Science.gov

Sample records for electromagnetics electron cooling

  1. Electron cooling

    NASA Astrophysics Data System (ADS)

    Meshkov, I.; Sidorin, A.

    2004-10-01

    The brief review of the most significant and interesting achievements in electron cooling method, which took place during last two years, is presented. The description of the electron cooling facilities-storage rings and traps being in operation or under development-is given. The applications of the electron cooling method are considered. The following modern fields of the method development are discussed: crystalline beam formation, expansion into middle and high energy electron cooling (the Fermilab Recycler Electron Cooler, the BNL cooler-recuperator, cooling with circulating electron beam, the GSI project), electron cooling in traps, antihydrogen generation, electron cooling of positrons (the LEPTA project).

  2. Electron cooling of electron beams

    SciTech Connect

    Larson, D.J.

    1993-09-01

    Electron cooling of electron (and positron) sources may be important for future linear collider applications. In order to cool electrons with electrons, an intermediary positron beam must be employed, since it is impossible to merge two beams of identical particles into the cooling straight. By adjusting the beta functions of the electron and positron lattices appropriately, the final emittance of the stored electron beam can be made less than the emittance of the cooling electron beam. This paper will discuss accelerator physics issues relating to an electron-cooled electron beam source.

  3. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  4. Computational Electronics and Electromagnetics

    SciTech Connect

    DeFord, J.F.

    1993-03-01

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

  5. MEIC electron cooling program

    SciTech Connect

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is a high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.

  6. MEIC electron cooling program

    DOE PAGES

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is amore » high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less

  7. Electron Cooling of RHIC

    SciTech Connect

    I. Ben-Zvi; D.S. Barton; D.B. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X.Y. Chang; R. Connolly; Yu.I. Eidelman; A.V. Fedotov; W. Fischer; D.M. Gassner; H. Hahn; M. Harrison; A. Hershcovitch; H.-C. Hseuh; A.K. Jain; P.D.J. Johnson; D. Kayran; J. Kewisch; R.F. Lambiase; V. Litvinenko; W.W. MacKay; G.J. Mahler; N. Malitsky; G.T. McIntyre; W. Meng; K.A.M. Mirabella; C. Montag; T.C.N. Nehring; T. Nicoletti; B. Oerter; G. Parzen; D. Pate; J. Rank; T. Rao; T. Roser; T. Russo; J. Scaduto; K. Smith; D. Trbojevic; G. Wang; J. Wei; N.W.W. Williams; K.-C. Wu; V. Yakimenko; A. Zaltsman; Y. Zhao; D.T. Abell; D.L. Bruhwiler; H. Bluem; A. Burger; M.D. Cole; A.J. Favale; D. Holmes; J. Rathke; T. Schultheiss; A.M.M. Todd; A.V. Burov; S. Nagaitsev; J.R. Delayen; Y.S. Derbenev; L. W. Funk; P. Kneisel; L. Merminga; H.L. Phillips; J.P. Preble; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; J.S. Sekutowicz

    2005-05-16

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.agsrhichome.bnl.gov/eCool/.

  8. Computational electronics and electromagnetics

    SciTech Connect

    Shang, C. C.

    1997-02-01

    The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domain CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.

  9. Electron Cooling Study for MEIC

    SciTech Connect

    He, Zhang; Douglas, David R.; Derbenev, Yaroslav S.; Zhang, Yuhong

    2015-09-01

    Electron cooling of the ion beams is one critical R&D to achieve high luminosities in JLab's MEIC proposal. In the present MEIC design, a multi-staged cooling scheme is adapted, which includes DC electron cooling in the booster ring and bunched beam electron cooling in the collider ring at both the injection energy and the collision energy. We explored the feasibility of using both magnetized and non-magnetized electron beam for cooling, and concluded that a magnetized electron beam is necessary. Electron cooling simulation results for the newly updated MEIC design is also presented.

  10. Dynamical backaction cooling with free electrons

    NASA Astrophysics Data System (ADS)

    Niguès, A.; Siria, A.; Verlot, P.

    2015-09-01

    The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees of freedom down to the quantum ground state has generated considerable progress and perspectives in fundamental and technological science. These major advances have been essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of freedom in what is generally known as laser cooling. Here, we experimentally demonstrate the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic resonance. Using a focused electron beam, we report a 50-fold reduction of the motional temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of the electron beam and generalizes to any delayed and spatially confined interaction, with important consequences for near-field microscopy and fundamental nanoscale dissipation mechanisms.

  11. Dynamical backaction cooling with free electrons

    PubMed Central

    Niguès, A.; Siria, A.; Verlot, P.

    2015-01-01

    The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees of freedom down to the quantum ground state has generated considerable progress and perspectives in fundamental and technological science. These major advances have been essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of freedom in what is generally known as laser cooling. Here, we experimentally demonstrate the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic resonance. Using a focused electron beam, we report a 50-fold reduction of the motional temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of the electron beam and generalizes to any delayed and spatially confined interaction, with important consequences for near-field microscopy and fundamental nanoscale dissipation mechanisms. PMID:26381454

  12. Dynamical backaction cooling with free electrons.

    PubMed

    Niguès, A; Siria, A; Verlot, P

    2015-09-18

    The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees of freedom down to the quantum ground state has generated considerable progress and perspectives in fundamental and technological science. These major advances have been essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of freedom in what is generally known as laser cooling. Here, we experimentally demonstrate the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic resonance. Using a focused electron beam, we report a 50-fold reduction of the motional temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of the electron beam and generalizes to any delayed and spatially confined interaction, with important consequences for near-field microscopy and fundamental nanoscale dissipation mechanisms.

