Electromagnetic wave energy converter
NASA Technical Reports Server (NTRS)
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
"Hearing" Electromagnetic Waves
ERIC Educational Resources Information Center
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
"Hearing" Electromagnetic Waves
ERIC Educational Resources Information Center
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
Metamaterial electromagnetic wave absorbers.
Watts, Claire M; Liu, Xianliang; Padilla, Willie J
2012-06-19
The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed.
Electromagnetic Counterparts to Gravitational Waves
NASA Astrophysics Data System (ADS)
Kasliwal, Mansi M.; GROWTH Collaboration; iPTF/ZTF Collaboration
2017-01-01
The direct detection of gravitational waves from merging black holes marks the dawn of a new era. I will present ongoing efforts and prospectsto identify and characterize the electromagnetic counterpart. Among the various models for electromagnetic emission from binary neutronstar mergers, free neutron decay gives the most luminous and fast-evolving optical counterpart. I will describe a co-ordinated global effort, the GROWTH (Global Relay of Observatories Watching Transients Happen) network working in tandem with the Zwicky Transient Facility.
Proposed electromagnetic wave energy converter
NASA Technical Reports Server (NTRS)
Bailey, R. L.
1973-01-01
Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.
Millimeter waves: acoustic and electromagnetic.
Ziskin, Marvin C
2013-01-01
This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects.
Millimeter Waves: Acoustic and Electromagnetic
Ziskin, Marvin C.
2012-01-01
This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. PMID:22926874
Genetic Effects of Electromagnetic Waves
NASA Astrophysics Data System (ADS)
Aroutiounian, Rouben; Hovhannisyan, Galina; Gasparian, Gennady
The genetic effects of electromagnetic waves can be detected by different test-systems. The mutagenic effect of ionizing radiation can be developed on the levels of DNA and/or chromosomes. In numerous researches efficiency of micronucleus assay, alkaline single-cell gel electrophoresis, chromosomal aberrations test and FISH-technique and their different combinations for the detection of ionizing radiation-induced genotoxic effects are discussed. Also some molecular-biological approaches developed in the last years are presented.
Electromagnetic transduction of ultrasonic waves
NASA Astrophysics Data System (ADS)
Passarelli, Frank; Alers, George; Alers, Ron
2012-05-01
Excitation and detection of ultrasonic vibrations without physical contact has proven to be of great commercial value. First used to excite the resonant vibration of bar shaped laboratory specimens in the 1930's, it was Bruce Thompson's contributions in 1973-5 that launched their practical application to a wide range of difficult NDE problems. As a fresh PhD, he championed the use of mathematical models for the electromagnetic transduction process in order to guide the design and construction of practical transducers. His early papers presented both theoretical and experimental results that exposed the wide range of wave types that could be generated along with the environmental conditions that could be overcome. Several laboratories around the world established research programs to apply the electromagnetic transducer (EMAT) to specific NDE problems. This paper will summarize those applications made by the authors.
Sati, Priti; Tripathi, V. K.
2012-12-15
Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.
Electromagnetic wave energy conversion research
NASA Technical Reports Server (NTRS)
Bailey, R. L.; Callahan, P. S.
1975-01-01
Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.
Electromagnetic wave in a relativistic magnetized plasma
Krasovitskiy, V. B.
2009-12-15
Results are presented from a theoretical investigation of the dispersion properties of a relativistic plasma in which an electromagnetic wave propagates along an external magnetic field. The dielectric tensor in integral form is simplified by separating its imaginary and real parts. A dispersion relation for an electromagnetic wave is obtained that makes it possible to analyze the dispersion and collisionless damping of electromagnetic perturbations over a broad parameter range for both nonrelativistic and ultrarelativistic plasmas.
Spheroidal Wave Functions in Electromagnetic Theory
NASA Astrophysics Data System (ADS)
Li, Le-Wei; Kang, Xiao-Kang; Leong, Mook-Seng
2001-11-01
The flagship monograph addressing the spheroidal wave function and its pertinence to computational electromagnetics Spheroidal Wave Functions in Electromagnetic Theory presents in detail the theory of spheroidal wave functions, its applications to the analysis of electromagnetic fields in various spheroidal structures, and provides comprehensive programming codes for those computations. The topics covered in this monograph include: Spheroidal coordinates and wave functions Dyadic Green's functions in spheroidal systems EM scattering by a conducting spheroid EM scattering by a coated dielectric spheroid Spheroid antennas SAR distributions in a spheroidal head model The programming codes and their applications are provided online and are written in Mathematica 3.0 or 4.0. Readers can also develop their own codes according to the theory or routine described in the book to find subsequent solutions of complicated structures. Spheroidal Wave Functions in Electromagnetic Theory is a fundamental reference for scientists, engineers, and graduate students practicing modern computational electromagnetics or applied physics.
Efficient transformer for electromagnetic waves
Miller, R.B.
A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.
Generating electromagnetic waves from gravity waves in cosmology
Hogan, P. A.; O'Farrell, S.
2009-05-15
Examples of test electromagnetic waves on a Friedmann-Lemaitre-Robertson-Walker (FLRW) background are constructed from explicit perturbations of the FLRW space-times describing gravitational waves propagating in the isotropic universes. A possible physical mechanism for the production of the test electromagnetic waves is shown to be the coupling of the gravitational waves with a test magnetic field, confirming the observation of Marklund, Dunsby and Brodin [Phys. Rev. D 62, 101501(R) (2000)].
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
Linear electromagnetic wave equations in materials
NASA Astrophysics Data System (ADS)
Starke, R.; Schober, G. A. H.
2017-09-01
After a short review of microscopic electrodynamics in materials, we investigate the relation of the microscopic dielectric tensor to the current response tensor and to the full electromagnetic Green function. Subsequently, we give a systematic overview of microscopic electromagnetic wave equations in materials, which can be formulated in terms of the microscopic dielectric tensor.
Electromagnetic Counterparts of Gravitational Wave Transients
NASA Astrophysics Data System (ADS)
Branchesi, Marica
2015-03-01
In the near future the ground-based gravitational wave detectors will reach sensitivities that should make it possible for the first time to directly observe gravitational waves. The simultaneous availability of gravitational wave detectors observing together with space and ground-based electromagnetic telescopes will offer a great opportunity to explore the Universe in a new multi-messenger perspective. Promising sources of gravitational waves are the most energetic astrophysical events such as the merger of neutron stars and/or stellar-mass black holes and the core collapse of massive stars. These events are believed to produce electromagnetic transients in the sky, like gamma-ray bursts and supernovae. An overview of the expected electromagnetic counterparts of the gravitational wave sources is presented, focusing on the challenges, opportunities and strategies for starting transient gravitational wave astronomy.
Electromagnetic wave propagation characteristics in unimolecular reactions
NASA Astrophysics Data System (ADS)
Liu, Xingpeng; Huang, Kama
2016-01-01
Microwave-assisted chemical reactions have attracted interests because of their benefits for enhancement of reaction rates. However, the problems, such as hot spots and thermal runaway, limit the application of microwaves in the chemical industry. To study the characteristics of electromagnetic wave propagation in a chemical reaction is critical to solve the problems. The research on the characteristics of electromagnetic wave propagation in the unimolecular reaction that is a simple model reaction, can be generalized to the research in a chemical reaction. The approximate expressions of the attenuation and dispersion characteristics of electromagnetic wave propagation in the unimolecular reaction are derived by the nonlinear propagation theory. Specially, when the reaction rate is zero, the derived approximate expressions can be reduced to the formulas in low-loss dispersive media. Moreover, a 1D mold is used to validate the feasibility of the approximate expressions. The influences of the reaction rate and initial reactant concentration on the characteristics are obtained.
Scattering of electromagnetic wave by vortex flow
NASA Astrophysics Data System (ADS)
Wei, Jian-Ye; Liu, Jing-Yu; Mahmood, Waqas; Zhao, Qing
2017-04-01
In this paper, the scattering behaviour of an electromagnetic wave by vortex flow is studied in detail by solving the first-order (in v / c) Maxwell's equation in the cylindrical coordinate system (r, φ, z) and the general solutions are obtained. From these solutions, the differential cross-section of the vortex flow is calculated and the electromagnetic scattering characteristics of the vortex flow are discussed. The dependence of differential cross-section on the velocity profile and the radius of the vortex flow is investigated independently. Besides, by considering the dependence of scattering characteristics on the frequency of an incident wave we conclude that the vortex flow has frequency selectivity.
Electromagnetic wave propagations in conjugate metamaterials.
Xu, Yadong; Fu, Yangyang; Chen, Huanyang
2017-03-06
In this work, by employing field transformation optics, we deduce a special kind of materials called conjugate metamaterials, which can support intriguing electromagnetic wave propagations, such as negative refractions and lasing phenomena. These materials could also serve as substrates for making a subwavelength-resolution lens, and the so-called "perfect lens" is demonstrated to be a limiting case.
Emergent cosmological constant from colliding electromagnetic waves
Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O. E-mail: habib.mazhari@emu.edu.tr
2014-11-01
In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.
Obliquely Propagating Electromagnetic Waves in Magnetized Kappa Plasmas
NASA Astrophysics Data System (ADS)
Gaelzer, R.
2015-12-01
The effects of velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subjectof intense research by the space plasma community. Such functions, known as kappa or superthermal distributions, have beenfound to provide a better fitting to the VDF measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. An anisotropic kappa VDF contains a large amount of free energy that can excite waves in the solar wind. Conversely, the wave-particle interaction is important to determine the shape of theobserved particle distributions.In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, either isotropic or anisotropic, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation. Contributions for the general case of obliquely-propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities, such as the firehose, can operate simultaneously both in the parallel and oblique directions.In a recent work [1], we have obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. In the present work, we generalize the formalism introduced by [1] for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles.We employ an isotropic distribution, but the methods used here can be easily applied to more general anisotropic distributions,such as the bi-kappa or product-bi-kappa. [1] R. Gaelzer and L. F. Ziebell, Journal of Geophysical Research 119, 9334
Principles of electromagnetic waves in metasurfaces
NASA Astrophysics Data System (ADS)
Luo, XianGang
2015-09-01
Metasurfaces are artificially structured thin films with unusual properties on demand. Different from metamaterials, the metasurfaces change the electromagnetic waves mainly by exploiting the boundary conditions, rather than the constitutive parameters in three dimensional (3D) spaces. Despite the intrinsic similarities in the operational principles of metasurfaces, there is not a universal theory available for the understanding and design of these devices. In this article, we propose the concept of metasurface waves (M-waves) and provide a general theory to describe the principles of such waves. Most importantly, it is shown that the M-waves share some fundamental properties such as extremely short wavelength, abrupt phase change and strong chromatic dispersion, which making them different from traditional bulk waves. We show that these properties can enable many important applications such as subwavelength imaging and lithography, planar optical devices, broadband anti-reflection, absorption and polarization conversion. Our results demonstrated unambiguously that traditional laws of diffraction, refraction, reflection and absorption can be overcome by using the novel properties of M-waves. The theory provided here may pave the way for the design of new electromagnetic devices and further improvement of metasurfaces.
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Astrophysics Data System (ADS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.
2007-12-01
It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis
Effect of electromagnetic waves on human reproduction.
Wdowiak, Artur; Mazurek, Paweł A; Wdowiak, Anita; Bojar, Iwona
2017-03-31
Electromagnetic radiation (EMR) emitting from the natural environment, as well as from the use of industrial and everyday appliances, constantly influence the human body. The effect of this type of energy on living tissues may exert various effects on their functioning, although the mechanisms conditioning this phenomenon have not been fully explained. It may be expected that the interactions between electromagnetic radiation and the living organism would depend on the amount and parameters of the transmitted energy and type of tissue exposed. Electromagnetic waves exert an influence on human reproduction by affecting the male and female reproductive systems, the developing embryo, and subsequently, the foetus. Knowledge concerning this problem is still being expanded; however, all the conditionings of human reproduction still remain unknown. The study presents the current state of knowledge concerning the problem, based on the latest scientific reports.
Electromagnetic waves in a strong Schwarzschild plasma
Daniel, J.; Tajima, T.
1996-11-01
The physics of high frequency electromagnetic waves in a general relativistic plasma with the Schwarzschild metric is studied. Based on the 3 + 1 formalism, we conformalize Maxwell`s equations. The derived dispersion relations for waves in the plasma contain the lapse function in the plasma parameters such as in the plasma frequency and cyclotron frequency, but otherwise look {open_quotes}flat.{close_quotes} Because of this property this formulation is ideal for nonlinear self-consistent particle (PIC) simulation. Some of the physical consequences arising from the general relativistic lapse function as well as from the effects specific to the plasma background distribution (such as density and magnetic field) give rise to nonuniform wave equations and their associated phenomena, such as wave resonance, cutoff, and mode-conversion. These phenomena are expected to characterize the spectroscopy of radiation emitted by the plasma around the black hole. PIC simulation results of electron-positron plasma are also presented.
Obliquely propagating electromagnetic waves in magnetized kappa plasmas
NASA Astrophysics Data System (ADS)
Gaelzer, R.; Ziebell, L. F.
2016-02-01
Velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subject of intense research by the plasma physics community. Such functions, known as kappa or superthermal distributions, have been found to provide a better fitting to the VDFs measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation, relative to the ambient magnetic field. Contributions to the general case of obliquely propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities can operate simultaneously both in the parallel and oblique directions. In a recent work, Gaelzer and Ziebell [J. Geophys. Res. 119, 9334 (2014)] obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. In the present work, the formalism is generalized for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles. An isotropic distribution is considered, but the methods used here can be easily applied to more general anisotropic distributions such as the bi-kappa or product-bi-kappa.
Lattice Boltzmann method for electromagnetic wave propagation
NASA Astrophysics Data System (ADS)
Hanasoge, S. M.; Succi, S.; Orszag, S. A.
2011-10-01
We present a new Lattice Boltzmann (LB) formulation to solve the Maxwell equations for electromagnetic (EM) waves propagating in a heterogeneous medium. By using a pseudo-vector discrete Boltzmann distribution, the scheme is shown to reproduce the continuum Maxwell equations. The technique compares well with a pseudo-spectral method at solving for two-dimensional wave propagation in a heterogeneous medium, which by design contains substantial contrasts in the refractive index. The extension to three dimensions follows naturally and, owing to the recognized efficiency of LB schemes for parallel computation in irregular geometries, it gives a powerful method to numerically simulate a wide range of problems involving EM wave propagation in complex media.
Plasma waves in the distant geomagnetic tail - ISEE 3
NASA Technical Reports Server (NTRS)
Coroniti, F. V.; Greenstadt, E. W.; Tsurutani, B. T.; Smith, E. J.; Zwickl, R. D.
1990-01-01
The plasma wave measurements obtained during ISEE 3's deep passes through the geomagnetic tail found that moderate to intense electric field turbulence occurred in association with the major plasma and magnetic field regions and flow phenomena. In the magnetopause boundary layer the electric field spectral amplitudes are typically sharply peaked at 316 Hz to 562 Hz. The tail lobe region which is upstream of slow shocks and is magnetically connected to the plasma sheet is characterized by wave spectras that peak in the 100- to 316-Hz range and at the electron plasma frequency. Within the plasma sheet, broadband electrostatic noise occurs in regions where the magnetic field strength exceeds 2 nT; this noise can also be found in the plasma sheet boundary layer in association with strong field-aligned plasma flows. As ISEE 3 moved between the different distant tail regions, distinct but often subtle changes occurred in the plasma wave spectra.
Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin
2010-04-15
In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.
Nonmagnetic metamaterial landscapes for guided electromagnetic waves
NASA Astrophysics Data System (ADS)
Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.
2016-09-01
Transformation optics provides a geometry-based tool to create new components taking advantage of artificial metamaterials with optical properties that are not available in nature. Unfortunately, although guided electromagnetic waves are crucial for optical circuitry, transformation optics is not yet compatible with two-dimensional slab waveguides. Indeed, after determining the propagation of confined waves along the waveguide with a two-dimensional coordinate transformation, the conventional application of transformation optics results in metamaterials whose properties are insensitive to the coordinate perpendicular to the waveguide, leading to bulky, and therefore impractical, designs. In this contribution, we formulate an alternative framework that leads to feasible coordinate-based designs of two-dimensional waveguides. To this end, we characterize a guided transverse-magnetic light mode by relevant electromagnetic equations: a Helmholtz equation to account for wave propagation and a dispersion relation to impose a continuous light profile at the interface. By considering how two-dimensional conformal transformations transform these equations, we are able to materialize the coordinate-designed flows with a nonmagnetic metamaterial core of varying thickness, obtaining a two-dimensional device. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities, a beam bender, a beam splitter and a conformal lens, on a qualitative and quantitative level, by respectively comparing the electromagnetic fields inside and the transmission of our two-dimensional metamaterial devices to that of their three-dimensional counterparts at telecom wavelengths. As a result, we envision that one coordinate-based multifunctional waveguide component may seamlessly split and bend light beams on the landscape of an optical chip.
Electromagnetic Propagationg of Waves in Helical Stochastic
NASA Astrophysics Data System (ADS)
Adrian, Reyes; Mendez, David
2012-02-01
We develop a model for studying the axial propagation of elliptically polarized electromagnetic waves in a spatially random helical media. We start by writing Maxwell equations for a structurally chiral medium whose helical angle contains both a stochastic contribution and a deterministic one, this latter corresponding to an uniform rotation. We write the electromagnetic equations into Marcuvitz Schwigner representation to transform them afterward by using the Oseen transformation. We exhibit that in the Oseen frame, Marcuvitz Schwigner equations turns out to be a linear vectorial stochastic system of equations with multiplicative noise. From this result and utilizing a well known formalism for treating stochastic differential equations, we find the governing equations for the first and second moments of the field amplitudes for a general correlation model for the slope angles, and calculate their corresponding band structure for a particular spectral noise density. We show that the average resulting electromagnetic fields exhibit dissipation and the appearance of a new reflection band whose chirality is the opposite of the one obtained for a simple cholesteric liquid crystals.
Electromagnetic wave structures within subauroral polarization streams
NASA Astrophysics Data System (ADS)
Mishin, E. V.; Burke, W. J.; Huang, C. Y.; Rich, F. J.
2003-08-01
We report on oscillations in electric (δEY) and magnetic (δBZ) fields and plasma density (δNi) observed by Defense Meteorological Satellite Program (DMSP) satellites within fast subauroral convection streams in the evening sector during the magnetic storm of 6 November 2001. There are two types of wave phenomena. The first and more common is characterized by electromagnetic and plasma density variations that have the same frequency range of ˜0.15 Hz in the spacecraft frame of reference. The second is characterized by large-amplitude plasma and field oscillations over a broader range of frequencies ˜0.1 to 0.3 Hz. In this case the perturbation densities and fields appear to have different frequency responses. In this and other magnetic storms, strong waves are associated with the precipitation of ˜30 keV ions. Ratios of δEY/δBZ indicate encounters with mixtures of electromagnetic (in part Alfvénic) and electrostatic modes. Poynting vectors associated with the oscillations can be directed either into or out of the ionosphere. The density perturbations appear to be extended east-west corrugations in the plasma flow streams with north-south wavelengths of ˜50 km. The δEY and δNi variations were anticorrelated, as required for current conservation. Our analysis shows that Alfvénic perturbations are consistent with expected effects of irregular potential distribution around ionospheric density irregularities mapped to the magnetosphere. Inertial currents act to generate mesoscale field-aligned currents carried by Alfvén waves, as was previously discussed with regards to auroral arcs formation. We suggest that δNi irregularities observed by DMSP satellites in the evening sector began as striated plasma patches in the polar cap that convected to subauroral latitudes.
High latitude electromagnetic plasma wave emissions
NASA Technical Reports Server (NTRS)
Gurnett, D. A.
1983-01-01
The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.
High latitude electromagnetic plasma wave emissions
NASA Technical Reports Server (NTRS)
Gurnett, D. A.
1983-01-01
The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.
High-energy tail distributions and resonant wave particle interaction
NASA Technical Reports Server (NTRS)
Leubner, M. P.
1983-01-01
High-energy tail distributions (k distributions) are used as an alternative to a bi-Lorentzian distribution to study the influence of energetic protons on the right- and left-hand cyclotron modes in a hot two-temperature plasma. Although the parameters are chosen to be in a range appropriate to solar wind or magnetospheric configurations, the results apply not only to specific space plasmas. The presence of energetic particles significantly alters the behavior of the electromagnetic ion cyclotron modes, leading to a wide range of unstable frequencies and increased growth rates. From the strongly enhanced growth rates it can be concluded that high-energy tail distributions should not show major temperature anisotropies, which is consistent with observations.
Plasma wave aided two photon decay of an electromagnetic wave in a plasma
Kumar, K. K. Magesh; Singh, Rohtash; Krishan, Vinod
2014-11-15
The presence of a Langmuir wave in an unmagnetized plasma is shown to allow parametric decay of an electromagnetic wave into two electromagnetic waves, which is otherwise not allowed due to wave number mismatch. The decay occurs at plasma densities below one ninth the critical density and the decay waves propagate at finite angles to the pump laser. Above the threshold, the growth rate scales linearly with the amplitude of the Langmuir wave and the amplitude of the pump electromagnetic wave. The frequency ω of the lower frequency decay wave increases with the angle its propagation vector makes with that of the pump. The growth rate, however, decreases with ω.
Electromagnetic wave probing of Earth's environment
NASA Technical Reports Server (NTRS)
Kong, Jin AU
1988-01-01
Polarimetric radar backscattering from anisotropic Earth terrain such as snow-covered ice fields and vegetation fields with row structures provides a challenging modeling problem from the electromagnetic wave point of view. Earth terrain covers are modeled as random media characterized by different dielectric constants and correlation functions. A three-layer model will be used to simulate a vegetation field or a snow-covered ice field with the top layer being snow or leaves, the middle layer being ice of trunks, and the bottom layer being sea water or ground. The volume scattering effects of snow-covered sea ice are studied with a three-layer random medium model for microwave remote sensing. The strong fluctuation theory and the bilocal approximation are applied to calculate the effective permittivities for snow and sea ice. The wave scattering theory in conjunction with the distorted Born approximation is then used to compute bistatic coefficients and backscattering cross sections. Theoretical results are illustrated by matching experimental data for dry snow-covered thick first-year sea ice at Point Barrow. The results derived can also be applied to the passive remote sensing by calculating the emissivity from the bistatic scattering coefficients.
Nonlinear Landau damping of transverse electromagnetic waves in dusty plasmas
Tsintsadze, N. L.; Chaudhary, Rozina; Shah, H. A.; Murtaza, G.
2009-04-15
High-frequency transverse electromagnetic waves in a collisionless isotropic dusty plasma damp via nonlinear Landau damping. Taking into account the latter we have obtained a generalized set of Zakharov equations with local and nonlocal terms. Then from this coupled set of Zakharov equations a kinetic nonlinear Schroedinger equation with local and nonlocal nonlinearities is derived for special cases. It is shown that the modulation of the amplitude of the electromagnetic waves leads to the modulation instability through the nonlinear Landau damping term. The maximum growth rate is obtained for the special case when the group velocity of electromagnetic waves is close to the dust acoustic velocity.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium.
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-06-15
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium.
Electromagnetic waves: Negative refraction by photonic crystals
NASA Astrophysics Data System (ADS)
Ozbay, Ekmel
2004-03-01
Recently left-handed materials (LHM) attracted great attention since these materials exhibit negative effective index, which is due to simultaneously negative permeability and permittivity. Pendry proposed that negative effective index in left-handed materials can be used for constructing a perfect lens, which is not limited by diffraction(J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. vol. 85, 3966 (2000)). Negative refraction is also achievable in a dielectric photonic crystal (PC) that has a periodically modulated positive permittivity and a permeability of unity. Luo et al. has studied negative refraction and subwavelength imaging in photonic crystals(C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, Subwavelength Imaging in Photonic Crystals Phys. Rev. B 68, 045115 (2003)). In this presentation, we report our experimental and theoretical investigation of negative refraction and subwavelength focusing of electromagnetic waves in a 2D PC. Our structure consists of a square array of dielectric rods in air. Transmission measurements are performed for experimentally verifying the predicted negative refraction behavior in our structure. Negative index of refraction determined from the experiment is -1.94 which is very close to the theoretical value of -2.06. Negative refraction is observed for the incidence angles of > 20°(Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, S. Foteinopolou, and Costas Soukoulis, Negative Refraction by Photonic Crystals, Nature, vol. 423, 604 (2003)). Since we know the optimum frequency for a broad angle negative refraction, we can use our crystal to test the superlensing effect that was predicted for negative refractive materials. Scanning transmission measurement technique is used to measure the spatial power distribution of the focused electromagnetic waves that radiate from a point source. Full width at half maximum of the focused beam is measured to be 0.21λ, which is in good agreement with the finite
Electromagnetic radiation accompanying gravitational waves from black hole binaries
NASA Astrophysics Data System (ADS)
Dolgov, A.; Postnov, K.
2017-09-01
The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.
Modeling the Slow-Tail of Atmospheric Waves to Approximate the Distance of Propagation
NASA Astrophysics Data System (ADS)
Le Cocq, C.; Fraser-Smith, A. C.
2007-12-01
A lightning strike emits an electromagnetic wave known as an atmospheric or sferic, which propagates through the earth-ionosphere waveguide. Sferics can be recorded by extremely low and very low frequency, ELF and VLF, receiver systems. The recorded signal is composed of two segments, a pulse containing VLF frequencies, followed by a slow-tail, containing the ELF components. The slow-tail is essentially a single cycle wave, which is delayed with respect to the rest of the sferic due to the dispersive nature of the ionosphere. The recorded time- domain slow-tail varies with the lightning strike's current moment, and the waveguide's media characteristics. It is possible to approximate the location of the lightning source with measurements of the sferic. Many methods require measurements from multiple stations, however the goal of this work is to approximate the distance a sferic propagated with a single station. J.R. Wait developed a mode theory where propagating ELF radio are characterized by the first mode. The research reported here uses the first mode equations to model a slow-tail that propagated a certain distance. We include a comparison to measurements on slow-tails observed at widely variable distances from their causative lightning, and analyze the accuracy of our model. Using the inverse of this method along with sferics from known locations, we approximate the form of the current moment at the source and use an average of this waveform to improve our slow-tail model. With an accurate computed slow-tail we can approximate the distance of propagation by fitting the computed waveform to the observed slow-tail. An analysis is given of the effectiveness of this method. As expected, since this method uses data from only one station, the estimation error from this method are larger than those of the traditional multiple station estimation method. However, in most instances our method was accurate to within hundreds of kilometers. With such accuracy, this method
Traveling waves and their tails in locally resonant granular systems
Xu, H.; Kevrekidis, P. G.; Stefanov, A.
2015-04-22
In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely the avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise.
Traveling waves and their tails in locally resonant granular systems
Xu, H.; Kevrekidis, P. G.; Stefanov, A.
2015-04-22
In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely themore » avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise.« less
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Lee, Wonjae Krasheninnikov, Sergei I.; Angus, J. R.
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
NASA Astrophysics Data System (ADS)
Mace, R. L.; Sydora, R. D.; Silin, I.
2011-05-01
An important plasma source for the storm-enhanced ring current is the plasma sheet. Ion species in the near-Earth plasma sheet have been observed to have power law tails on their velocity distributions, which can be well fitted with kappa distributions under a variety of geomagnetic conditions. Motivated by these ideas, we investigate the electromagnetic ion cyclotron (EMIC) instability driven by hot ring current ions having velocity distributions that exhibit thermal anisotropy and power law tails of varying degrees of hardness (smallness of power index) for parameters consistent with the inner magnetosphere. With few exceptions, the presence of hard power law tails on the velocity distributions of the ring current ion species is observed to significantly enhance instability growth rates relative to a bi-Maxwellian ring current model. For a ring current composed of only hot protons, all EMIC branches are unstable, with the helium branch exhibiting the fastest growth rate for the thermal anisotropies considered. The addition of equal number densities of helium and oxygen ions to the ring current plasma has a dramatic stabilizing effect on the proton and helium branches. In this case it is frequently only the oxygen branch of the EMIC wave dispersion relation which is unstable. The detailed balance between cyclotron damping produced by one species and growth produced by another elevates the importance of the velocity distribution spectral index so that it can serve as a “switch” to turn on instability of certain branches.
Multiple Scattering of Electromagnetic Waves in Discrete Random Media.
1984-12-31
purposes, we have also investigated the electromagnetic wave propagation through randomly distributed and oriented scatterers by introducing the concept...computer to determine whether or not particle overlap has occurred. The implementation of the "physics" of the system and orientations of non-spherical...34Coherent electromagnetic wave propagation through randomly distributed and oriented pair-correlated dielectric scatterers," Radio Sci., 19, 1445-1449
MHD-waves in the geomagnetic tail: A review
NASA Astrophysics Data System (ADS)
Leonovich, Anatoliy; Mazur, Vitaliy; Kozlov, Daniil
2015-03-01
This article presents the review of experimental and theoretical studies on ultra-lowfrequency MHD oscillations of the geomagnetic tail. We consider the Kelvin-Helmholtz instability at the magnetopause, oscillations with a discrete spectrum in the "magic frequencies"range, the ballooning instability of coupled Alfvén and slow magnetosonic waves, and "flapping" oscillations of the current sheet of the geomagnetic tail. Over the last decade, observations from THEMIS, CLUSTER and Double Star satellites have been of great importance for experimental studies. The use of several spacecraft allows us to study the structure of MHD oscillations with high spatial resolution. Due to this, we can make a detailed comparison between theoretical results and those obtained from multi-spacecraft studies. To make such comparisons in theoretical studies, in turn, we have to use the numerical models closest to the real magnetosphere.
Surface electromagnetic wave equations in a warm magnetized quantum plasma
Li, Chunhua; Yang, Weihong; Wu, Zhengwei; Chu, Paul K.
2014-07-15
Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.
An Apparatus for Constructing an Electromagnetic Plane Wave Model
ERIC Educational Resources Information Center
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
An Apparatus for Constructing an Electromagnetic Plane Wave Model
ERIC Educational Resources Information Center
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
Transition operators in electromagnetic-wave diffraction theory - General theory
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Transition operators in electromagnetic-wave diffraction theory - General theory
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Interaction of electromagnetic wave with quantum over dense plasma layer
NASA Astrophysics Data System (ADS)
Rajaei, Leila
2016-10-01
The anomalous transmission of electromagnetic wave in the cold over dense plasma is investigated using the quantum hydrodynamic approach. The quantum effect on the dispersion relation of the surface wave excited by the electromagnetic radiation is evaluated and compared with the classical regimes. It is shown that the quantum dispersion curve, in comparison with its classical behavior, has an asymptotic approach at larger wave numbers. Investigating the transmission conditions, the effects of the main different parameters of the model such as the plasma density and Fermi velocity on the rate of transmission are scrutinized.
Electron acceleration in the ionosphere by obliquely propagating electromagnetic waves
NASA Astrophysics Data System (ADS)
Burke, William J.; Ginet, Gregory P.; Heinemann, Michael A.; Villalon, Elena
The paper presents an analysis of the relativistic equations of motion for electrons in magnetized plasma and externally imposed electromagnetic fields that propagate at arbitrary angles to the background magnetic field. The relativistic Lorentz equation for a test electron moving under the influence of an electromagnetic wave in a cold magnetized plasma and wave propagation through the ionospheric 'radio window' are examined. It is found that at wave energy fluxes greater than 10 to the 8th mW/sq m, initially cold electrons can be accelerated to energies of several MeV in less than a millisecond. Plans to test the theoretical results with rocket flights are discussed.
Polarization ray picture of coherence for vectorial electromagnetic waves
Luis, Alfredo
2007-10-15
We elucidate a ray picture of coherence for vectorial electromagnetic waves by using the Stokes parameters for light rays defined by the optical Wigner function. Paraxial propagation is formulated as a complementary Huygens principle. We show that the degrees of coherence are averages of the phase difference where the weights are the Stokes parameters for light rays. We analyze the van Cittert-Zernike theorem for vectorial waves in terms of ray propagation. We show that simple polarization measurements in a Young interferometer determine the degrees of coherence for vectorial electromagnetic waves.
Relativistic electromagnetic waves in an electron-ion plasma
NASA Technical Reports Server (NTRS)
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
Microstructural diagnosis using electromagnetic wave scattering methodologies
NASA Astrophysics Data System (ADS)
Chou, Kevin Jenn Chien
Scattered electromagnetic waves were used in the present work to characterize the microstructural effects on the performance of metallic materials. A Nisb3Al alloy with a dendritic microstructure has exhibited better creep resistance compared to similar alloys having equiaxed microstructure of grains. X-ray diffraction was applied along the dendritic arms to investigate their orientations. Both the interlocking boundaries and crystallographic texture of the dendritic arms resulted in the superior creep behavior. Non-invasive laser scattering was also used to optically probe smooth fatigue specimens to detect and monitor the development of fatigue damage. Inconel 718 specimens with a cylindrical geometry were tested under low cycle fatigue conditions with constant strain amplitudes ranging from 0.3% to 1%. A detection scheme to minimize computational time and memory was used to achieve in-situ data analysis. Both laser scanning and surface replication procedures were periodically performed throughout the life of the specimens. The scattered light signals were compared with microcrack length and density data from surface replicate SEM images. Three characteristic stages of the scattering signal were observed. The scanning laser light scattering (SLLS) technique was sufficiently robust, and well suited for the non-planar geometry in the leading edge. The SLLS signals correlated well with microstructural features over a large surface area. A physical model of microcrack size distribution within a surface grain was developed. The results of the model suggest that a SLLS signal saturation which coincides with the onset of microcrack density saturation corresponds to a transition from predominately single grain microcracks to microcracks that transverse multiple grains. The saturation of SLLS signal versus mean surface crack length also provided the following findings. Low cycle fatigue cracks were contained and saturated in those surface grains with the highest Schmid
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
NASA Astrophysics Data System (ADS)
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak
2015-09-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-01-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-09-10
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.
Nonlinear decay of electromagnetic ion cyclotron waves in the magnetosphere
Gomberoff, L.; Gratton, F.T.; Gnavi, G.
1995-02-01
The authors study the parametric decays of left-hand polarized electromagnetic ion cyclotron waves, propagating parallel to the external magnetic field, in the magnetosphere. They show that the presence of He{sup +} ions and a mixed population of thermal and hot protons give rise to new wave couplings. These couplings lead to a number of new instabilities. Some of the instabilities involve sound waves carried mainly by the He{sup +} ions, which can be very efficient in heating up the bulk of the He{sup +} ions via Landau damping. Other instabilities involve the branch of the left-hand polarized electromagnetic ion cyclotron waves which has a resonance at the He{sup +} ion gyrofrequency. These instabilities can also play a role in the energy transfer from the pump wave to the He{sup +} ions through resonance absorption, preferably in the direction perpendicular to the external magnetic field. The new couplings give rise to several types of parametric instabilities such as ordinary decay instabilities, beat wave instabilities, and modulational instabilities. There are also couplings where the pump wave decays into the two electromagnetic sideband waves. 42 refs., 10 figs.
A metasurface carpet cloak for electromagnetic, acoustic and water waves.
Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng
2016-01-29
We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.
A metasurface carpet cloak for electromagnetic, acoustic and water waves
Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng
2016-01-01
We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak. PMID:26822429
Cell therapy for spinal cord injury informed by electromagnetic waves.
Finnegan, Jack; Ye, Hui
2016-10-01
Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.
Left-handed interfaces for electromagnetic surface waves.
Kats, A V; Savel'ev, Sergey; Yampol'skii, V A; Nori, Franco
2007-02-16
We show that surface electromagnetic waves (SEMWs) propagating along two-dimensional (2D) interfaces separating different metamaterials can behave analogously to 3D electromagnetic waves in either usual or left-handed media, depending on the permeabilities and/or permittivities of the two materials forming the interface. We derive the conditions when SEMWs carry energy opposite to the phase velocity. In analogy to three-dimensional (3D) left-handed media, we derive both an anomalous Cherenkov emission and a reversed Doppler effect. We also predict a negative refraction at the boundary between two different interfaces, which can be useful for perfect 2D lensing.
NASA Astrophysics Data System (ADS)
Kalaee, Mohammad Javad; Katoh, Yuto
2016-07-01
One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.
Kalaee, Mohammad Javad; Katoh, Yuto
2016-07-15
One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.
Electromagnetic waves and Stokes parameters in the wake of a gravitational wave
NASA Astrophysics Data System (ADS)
Hacyan, Shahen
2012-11-01
A theoretical description of electromagnetic waves in the background of a (weak) gravitational wave is presented. Explicit expressions are obtained for the Stokes parameters during the passage of a plane-fronted gravitational wave described by the Ehlers-Kundt metric. In particular, it is shown that the axis of the polarization ellipse oscillates, its ellipticity remaining constant.
Electromagnetic rogue waves in beam-plasma interactions
NASA Astrophysics Data System (ADS)
Veldes, G. P.; Borhanian, J.; McKerr, M.; Saxena, V.; Frantzeskakis, D. J.; Kourakis, I.
2013-06-01
The occurrence of rogue waves (freak waves) associated with electromagnetic pulse propagation interacting with a plasma is investigated, from first principles. A multiscale technique is employed to solve the fluid Maxwell equations describing weakly nonlinear circularly polarized electromagnetic pulses in magnetized plasmas. A nonlinear Schrödinger (NLS) type equation is shown to govern the amplitude of the vector potential. A set of non-stationary envelope solutions of the NLS equation are considered as potential candidates for the modeling of rogue waves (freak waves) in beam-plasma interactions, namely in the form of the Peregrine soliton, the Akhmediev breather and the Kuznetsov-Ma breather. The variation of the structural properties of the latter structures with relevant plasma parameters is investigated, in particular focusing on the ratio between the (magnetic field dependent) cyclotron (gyro-)frequency and the plasma frequency.
Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.
Masood, Waqas; Eliasson, Bengt; Shukla, Padma K
2010-06-01
A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars.
Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas
Masood, Waqas; Eliasson, Bengt; Shukla, Padma K.
2010-06-15
A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin-(1/2), and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin-(1/2) contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars.
Response of thermal ions to electromagnetic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Fuselier, S. A.
1994-01-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
Response of thermal ions to electromagnetic ion cyclotron waves
NASA Astrophysics Data System (ADS)
Anderson, B. J.; Fuselier, S. A.
1994-10-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
Response of thermal ions to electromagnetic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Fuselier, S. A.
1994-01-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
Through casing weak electromagnetic wave signal detection and application
NASA Astrophysics Data System (ADS)
Li, Hui; Zhu, Xi-Fang; Cui, Cui-Mei
2017-07-01
Electromagnetic measurement technology is an important method for instrument parameters calibration, detection performance evaluation and complex system theory verification. In this paper, self-adaptive finite element method has been used to compute and analyze the weak electromagnetic wave signal, which is produced by changing electrode structure, transmitting frequency and antenna spacing of the through casing electromagnetic measurement tool. Numerical simulation results show that the detection depth of the tool can be influenced by the electrode structure can have the influence on, the resolution of high-resistivity and low-resistivity formation can be improved by transmitting frequency, the detection accuracy and detection depth of the through casing electromagnetic measurement tool can be influenced by the change of antenna spacing.
Molding acoustic, electromagnetic and water waves with a single cloak
Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien
2015-01-01
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. PMID:26057934
Molding acoustic, electromagnetic and water waves with a single cloak.
Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien
2015-06-09
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves.
Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes
Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing
2014-01-01
Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7–50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was −25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at −10 dB was up to 5.8 GHz within the frequency range of 2–18 GHz. PMID:25007783
Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing
2014-07-01
Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.
Electromagnetic wave absorbing properties of amorphous carbon nanotubes.
Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing
2014-07-10
Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.
Fractional Cylindrical Functions Implementation for Electromagnetic Waves Scattering Analysis
2002-09-01
IMPLEMENTATION FOR ELECTROMAGNETIC WAVES SCATTERING ANALYSIS D.V. Golovin , D.O. Batrakov. Kharkov National University, Ukraine Dmitry.O.Batrakov...N2 8. P. 1483. [2] Vorontsov A.A., Mirovitskaya S.D/I Radiotechnika i Electronika (in Russian) 1986. V.31. No 12. P. 2330. [3] Golovin D.V., Batrakov
Three-dimensional accelerating electromagnetic waves.
Bandres, Miguel A; Alonso, Miguel A; Kaminer, Ido; Segev, Mordechai
2013-06-17
We present a general theory of three-dimensional non-paraxial spatially-accelerating waves of the Maxwell equations. These waves constitute a two-dimensional structure exhibiting shape-invariant propagation along semicircular trajectories. We provide classification and characterization of possible shapes of such beams, expressed through the angular spectra of parabolic, oblate and prolate spheroidal fields. Our results facilitate the design of accelerating beams with novel structures, broadening scope and potential applications of accelerating beams.
Detection of leukemia using electromagnetic waves
NASA Astrophysics Data System (ADS)
Colton, David L.; Monk, Peter
1995-10-01
The presence of leukemia in bone marrow causes an increase in the electric permittivity and a decrease in the conductivity of the marrow. This suggests the possibility of detecting leukemia by electromagnetic imaging. We show how this can be done for the case of an absorbing host medium (i.e. water) and provide numerical experiments using synthetic data for detecting proliferated tissue at localized portions of the bone marrow. We do not assume that the refractive index of the fat, bone, and muscle are known but will instead recover these values as part of the imaging process.
Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves
Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu
2015-07-15
In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.
Electromagnetic ion cyclotron waves in the plasma depletion layer
NASA Technical Reports Server (NTRS)
Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.
1993-01-01
Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.
Transition of electromagnetic wave by suddenly created magneto plasma
NASA Astrophysics Data System (ADS)
Kuo, Spencer P.
