loss of the EM wave while the carbonyl iron affected the magnetic loss.

  15. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    PubMed

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary.

  16. Electromagnetic wave transmission through a subwavelength nano-hole in a two-dimensional plasmonic layer.

    PubMed

    Horing, Norman J M; Miessein, Désiré; Gumbs, Godfrey

    2015-06-01

    An integral equation is formulated to describe electromagnetic wave transmission through a subwavelength nano-hole in a thin plasmonic sheet in terms of the dyadic Green's function for the associated Helmholtz problem. Taking the subwavelength radius of the nano-hole to be the smallest length of the system, we have obtained an exact solution of the integral equation for the dyadic Green's function analytically and in closed form. This dyadic Green's function is then employed in the numerical analysis of electromagnetic wave transmission through the nano-hole for normal incidence of the incoming wave train. The electromagnetic transmission involves two distinct contributions; one emanates from the nano-hole, and the other is directly transmitted through the thin plasmonic layer itself (which would not occur in the case of a perfect metal screen). The transmitted radiation exhibits interference fringes in the vicinity of the nano-hole, and they tend to flatten as a function of increasing lateral separation from the hole, reaching the uniform value of transmission through the sheet alone at large separations.

  17. MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties.

    PubMed

    Lü, Yinyun; Wang, Yiting; Li, Hongli; Lin, Yuan; Jiang, Zhiyuan; Xie, Zhaoxiong; Kuang, Qin; Zheng, Lansun

    2015-06-24

    Composites incorporating ferromagnetic metal nanopartices into a highly porous carbon matrix are promising as electromagnetic wave absorption materials. Such special composite nanomaterials are potentially prepared by the thermal decomposition of metal-organic framework (MOF) materials under controlled atmospheres. In this study, using Co-based MOFs (Co-MOF, ZIF-67) as an example, the feasibility of this synthetic strategy was demonstrated by the successful fabrication of porous Co/C composite nanomaterials. The atmosphere and temperature for the thermal decomposition of MOF precursors were crucial factors for the formation of the ferromagnetic metal nanopartices and carbon matrix in the porous Co/C composites. Among the three Co/C composites obtained at different temperatures, Co/C-500 obtained at 500 °C exhibited the best performance for electromagnetic wave absorption. In particular, the maximum reflection loss (RL) of Co/C-500 reached -35.3 dB, and the effective absorption bandwidth (RL ≤ -10 dB) was 5.80 GHz (8.40 GHz-14.20 GHz) corresponding to an absorber thickness of 2.5 mm. Such excellent electromagnetic wave absorption properties are ascribed to the synergetic effects between the highly porous structure and multiple components, which significantly improved impedance matching.

  18. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    SciTech Connect

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming

    2013-01-15

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  19. Quantifying and predicting meat and meat products quality attributes using electromagnetic waves: an overview.

    PubMed

    Damez, Jean-Louis; Clerjon, Sylvie

    2013-12-01

    The meat industry needs reliable meat quality information throughout the production process in order to guarantee high-quality meat products for consumers. Besides laboratory researches, food scientists often try to adapt their tools to industrial conditions and easy handling devices useable on-line and in slaughterhouses already exist. This paper overviews the recently developed approaches and latest research efforts related to assessing the quality of different meat products by electromagnetic waves and examines the potential for their deployment. The main meat quality traits that can be assessed using electromagnetic waves are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of techniques, from low frequency, high frequency impedance measurement, microwaves, NMR, IR and UV light, to X-ray interaction, involves a wide range of physical interactions between the electromagnetic wave and the sample. Some of these techniques are now in a period of transition between experimental and applied utilization and several sensors and instruments are reviewed.

  20. Quantum Larmor Radiation from a Moving Charge in AN Electromagnetic Plane Wave Background

    NASA Astrophysics Data System (ADS)

    Nakamura, Gen; Yamamoto, Kazuhiro

    2012-09-01

    We extend our previous work [Phys. Rev. D83, 045030 (2011)], which investigated the first-order quantum effect in the Larmor radiation from a moving charge in a spatially homogeneous time-dependent electric field. Specifically, we investigate the quantum Larmor radiation from a moving charge in a monochromatic electromagnetic plane wave background based on the scalar quantum electrodynamics at the lowest order of the perturbation theory. Using the in-in formalism, we derive the theoretical formula of the total radiation energy from a charged particle in the initial states being at rest and being in a relativistic motion. Expanding the theoretical formula in terms of the Planck constant ℏ, we obtain the first-order quantum effect on the Larmor radiation. The quantum effect generally suppresses the total radiation energy compared with the prediction of the classical Larmor formula, which is a contrast to the previous work. The reason is explained by the fact that the radiation from a moving charge in a monochromatic electromagnetic plane wave is expressed in terms of the inelastic collisions between an electron and photons of the background electromagnetic waves.

  1. Electromagnetic design of an all-diffractive millimeter-wave imaging system.

    PubMed

    Chen, Caihua; Shi, Shouyan; Prather, Dennis W

    2004-04-20

    We present the design and electromagnetic analysis of an all-diffractive millimeter-wave imaging system having a field of view of +/- 15 degrees. This system consists of two 16-level diffractive lenses, with the stop in contact with the first lens. By considering the Seidel aberrations for a diffractive lens and applying the corresponding stop shift formula, we established the expressions of third-order wave aberrations for this system. By setting all primary Seidel aberrations to zero and solving the corresponding system of equations, we obtained two sets of solutions for this two-element all-diffractive system, which totally compensate for all Seidel aberrations. To assess image system performance, we apply the finite-difference time-domain technique and a vector plane-wave spectrum method, in combination, to validate the performance of the system. To reduce the computational cost and thereby enable the complete electromagnetic analysis of the system, a four-step analysis procedure has been developed and applied as an electromagnetic system model.

  2. Electromagnetic Design of an All-Diffractive Millimeter-Wave Imaging System

    NASA Astrophysics Data System (ADS)

    Chen, Caihua; Shi, Shouyan; Prather, Dennis W.

    2004-04-01

    We present the design and electromagnetic analysis of an all-diffractive millimeter-wave imaging system having a field of view of +/-15°. This system consists of two 16-level diffractive lenses, with the stop in contact with the first lens. By considering the Seidel aberrations for a diffractive lens and applying the corresponding stop shift formula, we established the expressions of third-order wave aberrations for this system. By setting all primary Seidel aberrations to zero and solving the corresponding system of equations, we obtained two sets of solutions for this two-element all-diffractive system, which totally compensate for all Seidel aberrations. To assess image system performance, we apply the finite-difference time-domain technique and a vector plane-wave spectrum method, in combination, to validate the performance of the system. To reduce the computational cost and thereby enable the complete electromagnetic analysis of the system, a four-step analysis procedure has been developed and applied as an electromagnetic system model.

  3. Radiation of de-excited electrons at large times in a strong electromagnetic plane wave

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2013-12-01

    The late time asymptotics of the physical solutions to the Lorentz-Dirac equation in the electromagnetic external fields of simple configurations-the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave-are found. The solutions to the Landau-Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime.

  4. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    PubMed

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary. PMID:24245312

  5. Effect exerted by a radio wave electromagnetic field on the rheological properties of water and portland-cement systems

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.

    2013-09-01

    We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.

  6. Development of an electromagnetic acoustic transducer (EMAT) for the noncontact excitation of guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2015-03-01

    Fatigue damage can develop in aerospace structures at locations of stress concentration, such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducer development for the specific excitation of the A0 Lamb wave mode is explained. The radial and angular dependency of the excited guided wave pulses at different frequencies were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed and reasonably good agreement with the measured transducer performance was achieved. The developed transducers were employed for defect detection in aluminum components using fully noncontact guided wave measurements. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer. These results provide the basis for the defect characterization in aerospace structures using noncontact guided wave sensors.

  7. ULF Wave Electromagnetic Energy Flux into the Ionosphere: Joule Heating Implications

    NASA Astrophysics Data System (ADS)

    Hartinger, M.; Moldwin, M.; Zou, S.; Bonnell, J. W.; Angelopoulos, V.

    2014-12-01

    Ultra Low Frequency (ULF) waves - such as standing Alfven waves - are one mechanism for coupling the inner magnetosphere to the Earth's ionosphere. For example, they transfer energy from the solar wind or ring current into the Earth's ionosphere via Joule heating. In this study, we use NASA Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite data to investigate the spatial, frequency, and geomagnetic activity dependence of the ULF wave Poynting vector (electromagnetic energy flux) mapped to the ionosphere. We use these measurements to estimate Joule heating rates. We compare these rates to empirical models of Joule heating associated with large scale, static (on ULF wave timescales) current systems, finding that ULF waves usually contribute little to the global, integrated Joule heating rate. However, there are extreme cases when ULF waves make significant contributions to global Joule heating. Finally, we find ULF waves routinely make significant contributions to local Joule heating rates near the noon and midnight local time sectors, where static current systems nominally contribute less to Joule heating; the most important contributions come from lower frequency (<7 mHz) waves.

  8. THE ROLE OF SUPERLUMINAL ELECTROMAGNETIC WAVES IN PULSAR WIND TERMINATION SHOCKS

    SciTech Connect

    Amano, Takanobu; Kirk, John G.

    2013-06-10

    The dynamics of a standing shock front in a Poynting-flux-dominated relativistic flow is investigated by using a one-dimensional, relativistic, two-fluid simulation. An upstream flow containing a circularly polarized, sinusoidal magnetic shear wave is considered, mimicking a wave driven by an obliquely rotating pulsar. It is demonstrated that this wave is converted into large-amplitude electromagnetic waves with superluminal phase speeds by interacting with the shock when the shock-frame frequency of the wave exceeds the proper plasma frequency. The superluminal waves propagate in the upstream, modify the shock structure substantially, and form a well-developed precursor region ahead of a subshock. Dissipation of Poynting flux occurs in the precursor as well as in the downstream region through a parametric instability driven by the superluminal waves. The Poynting flux remaining in the downstream region is carried entirely by the superluminal waves. The downstream plasma is therefore an essentially unmagnetized, relativistically hot plasma with a non-relativistic flow speed, as suggested by observations of pulsar wind nebulae.

  9. Scattering of relativistic and ultra-relativistic electrons by obliquely propagating Electromagnetic Ion Cyclotron waves

    NASA Astrophysics Data System (ADS)

    Uzbekov, Bogdan; Shprits, Yuri Y.; Orlova, Ksenia

    2016-10-01

    Electromagnetic Ion Cyclotron (EMIC) waves are transverse plasma waves that are generated in the Earth magnetosphere by ring current protons with temperature anisotropy in three different bands: below the H+, He+ and O+ ion gyrofrequencies. EMIC events are enhanced during the main phase of a geomagnetic storm when intensifications in the electric field result in enhanced injections of ions and are usually confined to high-density regions just inside the plasmapause or within drainage plumes. EMIC waves are capable of scattering radiation belt electrons and thus provide an important link between the intensification of the electric field, ion populations, and radiation belt electrons. Bounce-averaged diffusion coefficients computed with the assumption of parallel wave propagation are compared to the results of the code that uses the full cold plasma dispersion relation taking into account oblique propagation of waves and higher-order resonances. We study the sensitivity of the scattering rates to a number of included higher-order resonances, wave spectral distribution parameters, wave normal angle distribution parameters, ambient plasma density, and ion composition. Inaccuracies associated with the neglect of higher-order resonances and oblique propagation of waves are compared to potential errors introduced by uncertainties in the model input parameters.

  10. New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten

    1994-01-01

    We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.

  11. Effects of silicic spheres for the suppression of radiation heating using on electromagnetic wave scattering theory

    NASA Astrophysics Data System (ADS)

    Ohkawa, E.; Mikada, H.; Goto, T.; Takekawa, J.; Onishi, K.; Taniguchi, K.; Ashida, Y.

    2009-12-01

    The temperature of external materials of buildings rises when they are exposed to sunlight, and the room temperature rises too if the buildings’ external wall is in the sunlight. Therefore the crisis of electric power supply is frequently caused by air conditioning in midsummer. Recently, it has been experimentally confirmed that such temperature rising of such building materials may be suppressed when they are coated with paint including fine silicic spheres whose diameters are in micron to submicron scale. So we are able to reduce the energy consumption if room temperature is controlled not with any air conditioning but with these paints, and the heat island effects would be lowered. However, the mechanism of this temperature suppression has not been investigated. Experimental consideration of this paint has been done, but the mechanism how the paint controls the temperature rise has hardly been clarified theoretically. Since the best composition of the spheres and their best size are not understood well, it is necessary to theoretically clarify the controlling mechanism for the temperature rise to develop efficient paint. In this study, we aimed to find out the mechanism of the temperature suppression. When the electromagnetic wave at a frequency near eigenfrequencies of atoms, molecules or bindings enters the atoms or the molecules, they resonate and move intensely, and finally rise the temperature. Therefore, we presume that the temperature rise could be controlled if the electromagnetic waves around the eigenfrequencies could be removed. Here, we consider electromagnetic wave of light. Then we assumed that the electromagnetic waves in a certain range of frequencies were scattered to shield the radiated heat energy in the insolation and that the transmitted light through the paint layer is weakened. For verifying the hypotheses and finding the range of effective size, we used the Mie theory of a light scattering theory to calculate the intensity of scattered

  12. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    SciTech Connect

    Stavroula Foteinopoulou

    2003-12-12

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates with the observed

  13. A Lanczos model-order reduction technique to efficiently simulate electromagnetic wave propagation in dispersive media

    NASA Astrophysics Data System (ADS)

    Zimmerling, Jörn; Wei, Lei; Urbach, Paul; Remis, Rob

    2016-06-01

    In this paper we present a Krylov subspace model-order reduction technique for time- and frequency-domain electromagnetic wave fields in linear dispersive media. Starting point is a self-consistent first-order form of Maxwell's equations and the constitutive relation. This form is discretized on a standard staggered Yee grid, while the extension to infinity is modeled via a recently developed global complex scaling method. By applying this scaling method, the time- or frequency-domain electromagnetic wave field can be computed via a so-called stability-corrected wave function. Since this function cannot be computed directly due to the large order of the discretized Maxwell system matrix, Krylov subspace reduced-order models are constructed that approximate this wave function. We show that the system matrix exhibits a particular physics-based symmetry relation that allows us to efficiently construct the time- and frequency-domain reduced-order models via a Lanczos-type reduction algorithm. The frequency-domain models allow for frequency sweeps meaning that a single model provides field approximations for all frequencies of interest and dominant field modes can easily be determined as well. Numerical experiments for two- and three-dimensional configurations illustrate the performance of the proposed reduction method.