  13. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. PMID:27463670

  14. Electron microscopy of electromagnetic waveforms

    NASA Astrophysics Data System (ADS)

    Ryabov, A.; Baum, P.

    2016-07-01

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample’s oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available.

  15. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available.

  16. Power electronics cooling apparatus

    SciTech Connect

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  17. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  18. Cooling system for electronic components

    DOEpatents

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2016-05-17

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  19. Cooling system for electronic components

    SciTech Connect

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  20. Electronic cooling using thermoelectric devices

    SciTech Connect

    Zebarjadi, M.

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  1. Electronic cooling using thermoelectric devices

    NASA Astrophysics Data System (ADS)

    Zebarjadi, M.

    2015-05-01

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  2. Electron cooling experiments in CSR

    NASA Astrophysics Data System (ADS)

    Yang, XiaoDong; Li, Jie; Mao, LiJun; Li, GuoHong; Ma, XiaoMing; Yan, TaiLai; Mao, RuiShi; Yang, JianCheng; Yuan, YouJin; Parkhomchuk, Vasily; Reva, Vladimir

    2011-12-01

    The six species heavy ion beam was accumulated with the help of electron cooling in the main ring of Cooler Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR). The ion beam accumulation dependence on the parameters of cooler was investigated experimentally. The 400 MeV/u 12C6+ and 200 MeV/u 129Xe54+ were stored and cooled in the experimental ring CSRe, and the cooling force was measured in different conditions.

  3. Cooling Shelf For Electronic Equipment

    NASA Technical Reports Server (NTRS)

    Tanzer, Herbert J.

    1989-01-01

    Heat-pipe action cools and maintains electronics at nearly constant temperature. System designed to control temperatures of spacecraft shelves or baseplates by combining honeycomb sandwich panel with reservoir of noncondensable gas and processing resulting device as variable-conductance heat pipe. Device provides flat surface for mounting heat-dissipating electronics that is effectively cooled and maintained at nearly constant temperature. Potentially useful in freeze drying, refrigeration, and air conditioning.

  4. Energy Efficient Electronics Cooling Project

    SciTech Connect

    Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  5. Coherent electron cooling demonstration experiment

    SciTech Connect

    Litvinenko, V.N.; Belomestnykh, S.; Ben-Zvi, I.; Brutus, J.C.; Fedotov, A.; Hao, Y.; Kayran, D.; Mahler, G.; Marusic, A.; Meng, W.; McIntyre, G.; Minty, M.; Ptitsyn, V.; Pinayev, I.; Rao, T.; Roser, T.; Sheehy, B.; Tepikian, S.; Than, R.; Trbojevic, D.; Tuozzolo, J.; Wang, G.; Yakimenko, V.; Hutton, A.; Krafft, G.; Poelker, M.; Rimmer, R.; Bruhwiler, D.; Abell, D.T.; Nieter, C.; Ranjbar, V.; Schwartz, B.; Kholopov M.; Shevchenko, O.; McIntosh, P.; Wheelhouse, A.

    2011-09-04

    Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron-hadron and electron-hadron colliders. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using SRF linac. In this paper, we describe the setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC. We plan to complete the program in five years. During first two years we will build coherent electron cooler in IP2 of RHIC. In parallel we will develop complete package of computer simulation tools for the start-to-end simulation predicting exact performance of a CeC. The later activity will be the core of Tech X involvement into the project. We will use these tools to predict the performance of our CeC device. The experimental demonstration of the CeC will be undertaken in years three to five of the project. The goal of this experiment is to demonstrate the cooling of ion beam and to compare its measured performance with predictions made by us prior to the experiments.

  6. Improved cooling of electromagnetics by directed airflow

    NASA Astrophysics Data System (ADS)

    Fain, Adam Matthew

    The transformers in aircraft power conversion are often very heavy and represent a significant fuel or range penalty. Being thermally sized, improved cooling methods would allow downsizing and thereby reduced weight. Since the conductive paths in these metal "dense" devices are good, the controlling thermal resistance is typically the convective coefficient. The goal of this study was to optimize the convective air cooling across transformers by parametrically testing candidate shroud geometries to minimize average and hot spot surface temperatures with minimal fan power. A test set up was constructed that included a low velocity wind tunnel, fan, temperature and pressure sensors, DAQ system, and film heaters as well as the actual transformers. Experimental results from a low velocity wind tunnel were well predicted by CFD modeling, providing confidence in continued shroud development with only CFD or experimentally. Curved or bent types of shapes proved to be the most efficient shroud configurations in terms of maximizing heat transfer while reducing the energy requirement to achieve the desired level of cooling.

  7. VORPAL simulations relevant to coherent electron cooling

    SciTech Connect

    Bell,G.; Bruhwiler, D.; Sobol, A.; Ben-Zvi, I.; Litvinenko, V.; Derbenev, Y.

    2008-06-23

    Coherent electron cooling (CEC) [1] combines the best features of electron cooling and stochastic cooling, via free-electron laser technology [2], to offer the possibility of cooling high-energy hadron beams with order-of-magnitude shorter cooling times. Many technical difficulties must be resolved via full-scale 3D simulations, before the CEC concept can be validated experimentally. VORPAL is the ideal code for simulating the modulator and kicker regions, where the electron and hadron beams will co-propagate as in a conventional electron cooling section. Unlike previous VORPAL simulations [3] of electron cooling physics, where dynamical friction on the ions was the key metric, it is the details of the electron density wake driven by each ion in the modulator section that must be understood, followed by strong amplification in the FEL. We present some initial simulation results.