2017-02-01
The theory of the interaction of electromagnetic waves with a suddenly created magneto plasma is presented. It is shown that a linearly polarized wave propagating along the magnetic field is converted into a frequency upshifted two forward and two backward propagating waves; in each propagation direction, one is right hand circular polarization and the other one is left hand circular polarization. A static wiggler magnetic field is also produced. The combined forward and backward waves are amplitude modulated with rotating polarizations. The extent of the frequency upshift increases with the increases of the plasma density and the background magnetic field intensity. By increasing the background magnetic field, the required plasma density for the frequency upshift is reduced; consequently, the drop rate of the conversion efficiency with the increase in the frequency upshift of the combined forward wave can be reduced considerably; the conversion efficiency of the combined backward wave also increases.
Reflection of electromagnetic waves at a biaxial-isotropic interface
NASA Technical Reports Server (NTRS)
Njoku, E. G.
1983-01-01
The reflection of electromagnetic waves at a plane boundary between isotropic and biaxial media has been investigated using the kDB approach. The general case has been considered in which the principal dielectric axes of the biaxial medium are oriented at an arbitrary angle to the normal of the plane boundary. In general, two characteristic waves propagate in the biaxial medium, leading to coupling of vertical and horizontal polarizations in the reflected waves. Some special cases are illustrated. The results have applications to problems in remote sensing and integrated optics.
MAGIC electromagnetic follow-up of gravitational wave alerts
NASA Astrophysics Data System (ADS)
de Lotto, Barbara; Ansoldi, Stefano; Antonelli, Angelo; Berti, Alessio; Carosi, Alessandro; Longo, Francesco; Stamerra, Antonio
The year 2015 witnessed the first direct observations of a transient gravitational-wave (GW) signal from binary black hole mergers by the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) Collaboration with the Virgo Collaboration. The MAGIC two 17m diameter Cherenkov telescopes system joined since 2014 the vast collaboration of electromagnetic facilities for follow-up of gravitational wave alerts. During the 2015 LIGO-Virgo science run we set up the procedure for GW alerts follow-up and took data following the last GW alert. MAGIC results on the data analysis and prospects for the forthcoming run are presented.
Nonlinear Self-Similar Beams of Electromagnetic Waves in Vacuum
NASA Astrophysics Data System (ADS)
Vlasov, S. N.
2015-12-01
We study nonlinear beams of electromagnetic waves in vacuum. Within the lowest approximation, their structure is determined by the cubic self-focusing nonlinearity, which manifests itself with the maximum intensity in the presence of counterpropagating waves. It is shown that the fields in the beams have no singularities if their power is less than the critical power of the self-focusing. The dependences of the eigenfrequencies of the modes of the quasioptical resonator on the beam power are found. The structure of the fields of these modes corresponds to self-similar wave beams.
Reflection and interference of electromagnetic waves in inhomogeneous media
NASA Technical Reports Server (NTRS)
Geiger, F. E.; Kyle, H. L.
1973-01-01
Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient.
Electron beam injection during active experiments. I - Electromagnetic wave emissions
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Kellogg, P. J.
1990-01-01
The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.
Tunable resonant transmission of electromagnetic waves through a magnetized plasma.
Kee, Chul-Sik; Li, Shou-Zhe; Kim, Kihong; Lim, H
2003-03-01
We theoretically investigate the resonant transmission of circularly polarized electromagnetic waves in the electromagnetic stop band of a magnetized plasma slab using the invariant embedding method. The frequency and quality factor of the resonant mode for the right-handed (left-handed) circularly polarized wave created by inserting a dielectric layer into the plasma increase (decrease) as the magnitude of the external magnetic field increases. These phenomena are compared with the characteristics of resonant modes in metallic and dielectric Fabry-Perot resonators to show that they are due to the change of plasma reflectivity. We also discuss the damping effect due to the collisions of the constituent particles of the plasma on the resonant transmission of circularly polarized waves.
Electron beam injection during active experiments. I - Electromagnetic wave emissions
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Kellogg, P. J.
1990-01-01
The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.
Impact of Fog on Electromagnetic Wave Propagation
NASA Astrophysics Data System (ADS)
Morris, Jonathon; Fleisch, Daniel
2002-04-01
This experiment was designed to explore the impact of fog on electromagnetic radiation, in particular microwaves and infrared light. For years law enforcement agencies have used microwave radiation (radar guns) to measure the speed of vehicles, and the last ten years has seen increased use of LIDAR, which uses 905-nm infrared radiation rather than microwaves. To evaulate the effect of fog on the operation of these devices, we have constructed a fog chamber with microwave and optical portals to allow light from a HeNe laser and 10.6-GHz microwaves to propagate through various densities of fog. Data is acquired using Vernier Logger Pro and analyzed using MATLAB and Mathematica. Using the attenuation of the laser light to determine fog density, the impact of fog on the signal-to-noise ratio of both microwave and IR devices may be quantified, and the maximum useful range may be calculated.
Electromagnetic Waves Broadcast by a VCR.
ERIC Educational Resources Information Center
Brown, Michael H.
1996-01-01
Presents experiments that use a video cassette recorder (VCR) to demonstrate polarization of radio waves using two dipole antennas and a spark gap transmitter tuned to a frequency of either 60-66 MHz or 66-72 MHz with wavelengths of 5 or 4.3 meters, close to the wavelengths of the original work done by Heinrich Hertz. (JRH)
Electromagnetic Waves Broadcast by a VCR.
ERIC Educational Resources Information Center
Brown, Michael H.
1996-01-01
Presents experiments that use a video cassette recorder (VCR) to demonstrate polarization of radio waves using two dipole antennas and a spark gap transmitter tuned to a frequency of either 60-66 MHz or 66-72 MHz with wavelengths of 5 or 4.3 meters, close to the wavelengths of the original work done by Heinrich Hertz. (JRH)
Reverse time migration for extended obstacles: electromagnetic waves
NASA Astrophysics Data System (ADS)
Chen, Junqing; Chen, Zhiming; Huang, Guanghui
2013-08-01
We propose a new single-frequency reverse time migration (RTM) algorithm for imaging extended targets using electromagnetic waves. The imaging functional is defined as the imaginary part of the cross-correlation of the Green function for the Helmholtz equation and the back-propagated electromagnetic field. The resolution of our RTM method for both penetrable and non-penetrable extended targets is studied by virtue of the Helmholtz-Kirchhoff identity for the time-harmonic Maxwell equation. The analysis implies that our imaging functional is always positive and thus may have better stability properties. Numerical examples are provided to demonstrate the powerful imaging quality and confirm our theoretical results.
Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Pirozhkov, Alexander S.; Nakamura, Tatsufumi; Bulanov, Stepan S.; Schroeder, Carl B.; Esarey, Eric; Califano, Francesco; Pegoraro, Francesco
2012-11-15
In thermal plasma, the structure of the density singularity formed in a relativistically large amplitude plasma wave close to the wavebreaking limit leads to a refraction coefficient with discontinuous spatial derivatives. This results in a non-exponentially small above-barrier reflection of an electromagnetic wave interacting with the nonlinear plasma wave.
Scattering and Depolarization of Electromagnetic Waves--Full Wave Solutions.
1984-01-01
Analysis," Proceedings of the International Union of Radio Science URSI Conference at Ciudad Universitaria , Madrid, August 1983, in press. . . 13...rough land and seat3 J. The full wave approach was also used to determine the scattering and depolarization of radio waves in irregular spheroidal struc...Full Wave Solutions," Radio Science, Vol. 17, No. 5, September-October 1982, pp. 1055-1066. 4. "Scattering and Depolarization by Rough Surfaces: Full
A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves
Erofeev, V. I.
2015-09-15
The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.
A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves
NASA Astrophysics Data System (ADS)
Erofeev, V. I.
2015-09-01
The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.
Electromagnetic wave scattering from some vegetation samples
NASA Technical Reports Server (NTRS)
Karam, Mostafa A.; Fung, Adrian K.; Antar, Yahia M.
1988-01-01
For an incident plane wave, the field inside a thin scatterer (disk and needle) is estimated by the generalized Rayleigh-Gans (GRG) approximation. This leads to a scattering amplitude tensor equal to that obtained via the Rayleigh approximation (dipole term) with a modifying function. For a finite-length cylinder the inner field is estimated by the corresponding field for the same cylinder of infinite lenght. The effects of different approaches in estimating the field inside the scatterer on the backscattering cross section are illustrated numerically for a circular disk, a needle, and a finite-length cylinder as a function of the wave number and the incidence angle. Finally, the modeling predictions are compared with measurements.
Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Hamilton, D. C.
1993-01-01
AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.
Nonlinear Generation of Electromagnetic Waves Through Scattering by Thermal Electrons
NASA Astrophysics Data System (ADS)
Tejero, E. M.; Crabtree, C. E.; Blackwell, D. D.; Amatucci, B.; Mithaiwala, M.; Rudakov, L.; Ganguli, G.
2014-12-01
Nonlinear interactions involving whistler wave turbulence are important contributors to radiation belt dynamics, including the acceleration and loss of trapped electrons. Given sufficient whistler energy density, nonlinear scattering from thermal electrons can substantially change the wave normal angle, while inducing a small frequency shift [Ganguli et al., 2010]. This nonlinear process is being studied in the NRL Space Physics Simulation Chamber (SPSC) in scaled magnetospheric conditions. The plasma response as a function of transmitted lower hybrid wave amplitude is monitored with magnetic loop antennas. Measurements of the magnetic field vectors for the pump and daughter waves allow for the determination of wave distribution functions, which indicate the power distribution as a function of wave-normal angle and azimuthal angle. The wave distribution functions measured in the experiment demonstrate a dramatic change in propagation direction when the launched wave amplitude exceeds a small threshold (δB / B ~ 4 × 10-7). The experimental results support the theory of electromagnetic whistler wave generation through nonlinear scattering of electrostatic lower hybrid waves by thermal electrons in the Earth's magnetosphere [Crabtree et al, 2012].
Magnesiothermic reduction of rice husk ash for electromagnetic wave adsorption
NASA Astrophysics Data System (ADS)
Liu, Shu-Ting; Yan, Kang-kang; Zhang, Yuan hu; Jin, Shi-di; Ye, Ying; Chen, Xue-Gang
2015-11-01
The increase in electromagnetic pollution due to the extensive exploitation of electromagnetic (EM) waves in modern technology creates correspondingly urgent need for developing effective EM wave absorbers. In this study, we carried out the magnesiothermic reduced the rice husk ash under different temperatures (400-800 °C) and investigated the electromagnetic wave adsorption of the products. The EM absorbing for all samples are mainly depend on the dielectric loss, which is ascribed to the carbon and silicon carbide content. RA samples (raw rice husk ashed in air and was magesiothermic reduced in different temperatures) exhibit poor dielectric properties, whereas RN samples (raw rice husk ashed in nitrogen and was magesiothermic reduced in different temperatures) with higher content of carbon and silicon carbide display considerable higher dielectric loss values and broader bandwidth for RL<-5 dB and -10 dB. For RN samples, the maximum bandwidth for -5 dB and -10 dB decrease with carbon contents, while the optimum thickness decrease with increasing SiC content. The optimum thickness of RN400-800 for EM absorption is 1.5-2.0 mm, with maximum RL of between -28.9 and -68.4 dB, bandwidth of 6.7-13 GHz for RL<-5 dB and 3.2-6.2 GHz for RL<-10 dB. The magnesiothermic reduction will enhance the potential application of rice husk ash in EM wave absorption and the samples benefited from low bulk density and low thickness. With the advantages of light-weight, high EM wave absorption, low cost, RN400-800 could be promising candidates for light-weight EM wave absorption materials over many conventional EM wave absorbers.
The momentum of an electromagnetic wave inside a dielectric
Testa, Massimo
2013-09-15
The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham–Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored. -- Highlights: •We discuss an approximation to treat electrodynamics of a dielectric material. •We support the Abraham form for the electromagnetic momentum. •We deduce Snell’s law from the conservation of the Abraham momentum. •We show how to deal with the electric field discontinuity at the dielectric boundary.
Parametric decay of an electromagnetic wave near electron cyclotron harmonics
Istomin, Y.N.; Leyser, T.B.
1995-06-01
A system of equations describing the nonlinear coupling of high frequency electron Bernstein (EB) and upper hybrid (UH) waves near harmonics of the electron cyclotron frequency with low frequency lower hybrid (LH) waves in a homogeneous, weakly magnetized, and weakly collisional plasma is derived. The EB and UH modes are described by a single second order equation, taking into account the interaction with low frequency density fluctuations. The ponderomotive force of the high frequency oscillations increases near the cyclotron harmonics due to the resonance with the electron motion. The obtained equations are used to study the parametric decay of an infinite wavelength electromagnetic pump wave into EB or UH waves and LH waves. The threshold electric fields are sufficiently low to be exceeded in high frequency ionospheric modification experiments. However, the instability cannot be excited for pump frequencies near the cyclotron harmonics. For the decay into EB waves, the resulting forbidden frequency range depends on the harmonic number in a power law manner, consistent with observations of stimulated electromagnetic emissions in ionospheric modification experiments. Further, for sufficiently high pump electric fields the instability is also suppressed, when the frequency mismatch around the eigenfrequencies at which the interaction can occur is of the order of the frequency separation between the EB and UH modes near the cyclotron harmonics. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Collision of strong gravitational and electromagnetic waves in the expanding universe
NASA Astrophysics Data System (ADS)
Alekseev, G. A.
2016-03-01
An exact analytical model of the process of collision and nonlinear interaction of gravitational and/or electromagnetic soliton waves and strong nonsoliton electromagnetic traveling waves of arbitrary profile propagating in the expanding universe (the symmetric Kasner spacetime) is presented. In contrast to intuitive expectations that rather strong traveling waves can destroy the soliton, it occurs that the soliton survives during its interaction with electromagnetic waves of arbitrary amplitude and profile, but its parameters begin to evolve under the influence of this interaction. If a traveling electromagnetic wave possesses a finite duration, the soliton parameters after interaction take constant values again, but these values in general are different from those before the interaction. Based on exact solutions of the Einstein-Maxwell equations, our model demonstrates a series of nonlinear phenomena, such as (a) creation of gravitational waves in the collision of two electromagnetic waves, (b) creation of electromagnetic soliton waves in the collision of a gravitational soliton with traveling electromagnetic waves, (c) scattering of a part of a soliton wave in the direction of propagation of a traveling electromagnetic wave, and (d) quasiperiodic oscillating character of fields in the wave interaction region and multiple mutual transformations of gravitational and electromagnetic waves in this region. The figures illustrate these features of nonlinear wave interactions in general relativity.
Predicting Electromagnetic Signatures of Gravitational Wave Sources
NASA Astrophysics Data System (ADS)
D'Orazio, Daniel John
This dissertation investigates the signatures of electromagnetic radiation that may accompany two specific sources of gravitational radiation: the inspiral and merger of massive black hole binaries (MBHBs) in galactic nuclei, and the coalescence of black hole neutron star (BHNS) pairs. Part I considers the interaction of MBHBs, at sub-pc separations, with a circumbinary gas disk. Accretion rates onto the MBHB are calculated from two-dimensional hydrodynamical simulations as a function of the relative masses of the black holes. The results are applied to interpretation of the recent, sub-pc separation MBHB candidate in the nucleus of the periodically variable Quasar PG 1302-102. We advance an interpretation of the variability observed in PG 1302-102 as being caused by Doppler-boosted emission sourced by the orbital velocity of the smaller black hole in a MBHB with disparate relative masses. Part II considers BHNS binaries in which the black hole is large enough to swallow the neutron star whole before it is disrupted. As the pair nears merger, orbital motion of the black hole through the magnetosphere of the neutron star generates an electromotive force, a black-hole-battery, which, for the strongest neutron star magnetic field strengths, could power luminosities large enough to make the merging pair observable out to cosmic distances. Relativistic solutions for vacuum fields of a magnetic dipole near a horizon are given, and a mechanism for harnessing the power of the black-hole-battery is put forth in the form of a fireball emitting in hard X-rays to gamma-rays.
Highly Efficient Proteolysis Accelerated by Electromagnetic Waves for Peptide Mapping
Chen, Qiwen; Liu, Ting; Chen, Gang
2011-01-01
Proteomics will contribute greatly to the understanding of gene functions in the post-genomic era. In proteome research, protein digestion is a key procedure prior to mass spectrometry identification. During the past decade, a variety of electromagnetic waves have been employed to accelerate proteolysis. This review focuses on the recent advances and the key strategies of these novel proteolysis approaches for digesting and identifying proteins. The subjects covered include microwave-accelerated protein digestion, infrared-assisted proteolysis, ultraviolet-enhanced protein digestion, laser-assisted proteolysis, and future prospects. It is expected that these novel proteolysis strategies accelerated by various electromagnetic waves will become powerful tools in proteome research and will find wide applications in high throughput protein digestion and identification. PMID:22379392
Electromagnetic wave damping in a nonequilibrium aerosol plasma
Gorbatov, A.V.; Samuilov, E.V.
1983-01-01
Electromagnetic-wave propagation is considered for an aerosol in which the electron concentration is maintained only by photoelectric or thermionic emission from the aerosol particles. The nonequilibrium electron-velocity distribution is derived on the basis that the electron kinetic energy substantially exceeds the thermal energy of the gas molecules, and this is used to derive expressions for the conductivity in the cases of high-frequency and low-frequency electromagnetic fields. Allowance may be made for the delay in the aerosol particle temperature T/sub p/ relative to the gas temperature T/sub m/(T/sub p/>>T/sub m/) for a hot (about 2000 /sup 0/K) rapidly expanding aerosol, which results in an increase in the absorption coefficient for a low-frequency wave by comparison with the case T/sub m/ = T/sub p/.
Anisotropic electromagnetic wave propagation modeling using parabolic approximations
NASA Astrophysics Data System (ADS)
Brent, R. I.; Siegmann, W. L.; Jacobson, M. J.; Jacyna, G. M.
1990-12-01
A new method for the investigation of anisotropic electromagnetic wave propagation in the atmosphere is developed using parabolic approximations. Model equations for the electric field components are formulated which include the effects of both the inhomogeneous atmosphere and the static magnetic field of the earth. Application of parabolic-type approximations produces different systems of coupled parabolic equations. Each is valid for different relative magnitudes of components of the electric field. All admissible cases are then synthesized into one system which can be numerically examined, yielding solutions without a priori knowledge of electric field ratios. A specific example is presented and examined to understand static magnetic field effects on electromagnetic wave propagation. The influences of the earth's magnetic field are discussed and displayed in terms of electric components and the Poynting vector. Results demonstrate that the geomagnetic field can significantly influence HF atmospheric propagation.
Electromagnetic scattering and depolarization across rough surfaces: Full wave analysis
NASA Astrophysics Data System (ADS)
Bahar, Ezekiel; Huang, Guorong; Lee, Bom Son
1995-05-01
Full wave solutions are derived for vertically and horizontally polarized waves diffusely scattered across an interface that is two-dimensionally rough separating two different propagating media. Since the normal to the rough surface is not restricted to the reference plane of incidence, the waves are depolarized upon scattering; and the single scattered radiation fields are expressed as integrals of a surface element transmission scattering matrix that also accounts for coupling between the vertically and horizontally polarized waves. The integrations are over the rough surface area as well as the complete two-dimensional wave spectra of the radiation fields. The full wave solutions satisfy the duality and reciprocity relationships in electromagnetic theory, and the surface element scattering matrix is invariant to coordinate transformations. It is shown that in the high-frequency limit the full wave solutions reduce to the physical optics solutions, while in the low-frequency limit (for small mean square heights and slopes) the full wave solutions reduce to Rice's (1951) small perturbation solutions. Thus, the full wave solution accounts for specular point scattering as well as diffuse, Bragg-type scattering in a unified, self-consistent manner. It is therefore not necessary to use hybrid, perturbation and physical optics approaches (based on two-scale models of composite surfaces with large and small roughness scales) to determine the like- and cross-polarized fields scattered across the rough surface.
Minimizing the Reflection of Electromagnetic Waves by Surface Impedance.
1986-07-01
Chen2’ and G. Crosta3 ,** Technical Summary Report #2942 July 1986 ABSTRACT In an empty halfspace a point source emits electromagnetic waves of fixed...are determined by means of the geometrical optics approximation. An optimization method is used to compute the surface impedance, which minimizes a...given function of the e.m. fields (e.g. the average energy density) at a given observation point . The properties of the functions to be minimized are
Modulation of electromagnetic waves in material with high dielectric constant
NASA Astrophysics Data System (ADS)
Saxena, Shivani; Dixit, Sanjay; Srivastava, Sanjay
2015-07-01
The main objective of the paper is to discuss the amplitude modulation and demodulation of the electromagnetic wave in the material with high dielectric constant. The high dielectric constant in PZT materials is developed by the substitution of suitable doping element either at A+ sites or B sites in ABO3 crystal structure. The high dielectric constant of the material is due to the presence of strain in the existing lattice, known as strain dependent dielectric constant (SDDC).
Gradient instabilities of electromagnetic waves in Hall thruster plasma
Tomilin, Dmitry
2013-04-15
This paper presents a linear analysis of gradient plasma instabilities in Hall thrusters. The study obtains and analyzes the dispersion equation of high-frequency electromagnetic waves based on the two-fluid model of a cold plasma. The regions of parameters corresponding to unstable high frequency modes are determined and the dependence of the increments and intrinsic frequencies on plasma parameters is obtained. The obtained results agree with those of previously published studies.
Electromagnetic waves in a model with Chern-Simons potential
NASA Astrophysics Data System (ADS)
Pis'mak, D. Yu.; Pis'mak, Yu. M.; Wegner, F. J.
2015-07-01
We investigated the appearance of Chern-Simons terms in electrodynamics at the surface or interface of materials. The requirement of locality, gauge invariance, and renormalizability in this model is imposed. Scattering and reflection of electromagnetic waves in three different homogeneous layers of media is determined. Snell's law is preserved. However, the transmission and reflection coefficient depend on the strength of the Chern-Simons interaction (connected with Hall conductance), and parallel and perpendicular components are mixed.
Electromagnetic wave extinction within a forested canopy
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1989-01-01
A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.
Electromagnetic wave extinction within a forested canopy
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1989-01-01
A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.
Spin-electromagnetic waves in planar multiferroic multilayers
NASA Astrophysics Data System (ADS)
Nikitin, Andrey A.; Ustinov, Alexey B.; Vitko, Vitalii V.; Nikitin, Alexey A.; Kondrahov, Alexandr V.; Pirro, P.; Lähderanta, E.; Kalinikos, Boris A.; Hillebrands, B.
2017-07-01
A general electrodynamic theory is developed for dispersion characteristics of spin-electromagnetic waves (SEWs) propagating in multiferroic multilayers. The derivation is based on the full set of Maxwell's equations taking into account retardation effects. The multilayers are considered to be composed of an infinite number of ferrite and ferroelectric layers having arbitrary thicknesses, as well as arbitrary magnetic and electric parameters. As an example, spectra of SEWs are calculated and analyzed for a heterostructure containing two thin ferrite films separated by a thin ferroelectric film. An electric field tunability of the SEW dispersion characteristics at gigahertz frequencies is shown, providing an efficient control of SEW wave-numbers important for applications.
Electromagnetic ion cyclotron waves observed in the plasma depletion layer
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Fuselier, S. A.; Murr, D.
1991-01-01
Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.
Electromagnetic ion cyclotron waves observed in the plasma depletion layer
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Fuselier, S. A.; Murr, D.
1991-01-01
Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.
ERIC Educational Resources Information Center
Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung
2014-01-01
To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in…
ERIC Educational Resources Information Center
Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung
2014-01-01
To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in…
Numerical simulation of azimuth electromagnetic wave tool response based on self-adaptive FEM
NASA Astrophysics Data System (ADS)
Li, Hui; Shen, Yi-Ze
2017-07-01
Azimuth electromagnetic wave is a new type of electromagnetic prospecting technology. It can detect weak electromagnetic wave signal and realize real-time formation conductivity imaging. For effectively optimizing measurement accuracy of azimuth electromagnetic wave imaging tool, the efficient numerical simulation algorithm is required. In this paper, self-adaptive finite element method (FEM) has been used to investigate the azimuth electromagnetic wave logging tool response by adjusting antenna array system in different geological conditions. Numerical simulation examples show the accuracy and efficiency of the method, and provide physical interpretation of amplitude attenuation and phase shift of electromagnetic wave signal. Meanwhile, the high-accuracy numerical simulation results have great value to azimuth electromagnetic wave imaging tool calibration and data interpretation.
Ring Current-Electromagnetic Ion Cyclotron Waves Coupling
NASA Technical Reports Server (NTRS)
Khazanov, G. V.
2005-01-01
The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.
Ring Current-Electromagnetic Ion Cyclotron Waves Coupling
NASA Technical Reports Server (NTRS)
Khazanov, G. V.
2005-01-01
The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.
NASA Astrophysics Data System (ADS)
Pandey, R. S.; Kaur, Rajbir
2015-10-01
Electromagnetic electron cyclotron (EMEC) waves with temperature anisotropy in the magnetosphere of Uranus have been studied in present work. EMEC waves are investigated using method of characteristic solution by kinetic approach, in presence of AC field. In 1986, Voyager 2 encounter with Uranus revealed that magnetosphere of Uranus exhibit non-Maxwellian high-energy tail distribution. So, the dispersion relation, real frequency and growth rate are evaluated using Lorentzian Kappa distribution function. Effect of temperature anisotropy, AC frequency and number density of particles is found. The study is also extended to oblique propagation of EMEC waves in presence and absence of AC field. Through comprehensive mathematical analysis it is found that when EMEC wave propagates parallel to intrinsic magnetic field of Uranus, its growth is more enhanced than in case of oblique propagation. Results are also discussed in context to magnetosphere of Earth and also gives theoretical explanation to existence of high energetic particles observed by Voyager 2 in the magnetosphere of Uranus. The results can present a further insight into the nature of electron-cyclotron instability condition for the whistler mode waves in the outer radiation belts of Uranus or other space plasmas.
Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves
Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu
2015-07-01
In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies.
Planetary electromagnetic waves in the ionospheric E-layer
NASA Astrophysics Data System (ADS)
Kaladze, T. D.; Pokhotelov, O. A.; Sagdeev, R. Z.; Stenflo, L.; Shukla, P. K.
2003-04-01
The linear theory for the large-scale (λ>103km) electromagnetic (EM) waves in the middle-latitude ionospheric E-layer is developed. The general dispersion relation for these waves is derived. It is shown that the latitudinal inhomogeneity of the geomagnetic field and the angular velocity of the Earth's rotation can lead to the appearance of wave modes in the form of slow and fast EM planetary waves. The slow mode is produced by the dynamo electric field and it represents a generalization of the ordinary Rossby type waves in a rotating atmosphere when the Hall effect in the E-layer is included. The fast mode is a new mode, which is associated with the oscillations of the ionospheric electrons frozen in the geomagnetic field. It represents the variation of the vortical electric field and it arises solely due to the latitudinal gradient of the external magnetic field. The basic characteristics of the wave modes, such as the wavelength, the frequency and the Rayleigh friction, are estimated. Other types of waves, termed slow magnetohydrodynamic (MHD) waves, which are insensitive to the spatial inhomogeneity of the Coriolis and Ampére forces are also reviewed. It is shown that they appear as an admixture of slow Alfvén (SA) and whistler type waves. Such waves can generate variations in the magnetic field from a few tenth to a few hundreds nT. It is stressed that the basic features of the considered waves agree with the general properties of the magnetic perturbations observed at the world network of magnetic and ionospheric stations.
On propagation of electromagnetic and gravitational waves in the expanding Universe
NASA Astrophysics Data System (ADS)
Gladyshev, V. O.
2016-07-01
The purpose of this study was to obtain an equation for the propagation time of electromagnetic and gravitational waves in the expanding Universe. The velocity of electromagnetic waves propagation depends on the velocity of the interstellar medium in the observer's frame of reference. Gravitational radiation interacts weakly with the substance, so electromagnetic and gravitational waves propagate from a remote astrophysical object to the terrestrial observer at different time. Gravitational waves registration enables the inverse problem solution - by the difference in arrival time of electromagnetic and gravitational-wave signal, we can determine the characteristics of the emitting area of the astrophysical object.
Interaction of electromagnetic and acoustic waves in a stochastic atmosphere
NASA Technical Reports Server (NTRS)
Bhatnagar, N.; Peterson, A. M.
1979-01-01
In the Stanford radio acoustic sounding system (RASS) an electromagnetic signal is made to scatter from a moving acoustic pulse train. Under a Bragg-scatter condition maximum electromagnetic scattering occurs. The scattered radio signal contains temperature and wind information as a function of the acoustic-pulse position. In this investigation RASS performance is assessed in an atmosphere characterized by the presence of turbulence and mean atmospheric parameters. The only assumption made is that the electromagnetic wave is not affected by stochastic perturbations in the atmosphere. It is concluded that the received radio signal depends strongly on the intensity of turbulence for altitudes of the acoustic pulse greater than the coherence length of propagation. The effect of mean vertical wind and mean temperature on the strength of the received signal is also demonstrated to be insignificant. Mean horizontal winds, however, shift the focus of the reflected electromagnetic energy from its origin, resulting in a decrease in received signal level when a monostatic radio-frequency (RF) system is used. For a bistatic radar configuration with space diversified receiving antennas, the shifting of the acoustic pulse makes possible the remote measurement of the horizontal wind component.
Dispersion properties of compressional electromagnetic waves in quantum dusty magnetoplasmas
Ali, S.; Shukla, P.K.
2006-05-15
A new dispersion relation for low-frequency compressional electromagnetic waves is derived by employing quantum magnetohydrodynamic model and Maxwell equations in cold quantum dusty magnetoplasmas. The latter is composed of inertialess electrons, mobile ions, and immobile charged dust particulates. The dispersion relation for the low-frequency compressional electromagnetic modes is further analyzed for the waves propagating parallel, perpendicular, and oblique to the external magnetic field direction. It is found theoretically and numerically that the quantum parameter {alpha}{sub q}=(n{sub i0}/n{sub e0})({Dirac_h}/2{pi}){sup 2}/(4m{sub e}m{sub i}) affects the real angular frequencies and the phase speeds of the compressional electromagnetic modes. Here, n{sub i0} (n{sub e0}) is the equilibrium number density of the ions (electrons), m{sub e} (m{sub i}) is the electron (ion) mass, and ({Dirac_h}/2{pi}) is the Plank constant divided by 2{pi}.
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.
Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma
NASA Astrophysics Data System (ADS)
El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.
2015-08-01
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.
Information transfer by electromagnetic waves in cortex layers.
Triffet, T; Green, H S
1988-03-21
Coupling coefficients are derived for the transfer of energy from an electromagnetic wave propagating in the extracellular fluid of a cortex layer, using an ion dynamical model developed earlier (Green & Triffet, 1985). With the assistance of a simple computational algorithm, these are used to document the performance of a basic neural circuit (Eccles, 1979) embedded in a columnar structure of the type described by Mountcastle (1979). Results point to a holographic model of memory, in which calcium configurations in the dendrites of cerebellar granular cells, fixed by modulated alpha-waves, constitute the basic information storage mechanism. Event-related potential waves, known to sweep over selective regions of the cortex in advance of any muscular act, are explained as a logical consequence of circuit function.
Scattering of electromagnetic waves from a randomly perturbed quasiperiodic surface
NASA Technical Reports Server (NTRS)
Shin, R. T.; Kong, J. A.
1984-01-01
Electromagnetic-wave scattering by a quasi-periodic surface with random perturbations (as in the remote sensing of plowed fields) is investigated analytically, applying the Kirchhoff approximation and modeling the plowed fields by means of Gaussian random variation, sinusoidal variation, and Gaussian random variation about the spatial frequency. Coherent and incoherent bistatic scattering coefficients are derived in closed form by evaluating the physical-optics integral and shown to be proportional, in the geometric-optics limit, to the occurrence probability of slopes which reflect the incident wave specularly in the direction of the scattered wave. Backscattering cross sections are plotted as functions of incidence angle for a number of cases, demonstrating the strong effect of row direction.
Nonresonant interaction of heavy ions with electromagnetic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Berchem, J.; Gendrin, R.
1985-01-01
The motion of a heavy ion in the presence of an intense ultralow-frequency electromagnetic wave propagating along the dc magnetic field is analyzed. Starting from the basic equations of motion and from their associated two invariants, the heavy ion velocity-space trajectories are drawn. It is shown that after a certain time, particles whose initial phase angles are randomly distributed tend to bunch together, provided that the wave intensity b-sub-1 is sufficiently large. The importance of these results for the interpretation of the recently observed acceleration of singly charged He ions in conjunction with the occurrence of large-amplitude ion cyclotron waves in the equatorial magnetosphere is discussed.
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2002-01-01
A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov. G. V.; Gamayunov, K. V.; Jordanova, V. K.; Six, N. Frank (Technical Monitor)
2002-01-01
A new ring current global model has been developed that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall conductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms.
THE GENERATION OF THERMOELASTIC STRESS WAVES BY IMPULSIVE ELECTROMAGNETIC RADIATION.
ELECTROMAGNETIC RADIATION , ABSORPTION), (*STRESSES, ELECTROMAGNETIC RADIATION ), SURFACE PROPERTIES, INTERACTIONS, HEAT TRANSFER, ELASTIC PROPERTIES, ELECTROMAGNETIC PULSES, LASERS, MATHEMATICAL ANALYSIS, BOUNDARY VALUE PROBLEMS, SOLIDS
Electromagnetic cyclotron waves in the solar wind: Wind observation and wave dispersion analysis
Jian, L. K.; Moya, P. S.; Viñas, A. F.; Stevens, M.
2016-03-25
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and α-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis
NASA Technical Reports Server (NTRS)
Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.
2016-01-01
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
Role of surface electromagnetic waves in metamaterial absorbers
Chen, Wen -Chen; Cardin, Andrew; Koirala, Machhindra; ...
2016-03-18
Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Furthermore, experimental results are supportedmore » by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave.« less
Role of surface electromagnetic waves in metamaterial absorbers
Chen, Wen -Chen; Cardin, Andrew; Koirala, Machhindra; ...
2016-03-18
Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Furthermore, experimental results are supportedmore » by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave.« less
Role of surface electromagnetic waves in metamaterial absorbers.
Chen, Wen-Chen; Cardin, Andrew; Koirala, Machhindra; Liu, Xianliang; Tyler, Talmage; West, Kevin G; Bingham, Christopher M; Starr, Tatiana; Starr, Anthony F; Jokerst, Nan M; Padilla, Willie J
2016-03-21
Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Experimental results are supported by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave.
Role of surface electromagnetic waves in metamaterial absorbers
Chen, Wen -Chen; Cardin, Andrew; Koirala, Machhindra; Liu, Xianliang; Tyler, Talmage; West, Kevin G.; Bingham, Christopher M.; Starr, Tatiana; Starr, Anthony F.; Jokerst, Nan M.; Padilla, Willie J.
2016-03-18
Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Furthermore, experimental results are supported by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave.
Massively Sub-wavelength Guiding of Electromagnetic Waves
Hooper, I. R.; Tremain, B.; Dockrey, J. A.; Hibbins, A. P.
2014-01-01
Recently a new form of ultra-thin flexible waveguide consisting of a conducting comb-like structure with a thickness of the order of 1/600th of the operating wavelength was presented. However, whilst the thickness of the guide was massively sub-wavelength, the remaining dimensions (the height and period of the comb) were much longer. In this paper we propose, and experimentally verify, that a modified guiding geometry consisting of a chain of ultra-thin conducting spirals allows guiding of electromagnetic waves with wavelengths that are many times (40+) longer than any characteristic dimension of the guide, enabling super-sub-wavelength guiding and localisation of electromagnetic energy. PMID:25510662
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
ERIC Educational Resources Information Center
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-01-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
ERIC Educational Resources Information Center
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-01-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…
Surface waves in three-dimensional electromagnetic composites and their effect on homogenization.
Xiong, Xiaoyan Y Z; Jiang, Li Jun; Markel, Vadim A; Tsukerman, Igor
2013-05-06
Reflection and transmission of electromagnetic waves at the boundaries of periodic composites (electromagnetic/optical metamaterials) depends in general on both bulk and surface waves. We investigate the interplay of these two contributions using three-dimensional full-wave numerical simulations and a recently developed non-asymptotic homogenization theory.
Spectrum of classes of point emitters of electromagnetic wave fields.
Castañeda, Román
2016-09-01
The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.
Interaction of electromagnetic and acoustic waves in a stochastic atmosphere
NASA Technical Reports Server (NTRS)
Bhatnagar, N.; Frankel, M. S.; Peterson, A. M.
1977-01-01
This paper considers the interaction of electromagnetic and acoustic waves where a Radio Acoustic Sounding System (RASS) is operated in a stochastic environment characterized by turbulence, winds and mean-temperature gradients. It has been shown that for a RASS operating at acoustic frequencies below a few kilohertz propagating under typical atmospheric conditions, turbulence has little effect on the strength of the received radio signal scattered from the pulse at heights up to a few kilometers. This result implies that the received RF signal level (power) is primarily a function of sound intensity which decreases as x exp minus 2 where x is the altitude.
Robust imaging with electromagnetic waves in noisy environments
NASA Astrophysics Data System (ADS)
Borcea, Liliana; Garnier, Josselin
2016-10-01
We study imaging with an array of sensors that probes a medium with single frequency electromagnetic waves and records the scattered electric field. The medium is known and homogenous except for some small and penetrable inclusions. The goal of inversion is to locate and characterize these inclusions from the data collected by the array, which are corrupted by additive noise. We use results from random matrix theory to obtain a robust inversion method. We assess its performance with numerical simulations and quantify the benefit of measuring more than one component of the scattered electric field.
Broadband unidirectional behavior of electromagnetic waves based on transformation optics
NASA Astrophysics Data System (ADS)
Zang, Xiaofei; Zhu, Yiming; Ji, Xuebin; Chen, Lin; Hu, Qing; Zhuang, Songlin
2017-01-01
High directive antennas are fundamental elements for microwave communication and information processing. Here, inspired by the method of transformation optics, we propose and demonstrate a transformation medium to control the transmission path of a point source, resulting in the unidirectional behavior of electromagnetic waves (directional emitter) without any reflectors. The network of inductor-capacitor transmission lines is designed to experimentally realize the transformation medium. Furthermore, the designed device can work in a broadband frequency range. The unidirectional-manner-based device demonstrated in this work will be an important step forward in developing a new type of directive antennas.
Dispersion relations for electromagnetic wave propagation in chiral plasmas
Gao, M. X.; Guo, B. Peng, L.; Cai, X.
2014-11-15
The dispersion relations for electromagnetic wave propagation in chiral plasmas are derived using a simplified method and investigated in detail. With the help of the dispersion relations for each eignwave, we explore how the chiral plasmas exhibit negative refraction and investigate the frequency region for negative refraction. The results show that chirality can induce negative refraction in plasmas. Moreover, both the degree of chirality and the external magnetic field have a significant effect on the critical frequency and the bandwidth of the frequency for negative refraction in chiral plasmas. The parameter dependence of the effects is calculated and discussed.
Broadband unidirectional behavior of electromagnetic waves based on transformation optics
Zang, XiaoFei; Zhu, YiMing; Ji, XueBin; Chen, Lin; Hu, Qing; Zhuang, SongLin
2017-01-01
High directive antennas are fundamental elements for microwave communication and information processing. Here, inspired by the method of transformation optics, we propose and demonstrate a transformation medium to control the transmission path of a point source, resulting in the unidirectional behavior of electromagnetic waves (directional emitter) without any reflectors. The network of inductor-capacitor transmission lines is designed to experimentally realize the transformation medium. Furthermore, the designed device can work in a broadband frequency range. The unidirectional-manner-based device demonstrated in this work will be an important step forward in developing a new type of directive antennas. PMID:28106115
Electromagnetic wave method for mapping subterranean earth formations
Shuck, Lowell Z.; Fasching, George E.; Balanis, Constantine A.
1977-01-01
The present invention is directed to a method for remotely mapping subterranean coal beds prior to and during in situ gasification operations. This method is achieved by emplacing highly directional electromagnetic wave transmitters and receivers in bore holes penetrating the coal beds and then mapping the anomalies surrounding each bore hole by selectively rotating and vertically displacing the directional transmitter in a transmitting mode within the bore hole, and thereafter, initiating the gasification of the coal at bore holes separate from those containing the transmitters and receivers and then utilizing the latter for monitoring the burn front as it progresses toward the transmitters and receivers.
Electromagnetic form factors of the Δ with D-waves
Ramalho, Gilberto T.F.; Pena, Maria Teresa; Gross, Franz L.
2010-06-01
The electromagnetic form factors of the Δ baryon are evaluated within the framework of a covariant spectator quark model, where S and D-states are included in the Δ wave function. We predict all the four Δ multipole form factors: the electric charge G_{E0}, the magnetic dipole G_{M1}, the electric quadrupole G_{E2} and the magnetic octupole G_{M3}. We compare our predictions with other theoretical calculations. Our results are compatible with the available experimental data and recent lattice QCD data.
Scattering of Electromagnetic Waves by Drift Vortex in Plasma
NASA Astrophysics Data System (ADS)
Wang, Dong; Chen, Yinhua; Wang, Ge
2008-02-01
In a quasi-two-dimensional model, the scattering of incident ordinary electromagnetic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia ll 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approximation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then kia ll 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.
Nearly non-scattering electromagnetic wave set and its application
NASA Astrophysics Data System (ADS)
Liu, Hongyu; Wang, Yuliang; Zhong, Shuhui
2017-04-01
For any inhomogeneous compactly supported electromagnetic (EM) medium, it is shown that there exists an infinite set of linearly independent EM waves which generate nearly vanishing scattered wave fields. If the inhomogeneous medium is coated with a layer of properly chosen conducting medium, then the wave set is generated from the Maxwell-Herglotz approximation to the interior perfectly electric conducting or perfectly magnetic conducting eigenfunctions and depends only on the shape of the inhomogeneous medium. If no such a conducting coating is used, then the wave set is generated from the Maxwell-Herglotz approximation to the generalised interior transmission eigenfunctions and depends on both the content and shape of the inhomogeneous medium. We characterise the nearly non-scattering wave sets in both cases with sharp estimates. The results can be used to give a conceptual design of a novel shadowless lamp. The crucial ingredient is to properly choose the source of the lamp so that nearly no shadow will be produced by surgeons operating under the lamp.
Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers
NASA Astrophysics Data System (ADS)
Li, Ming-Liang; Deng, Ming-Xi; Gao, Guang-Jian
2016-12-01
In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave’s mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT’s meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Lamb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT’s geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474361 and 11274388).
NASA Astrophysics Data System (ADS)
Murakami, Ri Ichi; Yamamoto, Hidetoshi; Kim, Chan Kong; Yim, Cheol Mun; Kim, Yun Hae
The developments of electromagnetic wave shielding materials are strongly required because the malfunction of electronic equipment, mobile phone and wireless LAN avoids. In this study, it was investigated that the electromagnetic shielding effectiveness of carbon fiber sheets were enhanced by the ferrite which was coated by the microwave hydrothermal process. For coated carbon fiber sheet, the effects of ferrite and lamination of carbon fiber textile on the electromagnetic wave shielding effectiveness were discussed. In the range of frequency (100 1 GHz), the electromagnetic wave shielding effectiveness was measured by using TEM-Cell. The electromagnetic wave shielding effectiveness was greater for the coated carbon fiber sheets than for the uncoated carbon fiber sheets. When the insulation film was located between two carbon fiber sheets, the electromagnetic wave shielding effectiveness increased.
Parametric decay of an extraordinary electromagnetic wave in relativistic plasma
Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.
2015-03-15
Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations shows that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.
Nonresonant interactions of electromagnetic ion cyclotron waves with relativistic electrons
NASA Astrophysics Data System (ADS)
Chen, Lunjin; Thorne, Richard M.; Bortnik, Jacob; Zhang, Xiao-Jia
2016-10-01
The dynamics of relativistic electrons traveling through a parallel-propagating, monochromatic electromagnetic ion cyclotron (EMIC) wave in the Earth's dipole field are investigated via test particle simulations. Both resonant and nonresonant responses in electron pitch angle are considered, and the differences between the two are highlighted. Nonresonant electrons, with energies below the minimum resonant energy down to hundreds of keV, are scattered stochastically in pitch angle and can be scattered into the atmospheric loss cone. The nonresonant effect is attributed to the spatial edge associated with EMIC wave packets. A condition for effective nonresonant response is also provided. This effect is excluded from current quasi-linear theory and can be a potentially important loss mechanism of relativistic and subrelativistic electrons in the radiation belts.
Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media
NASA Astrophysics Data System (ADS)
Schmidt, Felix; Wagner, Norman; Lünenschloß, Peter; Toepfer, Hannes; Dietrich, Peter; Kaliorias, Andreas; Bumberger, Jan
2015-04-01
The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric
Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media
NASA Astrophysics Data System (ADS)
Schmidt, Felix; Lünenschloss, Peter; Mai, Juliane; Wagner, Norman; Töpfer, Hannes; Bumberger, Jan
2016-04-01
The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections. Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric
Interface Polarization Strategy to Solve Electromagnetic Wave Interference Issue.
Lv, Hualiang; Guo, Yuhang; Wu, Guanglei; Ji, Guangbin; Zhao, Yue; Xu, Zhichuan J
2017-02-15
Design of an interface to arouse interface polarization is an efficient route to attenuate high-frequency electromagnetic waves. The attenuation intensity is highly related to the contact area. To achieve stronger interface polarization, growing metal oxide granular film on graphene with a larger surface area seems to be an efficient strategy due to the high charge carrier concentration of graphene. This study is devoted to fabricating the filmlike composite by a facile thermal decomposition method and investigating the relationship among contact area, polarization intensity, and the type of metal oxide. Because of the high-frequency polarization effect, the composites presented excellent electromagnetic wave attenuation ability. It is shown that the optimal effective frequency bandwidth of graphene/metal oxide was close to 7.0 GHz at a thin coating layer of 2.0 mm. The corresponding reflection loss value was nearly -22.1 dB. Considering the attenuation mechanism, interface polarization may play a key role in the microwave-absorbing ability.
Shaping electromagnetic waves using software-automatically-designed metasurfaces.
Zhang, Qian; Wan, Xiang; Liu, Shuo; Yuan Yin, Jia; Zhang, Lei; Jun Cui, Tie
2017-06-15
We present a fully digital procedure of designing reflective coding metasurfaces to shape reflected electromagnetic waves. The design procedure is completely automatic, controlled by a personal computer. In details, the macro coding units of metasurface are automatically divided into several types (e.g. two types for 1-bit coding, four types for 2-bit coding, etc.), and each type of the macro coding units is formed by discretely random arrangement of micro coding units. By combining an optimization algorithm and commercial electromagnetic software, the digital patterns of the macro coding units are optimized to possess constant phase difference for the reflected waves. The apertures of the designed reflective metasurfaces are formed by arranging the macro coding units with certain coding sequence. To experimentally verify the performance, a coding metasurface is fabricated by automatically designing two digital 1-bit unit cells, which are arranged in array to constitute a periodic coding metasurface to generate the required four-beam radiations with specific directions. Two complicated functional metasurfaces with circularly- and elliptically-shaped radiation beams are realized by automatically designing 4-bit macro coding units, showing excellent performance of the automatic designs by software. The proposed method provides a smart tool to realize various functional devices and systems automatically.
Plug identification in drainage system using electromagnetic wave
NASA Astrophysics Data System (ADS)
Hijriani, Arifa; Utama, Aji Surya; Boas, Andrianus; Mukti, M. Ridho; Widodo
2017-07-01
The evaluation of drainage system's performance is an important thing to do to prevent flooding. Conventionally the Government evaluates the drainage system by opening one by one the lid of drainage and detects the plug manually. This method is not effective and efficient because this method need many people, much time and relatively expensive. The purpose of this paper is to identify plugs in drainage system in G St. at Bandung Institute of Technology by using electromagnetic wave. Ground Penetrating Radar (GPR) is one of geophysics method that using electromagnetic wave with high frequency. GPR is a non-destructive method with high resolution imaging for shallow depth (˜100m) and relatively cheap. We could identify the plug without opening the lid manually so that we could save much time. GPR's sensitivity is depends on resistivity, magnetic permeability, and permittivity of an object. The result of this research is we could identify the plug on the radargram that observed by a build-up amplitude anomaly.
Gravitational-wave tail effects to quartic non-linear order
NASA Astrophysics Data System (ADS)
Marchand, Tanguy; Blanchet, Luc; Faye, Guillaume
2016-12-01
Gravitational-wave tails are due to the backscattering of linear waves onto the space-time curvature generated by the total mass of the matter source. The dominant tails correspond to quadratic non-linear interactions and arise at the one-and-a-half post-Newtonian (1.5 PN) order in the gravitational waveform. The ‘tails-of-tails’, which are cubic non-linear effects appearing at the 3 PN order in the waveform, are also known. We derive here higher non-linear tail effects, namely those associated with quartic non-linear interactions or ‘tails-of-tails-of-tails’, which are shown to arise at the 4.5 PN order. As an application, we obtain at that order the complete coefficient in the total gravitational-wave energy flux of compact binary systems moving on circular orbits. Our result perfectly agrees with black-hole perturbation calculations in the limit of extreme mass ratio of the two compact objects.
Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma
Niknam, A. R.; Rastbood, E.; Bafandeh, F.; Khorashadizadeh, S. M.
2014-04-15
The modulational instability of right-hand circularly polarized electromagnetic electron cyclotron (CPEM-EC) wave in a magnetized quantum plasma is studied taking into account the collisional effects. Employing quantum hydrodynamic and nonlinear Schrödinger equations, the dispersion relation of modulated CPEM-EC wave in a collisional plasma has been derived. It is found that this wave is unstable in such a plasma system and the growth rate of the associated instability depends on various parameters such as electron Fermi temperature, plasma number density, collision frequency, and modulation wavenumber. It is shown that while the increase of collision frequency leads to increase of the growth rate of instability, especially at large wavenumber limit, the increase of plasma number density results in more stable modulated CPEM-EC wave. It is also found that in contrast to collisionless plasma in which modulational instability is restricted to small wavenumbers, in collisional plasma, the interval of instability occurrence can be extended to a large domain.
Zero-group-velocity propagation of electromagnetic wave through nanomaterial
NASA Astrophysics Data System (ADS)
Fan, Taian
This research will investigate the problem on the propagation of electromagnetic wave through a specific nanomaterial. The nanomaterial analyzed is a material consisting of a field of Pt nanorods. This field of Pt nanorods are deposited on a substrate which consists of a RuO2 nano structure. When the nanorod is exposed to an electron beam emitted by a TEM (Transmission electron microscopy). A wave disturbance has been observed. A video taken within the chamber shows a wave with a speed in the scale of um/s (10-6 m/s), which is 14 orders of magnitude lower than speed of light in free space (approximate 3x108 m/s ). A physical and mathematical model is developed to explain this phenomenon. Due to the process of fabrication, the geometry of the decorated Pt nanorod field is assumed to be approximately periodic. The nanomaterials possess properties similar to a photonic crystal. Pt, as a noble metal, shows dispersive behaviours that is different from those ones of a perfect or good conductors. A FDTD algorithm is implemented to calculate the band diagram of the nanomaterials. To explore the dispersive properties of the Pt nanorod field, the FDTD algorithm is corrected with a Drude Model. The analysis of the corrected band diagram illustrates that the group velocity of the wave packet propagating through the nanomaterial can be positive, negative or zero. The possible zero-group velocity is therefore used to explain the extremely low velocity of wave (wave envelope) detected in the TEM.
Frequency dependent power and energy flux density equations of the electromagnetic wave
NASA Astrophysics Data System (ADS)
Muhibbullah, M.; Haleem, Ashraf M. Abdel; Ikuma, Yasuro
The calculation of the power and energy of the electromagnetic wave is important for numerous applications. There are some equations to compute the power and energy density of the electromagnetic wave radiation. For instance, the Poynting vector is frequently used to calculate the power density. However those including the Poynting vector are not perfect to represent the actual values because the equations are frequency independent. In the present study we have derived the frequency-dependent equations to calculate the power and energy flux density of the electromagnetic wave by help of the classical electromagnetic theories. It is seems that the Poynting vector with a certain electric and magnetic fields is correct only for a specific frequency. However our equations are perfect to calculate the values of the power and energy flux density for all frequencies of the electromagnetic radiation. The equations may help to develop the applications of the electromagnetic wave radiation.
Propagation of electromagnetic wave in dusty plasma and the influence of dust size distribution
Li, Hui; Wu, Jian; Zhou, Zhongxiang; Yuan, Chengxun
2016-07-15
The effect of charged dust particle and their size distribution on the propagation of electromagnetic wave in a dusty plasma is investigated. It is shown that the additional collision mechanism provided by charged dust particles can significantly alter the electromagnetic properties of a plasma, leading to the appearance of attenuation of electromagnetic wave through dusty plasma. The attenuation coefficient mainly depends on the dust density, radius, and the charge numbers on the dust surface. The results described here will be used to enhance understanding of electromagnetic wave propagation processed in space and laboratory dusty plasma.
Full-wave Electromagnetic Field Simulations of Lower Hybrid Waves in Tokamaks
Wright, J.C.; Bonoli, P. T.; Brambilla, M.; D'Azevedo, E.; Berry, L.A.; Batchelor, D.B.; Jaeger, E.F.; Carter, M.D.; Phillips, C.K.; Okuda, H.; Harvey, R.W.; Myra, J.R.; D'Ippolito, D.A.; Smithe, D.N.
2005-09-26
The most common method for treating wave propagation in tokamaks in the lower hybrid range of frequencies (LHRF) has been toroidal ray tracing, owing to the short wavelengths (relative to the system size) found in this regime. Although this technique provides an accurate description of 2D and 3D plasma inhomogeneity effects on wave propagation, the approach neglects important effects related to focusing, diffraction, and finite extent of the RF launcher. Also, the method breaks down at plasma cutoffs and caustics. Recent adaptation of full-wave electromagnetic field solvers to massively parallel computers has made it possible to accurately resolve wave phenomena in the LHRF. One such solver, the TORIC code, has been modified to simulate LH waves by implementing boundary conditions appropriate for coupling the fast electromagnetic and the slow electrostatic waves in the LHRF. In this frequency regime the plasma conductivity operator can be formulated in the limits of unmagnetized ions and strongly magnetized electrons, resulting in a relatively simple and explicit form. Simulations have been done for parameters typical of the planned LHRF experiments on Alcator C-Mod, demonstrating fully resolved fast and slow LH wave fields using a Maxwellian non-relativistic plasma dielectric. Significant spectral broadening of the injected wave spectrum and focusing of the wave fields have been found, especially at caustic surfaces. Comparisons with toroidal ray tracing have also been done and differences between the approaches have been found, especially for cases where wave caustics form. The possible role of this diffraction-induced spectral broadening in filling the spectral gap in LH heating and current drive will be discussed.
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic waves in association with magnetic reconnection in the turbulent magnetosheath. These structured, broadband bursts occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic waves and quantify their proximity to X- and O-nulls.
Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances
NASA Astrophysics Data System (ADS)
Villalon, Elena
1989-03-01
Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency.
Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere
NASA Technical Reports Server (NTRS)
Wong, H. K.
1995-01-01
DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.
Localized Electromagnetic Waves: Interactions with Surfaces and Nanostructures
NASA Astrophysics Data System (ADS)
Anderson, Nicholas R.
The interaction of electromagnetic waves with nanostructures is an important area of research for signal processing devices, magnetic data storage, biosensors and a variety of other applications. In this work, we present analytic and numerical calculations for oscillating electric and magnetic fields coupling with excitations in magnetic materials as well as metallic and dielectric materials, near their resonance frequencies. One of the problems with the miniaturization of signal processing components is that there is a cutoff frequency associated with the transverse electric (TE) mode in waveguides. However, it is usually the TE mode which is used to achieve nonreciprocity for devices such as isolators. As a first step to circumvent this problem we looked at the absorption of electromagnetic waves in an antiferromagnet and a ferrite when the incident wave is at an arbitrary angle with respect to the magnetization direction. We calculated reflectivity and attenuated total reflectivity and found absorption and nonreciprocity, asymmetric behavior for waves traveling in opposite directions, for a broad range of propagation angles. Subsequently we also performed calculations for a transverse magnetic mode in a waveguide. The wave was allowed to propagate at an arbitrary angle with respect to the magnetization direction of the ferrite in the waveguide. We again found nonreciprocity for a wide range of angles. Our results show that this system could be used as an on-chip isolator with isolation values over 75 dB/cm in the 50 GHz range. We explored another signal processing device operating in the GHz range: a nonlinear phase shifter. Using Fe as the magnetic material allows the phase shifter to operate over a wide frequency and power range. We found a differential phase shift of greater than 50° over 3 cm for this device. The theoretical results compared well with experimental measurements. Finally, we study surface plasmon polaritons propagating along a metallic
Electromagnetic waves near the proton cyclotron frequency: Stereo observations
Jian, L. K.; Wei, H. Y.; Russell, C. T.; Luhmann, J. G.; Klecker, B.; Omidi, N.; Isenberg, P. A.; Goldstein, M. L.; Figueroa-Viñas, A.; Blanco-Cano, X.
2014-05-10
Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.
Dynamical control on helicity of electromagnetic waves by tunable metasurfaces
Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei
2016-01-01
Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the “On” state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the “Off” state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms. PMID:27272350
Precipitation of Relativistic Electrons by Electromagnetic Ion Cyclotron (EMIC) Waves
NASA Astrophysics Data System (ADS)
Denton, R. E.
2015-12-01
We use the electromagnetic ion cyclotron (EMIC) wave fields produced in a two dimensional hybrid code simulation (full dynamics particle ions, but inertialess fluid electrons) in dipole geometry in order to investigate the effect of magnetospheric EMIC waves on relativistic electrons. The plane of the simulation includes variation in the L shell direction and along magnetic field lines. Relativistic test particle electrons are inserted into the simulation when the wave fields are near their maximum amplitude. These electrons can be scattered into the loss cone so that they precipitate into the ionosphere. We find the effective pitch angle diffusion coefficient and probability of precipitation using these test particles. The pitch angle diffusion coefficients are largest for relativistic energies greater than 2 MeV, though they may be substantial for lower energies. The probability of precipitation is highest for low energy particles at small initial equatorial pitch angle. For high initial equatorial pitch angles, the probability of precipitation increases greatly with respect to particle energy. Starting from an isotropic pitch angle distribution of relativistic electrons with a Gaussian spread in the relativistic momentum, we find only a small drop in the probability of precipitation during 13 s time as the particle energy decreases. But that result depends on the initial pitch angle distribution. Starting with a distribution of particles steeply peaked at 90° initial equatorial pitch angle, the probability of precipitation would be greater for high-energy particles. We will discuss the mechanism of pitch angle scattering.
Electromagnetic wave propagation through an overdense magnetized collisional plasma layer
Thoma, C.; Rose, D. V.; Miller, C. L.; Clark, R. E.; Hughes, T. P.
2009-08-15
The results of investigations into the feasibility of using a magnetic window to propagate electromagnetic waves through a finite-sized overdense plasma slab are described. We theoretically calculate the transmission coefficients for right- and left-handed circularly polarized plane waves through a uniform magnetized plasma slab. Using reasonable estimates for the plasma properties expected to be found in the ionized shock layer surrounding a hypersonic aircraft traveling in the earth's upper atmosphere (radio blackout conditions), and assuming a 1 GHz carrier frequency for the radio communications channel, we find that the required magnetic field for propagation of right-handed circularly polarized, or whistler, waves is on the order of a few hundred gauss. Transmission coefficients are calculated as a function of sheath thickness and are shown to be quite sensitive to the electron collision frequency. One-dimensional particle-in-cell simulations are shown to be in good agreement with the theory. These simulations also demonstrate that Ohmic heating of the electrons can be considerable. Two- and three-dimensional particle-in-cell simulations using a simplified waveguide and antenna model illustrate the same general transmission behavior as the theory and one-dimensional simulations. In addition, a net focusing effect due to the plasma is also observed in two and three dimensions. These simulations can be extended to design and analyze more realistic waveguide and antenna models.
Dynamical control on helicity of electromagnetic waves by tunable metasurfaces.
Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei
2016-06-08
Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the "On" state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the "Off" state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms.
Semiannual Status Report. [excitation of electromagnetic waves in the whistler frequency range
NASA Technical Reports Server (NTRS)
1994-01-01
During the last six months, we have continued our study of the excitation of electromagnetic waves in the whistler frequency range and the role that these waves will play in the acceleration of electrons and ions in the auroral region. A paper entitled 'Electron Beam Excitation of Upstream Waves in the Whistler Mode Frequency Range' was listed in the Journal of Geophysical Research. In this paper, we have shown that an anisotropic electron beam (or gyrating electron beam) is capable of generating both left-hand and right-hand polarized electromagnetic waves in the whistler frequency range. Since right-hand polarized electromagnetic waves can interact with background electrons and left-hand polarized waves can interact with background ions through cyclotron resonance, it is possible that these beam generated left-hand and right-hand polarized electromagnetic waves can accelerate either ions or electrons (or both), depending on the physical parameters under consideration. We are currently carrying out a comprehensive study of the electromagnetic whistler and lower hybrid like waves observed in the auroral zone using both wave and particle data. Our first task is to identify these wave modes and compare it with particle observations. Using both the DE-1 particle and wave measurements, we can positively identify those electromagnetics lower hybrid like waves as fast magnetosonic waves and the upper cutoff of these waves is the local lower hybrid frequency. From the upper cutoff of the frequency spectrum, one can infer the particle density and the result is in very good agreement with the particle data. Since these electromagnetic lower hybrid like waves can have frequencies extended down to the local ion cyclotron frequency, it practically confirms that they are not whistler waves.
Semiannual Status Report. [excitation of electromagnetic waves in the whistler frequency range
NASA Technical Reports Server (NTRS)
1994-01-01
During the last six months, we have continued our study of the excitation of electromagnetic waves in the whistler frequency range and the role that these waves will play in the acceleration of electrons and ions in the auroral region. A paper entitled 'Electron Beam Excitation of Upstream Waves in the Whistler Mode Frequency Range' was listed in the Journal of Geophysical Research. In this paper, we have shown that an anisotropic electron beam (or gyrating electron beam) is capable of generating both left-hand and right-hand polarized electromagnetic waves in the whistler frequency range. Since right-hand polarized electromagnetic waves can interact with background electrons and left-hand polarized waves can interact with background ions through cyclotron resonance, it is possible that these beam generated left-hand and right-hand polarized electromagnetic waves can accelerate either ions or electrons (or both), depending on the physical parameters under consideration. We are currently carrying out a comprehensive study of the electromagnetic whistler and lower hybrid like waves observed in the auroral zone using both wave and particle data. Our first task is to identify these wave modes and compare it with particle observations. Using both the DE-1 particle and wave measurements, we can positively identify those electromagnetics lower hybrid like waves as fast magnetosonic waves and the upper cutoff of these waves is the local lower hybrid frequency. From the upper cutoff of the frequency spectrum, one can infer the particle density and the result is in very good agreement with the particle data. Since these electromagnetic lower hybrid like waves can have frequencies extended down to the local ion cyclotron frequency, it practically confirms that they are not whistler waves.
NASA Astrophysics Data System (ADS)
Peng, H. L.; Schober, H. R.; Voigtmann, Th.
2016-12-01
Molecular dynamic simulations are performed to reveal the long-time behavior of the velocity autocorrelation function (VAF) by utilizing the finite-size effect in a Lennard-Jones binary mixture. Whereas in normal liquids the classical positive t-3 /2 long-time tail is observed, we find in supercooled liquids a negative tail. It is strongly influenced by the transfer of the transverse current wave across the period boundary. The t-5 /2 decay of the negative long-time tail is confirmed in the spectrum of VAF. Modeling the long-time transverse current within a generalized Maxwell model, we reproduce the negative long-time tail of the VAF, but with a slower algebraic t-2 decay.
Electromagnetic wave propagation through the ZR Z-pinch accelerator.
Welch, Dale Robert; Clark, R. E.; Rose, David Vincent; Madrid, Elizabeth Ann; Corcoran, P. A.; Struve, Kenneth William; Stygar, William A.; Miller, C. L.; Whitney, B.
2008-08-01
A fully three-dimensional electromagnetic model of the major pulsed power components of the 26-MA ZR accelerator is presented. This large-scale simulation model tracks the evolution of electromagnetic waves through the intermediate storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, tri-plate transmission lines, and water convolute to the vacuum insulator stack. The plates at the insulator stack are coupled to a transmission line circuit model of the four-level magnetically-insulated transmission line section and post-hole convolutes. The vacuum section circuit model is terminated by either a short-circuit load or dynamic models of imploding z-pinch loads. The simulations results are compared with electrical measurements made throughout the ZR accelerator and good agreement is found, especially for times before and up to peak load power. This modeling effort represents new opportunities for modeling existing and future large-scale pulsed power systems used in a variety of high energy density physics and radiographic applications.
Electromagnetic Wave Propagation Through the ZR Z-Pinch Accelerator
Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.; Stygar, W. A.; Struve, K.; Corcoran, P. A.; Whitney, B.
2009-01-21
A fully three-dimensional electromagnetic model of the major pulsed power components of the 26-MA ZR accelerator is presented. This large-scale simulation model tracks the evolution of electromagnetic waves through the intermediate storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, tri-plate transmission lines, and water convolute to the vacuum insulator stack. The plates at the insulator stack are coupled to a transmission line circuit model of the four-level magnetically-insulated transmission line section and post-hole convolutes. The vacuum section circuit model is terminated by either a short-circuit load or dynamic models of imploding z-pinch loads. The simulations results are compared with electrical measurements made throughout the ZR accelerator and good agreement is found, especially for times before and up to peak load power. This modeling effort represents new opportunities for modeling existing and future large-scale pulsed power systems used in a variety of high energy density physics and radiographic applications.
Finite Element Modeling of scattered electromagnetic waves for stroke analysis.
Priyadarshini, N; Rajkumar, E R
2013-01-01
Stroke has become one of the leading causes of mortality worldwide and about 800 in every 100,000 people suffer from stroke each year. The occurrence of stroke is ranked third among the causes of acute death and first among the causes for neurological dysfunction. Currently, Neurological examinations followed by medical imaging with CT, MRI or Angiography are used to provide better identification of the location and the type of the stroke, however they are neither fast, cost-effective nor portable. Microwave technology has emerged to complement these modalities to diagnose stroke as it is sensitive to the differences between the distinct dielectric properties of the brain tissues and blood. This paper investigates the possibility of diagnosing the type of stroke using Finite Element Analysis (FEA). The object of interest is a simulated head phantom with stroke, created with its specifying material characteristics like electrical conductivity and relative permittivity. The phantom is then placed in an electromagnetic field generated by a dipole antenna radiating at 1 GHz. The FEM forward model solver computes the scattered electromagnetic field by finding the solution for the Maxwell's wave equation in the head volume. Subsequently the inverse scattering problem is solved using the Contrast Source Inversion (CSI) method to reconstruct the dielectric profile of the head phantom.
Searches for electromagnetic signatures of gravitational wave sources
NASA Astrophysics Data System (ADS)
Soares-Santos, Marcelle
2017-01-01
Motivated by the exciting prospect of new wealth of information that will arise from observations of gravitational and electromagnetic radiation from the same astrophysical phenomena, our community has performed a broad range of follow-up programs for LIGO/Virgo events. In this talk, I present an overview of this effort, including results of searches for signatures of the first two LIGO-triggered binary black hole mergers in the 2015-2016 observing campaign, when multiple facilities reported searches in gamma/X-rays, optical, infra-red, and radio wavelengths. I will also discuss plans for upcoming observing campaigns and long term prospects for this exciting emerging field: multi-messenger astrophysics with gravitational waves.
Identifying Electromagnetic Counterparts to Gravitational Wave Triggers With DECam
NASA Astrophysics Data System (ADS)
Cowperthwaite, Philip
2016-03-01
Identifying the electromagnetic counterpart to a gravitational wave (GW) event is one of the great observational challenges in modern astronomy. We report on our work to overcome this challenge by investigating the theoretical and practical issues associated with optical follow-up of a GW event. This includes a systematic study of the potential contaminant population and their impact on counterpart detectability in simulated observations. Additionally, we utilize data taken with the Dark Energy Camera (DECam) on the Blanco 4-m telescope at CTIO. These data serve as a mock follow-up to a GW event and assist in the characterization of contamination not captured in simulations. P.S.C. is grateful for support provided by the NSF through the Graduate Research Fellowship Program, Grant DGE1144152.
Heating of the plasma sheet by broadband electromagnetic waves
NASA Astrophysics Data System (ADS)
Chaston, C. C.; Bonnell, J. W.; Salem, C.
2014-12-01
We demonstrate that broadband low-frequency electromagnetic field fluctuations embedded within fast flows throughout the Earth's plasma sheet may drive significant ion heating. This heating is nearly entirely in the direction perpendicular to the background magnetic field and is estimated to occur at an average rate of ~1 eV/s with rates in excess of 10 eV/s within one standard deviation of the average value over all observed events. For an Earthward flow the total change in temperature along a flow path may exceed one keV and for "wave-rich" flows can be comparable to that expected due to conservation of the first adiabatic invariant. The consequent increase in plasma pressure and flux tube entropy may lead to braking of inward motion and the suppression of plasma interchange.
Electromagnetic plasma wave emissions from the auroral field lines
NASA Technical Reports Server (NTRS)
Gurnett, D. A.
1977-01-01
The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.
Scattering of the electromagnetic waves from a rough surface
NASA Astrophysics Data System (ADS)
Apostol, B. F.
2012-10-01
The electromagnetic field scattered by a rough surface of a semi-infinite body is computed up to the second order of a perturbation scheme with the surface roughness as a perturbation parameter. The calculations are based on the equation of motion of the polarization within the Lorentz-Drude (plasma) model of polarizable, non-magnetic, homogeneous matter. The surface roughness contributes both to the main (specularly) reflected and refracted fields and diffuse scattering, or gives rise to secondary (second-order) diffraction peaks for a regular grating. The calculations are performed both for the s- and p-waves. Two-dimensional modes, resonant at certain frequencies, are identified, confined to and propagating only on the surface, as a consequence of the surface roughness.
Jenet, F. A.; Melatos, A.; Robinson, P. A.
2007-10-15
Zakharov simulations of nonlinear wave collapse in continuously driven two-dimensional, electromagnetic strong plasma turbulence with electron thermal speeds v{>=}0.01c show that for v < or approx. 0.1c, dipole radiation occurs near the plasma frequency, mainly near arrest, but for v > or approx. 0.1c, a new mechanism applies in which energy oscillates between trapped Langmuir and transverse modes until collapse is arrested, after which trapped transverse waves are advected into incoherent interpacket turbulence by an expanding annular density well, where they detrap. The multipole structure, Poynting flux, source current, and radiation angular momentum are computed.
Characteristics of the electromagnetic wave field far away from the radiation source
NASA Astrophysics Data System (ADS)
Balkhanov, V. K.; Bashkuev, Yu. B.
2017-04-01
A solution to the Sommerfeld problem of the far (in terms of wavelengths) field of a vertical electrical dipole placed at the interface between two media has been found. The characteristics of a surface electromagnetic wave that propagates over a medium with highly inductive surface impedance δ have been determined. The spatial characteristics of the wave are expressed through the real and imaginary parts of impedance δ. It has been proved that the surface electromagnetic wave is the major contributor to the electromagnetic field of the ground wave in the case of highly inductive radio paths.
High-informative version of nonlinear transformation of Langmuir waves to electromagnetic waves
NASA Astrophysics Data System (ADS)
Erofeev, Vasily I.; Erofeev
2014-04-01
The concept of informativeness of nonlinear plasma physical scenario is discussed. Basic principles for heightening the informativeness of plasma kinetic models are explained. Former high-informative correlation analysis of plasma kinetics (Erofeev, V. 2011 High-Informative Plasma Theory, Saarbrücken: LAP) is generalized for studies of weakly turbulent plasmas that contain fields of solenoidal plasma waves apart from former potential ones. Respective machinery of plasma kinetic modeling is applied to an analysis of fusion of Langmuir waves with transformation to electromagnetic waves. It is shown that the customary version of this phenomenon (Terashima, Y. and Yajima, N. 1963 Prog. Theor. Phys. 30, 443; Akhiezer, I. A., Danelia, I. A. and Tsintsadze, N. L. 1964 Sov. Phys. JETP 19, 208; Al'tshul', L. M. and Karpman, V. I. 1965 Sov. Phys. JETP 20, 1043) substantially distorts the picture of merging of Langmuir waves with long wavelengths (λ >~ c/ωpe ).
Design of Metamaterials for control of electromagnetic waves
NASA Astrophysics Data System (ADS)
Koschny, Thomas
2014-03-01
Metamaterials are artificial effective media supporting propagating waves that derive their properties form the average response of deliberately designed and arranged, usually resonant scatterers with structural length-scales much smaller than the wavelength inside the material. Electromagnetic metamaterials are the most important implementation of metamaterials, which are made from deeply sub-wavelength electric, magnetic and chiral resonators and can be designed to work from radio frequencies all the way to visible light. Metamaterials have been major new development in physics and materials science over the last decade and are still attracting more interest as they enable us to create materials with unique properties like negative refraction, flat and super lenses, impedance matching eliminating reflection, perfect absorbers, deeply sub-wavelength sized wave guides and cavities, tunability, enhanced non-linearity and gain, chirality and huge optical activity, control of Casimir forces, and spontaneous emission, etc. In this talk, I will discuss the design, numerical simulation, and mathematical modeling of metamaterials. I will survey the current state of the art and discuss challenges, possible solutions and perspectives. In particular, the problem of dissipative loss and their possible compensation by incorporating spatially distributed gain in metamaterials. If the gain sub-system is strongly coupled to the sub-wavelength resonators of the metamaterial loss compensation and undamping of the resonant response of the metamaterials can occur. I will explore new, alternative dielectric low loss resonators for metamaterials as well as the potential of new conducting materials such as Graphene to replace metals as the conducting material in resonant metamaterials. Two dimensional metamaterials or metasurfaces, implementations of effective electromagnetic current sheets in which both electric and magnetic sheet conductivities are controlled by the average response
Serov, A.V.
1995-12-31
The time variation of the spartial distribution of an electron beam reflected by an inhomogeneous wave or traverse the wave was investigated. The injected beam is perpendicular to the direction of propagation of the wave. The interaction between an electron beam and an electromagnetic wave not only produces electron oscillation but also substantially changes the electron phase and energy distribution. It is shown that under specific conditions one part of particles are reflected by an electromagnetic wave and other part of particles traverse the wave.
Application of electromagnetic waves in damage detection of concrete structures
NASA Astrophysics Data System (ADS)
Feng, Maria Q.; De Flaviis, Franco; Kim, Yoo J.; Diaz, Rodolfo E.
2000-04-01
Jacketing technology using fiber reinforced polymer (FRP) composites is being applied for seismic retrofit of reinforced concrete (RC) columns designed and constructed under older specifications. In this study, the authors develop an electromagnetic (EM) imaging technology for detecting voids and debonding between the jacket and the column, which may significantly weaken the structural performance of the column otherwise attainable by jacketing. This technology is based on the reflection analysis of a continuous EM wave sent toward and reflected from layered FRP-adhesive-concrete medium: Poor bonding conditions including voids and debonding will generate air gaps which produce additional reflections of the EM wave. In this study, dielectric properties of various materials involved in the FRP-jacketed RC column were first measured. Second, the measured properties were used for a computer simulation of the proposed EM imaging technology. The simulation demonstrated the difficulty in detecting imperfect bonding conditions by using plane waves, as the scattering contribution from the voids and debonding is very small compared to that from the jacketed column. Third, in order to alleviate this difficulty, a special dielectric lens was designed and fabricated to focus the EM wave on the bonding interface. Furthermore, the time gating technique is used in order to reduce the noise resulting from various uncertainties associated with the jacketed columns. Finally, three concrete columns were constructed and wrapped with glass-FRP jackets with various voids and debonding condition artificially introduced in the bonding interface. Using the proposed EM imaging technology with the lens especially designed and installed, these voids and debonding condition were successfully detected.
Radzievsky, A A; Gordiienko, O V; Alekseev, S; Szabo, I; Cowan, A; Ziskin, M C
2008-05-01
Millimeter wave treatment (MMWT) is based on the systemic biological effects that develop following local skin exposure to low power electromagnetic waves in the millimeter range. In the present set of experiments, the hypoalgesic effect of this treatment was analyzed in mice. The murine nose area was exposed to MMW of "therapeutic" frequencies: 42.25, 53.57, and 61.22 GHz. MMWT-induced hypoalgesia was shown to be frequency dependent in two experimental models: (1) the cold water tail-flick test (chronic non-neuropathic pain), and (2) the wire surface test (chronic neuropathic pain following unilateral constriction injury to the sciatic nerve). Maximum hypoalgesic effect was obtained when the frequency was 61.22 GHz. Other exposure parameters were: incident power density = 13.3 mW/cm(2), duration of each exposure = 15 min. Involvement of delta and kappa endogenous opioids in the MMWT-induced hypoalgesia was demonstrated using selective blockers of delta- and kappa-opioid receptors and the direct ELISA measurement of endogenous opioids in CNS tissue. Possible mechanisms of the effect and the perspectives of the clinical application of MMWT are discussed.
Electromagnetic Waves and Bursty Electron Acceleration: Implications from Freja
NASA Technical Reports Server (NTRS)
Andersson, Laila; Ivchenko, N.; Wahlund, J.-E.; Clemmons, J.; Gustavsson, B.; Eliasson, L.
2000-01-01
Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about I keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). The broadband emissions are observed to become more electrostatic towards higher frequencies. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E- and B-field fluctuations below 64 Hz (the dc instrument's upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energization of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvenic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfven waves set up these local field-aligned current regions and in turn trigger more electrostatic emissions during certain conditions. In these regions ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.
Seismo-Electromagnetic Emissions Related to Seismic Waves can Trigger TLEs
Sorokin, Leonid V.
2009-04-27
This paper deals with the rare high intensity electromagnetic pulses associated with earthquakes, whose spectrum signature differs from that of atmospherics produced by lightning discharges. On the basis of actual data records, cases of the generation of anomalous seismo-electromagnetic emissions are described. These natural sub-millisecond electromagnetic pulses were associated with the passage of seismic waves from earthquakes to Moscow, the place where the electromagnetic field observations were made. Space-time coupling has been revealed between exact seismic waves from the earthquakes, lightning triggering and Transient Luminous Events triggering.
Risk perception and public concerns of electromagnetic waves from cellular phones in Korea.
Kim, Kyunghee; Kim, Hae-Joon; Song, Dae Jong; Cho, Yong Min; Choi, Jae Wook
2014-05-01
In this study, the difference between the risk perception of electromagnetic waves from cellular phones and the risk perception of other factors such as environment and food was analyzed. The cause of the difference in the psychological and social factors that affect the group with high risk perception of electromagnetic waves was also analyzed. A questionnaire survey on the risk perception of electromagnetic waves from cellular phones was carried out on 1001 subjects (men and women) over the age of 20. In the group with high risk perception of electromagnetic waves from cellular phones, women had higher risk perception than men. Logistic regression analysis, where the group with high risk perception of electromagnetic waves and the group with low risk perception were used as dependent variables, indicated that the risk perception of electromagnetic waves in women was 1.815 times statistically significantly higher than the risk perception of men (95% CI: 1.340-2.457). Also, high risk perception of electromagnetic waves from cellular phones was observed when the subjects considered that they had more personal knowledge (OR: 1.416, 95% CI: 1.216-1.648), that the seriousness of the risk to future generations was high (OR: 1.410, 95% CI: 1.234-1.611), and their outrage for the occurrence of accidents related to electromagnetic waves was high (OR: 1.460, 95% CI: 1.264-1.686). The results of this study need to be sufficiently considered and reflected in designing the risk communication strategies and communication methods for the preventive measures and advice on electromagnetic waves from cellular phones.
Wiggly tails: A gravitational wave signature of massive fields around black holes
NASA Astrophysics Data System (ADS)
Degollado, Juan Carlos; Herdeiro, Carlos A. R.
2014-09-01
Massive fields can exist in long-lived configurations around black holes. We examine how the gravitational wave signal of a perturbed black hole is affected by such "dirtiness" within linear theory. As a concrete example, we consider the gravitational radiation emitted by the infall of a massive scalar field into a Schwarzschild black hole. Whereas part of the scalar field is absorbed/scattered by the black hole and triggers gravitational wave emission, another part lingers in long-lived quasibound states. Solving numerically the Teukolsky master equation for gravitational perturbations coupled to the massive Klein-Gordon equation, we find a characteristic gravitational wave signal, composed by a quasinormal ringing followed by a late time tail. In contrast to "clean" black holes, however, the late time tail contains small amplitude wiggles with the frequency of the dominating quasibound state. Additionally, an observer dependent beating pattern may also be seen. These features were already observed in fully nonlinear studies; our analysis shows they are present at linear level, and, since it reduces to a 1+1 dimensional numerical problem, allows for cleaner numerical data. Moreover, we discuss the power law of the tail and that it only becomes universal sufficiently far away from the dirty black hole. The wiggly tails, by constrast, are a generic feature that may be used as a smoking gun for the presence of massive fields around black holes, either as a linear cloud or as fully nonlinear hair.
Enhancement of wave growth for warm plasmas with a high-energy tail distribution
NASA Technical Reports Server (NTRS)
Thorne, Richard M.; Summers, Danny
1991-01-01
The classical linear theory of electromagnetic wave growth in a warm plasma is considered for waves propagating parallel to a uniform ambient magnetic field. Wave-growth rates are calculated for ion-driven right-hand mode waves for Kappa and Maxwellian particle distribution functions and for various values of the spectral index, the temperature anisotropy, and the ratio of plasma pressure to magnetic pressure appropriate to the solar wind. When the anisotropy is low the wave growth is limited to frequencies below the proton gyrofrequency and the growth rate increases dramatically as the spectral index is reduced. The growth rate for any Kappa distribution greatly exceeds that for a Maxwellian with the same bulk properties. For large thermal anisotropy the growth rate from either distribution is greatly enhanced. The growth rates from a Kappa distribution are generally larger than for a Maxwellian distribution, and significant wave growth occurs over a broader range of frequencies.
Enhancement of wave growth for warm plasmas with a high-energy tail distribution
NASA Technical Reports Server (NTRS)
Thorne, Richard M.; Summers, Danny
1991-01-01
The classical linear theory of electromagnetic wave growth in a warm plasma is considered for waves propagating parallel to a uniform ambient magnetic field. Wave-growth rates are calculated for ion-driven right-hand mode waves for Kappa and Maxwellian particle distribution functions and for various values of the spectral index, the temperature anisotropy, and the ratio of plasma pressure to magnetic pressure appropriate to the solar wind. When the anisotropy is low the wave growth is limited to frequencies below the proton gyrofrequency and the growth rate increases dramatically as the spectral index is reduced. The growth rate for any Kappa distribution greatly exceeds that for a Maxwellian with the same bulk properties. For large thermal anisotropy the growth rate from either distribution is greatly enhanced. The growth rates from a Kappa distribution are generally larger than for a Maxwellian distribution, and significant wave growth occurs over a broader range of frequencies.
Allgaier, D.E.
1986-04-07
Asymptotic solutions for the nonlinear, nonhomogeneous, Korteweg-deVries (KdV) partial differential equation with slowly varying coefficients are not, in general, uniformly valid. A uniform asymptotic expansion is obtained by finding separate expansions for different regions and matching. A KdV solitary wave propagating in slowly varying media is examined. Quasi-stationarity for the core reduces the problem to solving ordinary differential equations for that region. However, in the leading tail region, hyperbolic pde's must be solved to determine the amplitude and phase. The method of characteristics predicts triple valuedness after a caustic (penumbral or cusped) develops. Singular perturbation methods show the solution near first focusing satisfies the diffusion equation and involves either an incomplete Airy-type integral or an exponential integral similar to the Pearcey integral. Laplace's method shows that the critical points of the exponential phase satisfy the fundamental folding equation. A linear multi-phase solution is determined which does not become triple valued (break). Instead, a wave number shock develops, which separates two different solitary wave tails, and travels at the shock velocity predicted by conservation of waves. Thus, a unique uniform leading tail solution is obtained corresponding to a specified moving core (the problem is shown to be well-posed).