  14. IR surface electromagnetic-wave measurement of hydrogen adsorption and surface reconstruction on W(100)

    SciTech Connect

    Hanssen, L.M.

    1985-01-01

    Both the clean and hydrogen covered W(100) surfaces are probed with an inhomogenous electromagnetic mode which is bound to the metal surface. This Surface Electromagnetic Wave (SEW) is generated from a plane-wave spectrum by means of a grating directly etched into the metal surface. A second grating, spaced about 5 cm from the first, transforms the SEW back into a plane wave infrared beam. Near room temperature, the temperature dependence of the magnitude of the SEW signal agrees with the Drude model prediction using the d.c. resistivity. At high temperatures (>1000K) however, SEW signal is attenuated to such a large extent that plane wave radiation generated at the first grating can be detected as well. The first SEW spectrum of surface reconstruction was observed upon hydrogen adsorption on a W(100) sample maintained near room temperature. The reconstruction of the W(100)-H surface is checked and calibrated through LEED observations and thermal desorption measurements. The SEW signal is found to follow a sigmoid curve as a function of coverage. Intensity changes as large as 30% of the clean surface value occur as the state of the W(100)-H surface changes. This extreme sensitivity of the SEW attentuation length to surface reconstruction is shown to be consistent with changes in the diffuse surface scattering component of the conduction electron scattering time.

  15. Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma

    NASA Astrophysics Data System (ADS)

    Wei, Xiaolong; Xu, Haojun; Li, Jianhai; Lin, Min; Su; Chen

    2015-05-01

    An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density ( N e ) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm3 without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the N e achieves nearly uniform within the electronegative core and sharply steepens in the edge. The N e of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10-50 Pa, power in 300-700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4-5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.

  16. Three-dimensional Fréchet sensitivity kernels for electromagnetic wave propagation

    SciTech Connect

    Strickland, C. E.; Johnson, T. C.; Odom, R. I.

    2015-08-28

    Electromagnetic imaging methods are useful tools for monitoring subsurface changes in pore-fluid content and the associated changes in electrical permittivity and conductivity. The most common method for georadar tomography uses a high frequency ray-theoretic approximation that is valid when material variations are sufficiently small relative to the wavelength of the propagating wave. Georadar methods, however, often utilize electromagnetic waves that propagate within heterogeneous media at frequencies where ray theory may not be applicable. In this paper we describe the 3-D Fréchet sensitivity kernels for EM wave propagation. Various data functional types are formulated that consider all three components of the electric wavefield and incorporate near-, intermediate-, and far-field contributions. We show that EM waves exhibit substantial variations for different relative source-receiver component orientations. The 3-D sensitivities also illustrate out-of-plane effects that are not captured in 2-D sensitivity kernels and can influence results obtained using 2-D inversion methods to image structures that are in reality 3-D.

  17. One-way absorber for linearly polarized electromagnetic wave utilizing composite metamaterial.

    PubMed

    Zhao, Junming; Sun, Liang; Zhu, Bo; Feng, Yijun

    2015-02-23

    This paper presents the proposal and practical design of a one-way absorber for selective linearly polarized electromagnetic (EM) wave. The EM wave polarization rotation property has been combined with polarization selective absorption utilizing a composite metamaterial slab. The energy of certain linearly polarized EM wave can be absorbed along one particular incident direction, but will be fully transmitted through the opposite direction. For the cross polarized wave, the direction dependent propagation properties are totally reversed. A prototype designed with a total slab thickness of only one-sixth of the operating wavelength is verified through both full-wave simulation and experimental measurement in the microwave regime. It achieves absorption efficiency over 83% along one direction, while transmission efficiency over 83% along the opposite direction for one particular linearly polarized wave. The proposed one-way absorber can be applied in EM devices achieving asymmetric transmission for linearly polarized wave or polarization control. The composite metamaterial that combines different functionalities into one design may provide more potential in metamaterial designs for various applications.

  18. Noncontact excitation of guided waves (A0 mode) using an electromagnetic acoustic transducer (EMAT)

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2016-02-01

    Fatigue damage can develop in aircraft structures at locations of stress concentration, such as fasteners, and has to be detected before reaching a critical size to ensure safe aircraft operation. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Electromagnetic acoustic transducers (EMAT) for the noncontact excitation of guided ultrasonic waves were developed. The transducer development for the specific excitation of the A0 Lamb wave mode with an out-of-plane Lorentz force is explained. The achieved radial and angular dependency of the excited guided wave pulses were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed. The application of the developed transducers for defect detection in aluminum components using fully noncontact guided wave measurements was demonstrated. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer.

  19. Excitation of electromagnetic ion cyclotron waves under different geomagnetic activities: THEMIS observation and modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Qinghua; Xiao, Fuliang; Shi, Jiankui; Yang, Chang; He, Yihua; Tang, Lijun

    2013-01-01

    Understanding excitation of electromagnetic ion cyclotron (EMIC) waves remains a considerable scientific challenge in the magnetospheric physics. Here we adopt correlated data from the Thermal Emission Imaging System (THEMIS) spacecraft under low (Kp = 1+) and medium (Kp = 4) geomagnetic activities to investigate the favorable conditions for the excitation of EMIC waves. We utilize a sum of bi-Maxwellian components and kappa components to fit the observed ion (6-25 keV) distributions collected by the electrostatic analyzer (ESA) onboard the THEMIS spacecraft. We show that the kappa distribution models better and more smoothly with the observations. Then we evaluate the local growth rate and path-integrated gain of EMIC waves by bi-Maxwellian and kappa distributions, respectively. We demonstrate that the path-integrated wave gain simulated from the kappa distribution is consistent with observations, with intensities 24 dB in H+ band and 33 dB in He+ band. However, bi-Maxwellian distribution tends to overestimate the wave growth rate and path-integrated gain, with intensities 49 dB in H+ band and 48 dB in He+ band. Moreover, compared to the He+ band, a higher proton anisotropy is needed to excite the H+ band waves. The current study presents a further observational support for the understanding of EMIC wave instability under different geomagnetic conditions and suggests that the kappa-type distributions representative of the power law spectra are probably ubiquitous in space plasmas.

  20. Possible variations of E-layer electromagnetic fields by acoustic waves above earthquake preparation regions

    NASA Astrophysics Data System (ADS)

    Meister, C.-V.; Mayer, B.; Hoffmann, D. H. H.

    2012-04-01

    The many-fluid magnetohydrodynamic theory is applied to describe the modification of the electromagnetic field of the ionospheric E-layer by acoustic-type waves. These waves originate from lower altitudes and may be caused by earthquake preparation processes. In comparison to former works, the different stratification of the positively and negatively charged ionospheric particles and of the neutral constituents is taken into account. There also the influence of the mean electric field on the different hight scales of the plasma parameters is discussed. Besides, the hight scales of the electric and magnetic wave fields are modeled. It is shown that at E-layer altitudes the acoustic waves may be converted into Alfvén waves. The dependence of these waves on the height scales of the plasma parameters of the particles and on the momentum transport between the charged and neutral particles is analysed. First estimates of the temperature variations within the E-layer because of the assumed acoustic-type waves of seismic origin are made.

  1. Stimulated Electromagnetic Emission Indicator of Glow Plasma Discharges from Ionospheric HF Wave Transmissions with HAARP

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Scales, W.; Briczinski, S. J.; Fu, H.; Mahmoudian, A.; Samimi, A.

    2012-12-01

    High power radio waves resonantly interact with to accelerate electrons for production of artificial aurora and plasma clouds. These plasma clouds are formed when the HF frequency is tuned near a harmonic of the electron cyclotron frequency. At a narrow band resonance, large electrostatic fields are produced below the F-layer and the neutral atmosphere breaks down with a glow plasma discharge. The conditions for this resonance are given by matching the pump wave frequency and wave-number with the sum of daughter frequencies and wave-numbers for several plasma modes. The most likely plasma mode that accelerates the electrons is the electron Bernstein wave in conjunction with an ion acoustic wave. Both upper hybrid and whistler mode waves are also possible sources of electron acceleration. To determine the plasma process for electron acceleration, stimulated electromagnetic emissions are measured using ground receivers in a north-south chain from the HAARP site. Recent observations have shown that broad band spectral lines downshifted from the HF pump frequency are observed when artificial plasma clouds are formed. For HF transmissions are the 2nd, 3rd, and 4th gyro harmonic, the downshifted indicators are found 500 Hz, 20 kHz, and 140 kHz, respectively, from the pump frequency. This Indicator Mode (IM) anticipates that a plasma layer will be formed before it is recorded with an ionosonde or optical imager.

  2. Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma

    NASA Astrophysics Data System (ADS)

    Jia, Jieshu; Yuan, Chengxun; Liu, Sha; Yue, Feng; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang; Wu, Jian; Li, Hui

    2016-04-01

    The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.

  3. Multiple scattering of electromagnetic waves by an aggregate of uniaxial anisotropic spheres.

    PubMed

    Li, Zheng-Jun; Wu, Zhen-Sen; Shi, Yan'e; Bai, Lu; Li, Hai-Ying

    2012-01-01

    An exact analytical solution is obtained for the scattering of electromagnetic waves from a plane wave with arbitrary directions of propagation and polarization by an aggregate of interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes. The expansion coefficients of a plane wave with arbitrary directions of propagation and polarization, for both TM and TE modes, are derived in terms of spherical vector wave functions. The effects of the incident angle α and the polarization angle β on the radar cross sections (RCSs) of several types of collective uniaxial anisotropic spheres are numerically analyzed in detail. The characteristics of the forward and backward RCSs in relation to the incident wavelength are also numerically studied. Selected results on the forward and backward RCSs of several types of square arrays of SiO₂ spheres illuminated by a plane wave with different incident angles are described. The accuracy of the expansion coefficients of the incident fields is verified by comparing them with the results obtained from references when the plane wave is degenerated to a z-propagating and x- or y-polarized plane wave. The validity of the theory is also confirmed by comparing the numerical results with those provided by a CST simulation.

  4. Cherenkov radiation of electromagnetic waves by electron beams in the absence of an external magnetic field

    PubMed

    Nusinovich; Bliokh

    2000-08-01

    In conventional sources of coherent Cherenkov electromagnetic radiation, the electrons move linearly, guided by external magnetic fields. In the absence of such fields, the electrons can move radially, being affected by the beam self-fields as well as by the radial component of the electric field of the wave. This radial motion can, first, improve the coupling of electrons to the field of a slow wave localized near the wall of a slow-wave structure, and second, cause an energy exchange between the electrons and the wave due to an additional transverse interaction. This interaction, in particular, can lead to an experimentally observed excitation of nonsymmetric transverse electric waves in Cherenkov devices. In plasma-filled sources, the beam self-fields can be compensated for by ions, leading to a known ion focusing of the beams. In such regimes, the beam can be surrounded by an ion layer creating a potential well for electrons which can be displaced from stationary trajectories by transverse fields of the wave. The operation of such sources when the presence of ions and the radial electric field of the wave play competing focusing and defocusing roles, and electron interception by the walls restricts the output power level, is analyzed in stationary and nonstationary regimes.

  5. Slow-light Airy wave packets and their active control via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Hang, Chao; Huang, Guoxiang

    2013-07-01

    We propose a scheme to generate (3+1)-dimensional slow-light Airy wave packets in a resonant Λ-type three-level atomic gas via electromagnetically induced transparency. We show that in the absence of dispersion the Airy wave packets formed by a probe field consist of two Airy wave packets accelerated in transverse directions and a longitudinal Gaussian pulse with a constant propagating velocity lowered to 10-5c (c is the light speed in vacuum). We also show that in the presence of dispersion it is possible to generate another type of slow-light Airy wave packet consisting of two Airy beams in transverse directions and an Airy wave packet in the longitudinal direction. In this case, the longitudinal velocity of the Airy wave packet can be further reduced during propagation. Additionally, we further show that the transverse accelerations (or bending) of the both types of slow-light Airy wave packets can be completely eliminated and the motional trajectories of them can be actively manipulated and controlled by using a Stern-Gerlach gradient magnetic field.