  8. Electron cooling device for TARN II

    SciTech Connect

    Tanabe, T.; Hirao, Y.; Honma, T.; Kodaira, M.; Noda, A.; Sato, K.; Sekiguchi, M.; Takanaka, M.; Tanaka, J.; Tsujikawa, H.

    1985-10-01

    Light to heavy ions accelerated by a synchrotron TARN II are planned to be cooled by the electron cooling method. A device to cool these ions up to energies of 200 MeV/A is under construction. The electron energies are variable from 15 to 120 keV and the maximum current density is 0.5 A/cmS. The length of interaction region between electrons and ions is about 1.5 m. Design of the electron guiding coils and high voltage system is described as well as the calculated electron trajectories. The status and prospect for the cooling project are given.

  9. Towards demonstration of electron cooling with bunched electron beam

    SciTech Connect

    Fedotov, A.

    2012-01-11

    All electron cooling systems which were in operation so far employed electron beam generated with an electrostatic electron gun in DC operating mode, immersed in a longitudinal magnetic field. At low energies magnetic field is also being used to transport electron beam through the cooling section from the gun to the collector. At higher energies (few MeV), it was shown that one can have simpler electron beam transport without continuous magnetic field. Because of a rather weak magnetic field on the cathode and in the cooling section the latter approach was referred to as 'non-magnetized cooling', since there was no suppression of the transverse angular spread of the electron beam with the magnetic field in the cooling section. Such a cooler successfully operated at FNAL (2005-11) at electron beam energy of 4.3 MeV. Providing cooling at even higher energies would be easier with RF acceleration of electron beam, and thus using bunched electron beam for cooling. Significant efforts were devoted to explore various aspects of such bunched electron beam cooling as part of R and D of high-energy electron cooling for RHIC. However, experimental studies of such cooling are still lacking. Establishing this technique experimentally would be extremely useful for future high-energy applications. Presently there is an ongoing effort to build Proof-of-Principle (PoP) experiment of Coherent Electron Cooling (CEC) at RHIC, which promises to be superior to conventional electron cooling for high energies. Since the CEC experiment is based on bunched electron beam and it has sections where electron beam co-propagates with the ion beam at the same velocity, it also provides a unique opportunity to explore experimentally conventional electron cooling but for the first time with a bunched electron beam. As a result, it allows us to explore techniques needed for the high-energy electron cooling such as 'painting' with a short electron beam and control of ion beam distribution under

  10. MEIC Electron Cooling Simulation Using Betacool

    SciTech Connect

    Zhang, He; Zhang, Yuhong

    2013-12-01

    Electron cooling of ion beams is the most critical R&D issue in Jefferson Lab's MEIC design. In the ion collider ring, a bunched electron beam driven by an energy-recovery SRF linac assisted by a circulate ring will be employed to cool protons or ions with energies up to 100 GeV/u, a parameter regime that electron cooling has never been applied. It is essential to understand how efficient the electron cooling is, particularly in the high energy range, to confirm the feasibility of the design. Electron cooling is also important in LEIC design although the ion energy is 25 GeV/u, lower than MEIC. In this paper, we will present first results of the simulation studies of electron cooling processes in the collider ring of both MEIC and LEIC using BETACOOL code.

  11. VORPAL Simulations Relevant to Coherent Electron Cooling

    SciTech Connect

    Bell, G.I.; Bruhwiler, D.L.; Sobol, A.V.; Ben-Zvi, Ilan; Litvinenko, Vladimir; Derbenev, Yaroslav

    2008-07-01

    Coherent electron cooling (CEC)* combines the best features of electron cooling and stochastic cooling, via free-electron laser technology**, to offer the possibility of cooling high-energy hadron beams with order-of-magnitude shorter cooling times. Many technical difficulties must be resolved via full-scale 3D simulations, before the CEC concept can be validated experimentally. VORPAL is the ideal code for simulating the â modulatorâ and â kickerâ regions, where the electron and hadron beams will co-propagate as in a conventional electron cooling section. Unlike previous VORPAL simulations*** of electron cooling physics, where dynamical friction on the ions was the key metric, it is the details of the electron density wake driven by each ion in the modulator section that must be understood, followed by strong amplification in the FEL. We present some initial simulation results. In particular, we compare the semi-analytic binary collision model with electrostatic particle-in-cell (PIC).

  12. Classical electromagnetic radiation of the Dirac electron

    NASA Technical Reports Server (NTRS)

    Lanyi, G.

    1973-01-01

    A wave-function-dependent four-vector potential is added to the Dirac equation in order to achieve conservation of energy and momentum for a Dirac electron and its emitted electromagnetic field. The resultant equation contains solutions which describe transitions between different energy states of the electron. As a consequence it is possible to follow the space-time evolution of such a process. This evolution is shown in the case of the spontaneous emission of an electromagnetic field by an electron bound in a hydrogen-like atom. The intensity of the radiation and the spectral distribution are calculated for transitions between two eigenstates. The theory gives a self-consistent deterministic description of some simple radiation processes without using quantum electrodynamics or the correspondence principle.

  13. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    SciTech Connect

    Seletskiy, Sergei M.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  14. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used

  15. DETAILED STUDIES OF ELECTRON COOLING FRICTION FORCE.

    SciTech Connect

    FEDOTOV, A.V.; BRUHWILER, D.L.; ABELL, D.T.; SIDORIN, A.O.

    2005-09-18

    High-energy electron cooling for RHIC presents many unique features and challenges. An accurate estimate of the cooling times requires detailed simulation of the electron cooling process. The first step towards such calculations is to have an accurate description of the cooling force. Numerical simulations are being used to explore various features of the friction force which appear due to several effects, including the anisotropy of the electron distribution in velocity space and the effect of a strong solenoidal magnetic field. These aspects are being studied in detail using the VORFAL code, which explicitly resolves close binary collisions. Results are compared with available asymptotic and empirical formulas and also, using the BETACOOL code, with direct numerical integration of less approximate expressions over the specified electron distribution function.