Radiation of electromagnetic waves by a dipole in an external uniform electrostatic field
NASA Astrophysics Data System (ADS)
Manaenkov, S. I.
2017-01-01
Exact solution for the electromagnetic field densities E and H of a dipole of uniformly accelerated point-charges with identical masses is discussed. It is shown that, for any fixed time t and a large distance R between the center of the dipole and the fieldpoint, | E| R -4, | H| R -5, while for large c| t| R, | E| | H| 1/ R as in spherical electromagnetic waves. Nevertheless, any irreversible radiation of electromagnetic waves is absent since the wave zone does not exist.
Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma
NASA Astrophysics Data System (ADS)
Vladimirov, S. V.; Ishihara, O.
2016-07-01
The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed.
Physical picture for the anomalous progagation of ordinary electromagnetic waves in a plasma
NASA Technical Reports Server (NTRS)
Fried, B. D.
1972-01-01
It is shown that the physical mechanism for the anomalous propagation of electromagnetic waves at frequencies below the plasma frequency is due to the deflection of particle thermal motions by the wave magnetic field, leading to a density perturbation which can be large when enhanced by some resonance. In presence of an external magnetic field, cyclotron resonance provides the enhancement for ordinary waves. A waveparticle resonance gives rise to anomalous propagation if the velocity distribution is anisotropic with respect to the wave vector, which allows slow electromagnetic waves, with phase velocity less than the velocity of light.
A review of nondestructive testing approaches using mechanical and electromagnetic waves
NASA Astrophysics Data System (ADS)
Lau, Denvid; Qiu, Qiwen
2016-04-01
Mechanical and electromagnetic waves are commonly used in nondestructive testing (NDT) techniques for evaluating the materials and structures in civil engineering industry, due to their good examination of defects inside the matter. However, the individual use of mechanical wave or electromagnetic wave in NDT methods sometimes does not fulfill the satisfactory detection in practice because of the operational inconvenience and low sensitivity. It has been demonstrated that the combination of using both types of waves can achieve a better performance for NDT application and would be the future direction for defect detection, as the advantages of each physical wave are picked out whereas the weaknesses are mitigated. This paper discusses the fundamental mechanisms and the current applications of using mechanical and electromagnetic waves for defect detection, with the goal of providing the physical knowledge and the perspectives of developing the NDT applications with these two types of waves. Typical mechanical-wave-based NDT methods such as acoustic emission, ultrasonic technique, and impact-echo method are reviewed. In addition, NDT methods using electromagnetic wave, which include optical fiber sensing technique, laser speckle interferometry and laser reflection technique are discussed. Advantages and disadvantages of these methods are outlined. In particular, we focus on a recent NDT method called acoustic-laser technique, which utilizes both the mechanical and electromagnetic waves. The basic principles and some important experimental data recorded by the acoustic-laser technique are described and its future development in the field of defect detection in civil infrastructure is presented.
Using photon funnels based on metamaterial cloaks to compress electromagnetic wave beams.
Ma, Hua; Qu, Shaobo; Xu, Zhuo; Wang, Jiafu
2008-08-10
Based on the metamaterial cloaking technique, we propose the use of a new photon funnel to compress a plane electromagnetic (EM) wave. The theoretical analysis and numerical simulations indicate that the compression ratio can be designed optionally and the compressed wave beam remains the original wave shape without any distortions. Here we apply the method to EM waves but it can be applied to acoustic waves and other fields as well.
NASA Astrophysics Data System (ADS)
Horne, Richard B.; Miyoshi, Yoshizumi
2016-10-01
Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for electron acceleration and loss from the radiation belts. It is generally understood that these waves are generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC) waves launched with large (small) wave normal angles can reach a location where the wave normal angle is zero and the wave frequency equals the so-called crossover frequency whereupon energy can be converted from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic waves below the crossover frequency, magnetosonic waves could be a source of hydrogen band waves but not helium band waves.
A wave guide model of lightning currents and their electromagnetic field
NASA Technical Reports Server (NTRS)
Volland, H.
1980-01-01
Lightning channels are considered as resonant wave guides in which only standing resonant wave modes can be excited. Two types of discharging currents develop. Type 1 is an aperiodic wave; type 2 is a damped oscillation. The electromagnetic radiation field of both types of currents is calculated and compared with the observation.
Damping and scattering of electromagnetic waves by small ferrite spheres suspended in an insulator
NASA Technical Reports Server (NTRS)
Englert, Gerald W.
1992-01-01
The intentional degradation of electromagnetic waves by their penetration into a media comprised of somewhat sparsely distributed energy absorbing ferrite spheres suspended in an electrical insulator is investigated. Results are presented in terms of generalized parameters involving wave length and sphere size, sphere resistivity, permeability, and spacing; their influence on dissipation of wave power by eddy currents, magnetic hysteresis, and scattering is shown.
Slabko, Vitaly V; Popov, Alexander K; Tkachenko, Viktor A; Myslivets, Sergey A
2016-09-01
Three-wave mixing of ordinary and backward electromagnetic waves in a pulsed regime is investigated in the metamaterials that enable the coexistence and phase-matching of such waves. It is shown that the opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes due to greatly enhanced optical parametric amplification and frequency up- and down-shifting nonlinear reflectivity. The differences are illustrated through comparison with the counterparts in ordinary, co-propagating settings.
Excitation of surface electromagnetic waves in a graphene-based Bragg grating
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting
2012-01-01
Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc. PMID:23071901
Excitation of surface electromagnetic waves in a graphene-based Bragg grating.
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting
2012-01-01
Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.
Electromagnetic waves destabilized by runaway electrons in near-critical electric fields
Komar, A.; Pokol, G. I.; Fueloep, T.
2013-01-15
Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.
Electromagnetic ion beam instabilities - Growth at cyclotron harmonic wave numbers
NASA Technical Reports Server (NTRS)
Smith, Charles W.; Gary, S. Peter
1987-01-01
The linear theory of electromagnetic ion beam instabilities for arbitrary angles of propagation is studied, with an emphasis on the conditions necessary to generate unstable modes at low harmonics of the ion cyclotron resonance condition. The present results extend the analysis of Smith et al. (1985). That paper considered only the plasma parameters at a time during which harmonic wave modes were observed in the earth's foreshock. The parameters of that paper are used as the basis of parametric variations here to establish the range of beam properties which may give rise to observable harmonic spectra. It is shown that the growth rates of both left-hand and right-hand cyclotron harmonic instabilities are enhanced by an increase in the beam temperature anisotropy and/or the beam speed. Decreases in the beam density and/or the core-ion beta reduce the overall growth of the cyclotron harmonic instabilities but favor the growth of these modes over the growth of the nonresonant instability and thereby enhance the observability of the harmonics.
Electromagnetic ion beam instabilities - Growth at cyclotron harmonic wave numbers
NASA Technical Reports Server (NTRS)
Smith, Charles W.; Gary, S. Peter
1987-01-01
The linear theory of electromagnetic ion beam instabilities for arbitrary angles of propagation is studied, with an emphasis on the conditions necessary to generate unstable modes at low harmonics of the ion cyclotron resonance condition. The present results extend the analysis of Smith et al. (1985). That paper considered only the plasma parameters at a time during which harmonic wave modes were observed in the earth's foreshock. The parameters of that paper are used as the basis of parametric variations here to establish the range of beam properties which may give rise to observable harmonic spectra. It is shown that the growth rates of both left-hand and right-hand cyclotron harmonic instabilities are enhanced by an increase in the beam temperature anisotropy and/or the beam speed. Decreases in the beam density and/or the core-ion beta reduce the overall growth of the cyclotron harmonic instabilities but favor the growth of these modes over the growth of the nonresonant instability and thereby enhance the observability of the harmonics.
Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials
Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin
2017-01-01
Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits “0” and “1” to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency‐spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments. PMID:28932671
Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials.
Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin; Cui, Tie Jun
2017-09-01
Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits "0" and "1" to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency-spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments.
Locating voids beneath pavement using pulsed electromagnetic waves
NASA Astrophysics Data System (ADS)
Steinway, W. J.; Echard, J. D.; Luke, C. M.
1981-11-01
The feasibility of using pulsed electromagnetic wave technology for locating and sizing voids beneath reinforced and nonreinforced portland cement concrete pavements is determined. The data processing techniques developed can be implemented to provide information for void depth and sizing to + or - 1/2 in. and spatial location within + or - 6 in. A very short pulse radar directly connected to a microcomputer was chosen as the equipment necessary to obtain measurements. This equipment has the required accuracy and reliability, and is a cost effective solution for the void locating problem. The radar provides a signal return from voids that has unique characteristics that can be examined to provide information regarding the location, depth, and shape of the void. The microcomputer provides a means of real time processing to extract the information from the radar signal return and record the results. Theoretical modeling of signal returns from voids led to suitable techniques for locating and sizing voids beneath the pavement. Analysis and application of these techniques to radar measurements verified the theoretical predictions that radar can be used to determine the location, size, and shape of actual voids.
Propagation of Electromagnetic Waves in Two Dimensionally Periodic Media
NASA Astrophysics Data System (ADS)
Dong, Tian-Lin
1985-12-01
The propagation of electromagnetic waves in two dimensionally periodic structure is systematically investigated, to provide the basic theory for two dimensionally modulated dielectric waveguide. A canonical two dimensionally periodic medium of infinite extent, whose dielectic constant varies sinusoidally in two orthogonal directions, is first examined. The charact solutions are represented exactly by a double Fourier series which is known as the Floquet solution. The harmonic amplitudes of the Floquet solution are determined by a five-term recurrence relation in the vector form, properly taking into account the hybrid-mode nature of the propagation problem. The five-term recurrence relation is then treated by different approaches so that clear physical pictures and practical numerical methods can be obtained. The characteristic solutions for two dimensionally periodic medium are then applied to the boundary-value problem of multi-layer dielectric waveguides containing a finite layer of periodic medium. As an example, the guidance problems are analysed and the numerical analysis of the dispersion characteristics are then carried out. Besides the canonical medium as a model, more general two dimensionally periodic medium are also discussed.
Electromagnetic-wave excitation in a large laboratory beam-plasma system
NASA Technical Reports Server (NTRS)
Whelan, D. A.; Stenzel, R. L.
1981-01-01
The mechanism by which unstable electrostatic waves of a beam-plasma system are converted into observed electromagnetic waves is of current interest in space physics and in tokamak fusion research. The process involved in the conversion of electrostatic to electromagnetic waves at the critical layer is well understood. However, the radiation from uniform plasmas cannot be explained on the basis of this process. In connection with certain difficulties, it has not yet been possible to establish the involved emission processes by means of experimental observations. In the considered investigation these difficulties are overcome by employing a large laboratory plasma in a parameter range suitable for detailed diagnostics. A finite-diameter electron beam is injected into a uniform quiescent afterglow plasma of dimensions large compared with electromagnetic wavelengths. The considered generation mechanism concerning the electromagnetic waves is conclusively confirmed by observing the temporal evolution of an instability
Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.
Wang, Ken Kang-Hsin; Ye, Zhen
2003-12-01
We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.
Bai, Zhengyang; Xu, Datang; Huang, Guoxiang
2017-01-23
We propose a scheme to realize the storage and retrieval of high-dimensional electromagnetic waves with orbital angular momentum (OAM) via plasmon-induced transparency (PIT) in a metamaterial, which consists of an array of meta-atoms constructed by a metallic structure loaded with two varactors. We show that due to PIT effect the system allows the existence of shape-preserving dark-mode plasmonic polaritons, which are mixture of electromagnetic-wave modes and dark oscillatory modes of the meta-atoms and may carry various OAMs. We demonstrate that the slowdown, storage and retrieval of multi-mode electromagnetic waves with OAMs can be achieved through the active manipulation of a control field. Our work raises the possibility for realizing PIT-based spatial multi-mode memory of electromagnetic waves and is promising for practical application of information processing with large capacity by using room-temperature metamaterials.
NASA Astrophysics Data System (ADS)
Zhai, Guofu; Wang, Kaican; Wang, Yakun; Su, Riliang; Kang, Lei
2013-08-01
Currently, the finite element method (FEM) and analytical calculation are widely employed for the modeling of electromagnetic acoustic transducers (EMATs). However, it takes long time for finite element calculation. Previous analytical models for bulk wave EMATs are generally considered separately and incompletely, and expressions of radiated wave fields contain infinite integrations and multiple singular points, which result in complex numerical computation. A complete model containing the Lorentz force and radiated wave field calculation for the EMAT with a spiral coil and a NdFeB permanent magnet is established. By introducing a current loop instead of the permanent magnet and adopting the truncated region eigenfunction expansion (TREE) method, the distributions of static and dynamic magnetic fields and their generated Lorentz forces are calculated. A series expansion method is proposed for the computation of radiated wave fields, which replaces the integration by series operation and avoids the solutions of singular points effectively. The Lorentz forces and radiated wave fields of a typical transducer are computed. The validity of the model is verified by FEM and experiments. Their good agreements verify the accuracy and validity of the model.
Influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction
Forsberg, M.; Brodin, G.; Papadopoulos, D.
2010-07-15
The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the QED effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.
Characterization of porous construction materials using electromagnetic radar wave
NASA Astrophysics Data System (ADS)
Lai, Wallace Wai Lok
This thesis reports the effort of characterizing three porous construction materials (i.e. concrete, asphalt and soils) and the establishment and formulation of novel unified constitutive models by utilizing electromagnetic (EM) radar wave. An important outcome of this research is that the studied materials were assigned successfully into their rightful positions corresponding to the different regimes governed by three EM wave properties and two engineering/geological properties of the materials. The former refers to the real part of complex dielectric permittivity (epsilon'), energy attenuation and peak-frequency drift. The latter refers to porosity and permeability determined with forward models or conventional testing techniques. In soil and asphalt, the material characterization was achieved by a novel inhouse developed method called Cyclic Moisture Variation Technique (CMVT). The technique is termed cyclic because the porous materials were subjected to change from partially saturated states to fully saturated state (i.e. permeation), and vice versa (i.e. de-watering). With CMVT, water was used as an enhancer or a tracer to differentiate the studied materials which are otherwise difficult when they are dry. Soils and asphalt with different textures were characterized by different curve families exhibited in the relationship between epsilon' and degrees of water saturation (SW). In particular, these curve families were divided into three regions: slow-climbing region in very low SW, fast-climbing region in intermediate SW and another slow-climbing region at high S W. When data obtained from the permeation and de-watering cycles was compared, dielectric hysteresis was observed, but rarely reported in the field of ground penetrating radar (GPR). Different curing histories affect both porosity and pore size distribution within mature concrete. By injecting pressurized water into concrete specimens, different concrete curing histories was back-tracked through the
Wave mode identification of electrostatic noise observed with ISEE 3 in the deep tail boundary layer
NASA Technical Reports Server (NTRS)
Tsutsui, M.; Matsumoto, H.; Strangeway, R. J.; Tsurutani, B. T.; Phillips, J. L.
1991-01-01
The characteristics of the VLF electrostatic noise observed with ISEE 3 in the low-latitude boundary layer of distant geomagnetic tail are examined using a display format for the wave dynamic spectra different from that used by Scarf et al. (1984). It is shown that the observed noise is composed of impulsive bursts. The results of the detailed analysis of the noise parameters are used to develop a model of plasma wave behavior in the plasma rest frame. A hypothesis is proposed that the wide frequency extent of the noise spectra is composed of Doppler effects of waves propagating nearly omnidirectionally within the plasma rest frame, which is moving with the electron bulk speed. On the basis of this hypothesis, the wavelength of the observed waves were determined from the width of the frequency extent and the measured electron bulk speed. It is shown that the wavelength ranges from 2 to 8 times the plasma Debye length.
Excitation of Rossby waves by HF electromagnetic seismic origin emissions in the earth's mesosphere
NASA Astrophysics Data System (ADS)
Tsintsadze, N. L.; Kaladze, T. D.; Tsamalashvili, L. V.
2009-12-01
Interaction of high-frequency seismo-electromagnetic emissions with the weakly ionized gas of the ionospheric D-layer is considered. It is shown that through the earth's ionosphere weakly damped high-frequency electron cyclotron electromagnetic waves can propagate. These new type of waves easily reach the ionospheric D-layer where they interact with the existing electrons and ions. Acting on electrons ponderomotive force is taken into account and corresponding modified Charney equation is obtained. It is shown that only nonlinear vortical structures with negative vorticity (anticyclone) can be excited. The amplitude modulation of electromagnetic waves can lead to the excitation of Rossby waves in the weakly ionized gas. The corresponding growth rate is defined. Depending on the intensity of the pumping waves generated by seismic activity different stable and unstable branches of oscillations are found. Detection of the new oscillation branches and energetically reinforcing Rossby solitary vortical anticyclone structures may be serve as precursors to earthquake.
Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung
2014-04-01
To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in an elementary school that uses digital textbooks. Electric and magnetic fields from TPCs were measured using the HI-3603 Visual Display Terminal/ Very Low Frequency (VDT/VLF) radiation measurement system. Electromagnetic field values from TPCs measured at a student's seat and at a teacher's computer were deemed not harmful to health. However, electromagnetic field values varied based on the distance between students, other electronic devices such as a desktop computers, and student posture while using a TPC. Based on these results, it is necessary to guide students to observe proper posture and to arrange seats at an appropriate distance in the classroom.
Effects of chronic exposure to electromagnetic waves on the auditory system.
Özgür, Abdulkadir; Tümkaya, Levent; Terzi, Suat; Kalkan, Yıldıray; Erdivanlı, Özlem Çelebi; Dursun, Engin
2015-08-01
The results support that chronic electromagnetic field exposure may cause damage by leading to neuronal degeneration of the auditory system. Numerous researches have been done about the risks of exposure to the electromagnetic fields that occur during the use of these devices, especially the effects on hearing. The aim of this study is to evaluate the effects of the electromagnetic waves emitted by the mobile phones through the electrophysiological and histological methods. Twelve adult Wistar albino rats were included in the study. The rats were divided into two groups of six rats. The study group was exposed to the electromagnetic waves over a period of 30 days. The control group was not given any exposure to the electromagnetic fields. After the completion of the electromagnetic wave application, the auditory brainstem responses of both groups were recorded under anesthesia. The degeneration of cochlear nuclei was graded by two different histologists, both of whom were blinded to group information. The histopathologic and immunohistochemical analysis showed neuronal degeneration signs, such as increased vacuolization in the cochlear nucleus, pyknotic cell appearance, and edema in the group exposed to the electromagnetic fields compared to the control group. The average latency of wave in the ABR was similar in both groups (p > 0.05).
NASA Astrophysics Data System (ADS)
Vorobyev, O. B.
2015-09-01
Continuity equation for the canonical pseudomomentum density in a magnetoelectric medium with dispersive losses is examined using consistent microscopic description of the electromagnetic wave energy. Accordingly, the canonical pseudomomentum is presented by the kinetic momentum of the electromagnetic field and pseudomomentum of oscillating bound charges, which is identified as a combination of the medium and electromagnetic pseudomomenta in contrast with previous quasi-static approaches. The ponderomotive and reaction forces are defined by the time derivatives of the medium and electromagnetic pseudomomenta, which depend on the "hidden momentum" in the case of a magnetoelectric medium. Properties of medium-field interaction are connected with translational invariance of the pseudomomentum in relation to a homogeneous lossless medium. Transport of the canonical pseudomomentum is explained by the kinetic momentum flux corresponding to the energy flux as well as translational invariance of the pseudomomentum, which are illustrated using the relativistic and effective mass densities of the electromagnetic wave. The optical pseudomomentum of the electromagnetic wave is defined in accordance with conducted analysis of energy and momentum transport while fallacies of approaches based on the Abraham, Minkowski, and total momenta are specified. Structure of the full momentum density of a closed medium-field system comprised of the densities of the optical pseudomomentum of the electromagnetic wave as well as the mechanical momentum and pseudomomentum of a host medium is expounded using description of medium-field interaction.
NASA Astrophysics Data System (ADS)
Aburjania, G. D.; Chargazia, Kh. Z.; Khantadze, A. G.; Lominadze, J. G.
2006-12-01
Results of theoretical investigation of the dynamics of generation and propagation of planetary (with wavelengths 103 km and more) weather-forming Ultra-Low Frequency (ULF) electromagnetic wave structures in the dissipative ionosphere are given in this paper. It is established that the global factor, acting permanently in the ionosphere spatial inhomogeneity and curvature of the geomagnetic field and inhomogeneity of angular velocity of the Earth's rotation generates the fast and slow planetary ULF electromagnetic waves. The waves propagate along the parallels to the east as well as to the west. In the E-region the fast waves have phase velocities of (2-20) km/s-1 and frequencies of (10^-1-10^-4) Hz; the slow waves propagate with local wind velocities and have frequencies (10^-4-10^-6) Hz. In the F-region the fast ULF electromagnetic waves propagate with phase velocities of tens-hundreds km/s-1 and their frequencies are in the range of (10-10^-3) Hz. The large-scale waves are weakly damped. The waves generate the geomagnetic field perturbations from several tens to several hundreds nT and more. It is established that planetary ULF electromagnetic waves, at their interaction with the local shear winds, can self-localize in the form of nonlinear solitary vortices, moving along the latitude circles westward as well as eastward.
Interface electromagnetic waves between Kronig-Penney photonic crystals
NASA Astrophysics Data System (ADS)
Mehrany, Khashayar; Momeni, Babak; Khorasani, Sina; Rashidian, Bizhan
2003-02-01
The electromagnetic interface states formed in a heterostructure composed of two semi-infinite Kronig-Penny photonic crystals have been studied. Modified transfer matrices have been used for study of Kronig-Penny photonic crystals (heterostructures with conducting interfaces) to show strong similarity between solid-state physics and electromagnetics. Our calculations are limited to TE polarization.
NASA Astrophysics Data System (ADS)
Itoh, Masahiro; Terada, Masao; Sasada, Masaaki; Machida, Ken-ichi
2012-01-01
Improvement of the electromagnetic wave absorption ability was examined from the electromagnetic point of view. The oscillation behavior in relation to incident impedance derived from a hyperbolic tangent function can be reduced by increasing the imaginary part, i.e., loss value, of permeability and/or permittivity owing to its mathematical characteristics. It was demonstrated that the electromagnetic wave absorption ability was obviously enhanced by inserting the lossy magnetic layer between the electromagnetic wave absorber and a reflector. The absorption ability was improved further by pilling the polyurethane foam plate having lower permittivity to provide -9.6 dB (ca. 89% absorption) for the frequency range above 0.75 GHz with a total absorber thickness of 15.15 mm.
NASA Astrophysics Data System (ADS)
Latyshev, A. V.; Yushkanov, A. A.
2017-02-01
We consider degenerate plasma that is located in the field of a transverse electromagnetic wave. An electric current generated in the plasma by the electromagnetic field is sought. During classical description of the interaction of the electromagnetic wave with the plasma, the Vlasov kinetic equation is used, while, in quantum description, the quantum kinetic equation with the Wigner integral is applied. A nonlinear analysis has shown that that the electric current in the plasma has two nonzero components. One component of the electric current is directed along the vector potential of the electromagnetic field. The other nonzero component of the current is directed along the wave vector. In the present work, we analyze this component of the electric current. The case of collisionless plasma is examined.
TE and TM beam decomposition of time-harmonic electromagnetic waves.
Melamed, Timor
2011-03-01
The present contribution is concerned with applying beam-type expansion to planar aperture time-harmonic electromagnetic field distribution in which the propagating elements, the electromagnetic beam-type wave objects, are decomposed into transverse electric (TE) and transverse magnetic (TM) field constituents. This procedure is essential for applying Maxwell's boundary conditions for solving different scattering problems. The propagating field is described as a discrete superposition of tilted and shifted TE and TM electromagnetic beams over the frame-based spatial-directional expansion lattice. These vector wave objects are evaluated either by applying differential operators to scalar beam propagators, or by using plane-wave spectral representations. Explicit asymptotic expressions for scalar, as well as for electromagnetic, Gaussian beam propagators are presented as well.
Boundary integral equation method for electromagnetic and elastic waves
NASA Astrophysics Data System (ADS)
Chen, Kun
In this thesis, the boundary integral equation method (BIEM) is studied and applied to electromagnetic and elastic wave problems. First of all, a spectral domain BIEM called the spectral domain approach is employed for full wave analysis of metal strip grating on grounded dielectric slab (MSG-GDS) and microstrips shielded with either perfect electric conductor (PEC) or perfect magnetic conductor (PMC) walls. The modal relations between these structures are revealed by exploring their symmetries. It is derived analytically and validated numerically that all the even and odd modes of the latter two (when they are mirror symmetric) find their correspondence in the modes of metal strip grating on grounded dielectric slab when the phase shift between adjacent two unit cells is 0 or pi. Extension to non-symmetric case is also made. Several factors, including frequency, grating period, slab thickness and strip width, are further investigated for their impacts on the effective permittivity of the dominant mode of PEC/PMC shielded microstrips. It is found that the PMC shielded microstrip generally has a larger wave number than the PEC shielded microstrip. Secondly, computational aspects of the layered medim doubly periodic Green's function (LMDPGF) in matrix-friendly formulation (MFF) are investigated. The MFF for doubly periodic structures in layered medium is derived, and the singularity of the periodic Green's function when the transverse wave number equals zero in this formulation is analytically extracted. A novel approach is proposed to calculate the LMDPGF, which makes delicate use of several techniques including factorization of the Green's function, generalized pencil of function (GPOF) method and high order Taylor expansion to derive the high order asymptotic expressions, which are then evaluated by newly derived fast convergent series. This approach exhibits robustness, high accuracy and fast and high order convergence; it also allows fast frequency sweep for
Elastic metamaterials for tuning circular polarization of electromagnetic waves
NASA Astrophysics Data System (ADS)
Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.
2016-06-01
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.
Elastic metamaterials for tuning circular polarization of electromagnetic waves.
Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A
2016-06-20
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.
Elastic metamaterials for tuning circular polarization of electromagnetic waves
Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.
2016-01-01
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed. PMID:27320212
Stimulated scattering of a large amplitude electromagnetic wave by the eigenmodes of a plasma slab
NASA Astrophysics Data System (ADS)
Gradov, O. M.; Stenflo, L.
1983-08-01
New results are presented from a theoretical investigation of the scattering of an electromagnetic pump wave that is normally incident on a plasma slab. In the case considered here, the leaking surface wave eigenmode represents the scattered radiation. The generation of harmonics in the scattered wave will thus be responsible for the saturation of the wave intensities. It is shown that a large-amplitude electromagnetic pump wave can be scattered in a nonlinear process where both the low-frequency and high-frequency oscillations are eigenmodes of the plasma slab. The second harmonic generation that occurs in this case leads to efficient saturation of the scattering instability. It is pointed out that other mechanisms, for example, the screening of the pump wave by the surface mode current, may also contribute significantly to the establishment of the stationary wave.
Minimizing influence of multi-modes and dispersion of electromagnetic ultrasonic lamb waves.
Zhai, Guofu; Jiang, Tao; Kang, Lei; Wang, Shujuan
2010-12-01
Electromagnetic ultrasonic (EMU) Lamb waves excited by electromagnetic acoustic transducers (EMATs) possess many advantages in NDT. However, their characteristic multi-modes and dispersion are disadvantageous for inspection and restrict further improvements in their real applications. By deducing the excitation equation of EMU Lamb waves, the primary design parameters of EMATs and the characteristic equation of Lamb waves are combined, and excitation curves based on the excitation equation are plotted to aid the design of EMATs. The excitation characteristic of EMU Lamb waves on different thickness of plates is analyzed according to the excitation curves. The influence of multi-modes of EMU Lamb waves is minimized by choosing reasonable operating points and operating zones to excite a single-mode Lamb wave or multi-mode Lamb waves with identical or approximate propagation velocities. The influence of dispersion is minimized by searching corresponding points whose slope of group velocity tends to zero. The validity of the proposed method is verified by experiments.
Cluster observations of Shear-mode surface waves diverging from Geomagnetic Tail reconnection
NASA Astrophysics Data System (ADS)
Dai, L.; Wygant, J. R.; Dombeck, J. P.; Cattell, C. A.; Thaller, S. A.; Mouikis, C.; Balogh, A.; Reme, H.
2010-12-01
We present the first Cluster spacecraft study of the intense (δB/B~0.5, δE/VAB~0.5) equatorial plane surface waves diverging from magnetic reconnection in the geomagnetic tail at ~17 Re. Using phase lag analysis with multi-spacecraft measurements, we quantitatively determine the wavelength and phase velocity of the waves with spacecraft frame frequencies from 0.03 Hz to 1 Hz and wavelengths from much larger (4Re) than to comparable to the H+ gyroradius (~300km). The phase velocities track the strong variations in the equatorial plane projection of the reconnection outflow velocity perpendicular to the magnetic field. The propagation direction and wavelength of the observed surface waves resemble those of flapping waves of the magnetotail current sheet, suggesting a same origin shared by both of these waves. The observed waves appear ubiquitous in the outflows near magnetotail reconnection. Evidence is found that the observed waves are associated with velocity shear in reconnection outflows. Analysis shows that observed waves are associated with strong field-aligned Alfvenic Poynting flux directed away from the reconnection region toward Earth. These observations present a scenario in which the observed surface waves are driven and convected through a velocity-shear type instability by high-speed (~1000km) reconnection outflows tending to slow down due to power dissipation through Poynting flux. The mapped Poynting flux (100ergs/cm2s) and longitudinal scales (10-100 km) to 100km altitude suggest that the observed waves and their motions are an important boundary condition for night-side aurora. Figure: a) The BX-GSM in the geomagnetic tail current sheet. b) The phase difference wavelet spectrum between Bz_GSM from SC2 and SC3, used to determine the wave phase velocity, is correlated with the reconnection outflow velocity (represented by H+ VX-GSM) c) The spacecraft trajectory through magnetotail reconnection. d) The observed equatorial plane surface wave
Durocher-Jean, A; Stafford, L; Dap, S; Makasheva, K; Clergereaux, R
2014-09-01
Microwave plasmas excited at electron-cyclotron resonance were studied in the 0.5-15 mTorr pressure range. In contrast with low-limit pressure conditions where the plasma emission highlights a fairly homogeneous spatial structure, a periodic spatial modulation (period ∼6.2 cm) appeared as pressure increased. This feature is ascribed to a local power deposition (related to the electron density) due to the presence of a standing electromagnetic wave created by the feed electromagnetic field (2.45 GHz) in the cavity formed by the reactor walls. Analysis of the electron energy probability function by Langmuir probe and optical emission spectroscopy further revealed the presence of a high-energy tail that showed strong periodic spatial modulation at higher pressure. The spatial evolution of the electron density and of the characteristic temperature of these high-energy electrons coincides with the nodes (maximum) and antinodes (minimum) of the standing wave. These spatially-modulated power deposition and electron heating mechanisms are then discussed.
Electromagnetic Waves with Frequencies Near the Local Proton Gryofrequency: ISEF-3 1 AU Observations
NASA Technical Reports Server (NTRS)
Tsurutani, B.
1993-01-01
Low Frequency electromagnetic waves with periods near the local proton gyrofrequency have been detected near 1 AU by the magnetometer onboard ISEE-3. For these 1 AU waves two physical processes are possible: solar wind pickup of nuetral (interstellar?) particles and generation by relativistic electron beams propagating from the Sun.
ERIC Educational Resources Information Center
Rojas, R.; Robles, P.
2011-01-01
We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…
Parametric excitation of high-frequency electromagnetic waves by the lower-frequency dipole pumping
Gamayunov, K.V. ); Khazanov, G.V. ); Krivorutsky, E.N.; Veryaev, A.A. )
1993-01-01
The possibility of parametric excitation of high-frequency electromagnetic waves by lower-frequency dipole pumping is studied. It is shown that the obtained general dispersive equation may be reduced to the Mathieu equation, provided the case of the flux instability is neglected. In the framework of the developed approach, the excitation of magnetohydrodynamic waves and whistler oscillations is examined.
The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence
ERIC Educational Resources Information Center
Smith, Glenn S.
2012-01-01
In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…
The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence
ERIC Educational Resources Information Center
Smith, Glenn S.
2012-01-01
In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…
ERIC Educational Resources Information Center
Rojas, R.; Robles, P.
2011-01-01
We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…
Electromagnetic Waves with Frequencies Near the Local Proton Gryofrequency: ISEF-3 1 AU Observations
NASA Technical Reports Server (NTRS)
Tsurutani, B.
1993-01-01
Low Frequency electromagnetic waves with periods near the local proton gyrofrequency have been detected near 1 AU by the magnetometer onboard ISEE-3. For these 1 AU waves two physical processes are possible: solar wind pickup of nuetral (interstellar?) particles and generation by relativistic electron beams propagating from the Sun.
NASA Astrophysics Data System (ADS)
Boubakri, Akram; Choubeni, Fethi; Vuong, Tan Hoa; David, Jacques
2017-07-01
Metamaterials have been widely used to enhance radiation characteristics of antennas thanks to their ability to manipulate the electromagnetic waves. Recent progress has shown that flat metasurfaces with reduced tunable dimensions are capable to provide a near zero refractive index and a phase compensation mechanism which are responsible for the focusing of electromagnetic waves. Here, we present a study, about two types of flat metasurface lenses operating at the frequency of 5.9 GHz for the improvement of a patch antenna radiation properties and bandwidth at the same time. The proposed structures can be used in wireless point to point communication and especially for WAVE applications.
Finite element analysis of electromagnetic propagation in an absorbing wave guide
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1986-01-01
Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.
Self-generation and management of spin-electromagnetic wave solitons and chaos
Ustinov, Alexey B.; Kondrashov, Alexandr V.; Nikitin, Andrey A.; Kalinikos, Boris A.
2014-06-09
Self-generation of microwave spin-electromagnetic wave envelope solitons and chaos has been observed and studied. For the investigation, we used a feedback active ring oscillator based on artificial multiferroic, which served as a nonlinear waveguide. We show that by increasing the wave amplification in the feedback ring circuit, a transition from monochromatic auto-generation to soliton train waveform and then to dynamical chaos occurs in accordance with the Ruelle-Takens scenario. Management of spin-electromagnetic-wave solitons and chaos parameters by both dielectric permittivity and magnetic permeability of the multiferroic waveguiding structure is demonstrated.
Liu, J T; Wu, X; Liu, N H; Li, J; Su, F H
2013-07-01
Group delay of electromagnetic pulses through multilayer dielectric mirrors (MDM) combined with gravitational wave (GW) is investigated. Unlike in traditional quantum tunneling, the group delay of a transmitted wave packet irradiated by a GW increases linearly with MDM length. This peculiar tunneling effect can be attributed to electromagnetic wave leakage in a time-dependent photonic bandgap caused by the GW. In particular, we find that the group delay of the tunneling photons is sensitive to GW. Our study provides insight into the nature of the quantum tunnelling as well as a novel process by which to detect the GW.
Electromagnetic wave propagation in rectangular waveguides filled with Omega-medium
NASA Astrophysics Data System (ADS)
Toscano, Alessandro; Vegni, Lucio
2005-09-01
A time-harmonic electromagnetic plane wave propagating in a uniaxial bianisotropic medium, the so-called Omega medium, is considered. Plane waves are identified together with their dispersion equations with the help of an appropriate coordinate system. The plane wave solution is then used to study in a rigorous way the coupled-mode equations satisfied by the electromagnetic field in a rectangular waveguide filled with such a material and bounded by perfect electrically conducting walls. The features of this approach are demonstrated and an application to rectangular waveguides is discussed. Numerical results are also presented as a function of the material parameters.
Dispersion characteristics of spin-electromagnetic waves in planar multiferroic structures
Nikitin, Andrey A.; Ustinov, Alexey B.; Vitko, Vitaliy V.; Semenov, Alexander A.; Mironenko, Igor G.; Belyavskiy, Pavel Yu.; Kalinikos, Boris A.; Stashkevich, Andrey A.; Lähderanta, E.
2015-11-14
A method of approximate boundary conditions is used to derive dispersion relations for spin-electromagnetic waves (SEWs) propagating in thin ferrite films and in multiferroic layered structures. A high accuracy of this method is proven. It was shown that the spin-electromagnetic wave propagating in the structure composed of a thin ferrite film, a thin ferroelectric film, and a slot transmission line is formed as a result of hybridization of the surface spin wave in the ferrite film and the electromagnetic wave in the slot-line. The structure demonstrates dual electric and magnetic field tunability of the SEW spectrum. The electric field tunability is provided by the thin ferroelectric film. Its efficiency increases with an increase in the thicknesses of the ferrite and ferroelectric films and with a decrease in the slot-line gap width. The theory is confirmed by experimental data.
Koltsov, A.V.; Serov, A.V.
1995-12-31
The generation of frequency harmonics of a radiation when the electron beam traverse the inhomogeneous electromagnetic wave was investigated. The electromagnetic wave are linearly polarized. The plane beam of particles enters the wave at right angle with respect to the direction of propogation of the wave and the vector E of the wave. The spartial distribution of radiation from the higher harmonics and the power density contours are caculated.
NASA Astrophysics Data System (ADS)
Shoji, Masafumi; Miyoshi, Yoshizumi; Katoh, Yuto; Keika, Kunihiro; Angelopoulos, Vassilis; Kasahara, Satoshi; Asamura, Kazushi; Nakamura, Satoko; Omura, Yoshiharu
2017-09-01
Electromagnetic plasma waves are thought to be responsible for energy exchange between charged particles in space plasmas. Such an energy exchange process is evidenced by phase space holes identified in the ion distribution function and measurements of the dot product of the plasma wave electric field and the ion velocity. We develop a method to identify ion hole formation, taking into consideration the phase differences between the gyromotion of ions and the electromagnetic ion cyclotron (EMIC) waves. Using this method, we identify ion holes in the distribution function and the resulting nonlinear EMIC wave evolution from Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. These ion holes are key to wave growth and frequency drift by the ion currents through nonlinear wave-particle interactions, which are identified by a computer simulation in this study.
NASA Astrophysics Data System (ADS)
Tao, Xie; Shang-Zhuo, Zhao; William, Perrie; He, Fang; Wen-Jin, Yu; Yi-Jun, He
2016-06-01
To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.
On the motion of a charged particle in a plane monochromatic electromagnetic wave
Andreev, Stepan N; Makarov, Vyacheslav P; Rukhadze, Anri A
2009-01-31
The motion of a charged particle in the external specified field of a plane electromagnetic wave of large amplitude, when the relativistic consideration is required, is analysed in detail. The cases of different initial conditions for the motion of the charged particle and different polarisations of the wave are studied. It is shown that the expression for the kinetic energy of an electron oscillating in the transverse field of the wave, proposed in [1], is valid only in the nonrelativistic limit. (superstrong fields)
NASA Astrophysics Data System (ADS)
Colpitts, C. A.; Cattell, C. A.; Engebretson, M.; Broughton, M.; Tian, S.; Wygant, J.; Breneman, A.; Thaller, S.
2016-11-01
We present observations of higher-frequency ( 50-2500 Hz, 0.1-0.7 fce) wave modes modulated at the frequency of colocated lower frequency (0.5-2 Hz, on the order of fci) waves. These observations come from the Van Allen Probes Electric Field and Waves instrument's burst mode data and represent the first observations of coupling between waves in these frequency ranges. The higher-frequency wave modes, typically whistler mode hiss and chorus or magnetosonic waves, last for a few to a few tens of seconds but are in some cases observed repeatedly over several hours. The higher-frequency waves are observed to be unmodulated before and after the presence of the electromagnetic ion cyclotron (EMIC) waves, but when the EMIC waves are present, the amplitude of the higher-frequency waves drops to the instrument noise level once every EMIC wave cycle. Such modulation could significantly impact wave-particle interactions such as acceleration and pitch angle scattering, which are crucial in the formation and depletion of the radiation belts. We present one case study with broadband, high-frequency waves observed to be modulated by EMIC waves repeatedly over a 2 h time span on both spacecraft. Finally, we show two additional case studies where other high-frequency wave modes exhibit similar modulation.
Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.
Amin, M R
2015-09-01
Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.
Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma
NASA Astrophysics Data System (ADS)
Amin, M. R.
2015-09-01
Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.
Numerical study of electromagnetic waves generated by a prototype dielectric logging tool
Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.
2004-01-01
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.
NASA Technical Reports Server (NTRS)
Borovsky, Joseph E.
1986-01-01
Numerical simulations of the damping of magnetosonic waves via magnetic pumping in the presence of electromagnetic fluctuations that can pitch-angle scatter the plasma particles are presented. From the first simulation it is found that the magnetosonic-wave energy is transferred to high-energy particles. In the second type of simulation, magnetosonic waves produce a hot surface layer on the plasma that is ablated by the wave energy. Solution of a Fokker-Planck equation for the magnetic-pumping process is found to adequately represent magnetic pumping by small-amplitude magnetosonic waves.
Total absorption of an electromagnetic wave in an inhomogeneous magnetized plasma
NASA Astrophysics Data System (ADS)
Aliev, Iu. M.; Vukovich, S.; Gradov, O. M.; Kirii, A. Iu.; Frolov, A. A.
1980-05-01
The paper presents a theoretical analysis of the total absorption of electromagnetic waves by an inhomogeneous magnetoplasma; the analysis has reference to the development of an efficient method of fusion plasma heating by electromagnetic radiation. It is shown that the total absorption is determined by the resonant excitation of damped bulk oscillations of the plasma column. As an example, consideration is given to total resonant absorption during HF plasma heating in a magnetic containment device.
All-dielectric microwave devices for controlling the path of electromagnetic waves
NASA Astrophysics Data System (ADS)
Yi, J.; de Lustrac, A.; Piau, G.-P.; Burokur, S. N.