  6. Electromagnetic scattering by underground targets using the cylindrical-wave approach

    NASA Astrophysics Data System (ADS)

    Frezza, Fabrizio; Pajewski, Lara; Ponti, Cristina; Schettini, Giuseppe

    2010-05-01

    The electromagnetic detection of buried cylindrical targets, as structures encountered in the inspection of archaeological sites, or pipes, conduits, and tunnels, has been recently addressed in several works. The development of techniques for investigating cylindrical inhomogeneities embedded in a dielectric medium, is a challenging topic also in several other applications, including non-destructive evaluation and testing in civil engineering, and medical imaging. Ground-penetrating radars (GPRs) are extremely useful in probing subsurface targets through electromagnetic waves. These tools solve an inverse problem, to estimate the electromagnetic properties of a target from field measurements. Different algorithms are employed to post-process the collected experimental data: most of them need a fast and accurate forward solver, to perform repeated evaluations of the scattered field due to known targets, and to be used in combination with some optimization techniques. In this paper, we present an efficient spectral-domain method that we developed for the solution of the two-dimensional electromagnetic plane-wave forward scattering by a finite set of perfectly-conducting or dielectric cylinders, buried in a dielectric half-space or in a finite-thickness slab. The technique is called Cylindrical-Wave Approach (CWA), because the field scattered by the targets is represented in terms of a superposition of cylindrical waves. Use is made of the plane-wave spectrum to take into account the interaction of such waves with the planar interfaces. Suitable reflected and transmitted cylindrical functions are defined; adaptive integration procedures of Gaussian type, together with acceleration algorithms, are employed for the numerical solution of the relevant spectral integrals. All the multiple-reflection phenomena are taken into account. The method may deal with both TM and TE polarization fields; it can be applied for arbitrary values of permittivity, radius, and depth, of the

  7. Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities

    NASA Astrophysics Data System (ADS)

    Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.

    A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the

  8. Searching for electromagnetic counterpart of LIGO gravitational waves in the Fermi GBM data with ADWO

    NASA Astrophysics Data System (ADS)

    Bagoly, Zsolt; Szécsi, Dorottya; Balázs, Lajos G.; Csabai, István; Horváth, István; Dobos, László; Lichtenberger, János; Tóth, L. Viktor

    2016-09-01

    Aims: The Fermi collaboration identified a possible electromagnetic counterpart of the gravitational wave event of September 14, 2015. Our goal is to provide an unsupervised data analysis algorithm to identify similar events in Fermi's Gamma-ray Burst Monitor CTTE data stream. Methods: We are looking for signals that are typically weak. Therefore, they can only be found by a careful analysis of count rates of all detectors and energy channels simultaneously. Our Automatized Detector Weight Optimization (ADWO) method consists of a search for the signal, and a test of its significance. Results: We developed ADWO, a virtual detector analysis tool for multi-channel multi-detector signals, and performed successful searches for short transients in the data-streams. We have identified GRB150522B, as well as possible electromagnetic candidates of the transients GW150914 and LVT151012. Conclusions: ADWO is an independently developed, unsupervised data analysis tool that only relies on the raw data of the Fermi satellite. It can therefore provide a strong, independent test to any electromagnetic signal accompanying future gravitational wave observations.

  9. Study on the characteristics of magneto-sensitive electromagnetic wave-absorbing properties of magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Yang, Pingan; Fu, Jie; Liu, Shuzhi; Qi, Song

    2016-08-01

    Magnetorheological (MR) materials are a class of materials whose mechanical and electrical properties can be reversible controlled by the magnetic field. In this study, we pioneered research on the effect of a uniform magnetic field with different strengths and directions on the microwave-absorbing properties of magnetorheological elastomers (MREs), in which the ferromagnetic particles are flower-like carbonyl iron powders (CIPs) prepared by an in situ reduction method. The electromagnetic (EM) absorbing properties of the composites have been analyzed by vector network analysis with the coaxial reflection/transmission technique. Under the magnetic field, the columnar or chainlike structures were formed, which allows EM waves to penetrate. Meanwhile, stronger Debye dipolar relaxation and attenuation constant have been obtained when changing the direction of the applied magnetic field. Compared with untreated MREs, not only have the minimum reflection loss (RL) and the effective absorption bandwidth (below ‑20 dB) greatly increased, the frequencies of the absorbing peaks shift about 15%. This suggests that MREs are a magnetic-field-sensitive electromagnetic wave-absorbing material and have great potential in applications such as in anti-radar camouflage, due to the fact that radar can continuously conduct detection at many electromagnetic frequencies, while the MR materials can adjust the microwave-absorption peak according to the radar frequency.

  10. Study on the characteristics of magneto-sensitive electromagnetic wave-absorbing properties of magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Yang, Pingan; Fu, Jie; Liu, Shuzhi; Qi, Song

    2016-08-01

    Magnetorheological (MR) materials are a class of materials whose mechanical and electrical properties can be reversible controlled by the magnetic field. In this study, we pioneered research on the effect of a uniform magnetic field with different strengths and directions on the microwave-absorbing properties of magnetorheological elastomers (MREs), in which the ferromagnetic particles are flower-like carbonyl iron powders (CIPs) prepared by an in situ reduction method. The electromagnetic (EM) absorbing properties of the composites have been analyzed by vector network analysis with the coaxial reflection/transmission technique. Under the magnetic field, the columnar or chainlike structures were formed, which allows EM waves to penetrate. Meanwhile, stronger Debye dipolar relaxation and attenuation constant have been obtained when changing the direction of the applied magnetic field. Compared with untreated MREs, not only have the minimum reflection loss (RL) and the effective absorption bandwidth (below -20 dB) greatly increased, the frequencies of the absorbing peaks shift about 15%. This suggests that MREs are a magnetic-field-sensitive electromagnetic wave-absorbing material and have great potential in applications such as in anti-radar camouflage, due to the fact that radar can continuously conduct detection at many electromagnetic frequencies, while the MR materials can adjust the microwave-absorption peak according to the radar frequency.

  11. Statistical study of seismo-electromagnetic perturbations observed by the DEMETER wave instruments

    NASA Astrophysics Data System (ADS)

    Pisa, David; Santolik, Ondrej; Parrot, Michel

    We present a statistical study of electromagnetic perturbations in the upper ionosphere observed by the DEMETER satellite (launched in 2004, altitude of orbit about 660 km, still operating). Data intervals measured within 330 km from large (M¿=5.0) surface (depth¡40 km) earthquakes are analyzed. Time intervals spanning from 5 days before to 3 days after the main shock are checked for the presence of seismo-electromagnetic effects, while the other data from the same geographical location are used in order to estimate the common, seismically unperturbed, background. Previous results in the VLF range (20 Hz -18 kHz) have shown that there is a statistically significant decrease of wave intensity shortly (less than 4 hours) before the time of the main shock. In this study all the available DEMETER data are used and all the frequency range from ULF to HF (DC -3.175 MHz) is covered. Various types of electromagnetic waves that could be responsible for this effect are discussed, as well as its dependence on the focal mechanism of an imminent earthquake.

  12. Electromagnetic Ion Cyclotron Waves near the Plasmapause: A CLUSTER Case Study

    NASA Astrophysics Data System (ADS)

    Fraser, B. J.; Liu, Y.; Menk, F. W.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) waves in the Pc1 ultra-low frequency wave band (0.2-5Hz) observed in the plasmasphere and magnetosphere are generated by micro-scale instabilities associated with keV energetic protons of ring current origin. This case study presents a typical EMIC wave event with frequency 1.8-3.5 Hz observed by the four Cluster spacecraft when passing through perigee (L ~ 4:2) and moving northward on 2 November 2001 around 08 MLT. The event occurred around the magnetic equatorial plane within magnetic latitude range ±18 degrees with a short duration of 50 minutes. The associated cold electron density data show the wave power was confined within the narrow shell of the plasmapause where the electron density gradient decreased from 30-80 cm-3 to 20 cm-3. The radial scale size of the wave region is estimated at ~ 0:77 Re. The wave polarization was dominantly left-handed around the equatorial region and inner side of source region, but appeared right-handed close to the outer edge of the plasmapause and at higher latitudes. The Poynting flux and minimum variance analysis indicate that the wave energy was mainly transported towards high latitudes though oblique propagation was seen around the equatorial region. Enhanced H+, He+ and O+ particle energy fluxes were seen during the wave event over energy range ~25eV-40keV. Unfortunately the lower energy cold plasma composition data were not available. These observations suggest the waves originated around the equatorial region in the high density outer plasmasphere-plasmapause which overlaps the ring current; ideal conditions for wave generation by the ion cyclotron instability.

  13. Electromagnetic wave scattering in a two-layer anisotropic random medium

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Kong, J. A.

    1985-01-01

    For electromagnetic wave propagation and scattering in an anisotropic random medium, the Dyson equation for the mean field and the Bethe-Salpeter equation for the correlation or the covariance of the field were derived. With the random permittivity expressed in a general anisotropic form, the bilocal and the nonlinear approximations are employed to solve the Dyson equation, and the ladder approximation to solve the Bethe-Salpeter equation. The mean dyadic Green's function for a two-layer anisotropic random medium with arbitrary three-dimensional correlation functions has been investigated with the zeroth-order solutions to the Dyson equation under the nonlinear approximation. The effective propagation constants are calculated for the four characteristic waves associated with the coherent vector fields, propagating in an anisotropic random-medium layer, which are the ordinary and extraordinary waves with upward- and downward-propagating vectors.

  14. Making structured metals transparency for broadband and wide-incidence-angle electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Fan, Renhao; Peng, Ruwen; Huang, Xianrong; Wang, Mu

    2014-03-01

    Very recently, we have demonstrated that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic (EM) waves under oblique incidence. However, the oblique-incidence geometry, is inconvenient for the technological applications. To overcome this drawback, here we instead use oblique metal gratings with optimal tilt angles to achieve normal-incidence broadband transparence for EM waves. Further we use two-dimensional periodic metallic cuboids to achieve broadband and broad-angle high transmission and antireflection. By introducing such metallic cuboids arrays into silicon solar cells, we find that high performance of light trapping in the cells can be obtained with a significant enhancement of the ultimate quantum efficiency. The structured metals, which achieve broadband and broad-angle high transmission for EM waves, may have many other potential applications, such as transparent conducting panels, white-beam polarizers, and stealth objects.

  15. Numerical calculation of electromagnetic eigenfields and dispersion relations for slow-wave device simulation

    SciTech Connect

    Oslake, J.M.; Verboncoeur, J.P.; Birdsall, C.K.

    1996-12-31

    Slow-wave structures support microwave amplification via electromagnetic coupling with an injected electron beam. Critical in the design of such devices is the dependence of the dispersion relation on the geometry of the guiding structure. The dispersion relation provides phase and group velocities, and the fields provide the impedance as seen by the beam. To this end, a computer model is developed which first numerically solves a wave equation in finite difference form subject to boundary conditions periodic in z and conducting elsewhere. For decades, the desired dispersion and impedance have been obtained experimentally from cold tests (no beam) on slow-wave structures by varying structure dimensions. However, the numerical approach condenses this process to a few minutes of simulation.

  16. On Maxwell’s discovery of electromagnetic waves and the gauge condition

    NASA Astrophysics Data System (ADS)

    Leung, P. T.

    2015-03-01

    The original ‘theoretical discovery’ of electromagnetic waves by Maxwell is analysed and presented in modern notation. In light of Maxwell’s well-known prophetic dedication to the concept of the vector potential, it is interesting to reveal his derivation of the wave equation for this potential without the application of any gauge condition. This is to contrast with typical approaches students learn from standard textbooks for the derivation of the wave equation in various forms. It is in our opinion that intuition and insight, rather than logical deduction, must have played a more significant role in Maxwell’s original discovery, as is not uncommon with discoveries made by the pioneers in science.

  17. Van Allen Probe Spacecraft Potential Fluctuations and Electromagnetic Waves: A Parameter Space Survey

    NASA Astrophysics Data System (ADS)

    Sturner, A. P.; Ergun, R.; Malaspina, D.

    2013-12-01

    The study of chorus waves, an important mechanism for the energization and loss of particles in the radiation belts and inner magnetosphere, has been significantly aided by observations of fluctuations in a spacecraft's potential, which have been shown to be correlated with plasma density structures. However, recent analysis of Van Allen Probe data suggests that the oscillatory electromagnetic fields of chorus waves may also induce spacecraft potential fluctuations via enhanced photoelectron escape, calling into question our understanding of chorus waves. We use a fully 3D particle tracing simulation to study the equilibrium potential of a model Van Allen Probe spacecraft under various plasma conditions, varying thermal temperature, electric and magnetic field strength, plasma density, etc., to better understand the parameter space under which enhanced photoelectron escape becomes important.

  18. Nonlinear interaction of intense electromagnetic waves with a magnetoactive electron-positron-ion plasma

    SciTech Connect

    Khorashadizadeh, S. M.; Rastbood, E.; Zeinaddini Meymand, H.; Niknam, A. R.