  16. ELECTRON COOLING IN THE RECYCLER COOLER

    SciTech Connect

    SHEMYAKIN,A.; PROST, L.R.; FEDOTOV, A.; SIDORIN, A.

    2007-09-10

    A 0.1-0.5 A, 4.3 MeV DC electron beam provides cooling of 8 GeV antiprotons in Fermilab's Recycler storage ring. The most detailed information about the cooling properties of the electron beam comes from drag rate measurements. We find that the measured drag rate can significantly differ from the cooling force experienced by a single antiproton because the area of effective cooling is significantly smaller than the physical size of the electron beam and is comparable with the size of the antiproton beam used as a probe. Modeling by the BETACOOL code supports the conclusion about a large radial gradient of transverse velocities in the presently used electron beam.

  17. Simulation study of electron response amplification in coherent electron cooling

    SciTech Connect

    Hao Y.; Litvinenko, V.N.

    2012-05-20

    In Coherent Electron Cooling (CEC), it is essential to study the amplification of electron response to a single ion in the FEL process, in order to proper align the electron beam and the ion beam in the kicker to maximize the cooling effect. In this paper, we use Genesis to simulate the amplified electron beam response of single ion in FEL amplification process, which acts as Green's function of the FEL amplifier.

  18. HIRFL-CSR electron cooling devices

    NASA Astrophysics Data System (ADS)

    Yang, X. D.; Zhao, H. W.; Xia, J. W.; Zhan, W. L.; Wei, B. W.; Parkhomchuk, V. V.

    2001-12-01

    Electron cooling devices for HIRFL-CSR were under construction through collaboration between BINP and IMP [1]. The main parameters, design points and progress of the cooler devices will be presented. The electron motions in the gun region, adiabatic expansion region, toroid region and collector region were simulated with the help of numerical calculation. Cooling times of the typical heavy ions with injection energy were calculated with aid of the code. The prototypes of solenoid coils at the cooling section were fabricated and measured, the results show that the transverse components of the magnetic field for single coil is less than 2×10-4.

  19. Thermoelectric Devices Cool, Power Electronics

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Nextreme Thermal Solutions Inc., based in Research Triangle Park, North Carolina, licensed thermoelectric technology from NASA s Jet Propulsion Laboratory. This has allowed the company to develop cutting edge, thin-film thermoelectric coolers that effective remove heat generated by increasingly powerful and tightly packed microchip components. These solid-state coolers are ideal solutions for applications like microprocessors, laser diodes, LEDs, and even potentially for cooling the human body. Nextreme s NASA technology has also enabled the invention of thermoelectric generators capable of powering technologies like medical implants and wireless sensor networks.

  20. Methods and apparatus for cooling electronics

    DOEpatents

    Hall, Shawn Anthony; Kopcsay, Gerard Vincent

    2014-12-02

    Methods and apparatus are provided for choosing an energy-efficient coolant temperature for electronics by considering the temperature dependence of the electronics' power dissipation. This dependence is explicitly considered in selecting the coolant temperature T.sub.0 that is sent to the equipment. To minimize power consumption P.sub.Total for the entire system, where P.sub.Total=P.sub.0+P.sub.Cool is the sum of the electronic equipment's power consumption P.sub.0 plus the cooling equipment's power consumption P.sub.Cool, P.sub.Total is obtained experimentally, by measuring P.sub.0 and P.sub.Cool, as a function of three parameters: coolant temperature T.sub.0; weather-related temperature T.sub.3 that affects the performance of free-cooling equipment; and computational state C of the electronic equipment, which affects the temperature dependence of its power consumption. This experiment provides, for each possible combination of T.sub.3 and C, the value T.sub.0* of T.sub.0 that minimizes P.sub.Total. During operation, for any combination of T.sub.3 and C that occurs, the corresponding optimal coolant temperature T.sub.0* is selected, and the cooling equipment is commanded to produce it.

  1. Power electronics substrate for direct substrate cooling

    DOEpatents

    Le, Khiet; Ward, Terence G.; Mann, Brooks S.; Yankoski, Edward P.; Smith, Gregory S.

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  2. Toward multi-GeV electron cooling

    SciTech Connect

    Larson, D.J.; Cline, D.B.; Anderson, D.R.; Adney, J.R.; Sundquist, M.L.; Mills, F.E.

    1986-10-15

    We discuss progress being made in the development of an ampere intensity MeV recirculating electron beam system. The system is presently intended for the upgrading of antiproton sources, but is also ideally suited for ion beam cooling in the GeV energy range. We present results of a theoretical study applying intermediate energy electron cooling in to the Fermilab antiproton source, a brief overview of the design of the electron cooler, and discuss progress on the assembly and test of the system.

  3. Method of fabricating a cooled electronic system

    DOEpatents

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2014-02-11

    A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  4. Single Pass Electron Cooling Simulations for MEIC

    SciTech Connect

    Bell, G. I.; Pogorelov, I. V.; Schwartz, B. T.; Zhang, Yuhong; Zhang, He

    2013-12-01

    Cooling of medium energy protons is critical for the proposed Jefferson Lab Medium Energy Ion Collider (MEIC). We present simulations of electron cooling of protons up to 60 GeV. In the beam frame in which the proton and electrons are co-propagating, their motion is non-relativistic. We use a binary collision model which treats the cooling process as the sum of a large number of two-body collisions which are calculated exactly. This model can treat even very close collisions between an electron and ion with high accuracy. We also calculate dynamical friction using a delta-f PIC model. The code VSim (formerly Vorpal) is used to perform the simulations. We compare the friction rates with that obtained by a 3D integral over electron velocities which is used by BETACOOL.