2017-05-01
All-dielectric devices are designed using Quasi-Conformal Transformation Optics (QCTO) concept and fabricated by additive manufacturing for the control of wave propagation. Three lenses are studied; the first one is used to compensate for the curvature of a non-planar antenna array, the second one to steer an electromagnetic beam to a desired direction and the last one to taper an electromagnetic field between two sections of different dimensions.
NASA Astrophysics Data System (ADS)
Li, C. Y.; Lesselier, D.; Zhong, Y.
2015-07-01
The present work aims at building up a full-wave computational model of electromagnetic nondestructive testing of composite materials produced by stacking up dielectric slabs one over the other. In each such dielectric slab, a periodic array of infinite cylindrical fibers is embedded. Electromagnetic scattering of such a multilayered, fiber-based periodic composite is investigated here for an obliquely incident plane wave, the plane of incidence of which differs from the plane orthogonal to the fibers' axes. Full-wave field representations are given first by multipole and plane wave expansions. Mode matching at boundaries between layers then yields the propagating matrices, which are applied to connect reflection and transmission coefficients of the longitudinal field components. Power reflection and transmission coefficients are obtained from time-averaged Poynting vectors. Numerical experiments with comparisons with known results illustrate the accuracy of the model proposed.
Heating of ions by high frequency electromagnetic waves in magnetized plasmas
Zestanakis, P. A.; Kominis, Y.; Hizanidis, K.; Ram, A. K.
2013-07-15
The heating of ions by high frequency electrostatic waves in magnetically confined plasmas has been a paradigm for studying nonlinear wave-particle interactions. The frequency of the waves is assumed to be much higher than the ion cyclotron frequency and the waves are taken to propagate across the magnetic field. In fusion type plasmas, electrostatic waves, like the lower hybrid wave, cannot access the core of the plasma. That is a domain for high harmonic fast waves or electron cyclotron waves—these are primarily electromagnetic waves. Previous studies on heating of ions by two or more electrostatic waves are extended to two electromagnetic waves that propagate directly across the confining magnetic field. While the ratio of the frequency of each wave to the ion cyclotron frequency is large, the frequency difference is assumed to be near the ion cyclotron frequency. The nonlinear wave-particle interaction is studied analytically using a two time-scale canonical perturbation theory. The theory elucidates the effects of various parameters on the gain in energy by the ions—parameters such as the amplitudes and polarizations of the waves, the ratio of the wave frequencies to the cyclotron frequency, the difference in the frequency of the two waves, and the wave numbers associated with the waves. For example, the ratio of the phase velocity of the envelope formed by the two waves to the phase velocity of the carrier wave is important for energization of ions. For a positive ratio, the energy range is much larger than for a negative ratio. So waves like the lower hybrid waves will impart very little energy to ions. The theoretical results are found to be in good agreement with numerical simulations of the exact dynamical equations. The analytical results are used to construct mapping equations, simplifying the derivation of the motion of ions, which are, subsequently, used to follow the evolution of an ion distribution function. The heating of ions can then be
Coupling of electromagnetic waves and space charge waves in type O traveling wave tubes
NASA Technical Reports Server (NTRS)
Ricci, P.
1978-01-01
H. Derfler observed that a parameter defined by Pierce's perturbation method does not have the same physical significance as an analogous parameter described by a differently derived equation of W. Kleen. A modification of Pierce's method is proposed, which yields an equation of Derfler's type, and also allows quicker and easier calculation of a given traveling wave tube's parameters.
Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals.
Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong
2017-03-03
We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 10^{4} s. This uncertainty can be suppressed by a factor of ∼10^{10}, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ-ray bursts and fast radio bursts.
Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals
NASA Astrophysics Data System (ADS)
Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong
2017-03-01
We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 1 04 s . This uncertainty can be suppressed by a factor of ˜1 010, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ -ray bursts and fast radio bursts.
NASA Technical Reports Server (NTRS)
Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey
2012-01-01
Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.
Parametric study of electromagnetic waves propagating in absorbing curved S ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1989-01-01
A finite-element Galerkin formulation has been developed to study attenuation of transverse magnetic (TM) waves propagating in two-dimensional S-curved ducts with absorbing walls. In the frequency range where the duct diameter and electromagnetic wave length are nearly equal, the effect of duct length, curvature (duct offset), and absorber wall thickness was examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. For a straight and a curved duct with perfect electric conductor terminations, power attenuation contours were examined to determine electromagnetic wall properties associated with maximum input signal absorption. Offset of the S-duct was found to significantly affect the value of the wall permittivity associated with the optimal attenuation of the incident electromagnetic wave.
A laboratory study of the electromagnetic bias of rough surface scattering by water waves
NASA Technical Reports Server (NTRS)
Parsons, Chester L.; Miller, Lee S.
1990-01-01
The design, development, and use of a focused-beam radar to measure the electromagnetic bias introduced by the scattering of radar waves by a roughened water surface are discussed. The bias measurements were made over wide ranges of environmental conditions in a wavetank laboratory. Wave-elevation data were provided by standard laboratory capacitance probes. Backscattered radar power measurements coincident in time and space with the elevation data were produced by the radar. The two data sets are histogrammed to produce probability density functions for elevation and radar reflectivity, from which the electromagnetic bias is computed. The experimental results demonstrate that the electromagnetic bias is quite variable over the wide range of environmental conditions that can be produced in the laboratory. The data suggest that the bias is dependent upon the local wind field and on the amplitude and frequency of any background wave field that is present.
The electromagnetic signature of gravitational wave interaction with the quantum vacuum
NASA Astrophysics Data System (ADS)
Marongwe, Stuart
An analysis of the effects of the passage of a gravitational wave (GW) on the quantum vacuum is made within the context of the Nexus paradigm of quantum gravity. Results indicate that if the quantum vacuum includes electrically charged virtual particle fields, then a GW will induce vacuum polarization. The equations of General Relativity (GR) are then reformulated to include electric charge displacements in the quantum vacuum imposed by an anisotropic stress — momentum tensor. It is then demonstrated that as a result of the spacetime piezoelectric effect, a gravitational wave is associated with a rotating electromagnetic wave and that the converse effect produced by strong electromagnetic fields is responsible for the generation of relativistic jets and gamma ray bursts. Objects with strong electromagnetic fields will apparently violate the strong equivalence principle.
Zhang, Yanpeng; Brown, Andy W; Xiao, Min
2007-09-21
Highly efficient four-wave mixing (FWM) and six-wave mixing (SWM) processes can coexist in a four-level Y-type atomic system due to atomic coherence. The simultaneously opened dual electromagnetically induced transparency windows in this four-level atomic system allow observation of these two nonlinear optical processes at the same time, which enables detailed studies of the interplay between the FWM and SWM processes. Three-photon and five-photon destructive interferences are also observed.
Generation of electromagnetic waves in the very low frequency band by velocity gradient
Ganguli, G. Tejero, E.; Crabtree, C.; Amatucci, W.; Rudakov, L.
2014-01-15
It is shown that a magnetized plasma layer with a velocity gradient in the flow perpendicular to the ambient magnetic field is unstable to waves in the Very Low Frequency band that spans the ion and electron gyrofrequencies. The waves are formally electromagnetic. However, depending on wave vector k{sup ¯}=kc/ω{sub pe} (normalized by the electron skin depth) and the obliqueness, k{sub ⊥}/k{sub ||}, where k{sub ⊥,||} are wave vectors perpendicular and parallel to the magnetic field, the waves are closer to electrostatic in nature when k{sup ¯}≫1 and k{sub ⊥}≫k{sub ||} and electromagnetic otherwise. Inhomogeneous transverse flows are generated in plasma that contains a static electric field perpendicular to the magnetic field, a configuration that may naturally arise in the boundary layer between plasmas of different characteristics.
On the possibility of the autoresonant motion of an electron in a slow electromagnetic wave
Milantiev, V.P.
1994-12-31
By autoresonant motion one usually means the motion when the condition of cyclotron resonance of gyrating particle with electromagnetic wave is conserved during all the time of the motion in spite of the relativistic mass increase. Such a motion takes place only in the case of vacuum wave, when the phase velocity {nu}{sub p} is equal to the speed of light in a vacuum C. Otherwise autoresonance is impossible, and energy of the particle oscillates in time. The authors now discuss the possibility of the autoresonance in a slow electromagnetic wave ({nu}{sub p} < c) propagating along the straight lines of the external magnetic field. It turns out that the autoresonant regime of the motion in a slow electromagnetic wave possible if some rather restrictive relations between the electric drift velocity and the phase velocity of wave take place. It depends also on the polarization of wave. The general case of the elliptical polarization is considered. The optimal regime corresponds to the wave with linear polarization in the direction of the constant electric field. For this case the calculations show that energy of the particle can unlimitedly increase (or decrease). The rate of acceleration can be even larger than in the case of vacuum wave. Radiation forces will restrict this process.
A statistical model for relativistic quantum fluids interacting with an intense electromagnetic wave
NASA Astrophysics Data System (ADS)
Mahajan, Swadesh M.; Asenjo, Felipe A.
2016-05-01
A statistical model for relativistic quantum fluids interacting with an arbitrary amplitude circularly polarized electromagnetic wave is developed in two steps. First, the energy spectrum and the wave function for a quantum particle (Klein Gordon and Dirac) embedded in the electromagnetic wave are calculated by solving the appropriate eigenvalue problem. The energy spectrum is anisotropic in the momentum K and reflects the electromagnetic field through the renormalization of the rest mass m to M =√{m2+q2A2 } . Based on this energy spectrum of this quantum particle plus field combination (QPF), a statistical mechanics model of the quantum fluid made up of these weakly interacting QPF is developed. Preliminary investigations of the formalism yield highly interesting results—a new scale for temperature, and fundamental modification of the dispersion relation of the electromagnetic wave. It is expected that this formulation could, inter alia, uniquely advance our understanding of laboratory as well as astrophysical systems where one encounters arbitrarily large electromagnetic fields.
Electromagnetic modified Bessel-Gauss beams and waves.
Seshadri, S R
2008-01-01
The transverse magnetic (TM) modified Bessel-Gauss beams and their full-wave generalizations are treated. Attention is paid to the spreading properties on propagation of the null in the radiation intensity pattern for the azimuthal mode numbers m=0 and 1. The rate of spreading of the null in the propagation direction is significantly less for the TM modified Bessel-Gauss waves than those for the corresponding TM Bessel-Gauss waves. The total power transported by the waves is determined and compared with that of the corresponding paraxial beam to estimate the quality of the paraxial beam approximation of the wave. The dependence of the quality of the paraxial beam approximation on the azimuthal mode number, the beam shape parameter, and the ratio of the beam waist to the wavelength has a regular pattern for the TM Bessel-Gauss wave and not for the TM modified Bessel-Gauss wave.
Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma
Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.
2015-01-01
We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10−6 times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth’s plasma environment. PMID:26647962
Artemyev, A V; Neishtadt, A I; Zelenyi, L M; Vainchtein, D L
2010-12-01
We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere. © 2010 American Institute of Physics.
Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma
NASA Astrophysics Data System (ADS)
Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.
2015-12-01
We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10-6 times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth’s plasma environment.
Artemyev, A. V.; Zelenyi, L. M.; Vainchtein, D. L.
2010-12-15
We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere.
Li, Jia; Wu, Pinghui; Chang, Liping
2015-08-24
Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.
Self-focusing of intense high frequency electromagnetic waves in a collisional magnetoactive plasma
Niknam, A. R.; Hashemzadeh, M.; Aliakbari, A.; Majedi, S.; Haji Mirzaei, F.
2011-11-15
The self-focusing of an intense electromagnetic beam in a collisional magnetoactive plasma has been investigated by the perturbation method. Considering the relativistic and ponderomotive nonlinearities and the first three terms of perturbation expansion for the electron density and velocity, the nonlinear wave equation is obtained. This wave equation is solved by applying the source dependent expansion method and the evolution of electromagnetic beam spot-size is discussed. It is shown that the laser spot-size decreases with increasing the collision frequency and external magnetic field strength.
NASA Astrophysics Data System (ADS)
Nosaeva, T. A.; Syrodoev, G. A.
2016-12-01
We study the effect of electron drag in a semiconductor superlattice during intraband absorption of a biharmonic electromagnetic wave in a process accompanied by the emission (absorption) of a phonon. The problem has been solved in the second order of perturbation theory. The effective interaction Hamiltonian method makes it possible to take into account the multiphoton nature of the electromagnetic wave absorption. With increasing field, the current increases and attains a peak value, after which it decreases in an oscillatory manner due to the ionization stabilization effect.
Electromagnetic waves near the proton cyclotron frequency in the solar wind
NASA Astrophysics Data System (ADS)
Jian, Lan; Alexander, Robert; Wicks, Robert; Stevens, Michael; Figueroa-Vinas, Adolfo; Russell, Christopher
2015-04-01
Strong narrow-band electromagnetic waves around the proton cyclotron frequency have been found sporadically in the solar wind throughout the inner heliosphere. They are nearly-circularly polarized and propagate close to the magnetic field. Electromagnetic waves near the proton cyclotron frequency can be ion cyclotron waves or magnetosonic waves. They can play an important role in modulating the solar wind ion distribution, and contribute to the heating and acceleration of solar wind. Since the waves are left-hand or right-hand polarized in the spacecraft frame with similar characteristics, they are probably due to Doppler shift of a same type of waves, or there could be a mixture of waves with intrinsically different polarizations. Through the assistance of audification, we have studied the long-lasting low frequency wave events in 2005 using high-cadence magnetic field data from the Wind mission. The Solar Wind Experiment team of the Wind mission has provided the temperature anisotropies for core protons, beam protons, and alpha particles, as well as the beam drift for selected cases. We conduct wave dispersion analysis using these ion moments to examine if these waves can be explained by ion cyclotron anisotropy instability or ion beam instability related to the solar wind inhomogeneities.
Characterization of soil behavior using electromagnetic wave-based technique
NASA Astrophysics Data System (ADS)
Dong, Xiaobo
samples so that the beta value, i.e., the ratio between the conductivities of the sediment and the fluid, is smaller than 1. The beta value is greater than 1 in the Group B samples owing to an overcompensation of surface conduction. Sedimentation behavior of two kaolinite samples with distinct fabric associations is characterized using mechanical and electromagnetic wave-based techniques. The two different fabric formations, the edge-to-face (EF) flocculated structure (i.e., sample A) and the dispersed and deflocculated structure (i.e., sample B), were regulated by changing the pH of the pore fluid and are produced. The anisotropy of shear wave velocity and DC conductivity was not observed in the sediment of sample A because of EF isotropic fabric associations but it was detected in sample B as a result of face-to-face (FF) aggregation. An open card-house structure of the sample A sediment results in a higher relaxation strength of the bulk water, Deltakappaw owing to a higher water content; the smaller Deltakappaw measured in the sample B sediment indicates denser packing. In both samples, sediment consolidation gives rise to a decrease in the bulk-water relaxation strength but an increase in the bound-water relaxation strength owing to increasing particle content. In response to sediment consolidation, the sediment conductivity of sample A continuously decreases because of the reduced contribution from the fluid conductivity. In sample B, the surface conduction via the overlapped double layer overcompensates such a decreased contribution so that the sediment conductivity increases with increasing particle content. The slim-form open-ended coaxial probe is also used to conduct a local dielectric measurement. The measured results, i.e. dielectric relaxation strength of bulk water, Deltakappaw, and the DC conductivity of the saturated sample, sigmamix, are jointly used to characterize the spatial variability of different specimens including glass beads, sand and mica
Propagation of ultra-intense electromagnetic waves through electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Rozina, Ch.; Tsintsadze, N. L.; Jamil, M.
2016-07-01
A kinetic approach is used to study the propagation of ultrarelativistic (amplitude) electromagnetic waves through electron-positron-ion plasma. For our purposes, we formulate a new plasma particle distribution function in the presence of ultrarelativistically intense circularly polarized electromagnetic (EM) waves. An effective dispersion relation of constant amplitude ultrarelativistic EM wave is derived, skin depth is calculated in particular, frequency regimes and has shown numerically that the penetration depth increases with the amplitude of ultra-intense electromagnetic waves, λ s k ˜ a /1 2 , i.e., plasma will be heated more in the region of skin depth. Next, we have found that the nonlinear interaction of ultrarelativistically intense EM waves of time and space varying amplitude leads to construct kinetic nonlinear Schrödinger equation (KNSE), containing both local and non-local nonlinear terms, where nonlocal nonlinear term appears due to density perturbations of plasma species. Taking the effects of the latter into consideration, nonlinear Landau damping is discussed for KNSE, damping rate is computed, and numerically ultrarelativistic EM waves are shown to decay exponentially. The present results should be helpful to understand the specific properties of the ultrarelativistic EM waves in astrophysical plasmas, e.g., pulsars, black holes, and neutron stars.
Self-organization of planetary electromagnetic waves in the E-region of the ionosphere
NASA Astrophysics Data System (ADS)
Aburjania, G. D.; Jandieri, G. V.; Khantadze, A. G.
2003-04-01
A physical mechanism for the generation of slow and fast electromagnetic-type planetary waves due to standing factor-latitude variation of geomagnetic field-in the dissipative E-region of the ionosphere is suggested. It has been shown that slow waves are generated due to the dynamo-field in the ionosphere, and fast waves by the vortical electric field. The slow electromagnetic wave is analog to the Rossby planetary wave; the fast electromagnetic wave is a new mode of natural oscillations of the E-region of the ionosphere. Linear waves propagate along the parallel west and east directions in the dynamo-region of the ionosphere against a background of the mean zonal flow. Phase velocity of the fast waves is a few kms-1, oscillation frequencies are in the frequency band of 10-2-10-4s-1 and the wavelength is of the order of 103km and higher. Phase velocities of the slow waves and local winds are at the same order of magnitude, the frequency band is 10-4-10-5s-1 and wavelength is of 103km and higher order. Fast waves generate intense magnetic fields in order of a few hundred nanotesla (nT); slow waves-a few tens of nT. In this paper the nonlinear theory of both fast and slow planetary electromagnetic waves in the E-region of the ionosphere is investigated for the first time. It was established that these perturbations are self-localized as nonlinear solitary vortical structures in the dynamo-region of the ionosphere move to the west (fast) and to the east (slow) against a background of the mean zonal flow. The nonlinear structure consists of cyclone-anticyclone-type mutual counter-clockwise-rotating vortices, which capture medium particles. Energy and enstrophy of these large-scale vortices are weakly attenuated and are long-lived. Vortical structures generate magnetic fields, which are an order of magnitude larger than those generated by the corresponding linear waves. Features and parameters of electromagnetic wavy structures are theoretically investigated and are in
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.
2006-01-01
The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves (Khazanov et al., 2003) is presented In order to adequately take into account wave propagation and refraction in a multi-ion magnetosphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate the spatial, temporal, and spectral evolution of the ring current and of electromagnetic ion cyclotron waves To demonstrate the effects of EMIC wave propagation and refraction on the wave energy distribution and evolution, we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, owing to the density gradient at the plasmapause, the net wave refraction is suppressed, and He+-mode grows preferably at the plasmapause. This result is in total agreement with previous ray tracing studies and is very clearly found in presented B field spectrograms. Second, comparison of global wave distributions with the results from another ring current model (Kozyra et al., 1997) reveals that this new model provides more intense and more highly plasmapause-organized wave distributions during the May 1998 storm period Finally, it is found that He(+)-mode energy distributions are not Gaussian distributions and most important that wave energy can occupy not only the region of generation, i.e., the region of small wave normal angles, but all wave normal angles, including those to near 90 . The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping and subsequent downward heat transport and excitation of stable auroral red arcs.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.
2006-01-01
The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves (Khazanov et al., 2003) is presented In order to adequately take into account wave propagation and refraction in a multi-ion magnetosphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate the spatial, temporal, and spectral evolution of the ring current and of electromagnetic ion cyclotron waves To demonstrate the effects of EMIC wave propagation and refraction on the wave energy distribution and evolution, we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, owing to the density gradient at the plasmapause, the net wave refraction is suppressed, and He+-mode grows preferably at the plasmapause. This result is in total agreement with previous ray tracing studies and is very clearly found in presented B field spectrograms. Second, comparison of global wave distributions with the results from another ring current model (Kozyra et al., 1997) reveals that this new model provides more intense and more highly plasmapause-organized wave distributions during the May 1998 storm period Finally, it is found that He(+)-mode energy distributions are not Gaussian distributions and most important that wave energy can occupy not only the region of generation, i.e., the region of small wave normal angles, but all wave normal angles, including those to near 90 . The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping and subsequent downward heat transport and excitation of stable auroral red arcs.
A novel protocol to measure the attenuation of electromagnetic waves through smoke
NASA Astrophysics Data System (ADS)
Yan-wu, Li; Hong-yong, Yuan; Yang, Lu; Xiaoxiang, Zhang; Ru-feng, Xu; Ming, Fu
2016-06-01
The electromagnetic properties of smoke from a structure fire are important in terms of their relation to the stability of wireless communication systems used in fire rescue. As it is hard to make a measurable electromagnetic environment for particles in the air, compressed and bulk samples are used instead to measure sand storms and smoke plumes. In this paper, an experiment system was designed to measure smoke particles in the air, in consideration of both smoke control and electromagnetic measurement. Several measures had been taken to create a fulfilled smoke environment. The simulated and measured transmission parameters of the electromagnetic testing area were approximate and the electromagnetic wave frequencies were set from 350 to 400 MHz. Repeated experiments have been conducted to test the stability of the results and they showed that there was no obvious attenuation until the smoke concentration was more than 10 dB m-1. It was found that the frequency around 355 and 360 MHz had a larger attenuation coefficient. The relationship between the attenuation coefficient and the smoke concentration was concluded to be linear. The results may help us understand the attenuation of electromagnetic waves within a smoke column.
NASA Technical Reports Server (NTRS)
Huba, J. D.; Rowland, H. L.
1993-01-01
The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.
NASA Astrophysics Data System (ADS)
Lou, Lin; Sun, Jia; Feng, Weikang; Wu, Zhenkun; Zhang, Yiqi; Zhang, Yanpeng
2014-12-01
We study the competition and transfer between atomic coherence and electromagnetically induced population grating of multi-wave mixing (MWM) in four- and five-level atomic systems. The MWM signal falls into a new type electromagnetically induced transparency (EIT) window that depends on propagating directions of the related fields rather than atomic system configuration. By blocking different coupling laser beams, we experimentally distinguish different wave mixing processes. In addition, by changing the detuning of pump beams, we can observe double peaks for both EIT and MWM signals. The results may have potential applications in correlated photon-pair generations in four-wave mixing as well as six-wave mixing and quantum information processing.
NASA Astrophysics Data System (ADS)
Huba, J. D.; Rowland, H. L.
1993-03-01
The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.
Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco
2012-10-01
We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.
NASA Technical Reports Server (NTRS)
Fejer, J. A.
1974-01-01
Threshold and growth rate for stimulated Brillouin scattering are calculated for a uniform magnetoplasma. These are then compared with the threshold and growth rate of a new thermal instability in which the nonlinear Lorentz force felt by the electrons at the beat frequency of the two electromagnetic waves is replaced by a pressure force due to differential heating in the interference pattern of the pump wave and the generated electromagnetic wave. This thermal instability, which is still essentially stimulated Brillouin scattering, has a threshold which is especially low when the propagation vector of the beat wave is almost normal to the magnetic field. The threshold is then considerably lower than the threshold for normal stimulated Brillouin scattering and therefore this new instability is probably responsible for the generation of large scale field aligned irregularities and ionospheric spread F.
Ding, Chaoliang; Cai, Yangjian; Zhang, Yongtao; Pan, Liuzhan
2012-06-01
The scattering of a stochastic electromagnetic plane-wave pulse on a deterministic spherical medium is investigated. An analytical formula for the degree of polarization (DOP) of the scattered field in the far zone is derived. Letting pulse duration T(0) → ∞, our formula can be applied to study the scattering of a stationary stochastic electromagnetic light wave. Numerical results show that the DOP of the far zone field is closely determined by the size of the spherical medium when the incident field is a stochastic electromagnetic plane-wave pulse. This is much different from the case when the incident field is a stationary stochastic electromagnetic light wave, where the DOP of the far zone field is independent of the size of the medium. One may obtain the information of the spherical medium by measuring the scattering-induced changes in the DOP of a stochastic electromagnetic plane-wave pulse.
NASA Astrophysics Data System (ADS)
Cho, Suwon
2017-07-01
This paper addresses the scattering of electromagnetic waves obliquely incident on a magnetized plasma layer. It is shown that the polarizations of the waves can be converted when they are obliquely incident on a magnetized plasma layer. The scattering coefficients of the incident and converted waves are computed based on the analytic solutions of a uniform magnetized plasma slab. The total transmittance and reflectance are similar to those of the normal incidence, but the individual scattering coefficients of the incident and converted waves vary, depending on the dispersion characteristics of the ordinary and extraordinary modes in the plasma. The contributions of the converted wave increase with the wave number parallel to the magnetic field but decrease as the frequency increases above the upper hybrid resonance, regardless of the parallel wave number.
The excitation and detection of lamb waves with planar coil electromagnetic acoustic transducers.
Wilcox, Paul D; Lowe, Michael J S; Cawley, Peter
2005-12-01
Planar coil electromagnetic acoustic transducers (EMATs) are investigated for the excitation and detection of Lamb waves in nonferromagnetic metallic wave-guides. Such EMATs are attractive for certain applications due to their omni-directional sensitivity to wave modes with predominantly in-plane surface displacement, such as the So Lamb wave mode. A model is developed that enables the modal content of the radiated Lamb wave field from a transmitting EMAT to be calculated, and the output voltage from a receiving EMAT to be predicted when a Lamb wave mode is incident on it. The predictions from this model are compared with experimental data obtained from 12 different EMATs tested on a 5-mm thick aluminum plate, and good agreement is obtained. The model then is used to analyze the different effects that contribute to the overall Lamb wave modal sensitivity of an EMAT. The relationship between coil geometry and wavelength is examined.
Electromagnetic time reversal focusing of near field waves in metamaterials
NASA Astrophysics Data System (ADS)
Chabalko, Matthew J.; Sample, Alanson P.
2016-12-01
Precise control of electromagnetic energy on a deeply subwavelength scale in the near field regime is a fundamentally challenging problem. In this letter we demonstrate the selective focusing of electromagnetic energy via the electromagnetic time reversal in the near field of a metamaterial. Our analysis begins with fundamental mathematics, and then is extended to the experimental realm where focusing in space and time of the magnetic fields in the near field of a 1-Dimensional metamaterial is shown. Under time reversal focusing, peak instantaneous fields at receiver locations are at minimum ˜200% greater than other receivers. We then leverage the strong selective focusing capabilities of the system to show individual and selective powering of light emitting diodes connected to coil receivers placed in the near field of the metamaterial. Our results show the possibility of improving display technologies, near field imaging systems, increasing channel capacity of near field communication systems, and obtaining a greater control of energy delivery in wireless power transfer systems.
Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma
Jian Liu and Hong Qin
2011-11-07
The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.
NASA Astrophysics Data System (ADS)
Buts, V. A.; Ognivenko, V. V.
1990-05-01
The possibility of the acceleration of charged particles captured by an electromagnetic wave propagating across a constant magnetic field in periodic slow-wave structures is demonstrated. A plane waveguide with perfectly conducting walls is examined as an example of an electrodynamic structure in which such an acceleration mechanism is possible. The acceleration rate is determined, and the stability of captured particle motion is investigated.
Excitation of the Uller-Zenneck electromagnetic surface waves in the prism-coupled configuration
NASA Astrophysics Data System (ADS)
Rasheed, Mehran; Faryad, Muhammad
2017-08-01
A configuration to excite the Uller-Zenneck surface electromagnetic waves at the planar interfaces of homogeneous and isotropic dielectric materials is proposed and theoretically analyzed. The Uller-Zenneck waves are surface waves that can exist at the planar interface of two dissimilar dielectric materials of which at least one is a lossy dielectric material. In this paper, a slab of a lossy dielectric material was taken with lossless dielectric materials on both sides. A canonical boundary-value problem was set up and solved to find the possible Uller-Zenneck waves and waveguide modes. The Uller-Zenneck waves guided by the slab of the lossy dielectric material were found to be either symmetric or antisymmetric and transmuted into waveguide modes when the thickness of that slab was increased. A prism-coupled configuration was then successfully devised to excite the Uller-Zenneck waves. The results showed that the Uller-Zenneck waves are excited at the same angle of incidence for any thickness of the slab of the lossy dielectric material, whereas the waveguide modes can be excited when the slab is sufficiently thick. The excitation of Uller-Zenneck waves at the planar interfaces with homogeneous and all-dielectric materials can usher in new avenues for the applications for electromagnetic surface waves.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gumayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.
2006-01-01
The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2003] is presented. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate spatial, temporal, and spectral evolutions of the ring current and electromagnetic ion cyclotron waves. To demonstrate the effects of EMIC wave propagation and refraction on the EMIC wave energy distributions and evolution we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, due to the density gradient at the plasmapause, the net wave refraction is suppressed, and He(+)-mode grows preferably at plasmapause. This result is in a total agreement with the previous ray tracing studies, and very clear observed in presented B-field spectrograms. Second, comparison the global wave distributions with the results from other ring current model [Kozyra et al., 1997] reveals that our model provides more intense and higher plasmapause organized distributions during the May, 1998 storm period. Finally, the found He(+)-mode energy distributions are not Gaussian distributions, and most important that wave energy can occupy not only the region of generation, i. e. the region of small wave normal angles, but the entire wave normal angle region and even only the region near 90 degrees. The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping, and subsequent downward heat transport and excitation of stable auroral red arcs.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gumayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.
2006-01-01
The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2003] is presented. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate spatial, temporal, and spectral evolutions of the ring current and electromagnetic ion cyclotron waves. To demonstrate the effects of EMIC wave propagation and refraction on the EMIC wave energy distributions and evolution we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, due to the density gradient at the plasmapause, the net wave refraction is suppressed, and He(+)-mode grows preferably at plasmapause. This result is in a total agreement with the previous ray tracing studies, and very clear observed in presented B-field spectrograms. Second, comparison the global wave distributions with the results from other ring current model [Kozyra et al., 1997] reveals that our model provides more intense and higher plasmapause organized distributions during the May, 1998 storm period. Finally, the found He(+)-mode energy distributions are not Gaussian distributions, and most important that wave energy can occupy not only the region of generation, i. e. the region of small wave normal angles, but the entire wave normal angle region and even only the region near 90 degrees. The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping, and subsequent downward heat transport and excitation of stable auroral red arcs.
Spin-down of Pulsars, and Their Electromagnetic and Gravitational Wave Radiations
NASA Astrophysics Data System (ADS)
Yue-zhu, Zhang; Yan-yan, Fu; Yi-huan, Wei; Cheng-min, Zhang; Shao-hua, Yu; Yuan-yue, Pan; Yuan-qi, Guo; De-hua, Wang
2016-04-01
Pulsars posses extremely strong magnetic fields, and their magnetic axis does not coincide with their rotation axis, this causes the pulsars to emit electromagnetic radiations. Pulsars rely on their rotational energy to compensate for the energy loss caused by the electromagnetic radiation, which leads to the gradually decelerated spin of pulsars. According to the theoretical deduction, we have calculated the initial period of the Crab Nebula pulsar, and derived the period evolution of the pulsar at any time in the future under the effect of the electromagnetic radiation. Considered the possible existence of quadrupole moment in the mass distribution of a pulsar, the gravitational wave radiation will also make the pulsar spin down, hence the variation of spin period of the Crab pulsar under the effect of gravitational wave radiation is further analyzed. Finally, combining the two kinds of radiation mechanisms, the evolution of spin period of the Crab pulsar under the joint action of these two kinds of radiation mechanisms is analyzed.
Broadband field enhancement of THz electromagnetic wave by surface-textured micron PVDF cylinders
NASA Astrophysics Data System (ADS)
Li, Xinxin; Liu, Xuan; Zhang, Luoning; Zhou, Jing; Liu, Dahe
2015-07-01
A cylindrical dimmer system is proposed to realize broadband field enhancement for terahertz (THz) electromagnetic wave. A surface-textured crescent-shaped cylinder is proposed to red-shift the absorption spectrum comparing to the traditional crescent-shaped cylinder based on the concept of spoof surface plasmons. Such cylinders made of ferroelectric polyvinylidene fluoride can realize the electromagnetic wave harvesting at terahertz frequencies with a broadband and huge absorption cross section. Two such cylinders in close proximity could achieve considerable electromagnetic field enhancement and field confinement in the gap, which could be applied in THz molecules detection, toxic chemical sensing, and safety screening and could break the detection binding that limits the molecules <100 nm.
Zhu, Bo O.; Chen, Ke; Jia, Nan; Sun, Liang; Zhao, Junming; Jiang, Tian; Feng, Yijun
2014-01-01
Transmission and reflection are two fundamental properties of the electromagnetic wave propagation through obstacles. Full control of both the magnitude and phase of the transmission and reflection independently are important issue for free manipulation of electromagnetic wave propagation. Here we employed the equivalent principle, one fundamental theorem of electromagnetics, to analyze the required surface electric and magnetic impedances of a passive metasurface to produce either arbitrary transmission magnitude and phase or arbitrary reflection magnitude and phase. Based on the analysis, a tunable metasurface is proposed. It is shown that the transmission phase can be tuned by 360° with the unity transmissivity or the transmissivity can be tuned from 0 to 1 while the transmission phase is kept around 0°. The reflection magnitude and phase can also been tuned similarly with the proposed metasurface. The proposed design may have many potential applications, such as the dynamic EM beam forming and scanning.
Measurement of the environmental broadband electromagnetic waves in a mid-size European city.
Fernández-García, R; Gil, I
2017-10-01
In this paper, the level of exposure to broadband radiofrequency electromagnetic field in a mid-size European city was evaluated in accordance with the International Commission on Non-ionizing Radiation Protection guidelines from 1998. With the aim to analyse all the potential electromagnetic waves present in the city up to 18GHz, a total of 271 locations distributed along Terrassa (Spain) have been measured. To show the results in an easy-to-interpret way by the citizen, the results have been represented in a set of raster maps. The measurement results obtained showed that the electromagnetic wave measured in all broadband frequency range along the city is much lower than the safety level according to the international regulations for both public and occupational sectors. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Semchenko, Igor V.; Khakhomov, Sergei A.; Fedosenko, Elena A.
2001-03-01
Paying attention to the possibility of making the covers with low reflection of electromagnetic waves we have analyzed the characteristics of the electromagnetic waves under the condition of transmission through the artificial anisotropic medium on the metallic layer. The boundary value problem for normal incidence of electromagnetic waves on stratified periodic structure we have solved in case of the following structure: air- artificial anisotropic medium - layer of metal - air. Amplitude and phase characteristics of reflected and transmitted waves were calculated depending on the parameters of an artificial anisotropic medium and metallic layer, and the complex influence of anisotropic and chiral properties was also investigated. We find the optimum features of the structure required for reducing the intensity of a reflected wave on the certain frequency, here we take into account the absorption of waves in the sample and metal. Aluminum is taken as a metallic substrate. The artificial material is dielectric with the metallic microspirals, inserted in it. The axes of spirals are oriented in the same direction. IN this case the medium is characterized by uniaxial tensors of permittivity and chirality. For the orientation of the axes of spirals in the same direction the Nylon threads can be used, on which the spirals are reeled up. Samples of similar media were recently obtained at Stellenbosch University in Southern Africa. Our calculations allow to predict the experimental results in case of deposition of similar covers on the metallic substrate.
An invisible medium for circularly polarized electromagnetic waves.
Tamayama, Y; Nakanishi, T; Sugiyama, K; Kitano, M
2008-12-08
We study the no reflection condition for a planar boundary between vacuum and an isotropic chiral medium. In general chiral media, elliptically polarized waves incident at a particular angle satisfy the no reflection condition. When the wave impedance and wavenumber of the chiral medium are equal to the corresponding parameters of vacuum, one of the circularly polarized waves is transmitted to the medium without reflection or refraction for all angles of incidence. We propose a circular polarizing beam splitter as a simple application of the no reflection effect. (c) 2008 Optical Society of America
NASA Astrophysics Data System (ADS)
Shi, Yang; Yang, Kun-De; Yang, Yi-Xin; Ma, Yuan-Liang
2015-05-01
In this paper, the influence of obstacle on electromagnetic wave propagation in an evaporation duct is investigated, both from numerical simulation and experimental observation. A comparison of electromagnetic wave propagation in evaporation duct with and without obstacle for a typical case is presented. The presence of obstacle causes a significant increase in path loss. The obstacle has significant impact on electromagnetic wave propagation when the frequency is higher than 5 GHz and when the evaporation duct height is higher than 10 m. The influence of an island on electromagnetic wave propagation was observed in the experiment held in the South China Sea, October 2012. The experiment result shows that the island causes about 30-40 dB increase in path loss. The discrepancy between model and measurement is analyzed and the errors of transmitting antenna height and relative humidity are the possible causes of the discrepancy. Project supported by the National Natural Science Foundation of China (Grant No. 11174235) and the Fundamental Research Funds for the Central Universities of China (Grant No. 3102014JC02010301).
NASA Astrophysics Data System (ADS)
Shi, Yang; Kun-De, Yang; Yi-Xin, Yang; Yuan-Liang, Ma
2015-04-01
The evaporation duct which forms above the ocean surface has a significant influence on electromagnetic wave propagation above 2 GHz over the ocean. The effects of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation are investigated, both in numerical simulation and experimental observation methods, in this paper. Firstly, the features of the horizontal inhomogeneity of the evaporation duct are discussed. Then, two typical inhomogeneous cases are simulated and compared with the homogeneous case. The result shows that path loss is significantly higher than that in the homogeneous case when the evaporation duct height (EDH) at the receiver is lower than that at the transmitter. It is also concluded that the horizontal inhomogeneity of the evaporation duct has a significant influence when the EDH is low or when the electromagnetic wave frequency is lower than 13 GHz. Finally, experimental data collected on a 149-km long propagation path in the South China Sea in 2013 are used to verify the conclusion. The experimental results are consistent with the simulation results. The horizontal inhomogeneity of evaporation duct should be considered when modeling electromagnetic wave propagation over the ocean. Project supported by the National Natural Science Foundation of China (Grant No. 11174235) and the Fundamental Research Funds for the Central Universities (Grant No. 3102014JC02010301).
Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course
ERIC Educational Resources Information Center
Burko, Lior M.
2008-01-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…
ERIC Educational Resources Information Center
Ambrose, Bradley S.; Heron, Paula R. L.; Vokos, Stamatis; McDermott, Lillian C.
1999-01-01
Some serious difficulties that students have in understanding physical optics may be due in part to a lack of understanding of light as an electromagnetic wave. Describes the development and use of tutorials designed to address students' conceptual difficulties. (Contains over 15 references.) (Author/WRM)
NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a
numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...
Low-frequency electromagnetic plasma waves at comet P/Grigg-Skjellerup: Analysis and interpretation
NASA Technical Reports Server (NTRS)
Neubauer, Fritz M.; Glassmeier, Karl-Heinz; Coates, A. J.; Johnstone, A. D.
1993-01-01
The propagation and polarization characteristic of low-frequency electromagnetic wave fields near comet P/Grigg-Skjellerup (P/GS) are analyzed using magnetic field and plasma observations obtained by the Giotto magnetometer experiment and the Johnstone plasma analyzer during the encounter at the comet on July 10, 1992. The results have been physically interpreted.
Volkova, N A; Pavlovich, E V; Gapon, A A; Nikolov, O T
2014-09-01
Exposure of human cryopreserved spermatozoa to millimeter-wave electromagnetic radiation of 0.03 mW/cm2 density for 5 min in normozoospermia and for 15 min in asthenozoospermia lead to increase of the fraction of mobile spermatozoa without impairing the membrane integrity and nuclear chromatin status and without apoptosis generation.
Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course
ERIC Educational Resources Information Center
Burko, Lior M.
2008-01-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…
NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a
numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...
Nikitin, Andrey A.; Ustinov, Alexey B.; Semenov, Alexander A.; Kalinikos, Boris A.; Lähderanta, E.
2014-03-03
Spin-electromagnetic waves propagating in thin-film multilayered multiferroic structures containing a slot transmission line have been investigated both experimentally and theoretically. The thin-film structure was composed of a ferrite film, a ferroelectric film, and a slot-line. It was shown that the spectrum of the spin-electromagnetic wave was formed as a result of hybridization of the spin wave in the ferrite film with the electromagnetic wave in the slot-line and was electrically and magnetically tunable. For the experimental investigations, a microwave phase shifter based on the multiferroic structure has been fabricated. Performance characteristics are presented.
Rahmani, Z. Jazi, B.; Heidari-Semiromi, E.
2014-09-15
The propagation of electromagnetic waves in an elliptical plasma waveguide including strongly magnetized plasma column and a dielectric rod is investigated. The dispersion relation of guided hybrid electromagnetic waves is obtained. Excitation of the waves by a thin annular relativistic elliptical electron beam will be studied. The time growth rate of electromagnetic waves is obtained. The effects of relative permittivity constant of dielectric rod, radius of dielectric rod, accelerating voltage, and current density of the annular elliptical beam on the growth rate and the frequency spectra are numerically presented.
On electromagnetic waves with a negative group velocity
Makarov, V. P.; Rukhadze, A. A.; Samokhin, A. A.
2010-12-15
Recent publications devoted to the electrodynamics of media in which waves with a negative group velocity can exist are discussed. The properties of such waves have been studied from the beginning of the past century, and the most important results in this field were obtained by Soviet physicists in the 1940s-1950s. However, in most recent publications, this circumstance has not been taken into account.