    2013-08-15

    The nonlinear coupling between circularly polarized electromagnetic (CPEM) waves and acoustic-like waves in a magnetoactive electron-positron-ion (e-p-i) plasma is studied, taking into account the relativistic motion of electrons and positrons. The possibility of modulational instability and its growth rate as well as the envelope soliton formation and its characteristics in such plasmas are investigated. It is found that the growth rate of modulation instability increases in the case that ω{sub c}/ω<1 (ω{sub c} and ω are the electron gyrofrequency and the CPEM wave frequency, respectively) and decreases in the case that ω{sub c}/ω>1. It is also shown that in a magnetoactive e-p-i plasma, the width of bright soliton increases/decreases in case of (ω{sub c}/ω)<1/(ω{sub c}/ω)>1 by increasing the magnetic field strength.

  19. PlaneWave Admittance Method- a novel approach for determining the electromagnetic modes in photonic structures.

    PubMed

    Dems, Maciej; Kotynski, Rafal; Panajotov, Krassimir

    2005-05-01

    In this article we present a novel approach for determining the electromagnetic modes of photonic multilayer structures. We combine the plane wave expansion method with the method of lines resulting in a fast and accurate computational technique which we named the plane wave admittance method. In addition, we incorporate perfectly matched layers at the boundaries parallel to the multilayer surfaces which allow for easy determination of leaky modes. The convergence of the method is verified for the case of photonic crystal slab showing very good agreement with the results obtained with full three-dimensional plane wave expansion method while the numerical effort is largely reduced. The numerical implementation of the method will be soon available on the web.

  20. Interaction of terahertz electromagnetic waves with periodic gratings of graphene micro- and nanoribbons

    NASA Astrophysics Data System (ADS)

    Golovanov, O. A.; Makeeva, G. S.; Rinkevich, A. B.

    2016-02-01

    An original mathematical model of the interaction of terahertz (THz) electromagnetic waves with periodic gratings of graphene micro- and nanoribbons is based on the solution to the boundary-value problem of diffraction for the Maxwell equations with electrodynamic boundary conditions and material equations. The electrodynamic calculations of the transmission coefficients of the TEM wave versus frequency are performed for the 2D grating of graphene micro- and nanoribbons at several chemical potentials, grating periods, and geometrical sizes of ribbons. The results of the calculations show that the transmission spectrum exhibits a minimum in the THz range if the electric field of the wave is perpendicular to the graphene ribbons. The minimum is due to the plasmon resonance of the fundamental mode in graphene, and the absorption peaks at higher frequencies in the upper part of the THz range are related to the highorder plasmon modes.

  1. Non-Abelian evolution of electromagnetic waves in a weakly anisotropic inhomogeneous medium

    SciTech Connect

    Bliokh, K. Yu.; Frolov, D. Yu.; Kravtsov, Yu. A.

    2007-05-15

    A theory of electromagnetic wave propagation in a weakly anisotropic smoothly inhomogeneous medium is developed, based on the quantum-mechanical diagonalization procedure applied to Maxwell equations. The equations of motion for the translational (ray) and intrinsic (polarization) degrees of freedom are derived ab initio. The ray equations take into account the optical Magnus effect (spin Hall effect of photons) as well as trajectory variations owing to the medium anisotropy. Polarization evolution is described by the precession equation for the Stokes vector. In the generic case, the evolution of wave turns out to be non-Abelian: it is accompanied by mutual conversion of the normal modes and periodic oscillations of the ray trajectories analogous to electron zitterbewegung. The general theory is applied to examples of wave evolution in media with circular and linear birefringence.

  2. Selecting Gravitational Wave Candidates for Electromagnetic Follow-up: Advanced LIGO/Virgo's Decision Making Process

    NASA Astrophysics Data System (ADS)

    Cho, Min-A.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-03-01

    Some of the most violent events in the universe are bright in both their gravitational wave (GW) emission and electromagnetic (EM). This means that prospects for multi-messenger astronomy increase as more and more detectors join the search for gravitational waves. Here I present the protocol created by members of Advanced LIGO/Virgo's EM Follow-up Program which ultimately results in alerting its astronomy partners or not. I discuss the series of checks and questions performed by humans (follow-up advocates and control room personnel) and automated online software (Approval Processor). This talk will follow the fate of the gravitational wave candidate event after it first enters Advanced LIGO/Virgo's online candidate event database. We gratefully acknowledge the support of the U.S. National Science Foundation through Grant PHY-1404121.

  3. Ground state and the spin precession of the Dirac electron in counterpropagating plane electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Borzdov, G. N.

    2016-06-01

    The fundamental solution of the Dirac equation for an electron in an electromagnetic field with harmonic dependence on space-time coordinates is obtained. The field is composed of three standing plane harmonic waves with mutually orthogonal phase planes and the same frequency. Each standing wave consists of two eigenwaves with different complex amplitudes and opposite directions of propagation. The fundamental solution is obtained in the form of the projection operator defining the subspace of solutions to the Dirac equation. It is illustrated by the analysis of the ground state and the spin precession of the Dirac electron in the field of two counterpropagating plane waves with left and right circular polarizations. Interrelations between the fundamental solution and approximate partial solutions is discussed and a criterion for evaluating the accuracy of approximate solutions is suggested.

  4. Monitoring dynamic reactions of red blood cells to UHF electromagnetic waves radiation using a novel micro-imaging technology.

    PubMed

    Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong

    2012-12-01

    Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.

  5. Characteristics of the tail of Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1986-01-01

    The physical structure and characteristics of the Comet Giacobini-Zinner tail are described. Variations in the vector B-field configuration, the electron distribution function, the energetic ion population, and the electromagnetic and electrostatic plasma wave spectra are analyzed. The ICE detected a two-lobe magnetic field configuration and a narrow central plasma sheet. Additional analyses proposed for the Giacobini-Zinner tail data are discussed.

  6. Bragg scattering of electromagnetic waves by microwave-produced plasma layers

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Zhang, Y. S.

    1990-01-01

    A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependencies of breakdown conditions on the pressure and pulse length are examined. The results are shown to be consistent with the appearance of tail erosion of the microwave pulse caused by air breakdown. A Bragg scattering experiment, using the plasma layers as a Bragg reflector, is then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The experimental results are found to agree very well with the theory.

  7. Numerical study for electromagnetic wave emission in thin samples of intrinsic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Matsumoto, H.; Ohta, Y.; Machida, M.

    2011-11-01

    Emission of THz electromagnetic waves from thin samples of intrinsic Josephson junctions (IJJ’s) is numerically studied, using the xz-model. We show that the spatial symmetry of the electromagnetic excitations corresponding to the π-cavity mode is different from that of the 2 π-cavity mode in the IJJ’s where the junction parameters such as the Josephson critical current are weakly inhomogeneous. In such IJJ’s the emission in the [0 0 1] direction, which is forbidden in the dipole emission, appears at the π-cavity mode resonance, whereas it is not observed in the 2 π-cavity mode resonance. It is also shown that the strong emission occurs when the transition between branches in the I- V characteristics takes place.

  8. Thermo-optic design for microwave and millimeter-wave electromagnetic power microsensors.

    PubMed

    Grasso, Salvatore; Bellucci, Marco; Cocorullo, Giuseppe; Della Corte, Francesco G; Lodice, Mario; Rendina, Ivo

    2002-06-20

    Rendina et al. recently proposed the original configuration of an electromagnetic power sensor for microwaves and millimeter waves that is based on an optically interrogated all-silicon chip [Electron. Lett. 35, 1748 (1999)]. Here we theoretically analyze and discuss in detail the performances of such a new class of nonperturbing and wideband probe in terms of sensitivity, resolution, intrinsic detectivity, linearity, and response time. Good agreement between theory and experiments is demonstrated. In particular, minimum resolutions of approximately 1 mW/cm2 are obtained at frequencies beyond 10 GHz. The dependence of response on the geometrical and electromagnetic parameters of the sensing element is analyzed, and on this basis the possibility of achieving optimized configurations is discussed.

  9. Bursty, Broadband Electromagnetic Waves Associated with Three-Dimensional Nulls Observed in Turbulent Magnetosheath Reconnection

    NASA Technical Reports Server (NTRS)

    Adrian, Mark L.; Wendel, D. E.

    2012-01-01

    We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions - typically detected in the layers immediately outside of the current layer proper - form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed near the local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X-IO-nulls and magnetic spine connected null pairs, as well as their correlation - if any - to the amount of magnetic energy converted by the process of magnetic reconnection.

  10. Transition operators in electromagnetic-wave diffraction theory. II - Applications to optics

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    1993-01-01

    The theory developed by Hahne (1992) for the diffraction of time-harmonic electromagnetic waves from fixed obstacles is briefly summarized and extended. Applications of the theory are considered which comprise, first, a spherical harmonic expansion of the so-called radiation impedance operator in the theory, for a spherical surface, and second, a reconsideration of familiar short-wavelength approximation from the new standpoint, including a derivation of the so-called physical optics method on the basis of quasi-planar approximation to the radiation impedance operator, augmented by the method of stationary phase. The latter includes a rederivation of the geometrical optics approximation for the complete Green's function for the electromagnetic field in the presence of a smooth- and a convex-surfaced perfectly electrically conductive obstacle.

  11. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  12. Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.

    PubMed

    Shukla, P K; Eliasson, B; Stenflo, L

    2012-07-01

    We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.

  13. Theory and observations of electromagnetic ion cyclotron waves in Saturn's inner magnetosphere

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1993-01-01

    High-resolution Voyager 1 magnetic field observations of Saturn's inner magnetosphere are examined for the presence of ULF waves. Quasi-circular left-hand polarized transverse oscillations are found in the near-equatorial region of 5-7 Rs with a wave period about 10 s and peak amplitude of about 2 nT. The wave is identified as the electromagnetic oxygen cyclotron mode occurring at a frequency just below the O(+) ion cyclotron frequency. A theoretical model of wave excitation based on gyroresonant coupling through a temperature anisotropy of O(+) pickup ions is developed which accounts for the principal features of the wave spectrum. It is hypothesized that wave-particle interactions provide a level of scattering commensurate with the weak pitch angle diffusion regime but nonetheless one that regulates and maintains a constant thermal anisotropy of ions along the magnetic field. Arguments are also presented that O(+) was the dominant thermal ion of the Dione-Tethys plasma torus at the time of the Pioneer 11 encounter the year previous to the Voyager 1 measurements.

  14. Theory and observations of electromagnetic ion cyclotron waves in Saturn's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Barbosa, D. D.

    1993-06-01

    High-resolution Voyager 1 magnetic field observations of Saturn's inner magnetosphere are examined for the presence of ULF waves. Quasi-circular left-hand polarized transverse oscillations are found in the near-equatorial region of 5-7 Rs with a wave period about 10 s and peak amplitude of about 2 nT. The wave is identified as the electromagnetic oxygen cyclotron mode occurring at a frequency just below the O(+) ion cyclotron frequency. A theoretical model of wave excitation based on gyroresonant coupling through a temperature anisotropy of O(+) pickup ions is developed which accounts for the principal features of the wave spectrum. It is hypothesized that wave-particle interactions provide a level of scattering commensurate with the weak pitch angle diffusion regime but nonetheless one that regulates and maintains a constant thermal anisotropy of ions along the magnetic field. Arguments are also presented that O(+) was the dominant thermal ion of the Dione-Tethys plasma torus at the time of the Pioneer 11 encounter the year previous to the Voyager 1 measurements.

  15. Excitation and detection of shear horizontal waves with electromagnetic acoustic transducers for nondestructive testing of plates

    NASA Astrophysics Data System (ADS)

    Ma, Qingzeng; Jiao, Jingpin; Hu, Ping; Zhong, Xi; Wu, Bin; He, Cunfu

    2014-03-01

    The fundamental shear horizontal(SH0) wave has several unique features that are attractive for long-range nondestructive testing(NDT). By a careful design of the geometric configuration, electromagnetic acoustic transducers(EMATs) have the capability to generate a wide range of guided wave modes, such as Lamb waves and shear-horizontal(SH) waves in plates. However, the performance of EMATs is influenced by their parameters. To evaluate the performance of periodic permanent magnet(PPM) EMATs, a distributed-line-source model is developed to calculate the angular acoustic field cross-section in the far-field. Numerical analysis is conducted to investigate the performance of such EMATs with different geometric parameters, such as period and number of magnet arrays, and inner and outer coil widths. Such parameters have a great influence on the directivity of the generated SH0 waves that arises mainly in the amplitude and width of both main and side lobes. According to the numerical analysis, these parameters are optimized to obtain better directivity. Optimized PPM EMATs are designed and used for NDT of strip plates. Experimental results show that the lateral boundary of the strip plate has no perceivable influence on SH0-wave propagation, thus validating their used in NDT. The proposed model predicts the radiation pattern of PPM EMATs, and can be used for their parameter optimization.

  16. ULF wave electromagnetic energy flux into the ionosphere: Joule heating implications

    NASA Astrophysics Data System (ADS)

    Hartinger, M. D.; Moldwin, M. B.; Zou, S.; Bonnell, J. W.; Angelopoulos, V.