  5. Direct-Cooled Power Electronics Substrate

    SciTech Connect

    Wiles, R.; Ayers, C.; Wereszczak, A.

    2008-12-23

    The goal of the Direct-Cooled Power Electronics Substrate project is to reduce the size and weight of the heat sink for power electronics used in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs). The concept proposed in this project was to develop an innovative power electronics mounting structure, model it, and perform both thermal and mechanical finite-element analysis (FEA). This concept involved integrating cooling channels within the direct-bonded copper (DBC) substrate and strategically locating these channels underneath the power electronic devices. This arrangement would then be directly cooled by water-ethylene glycol (WEG), essentially eliminating the conventional heat sink and associated heat flow path. The concept was evaluated to determine its manufacturability, its compatibility with WEG, and the potential to reduce size and weight while directly cooling the DBC and associated electronics with a coolant temperature of 105 C. This concept does not provide direct cooling to the electronics, only direct cooling inside the DBC substrate itself. These designs will take into account issues such as containment of the fluid (separation from the electronics) and synergy with the whole power inverter design architecture. In FY 2008, mechanical modeling of substrate and inverter core designs as well as thermal and mechanical stress FEA modeling of the substrate designs was performed, along with research into manufacturing capabilities and methods that will support the substrate designs. In FY 2009, a preferred design(s) will be fabricated and laboratory validation testing will be completed. In FY 2010, based on the previous years laboratory testing, the mechanical design will be modified and the next generation will be built and tested in an operating inverter prototype.

  6. Laser cooling via excitation of localized electrons

    NASA Astrophysics Data System (ADS)

    Emin, David

    2007-07-01

    Under appropriate conditions, absorption of light by a solid can initiate a process by which it is cooled. In particular, energy is extracted from a material when its absorption of a photon is followed by emission of a photon of higher energy. This up-conversion requires some of the solid’s electrons to garner energy from atomic vibrations. Here, two schemes for laser cooling via localized electronic states are addressed. The first scheme utilizes the ground state and an excited state of a localized center. In this two-level scheme, the cooling process is initiated with photon absorption in the extreme low-energy tail of a localized state’s vibrationally broadened absorption spectrum. The subsequent atomic relaxation transfers energy of especially large vibratory atomic strains into electrical energy that is then extracted via photon emission. The second scheme involves the ground state and two excited states of a localized center. Cooling is facilitated when (i) the photoexcitation of an electron from its ground state to the lower excited level is followed by (ii) electron-phonon-induced promotion to the uppermost level and the subsequent (iii) return of the electron to its ground state with emission of a photon of higher energy than that of the absorbed photon. However, competing relaxation processes contribute to heating. The net cooling power per unit volume is maximized for both schemes, thereby determining characteristics of localized electronic systems that foster optical cooling. The cooling power per unit volume is greatest at high temperatures and falls rapidly as the thermal energy is reduced below each system’s luminescence Stokes shift. Moreover, cooling via the three-level scheme is most effective when (i) the energy separation between excited states is smaller than the thermal energy and (ii) the degeneracy of the highest-lying excited state is much larger than that of the center’s middle level. These restrictive conditions appear to be

  7. Analytical studies of coherent electron cooling

    SciTech Connect

    Wang,G.; Blaskiewicz, M.; Litvinenko, V.N.

    2009-05-04

    Under certain assumptions and simplifications, we studied a few physics processes of Coherent Electron Cooling using analytical approach. In the modulation process, the effect due to merging the ion beam with the electron beam is studied under single kick approximation. In the free electron laser (FEL) amplifier, we studied the amplification of the electron density modulation using 1D analytical approach. Both the electron charge density and the phase space density are derived in the frequency domain. The solutions are then transformed into the space domain through Fast Fourier Transformation (FFT).

  8. Runaway electron generation in a cooling plasma

    SciTech Connect

    Smith, H.; Helander, P.; Eriksson, L.-G.; Fueloep, T.

    2005-12-15

    The usual calculation of Dreicer [Phys. Rev. 115, 238 (1959); 117, 329 (1960)] generation of runaway electrons assumes that the plasma is in a steady state. In a tokamak disruption this is not necessarily true since the plasma cools down quickly and the collision time for electrons at the runaway threshold energy can be comparable to the cooling time. The electron distribution function then acquires a high-energy tail which can easily be converted to a burst of runaways by the rising electric field. This process is investigated and simple criteria for its importance are derived. If no rapid losses of fast electrons occur, this can be a more important source of runaway electrons than ordinary Dreicer generation in tokamak disruptions.

  9. Electron cooling rates characterization at Fermilab's Recycler

    SciTech Connect

    Prost, Lionel R.; Shemyakin, A.; /Fermilab

    2007-06-01

    A 0.1 A, 4.3 MeV DC electron beam is routinely used to cool 8 GeV antiprotons in Fermilab's Recycler storage ring [1]. The primary function of the electron cooler is to increase the longitudinal phase-space density of the antiprotons for storing and preparing high-density bunches for injection into the Tevatron. The longitudinal cooling rate is found to significantly depend on the transverse emittance of the antiproton beam. The paper presents the measured rates and compares them with calculations based on drag force data.