Electromagnetic (EM) Wave Attachment to Laser Plasma Filaments
2009-05-01
the RF waves, which was attempted to attach to the laser generated filaments. Radio frequency radiation in waveguide and propagating from antennas ...these waves will be emitted from our transmission antennas once in the far field zone and considered for modeling of such situations. In the case of...electric field in the direction of the wires were conducted. In this scenario, the TE mode created in the waveguide to direct the radiation along the
Excitation and Propagation of Electromagnetic Waves: RBSP Observation and Modeling
NASA Astrophysics Data System (ADS)
Zhou, Q.; Xiao, F.; Yang, C.; Liu, S.; Spence, H. E.; Geoffrey, R.; Funsten, H. O.; Blake, J. B.; Baker, D. N.; Wygant, J. R.
2015-12-01
During the recovery phase of the geomagnetic storm on 30-31 March 2013, Van Allen Probe A detected enhanced magnetosonic (MS) waves in a broad range of L = 1.8-4.7 and magnetic local time (MLT) = 17-22 h, with a frequency range ˜10-100 Hz. In the meanwhile, distinct proton ring distributions with peaks at energies of ˜10 keV, were also observed in L = 3.2-4.6 and L = 5.0-5.6. Using a subtracted bi-Maxwellian distribution to model the observed proton ring distribution, we perform three-dimensional ray tracing to investigate the instability, propagation, and spatial distribution of MS waves. Numerical results show that nightside MS waves are produced by proton ring distribution and grow rapidly from the source location L = 5.6 to the location L = 5.0 but remain nearly stable at locations L < 5.0. Moreover, waves launched toward lower L shells with different initial azimuthal angles propagate across different MLT regions with divergent paths at first, then gradually turn back toward higher L shells and propagate across different MLT regions with convergent paths. The current results further reveal that MS waves are generated by a ring distribution of ˜10 keV proton and proton ring in one region can contribute to the MS wave power in another region.
Transduction of DNA information through water and electromagnetic waves.
Montagnier, Luc; Del Giudice, Emilio; Aïssa, Jamal; Lavallee, Claude; Motschwiller, Steven; Capolupo, Antonio; Polcari, Albino; Romano, Paola; Tedeschi, Alberto; Vitiello, Giuseppe
2015-01-01
The experimental conditions by which electromagnetic signals (EMS) of low frequency can be emitted by diluted aqueous solutions of some bacterial and viral DNAs are described. That the recorded EMS and nanostructures induced in water carry the DNA information (sequence) is shown by retrieval of that same DNA by classical PCR amplification using the TAQ polymerase, including both primers and nucleotides. Moreover, such a transduction process has also been observed in living human cells exposed to EMS irradiation. These experiments suggest that coherent long-range molecular interaction must be present in water to observe the above-mentioned features. The quantum field theory analysis of the phenomenon is presented in this article.
Modal Ring Method for the Scattering of Electromagnetic Waves
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1993-01-01
The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.
Hanbury Brown-Twiss effect with electromagnetic waves.
Hassinen, T; Tervo, J; Setälä, T; Friberg, A T
2011-08-01
The classic Hanbury Brown-Twiss experiment is analyzed in the space-frequency domain by taking into account the vectorial nature of the radiation. We show that as in scalar theory, the degree of electromagnetic coherence fully characterizes the fluctuations of the photoelectron currents when a random vector field with Gaussian statistics is incident onto the detectors. Interpretation of this result in terms of the modulations of optical intensity and polarization state in two-beam interference is discussed. We demonstrate that the degree of cross-polarization may generally diverge. We also evaluate the effects of the state of polarization on the correlations of intensity fluctuations in various circumstances.
NASA Astrophysics Data System (ADS)
da Silva, Jose C. B.; Magalhaes, J. M.; Buijsman, M. C.; Garcia, C. A. E.
2016-08-01
Mode-2 internal waves are usually not as energetic as larger mode-1 Internal Solitary Waves (ISWs), but they have attracted a great deal of attention in recent years because they have been identified as playing a significant role in mixing shelf waters [1]. This mixing is particularly effective for mode-2 ISWs because the location of these waves in the middle of the pycnocline plays an important role in eroding the barrier between the base of the surface mixed layer and the stratified deep layer below. An urgent problem in physical oceanography is therefore to account for the magnitude and distribution of ISW-driven mixing, including mode-2 ISWs. Several generation mechanisms of mode-2 ISWs have been identified. These include: (1) mode-1 ISWs propagating onshore (shoaling) and entering the breaking instability stage, or propagating over a steep sill; (2) a mode-1 ISW propagating offshore (antishoaling) over steep slopes of the shelf break, and undergoing modal transformation; (3) intrusion of the whole head of a gravity current into a three-layer fluid; (4) impingement of an internal tidal beam on the pycnocline, itself emanating from critical bathymetry; (5) nonlinear disintegration of internal tide modes; (6) lee wave mechanism. In this paper we provide methods to identify internal wave features denominated "Wave Tails" in SAR images of the ocean surface, which are many times associated with second mode internal waves. The SAR case studies that are presented portray evidence of the aforementioned generation mechanisms, and we further discuss possible methods to discriminate between the various types of mode-2 ISWs in SAR images, that emerge from these physical mechanisms. Some of the SAR images correspond to numerical simulations with the MITgcm in fully nonlinear and nonhydrostatic mode and in a 2D configuration with realistic stratification, bathymetry and other environmental conditions.Results of a global survey with some of these observations are presented
First law of compact binary mechanics with gravitational-wave tails
NASA Astrophysics Data System (ADS)
Blanchet, Luc; Le Tiec, Alexandre
2017-08-01
We derive the first law of binary point-particle mechanics for generic bound (i.e. eccentric) orbits at the fourth post-Newtonian (4PN) order, accounting for the non-locality in time of the dynamics due to the occurence of a gravitational-wave tail effect at that order. Using this first law, we show how the periastron advance of the binary system can be related to the averaged redshift of one of the two bodies for a slightly non-circular orbit, in the limit where the eccentricity vanishes. Combining this expression with existing analytical self-force results for the averaged redshift, we recover the known 4PN expression for the circular-orbit periastron advance, to linear order in the mass ratio.
Modeling the propagation of electromagnetic waves over the surface of the human body
NASA Astrophysics Data System (ADS)
Vendik, I. B.; Vendik, O. G.; Kirillov, V. V.; Pleskachev, V. V.; Tural'chuk, P. A.
2016-12-01
The results of modeling and an experimental study of electromagnetic (EM) waves in microwave range propagating along the surface of the human body have been presented. The parameters of wave propagation, such as the attenuation and phase velocity, have also been investigated. The calculation of the propagation of EM waves by the numerical method FDTD (finite difference time domain), as well as the use of the analytical model of the propagation of the EM wave along flat and curved surfaces has been fulfilled. An experimental study on a human body has been conducted. It has been shown that creeping waves are slow and exhibit a noticeable dispersion, while the surface waves are dispersionless and propagate at the speed of light in free space. A comparison of the results of numerical simulation, analytical calculation, and experimental investigations at a frequency of 2.55 GHz has been carried out.
NASA Astrophysics Data System (ADS)
Zhao, Qing; Bo, Yong; Lei, Mingda; Liu, Shuzhang; Liu, Ying; Liu, Jianwei; Zhao, Yizhe
2016-11-01
Numerical study of electromagnetic (EM) wave transmission through the magnetized plasma layer is presented in this paper. The plasma parameters are derived from computational fluid dynamics simulation of the flow field around a blunt body flying at supersonic speed and serve as the background plasma condition in the numerical modeling for EM wave transmission. The EM wave is generated by our newly designed coaxial feed GPS patch antenna. The external magnetic field is applied and assumed to vary linearly as a function of wall distance. The effects of the external applied magnetic field and the plasma parameters on wave transmission are studied, and the results show that EM wave propagation in the non-uniformly magnetized plasma is a matter of impedance matching, and the EM wave transmission can be adjusted only when the proper strength of the magnetic field is applied.
Frequency Management for Electromagnetic Continuous Wave Conductivity Meters
Mazurek, Przemyslaw; Putynkowski, Grzegorz
2016-01-01
Ground conductivity meters use electromagnetic fields for the mapping of geological variations, like the determination of water amount, depending on ground layers, which is important for the state analysis of embankments. The VLF band is contaminated by numerous natural and artificial electromagnetic interference signals. Prior to the determination of ground conductivity, the meter’s working frequency is not possible, due to the variable frequency of the interferences. Frequency management based on the analysis of the selected band using track-before-detect (TBD) algorithms, which allows dynamical frequency changes of the conductivity of the meter transmitting part, is proposed in the paper. Naive maximum value search, spatio-temporal TBD (ST-TBD), Viterbi TBD and a new algorithm that uses combined ST-TBD and Viterbi TBD are compared. Monte Carlo tests are provided for the numerical analysis of the properties for a single interference signal in the considered band, and a new approach based on combined ST-TBD and Viterbi algorithms shows the best performance. The considered algorithms process spectrogram data for the selected band, so DFT (Discrete Fourier Transform) could be applied for the computation of the spectrogram. Real–time properties, related to the latency, are discussed also, and it is shown that TBD algorithms are feasible for real applications. PMID:27070608
Electromagnetic wave emitting products and "Kikoh" potentiate human leukocyte functions.
Niwa, Y; Iizawa, O; Ishimoto, K; Jiang, X; Kanoh, T
1993-09-01
Tourmaline (electric stone, a type of granite stone), common granite stone, ceramic disks, hot spring water and human palmar energy (called "Kikoh" in Japan and China), all which emit electromagnetic radiation in the far infrared region (wavelength 4-14 microns). These materials were thus examined for effects on human leukocyte activity and on lipid peroxidation of unsaturated fatty acids. It was revealed that these materials significantly increased intracellular calcium ion concentration, phagocytosis, and generation of reactive oxygen species in neutrophils, and the blastogenetic response of lymphocytes to mitogens. Chemotactic activity by neutrophils was also enhanced by exposure to tourmaline and the palm of "Kikohshi" i.e., a person who heals professionally by the laying on of hands. Despite the increase in reactive oxygen species generated by neutrophils, lipid peroxidation from unsaturated fatty acid was markedly inhibited by these four materials. The results suggest that materials emitting electromagnetic radiation in the far infrared range, which are widely used in Japan for cosmetic, therapeutic, and preservative purposes, appear capable of potentiating leukocyte functions without promoting oxidative injury.
Coupled equations of electromagnetic waves in nonlinear metamaterial waveguides.
Azari, Mina; Hatami, Mohsen; Meygoli, Vahid; Yousefi, Elham
2016-11-01
Over the past decades, scientists have presented ways to manipulate the macroscopic properties of a material at levels unachieved before, and called them metamaterials. This research can be considered an important step forward in electromagnetics and optics. In this study, higher-order nonlinear coupled equations in a special kind of metamaterial waveguides (a planar waveguide with metamaterial core) will be derived from both electric and magnetic components of the transverse electric mode of electromagnetic pulse propagation. On the other hand, achieving the refractive index in this research is worthwhile. It is also shown that the coupled equations are not symmetric with respect to the electric and magnetic fields, unlike these kinds of equations in fiber optics and dielectric waveguides. Simulations on the propagation of a fundamental soliton pulse in a nonlinear metamaterial waveguide near the resonance frequency (a little lower than the magnetic resonant frequency) are performed to study its behavior. These pulses are recommended to practice in optical communications in controlled switching by external voltage, even in low power.
Electromagnetic wave emitting products and ``Kikoh'' potentiate human leukocyte functions
NASA Astrophysics Data System (ADS)
Niwa, Yukie; Iizawa, Osamu; Ishimoto, Koichi; Jiang, Xiaoxia; Kanoh, Tadashi
1993-09-01
Tourmaline (electric stone, a type of granite stone), common granite stone, ceramic disks, hot spring water and human palmar energy (called “Kikoh” in Japan and China), all which emit electromagnetic radiation in the far infrared region (wavelength 4 14 µm). These materials were thus examined for effects on human leukocyte activity and on lipid peroxidation of unsaturated fatty acids. It was revealed that these materials significantly increased intracellular calcium ion concentration, phagocytosis, and generation of reactive oxygen species in neutrophils, and the blastogenetic response of lymphocytes to mitogens. Chemotactic activity by neutrophils was also enhanced by exposure to tourmaline and the palm of “Kikohshi” i.e., a person who heals professionally by the laying on of hands. Despite the increase in reactive oxygen species generated by neutrophils, lipid peroxidation from unsaturated fatty acid was markedly inhibited by these four materials. The results suggest that materials emitting electromagnetic radiation in the far infrared range, which are widely used in Japan for cosmetic, therapeutic, and preservative purposes, appear capable of potentiating leukocyte functions without promoting oxidative injury.
Frequency Management for Electromagnetic Continuous Wave Conductivity Meters.
Mazurek, Przemyslaw; Putynkowski, Grzegorz
2016-04-07
Ground conductivity meters use electromagnetic fields for the mapping of geological variations, like the determination of water amount, depending on ground layers, which is important for the state analysis of embankments. The VLF band is contaminated by numerous natural and artificial electromagnetic interference signals. Prior to the determination of ground conductivity, the meter's working frequency is not possible, due to the variable frequency of the interferences. Frequency management based on the analysis of the selected band using track-before-detect (TBD) algorithms, which allows dynamical frequency changes of the conductivity of the meter transmitting part, is proposed in the paper. Naive maximum value search, spatio-temporal TBD (ST-TBD), Viterbi TBD and a new algorithm that uses combined ST-TBD and Viterbi TBD are compared. Monte Carlo tests are provided for the numerical analysis of the properties for a single interference signal in the considered band, and a new approach based on combined ST-TBD and Viterbi algorithms shows the best performance. The considered algorithms process spectrogram data for the selected band, so DFT (Discrete Fourier Transform) could be applied for the computation of the spectrogram. Real-time properties, related to the latency, are discussed also, and it is shown that TBD algorithms are feasible for real applications.
Nonlinear propagation of coherent electromagnetic waves in a dense magnetized plasma
Shukla, P. K.; Eliasson, B.; Stenflo, L.
2012-07-15
We present an investigation of the nonlinear propagation of high-frequency coherent electromagnetic waves in a uniform quantum magnetoplasma. Specifically, we consider nonlinear couplings of right-hand circularly polarized electromagnetic-electron-cyclotron (CPEM-EC) waves with dispersive shear Alfven (DSA) and dispersive compressional Alfven (DCA) perturbations in plasmas composed of degenerate electron fluids and non-degenerate ion fluids. Such interactions lead to amplitude modulation of the CPEM-EC wave packets, the dynamics of which is governed by a three-dimensional nonlinear Schroedinger equation (NLSE) with the frequency shift arising from the relativistic electron mass increase in the CPEM-EC fields and density perturbations associated with the DSA and DCA perturbations. Accounting for the electromagnetic and quantum forces, we derive the evolution equation for the DSA and DCA waves in the presence of the magnetic field-aligned ponderomotive force of the CPEM-EC waves. The NLSE and the driven DSA and DCA equations are then used to investigate the modulational instability. The relevance of our investigation to laser-plasma interaction experiments and the cores of white dwarf stars is pointed out.
Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng
2011-01-01
Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.
Segre, S. E.; Zanza, V.
2011-09-15
Two alternative formalisms for the analysis of the evolution of electromagnetic wave polarization in a magnetized plasma are considered: the coupled wave formalism and the Stokes vector formalism. The first formalism is developed and extended to more general magnetic field configurations than considered hitherto, thus obtaining a new polarization evolution equation. The two formalisms are compared and their relative merits and limitations are described. In particular, it is shown that the equations for polarization evolution are valid for arbitrarily strong anisotropy induced by the magnetic field and that these equations treat implicitly the effect of coupling between the characteristic waves.
Scattering of electromagnetic waves from a magnetized plasma column at oblique incidence
Ghaffari-Oskooei, Sara S.; Aghamir, Farzin M.
2015-07-14
Scattering of electromagnetic waves from a magnetized plasma column is investigated using Maxwell's equations and applying boundary conditions. Backscattering cross section is evaluated by analytic solution of electric fields inside and outside of plasma column. Plots of backscattering cross section versus frequency, for the range up to J band, reveal two main peaks and two sidebands. Effects of plasma density and radius, as main parameters determining the characteristics of plasma column, on backscattering are discussed. Furthermore, the effect of electromagnetic wave incidence angle on backscattering of plasma column is included in the analysis. The influence of wave incidence angle and frequency, as well as, plasma density and radius on scattering pattern, which is an indicator of the distribution of scattered power in different azimuthal angles, is discussed.
Lytle, R. Jeffrey; Lager, Darrel L.; Laine, Edwin F.; Davis, Donald T.
1979-01-01
Underground anomalies or discontinuities, such as holes, tunnels, and caverns, are located by lowering an electromagnetic signal transmitting antenna down one borehole and a receiving antenna down another, the ground to be surveyed for anomalies being situated between the boreholes. Electronic transmitting and receiving equipment associated with the antennas is activated and the antennas are lowered in unison at the same rate down their respective boreholes a plurality of times, each time with the receiving antenna at a different level with respect to the transmitting antenna. The transmitted electromagnetic waves diffract at each edge of an anomaly. This causes minimal signal reception at the receiving antenna. Triangulation of the straight lines between the antennas for the depths at which the signal minimums are detected precisely locates the anomaly. Alternatively, phase shifts of the transmitted waves may be detected to locate an anomaly, the phase shift being distinctive for the waves directed at the anomaly.
The relativistic transformation for an electromagnetic plane wave with general time dependence
NASA Astrophysics Data System (ADS)
Smith, Glenn S.
2012-03-01
In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which the time dependence of the field is general; for example, it could be a Gaussian pulse in time. The changes that occur on transformation in the quantities that describe the wave are obtained and discussed. These changes include the temporal behaviour, direction of propagation, electromagnetic field, energy, and linear momentum. The derivation uses only elementary principles from special relativity, so it is suitable for an introductory course on the subject or a course on electrodynamics.
Fumeaux, Christophe; Lin, Hungyen; Serita, Kazunori; Withayachumnankul, Withawat; Kaufmann, Thomas; Tonouchi, Masayoshi; Abbott, Derek
2012-07-30
The process of terahertz generation through optical rectification in a nonlinear crystal is modeled using discretized equivalent current sources. The equivalent terahertz sources are distributed in the active volume and computed based on a separately modeled near-infrared pump beam. This approach can be used to define an appropriate excitation for full-wave electromagnetic numerical simulations of the generated terahertz radiation. This enables predictive modeling of the near-field interactions of the terahertz beam with micro-structured samples, e.g. in a near-field time-resolved microscopy system. The distributed source model is described in detail, and an implementation in a particular full-wave simulation tool is presented. The numerical results are then validated through a series of measurements on square apertures. The general principle can be applied to other nonlinear processes with possible implementation in any full-wave numerical electromagnetic solver.
Yu, Tianbao; Wang, Zhong; Liu, Wenxing; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua
2016-04-18
We report numerically large and complete photonic and phononic band gaps that simultaneously exist in eight-fold phoxonic quasicrystals (PhXQCs). PhXQCs can possess simultaneous photonic and phononic band gaps over a wide range of geometric parameters. Abundant localized modes can be achieved in defect-free PhXQCs for all photonic and phononic polarizations. These defect-free localized modes exhibit multiform spatial distributions and can confine simultaneously electromagnetic and elastic waves in a large area, thereby providing rich selectivity and enlarging the interaction space of optical and elastic waves. The simulated results based on finite element method show that quasiperiodic structures formed of both solid rods in air and holes in solid materials can simultaneously confine and tailor electromagnetic and elastic waves; these structures showed advantages over the periodic counterparts.
Bao, J.; Lin, Z. Kuley, A.; Wang, Z. X.
2016-06-15
An electromagnetic particle simulation model has been formulated and verified for nonlinear processes of lower hybrid (LH) waves in fusion plasmas. Electron dynamics are described by the drift kinetic equation using either kinetic momentum or canonical momentum. Ion dynamics are treated as the fluid system or by the Vlasov equation. Compressible magnetic perturbation is retained to simulate both the fast and slow LH waves. Numerical properties are greatly improved by using the electron continuity equation to enforce the consistency between electrostatic potential and vector potential, and by using the importance sampling scheme. The simulation model has been implemented in the gyrokinetic toroidal code (GTC), and verified for the dispersion relation and nonlinear particle trapping of the electromagnetic LH waves.
Preparation and electromagnetic wave absorption of RGO/Cu nanocomposite
NASA Astrophysics Data System (ADS)
Zhang, Hui; Tian, Xingyou; Zhang, Xian; Li, Shikuo; Shen, Yuhua; Xie, Anjian
2017-09-01
We use a facile pyrolysis method to prepare reduced graphene oxide and copper nanocomposite (RGO/Cu) based on it. The product shows an outstanding wave absorption properties. The maximum reflection loss is up to-50.7 dB at 3.8 GHz. The reflection loss of-10 dB (90% power absorption) corresponds to a bandwidth of 11.2 GHz (3.4-14.6 GHz range) for the layer thickness of 2-5 mm. Therefore, it is suggested that the RGO/Cu nanocomposite is also a new kind of lightweight and high-performance EM wave absorbing material.
Flat metasurfaces to focus electromagnetic waves in reflection geometry.
Li, Xin; Xiao, Shiyi; Cai, Bengeng; He, Qiong; Cui, Tie Jun; Zhou, Lei
2012-12-01
We show that a flat metasurface with a parabolic reflection-phase distribution can focus an impinging plane wave to a point image in reflection geometry. Our system is much thinner than conventional geometric-optics devices and does not suffer the energy-loss issues encountered by many metamaterial devices working in transmission geometry. We designed realistic microwave samples and performed near-field scanning experiments to verify the focusing effect. Experimental results are in good agreement with full wave simulations, model calculations, and theoretical analyses.
NASA Astrophysics Data System (ADS)
Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian
2016-10-01
Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence.
Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian
2016-10-24
Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence.
Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian
2016-01-01
Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence. PMID:27775064
Ishihara, Yasutoshi; Ohwada, Hiroshi
2011-01-01
To improve the efficacy of hyperthermia treatment, a novel method of non-invasive measurement of changes in body temperature is proposed. The proposed method is based on phase changes with temperature in electromagnetic waves in a heating applicator and the temperature dependence of the dielectric constant. An image of the temperature change inside a body is reconstructed by applying a computed tomography algorithm. This method can be combined easily with a heating applicator based on a cavity resonator and can be used to treat cancer effectively while non-invasively monitoring the heating effect. In this paper the phase change distributions of electromagnetic waves with temperature changes are measured experimentally, and the accuracy of reconstruction is discussed. The phase change distribution is reconstructed by using a prototype system with a rectangular aluminum cavity resonator that can be rotated 360° around an axis of rotation. To make measurements without disturbing the electromagnetic field distribution, an optical electric field sensor is used. The phase change distribution is reconstructed from 4-projection data by using a simple back-projection algorithm. The paper demonstrates that the phase change distribution can be reconstructed. The difference between phase changes obtained experimentally and by numerical analysis is about 20% and is related mainly to the limited signal detection sensitivity of electromagnetic waves. A temperature change inside an object can be reconstructed from the measured phase changes in a cavity resonator.
Impurity transport due to electromagnetic drift wave turbulence
NASA Astrophysics Data System (ADS)
Moradi, Sara; Pusztai, Istvan; Mollén, Albert; Fülöp, Tünde
2012-10-01
In the view of an increasing interest in high β operation scenarios, such as hybrid scenarios for ITER the question of finite β effects on the impurity transport is a critical issue due to possible fuel dilution and radiative cooling in the core. Here, electromagnetic effects at finite β on impurity transport are studied through local linear gyro-kinetic simulations with gyro [J. Candy and E. Belli, General Atomics Report GA-A26818 (2011)]; in particular we investigate the parametric dependences of the impurity peaking factor (zero-flux density gradient) and the onset of the kinetic ballooning modes (KBM) and micro-tearing modes (MTM) in spherical (NSTX) and standard tokamaks (AUG and JET).
Impurity transport due to electromagnetic drift wave turbulence
NASA Astrophysics Data System (ADS)
Moradi, S.; Pusztai, I.; Mollén, A.; Fülöp, T.
2012-03-01
Finite β effects on impurity transport are studied through local linear gyrokinetic simulations with GYRO [J. Candy and E. Belli, General Atomics Report No. GA-A26818, 2011]; in particular, we investigate the parametric dependences of the impurity peaking factor (zero-flux density gradient) and the onset of the kinetic ballooning modes (KBMs). We find that electromagnetic effects even at low β can have significant impact on the impurity transport. The KBM instability threshold depends on the plasma parameters, particularly strongly on plasma shape. We have shown that magnetic geometry significantly influences the results, and the commonly used s-α model overestimates the KBM growth rates and ITG stabilization at high β. In the β range, where the KBM is the dominant instability the impurity peaking factor is strongly reduced, with very little dependence on β and the impurity charge.
Finite element modeling of electromagnetic fields and waves using NASTRAN
NASA Technical Reports Server (NTRS)
Moyer, E. Thomas, Jr.; Schroeder, Erwin
1989-01-01
The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.
Theory of a ring laser. [electromagnetic field and wave equations
NASA Technical Reports Server (NTRS)
Menegozzi, L. N.; Lamb, W. E., Jr.
1973-01-01
Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.
High Frequency Resonant Electromagnetic Generation and Detection of Ultrasonic Waves
NASA Astrophysics Data System (ADS)
Kawashima, Katsuhiro; Wright, Oliver; Hyoguchi, Takao
1994-05-01
High frequency resonant mode electromagnetic ultrasonic generation and detection in metals is demonstrated at frequencies up to ˜150 MHz with various metal sheet samples. Using a unified theory of the generation and detection process, it is shown how various physical quantities can be measured. The sound velocity or thickness of the sheets can be derived from the resonant frequencies. At resonance the detected amplitude is inversely proportional to the ultrasonic attenuation of the sample, whereas the resonance half-width is proportional to this attenuation. We derive the ultrasonic attenuation coefficient from the half-width, and show how the grain size of the material can be probed. In addition we present results for thin bonded sheets, and show how a measure of the bonding or delamination can be obtained. This high frequency resonant method shows great promise for the non-destructive evaluation of thin sheets and coatings in the sub- 10-µm to 1-mm thickness range.
Electromagnetic waves and living cells: A kinetic thermodynamic approach
NASA Astrophysics Data System (ADS)
Lucia, Umberto
2016-11-01
Cells are complex thermodynamic systems. Their energy transfer, thermo-electro-chemical processes and transports phenomena can occur across the cells membranes, the border of the complex system. Moreover, cells can also actively modify their behaviours in relation to any change of their environment. All the living systems waste heat, which is no more than the result of their internal irreversibility. This heat is dissipated into their environment. But, this wasted heat represents also a sort of information, which outflows from the cell towards its environment, completely accessible to any observer. The analysis of irreversibility related to this wasted heat can represent a new useful approach to the study of the cells behaviour. This approach allows us to consider the living systems as black boxes and analyse only the inflows and outflows and their changes in relation to any environmental change. This analysis allows also the explanation of the effects of electromagnetic fields on the cell behaviour.
Some consequences of intense electromagnetic wave injection into space plasmas
NASA Technical Reports Server (NTRS)
Burke, William J.; Rothwell, Paul L.; Rothwell, Paul L.; Rothwell, Paul L.
1986-01-01
The future possibility of actively testing the current understanding of how energetic particles may be accelerated in space or dumped from the radiation belts using intense electromagnetic energy from ground based antennas is discussed. The ground source of radiation is merely a convenience. A space station source for radiation that does not have to pass through the atmosphere and lower ionosphere, is an attractive alternative. The text is divided into two main sections addressing the possibilities of: (1) accelerating electrons to fill selected flux tubes above the Kennel-Petscheck limit for stably trapped fluxes, and (2) using an Alfven maser to cause rapid depletion of energetic protons or electrons from the radiation belts.
Some consequences of intense electromagnetic wave injection into space plasmas
NASA Astrophysics Data System (ADS)
Burke, William J.; Villalon, Elena; Rothwell, Paul L.; Silevitch, Michael
1986-10-01
The future possibility of actively testing the current understanding of how energetic particles may be accelerated in space or dumped from the radiation belts using intense electromagnetic energy from ground based antennas is discussed. The ground source of radiation is merely a convenience. A space station source for radiation that does not have to pass through the atmosphere and lower ionosphere, is an attractive alternative. The text is divided into two main sections addressing the possibilities of: (1) accelerating electrons to fill selected flux tubes above the Kennel-Petscheck limit for stably trapped fluxes, and (2) using an Alfven maser to cause rapid depletion of energetic protons or electrons from the radiation belts.
Theory of a ring laser. [electromagnetic field and wave equations
NASA Technical Reports Server (NTRS)
Menegozzi, L. N.; Lamb, W. E., Jr.
1973-01-01
Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.
Role of cavitons in electromagnetic wave interactions with ionospheric plasmas
NASA Astrophysics Data System (ADS)
Wong, A. Y.; Pau, J.; Dickman, R.; Beam, W.; Wang, W.; Hicks, N.
Cavitons, nonlinear states created by localized enhanced electric fields, can explain the lowering of thresholds in parametric instabilities, the trapping of waves, accelerated electrons and optical emission. With the support of laboratory observation, it is agreed that fast electrons are produced in the vicinity of a density cavity or density striations. In our 1981 JGR paper we pointed out the importance of steering the EM wave along the earth's magnetic field B to cause conversion of EM to localized Electrostatic waves, trapped in cavitons. Acceleration of electrons by series of cavitons is accountable for optical emission. Our laboratory experiments and computer modeling have demonstrated the accelerated of electrons and ions by self-consistent enhanced ES fields. We present Optical, SEE and EM measurements of polarization in field experiments to support our picture of cavitons responsible for such accelerations. Our model predicts strong elliptical polarization of electric fields with axes both parallel to and perpendicular to B in the waves reflected from the critical layer. Experiments on detection of such polarizations and the lowering of thresholds at frequencies near 2 fce, the second harmonic of the electron cyclotron frequency, will be reported. Refer to A. Y. Wong, 1977 and A. Y. Wong et al., 1981, 1982, 1983, 1984, 1987.
Electromagnetic wave propagation in rain and polarization effects
OKAMURA, Sogo; OGUCHI, Tomohiro
2010-01-01
This paper summarizes our study on microwave and millimeter-wave propagation in rain with special emphasis on the effects of polarization. Starting from a recount of our past findings, we will discuss developments with these and how they are connected with subsequent research. PMID:20551593
NASA Astrophysics Data System (ADS)
Ren, Hengxin; Huang, Qinghua; Chen, Xiaofei
2016-01-01
Adopting a model with two half-spaces that consist of solid and porous materials, we numerically investigate the seismoelectric conversion at the solid-porous interface. First, the wave fields in a low-porosity two-layer model are compared with those in a homogeneous full-space model. The consistency of seismic waves is a validation of our program. We are interested in the quasi-coseismic electromagnetic (EM) signals recorded in the solid area near the interface because they seemingly accompany seismic waves. Then, further numerical simulations on an ordinary two-layer model are conducted. On the basis of time slice snapshots and theoretical analysis, we determine that quasi-coseismic EM signals are essentially non-coseismic EM fields, which include radiation and evanescent EM waves. Evanescent EM waves are induced by the seismic waves that arrive at the interface with the incident angle greater than the critical angle. These waves decay faster than radiation EM waves when moving away from the interface. In the porous layer, evanescent EM waves can hardly be recognized unless they are separated from coseismic EM signals. This finding can be the reason why evanescent EM waves have not been identified in previous seismoelectric studies. Awareness of the fact that seismoelectric conversion at an interface can generate evanescent and EM waves is likely to result in a comprehensive understanding and improved interpretation of the seismoelectric coupling phenomenon.
Hanada, E; Kodama, K; Takano, K; Watanabe, Y; Nose, Y
2001-08-01
Electromagnetic interference (EMI) with electronic medical equipment by radio waves from mobile telephone handsets has been reported and is currently receiving wide attention. The possibility of EMI with electronic medical equipment by radio waves coming into the hospital has also been pointed out. But so far, there are no reports measuring the frequency distribution of electric field intensity induced by incoming radio waves. Therefore, we measured electric field intensity induced by radio waves coming into our 11-floor hospital, which was under construction. The maximum intensity observed was about 200 V/m at 2.79 GHz, from airport surveillance radar waves. The maximum intensity induced by radio waves from cellular phone base stations was 1.78 V/m. These data show that various frequencies of radio waves are common in this urban area, and that they induce strong electricfield intensity. This strong electric field intensity might cause EMI with electronic medical equipment. Measurement of the electromagnetic environment should be done by each hospital in urban areas to prevent EMI with electronic medical equipment.
Interaction of relativistically strong electromagnetic waves with a layer of overdense plasma
Korzhimanov, A. V.; Eremin, V. I. Kim, A. V.; Tushentsov, M. R.
2007-10-15
Plasma-field structures that arise under the interaction between a relativistically strong electromagnetic wave and a layer of overdense plasma are considered within a quasistationary approximation. It is shown that, together with known solutions, which are nonlinear generalizations of skin-layer solutions, multilayer structures containing cavitation regions with completely removed electrons (ion layers) can be excited when the amplitude of the incident field exceeds a certain threshold value. Under symmetric irradiation, these cavitation regions, which play the role of self-consistent resonators, may amplify the field and accumulate electromagnetic energy.
NASA Technical Reports Server (NTRS)
Adrian, M. L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X- and O-nulls, as well as their correlation to the amount of magnetic energy converted by the process of magnetic reconnection.
Marqués, Manuel I; Saénz, Juan José
2012-07-01
We analyze the forces on a small dipolar particle and the electromagnetic momentum density in a configuration consisting in two perpendicular circularly polarized stationary waves. The field distribution shows regions in which the electric and magnetic fields are parallel corresponding to a null Poynting vector. Although the average value of the momentum density, proportional to the Poynting vector, is zero in these regions, there are scattering forces acting on small particles due to light's spin force. The total scattering force suggests a new definition of the average value of the momentum density for free propagating electromagnetic fields.
Marqués, Manuel I; Saénz, Juan José
2012-07-15
We analyze the forces on a small dipolar particle and the electromagnetic momentum density in a configuration consisting in two perpendicular circularly polarized stationary waves. The field distribution shows regions in which the electric and magnetic fields are parallel corresponding to a null Poynting vector. Although the average value of the momentum density, proportional to the Poynting vector, is zero in these regions, there are scattering forces acting on small particles due to light's spin force. The total scattering force suggests a new definition of the average value of the momentum density for free propagating electromagnetic fields.
The SEM description of interaction of a transient electromagnetic wave with an object
NASA Technical Reports Server (NTRS)
Pearson, L. W.; Wilton, D. R.
1980-01-01
The singularity expansion method (SEM), proposed as a means for determining and representing the transient surface current density induced on a scatterer by a transient electromagnetic wave is described. The resulting mathematical description of the transient surface current on the object is discussed. The data required to represent the electromagnetic scattering properties of a given object are examined. Experimental methods which were developed for the determination of the SEM description are discussed. The feasibility of characterizing the surface current induced on aircraft flying in proximity to a lightning stroke by way of SEM is examined.
Efthimion, P.C.; Helfritch, D.J.
1989-11-28
This paper describes an apparatus which creates a plasma for chemical processing of gaseous fluid. It comprises an electro-magnetic resonator cavity having first and second conductive walls and a resonant frequency; an electro-magnetic energy source which produces electro-magnetic energy having a frequency corresponding to the resonant frequency and a power level sufficient for breaking down the gaseous fluid and creating a plasma within the electro-magnetic resonator cavity; an electro-magnetic wave guiding structure connecting the electro-magnetic energy source to the first wall of the electro-magnetic cavity; the wave guiding structure having an intake port for introducing the gaseous fluid into the wave guiding structure; the second wall of the resonator cavity having an exhaust port for discharging processed gaseous fluid in the form of a plasma from the cavity; and plasma confinement means for causing the gaseous fluid to flow into the electro-magnetic resonator cavity through the aperture along with the electro-magnetic energy for confining and stabilizing the plasma within the electro-magnetic resonator cavity.
Asymmetric propagation of electromagnetic waves through nanoscale spirals
NASA Astrophysics Data System (ADS)
Hu, Jingpei; Lin, Yu; Zhu, Aijiao; Zhao, Xiaonan; Wang, Chinhua
2016-10-01
In this paper, we report that normal incidence transmission of different circularly polarized waves through the 2D Archimedes' nanoscale spirals is asymmetric. The structures consist of raised spiral ridge and two layers metal film covered on the substrate and the ridge. The finite difference time domain method was used to design the structure and perform the simulation. The device can distinguish the different circularly polarized wave across the transmission intensity compare with the common Archimedes' nanoscale spirals which just exhibit the bright or dark modes in the light field. We confirmed that the device provide about 10% circular dichroism in 3.85um-6.0um broadband region. The circular dichroism in the wavelength 3.95 um can reach 13%. This ultracompact device could prove useful for remote sensing and advanced telecommunication applications.
NASA Astrophysics Data System (ADS)
Zeng, Qi-Jun; Cheng, Ze
2010-06-01
In a Kerr nonlinear blackbody, bare photons with opposite wave vectors and helicities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. The present paper investigates the influence of a single frequency electromagnetic wave on the energy spectrum of the nonpolariton system. We find that the wave can lead to an energy shift of nonpolaritons. Moreover, we calculate the first-order energy shift on certain conditions.
Broad-band polarization-independent absorption of electromagnetic waves by an overdense plasma
Bliokh, Y. P.; Brodsky, Yu. L.; Chashka, Kh. B.; Felsteiner, J.; Slutsker, Ya. Z.
2010-08-15
Surface plasmon-polaritons can be efficiently excited on a plasma-vacuum interface by an electromagnetic wave when a subwavelength diffraction grating is placed in front of the plasma boundary. The excitation efficiency depends strongly on the wave frequency (or plasma density, when the frequency is fixed) and polarization. We show both experimentally and theoretically that this sensitivity can be essentially suppressed. A nonzero angle of incidence and an axially symmetric diffraction grating ensure near-total absorption of the incident wave in a broad range of wave frequencies (or plasma densities, when the frequency is fixed). Direct detection of surface plasmon-polaritons has been achieved for the first time using a miniature antenna embedded in the plasma. A new absorption mechanism which is not associated with surface plasma wave excitation is revealed.
Low-frequency electromagnetic waves driven by gyrotropic gyrating ion beams
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Patel, V. L.
1986-01-01
The origin of left- and right-hand-polarized low-frequency waves in space plasmas is analyzed. It has been shown that a gyrotropic gyrating ion beam, a ring in velocity space, can excite electromagnetic modes in the plasma near the beam gyrofrequency. It excites left-hand-polarized shear Alfven waves and their harmonics via the coupling of Alfven modes with the beam modes. It can also excite right-hand-polarized fast-mode magnetosonic waves and their harmonics as well. The excitation is possible for beam ions heavier than the plasma ions. The growth rate varies as one-third power of the beam density and decreases with the angle of wave propagation with respect to the ambient magnetic field. The nonlocality has a stabilizing effect on the instability. The predicted values of the wave frequencies compare reasonably well with those observed in satellite data.
Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial.
Chen, Ke; Feng, Yijun; Cui, Li; Zhao, Junming; Jiang, Tian; Zhu, Bo
2017-02-16
The asymmetric transmission of electromagnetic (EM) wave can be fully manipulated by chiral metamaterials, but little can achieve real-time and high efficient tunability due to challenges in practically deployable solutions. Here, we proposed a new scheme for flexibly and dynamically controlling the asymmetric EM wave transmission at microwave frequencies using planar metamaterial of deep subwavelength thickness incorporated with active components of PIN diodes. The asymmetric transmission of linearly polarized EM wave exhibits a high efficiency and a pronounced real-time continuous tunability controlled by the external stimulation of voltage biasing. In addition, the asymmetric transmission effect can be well preserved at large oblique incident angle up to ±70°. The design principle and EM performance are validated by both full wave simulations and experimental measurements. Such dynamically controllable chiral metamaterial may provide robust and flexible approach to manipulate EM wave propagation, as well as to facilitate EM device integration to create diverse functionalities.
Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial
NASA Astrophysics Data System (ADS)
Chen, Ke; Feng, Yijun; Cui, Li; Zhao, Junming; Jiang, Tian; Zhu, Bo
2017-02-01
The asymmetric transmission of electromagnetic (EM) wave can be fully manipulated by chiral metamaterials, but little can achieve real-time and high efficient tunability due to challenges in practically deployable solutions. Here, we proposed a new scheme for flexibly and dynamically controlling the asymmetric EM wave transmission at microwave frequencies using planar metamaterial of deep subwavelength thickness incorporated with active components of PIN diodes. The asymmetric transmission of linearly polarized EM wave exhibits a high efficiency and a pronounced real-time continuous tunability controlled by the external stimulation of voltage biasing. In addition, the asymmetric transmission effect can be well preserved at large oblique incident angle up to ±70°. The design principle and EM performance are validated by both full wave simulations and experimental measurements. Such dynamically controllable chiral metamaterial may provide robust and flexible approach to manipulate EM wave propagation, as well as to facilitate EM device integration to create diverse functionalities.
Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial
Chen, Ke; Feng, Yijun; Cui, Li; Zhao, Junming; Jiang, Tian; Zhu, Bo
2017-01-01
The asymmetric transmission of electromagnetic (EM) wave can be fully manipulated by chiral metamaterials, but little can achieve real-time and high efficient tunability due to challenges in practically deployable solutions. Here, we proposed a new scheme for flexibly and dynamically controlling the asymmetric EM wave transmission at microwave frequencies using planar metamaterial of deep subwavelength thickness incorporated with active components of PIN diodes. The asymmetric transmission of linearly polarized EM wave exhibits a high efficiency and a pronounced real-time continuous tunability controlled by the external stimulation of voltage biasing. In addition, the asymmetric transmission effect can be well preserved at large oblique incident angle up to ±70°. The design principle and EM performance are validated by both full wave simulations and experimental measurements. Such dynamically controllable chiral metamaterial may provide robust and flexible approach to manipulate EM wave propagation, as well as to facilitate EM device integration to create diverse functionalities. PMID:28202903
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
NASA Astrophysics Data System (ADS)
Wong, Alfred Y.
1999-09-01
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
Wong, Alfred Y.