    2015-01-01

    Ultralow-frequency (ULF) waves—in particular, Alfvén waves-transfer energy into the Earth's ionosphere via Joule heating, but it is unclear how much they contribute to global and local heating rates relative to other energy sources. In this study we use Time History of Events and Macroscale Interactions during Substorms satellite data to investigate the spatial, frequency, and geomagnetic activity dependence of the ULF wave Poynting vector (electromagnetic energy flux) mapped to the ionosphere. We use these measurements to estimate Joule heating rates, covering latitudes at or below the nominal auroral oval and below the open/closed field line boundary. We find ULF wave Joule heating rates (integrated over 3-30 mHz frequency band) typically range from 0.001 to 1 mW/m2. We compare these rates to empirical models of Joule heating associated with large-scale, static (on ULF wave timescales) current systems, finding that ULF waves nominally contribute little to the global, integrated Joule heating rate. However, there are extreme cases with ULF wave Joule heating rates of ≥10 mW/m2—in these cases, which are more likely to occur when Kp ≥ 3, ULF waves make significant contributions to the global Joule heating rate. We also find ULF waves routinely make significant contributions to local Joule heating rates near the noon and midnight local time sectors, where static current systems nominally contribute less to Joule heating; the most important contributions come from lower frequency (<7 mHz) waves.

  17. Effects of chorus, hiss and electromagnetic ion cyclotron waves on radiation belt dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Horne, R. B.

    2013-12-01

    Wave-particle interactions are known to play an important role in the acceleration and loss of radiation belt electrons, and in the heating and loss of ring current ions. The effectiveness of each wave type on radiation belt dynamics depends on the solar wind interaction with the magnetosphere and the properties of the waves which vary considerably with magnetic local time, radial distance and latitude. Furthermore the interaction of the waves with the particles is usually nonlinear. These factors present a major challenge to test and verify the theories. Here we discuss the role of several types of waves, including whistler mode chorus, plasmaspheric hiss, magnetosonic and electromagnetic ion cyclotron waves, in relation to radiation belt and ring current dynamics. We present simulations of the radiation belts using the BAS radiation belt model which includes the effects of chorus, hiss and EMIC waves along with radial diffusion. We show that chorus waves are required to form the peaks in the electron phase space density during storms, and that this occurs inside geostationary orbit. We compare simulations against observations in medium Earth orbit and the new results from Van Allen probes mission that shows conclusive evidence for a local electron acceleration process near L=4.5. We show the relative importance of plasmaspheric hiss and chorus and the location of the plasmapause for radiation belt dynamics near L=4.5 and demonstrate the losses due to EMIC waves that should occur at high energies. Finally we show how improving our basic physical understanding through missions such as Van Allen probes go to improve space weather forecasting in projects such as SPACECAST and have a direct benefit to society.

  18. Electromagnetic wave absorption properties of composites with ultrafine hollow magnetic fibers

    NASA Astrophysics Data System (ADS)

    Yi, Jin Woo; Lee, Sang Bok; Kim, Jin Bong; Lee, Sang Kwan; Park, O. Ok

    2014-06-01

    Ultrafine hollow magnetic fibers were prepared by electroless plating using hydrolyzed polyester fiber as a sacrificial substrate. These hollow fibers can be served for lightweight and efficient electromagnetic (EM) absorbing materials. As observed from SEM and EDS analysis, hollow structures consisting of Ni inner layer and Fe or Fe-Co outer layer were obtained. By introducing Co onto Fe, oxidation of the Fe layer was successfully prevented making it possible to enhance the complex permeability compared to a case in which only Fe was used. Polymeric composites containing the hollow fibers with different weight fractions and fiber lengths were prepared by a simple mixing process. The electromagnetic wave properties of the composites were measured by a vector network analyzer and it was found that the hollow magnetic fibers show a clear resonance peak of the complex permittivity around the X-band range (8-12 GHz) and the resonance frequency strongly depends on the fiber concentration and length. A possible explanation for the unique resonance is that the hollow fibers possess relatively low electrical conductivity and a long mean free path due to their oxidized phase and hollow structure. The calculated EM wave absorption with the measured EM wave properties showed that the composite containing 30 wt% hollow Ni/Fe-Co (7:3) fibers in length of 180 μm exhibited multiple absorbance peaks resulting in a broad absorption bandwidth of 4.2 GHz. It is obvious that this multiple absorbance is attributed to the resonance characteristic of the composite.

  19. Saturation-dependent Coupled Seismic and Electromagnetic Wave Propagation in Porous Media

    NASA Astrophysics Data System (ADS)

    Smeulders, D.; Grobbe, N.; Heller, K.; Schakel, M.

    2014-12-01

    The seismoelectric effect where acoustic/seismic waves are converted into electromagnetic waves and vice versa, is of importance for hydrocarbon exploration as it is complementary to the conventional seismic surveys. Also for the detection of orebodies (for example massive sulfides), seismoelectric techniques are promising. For hydrological purposes, seismoelectric techniques can provide us with information as well, mapping for example water tables and water-retentive layers. Also for mapping of water-bearing strata beneath glaciers or monitoring of ice fracturing, seismoelectric methods are argued to be very powerful as they can distinguish between conductive and non-conductive layers that have similar acoustic impedances and thus cannot be mapped in conventional seismic surveys. We designed and developed an experimental setup in which acoustic to electromagnetic (EM) wave conversions at interfaces can be measured. Theoretical results are obtained with an electrokinetic full-waveform theoretical model, where use was made of the Sommerfeld approach. Using bimodal samples, different fluid-solid interface effects and saturating fluids were investigated. The contrast between water and water-saturated porous glass samples is larger than the contrast between water and oil-saturated porous glass samples. The contrast between water and water-saturated Fontainebleau sandstone is larger than the contrast between oil and water-saturated Fontainebleau sandstone. These data are shown to be in good agreement with theoretical predictions on the basis of the Biot-Pride theory.

  20. Regimes of the interactions of high-intensity plane electromagnetic waves with electron-ion plasmas

    SciTech Connect

    Shiryaev, O. B.

    2008-01-15

    A set of fully nonlinear equations is derived from the Maxwell equations and the electron and ion fluid dynamics in one-dimensional geometry as a model of the interactions of extremely intense plane electromagnetic waves with cold locally non-neutral electron-ion plasmas. The problem is solved for phase velocities close to the speed of light numerically and with the help of asymptotic techniques. Depending on the field magnitudes, three nonlinear regimes are found to occur in the system. At plane-wave intensities inducing relativistic electron fluid dynamics but insufficient to cause significant ion motions, the model reverts to the classic Akhiezer-Polovin problem and yields its solutions describing the nonlinear self-modulation of the electromagnetic fields in plasmas. The types of regimes sustained at field strengths entailing substantial ion dynamics are the self-modulation with a splitting of the plane-wave field spectrum into a set of closely spaced bands, and the harmonics generation with a spectrum comprising broadly distanced bands. The latter two regimes correspond to a subcritical and an overcritical range of the plasma longitudinal field potentials.

  1. Maximizing the probability of detecting an electromagnetic counterpart of gravitational-wave events

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael; Stubbs, Christopher

    2016-07-01

    Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors such as advanced LIGO and advanced Virgo. These are among the most promising sources for joint detection of electromagnetic (EM) and gravitational-wave (GW) emission. To maximize the science performed with these objects, it is essential to undertake a followup observing strategy that maximizes the likelihood of detecting the EM counterpart. We present a follow-up strategy that maximizes the counterpart detection probability, given a fixed investment of telescope time. We show how the prior assumption on the luminosity function of the electro-magnetic counterpart impacts the optimized followup strategy. Our results suggest that if the goal is to detect an EM counterpart from among a succession of GW triggers, the optimal strategy is to perform long integrations in the highest likelihood regions. For certain assumptions about source luminosity and mass distributions, we find that an optimal time investment that is proportional to the 2/3 power of the surface density of the GW location probability on the sky. In the future, this analysis framework will benefit significantly from the 3-dimensional localization probability.

  2. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.

    PubMed

    Torrent, Daniel; Sánchez-Dehesa, José

    2009-08-01

    We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.

  3. THE ELECTROMAGNETIC MODEL OF SHORT GRBs, THE NATURE OF PROMPT TAILS, SUPERNOVA-LESS LONG GRBs, AND HIGHLY EFFICIENT EPISODIC ACCRETION

    SciTech Connect

    Lyutikov, Maxim

    2013-05-01

    Many short gamma-ray bursts (GRBs) show prompt tails lasting up to hundreds of seconds that can be energetically dominant over the initial sub-second spike. In this paper we develop an electromagnetic model of short GRBs that explains the two stages of the energy release, the prompt spike and the prompt tail. The key ingredient of the model is the recent discovery that an isolated black hole can keep its open magnetic flux for times much longer than the collapse time and thus can spin down electromagnetically, driving the relativistic wind. First, the merger is preceded by an electromagnetic precursor wind with total power L{sub p} Almost-Equal-To (((GM{sub NS}){sup 3}B{sub NS}{sup 2})/c{sup 5}R){proportional_to}(-t){sup - Vulgar-Fraction-One-Quarter }, reaching 3 Multiplication-Sign 10{sup 44} erg s{sup -1} for typical neutron star masses of 1.4 M{sub Sun} and magnetic fields B {approx} 10{sup 12} G. If a fraction of this power is converted into pulsar-like coherent radio emission, this may produce an observable radio burst of a few milliseconds (like the Lorimer burst). At the active stage of the merger, two neutron stars produce a black hole surrounded by an accretion torus in which the magnetic field is amplified to {approx}10{sup 15} G. This magnetic field extracts the rotational energy of the black hole and drives an axially collimated electromagnetic wind that may carry of the order of 10{sup 50} erg, limited by the accretion time of the torus, a few hundred milliseconds. For observers nearly aligned with the orbital normal this is seen as a classical short GRB. After the accretion of the torus, the isolated black hole keeps the open magnetic flux and drives the equatorially (not axially) collimated outflow, which is seen by an observer at intermediate polar angles as a prompt tail. The tail carries more energy than the prompt spike, but its emission is de-boosted for observers along the orbital normal. Observers in the equatorial plane miss the prompt spike

  4. Photon wave-packet manipulation via dynamic electromagnetically induced transparency in multilayer structures

    SciTech Connect

    Bariani, Francesco; Carusotto, Iacopo

    2010-01-15

    We present a theoretical study of the dynamics of a light pulse propagating through a multilayer system consisting of alternating blocks of electromagnetically induced transparency (EIT) media and vacuum. We study the effect of a dynamical modulation of the EIT control field on the shape of the wave packet. Interesting effects due to the group velocity mismatch at the interfaces are found. Modulation schemes that can be realized in ultracold atomic samples with standard experimental techniques are proposed and discussed. Calculations are performed using a modified slowly varying envelope approximation of the Maxwell-Bloch equations and are compared to an effective description based on a continuity equation for the polariton flow.

  5. Millimeter-wave imaging with slab focusing lens made of electromagnetic-induction materials.

    PubMed

    Yang, Kui; Wang, Jinbang; Zhao, Lu; Liu, Zhiguo; Zhang, Tao

    2016-01-11

    A slab focusing lens in this work has been designed, which consists of electromagnetic-induction materials (cage-shaped granules of conductor materials) and polymethyl methacrylate (PMMA) materials. A compound lens with a thickness of 32 mm is composed of two slab focusing lenses, and has a refractive index of 1.41 at 35 GHz. Millimeter-wave (MMW) images of metallic objects have been obtained with the compound lens. The image quality has been compared by means of the compound lens and the polyethylene lens. The experimental results show good feasibility of the compound lens in MMW imaging.

  6. Propagation of terahertz electromagnetic wave in plasma with inhomogeneous collision frequency

    SciTech Connect

    Tian, Yuan; Han, YiPing; Ling, YingJie; Ai, Xia

    2014-02-15

    In this paper, we investigate the absorption spectra of terahertz electromagnetic wave in plasma with inhomogeneous collision frequency. Profiles are introduced to describe the non-uniformity of collision frequency. It is interesting to find that when the plasma is collision frequency inhomogeneous, the absorption spectrum would decreases faster than that in uniform plasma. And the rate of decreasing would be different when the profile changes. Two parameters are set up to predict how the profiles affect the absorption spectra. Furthermore, the effects of electron density are also considered.

  7. Electromagnetic interactions and the relativistic infinite-component wave equation for hydrogen

    SciTech Connect

    Gerry, C.C.; Inomata, A.

    1981-01-15

    We examine the problem of incorporating external electromagnetic interactions into the theory of the relativistic infinite-component SO(4,2) wave equation for the hydrogen atom proposed by Barut. We introduce the simplest set of covariant interaction terms modeled after the nonrelativistic SO(4,2) theory as an alternative to the complicated array of terms obtained from the formal replacement P/sub ..mu../..-->..P/sub ..mu../-eA/sub ..mu../. Using a covariant perturbation theory, we calculate the electric and magnetic polarizabilities of the ground state of the hydrogen atom in uniform fields and show that they have the correct nonrelativistic reductions.