  10. Electronic systems failures and anomalies attributed to electromagnetic interference

    NASA Technical Reports Server (NTRS)

    Leach, R. D. (Editor); Alexander, M. B. (Editor)

    1995-01-01

    The effects of electromagnetic interference can be very detrimental to electronic systems utilized in space missions. Assuring that subsystems and systems are electrically compatible is an important engineering function necessary to assure mission success. This reference publication will acquaint the reader with spacecraft electronic systems failures and anomalies caused by electromagnetic interference and will show the importance of electromagnetic compatibility activities in conjunction with space flight programs. It is also hoped that the report will illustrate that evolving electronic systems are increasingly sensitive to electromagnetic interference and that NASA personnel must continue to diligently pursue electromagnetic compatibility on space flight systems.

  11. Potential Refrigerants for Power Electronics Cooling

    SciTech Connect

    Starke, M.R.

    2005-10-24

    In the past, automotive refrigerants have conventionally been used solely for the purpose of air conditioning. However, with the development of hybrid-electric vehicles and the incorporation of power electronics (PEs) into the automobile, automotive refrigerants are taking on a new role. Unfortunately, PEs have lifetimes and functionalities that are highly dependent on temperature and as a result thermal control plays an important role in the performance of PEs. Typically, PEs are placed in the engine compartment where the internal combustion engine (ICE) already produces substantial heat. Along with the ICE heat, the additional thermal energy produced by PEs themselves forces designers to use different cooling methods to prevent overheating. Generally, heat sinks and separate cooling loops are used to maintain the temperature. Disturbingly, the thermal control system can consume one third of the total volume and may weigh more than the PEs [1]. Hence, other avenues have been sought to cool PEs, including submerging PEs in automobile refrigerants to take advantage of two-phase cooling. The objective of this report is to explore the different automotive refrigerants presently available that could be used for PE cooling. Evaluation of the refrigerants will be done by comparing environmental effects and some thermo-physical properties important to two-phase cooling, specifically measuring the dielectric strengths of potential candidates. Results of this report will be used to assess the different candidates with good potential for future use in PE cooling.

  12. Cooling of electronics in collider experiments

    SciTech Connect

    Richard P. Stanek et al.

    2003-11-07

    Proper cooling of detector electronics is critical to the successful operation of high-energy physics experiments. Collider experiments offer unique challenges based on their physical layouts and hermetic design. Cooling systems can be categorized by the type of detector with which they are associated, their primary mode of heat transfer, the choice of active cooling fluid, their heat removal capacity and the minimum temperature required. One of the more critical detector subsystems to require cooling is the silicon vertex detector, either pixel or strip sensors. A general design philosophy is presented along with a review of the important steps to include in the design process. Factors affecting the detector and cooling system design are categorized. A brief review of some existing and proposed cooling systems for silicon detectors is presented to help set the scale for the range of system designs. Fermilab operates two collider experiments, CDF & D0, both of which have silicon systems embedded in their detectors. A review of the existing silicon cooling system designs and operating experience is presented along with a list of lessons learned.

  13. Effect of cooling rate on structural and electromagnetic properties of high-carbon ferrochrome powders

    NASA Astrophysics Data System (ADS)

    Yang, Jian-ping; Chen, Jin; Hao, Jiu-jiu; Guo, Li-na; Liu, Jin-ying

    2016-03-01

    The structural and electromagnetic properties of high-carbon ferrochrome powders (HCFCP) obtained at different cooling rates were respectively investigated by means of optical microscope, X-ray diffractometer, electron probe as well as the vector network analyzer in the frequency range of 1-18 GHz. The results show that the cell structure of main phase, (Cr,Fe)7C3, transforms from hexagonal to orthogonal with the improvement of cooling rate. Meanwhile the mass ratio of Cr to Fe in (Cr,Fe)7C3 gradually declines, while that for CrFe goes up. Both the real part and the imaginary part of relative complex permittivity of HCFCP are in an increasing order with cooling rate rising in most frequencies. For comparison, the relative complex permeability presents an opposite changing tendency. The peaks of the imaginary part of relative complex permeability appearing in low and high frequencies are attributed to nature resonance. The reflection loss of HCFCP gradually decreases as cooling rate reduces and frequency enhances. At 2.45 GHz, the algebraic sum of dielectric loss factor and magnetic loss factor increases first and then decreases in the temperature extent from 298 K to 1273 K.

  14. Two-Beam Instability in Electron Cooling

    SciTech Connect

    Burov, Alexey V.; /Fermilab

    2006-04-01

    The drift motion of cooling electrons makes them able to respond to transverse perturbations of a cooled ion beam. This response may lead to dipole or quadrupole transverse instabilities at specific longitudinal wave numbers. While the dipole instabilities can be suppressed by a combination of the Landau damping, machine impedance, and the active damper, the quadrupole and higher order modes can lead to either emittance growth, or a lifetime degradation, or both. The growth rates of these instabilities are strongly determined by the machine x-y coupling. Thus, tuning out of the coupling resonance and/or reduction of the machine coupling can be an efficient remedy for these instabilities.

  15. ELECTRON COOLING SIMULATION FOR ARBITRARY DISTRIBUTION OF ELECTRONS

    SciTech Connect

    SIDORIN,A.; SMIRNOV, A.; FEDOTOV, A.; BEN-ZVI, I.; KAYRAN, D.

    2007-09-10

    Typically, several approximations are being used in simulation of electron cooling process, for example, density distribution of electrons is calculated using an analytical expression and distribution in the velocity space is assumed to be Maxwellian in all degrees of freedom. However, in many applications, accurate description of the cooling process based on realistic distribution of electrons is very useful. This is especially true for a high-energy electron cooling system which requires bunched electron beam produced by an Energy Recovery Linac (Em). Such systems are proposed, for instance, for RHIC and electron - ion collider. To address unique features of the RHIC-I1 cooler, new algorithms were introduced in BETACOOL code which allow us to take into account local properties of electron distribution as well as calculate friction force for an arbitrary velocity distribution. Here, we describe these new numerical models. Results based on these numerical models are compared with typical approximations using electron distribution produced by simulations of electron bunch through ERL of RHIC-II cooler.