1999-09-20
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO{sub 2} through the use of ion cyclotron resonant heating.
Impact of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
Effect of the ring current ions in the real part of electromagnetic ion Cyclotron wave dispersion relation is studied on global scale. Recent Cluster observations by Engebretson et al. showed that although the temperature anisotropy of is energetic (> 10 keV) ring current protons was high during the entire 22 November 2003 perigee pass, electromagnetic ion cyclotron waves were observed only in conjunction with intensification of the ion fluxes below 1 keV by over an order of magnitude. To study the effect of the ring current ions on the wave dispersive properties and the corresponding global wave redistribution, we use a self-consistent model of interacting ring current and electromagnetic ion cyclotron waves, and simulate the May 1998 storm. The main findings of our simulation can be summarized as follows: First, the plasma density enhancement in the night MLT sector during the main and recovery storm phases is mostly caused by injection of suprathermal plasma sheet H + (approximately < 1 keV), which dominate the thermal plasma density. Second, during the recovery storm phases, the ring current modification of the wave dispersion relation leads to a qualitative change of the wave patterns in the postmidnight-dawn sector for L > 4.75. This "new" wave activity is well organized by outward edges of dense suprathermal ring current spots, and the waves are not observed if the ring current ions are not included in the real part of dispersion relation. Third, the most intense wave-induced ring current precipitation is located in the night MLT sector and caused by modification of the wave dispersion relation. The strongest precipitating fluxes of about 8 X 10(exp 6)/ (cm(exp 2) - s X st) are found near L=5.75, MLT=2 during the early recovery phase on 4 May. Finally, the nightside precipitation is more intense than the dayside fluxes, even if there are less intense waves, because the convection field moves ring current ions into the loss cone on the nightside, but drives
Mirzanejhad, Saeed; Sohbatzadeh, Farshad; Ghasemi, Maede; Sedaghat, Zeinab; Mahdian, Zeinab
2010-05-15
In this article, the dispersion characteristics of the paraxial (near axis) electromagnetic (EM) waves in a relativistic electron beam guided by the ion channel are investigated. Equilibrium fields such as ion-channel electrostatic field and self-fields of relativistic electron beam are included in this formalism. In accordance with the equilibrium field structure, radial and azimuthal waves are selected as base vectors for EM waves. It is shown that the dispersion of the radially polarized EM and space charge waves are influenced by the equilibrium fields, but azimuthally polarized wave remain unaffected. In some wave number domains, the radially polarized EM and fast space charge waves are coupled. In these regions, instability is analyzed as a function of equilibrium structure. It is shown that the total equilibrium radial force due to the ion channel and electron beam and also relativistic effect play a key role in the coupling of the radially polarized EM wave and space charge wave. Furthermore, some asymptotic behaviors such as weak and strong ion channel, nonrelativistic case and cutoff frequencies are discussed. This instability could be used as an amplification mechanism for radially polarized EM waves in a beam-plasma system where a relativistic electron beam is guided by the ion channel.
NASA Astrophysics Data System (ADS)
Cho, J.-H.; Lee, D.-Y.; Noh, S.-J.; Kim, H.; Choi, C. R.; Lee, J.; Hwang, J.
2017-05-01
In this paper, using the multisatellite (the Van Allen Probes and two GOES satellites) observations in the inner magnetosphere, we examine two electromagnetic ion cyclotron (EMIC) wave events that are triggered by Pdyn enhancements under prolonged northward interplanetary magnetic field quiet time preconditions. For both events, the impact of enhanced Pdyn causes EMIC waves at multiple points. However, we find a strong spatial dependence that EMIC waves due to enhanced Pdyn impact can occur at multiple points (likely globally but not necessarily everywhere) but with different wave properties. For Event 1, three satellites situated at a nearly same dawnside zone but at slightly different L shells see occurrence of EMIC waves but in different frequencies relative to local ion gyrofrequencies and with different polarizations. These waves are found inside or at the outer edge of the plasmasphere. Another satellite near noon observes no dramatic EMIC wave despite the strongest magnetic compression there. For Event 2, the four satellites are situated at widely separated magnetic local time zones when they see occurrence of EMIC waves. They are again found at different frequencies relative to local ion gyrofrequencies with different polarizations and all outside the plasmasphere. We propose two possible explanations that (i) if triggered by enhanced Pdyn impact, details of ion cyclotron instability growth can be sensitive to local plasma conditions related to background proton distributions, and (ii) there can be preexisting waves with a specific spatial distribution, which determines occurrence and specific properties of EMIC waves depending on satellite's relative position after an enhanced Pdyn arrives.
NASA Astrophysics Data System (ADS)
Cui, Xiaoling; Dong, Huifang
2016-12-01
We study odd-wave interacting identical fermions in one dimension with finite effective range. We show that to fully describe the high-momentum distribution ρ (k ) up to k-4, one needs four parameters characterizing the properties when two particles contact each other. Two parameters are related to the variation of energy with respect to the odd-wave scattering length and the effective range, respectively, determining the k-2 tail and part of the k-4 tail in ρ (k ) . The other two parameters are related to the center-of-mass motion of the system, respectively determining the k-3 tail and the other part of the k-4 tail. We point out that the unusual k-3 tail, which has not been discovered before in atomic systems, is an intrinsic component to complete the general form of ρ (k ) and also is realistically detectable under certain experimental conditions. Various other universal relations are also derived in terms of those contact parameters, and finally the results are confirmed through the exact solution of a two-body problem.
NASA Astrophysics Data System (ADS)
Zheleznyakov, V. V.; Bespalov, P. A.
2016-04-01
In part I of this work [1], we study the dispersion characteristics of low-frequency waves in a relativistic electron-positron plasma. In part II, we examine the electromagnetic wave instability in this plasma caused by an admixture of nonrelativistic protons with energy comparable with the energy of relativistic low-mass particles. The instability occurs in the frequency band between the fundamental harmonic of proton gyrofrequency and the fundamental harmonic of relativistic electron gyrofrequency. The results can be used for the interpretation of known observations of the pulsar emissions obtained with a high time and frequency resolution. The considered instability can probably be the initial stage of the microwave radio emission nanoshots typical of the pulsar in the Crab Nebula.
Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine.
Sivachenko, I B; Medvedev, D S; Molodtsova, I D; Panteleev, S S; Sokolov, A Yu; Lyubashina, O A
2016-02-01
Effects of millimeter-wave electromagnetic radiation (40 GHz frequency, 0.01 mW power) on the spontaneous fi ring of convergent neurons of the spinal trigeminal nucleus and their responses to electrical stimulation of the dura mater were studied in neurophysiological experiments on rats. Irradiation of the area of cutaneous receptive fields of spinal trigeminal nucleus reversibly inhibited both spontaneous discharges and activity induced by electrical stimulation of the dura mater. The second and third exposures to electromagnetic radiation with an interval of 10 min were ineffective. These results suggest that suppression of neuronal excitability in the spinal trigeminal ganglion can be a mechanism of the anti-migraine effects of electromagnetic radiation observed in clinical practice.
Es'kin, V A; Kudrin, A V; Petrov, E Yu
2011-06-01
The behavior of electromagnetic fields in nonlinear media has been a topical problem since the discovery of materials with a nonlinearity of electromagnetic properties. The problem of finding exact solutions for the source-excited nonlinear waves in curvilinear coordinates has been regarded as unsolvable for a long time. In this work, we present the first solution of this type for a cylindrically symmetric field excited by a pulsed current filament in a nondispersive medium that is simultaneously inhomogeneous and nonlinear. Assuming that the medium has a power-law permittivity profile in the linear regime and lacks a center of inversion, we derive an exact solution for the electromagnetic field excited by a current filament in such a medium and discuss the properties of this solution.
Propagation of electromagnetic waves in a turbulent medium
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Hartke, G. J.
1986-01-01
Theoretical modeling of the wealth of experimental data on propagation of electromagnetic radiation through turbulent media has centered on the use of the Heisenberg-Kolmogorov (HK) model, which is, however, valid only for medium to small sized eddies. Ad hoc modifications of the HK model to encompass the large-scale region of the eddy spectrum have been widely used, but a sound physical basis has been lacking. A model for large-scale turbulence that was recently proposed is applied to the above problem. The spectral density of the temperature field is derived and used to calculate the structure function of the index of refraction N. The result is compared with available data, yielding a reasonably good fit. The variance of N is also in accord with the data. The model is also applied to propagation effects. The phase structure function, covariance of the log amplitude, and variance of the log intensity are calculated. The calculated phase structure function is in excellent agreement with available data.
Propagation of electromagnetic waves in a turbulent medium
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Hartke, G. J.
1986-01-01
Theoretical modeling of the wealth of experimental data on propagation of electromagnetic radiation through turbulent media has centered on the use of the Heisenberg-Kolmogorov (HK) model, which is, however, valid only for medium to small sized eddies. Ad hoc modifications of the HK model to encompass the large-scale region of the eddy spectrum have been widely used, but a sound physical basis has been lacking. A model for large-scale turbulence that was recently proposed is applied to the above problem. The spectral density of the temperature field is derived and used to calculate the structure function of the index of refraction N. The result is compared with available data, yielding a reasonably good fit. The variance of N is also in accord with the data. The model is also applied to propagation effects. The phase structure function, covariance of the log amplitude, and variance of the log intensity are calculated. The calculated phase structure function is in excellent agreement with available data.
Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations
NASA Astrophysics Data System (ADS)
Ra'di, Y.; Simovski, C. R.; Tretyakov, S. A.
2015-03-01
With recent advances in nanophotonics and nanofabrication, considerable progress has been achieved in realizations of thin composite layers designed for full absorption of incident electromagnetic radiation, from microwaves to the visible. If the layer is structured at a subwavelength scale, thin perfect absorbers are usually called "metamaterial absorbers," because these composite structures are designed to emulate some material responses not reachable with any natural material. On the other hand, many thin absorbing composite layers were designed and used already in the time of the introduction of radar technology, predominantly as a means to reduce radar visibility of targets. In view of a wide variety of classical and new topologies of optically thin metamaterial absorbers and plurality of applications, there is a need for a general, conceptual overview of the fundamental mechanisms of full absorption of light or microwave radiation in thin layers. Here, we present such an overview in the form of a general theory of thin perfectly absorbing layers. Possible topologies of perfect metamaterial absorbers are classified based on their fundamental operational principles. For each of the identified classes, we provide design equations and give examples of particular realizations. The concluding section provides a summary and gives an outlook on future developments in this field.
Study of Rotating-Wave Electromagnetic Modes for Applications in Space Exploration
NASA Astrophysics Data System (ADS)
Velazco, J. E.
2016-08-01
Rotating waves are circularly polarized electromagnetic wave fields that behave like traveling waves but have discrete resonant frequencies of standing waves. In JPL's Communications Ground Systems Section (333), we are making use of this peculiar type of electromagnetic modes to develop a new generation of devices and instruments for direct applications in space exploration. In this article, we present a straightforward analysis about the phase velocity of these wave modes. A derivation is presented for the azimuthal phase velocity of transverse magnetic rotating modes inside cylindrical cavity resonators. Computer simulations and experimental measurements are also presented that corroborate the theory developed. It is shown that the phase velocity of rotating waves inside cavity resonators increases with radial position within the cavity and decreases when employing higher-order operating modes. The exotic features of rotating modes, once better understood, have the potential to enable the implementation of a plethora of new devices that range from amplifiers and frequency multipliers to electron accelerators and ion thrusters.
Dynamics of the large-scale ULF electromagnetic wave structures in the ionosphere
NASA Astrophysics Data System (ADS)
Aburjania, G. D.; Chargazia, Z. Kh.
2007-12-01
The present article displays the results of theoretical investigation of the planetary ultra-low-frequency (ULF) electromagnetic wave structure, generation and propagation dynamics in the dissipative ionosphere. These waves are stipulated by a spatial inhomogeneous geomagnetic field. The waves propagate in different ionospheric layers along the parallels to the east as well as to the west and their frequencies vary in the range of (10 10-6) s-1 with a wavelength of order 103 km. The fast disturbances are associated with oscillations of the ionospheric electrons frozen in the geomagnetic field. The large-scale waves are weakly damped. They generate the geomagnetic field adding up to several tens of nanotesla (nT) near the Earth's surface. It is prescribed that the planetary ULF electromagnetic waves preceding their nonlinear interaction with the local shear winds can self-localize in the form of nonlinear long-living solitary vortices, moving along the latitude circles westward as well as eastward with a velocity different from the phase velocity of the corresponding linear waves. The vortex structures transfer the trapped particles of medium, as well as energy and heat. That is why such nonlinear vortex structures can be the structural elements of the ionospheric strong macro-turbulences.
NASA Astrophysics Data System (ADS)
Cho, J.; Lee, D. Y.; Kim, H.
2016-12-01
Electromagnetic Ion cyclotron (EMIC) waves are one of the key plasma waves which play a critical role in the magnetosphere by interacting with charged particles. One of the generation mechanisms of EMIC waves is magnetospheric compression due to impact of enhanced solar wind dynamic pressure Pdyn. With the multi-satellite (the Van Allen Probes and two GOES satellites) observations in the inner magnetosphere and ground-based magnetometers, we examine two EMIC wave events that are triggered by Pdyn enhancements under prolonged northward IMF quiet time preconditions. For both events, the impact of enhanced Pdyn causes EMIC waves at multiple points. However, we find a strong spatial dependence of EMIC wave triggering and the accompanied wave properties. For Event 1, a satellite near noon observes no dramatic EMIC waves. In contrast, three other satellites are situated at a nearly same dawn side zone but at slightly different L shells and see notable EMIC waves but in different frequencies relative to local ion gyrofrequencies. These waves are found inside or outer edge of the plasmasphere. For Event 2, the satellites are situated at three different MLT zones, late afternoon-dusk, early evening-pre-midnight, and post-midnight, when they see the triggered EMIC waves. They are again found at different frequencies relative to local ion gyrofrequencies, and all outside the plasmasphere. Furthermore, the triggered EMIC waves for both events are observed from high-latitude ground stations in Antarctica. The results in this work imply that triggering of EMIC waves by enhanced Pdyn can occur at multiple points but with different wave properties, which must be due to different local plasma and magnetic conditions.
Rigorous vector diffraction of electromagnetic waves by bidimensional photonic crystals.
Centeno, E; Felbacq, D
2000-02-01
We present a numerical study of bidimensional photonic crystals with an emphasis on the behavior of the gaps versus the polarization and the conicity of the incident plane wave. We use a rigorous modal theory of diffraction at oblique incidence by a set of arbitrarily shaped parallel fibers. This theory allows the study of the refractive properties of bidimensional photonic crystals. We develop a heuristic method of homogenization that allows us to predict the position of the gaps and their behavior with respect to the polarization and the conicity angle. With this homogenization scheme, we also present some important elements for obtaining full gaps.
Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts
NASA Astrophysics Data System (ADS)
Shibata, Masaru
2016-12-01
Late inspiral and merger phases of binary neutron stars are the valuable new experimental fields for exploring nuclear physics because (i) gravitational waves from them will bring information for the neutron-star equation of state and (ii) the matter ejected after the onset of the merger could be the main site for the r-process nucleosynthesis. We will summarize these aspects of the binary neutron stars, describing the current understanding for the merger process of binary neutron stars that has been revealed by numerical-relativity simulations.
Features of the ELF Electromagnetic Wave Propagation in the Homogeneous Ionosphere
NASA Astrophysics Data System (ADS)
Sergeev, Igor
The quasi-stationary Maxwell equations of the gyrotropic waves have been examined. In con-trast to the approach used in the other papers (Sorokin et al., 2009; Sorokin et al., 2006; Sergeev and Sorokin, 2005) the general form of the electromagnetic equation of the gyrotropic waves has been considered. The dispersion equation analysis shows that attenuation of one of the mode tends to zero in the perpendicular to the magnetic field direction while along this direction the attenuation is finite. Basing on this feature we can suppose that low frequency electromagnetic fluctuations tend to expand along the magnetic field. It forms in the iono-sphere long areas with invariable direction of the electric field and current and weakly variable magnitude of these parameters. To check this conclusion the direct problem of the evolution of an electromagnetic fluctuation has been solved numerically. The results show that spherically symmetric fluctuation expands along the magnetic field lines by 5-30 times while in some cases the widening is fully absent. References Sorokin V.M., Sergeev I.Yu., Pokhotelov O.A. Low latitude gyrotropic waves in a finite thickness ionospheric conducting layer. Journal of Atmospheric and Solar-Terrestrial Physics, V. 71, P. 175-179, 2009. Sorokin V.M., Sergeev I.Yu., and Yaschenko A.K. Electromagnetic field generation by explosion in the ionosphere. Advances in Space Research, V. 38, No. 11, P. 2511-2515, 2006. Sergeev I.Yu. and Sorokin V.M. Mechanism of the LF Narrow-Band Spectrum Electromagnetic Disturbance Formation Observed on the Earth Surface during Spacecraft Launches. Geomag-netism and Aeronomy, Vol. 45, No. 4, P. 520-525, 2005.
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
NASA Technical Reports Server (NTRS)
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
2D modeling of electromagnetic waves in cold plasmas
Crombé, K.; Van Eester, D.; Koch, R.; Kyrytsya, V.
2014-02-12
The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.
Lorentz invariance violation and simultaneous emission of electromagnetic and gravitational waves
NASA Astrophysics Data System (ADS)
Passos, E.; Anacleto, M. A.; Brito, F. A.; Holanda, O.; Souza, G. B.; Zarro, C. A. D.
2017-09-01
In this work, we compute some phenomenological bounds for the electromagnetic and massive gravitational high-derivative extensions supposing that it is possible to have an astrophysical process that generates simultaneously gravitational and electromagnetic waves. We present Lorentz invariance violating (LIV) higher-order derivative models, following the Myers-Pospelov approach, to electrodynamics and massive gravitational waves. We compute the corrected equation of motion of these models, their dispersion relations and the velocities. The LIV parameters for the gravitational and electromagnetic sectors, ξg and ξγ, respectively, were also obtained for three different approaches: luminal photons, time delay of flight and the difference of graviton and photon velocities. These LIV parameters depend on the mass scales where the LIV-terms become relevant, M for the electromagnetic sector and M1 for the gravitational one. We obtain, using the values for M and M1 found in the literature, that ξg ∼10-2, which is expected to be phenomenologically relevant and ξγ ∼103, which cannot be suitable for an effective LIV theory. However, we show that ξγ can be interesting in a phenomenological point of view if M ≫M1. Finally the relation between the variation of the velocities of the photon and the graviton in relation to the speed of light was calculated and resulted in Δvg / Δvγ ≲ 1.82 ×10-3.
NASA Astrophysics Data System (ADS)
PanneerChelvam, Premkumar; Raja, Laxminarayan L.; Upadhyay, Rochan R.
2016-09-01
We discuss the computational modeling of a single microplasma and its interaction with high frequency electromagnetic waves in a microwave regime. The work is motivated by a strong recent interest in the area of reconfigurable plasma-based metamaterials (MM) and photonic crystals (PC) where the interaction of electromagnetic waves with plasma elements (e.g. microdischarges) forms the basis for the MM/PC operation. In this work the microplasma is assumed to be driven by a 1 GHz microwave source in a parallel plate electrode configuration. Its structure and properties are described using a fluid plasma model. The interaction of the microplasma with a 100 GHz transverse magnetic (TM) and transverse electric (TE) polarized microwave propagating in a rectangular waveguide is studied. Two operational regimes of the plasma discharge are considered. One in which the peak electron density is less than the critical density (under-dense) for the interacting wave and the other in which it is higher (over-dense). The under-dense plasma with positive less than unity dielectric constant has sufficient dielectric contrast from the surrounding medium that a slight perturbation of the incident wave and bending of wave path lines through the discharge is realized. The over-dense plasma interacts strongly with the TM polarized wave because of epsilon-zero resonance at the critical density locations and the wave path lines are observed to reverse their direction near the regions of critical plasma density. The transverse electric (TE) polarized wave does not exhibit epsilon-zero resonance and the interactions are weaker than the TM wave.
Shiozawa, Toshiyuki
2010-12-15
For the purpose of providing for a theoretical background for the study of electromagnetic fields generated by precursory effects of earthquakes, the problem of transmission and total reflection at the earth-atmosphere interface is investigated in detail for a subhertz plane electromagnetic wave incident from the earth's crust. The term ''subhertz'' means 'below 1 Hz'. First, for the special case of normal incidence, the overall power transmission coefficient at the earth-atmosphere interface is found to take a maximum value at a definite frequency f{sub 0} which is inversely proportional to the square of the depth of a virtual hypocenter. A typical value of f{sub 0} falls around 0.01 Hz. For oblique incidence as well, this feature of the overall power transmission coefficient is retained except in the vicinity of the critical angle of incidence for the H-wave. At the critical angle of incidence, the power flow carried by a surface wave along the interface becomes anomalously large for the H-wave. However, over a wide range of angles of incidence greater than the critical angle, the power flow carried by the E-wave exceeds that carried by the H-wave by orders of magnitude. Finally, the energy conservation relations for the incident, reflected, and transmitted waves at the earth-atmosphere interface are discussed. For an incident wave coming from the earth's crust, the interactive power between the incident and reflected waves plays a crucial role for the conservation of energy at the interface.
Chen, Qiang; Chen, Bin
2012-10-01
In this paper, a hybrid electrodynamics and kinetics numerical model based on the finite-difference time-domain method and lattice Boltzmann method is presented for electromagnetic wave propagation in weakly ionized hydrogen plasmas. In this framework, the multicomponent Bhatnagar-Gross-Krook collision model considering both elastic and Coulomb collisions and the multicomponent force model based on the Guo model are introduced, which supply a hyperfine description on the interaction between electromagnetic wave and weakly ionized plasma. Cubic spline interpolation and mean filtering technique are separately introduced to solve the multiscalar problem and enhance the physical quantities, which are polluted by numerical noise. Several simulations have been implemented to validate our model. The numerical results are consistent with a simplified analytical model, which demonstrates that this model can obtain satisfying numerical solutions successfully.
Effect of Electromagnetic Wave on Bone Healing in Fixed and Unfixed Conditions.
Onger, Mehmet Emin; Göçer, Hasan; Çirakli, Alper; Büyükceran, Ismail; Kiliç, Mesut; Kaplan, Süleyman
2016-09-01
Mobile phones have come into daily life and are now one of the most frequently used devices for communication. The aim of this study was to evaluate possible effect of electromagnetic wave (EMW) with and without fixation material on bone healing.Forty male rats were exposed to fracture on tibia bone and were randomly divided into 4 groups as E(+)K(+), E(+)K(-), E(-)K(+), and E(-)K(-) where E(+) means EMW exposure and K(+) means Kirschner wire fixation. At the end of study tibia samples were taken from all the groups for the quantitative evaluation of regeneration.Significant difference was found between Group E(+)K(+) and E(-)K(+) in terms of both new bone and capillary volume.Electromagnetic wave may be harmful for bone healing with fixation whereas it has no same effect on bone regeneration without fixation.
Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass
Dorofeev, O.F.; Lobanov, A.E.
2005-06-01
Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'.
Kavitha, L.; Saravanan, M.; Srividya, B.; Gopi, D.
2011-12-15
We investigate the nature of propagation of electromagnetic waves (EMWs) in an antiferromagnetic medium with Dzyaloshinsky-Moriya (DM) interaction environment. The interplay of bilinear and DM exchange spin coupling with the magnetic field component of the EMW has been studied by solving Maxwell's equations coupled with a nonlinear spin equation for the magnetization of the medium. We made a nonuniform expansion of the magnetization and magnetic field along the direction of propagation of EMW, in the framework of reductive perturbation method, and the dynamics of the system is found to be governed by a generalized derivative nonlinear Schroedinger (DNLS) equation. We employ the Jacobi-elliptic function method to solve the DNLS equation, and the electromagnetic wave propagation in an antiferromagnetic medium is governed by the breatherlike spatially and temporally coherent localized modes under the influence of DM interaction parameter.
Li, Jia; Chen, Feinan; Chang, Liping
2016-10-17
Within the validity of the first-order Born approximation, expressions are derived for the correlation between intensity fluctuations (CIF) of an electromagnetic plane wave scattered from a spatially quasi-homogeneous (QH), anisotropic medium. Upon establishing the correlation matrix of the scattering potential of the medium, we show that the CIF is the summation of Fourier transforms of the strengths and normalized correlation coefficients (NCCs) of the scattering potential matrix. Numerical results reveal that the CIF is susceptible to the effective width and correlation length of the medium, and degree of polarization of the incident electromagnetic wave. Our study not only extends the current knowledge of the CIF of a scattered field but also provides an important reference to the study of high-order intensity correlations of light scattered from a spatially anisotropic medium.
Shear driven electromagnetic drift-waves in a nonuniform dense magnetoplasma
Tariq, Sabeen; Mirza, Arshad M.; Masood, Waqas
2011-08-15
Linear characteristic properties of high- and low-frequency (in comparison with the cyclotron frequency) electromagnetic drift-waves are studied in a nonuniform, dense magnetoplasma (composed of electrons and ions), in the presence of parallel (magnetic field-aligned) velocity shear, by using quantum magnetohydrodynamic model. By applying the drift-approximation (viz., |{partial_derivative} {sub t}|<<{omega}{sub ci}<<{omega}{sub ce}) to the quantum momentum equations, together with the continuity equations and the Poisson equation, we derive the governing equations for electromagnetic drift-waves with the shear flow. These linear equations are then Fourier transformed to obtain the dispersion relation in both high-frequency and low-frequency regimes. The dispersion relations are then discussed under various limiting cases.
Nanometer-scale surface modification of epoxy with carbon black and electromagnetic waves.
Kim, Bu Gi; Lee, Dai Gil
2010-05-07
The surface morphology of polymers and polymer composites strongly influences both the adhesive bonding strength of composite structures and the electrical conduction through carbon fiber composites. Conventional surface modification techniques (such as mechanical abrading, chemical treatment, plasma treatment and flame treatment) not only damage the surfaces of polymers and polymer composites but also increase production cost. In this study, the surface of epoxy was modified by heating carbon black with electromagnetic waves in order to generate nanometer-sized grooves. A thermal transfer model was developed to investigate the generation mechanism of the grooves and the process variables. In the surface modification technique, electromagnetic waves and carbon black were used to improve both the bonding strength and the electrical conductivity of the composite in a fast and efficient way.
Chakhmachi, A.
2013-06-15
Stimulated Raman back scattering of extraordinary electromagnetic waves from the nanoparticle lattice is investigated in the presence of the static magnetic field. In the context of macroscopic theory, dispersion relation and growth rate of extraordinary mode for different values of static magnetic field and lattice parameters are derived and analyzed. It is found that when the static magnetic field is off, dispersion relation has two branches. These branches are related to the plasmonic and body wave branches of the plane polarized wave. Low frequency branch of the pump wave is not involved in the instability while the other branch is not stable, and the growth rate of Raman back scattered wave has one peak. If the electrons have cyclotron frequency by static magnetic field, dispersion has three branches. These branches are related to the plasmonic and body wave branches of left and right hand circularly polarized waves. In this situation, it is found that low frequency lower branch of the pump wave is stable while other branches are not stable, and the growth rate of Raman back scattered wave has three peaks. Numerical study of growth rate in various cyclotron frequencies shows that the growth rate increases and the instability band width decreases with increasing static magnetic field.
Nonlinear propagation of Rossby-Khantadze electromagnetic planetary waves in the ionospheric E-layer
Futatani, S.; Horton, W.; Kaladze, T. D.
2013-10-15
Nonlinear vortex propagation of electromagnetic coupled Rossby and Khantadze planetary waves in the weakly ionized ionospheric E-layer is investigated with numerical simulations. Large scale, finite amplitude vortex structures are launched as initial conditions at low, mid, and high latitudes. For each k-vector the linear dispersion relation has two eigenmodes corresponding to the slow magnetized Rossby wave and the fast magnetic Khantadze wave. Both waves propagate westward with local speeds of the order of 10–20 m/s for the slow wave and of the order of 500–1000 km/s for the fast wave. We show that for finite amplitudes there are dipole solitary structures emitted from the initial conditions. These structures are neutrally stable, nonlinear states that avoid radiating waves by propagating faster than the corresponding linear wave speeds. The condition for these coherent structures to occur is that their amplitudes are such that the nonlinear convection around the core of the disturbance is faster than the linear wave speed for the corresponding dominant Fourier components of the initial disturbance. The presence of the solitary vortex states is indicative of an initial strong disturbance such as that from a solar storm or a tectonic plate movement. We show that for generic, large amplitude initial disturbances both slow and fast vortex structures propagate out of the initial structure.
NASA Technical Reports Server (NTRS)
Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1993-01-01
Large-amplitude electromagnetic plasma waves are one of the dominant features of the solar wind-comet interaction. Wave characteristics strongly depend on parameters such as the solar wind flow and Alfven velocities and the angle between flow and interplanetary magnetic field as well as the production rate. With respect to the latter the flyby of the spacecraft Giotto at comet P/Griff-Skjellerup provides a unique possibility to study such waves in further detail. Pickup ion-related wave signatures have been observed up to a distance of 600,000 km from the nucleus. Peak spectral power in the spacecraft frame of reference occurs at frequencies mainly somewhat below the water group ion gyrofrequency. From this the waves are determined to be mainly left-hand polarized waves, causing one-sided pitch angle diffusion outbound. The wave activity strongly increases close to the comet; upstream it exhibits a quadratic dependence on the water group pickup ion free energy. Furthermore, a phenomenological study of the wave characteristics provides a unique description of the fine-structure of the interaction region. Indications of steepened magnetosonic waves have been found in the outbound magnetosheath region.
Investigation of spin-electromagnetic wave envelope solitons in a multiferroic layered structure
NASA Astrophysics Data System (ADS)
Ustinov, A. B.; Kondrashov, A. V.; Nikitin, A. A.; Cherkasskii, M. A.; Kalinikos, B. A.
2015-12-01
Hybrid spin-electromagnetic wave (SEW) envelope solitons have been studied both experimentally and theoretically. The solitons were formed during auto-generation of SEWs in an active ring resonator for which the role of the nonlinear dispersive waveguide media was played by a multiferroic layered ferrite-ferroelectric structure. It is demonstrated that the dielectric constant of the structure affects the nonlinear properties of SEWs.
Study of Electromagnetic Wave Absorption Properties of Carbon Nanotubes-Based Composites
2012-11-29
Arredondo of Coe College in Iowa from June 1 to July 31, 2012, under the supervising of Dr. Guang-Lin Zhao. III. Project Activities and New Insights...MWCNTs)-epoxy composite samples, using MWCNTs with an average outer diameter (OD) less than 8 nm. The weight fraction of MWCNTs in the CNT-epoxy... in the first time in the research. We further analyzed the absorption properties of Carbon nanotubes polymer composites; Electromagnetic wave
Determination of Electromagnetic Wave Propagation from an Electrically Pulsed Thin Film
2006-05-01
Determination of Electromagnetic Wave Propagation from an Electrically Pulsed Thin Film J. Zirnheld1, E.M. Halstead, K. Burke, M. Hood, H...Center, Bldg. 65N, Picatinny Arsenal, NJ 07806 Abstract-The Energy Systems Institute is currently performing pulsed-power flashover research on thin...currents. The problem becomes considerably more difficult, however, when the current carrier is limited to a finite spatial extent. Elementary
Electromagnetic Wave Absorption Property of Graphene with FeO4 Nanoparticles.
Yang, Cheng; Dai, Shenglong; Zhang, Xiaoyan; Zhao, Tianyu; Yan, Shaojiu; Zhao, Xiuying
2016-02-01
Nanomaterials consisting of various ratios of Fe3O4 and graphene (defined C-Fe3O4/GR) were pre- pared by an in situ coordination complex hydro-thermal synthesis method. The structure and morphology of the nanomaterials C-Fe3O4/GR obtained were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). It was found that the Fe3O4 nanoparticles distributed on the surfaces of graphene, and had a spinel structure and a uniform chemical phase when the weight ratios of Fe3O4 to graphene oxide (GO) were 9:1 or 9:2. It was suggested that GO had been successfully reduced to graphene and the Fe3O4 nanoparticles were chemically bonded to graphene. The SQUID vibrating sample magnetometer (SQUID-VSM) indicated that the maximum of the saturation magnetization was 83.6 emmicro g(-1) when the mass ratio of Fe3O4 to GO was 9:2. Electromagnetic wave absorption showed that the chemical compound of Fe3O4 and graphene had a better electromagnetic property than the mechanical blend of Fe3O4 and graphene (M-Fe3O4/GR). The C-Fe3O4/GR had a reflection loss larger than -10 dB in the frequency range 12.9-17.0 GHz for an absorber thickness of 3 mm, and a maximum reflection loss of -12.3 dB at 14.8 GHz and a maximum reflection loss of -31.2 dB at 10.5 GHz for an absorber thickness of 10 mm. Theoretical analysis showed that the electromagnetic wave absorption behavior obeyed the quarter-wave principles. These results showed that the C-Fe3O4/GR nanomaterials can meet the requirements for some engineering applications, showing great application potential in electromagnetic wave absorption.
Electromagnetic wave propagation with negative phase velocity in regular black holes
Sharif, M. Manzoor, R.
2012-12-15
We discuss the propagation of electromagnetic plane waves with negative phase velocity in regular black holes. For this purpose, we consider the Bardeen model as a nonlinear magnetic monopole and the Bardeen model coupled to nonlinear electrodynamics with a cosmological constant. It turns out that the region outside the event horizon of each regular black hole does not support negative phase velocity propagation, while its possibility in the region inside the event horizon is discussed.
[Effect of electromagnetic radiation of millimetric wave band on genome of somatic cells].
Konoplia, E F; Nikolaevich, L N; Shalatonin, V I
2004-01-01
The paper presents the characteristic of molecular-genetic processes occurring in populations of cells bone marrow, blood, thymus and spleen of animals exposed to electromagnetic radiation of millimetric wave band. Disturbances in the processes of cell cycle, DNA replication and repair, changes in the frequency of cells with micronuclei and cell death by apoptosis mechanism were shown to depend on the degree of differentiation and mitotic activity of cells.
Improved heat transfer modeling of the eye for electromagnetic wave exposures.
Hirata, Akimasa
2007-05-01
This study proposed an improved heat transfer model of the eye for exposure to electromagnetic (EM) waves. Particular attention was paid to the difference from the simplified heat transfer model commonly used in this field. From our computational results, the temperature elevation in the eye calculated with the simplified heat transfer model was largely influenced by the EM absorption outside the eyeball, but not when we used our improved model.
NASA Astrophysics Data System (ADS)
Salejda, Wlodzimierz; Klauzer-Kruszyna, Agnieszka; Tyc, Michal H.; Tarnowski, Karol
2005-09-01
Using the transfer matrix formalism and dynamical maps technique, we calculate numerically transmittance of polarized electromagnetic wave through aperiodic superlattices (generalized Fibonacci, generalized Thue-Morse, double-periodic and Rudin-Shapiro), built of left- and right-handed materials. In our calculations, strong dispersion of left-handed materials is taken into account, leading to tunnelling effects in a wide range of wavelengths and incidence angles. The results are presented in gray scale transmittance maps.
NASA Astrophysics Data System (ADS)
Egorov, V. A.; Makarov, G. I.
2006-12-01
[1] The influence of vegetable cover on propagation ofelectromagnetic waves in the Earth-ionosphere wave channel isstudied in the scope of the model of a homogeneous isotropic``forest layer'' with effective value of the dielectric permeabilityɛf=1.2 and electric conductivityσf (t oC)depending on theenvironmental temperature according to the results obtained in thispaper. It is shown that the character of the electromagnetic fieldbehavior in the presence of large forests is of a well-pronouncedseasonal character additionally complicated by the diurnalvariations of the field depending on the environmental temperaturevariations.
NASA Astrophysics Data System (ADS)
Krowne, Clifford M.
2004-07-01
Heterostructure arrangements of uniaxial bicrystals have been discovered to produce electromagnetic fields with asymmetric distributions in guide wave structures. The property behind this remarkable phenomenon is the broken crystalline symmetry which allows the new physics to be seen in unsymmetric distributions. Here the theory behind this phenomenon is presented, numerical calculations are performed using an ab initio anisotropic Green’s function approach, and the results provided at 10 GHz for a realistic crystal system with nominal permittivity of 5. Asymmetric distributions seen here are one facet of the broken symmetry property which generates negative refraction for impinging waves on a bicrystal.
NASA Astrophysics Data System (ADS)
Abramov, Arnold; Kostikov, Alexander
2017-03-01
We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder.
Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M.
2009-02-13
Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.
Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M
2009-02-13
Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.
NASA Astrophysics Data System (ADS)
Norin, L.; Leyser, T. B.; Nordblad, E.; Thidé, B.; McCarrick, M.
2009-02-01
Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.
NASA Technical Reports Server (NTRS)
Kozyra, J. U.; Cravens, T. E.; Nagy, A. F.; Fontheim, E. G.; Ong, R. S. B.
1984-01-01
An expression for electromagnetic ion cyclotron convective growth rates is derived. The derivation of the dispersion relation and convective growth rates in the presence of a multicomponent energetic and cold plasma is presented. The effects that multiple heavy ions in the ring current and cold plasma produce in the growth and propagation characteristics of ion cyclotron waves are explored. Results of growth rate calculations using parameters consistent with conditions in the plasmapause region during the early recovery phase of geomagnetic storms are presented and compared with ground-based and satellite observations of waves in this region. The geophysical implications of the results are discussed.
NASA Technical Reports Server (NTRS)
Kozyra, J. U.; Cravens, T. E.; Nagy, A. F.; Fontheim, E. G.; Ong, R. S. B.
1984-01-01
An expression for electromagnetic ion cyclotron convective growth rates is derived. The derivation of the dispersion relation and convective growth rates in the presence of a multicomponent energetic and cold plasma is presented. The effects that multiple heavy ions in the ring current and cold plasma produce in the growth and propagation characteristics of ion cyclotron waves are explored. Results of growth rate calculations using parameters consistent with conditions in the plasmapause region during the early recovery phase of geomagnetic storms are presented and compared with ground-based and satellite observations of waves in this region. The geophysical implications of the results are discussed.
Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide
NASA Astrophysics Data System (ADS)
Valovik, D. V.; Smol'kin, E. Yu.
2017-08-01
The problem of the propagation of coupled surface electromagnetic waves in a two-layer cylindrical circular waveguide filled with an inhomogeneous nonlinear medium is considered. A nonlinear coupled TE-TM wave is characterized by two (independent) frequencies ωe and ωm and two propagation constants {\\widehat γ _e} and {\\widehat γ _m}. The physical problem reduces to a nonlinear two-parameter eigenvalue problem for a system of nonlinear ordinary differential equations. The existence of eigenvalues ({\\widehat γ _e}, {\\widehat γ _m}) in proven and intervals of their localization are determined.
Dispersion Relation of Electromagnetic Waves in One-Dimensional Plasma Photonic Crystals
NASA Astrophysics Data System (ADS)
Hojo, Hitoshi; Mase, Atsushi
The dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals is studied. The plasma photonic crystal is a periodic array composed of alternating thin plasma and dielectric material. The dispersion relation is obtained by solving a Maxwell wave equation using a method analogous to Kronig-Penny’s problem in quantum mechanics, and it is found that the frequency gap and cut-off appear in the dispersion relation. The frequency gap is shown to become larger with the increase of the plasma density as well as plasma width.
Theory of electromagnetic cyclotron wave growth in a time-varying magnetoplasma
NASA Technical Reports Server (NTRS)
Gail, William B.
1990-01-01
The effect of a time-dependent perturbation in the magnetoplasma on the wave and particle populations is investigated using the Kennel-Petchek (1966) approach. Perturbations in the cold plasma density, energetic particle distribution, and resonance condition are calculated on the basis of the ideal MHD assumption given an arbitrary compressional magnetic field perturbation. An equation is derived describing the time-dependent growth rate for parallel propagating electromagnetic cyclotron waves in a time-varying magnetoplasma with perturbations superimposed on an equilibrium configuration.
Damez, Jean-Louis; Clerjon, Sylvie
2013-12-01
The meat industry needs reliable meat quality information throughout the production process in order to guarantee high-quality meat products for consumers. Besides laboratory researches, food scientists often try to adapt their tools to industrial conditions and easy handling devices useable on-line and in slaughterhouses already exist. This paper overviews the recently developed approaches and latest research efforts related to assessing the quality of different meat products by electromagnetic waves and examines the potential for their deployment. The main meat quality traits that can be assessed using electromagnetic waves are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of techniques, from low frequency, high frequency impedance measurement, microwaves, NMR, IR and UV light, to X-ray interaction, involves a wide range of physical interactions between the electromagnetic wave and the sample. Some of these techniques are now in a period of transition between experimental and applied utilization and several sensors and instruments are reviewed.
MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties.
Lü, Yinyun; Wang, Yiting; Li, Hongli; Lin, Yuan; Jiang, Zhiyuan; Xie, Zhaoxiong; Kuang, Qin; Zheng, Lansun
2015-06-24
Composites incorporating ferromagnetic metal nanopartices into a highly porous carbon matrix are promising as electromagnetic wave absorption materials. Such special composite nanomaterials are potentially prepared by the thermal decomposition of metal-organic framework (MOF) materials under controlled atmospheres. In this study, using Co-based MOFs (Co-MOF, ZIF-67) as an example, the feasibility of this synthetic strategy was demonstrated by the successful fabrication of porous Co/C composite nanomaterials. The atmosphere and temperature for the thermal decomposition of MOF precursors were crucial factors for the formation of the ferromagnetic metal nanopartices and carbon matrix in the porous Co/C composites. Among the three Co/C composites obtained at different temperatures, Co/C-500 obtained at 500 °C exhibited the best performance for electromagnetic wave absorption. In particular, the maximum reflection loss (RL) of Co/C-500 reached -35.3 dB, and the effective absorption bandwidth (RL ≤ -10 dB) was 5.80 GHz (8.40 GHz-14.20 GHz) corresponding to an absorber thickness of 2.5 mm. Such excellent electromagnetic wave absorption properties are ascribed to the synergetic effects between the highly porous structure and multiple components, which significantly improved impedance matching.
Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung
2013-11-01
Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary.
Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming
2013-01-15
A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Yu, Hao; Gu, Bao-Min; Huang, Fa Peng; Wang, Yong-Qiang; Meng, Xin-He; Liu, Yu-Xiao
2017-02-01
The future gravitational wave (GW) observations of compact binaries and their possible electromagnetic counterparts may be used to probe the nature of the extra dimension. It is widely accepted that gravitons and photons are the only two completely confirmed objects that can travel along null geodesics in our four-dimensional space-time. However, if there exist extra dimensions and only GWs can propagate freely in the bulk, the causal propagations of GWs and electromagnetic waves (EMWs) are in general different. In this paper, we study null geodesics of GWs and EMWs in a five-dimensional anti-de Sitter space-time in the presence of the curvature of the universe. We show that for general cases the horizon radius of GW is longer than EMW within equal time. Taking the GW150914 event detected by the Advanced Laser Interferometer Gravitational-Wave Observatory and the X-ray event detected by the Fermi Gamma-ray Burst Monitor as an example, we study how the curvature k and the constant curvature radius l affect the horizon radii of GW and EMW in the de Sitter and Einstein-de Sitter models of the universe. This provides an alternative method for probing extra dimension through future GW observations of compact binaries and their electromagnetic counterparts.
A time domain energy theorem for scattering of plane electromagnetic waves
NASA Astrophysics Data System (ADS)
de Hoop, A. T.
1984-10-01
A time domain analysis of the scattering problem reveals the more general conditions under which the relevant theorems in the theory of the scattering of electromagnetic waves by an obstacle of bounded extent may also hold in the time domain. The present investigation is concerned with the energy theorem for plane wave scattering. Three different kinds of time behavior are considered, taking into account transient fields, time-periodic fields, and perpetuating fields. The derived energy theorem relates the energy which is both absorbed and scattered by the object to the spherical-wave amplitude of the scattered field in the far-field region, when observed in the direction of propagation of the incident plane wave.
Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria
Frieman, E.A.; Chen, L.
1981-10-01
A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations thus derived are valid in the strong-turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magentic field geometries. The specific case of axisymmetric tokamaks is then considered, and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the formalism to the shear Alfven wave heating sceme, it is found that nonlinear ion Landau damping of kinetic shear-Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In particular, wave energy is found to cascade in wavenumber instead of frequency.
NASA Astrophysics Data System (ADS)
Singh, S.; Sugiyama, H.; Omura, Y.; Shoji, M.; Nunn, D.; Summers, D.
2014-12-01
Electromagnetic ion cyclotron (EMIC) waves are studied in kappa-Maxwellian plasma. The plasma is assumed to have five-components, i.e., electrons, cold and hot protons, singly charged helium and oxygen ions. The hot anisotropic protons are assumed to have kappa-Maxwellian anisotropic particle distribution function. The numerical results are obtained using KUPDAP (Kyoto University Plasma Dispersion Analysis Package), a full dispersion solver developed at Kyoto University. The growth/damping of oxygen, helium, and proton bands and higher harmonics of the EMIC waves are studied. The effects of the kappa distribution on the growth/damping of these waves are clearly demonstrated. The findings from our model are applied to EMIC wave observations in the inner magnetosphere by the Cluster spacecraft.
NASA Astrophysics Data System (ADS)
Sugiyama, Hajime; Singh, Satyavir; Omura, Yoshiharu; Shoji, Masafumi; Nunn, David; Summers, Danny
2015-10-01
A theoretical model to study electromagnetic ion cyclotron (EMIC) waves in kappa-Maxwellian plasma is developed. The plasma is assumed to have five components, i.e., electrons, cool and hot protons, and singly charged helium and oxygen ions. The kappa-Maxwellian anisotropic particle distribution function is assumed for the hot protons. We use the Kyoto University Plasma Dispersion Analysis Package, a full dispersion solver developed at Kyoto University, to obtain the numerical results and delineate the oxygen, helium, and proton bands. Higher harmonics of the EMIC waves are also studied, and the effects of the kappa distribution on the growth of these waves are clearly demonstrated. Our results are applied to Cluster spacecraft observations of EMIC waves in the inner magnetosphere.
NASA Astrophysics Data System (ADS)
Cheng, Dajun
1997-01-01
Uniaxial bianisotropic-semiconductor material is a generalization of the well-studied semiconductor material and uniaxial medium. It could be realized by arranging chiral objects in a host semiconductor medium, with a preferred direction. This class of material probably opens up the opportunity to realize artificial intelligence in living organisms. In the present study, based on the concept of characteristic waves and the method of angular spectral expansion, electromagnetic field representations in this class of materials are developed. The analysis indicates that solutions of source-free Maxwell equations for uniaxial bianisotropic-semiconductor material can be represented in sum-integral forms of cylindrical vector wave functions. Addition theorem of vector wave functions for uniaxial bianisotropic-semiconductor material can be straightforwardly derived from that of vector wave functions for isotropic medium. An application of the proposed theory in scattering is presented to show how to use these formulations in a practical way.
Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions
NASA Astrophysics Data System (ADS)
Fu, Xiangrong; Cowee, Misa M.; Jordanova, Vania K.; Gary, S. Peter; Reeves, Geoffrey D.; Winske, Dan
2016-11-01
Electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere are enhanced fluctuations driven unstable by ring current ion temperature anisotropy. EMIC waves can resonate with relativistic electrons and play an important role in precipitation of MeV radiation belt electrons. In this paper, we investigate the excitation and saturation of EMIC instability in a homogeneous plasma using both linear theory and nonlinear hybrid simulations. We have explored a four-dimensional parameter space, carried out a large number of simulations, and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Such scaling can be used in conjunction with ring current models like ring current-atmosphere interactions model with self-consistent magnetic field to provide global dynamic EMIC wave maps that will be more accurate inputs for radiation belt modeling than statistical models.
Finite element approach analysis for characteristics of electromagnetic acoustic Lamb wave
NASA Astrophysics Data System (ADS)
Chen, Xiaoming; Li, Songsong
2016-04-01
The electromagnetic acoustic Lamb wave, with the advantages of quickly detecting the defect and sensitivity to the defects, is widely used in non-destructive testing of thin sheet. In this paper, the directivity of sound field, Phase velocity, group velocity and particle displacement amplitude of Lamb wave are study based on finite element analysis method. The results show that, for 1mm aluminum, when the excitation frequency 0.64MHz, the displacement amplitude of A0 mode is minimum, and the displacement amplitude S0 mode is largest. Appropriate to increase the displacement amplitude of a mode, while reducing displacement amplitude of another mode, to achieve the excitation of a single mode Lamb wave. It is helpful to the Optimization of transducer parameters, the choice of Lamb wave modes and providing optimal excitation frequency.
NASA Technical Reports Server (NTRS)
Brinca, Armando L.; Tsurutani, Bruce T.
1989-01-01
The effect of multiple (singly ionized) coexisting newborn ion species on the stability of low-frequency electromagnetic waves was investigated using a plasma model in which solar wind magnetoplasma is made up of isotropic Maxwellian electron and proton populations with a common number density of 4.95/cu cm and temperatures equal to 17.2 eV and 6.9 eV, respectively. It is shown that the effect of multiple ions on wave growth, for given background magnetoplasma conditions and relative densities, depends not only on their mass but also on the physical nature of the wave modes. If the ion masses are disparate, each one of the coexisting ion beams tends to stimulate instabilities without undue influence from the other species. If the masses of newborn ions are similar, they can strongly catalyze wave growth of fluidlike nonresonant modes, but bring about weak growth enhancements in cyclotron resonant instabilities.
Reflectionless passage of an electromagnetic wave through an inhomogeneous plasma layer
Erokhin, N. S.; Zakharov, V. E.
2011-09-15
An exactly solvable model is used as a basis to study the reflectionless passage of a transverse electromagnetic wave through an inhomogeneous plasma containing large-amplitude, small-scale (subwave-length) structures (in particular, opaque regions) that cannot be correctly described by approximate methods. It is shown that, during the reflectionless passage of an electromagnetic wave, strong wave field splashes can occur in certain plasma sublayers. The nonuniform spatial plasma density profile is characterized by a number of free parameters describing the modulation depth of the dielectric function, the characteristic sizes of the structures and their number, the thickness of the inhomogeneous plasma region, and so on. Such plasma density structures are shown to be very diverse when, e.g., a wave that is incident from vacuum propagates without reflection through a plasma layer (wave barrier transillumination). With the cubic nonlinearity taken into account, a one-dimensional problem of the nonlinear transillumination of an inhomogeneous plasma can be solved exactly.
Nonlinear interaction of electromagnetic waves with 3-component relativistic quantum plasma
NASA Astrophysics Data System (ADS)
Ikramullah, Ahmad, Rashid; Sharif, Saqib; Khattak, Fida Younus
2017-05-01
The interaction of intense circularly polarized electro-magnetic (CPEM) wave with 3-component relativistic-quantum plasma consisting of relativistic-degenerate electrons and positrons, and dynamic degenerate ions is theoretically studied. A mathematical model is structured by coupling Klein-Gordon equations for the electrons and positrons, and Schrödinger equation for the ions with Maxwell equations through Poisson equations. The solutions of the dispersion relation are plotted for relativistic quantum plasma in the density-range of ˜ 10 30 → 10 36 m - 3 for several positron concentrations. Three wave modes are observed: electrons, ions, and positrons. The pair branch mode having a possible association with the positron states stays unaltered by variation in the positron concentration but varies significantly with a change in the quantum parameter defined in terms of the particles number density. The addition of positron to the plasma and increasing the positron concentration suggest enhancement of the opacity of the relativistic quantum plasma. The nonlinear interaction of large amplitude CPEM waves with the plasma leads to self-induced transparency. The transparency decreases with increasing positron concentration. The model so developed is then applied to study stimulated Raman scattering, modulational instability, and stimulated Brillouin scattering of intense CPEM waves in such plasmas. The results show that the growth rates are affected by the positron concentration, the quantum parameter of the plasma, as well as by the amplitude of the incident electromagnetic wave.
NASA Astrophysics Data System (ADS)
Laukaitis, A.; Sinica, M.; Balevičius, S.; Levitas, B.
2008-03-01
The electromagnetic wave absorbers prepared from autoclaved aerated concrete containing carbon fibers as additions in the shape of slabs with pyramids cut on one plane of these slabs were tested using dc microwave source and the time-domain method. It was demonstrated that autoclaved aerated concrete allows one to fabricate electromagnetic wave absorbers which have a reflection coefficient up to -30 dB in the frequency range from 2 GHz to 18 GHz.
NASA Astrophysics Data System (ADS)
Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.
2013-09-01
We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.
NASA Astrophysics Data System (ADS)
Ofman, L.; Denton, R. E.; Bortnik, J.; An, X.; Glocer, A.; Komar, C.
2017-06-01
The growth and saturation of electromagnetic ion cyclotron (EMIC) waves is essential to the magnetospheric dynamics. Determining and isolating the effects of multiple ion parameters such as temperatures, anisotropies, and relative abundances is important for quantifying these processes in the magnetospheric plasma. In order to study these process, we utilize a 2.5-D hybrid model (where ions are modeled with the particle-in-cell (PIC) method, and electrons are modeled as background neutralizing fluid) to study the nonlinear electromagnetic wave-particle interactions of hot H+, cold H+, cold He+, and cold or hot O+ ions for a broad range of typical magnetospheric parameters. The excitation of EMIC waves is driven by the temperature anisotropy of hot H+ in our model. As a result, we quantify the parametric dependence of the linear growth, the nonlinear saturation level of perpendicular magnetic fluctuations, and the temporal evolution of the ion temperature anisotropies. We establish the relation between key plasma parameters and the saturated EMIC wave power, using either power law fits or a nonlinear regression method. We construct the dispersion relation of the waves using the results of the model and investigate the energy content in the various branches of the dispersion (k∥-ω space), showing that the different modes can generate wave power in different regions of k space. We find that large O+ concentration reduces the growth and saturated amplitude of the waves; but the waves are less sensitive to the temperature of the O+ in the temperature range relevant to the magnetosphere.
NASA Astrophysics Data System (ADS)
Hu, Wenjing
2017-08-01
This paper uses Fourier’s triple integral transform method to simplify the calculation of the non-homogeneous wave equations of the time-varying electromagnetic field. By adding several special definite conditions to the wave equation, it becomes a mathematical problem of definite condition. Then by using Fourier’s triple integral transform method, this three-dimension non-homogeneous partial differential wave equation is changed into an ordinary differential equation. Through the solution to this ordinary differential equation, the expression of the relationship between the time-varying scalar potential and electromagnetic wave excitation source is developed precisely. This method simplifies the solving process effectively.
ULF Wave Electromagnetic Energy Flux into the Ionosphere: Joule Heating Implications
NASA Astrophysics Data System (ADS)
Hartinger, M.; Moldwin, M.; Zou, S.; Bonnell, J. W.; Angelopoulos, V.
2014-12-01
Ultra Low Frequency (ULF) waves - such as standing Alfven waves - are one mechanism for coupling the inner magnetosphere to the Earth's ionosphere. For example, they transfer energy from the solar wind or ring current into the Earth's ionosphere via Joule heating. In this study, we use NASA Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite data to investigate the spatial, frequency, and geomagnetic activity dependence of the ULF wave Poynting vector (electromagnetic energy flux) mapped to the ionosphere. We use these measurements to estimate Joule heating rates. We compare these rates to empirical models of Joule heating associated with large scale, static (on ULF wave timescales) current systems, finding that ULF waves usually contribute little to the global, integrated Joule heating rate. However, there are extreme cases when ULF waves make significant contributions to global Joule heating. Finally, we find ULF waves routinely make significant contributions to local Joule heating rates near the noon and midnight local time sectors, where static current systems nominally contribute less to Joule heating; the most important contributions come from lower frequency (<7 mHz) waves.
THE ROLE OF SUPERLUMINAL ELECTROMAGNETIC WAVES IN PULSAR WIND TERMINATION SHOCKS
Amano, Takanobu; Kirk, John G.
2013-06-10
The dynamics of a standing shock front in a Poynting-flux-dominated relativistic flow is investigated by using a one-dimensional, relativistic, two-fluid simulation. An upstream flow containing a circularly polarized, sinusoidal magnetic shear wave is considered, mimicking a wave driven by an obliquely rotating pulsar. It is demonstrated that this wave is converted into large-amplitude electromagnetic waves with superluminal phase speeds by interacting with the shock when the shock-frame frequency of the wave exceeds the proper plasma frequency. The superluminal waves propagate in the upstream, modify the shock structure substantially, and form a well-developed precursor region ahead of a subshock. Dissipation of Poynting flux occurs in the precursor as well as in the downstream region through a parametric instability driven by the superluminal waves. The Poynting flux remaining in the downstream region is carried entirely by the superluminal waves. The downstream plasma is therefore an essentially unmagnetized, relativistically hot plasma with a non-relativistic flow speed, as suggested by observations of pulsar wind nebulae.
NASA Astrophysics Data System (ADS)
Fromme, P.
2015-03-01
Fatigue damage can develop in aerospace structures at locations of stress concentration, such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducer development for the specific excitation of the A0 Lamb wave mode is explained. The radial and angular dependency of the excited guided wave pulses at different frequencies were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed and reasonably good agreement with the measured transducer performance was achieved. The developed transducers were employed for defect detection in aluminum components using fully noncontact guided wave measurements. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer. These results provide the basis for the defect characterization in aerospace structures using noncontact guided wave sensors.
NASA Astrophysics Data System (ADS)
Uzbekov, Bogdan; Shprits, Yuri Y.; Orlova, Ksenia
2016-10-01
Electromagnetic Ion Cyclotron (EMIC) waves are transverse plasma waves that are generated in the Earth magnetosphere by ring current protons with temperature anisotropy in three different bands: below the H+, He+ and O+ ion gyrofrequencies. EMIC events are enhanced during the main phase of a geomagnetic storm when intensifications in the electric field result in enhanced injections of ions and are usually confined to high-density regions just inside the plasmapause or within drainage plumes. EMIC waves are capable of scattering radiation belt electrons and thus provide an important link between the intensification of the electric field, ion populations, and radiation belt electrons. Bounce-averaged diffusion coefficients computed with the assumption of parallel wave propagation are compared to the results of the code that uses the full cold plasma dispersion relation taking into account oblique propagation of waves and higher-order resonances. We study the sensitivity of the scattering rates to a number of included higher-order resonances, wave spectral distribution parameters, wave normal angle distribution parameters, ambient plasma density, and ion composition. Inaccuracies associated with the neglect of higher-order resonances and oblique propagation of waves are compared to potential errors introduced by uncertainties in the model input parameters.
NASA Astrophysics Data System (ADS)
Rozina, Ch.; Tsintsade, N. L.; Maryam, N.; Komal, S.
2016-11-01
In this study, we have analytically investigated the effects of nonlinear Landau damping on the temporal growth rate of modulation and filamentation instabilities. Here, the nonlocal nonlinear Landau damping phenomena is appearing due to the nonlinear interaction between ultrarelativistic electromagnetic (UREM) wave (having wave vector normal to the beam) and electron-positron-ion plasma. We found that the ultrarelativistic ponderomotive force is linear, while usually it is nonlinear in relativistic case. We construct three dimensional kinetic nonlinear Schrödinger equation for a slowly varying spatio and temporal amplitude of UREM waves. The equations are then Fourier analyzed to obtain dispersion relation, which admit both modulation and filamentation instabilities. It is shown that nonlinear Landau damping is the main source of modulation instability, for a particular condition taking into account later one the maximum growth rate of modulation instability obtained as a function of amplitude of UREM waves and is displayed graphically. Further, it is shown that for an oscillating density profile, plane wave of uniform intensity becomes unstable and gets filamented. Growth rate of stationary state filament is found to be a function of amplitude of UREM waves and is emphasized that the maximum value of growth rate of filamentation instability is further increased in the presence of nonlinear Landau damping term. Finally, the growth rate of non stationary state filamentation instability is calculated and is shown that the characteristic growth length increases both with perpendicular wave vector and the amplitude of UREM waves.
NASA Astrophysics Data System (ADS)
Hill, Samuel; Dixon, Steve; Sri Harsha Reddy, K.; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2017-02-01
Guided waves inspection is a well-established method for the long-range ultrasonic inspection of pipes. Guided waves, used in a pulse-echo arrangement, can inspect a large range of the pipe from a single point as the pipe structure carries the waves over a large distance due to the relatively low attenuation of the wave modes. However, the complexity of the dispersion characteristics of these pipe guided wave modes are well known, and can lead to diffculty interpreting the obtained results. The torsional family of guided wave modes are generally considered to have much simpler dispersion characteristics; especially the fundamental T(0,1) mode, which is nominally non-dispersive, making it particularly useful for guided wave inspection. Torsional waves have been generated by a circumferential ring of transducers to approximate an axi-symmetric load to excite this T(0, 1) mode. Presented here is a new design of Electromagnetic Acoustic Transducer (EMAT) that can generate a T(0, 1) as a single transducer, rather than a circumferential array of transducers that all need to be excited in order to generate an axisymmetric force. The EMAT consists of a periodic permanent magnet array and a single meander coil, meaning that the excitation of the torsional mode is greatly simplified. The design parameters of this new EMAT are explored, and the ability to detect notch defects on a pipe is demonstrated.
New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten
1994-01-01
We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.
NASA Astrophysics Data System (ADS)
Ohkawa, E.; Mikada, H.; Goto, T.; Takekawa, J.; Onishi, K.; Taniguchi, K.; Ashida, Y.
2009-12-01
The temperature of external materials of buildings rises when they are exposed to sunlight, and the room temperature rises too if the buildings’ external wall is in the sunlight. Therefore the crisis of electric power supply is frequently caused by air conditioning in midsummer. Recently, it has been experimentally confirmed that such temperature rising of such building materials may be suppressed when they are coated with paint including fine silicic spheres whose diameters are in micron to submicron scale. So we are able to reduce the energy consumption if room temperature is controlled not with any air conditioning but with these paints, and the heat island effects would be lowered. However, the mechanism of this temperature suppression has not been investigated. Experimental consideration of this paint has been done, but the mechanism how the paint controls the temperature rise has hardly been clarified theoretically. Since the best composition of the spheres and their best size are not understood well, it is necessary to theoretically clarify the controlling mechanism for the temperature rise to develop efficient paint. In this study, we aimed to find out the mechanism of the temperature suppression. When the electromagnetic wave at a frequency near eigenfrequencies of atoms, molecules or bindings enters the atoms or the molecules, they resonate and move intensely, and finally rise the temperature. Therefore, we presume that the temperature rise could be controlled if the electromagnetic waves around the eigenfrequencies could be removed. Here, we consider electromagnetic wave of light. Then we assumed that the electromagnetic waves in a certain range of frequencies were scattered to shield the radiated heat energy in the insolation and that the transmitted light through the paint layer is weakened. For verifying the hypotheses and finding the range of effective size, we used the Mie theory of a light scattering theory to calculate the intensity of scattered
NASA Astrophysics Data System (ADS)
Zhao, Duo; Fu, Suiyan; Parks, George K.; Sun, Weijie; Zong, Qiugang; Pan, Dongxiao; Wu, Tong
2017-08-01
We present new observations of electron distributions and the accompanying waves during the current sheet activities at ˜60 RE in the geomagnetic tail detected by the ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft. We find that electron flat-top distribution is a common feature near the neutral sheet of the tailward flowing plasmas, consistent with the electron distributions that are shaped in the reconnection region. Whistler mode waves are generated by the anisotropic electron temperature associated with the electron flat-top distributions. These whistler mode waves are modulated by low frequency ion scale waves that are possibly excited by the high-energy ions injected during the current sheet instability. The magnetic and electric fields of the ion scale waves are in phase with electron density variations, indicating that they are compressional ion cyclotron waves. Our observations present examples of the dynamical processes occurring during the current sheet activities far downstream of the geomagnetic tail.
s-wave scattering for deep potentials with attractive tails falling off faster than -1/r{sup 2}
Mueller, Tim-Oliver; Kaiser, Alexander; Friedrich, Harald
2011-09-15
For potentials with attractive tails, as occur in typical atomic interactions, we present a simple formula for the s-wave phase shift {delta}{sub 0}. It exposes a universal dependence of {delta}{sub 0}(E) on the potential tail and the influence of effects specific to a given potential, which enter via the scattering length a, or equivalently, the noninteger part {Delta}{sub th} of the threshold quantum number n{sub th}. The formula accurately reproduces {delta}{sub 0}(E) from threshold up to the semiclassical regime, far beyond the validity of the effective-range expansion. We derive the tail functions occurring in the formula for {delta}{sub 0}(E) and demonstrate the validity of the formula for attractive potential tails proportional to 1/r{sup 6} or to 1/r{sup 4}, and also for a mixed potential tail consisting of a 1/r{sup 4} term together with a non-negligible 1/r{sup 6} contribution.
Three-dimensional Fréchet sensitivity kernels for electromagnetic wave propagation
Strickland, C. E.; Johnson, T. C.; Odom, R. I.
2015-08-28
Electromagnetic imaging methods are useful tools for monitoring subsurface changes in pore-fluid content and the associated changes in electrical permittivity and conductivity. The most common method for georadar tomography uses a high frequency ray-theoretic approximation that is valid when material variations are sufficiently small relative to the wavelength of the propagating wave. Georadar methods, however, often utilize electromagnetic waves that propagate within heterogeneous media at frequencies where ray theory may not be applicable. In this paper we describe the 3-D Fréchet sensitivity kernels for EM wave propagation. Various data functional types are formulated that consider all three components of the electric wavefield and incorporate near-, intermediate-, and far-field contributions. We show that EM waves exhibit substantial variations for different relative source-receiver component orientations. The 3-D sensitivities also illustrate out-of-plane effects that are not captured in 2-D sensitivity kernels and can influence results obtained using 2-D inversion methods to image structures that are in reality 3-D.
Nonlinear wave mechanisms in interactions between excitable tissue and electromagnetic fields.
Lawrence, A F; Adey, W R
1982-01-01
It is now well established that intrinsic electromagnetic fields play a key role in a broad range of tissue functions, including embryonic morphogenesis, wound healing, and information transmission in the nervous system. These same processes may be profoundly influenced by eletromagnetic fields induced by an external force. Tissue exposure to extremely low frequency (ELF) and ELF-modulated microwave fields at levels below those inducing significant thermal effects has revealed highly nonlinear mechanisms as a basis for observed effects. Interactions of phonons and excitons along linear molecules may produce nonlinear molecular vibrations in the form of soliton waves. Solitons exist in a minimal energy state and are extremely long-lived in comparison to linear oscillations. Solitons may convey energy released by chemical reactions from one site to another in enzymes of other long-chain proteins. These nonlinear waves may also couple reaction-diffusion processes in the intracellular and extracellular domains. A model is proposed for interaction between excitable tissue and electromagnetic fields, based on nonlinear waves in the cell membrane, with ionic interactions as an essential step. Calcium fluxes in the extracellular space of the central system are modeled by a nonlinear reaction-diffusion system. Membrane molecular solitons may exist in long-chain molecules (Davydov type) and play a significant role in charge transfer; or they may exist as nonlinear waves conveying energy along gel-lipid domains from one protein site to another (Sine-Gordon soliton). Soliton movements occur at subsonic velocities.
Experimental demonstration of broadband reflectionless diffraction-free electromagnetic wave routing
NASA Astrophysics Data System (ADS)
Zhang, Youming; Gao, Zhen; Gao, Fei; Shi, Xihang; Xu, Hongyi; Luo, Yu; Zhang, Baile
2016-12-01
Wave diffraction is fundamentally difficult to overcome in the routing and interconnection of photonic signals. Although the phenomenon of reflectionless transport through sharp corners in a routing path has been realized in many previous demonstrations, wave diffraction does not allow them to transport deep-subwavelength information or sub-diffraction-limited images. Recent advances in ɛ -near-zero and anisotropic ɛ -near-infinity metamaterials have provided unique possibilities of achieving reflectionless diffraction-free electromagnetic wave routing, but their designs are fundamentally limited to narrow bandwidths, and they have not been demonstrated in reality. Here we experimentally demonstrate broadband reflectionless diffraction-free routing of electromagnetic waves through two right-angled sharp corners in a bent microwave rectangular waveguide. An image with deep-subwavelength information is transported through the bent waveguide in a broad bandwidth. This Rapid Communication supplements and extends the current studies of metamaterials with extreme permittivities and can be useful for routing and interconnection of subwavelength photonic information.
NASA Astrophysics Data System (ADS)
Zimmerling, Jörn; Wei, Lei; Urbach, Paul; Remis, Rob
2016-06-01
In this paper we present a Krylov subspace model-order reduction technique for time- and frequency-domain electromagnetic wave fields in linear dispersive media. Starting point is a self-consistent first-order form of Maxwell's equations and the constitutive relation. This form is discretized on a standard staggered Yee grid, while the extension to infinity is modeled via a recently developed global complex scaling method. By applying this scaling method, the time- or frequency-domain electromagnetic wave field can be computed via a so-called stability-corrected wave function. Since this function cannot be computed directly due to the large order of the discretized Maxwell system matrix, Krylov subspace reduced-order models are constructed that approximate this wave function. We show that the system matrix exhibits a particular physics-based symmetry relation that allows us to efficiently construct the time- and frequency-domain reduced-order models via a Lanczos-type reduction algorithm. The frequency-domain models allow for frequency sweeps meaning that a single model provides field approximations for all frequencies of interest and dominant field modes can easily be determined as well. Numerical experiments for two- and three-dimensional configurations illustrate the performance of the proposed reduction method.
NASA Astrophysics Data System (ADS)
Bernhardt, P. A.; Scales, W.; Briczinski, S. J.; Fu, H.; Mahmoudian, A.; Samimi, A.
2012-12-01
High power radio waves resonantly interact with to accelerate electrons for production of artificial aurora and plasma clouds. These plasma clouds are formed when the HF frequency is tuned near a harmonic of the electron cyclotron frequency. At a narrow band resonance, large electrostatic fields are produced below the F-layer and the neutral atmosphere breaks down with a glow plasma discharge. The conditions for this resonance are given by matching the pump wave frequency and wave-number with the sum of daughter frequencies and wave-numbers for several plasma modes. The most likely plasma mode that accelerates the electrons is the electron Bernstein wave in conjunction with an ion acoustic wave. Both upper hybrid and whistler mode waves are also possible sources of electron acceleration. To determine the plasma process for electron acceleration, stimulated electromagnetic emissions are measured using ground receivers in a north-south chain from the HAARP site. Recent observations have shown that broad band spectral lines downshifted from the HF pump frequency are observed when artificial plasma clouds are formed. For HF transmissions are the 2nd, 3rd, and 4th gyro harmonic, the downshifted indicators are found 500 Hz, 20 kHz, and 140 kHz, respectively, from the pump frequency. This Indicator Mode (IM) anticipates that a plasma layer will be formed before it is recorded with an ionosonde or optical imager.
One-way absorber for linearly polarized electromagnetic wave utilizing composite metamaterial.
Zhao, Junming; Sun, Liang; Zhu, Bo; Feng, Yijun
2015-02-23
This paper presents the proposal and practical design of a one-way absorber for selective linearly polarized electromagnetic (EM) wave. The EM wave polarization rotation property has been combined with polarization selective absorption utilizing a composite metamaterial slab. The energy of certain linearly polarized EM wave can be absorbed along one particular incident direction, but will be fully transmitted through the opposite direction. For the cross polarized wave, the direction dependent propagation properties are totally reversed. A prototype designed with a total slab thickness of only one-sixth of the operating wavelength is verified through both full-wave simulation and experimental measurement in the microwave regime. It achieves absorption efficiency over 83% along one direction, while transmission efficiency over 83% along the opposite direction for one particular linearly polarized wave. The proposed one-way absorber can be applied in EM devices achieving asymmetric transmission for linearly polarized wave or polarization control. The composite metamaterial that combines different functionalities into one design may provide more potential in metamaterial designs for various applications.
Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma
Jia, Jieshu; Yuan, Chengxun Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang; Liu, Sha; Yue, Feng; Wu, Jian; Li, Hui
2016-04-15
The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.
Noncontact excitation of guided waves (A0 mode) using an electromagnetic acoustic transducer (EMAT)
NASA Astrophysics Data System (ADS)
Fromme, Paul
2016-02-01
Fatigue damage can develop in aircraft structures at locations of stress concentration, such as fasteners, and has to be detected before reaching a critical size to ensure safe aircraft operation. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Electromagnetic acoustic transducers (EMAT) for the noncontact excitation of guided ultrasonic waves were developed. The transducer development for the specific excitation of the A0 Lamb wave mode with an out-of-plane Lorentz force is explained. The achieved radial and angular dependency of the excited guided wave pulses were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed. The application of the developed transducers for defect detection in aluminum components using fully noncontact guided wave measurements was demonstrated. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer.
Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals
Foteinopoulou, Stavroula
2003-01-01
In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates with the observed
Electromagnetic scattering by underground targets using the cylindrical-wave approach
NASA Astrophysics Data System (ADS)
Frezza, Fabrizio; Pajewski, Lara; Ponti, Cristina; Schettini, Giuseppe
2010-05-01
The electromagnetic detection of buried cylindrical targets, as structures encountered in the inspection of archaeological sites, or pipes, conduits, and tunnels, has been recently addressed in several works. The development of techniques for investigating cylindrical inhomogeneities embedded in a dielectric medium, is a challenging topic also in several other applications, including non-destructive evaluation and testing in civil engineering, and medical imaging. Ground-penetrating radars (GPRs) are extremely useful in probing subsurface targets through electromagnetic waves. These tools solve an inverse problem, to estimate the electromagnetic properties of a target from field measurements. Different algorithms are employed to post-process the collected experimental data: most of them need a fast and accurate forward solver, to perform repeated evaluations of the scattered field due to known targets, and to be used in combination with some optimization techniques. In this paper, we present an efficient spectral-domain method that we developed for the solution of the two-dimensional electromagnetic plane-wave forward scattering by a finite set of perfectly-conducting or dielectric cylinders, buried in a dielectric half-space or in a finite-thickness slab. The technique is called Cylindrical-Wave Approach (CWA), because the field scattered by the targets is represented in terms of a superposition of cylindrical waves. Use is made of the plane-wave spectrum to take into account the interaction of such waves with the planar interfaces. Suitable reflected and transmitted cylindrical functions are defined; adaptive integration procedures of Gaussian type, together with acceleration algorithms, are employed for the numerical solution of the relevant spectral integrals. All the multiple-reflection phenomena are taken into account. The method may deal with both TM and TE polarization fields; it can be applied for arbitrary values of permittivity, radius, and depth, of the
NASA Astrophysics Data System (ADS)
Mulyani, O.; Hafizah, M. A. E.; Manaf, A.
2017-07-01
In this paper, electromagnetic wave absorbing characteristics of electrically conductive composites consisted of polyaniline (PANi) and nanoparticles of barium strontium titanate (BST) is described. The BST nanoparticles were synthesized by the mechanical alloying method and successive particle size reduction steps through high frequency ultrasonic irradiation treatments. Whereas polyaniline was produced by oxidative polymerization processes which allows efficient control of the dielectric properties. Mechanical alloying combined with ultrasonic irradiation treatments has resulted in BST powders with a mean particle size of a few nanometers (less than 100 nm). Such ultra-fine particles of BST were then used to synthesize the BST/PANi nanocomposites with 20:80, 50:50 and 80:20 compositions. The physical properties like particle sizes, dielectric constant, electromagnetic absorption characteristics are investigated by X-Ray Diffractometer, Fourier Transform Infrared, and Vector Network Analyzer. It was found that BST/polyaniline nanocomposite can enhance main properties of the electromagnetic absorber. The high dielectric constant of BST and conductivity of polyaniline support nanocomposite BST/polyaniline as electromagnetic absorber materials.
Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong
2012-12-01
Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.
NASA Astrophysics Data System (ADS)
Bagoly, Zsolt; Szécsi, Dorottya; Balázs, Lajos G.; Csabai, István; Horváth, István; Dobos, László; Lichtenberger, János; Tóth, L. Viktor
2016-09-01
Aims: The Fermi collaboration identified a possible electromagnetic counterpart of the gravitational wave event of September 14, 2015. Our goal is to provide an unsupervised data analysis algorithm to identify similar events in Fermi's Gamma-ray Burst Monitor CTTE data stream. Methods: We are looking for signals that are typically weak. Therefore, they can only be found by a careful analysis of count rates of all detectors and energy channels simultaneously. Our Automatized Detector Weight Optimization (ADWO) method consists of a search for the signal, and a test of its significance. Results: We developed ADWO, a virtual detector analysis tool for multi-channel multi-detector signals, and performed successful searches for short transients in the data-streams. We have identified GRB150522B, as well as possible electromagnetic candidates of the transients GW150914 and LVT151012. Conclusions: ADWO is an independently developed, unsupervised data analysis tool that only relies on the raw data of the Fermi satellite. It can therefore provide a strong, independent test to any electromagnetic signal accompanying future gravitational wave observations.
Three-Dimensional Transient Electromagnetic Modeling Based on Fictitious Wave Domain Methods
NASA Astrophysics Data System (ADS)
Ji, Yanju; Hu, Yanpu; Imamura, Naoto
2017-05-01
Finite-difference time domain (FDTD) methods, which have been widely employed in three-dimensional transient electromagnetic (TEM) modeling, require very small time steps to simulate the electromagnetic fields and this will be time consuming. We present an efficient numerical method for three-dimensional TEM forward modeling. Its key features are based on a correspondence principle between the diffusive and fictitious wave fields. The diffusive Maxwell's equations are transformed and solved in a so-called fictitious wave domain. This scheme allows larger time steps than conventional FDTD methods, allows including air layers, and allows simulating topography. The need for initial field calculations is avoided by including an electric current source in the governing equations. This also avoids a traditional assumption of a flat earth surface in TEM modeling. We test the accuracy of the electromagnetic fields' responses using our method with the spectral differential difference (SLDM) solutions. The results show good agreement even under the existence of air layers and topography in the model.
NASA Astrophysics Data System (ADS)
Yu, Miao; Yang, Pingan; Fu, Jie; Liu, Shuzhi; Qi, Song
2016-08-01
Magnetorheological (MR) materials are a class of materials whose mechanical and electrical properties can be reversible controlled by the magnetic field. In this study, we pioneered research on the effect of a uniform magnetic field with different strengths and directions on the microwave-absorbing properties of magnetorheological elastomers (MREs), in which the ferromagnetic particles are flower-like carbonyl iron powders (CIPs) prepared by an in situ reduction method. The electromagnetic (EM) absorbing properties of the composites have been analyzed by vector network analysis with the coaxial reflection/transmission technique. Under the magnetic field, the columnar or chainlike structures were formed, which allows EM waves to penetrate. Meanwhile, stronger Debye dipolar relaxation and attenuation constant have been obtained when changing the direction of the applied magnetic field. Compared with untreated MREs, not only have the minimum reflection loss (RL) and the effective absorption bandwidth (below -20 dB) greatly increased, the frequencies of the absorbing peaks shift about 15%. This suggests that MREs are a magnetic-field-sensitive electromagnetic wave-absorbing material and have great potential in applications such as in anti-radar camouflage, due to the fact that radar can continuously conduct detection at many electromagnetic frequencies, while the MR materials can adjust the microwave-absorption peak according to the radar frequency.
Statistical study of seismo-electromagnetic perturbations observed by the DEMETER wave instruments
NASA Astrophysics Data System (ADS)
Pisa, David; Santolik, Ondrej; Parrot, Michel
We present a statistical study of electromagnetic perturbations in the upper ionosphere observed by the DEMETER satellite (launched in 2004, altitude of orbit about 660 km, still operating). Data intervals measured within 330 km from large (M¿=5.0) surface (depth¡40 km) earthquakes are analyzed. Time intervals spanning from 5 days before to 3 days after the main shock are checked for the presence of seismo-electromagnetic effects, while the other data from the same geographical location are used in order to estimate the common, seismically unperturbed, background. Previous results in the VLF range (20 Hz -18 kHz) have shown that there is a statistically significant decrease of wave intensity shortly (less than 4 hours) before the time of the main shock. In this study all the available DEMETER data are used and all the frequency range from ULF to HF (DC -3.175 MHz) is covered. Various types of electromagnetic waves that could be responsible for this effect are discussed, as well as its dependence on the focal mechanism of an imminent earthquake.
Khizhnyak, E P; Ziskin, M C
1994-09-01
Distribution of millimeter wavelength electromagnetic energy absorption in surface layers of biological tissue models was studied using methods of Infrared Thermography. 0.1 mm thin-layer phantoms were irradiated in the near field using different types of horn antennas in the 37-78 GHz frequency range. Heating patterns were recorded during microwave irradiation, and surface SAR distributions were calculated. The temperature resolution was better than 0.05 K. It was found that horn antennas produced nonuniform heating patterns in irradiated objects. These nonuniform patterns were due to a geometrical resonance resulting from a secondary wave-mode interaction between an irradiated object and the corresponding critical cross-section of the horn antenna. Local SAR values in hot spots exceeded the spatially averaged values by over 10 times, and the widths of these hot spots at 5 times the average SAR were often 1 mm or less. The location, quantity, number and size of the local field absorption maxima of irradiated objects strongly depended on the frequency of electromagnetic irradiation, with equivalent Q-factors of 500 or more. These findings provide an explanation for a number of frequency-dependent effects of millimeter wave electromagnetic irradiation.
Computer-aided design-based high-frequency electromagnetic wave scattering from complex bodies
NASA Astrophysics Data System (ADS)
Baldauf, John Eric
1991-02-01
This work investigates the use of high frequency electromagnetic scattering techniques, such as the physical theory of diffraction (PTD) and the geometrical theory of diffraction (GTD) and the shooting and bouncing rays (SBR) method combined with computer aided design (CAD) compatible geometries, to perform the electromagnetic scattering analysis of complex arbitrary bodies. The use of CAD formats such as solid modelled bodies and bodies modelled with triangular patch surface elements allows the scattering analysis of arbitrary bodies which can be constructed using CAD packages. The scattering analyses are applied to radar cross section (RCS) problems, cavity radiation problems, and antenna pattern predictions of complex electrically large structures, thereby showing that it is feasible to accurately approximate the electromagnetic wave scattering from general complex bodies using CAD techniques and high frequency scattering techniques. First, the RCS of large targets which involve multiple geometric optics (GO) interactions are investigated by comparing the RCS calculated using CAD designed radar targets and the SBR method and PTD for targets such as trihedral corner reflectors and an idealized military vehicle model with the experimentally obtained RCS. The comparisons between the calculated and measured results demonstrate that the SBR and PTD can provide accurate approximations of the RCS for targets which have complex multiple GO interactions. Second, the problem of interior cavity radiation for closed cavities is approached using a ray tracing and GO method based on the SBR method and triangular surface patch described geometries. Comparisons between the ray-based calculations and more exact techniques such as the method of moments (MM) for two-dimensional cavities demonstrate that ray-based methods can provide good approximations for the field behavior inside of nonresonant cavities. A three-dimensional case is shown to demonstrate that this technique can be
Studies of electromagnetic ion cyclotron waves using AMPTE/CCE and dynamics explorer
NASA Technical Reports Server (NTRS)
Erlandson, Robert E.
1994-01-01
The overall objective of this research is to investigate the generation and propagation of electromagnetic ion cyclotron (EMIC) waves in the frequency range from 0.2 to 5 Hz (Pc 1 frequency band). Data used in this research were acquired by the AMPTE/CCE, DE-1, and DE-2 satellites. One of the primary questions addressed in this research is the role which EMIC waves have on the transfer of energy from the equatorial magnetosphere to the ionosphere. The primary result from this research is that some fraction of EMIC waves, generated in the equatorial magnetosphere, are Landau damped in the ionosphere and are therefore a heat source for ionospheric electrons. This result as well as other results are summarized below.