  8. Electromagnetic Wave Absorption Property of Graphene with FeO4 Nanoparticles.

    PubMed

    Yang, Cheng; Dai, Shenglong; Zhang, Xiaoyan; Zhao, Tianyu; Yan, Shaojiu; Zhao, Xiuying

    2016-02-01

    Nanomaterials consisting of various ratios of Fe3O4 and graphene (defined C-Fe3O4/GR) were pre- pared by an in situ coordination complex hydro-thermal synthesis method. The structure and morphology of the nanomaterials C-Fe3O4/GR obtained were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). It was found that the Fe3O4 nanoparticles distributed on the surfaces of graphene, and had a spinel structure and a uniform chemical phase when the weight ratios of Fe3O4 to graphene oxide (GO) were 9:1 or 9:2. It was suggested that GO had been successfully reduced to graphene and the Fe3O4 nanoparticles were chemically bonded to graphene. The SQUID vibrating sample magnetometer (SQUID-VSM) indicated that the maximum of the saturation magnetization was 83.6 emmicro g(-1) when the mass ratio of Fe3O4 to GO was 9:2. Electromagnetic wave absorption showed that the chemical compound of Fe3O4 and graphene had a better electromagnetic property than the mechanical blend of Fe3O4 and graphene (M-Fe3O4/GR). The C-Fe3O4/GR had a reflection loss larger than -10 dB in the frequency range 12.9-17.0 GHz for an absorber thickness of 3 mm, and a maximum reflection loss of -12.3 dB at 14.8 GHz and a maximum reflection loss of -31.2 dB at 10.5 GHz for an absorber thickness of 10 mm. Theoretical analysis showed that the electromagnetic wave absorption behavior obeyed the quarter-wave principles. These results showed that the C-Fe3O4/GR nanomaterials can meet the requirements for some engineering applications, showing great application potential in electromagnetic wave absorption. PMID:27433608

  9. The method of impedance transformation for electromagnetic waves propagating in one-dimension plasma photonic crystal

    NASA Astrophysics Data System (ADS)

    Yao, Jingfeng; Yuan, Chengxun; Gao, Ruilin; Jia, Jieshu; Wang, Ying; Zhou, Zhongxiang; Wang, Xiaoou; Wu, Jian; Li, Hui

    2016-08-01

    This study focuses on the transmission of normal-incidence electromagnetic waves in one-dimensional plasma photonic crystals. Using the Maxwell's equations in a medium, a method that is based on the concept of impendence is employed to perform the simulation. The accuracy of the method was evaluated by simulating a one-layer plasma and conventional photonic crystal. In frequency-domain, the transmission and reflection coefficients in the unmagnetized plasma photonic crystal were calculated, and the influence factors on plasma photonic crystals including dielectric constants of dielectric, spatial period, filling factor, plasma frequency, and collision frequency were studied.

  10. Graphene as a high impedance surface for ultra-wideband electromagnetic waves

    SciTech Connect

    Aldrigo, Martino; Costanzo, Alessandra; Dragoman, Mircea; Dragoman, Daniela

    2013-11-14

    The metals are regularly used as reflectors of electromagnetic fields emitted by antennas ranging from microwaves up to THz. To enhance the reflection and thus the gain of the antenna, metallic high impedance surfaces (HIS) are used. HIS is a planar array of continuous metallic periodic cell surfaces able to suppress surface waves, which cause multipath interference and backward radiation in a narrow bandwidth near the cell resonance. Also, the image currents are reduced, and therefore the antenna can be placed near the HIS. We demonstrate that graphene is acting as a HIS surface in a very large bandwidth, from microwave to THz, suppressing the radiation leakages better than a metal.

  11. Influence of Millimeter Electromagnetic Waves on Fluorescence of Water-Saline Solutions of Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Vardevanyan, P. O.; Antonyan, A. P.; Shahinyan, M. A.; Mikaelyan, M. S.

    2016-07-01

    The effect of electromagnetic waves of the millimeter region on the conformation and fluorescence characteristics of human serum albumin was studied. It is shown that the irradiation of the albumin solution leads to an increase of the fluorescence intensity depending on the duration of irradiation. At an irradiation frequency of 48 GHz the fluorescence intensity of albumin hardly changes at all, while at 41.8 and 51.8 GHz it increases. It is also shown that when the irradiation frequency is 51.8 GHz, the intensity of the albumin solution fluorescence increases with increase of the irradiation time.

  12. Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal

    SciTech Connect

    Chow, E.; Hietala, .; Joannopoulos, J.D.; Lin, S.; Villeneuve, P.R.

    1998-10-15

    The routing and interconnection of optical signals through narrow channels and around sharp corners is important for large-scale all-optical circuit applications. A recent computational result suggests that photonic crystals may offer a novel way of achieving this goal by providing a mechanism for guiding light that is fundamentally different from traditional index guiding. Waveguiding in a photonic crystal, and near 100% transmission of electromagnetic waves around sharp 90o corners were observed experimentally. Bend- ing radii were made smaller than one wavelength.

  13. Theoretical analysis of gyrotropy and absorption of terahertz electromagnetic waves in layer of DNA molecules

    NASA Astrophysics Data System (ADS)

    Semenova, A.; Vaks, V.

    2016-08-01

    Certain type of low-frequency DNA molecular oscillations was analysed within the self-consistent phonon approximation. There were calculated dispersion relationship, exiting the oscillations by electromagnetic wave and corresponding contribution to the absorption spectrum of ensemble of parallel DNA molecules. The dependence of the DNA spectral characteristics on the length and period of the DNA duplex structure is revealed. The method of experimental check of obtained results is suggested. If the described model is confirmed by experiment, the obtained results available to reconstruct the length and duplex period of the DNA in a sample by its absorption spectrum.

  14. Spectrum of an electromagnetic light wave on scattering from an anisotropic semisoft boundary medium.

    PubMed

    Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu

    2016-04-01

    Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric.

  15. Electromagnetic drift waves in nonuniform quantum magnetized electron positron ion plasmas

    NASA Astrophysics Data System (ADS)

    Ren, Haijun; Wu, Zhengwei; Cao, Jintao; Chu, Paul K.

    2008-03-01

    Electromagnetic drift waves in a nonuniform quantum magnetized electron positron ion (EPI) plasma are studied. By using the quantum hydrodynamic equations with magnetic fields of the Wigner Maxwell system, we obtained a new dispersion relation in which ions' motions are not considered. The positrons component (featured by the parameter ξ), density gradient of electrons, and of positrons are shown to have a significant impact on the dispersion relation. Our results should be relevant to dense astrophysical objects, e.g. white dwarf and pulsar magnetospheres, as well as low-temperature laboratory EPI plasmas.

  16. Spectrum of an electromagnetic light wave on scattering from an anisotropic semisoft boundary medium.

    PubMed

    Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu

    2016-04-01

    Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric. PMID:27140772

  17. Analytical solutions of electromagnetic waves in focusing and magnifying cylindrical hyperlenses: Green's function approach.

    PubMed

    Tapsanit, Piyawath; Yamashita, Masatsugu; Otani, Chiko

    2014-01-13

    The analytical solutions of the electromagnetic waves in the inhomogeneous cylindrical hyperlens (CH) comprising concentric cylindrical layers (CCLs) with multiple point sources located either outside the structure in the focusing process or inside the core in the magnifying process are obtained by means of Green's function analysis. The solutions are consistent with FDTD simulation in both processes. The sub-wavelength focal spot λ/16.26 from two point sources with wavelength 465 nm is demonstrated in the CH made by alternating silver and silica CCLs. Our solutions are expected to be the efficient tools for designing the sub-wavelength focusing and imaging cylindrical hyperlens.

  18. Scattering of electromagnetic waves from a periodic surface with random roughness

    NASA Technical Reports Server (NTRS)

    Yueh, H. A.; Shin, R. T.; Kong, J. A.

    1988-01-01

    Equations for the scattering of electromagnetic waves from a randomly perturbed periodic surface have been formulated using the extended boundary condition method and solved using the small perturbation method. Surface currents and scattered fields are solved for up to the second order. The results indicate that as the correlation length of the random roughness increases, the bistatic scattering patterns of the scattered fields show several beams associated with each Bragg diffraction direction of the periodic surface. The beam shape becomes broader with smaller correlation length. Results obtained using the Kirchhoff approximation are found to agree well with the present results for the hh and vv polarized backscattering coefficients for small angles of incidence.

  19. Survey of low-frequency electromagnetic waves stimulated by two coexisting newborn ion species

    NASA Technical Reports Server (NTRS)

    Brinca, Armando L.; Tsurutani, Bruce T.

    1988-01-01

    Parallel electromagnetic instabilities generated by coexisting newborn hydrogen and oxygen ions are studied for different orientations of the interplanetary magnetic field with respect to the solar wind velocity. The wave growth dependence on the densities and temperatures of the newborn species is investigated. The results indicate that in most domains of the Brillouin plane each ion beam can excite resonant instabilities without undue influence from the other newborn ion species. Although comparable resonant instabilities are more efficiently generated by the lighter newborn ions in ion-rich environments, the growth stimulated by the heavier species can withstand large beam density decreases.

  20. Reflection and transmission of electromagnetic waves at a temporal boundary: comment.

    PubMed

    Bakunov, M I; Maslov, A V

    2014-10-15

    Recently, Xiao et al. [Opt. Lett. 39, 574 (2014)] compared two sets of boundary conditions and the resulting transformation coefficients for an electromagnetic wave at a temporal boundary. They claimed to identify a correct set and to resolve the existing discrepancy in the literature. We point out that the boundary conditions discarded by Xiao et al. as incorrect have been used in the literature for rapidly growing plasma, for which the material model of Xiao et al. is not appropriate. We show that Xiao et al. misinterpreted the results from the literature by opposing two sets of boundary conditions that are related to different material models of the temporal boundary.

  1. Unconditionally stable WLP-FDTD method for the modeling of electromagnetic wave propagation in gyrotropic materials.

    PubMed

    Li, Zheng-Wei; Xi, Xiao-Li; Zhang, Jin-Sheng; Liu, Jiang-fan

    2015-12-14

    The unconditional stable finite-difference time-domain (FDTD) method based on field expansion with weighted Laguerre polynomials (WLPs) is applied to model electromagnetic wave propagation in gyrotropic materials. The conventional Yee cell is modified to have the tightly coupled current density components located at the same spatial position. The perfectly matched layer (PML) is formulated in a stretched-coordinate (SC) system with the complex-frequency-shifted (CFS) factor to achieve good absorption performance. Numerical examples are shown to validate the accuracy and efficiency of the proposed method.

  2. Controlling electromagnetic wave through dual heights micro-lens array of a CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Lin, Kuo-Feng; Hsiao, Yu-Kun; Hsieh, Chin-Chuan; Hsin, Shui-Chuan; Hsieh, Wen-Feng

    2016-05-01

    We demonstrate control of electromagnetic (EM) wave through dual heights micro-lens (DHML) array in 1.1 μm pixel size complementary metal oxide semiconductor image sensor. The sensitivity and signal-to-noise ratio (SNR) are significantly improved (>10%) using the DHML structure. This DHML structure acts as an array of fundamental waveguides to enhance the optical throughput and to suppress the spatial crosstalk that is confirmed by evaluating the pixel performance in terms of the confinement factor of fundamental mode in this DHML structure.

  3. Millimeter-wave imaging with slab focusing lens made of electromagnetic-induction materials.

    PubMed

    Yang, Kui; Wang, Jinbang; Zhao, Lu; Liu, Zhiguo; Zhang, Tao

    2016-01-11

    A slab focusing lens in this work has been designed, which consists of electromagnetic-induction materials (cage-shaped granules of conductor materials) and polymethyl methacrylate (PMMA) materials. A compound lens with a thickness of 32 mm is composed of two slab focusing lenses, and has a refractive index of 1.41 at 35 GHz. Millimeter-wave (MMW) images of metallic objects have been obtained with the compound lens. The image quality has been compared by means of the compound lens and the polyethylene lens. The experimental results show good feasibility of the compound lens in MMW imaging. PMID:26832287

  4. Scattering of a plane electromagnetic wave by a generalized Luneburg sphere-Part 1: Ray scattering

    NASA Astrophysics Data System (ADS)

    Lock, James A.; Laven, Philip; Adam, John A.

    2015-09-01

    We calculated scattering of an electromagnetic plane wave by both a radially-inhomogeneous particle and bubble, the square of whose refractive index profile is parabolic as a function of radius. Depending on the value of the two adjustable parameters of the parabola, the particle or bubble can have either a refractive index discontinuity at its surface, or the refractive index can smoothly merge into that of the exterior medium. Scattering was analyzed in ray theory, and various novel features of the scattering, including the details of the curved ray paths, transmission rainbows, and near-critical-angle scattering were apparent and were contrasted with their behavior for scattering by a homogeneous sphere.

  5. Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  6. Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  7. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Radiation emitted by a beam of particles crossing an inhomogeneous electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Kol'tsov, A. V.; Serov, Alexander V.

    1995-03-01

    A theoretical investigation is made of the time dependence of the spatial distribution of particles injected perpendicular to the direction of propagation of a linearly polarised inhomogeneous electromagnetic wave and reflected by this wave. It is shown that such reflection modulates the particle density in a beam which is homogeneous at injection. Stimulated emission of radiation from a ribbon electron beam reflected by a wave is considered. The spectral—angular and polarisation characteristics of such radiation are investigated.

  8. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis.

    PubMed

    Liang, S M; Chang, M H; Yang, Z Y

    2014-01-01

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm(2) (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.

  9. Electromagnetic ion cyclotron waves in the inner magnetosphere with a losscone proton distribution

    NASA Astrophysics Data System (ADS)

    Singh, Satyavir; Omura, Yoshiharu

    2016-07-01

    Electromagnetic ion cyclotron (EMIC) waves are studied in the inner magnetospheric plasma. The plasma is assumed to have five components, i.e., electrons, cold and hot protons, singly charged helium and oxygen ions. The hot protons are assumed to have an anisotropic losscone distribution particle distribution. The numerical results are obtained using KUPDAP (Kyoto University Plasma Dispersion Analysis Package), a full dispersion solver developed at Kyoto University. The hot plasma dispersion relation and polarizations of EMIC waves in oblique propagation are very complex. Although we find that nonlinear wave growth process is dominant near the equatorial region generating EMIC rising tone emissions, the propagation characteristics of the emissions such as linear growth/damping rates, variation of polarizations, and Poynting vectors in the presence of energetic protons have not been studied quantitatively.The growth/damping of oxygen, helium, and proton bands and higher harmonics of the EMIC waves are studied. The findings from our model are applied to EMIC wave observations in the inner magnetosphere by the Cluster spacecraft.