  16. Electron cooling device without bending magnets

    NASA Astrophysics Data System (ADS)

    Sharapa, A. N.; Shemyakin, A. V.

    1993-11-01

    The scheme of an axisymmetric electron cooling device without bending magnets is proposed. Solutions for the most important elements, i.e., a gun and a recuperator, are considered. The main characteristics of the recuperator of the Faraday cup type having a reflector and a gun with a ring emitter are explored. In the gun, the beam is formed, the diameter of which is 40 mm and the dimension of a disturbance region is several millimeters.

  17. Controlled cooling of an electronic system for reduced energy consumption

    DOEpatents

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  18. Electromagnetic Dissociation and Spacecraft Electronics Damage

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2016-01-01

    When protons or heavy ions from galactic cosmic rays (GCR) or solar particle events (SPE) interact with target nuclei in spacecraft, there can be two different types of interactions. The more familiar strong nuclear interaction often dominates and is responsible for nuclear fragmentation in either the GCR or SPE projectile nucleus or the spacecraft target nucleus. (Of course, the proton does not break up, except possibly to produce pions or other hadrons.) The less familiar, second type of interaction is due to the very strong electromagnetic fields that exist when two charged nuclei pass very close to each other. This process is called electromagnetic dissociation (EMD) and primarily results in the emission of neutrons, protons and light ions (isotopes of hydrogen and helium). The cross section for particle production is approximately defined as the number of particles produced in nucleus-nucleus collisions or other types of reactions. (There are various kinematic and other factors which multiply the particle number to arrive at the cross section.) Strong, nuclear interactions usually dominate the nuclear reactions of most interest that occur between GCR and target nuclei. However, for heavy nuclei (near Fe and beyond) at high energy the EMD cross section can be much larger than the strong nuclear interaction cross section. This paper poses a question: Are there projectile or target nuclei combinations in the interaction of GCR or SPE where the EMD reaction cross section plays a dominant role? If the answer is affirmative, then EMD mechanisms should be an integral part of codes that are used to predict damage to spacecraft electronics. The question can become more fine-tuned and one can ask about total reaction cross sections as compared to double differential cross sections. These issues will be addressed in the present paper.

  19. Adiabatic cooling of solar wind electrons

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil

    1992-01-01

    In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.

  20. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    DOEpatents

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-04-05

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  1. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    DOEpatents

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-08-09

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  2. Stimulated electromagnetic interactions in spatiotemporally gyrating relativistic electron beams

    SciTech Connect

    Davies, J.A.; Chen, C.

    1999-07-01

    One possible method to significantly widen the band-widths of present gyroklystron amplifiers is to utilize extended interaction structures in the input sections, the buncher sections and the output sections, in conjunction with stagger tuning. Through extended interactions, however, electron beams can undergo stimulated electromagnetic interactions, causing multimode excitations. In this paper, the authors investigate stimulated electromagnetic interactions in relativistic electron beams gyrating in an externally applied uniform magnetic field. The electron gyrophases are assumed to have strong spatiotemporal correlations. By applying Vlassor-Maxwell equations together with Lorentz transformations, they obtain the general dispersion relation for electromagnetic and electrostatic wave perturbations on the electron beam for this system. The dispersion relation is used to analyze a variety of stimulated electromagnetic interactions on such electron beams. Results of these analyses are discussed.

  3. High perveance electron gun for the electron cooling system

    NASA Astrophysics Data System (ADS)

    Korotaev, Yu; Meshkov, I.; Petrov, A.; Sidorin, A.; Smirnov, A.; Syresin, E.; Titkova, I.

    2000-02-01

    The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 μA/ V3/2, Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual).

  4. Controlled cooling of an electronic system based on projected conditions

    SciTech Connect

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  5. Controlled cooling of an electronic system based on projected conditions

    DOEpatents

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-05-17

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  6. ELECTRON COOLING AND ELECTRON-ION COLLIDERS AT BNL.

    SciTech Connect

    BEN-ZVI,I.

    2007-10-03

    Superconducting Energy Recovery Linacs (ERL) have significant potential uses in various fields, including High Energy Physics and Nuclear Physics. Brookhaven National Laboratory (BNL) is pursuing some of the potential applications in this area and the technology issues that are associated with these applications. The work addressed in this paper is carried out at BNL towards applications in electron cooling of high-energy hadron beams and electron-nucleon colliders. The common issues for these applications are the generation of high currents of polarized or high-brightness unpolarized electrons, high-charge per bunch and high-current. One must address the associated issue of High-Order Modes generation and damping. Superconducting ERLs have great advantages for these applications as will be outlined in the text.

  7. Electron Cooling of Highly Charged Ions in Penning Traps

    SciTech Connect

    Zwicknagel, Guenter

    2006-10-18

    For recent and planned experiments like the CPT-tests with antihydrogen at CERN (ATHENA, ATRAP) or the QED-tests and various other investigations with slow highly charged ions at GSI (HTTRAP), the ions or antiprotons are cooled with electrons or positrons in Penning traps. In many of these applications an efficient and fast cooling is crucial. In particular for electron cooling of highly charged ions, like e.g. of U92+ in HITRAP, sufficiently large cooling rates are mandatory for avoiding too much losses by recombination or charge exchange processes. Here we present calculations of electron cooling and recombination losses of an ensemble of ions in a Penning traps based on a detailed description of the cooling force and the actual radiative ion-electron recombination rate. We focus on the cooling of highly charged ions, namely bare Uranium, in HITRAP. Both the associated cooling times and recombination losses strongly depend on the density of the electrons and the ratio of the number of ions to the number of electrons in the trap. Our analysis shows that electron cooling of bare Uranium with an initial energy of a few keV/u is feasible with a cooling time less than about a second at less than 10 percent recombination losses.