  10. Simulations of heavy ion heating by electromagnetic ion cyclotron waves driven by proton temperature anisotropies

    NASA Technical Reports Server (NTRS)

    Tanaka, M.

    1985-01-01

    Heating of heavy ions by the electromagnetic ion cyclotron (EMIC) waves, which are driven by proton temperature anisotropies, is studied by means of hybrid particle simulations. Initially, relaxation of the temperature anisotropies in the proton distribution and isotropic heating of the heavy ions are observed (phase I), followed by substantial perpendicular heating of the heavy ions (phase II). The heavy ions are distinctly gyrophase modulated by the EMIC waves. The isotropic heating in phase I is due to magnetic trapping by the excited proton cyclotron waves. The perpendicular heating in phase II is attributed to cyclotron resonance with the EMIC waves, which becomes possible by means of the preceding heating in phase I. Saturation of the EMIC instability is instead attributed to magnetic trapping of the majority ions: protons. When the proton anisotropy is very large, frequency shift (decrease) of the proton cyclotron waves to less than 1/2 Ohm(p) is observed. The present mechanism is not only relevant to He(+) heating in the dayside equator of the magnetosphere, but it also predicts hot He2(+) ions behind the earth's bow shock.

  11. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis

    SciTech Connect

    Liang, S. M. Yang, Z. Y.; Chang, M. H.

    2014-01-15

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm{sup 2} (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.

  12. Numerical calculation of electromagnetic eigenfields and dispersion relation for slow-wave device simulation

    SciTech Connect

    Oslake, J.M.; Verboncoeur, J.P.; Birdsall, C.K.

    1996-12-31

    Slow-wave structures support microwave amplification via electromagnetic coupling with an injected electron beam. Critical in the design of such devices is the dependence of the dispersion relation on the geometry of the guiding structure. The dispersion relation provides phase and group velocities, and the fields provide the impedance as seen by the beam. To this end, a computer model is developed which first numerically solves a wave equation in finite difference from subject to boundary conditions periodic in z and conducting elsewhere. Here the direction of wave propagation is along the z-axis. The solution produces a sequence of eigenfrequencies and eigenfields beginning with cut-off. Fourier decomposition of each eigenfield along selected mesh lines coincident with the location of the electron beam is then performed to establish a correspondence between eigenfrequency and wave number. From this data the dispersion relation for the slow-wave structure can then be formed. An example showing the first two TM passbands and E{sub z} fields for a slotted waveguide in xz coordinates is demonstrated. The authors plan to incorporate plasma loading with space-time dependent dielectric constant.

  13. Electromagnetic waves with frequencies near the local proton gyrofrequency: ISEE-3 1 AU observations

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Arballo, John K.; Mok, John; Smith, Edward J.; Mason, Glenn M.; Tan, Lun C.

    1994-01-01

    Low Frequency (LF) electromagnetic waves with periods near the local proton gyrofrequency have been detected in interplanetary space by the magnetometer onboard International-Sun-Earth-Explorer-3 (ISEE-3). Transverse peak-to-peak amplitudes as large as delta vector B/absolute value of B approximately 0.4 have been noted with compressional components (Delta absolute value of B/absolute value of B) typically less than or = 0.1. Generally, the waves have even smaller amplitudes, or are not detectable within the solar wind turbulence. The waves are elliptically/linearly polarized and are often, but not always, found to propagate nearly along vector B(sub zero). Both right- and left-hand polarizations in the spacecraft-frame have been detected. The waves are observed during all orientations of the interplanetary magnetic field, with the Parker spiral orientation being the most common case. Because the waves are detected at and near the local proton cyclotron frequency, the generation mechanism must almost certainly be solar wind pickup of freshly created hydrogen ions. Possible sources for the hydrogen are the Earth's atmosphere, coronal mass ejections from the Sun, comets and interstellar neutral atoms. At this time it is not obvious which potential source is the correct one. Statistical tests employing over one year of ISEE-3 data will be done in the near future to eliminate/confirm some of these possibilities.

  14. Anderson localization of electromagnetic waves in randomly-stratified magnetodielectric media with uniform impedance.

    PubMed

    Kim, Kihong

    2015-06-01

    The propagation and the Anderson localization of electromagnetic waves in a randomly-stratified slab, where both the dielectric permittivity and the magnetic permeability depend on one spatial coordinate in a random manner, is theoretically studied. The case where the wave impedance is uniform, while the refractive index is random, is considered in detail. The localization length and the disorder-averaged transmittance of s and p waves incident obliquely on the slab are calculated as a function of the incident angle θ and the strength of randomness in a numerically precise manner, using the invariant imbedding method. It is found that the waves incident perpendicularly on the slab are delocalized, while those incident obliquely are localized. As the incident angle increases from zero, the localization length decreases from infinity monotonically to some finite value. The localization length is found to depend on the incident angle as θ-4 and a simple analytical formula, which works quite well for weak disorder and small incident angles, is derived. The localization length does not depend on the wave polarization, but the disorder-averaged transmittance generally does.

  15. The Nonlinear Coupling of Electromagnetic Ion Cyclotron and Lower Hybrid Waves in the Ring Current Region

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.

    2004-01-01

    The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.

  16. PHYSICAL BASIS OF QUANTUM ELECTRONICS: Reflection of electromagnetic waves from nonstationary media (exactly solvable models)

    NASA Astrophysics Data System (ADS)

    Shvartsburg, Aleksandr B.

    1998-03-01

    An analysis is made of propagation of electromagnetic waves in media which are nonstationary because of relaxation of the refractive index. A series of models of oscillatory and transient regimes of such relaxation is developed. Several characteristic times are used in these models and exact analytic solutions of the Maxwell equations can be obtained for these regimes. In contrast to the traditional approaches, the exact solutions are obtained without assuming smallness or slowness of temporal variations of the parameters of the medium and these solutions are valid even when the characteristic relaxation time is comparable with the period of oscillations of the wave field. A nonstationary generalisation of the Fresnel formulae is derived. It is shown that waves reflected from a nonstationary surface experience amplitude and frequency modulation, and the modulation effect is localised in an interval of the order of one relaxation time. It is shown that a short broadband perturbation pulse forms in the reflected wave and that this pulse contains one or several oscillations of the field. It should be possible to use nonstationary broadening of the spectrum of a probe wave reflected from a surface perturbed by a powerful laser pulse in estimating the relaxation times of fast optical processes.

  17. Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.

    2015-12-01

    We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work

  18. Loop heating by D.C. electric current and electromagnetic wave emissions simulated by 3-D EM particle zone

    NASA Technical Reports Server (NTRS)

    Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.

    1994-01-01

    We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.

  19. Fabrication and Electromagnetic Wave-Absorbing Property of Si3N4 Ceramics with Gradient Pyrolytic Carbon Distribution

    NASA Astrophysics Data System (ADS)

    Li, Xiangming; Gao, Mingjun

    2016-07-01

    A Si3N4 ceramic with gradient distribution of pyrolytic carbon (Gradient-PyC-Si3N4) was fabricated by a combined technique of precursor infiltration pyrolysis and directional oxidation. An electromagnetic wave could enter Gradient-PyC-Si3N4 with little reflection because of a weak impedance mismatch at its surface, and the electromagnetic wave entering Gradient-PyC-Si3N4 could propagate forward along the PyC changing belt and simultaneously be absorbed by PyC with little reflection. The electromagnetic reflectivity of the Gradient-PyC-Si3N4 with an absence of PyC could reach a low level of -12.1 dB, which means that about 94% of the incident energy is absorbed and so makes the Gradient-PyC-Si3N4 a promising electromagnetic absorbing material for covert action.

  20. Relativistically intense plane electromagnetic waves in electron-positron plasmas: Nonlinear self-modulation and harmonics generation regimes

    SciTech Connect

    Shiryaev, O. B.

    2006-11-15

    A fully nonlinear one-dimensional problem describing the interactions of relativistically intense plane electromagnetic waves and cold locally non-neutral electron-positron plasmas is derived from Maxwell and fluid dynamics equations. Numerical and asymptotic solutions to this problem for phase velocities close to the speed of light are presented. Depending on the magnitude of the plasma longitudinal electric-field potential, the system considered is found to support two distinct regimes of plane electromagnetic wave propagation: a nonlinear self-modulation one with the coupling of a fast transversely polarized electromagnetic field to a slow longitudinal plasma field, and a harmonics generation one with both of these fields oscillating with comparable frequencies. In the former case, a splitting of the electromagnetic field spectrum into a series of closely located bands occurs, whereas in the latter one the propagating field spectrum is a set of radiation harmonics.

  1. High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection.

    PubMed

    Kogia, Maria; Gan, Tat-Hean; Balachandran, Wamadeva; Livadas, Makis; Kappatos, Vassilios; Szabo, Istvan; Mohimi, Abbas; Round, Andrew

    2016-04-22

    Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH₀) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C.

  2. Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses.

    PubMed

    Kim, Kihong; Phung, D K; Rotermund, F; Lim, H

    2008-01-21

    We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.

  3. Free-electron laser harmonic generation in an electromagnetic-wave wiggler and ion channel guiding

    SciTech Connect

    Mehdian, H.; Hasanbeigi, A.; Jafari, S.

    2010-02-15

    A theoretical study of electron trajectories, harmonic generation, and gain in a free-electron laser (FEL) with a linearly polarized electromagnetic-wave wiggler is presented for axial injection of electron beam. The relativistic equation of motion for a single electron has been derived and solved numerically. It is found that the trajectories consist of two regimes. The stability of these regimes has been investigated. The results show that the trajectories are stable except for some parts of the regime one. The effects of interaction on the transverse velocity of the electron are a superposition of two oscillation terms, one at the wiggler frequency and the other at the betatron ion-channel frequency. A detailed analysis of the gain equation in the low-gain-per-pass limit has been employed to investigate FEL operation in higher harmonics generation. The possibility of wave amplification at both wiggler frequency and betatron ion-channel frequency for their odd harmonics has been illustrated.

  4. Electromagnetic fluctuations in magnetized plasmas II: Extension of the theory for parallel wave vectors

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.; Ganz, A.; Kolberg, U.; Yoon, P. H.

    2015-10-01

    Starting from the recently derived general expressions for the electromagnetic fluctuation spectra (electric and magnetic field) from uncorrelated plasma particles in plasmas with an uniform magnetic field, the case of strictly parallel ( k ⊥ = 0 ) oriented wave vectors with the respect to the uniform magnetic field direction is investigated. To derive fluctuation spectra valid in the entire complex frequency plane, the relevant dispersion functions and form factors are analytically continued to negative values of the imaginary part of the frequency for arbitrary gyrotropic plasma particle distribution functions. The generalized fluctuation-dissipation theorems for non-collective fluctuations in isotropic equal-temperature thermal distribution functions for general complex values of the frequency of the fluctuations with parallel wave vectors are derived.

  5. Electromagnetic waves of 900 MHz in acute pentylenetetrazole model in ontogenesis in mice.

    PubMed

    Erdinc, O O; Baykul, M C; Ozdemir, O; Ozkan, S; Sirmagul, B; Oner, S D; Ozdemir, G

    2003-10-01

    The purpose of this study was to measure the effects of electromagnetic waves (EMW) at 900 MHz. EMW were produced by a signal generator and were administered to mice via an antenna. The frequency of the waves was tested by a spectrum analyser and a frequency-meter. The emitted power was 0.25 mW. A total of 117 mice (59 prepubertal and 58 adult) was used. Mice were exposed to EMW or sham radiation for 2 h and 20 h before an injection of pentylenetetrazole (PTZ). A statistically significant difference was found between the latency measurements within 20 h for prepubertal mice in stages 1 and 2 ( p<0.05). The effects on prepubertal mice of long-term 900 MHz EMW in a PTZ model may be an indication of possible problems in developing brains. PMID:14600821

  6. Electromagnetic priors for black hole spindown in searches for gravitational waves from supernovae and long GRBs

    NASA Astrophysics Data System (ADS)

    van Putten, M. H. P. M.; Della Valle, M.; Levinson, A.

    2011-11-01

    Context. Some core-collapse supernovae appear to be hyper-energetic, and a subset of these are aspherical and associated with long GRBs. Aims: We use observations of electromagnetic emission from core-collapse supernovae and GRBs to impose constraints on their free energy source as a prior to searches for their gravitational wave emission. Methods: We review these events based on a finite efficiency for the conversion of spin energy to magnetic winds powering supernovae. Results: We find that some of the hyper-energetic events cannot be powered by the spindown of rapidly rotating proto-neutron stars by virtue of their limited rotational energy. They can, instead, be produced by the spindown of black holes providing a distinct prospect for gravitational-wave emission of interest to LIGO, Virgo, and the LCGT. Figure 1 is available in electronic form at http://www.aanda.org

  7. Unusual characteristics of electromagnetic waves excited by cometary newborn ions with large perpendicular energies

    NASA Technical Reports Server (NTRS)

    Brinca, A. L.; Tsurutani, B. T.

    1987-01-01

    The characteristics of electromagnetic waves excited by cometary newborn ions with large perpendicular energies are examined using a model of solar wind permeated by dilute drifting ring distributions of electrons and oxygen ions with finite thermal spreads. The model has parameters compatible with the ICE observations at the Giacobini-Zinner comet. It is shown that cometary newborn ions with large perpendicular energies can excite a wave mode with rest frame frequencies in the order of the heavy ion cyclotron frequency, Omega(i), and unusual propagation characteristics at small obliquity angles. For parallel propagation, the mode is left-hand circularly polarized, might be unstable in a frequency range containing Omega(i), and moves in the direction of the newborn ion drift along the static magnetic field.

  8. Absorption of THz electromagnetic wave in two mono-layers of graphene

    NASA Astrophysics Data System (ADS)

    Reynolds, Cole B.; Shoufie Ukhtary, M.; Saito, Riichiro

    2016-05-01

    Nearly 100% absorption of an electromagnetic (EM) wave in terahertz (THz) frequency is proposed for a system consisting of two mono-layers of graphene. Here, we demonstrate that the system can almost perfectly absorb an EM wave with frequency of 2 THz, even though we have a low electron mobility of roughly 1000 cm2  Vs‑1. The absorption probability is calculated by using the transfer matrix method. We show that the two mono-layers of the graphene system is needed to obtain nearly 100% absorption when the graphene has a relatively low Fermi energy. The absorption dependence on the distance between the graphene layers is also discussed.

  9. Numerical Modeling of High Frequency Electromagnetic Wave Propagation through Ionospheric Plasma with Randomly Distributed Flute Vortices

    NASA Astrophysics Data System (ADS)

    Caplinger, J.; Sotnikov, V. I.; Wallerstein, A. J.

    2014-12-01

    A three dimensional numerical ray-tracing algorithm based on a Hamilton-Jacobi geometric optics approximation is used to analyze propagation of high frequency (HF) electromagnetic waves through a plasma with randomly distributed vortex structures having a spatial dependence in the plane perpendicular to earth's magnetic field. This spatial dependence in density is elongated and uniform along the magnetic field lines. Similar vortex structures may appear in the equatorial spread F region and in the Auroral zone of the ionosphere. The diffusion coefficient associated with wave vector deflection from a propagation path can be approximated by measuring the average deflection angle of the beam of rays. Then, the beam broadening can be described statistically using the Fokker-Planck equation. Visualizations of the ray propagation through generated density structures along with estimated and analytically calculated diffusion coefficients will be presented.

  10. Scattering of a Young’s diffractive electromagnetic light wave by quasi-homogeneous medium

    NASA Astrophysics Data System (ADS)

    Li, Jia; Wu, Pinghui; Chang, Liping; Wu, Zhefu

    2015-09-01

    While remaining accurate under the first-order Born approximation and the paraxial assumption, the scattering of a Young’s diffractive electromagnetic light wave by a quasi-homogeneous (QH) medium is specifically addressed in this study. Analytical expressions are derived for spectral density as well as the spectral degree of coherence of the scattered field. As long as the components of the complex amplitude of incident waves are proportional to each other, the resultant scattered light in the far field is proven to satisfy two reciprocity relations, namely, that the spectral density is proportional to the spatial Fourier transformation of the normalized correlation coefficient of the scattering potential, while the spectral degree of coherence is dependent only on the spatial Fourier transformation of the strength of the scattering potential.

  11. Effective medium approximation for effective propagation constant calculation in a dense random medium. [electromagnetic wave scattering

    NASA Technical Reports Server (NTRS)

    Zhu, P. Y.; Fung, A. K.

    1986-01-01

    The effective medium approximation (EMA) formalism developed for scalar wave calculations in solid state physics is generalized to electromagnetic wave scattering in a dense random medium. Results are applied to compute the effective propagation constant in a dense medium involving discrete spherical scatterers. When compared with a common quasicrystalline approximation (QCA), it is found that EMA accounts for backward scattering and the effect of correlation among three scatterers which are not available in QCA. It is also found that there is not much difference in the calculated normalized phase velocity between the use of these two approximations. However, there is a significant difference in the computed effective loss tangent in a nonabsorptive random medium. The computed effective loss tangent using EMA and measurements from a snow medium are compared, showing good agreement.

  12. Potential damage to DC superconducting magnets due to the high frequency electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Gabriel, G. J.

    1977-01-01

    Experimental data are presented in support of the hypothesis that a dc superconducting magnet coil does not behave strictly as an inductor, but as a complicated electrodynamic device capable of supporting electromagnetic waves. Travel times of nanosecond pulses and evidence of sinusoidal standing waves were observed on a prototype four-layer solenoidal coil at room temperature. Ringing observed during switching transients appears as a sequence of multiple reflected square pulses whose durations are related to the layer lengths. With sinusoidal excitation of the coil, the voltage amplitude between a pair of points on the coil exhibits maxima at those frequencies such that the distance between these points is an odd multiple of half wavelength in free space. Evidence indicates that any disturbance, such as that resulting from switching or sudden fault, initiates multiple reflections between layers, thus raising the possibility for sufficiently high voltages to cause breakdown.

  13. High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection

    PubMed Central

    Kogia, Maria; Gan, Tat-Hean; Balachandran, Wamadeva; Livadas, Makis; Kappatos, Vassilios; Szabo, Istvan; Mohimi, Abbas; Round, Andrew

    2016-01-01

    Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C. PMID:27110792

  14. Guided Wave Inspection of Supported Pipe Locations Using Electromagnetic Acoustic Transducers

    NASA Astrophysics Data System (ADS)

    Andruschak, Nicholas

    The goal of the work in this thesis is to develop a rapid and reliable NDT system to detect hidden corrosion at pipe-support interfaces using Electromagnetic Acoustic Transducers (EMATs). Since there are often many support interfaces over a piping run, information is needed on the support interface conditions to optimize subsequent detailed inspections. In this work it is important to be able to isolate the effects produced from the support interface and the incident guided wave. To do this an optimum EMAT operating point is first selected, then the support interfaces and wall loss type defects are independently analyzed through experimentally validated finite element models. It is found that operating the SH1 plate wave mode near the `knee' of its dispersion curve gives a high sensitivity to wall loss type defects while experiencing a minimal effect from the support contact region.

  15. Subnanosecond electron transport in a gas in the presence of polarized electromagnetic waves

    SciTech Connect

    Dey, Indranuj; Mathew, Jose V.; Bhattacharjee, Sudeep; Jain, Sachin

    2008-04-15

    An ensemble of free electrons in a classical Boltzmann gas under equilibrium condition follow a square law for the number of collisions suffered during random walk, in the elastic limit [N{proportional_to}({lambda}/{lambda}){sup 2}]. This study reveals for the first time that in the same limit the dependence is considerably modified in the presence of linearly polarized electromagnetic waves. The phenomenon happens at time scales shorter ({approx}10{sup -10} s) than the characteristic discharge initiation time and the wave period. Considering the actual dependence of collision cross-sections on electron energy, a new relation is obtained, which tends to the classical result for the zero field case. The random walk parameter <{chi}{sup 2}> characterizes a true versus constrained random process. The implications of the new relation describing the phenomena are discussed in the light of applications.

  16. LSP Simulation and Analytical Results on Electromagnetic Wave Scattering on Coherent Density Structures

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T.

    2014-09-01

    The presence of plasma turbulence can strongly influence propagation properties of electromagnetic signals used for surveillance and communication. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of coherent vortex structures. Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. These types of density irregularities play important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics (HEDP) and in many other applications. We will discuss scattering of high frequency electromagnetic waves on low frequency density irregularities due to the presence of vortex density structures associated with interchange instability. We will also present PIC simulation results on EM scattering on vortex type density structures using the LSP code and compare them with analytical results. Acknowledgement: This work was supported by the Air Force Research laboratory, the Air Force Office of Scientific Research, the Naval Research Laboratory and NNSA/DOE grant no. DE-FC52-06NA27616 at the University of Nevada at Reno.

  17. Application of electromagnetic-wave-ionospheric interactions to global warming in the arctic region

    NASA Astrophysics Data System (ADS)

    Wong, A. Y.

    An approach to expel pollutants which can contribute to global warming from the upper atmosphere by the use of HF electromagnetic waves has been proposed [1]. Laboratory plasma experiments have shown that significant gyro-resonance acceleration of minority ion species in a plasma is possible. The separation of ions differing in mass by one unit has been achieved. This method is applicable to the selective acceleration of ions perpendicular to the geomagnetic field in the ionosphere and involves the modulation of the auroral electrojet current to excite ion cyclotron waves. On account of the divergent geomagnetic field in the polar atmosphere the accelerated perpendicular ion velocity is converted into an upward motion along open magnetic field lines. The ions thus removed will not return to the upper atmosphere. Negatively charged particles move upward by the fair-weather electric field and by atmospheric convection. When ions reach above 120˜ km altitude where the ion gyro-frequency is comparable to or greater than the ion-neutral collision frequency, they can be accelerated by electromagnetic fields through the gyro-resonance interaction. By modulating the auroral electrojet in the gyro-frequency range for important minority ion species (˜ 15--30 Hz for CO2-, and Cl-) electromagnetic ion cyclotron waves can be excited, which propagate nearly along the geomagnetic field lines. Experimental evidence for this effect has been obtained with the HIPAS facility [Wong et al., 1997]. When exciting ELF waves over a range of ion gyro-frequencies of dominant ion species, dips were observed in magnetometer data at ion gyro-frequencies of various species, which suggests that the ELF wave energy was absorbed by ions. Similar ion acceleration and expelling phenomenon over the polar regions occurs naturally in so called ion conics as observed by high latitude satellites. Field aligned currents might provide the free energy needed to make this process practical. Field

  18. Electromagnetic particle simulation of the linear mode conversion and the nonlinear parametric decay instability of lower hybrid waves in tokamaks

    NASA Astrophysics Data System (ADS)

    Bao, Jian; Lin, Zhihong; Kuley, Animesh; Wang, Zhixuan

    2015-11-01

    An electromagnetic fluid-kinetic model is developed to study the lower hybrid (LH) waves in tokamaks with low numerical noise, in which electron density is pushed forward by the continuity equation, and the kinetic markers are introduced for closure. A generalized weight-based particle-in-cell scheme is also applied to the simulation for the local high resolution in phase space. This new model has been successfully implemented into the global gyro-kinetic toroidal code (GTC), and the electromagnetic particle simulations of the LH waves have been carried out with a realistic electron-to-ion mass ratio. The simulation shows that toroidal effects induce an upshift of the parallel reflective index when LH waves propagate from the tokamak edge toward the core, which modifies the radial position for the mode conversion between slow and fast LH waves. The broadening of the poloidal spectrum of the wave-packet due to the wave diffraction is also observed in the simulation of LH wave propagation, and both the toroidal upshift and broadening effects of the wave-packet spectrum modify the parallel phase velocity and thus the linear absorption of LH waves by electrons through Landau resonance. In the nonlinear simulation, the LH wave can drive a net current during the propagation when its phase velocity gets closed to the local electron thermal speed. Finally, the parametric decay instability is observed when we increase the power of LH waves, in which a LH sideband and a low frequency ion plasma waves are generated.

  19. Surfatron acceleration of protons by an electromagnetic wave at the heliosphere periphery

    SciTech Connect

    Loznikov, V. M. Erokhin, N. S.; Zol’nikova, N. N.; Mikhailovskaya, L. A.

    2013-10-15

    The trapping and subsequent efficient surfatron acceleration of weakly relativistic protons by an electromagnetic wave propagating across an external magnetic field in plasma at the heliosphere periphery is considered. The problem is reduced to analysis of a second-order time-dependent nonlinear equation for the wave phase on the particle trajectory. The conditions of proton trapping by the wave, the dynamics of the components of the particle momentum and velocity, the structure of the phase plane, the particle trajectories, and the dependence of the acceleration rate on initial parameters of the problem are analyzed. The asymptotic behavior of the characteristics of accelerated particles for the heliosphere parameters is investigated. The optimum conditions for surfatron acceleration of protons by an electromagnetic wave are discussed. It is demonstrated that the experimentally observed deviation of the spectra of cosmic-ray protons from standard power-law dependences can be caused by the surfatron mechanism. It is shown that protons with initial energies of several GeV can be additionally accelerated in the heliosphere (the region located between the shock front of the solar wind and the heliopause at distances of about 100 astronomical units (a.u.) from the Sun) up to energies on the order of several thousands of GeV. In order to explain the proton spectra in the energy range of ∼20–500 GeV, a two-component phenomenological model is proposed. The first component corresponds to the constant (in this energy range) galactic contribution, while the second (variable) component corresponds to the heliospheric contribution, which appears due to the additional acceleration of soft cosmic-ray protons at the heliosphere periphery. Variations in the proton spectra measured on different time scales between 1992 and 2008 in the energy range from several tens to several hundred GeV, as well as the dependence of these spectra on the heliospheric weather, can be explained

  20. Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma

    SciTech Connect

    Xiaolong, Wei; Haojun, Xu; Min, Lin; Chen, Su; Jianhai, Li

    2015-05-28

    An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (N{sub e}) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm{sup 3} without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the N{sub e} achieves nearly uniform within the electronegative core and sharply steepens in the edge. The N{sub e} of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.