  8. Field measurements in the Fermilab electron cooling solenoid prototype

    SciTech Connect

    A. C. Crawford et al.

    2003-10-02

    To increase the Tevatron luminosity, Fermilab is developing a high-energy electron cooling system [1] to cool 8.9-GeV/c antiprotons in the Recycler ring. The schematic layout of the Recycler Electron Cooling (REC) system is shown in Figure 1. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through a cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 10{sup -4} rad, the cooling section will be immersed into a solenoidal field of 50-150G. As part of the R&D effort, a cooling section prototype consisting of 9 modules (90% of the total length of a future section) was assembled and measured. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of solenoid prototype field measurements. The design of the cooling section solenoid is discussed in Chapter 2. Chapter 3 describes details of a dedicated measurement system, capable of measuring small transverse field components, while the system's measurement errors are analyzed in Chapter 4. Chapter 5 contains measured field distributions of individual elements of the cooling section as well as an evaluation of the magnetic shielding efficiency. An algorithm of field adjustments for providing lowest possible electron trajectory perturbations is proposed in Chapter 6; also, this chapter shows the results of our first attempts of implementing the algorithm.

  9. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  10. News in Electron Cooling: Highlights from ECOOL'99

    SciTech Connect

    Reistad, D.

    2000-12-31

    A Workshop on Electron Cooling and Related Topics was organized in Uppsala, Sweden, from 19 to 22 May 1999. The workshop, which incorporated the 5th Workshop on Medium Energy Electron Cooling, included papers on theory, technology, limitations and applications of electron cooling as well as papers on laser cooling and stochastic pre-cooling. The last day of the workshop was devoted to so-called Medium (2<{gamma}<20, i.e. FNAL Recycler and DESY PETRA) and High (i.e. DESY HERA) Energy Electron Cooling. Reports on measurements and achievements made at a number of electron cooling facilities, including the most recently completed ones, i.e. at SIS (GSI, Darmstadt) and at AD (CERN), were given. There were also reports on electron coolers under construction at the National Institute of Radiological Science (NIRS) at Chiba in Japan and at the Heavy Ion Research Facility (HIRFL) in Lanzhou, China. Work on medium- and high-energy electron cooling at FNAL, DESY, and JINR was presented.

  11. Recent Advance in Thermoelectric Devices for Electronics Cooling

    NASA Astrophysics Data System (ADS)

    Wang, Peng

    Thermal management of on-chip hot spot, with a heat flux of around 1000 W/cm2, has become one of the major challenges in the development of next-generation microprocessors. Solid state thermoelectric cooler (TEC) offers great promise for hot spot thermal management because of their compact structure, fast response, high reliability, localized cooling, and high flux removal capability. To date TEC has received great attentions in electronics cooling community as one of the potential hot spot cooling solutions. In this paper, recent development and application of hot spot cooling strategies based on micro thermoelectric technologies will be reviewed and discussed, three hot spot cooling concepts, including thinfilm thermoelectric cooling, mini-contact cooling, and semiconductor selfcooling in silicon substrate and germanium substrate will be discussed. The advantages and disadvantages of these on-chip cooling solutions for high flux hot spots will be evaluated.

  12. Emittance Reduction between EBIS LINAC and Booster by Electron Beam Cooling; Is Single Pass Cooling Possible?

    SciTech Connect

    Hershcovitch,A.

    2008-04-01

    Electron beam cooling is examined as an option to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster. Electron beam parameters are based on experimental data (obtained at BNL) of electron beams extracted from a plasma cathode. Preliminary calculations indicate that single pass cooling is feasible; momentum spread can be reduced by more than an order of magnitude in less than one meter.

  13. PROGRESS OF HIGH-ENERGY ELECTRON COOLING FOR RHIC.

    SciTech Connect

    FEDOTOV,A.V.

    2007-09-10

    The fundamental questions about QCD which can be directly answered at Relativistic Heavy Ion Collider (RHIC) call for large integrated luminosities. The major goal of RHIC-I1 upgrade is to achieve a 10 fold increase in luminosity of Au ions at the top energy of 100 GeV/nucleon. Such a boost in luminosity for RHIC-II is achievable with implementation of high-energy electron cooling. The design of the higher-energy cooler for RHIC-II recently adopted a non-magnetized approach which requires a low temperature electron beam. Such electron beams will be produced with a superconducting Energy Recovery Linac (ERL). Detailed simulations of the electron cooling process and numerical simulations of the electron beam transport including the cooling section were performed. An intensive R&D of various elements of the design is presently underway. Here, we summarize progress in these electron cooling efforts.

  14. Electron cooling for low-energy RHIC program

    SciTech Connect

    Fedotov, A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pendzick, A.; Satogata, T.

    2009-08-31

    Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon. Providing collisions at such energies, termed RHIC 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of critical point on the QCD phase diagram. The electron cooling system should deliver electron beam of required good quality over energies of 0.9-5 MeV. Several approaches to provide such cooling were considered. The baseline approach was chosen and design work started. Here we describe the main features of the cooling system and its expected performance. We have started design work on a low-energy RHIC electron cooler which will operate with kinetic electron energy range 0.86-2.8 (4.9) MeV. Several approaches to an electron cooling system in this energy range are being investigated. At present, our preferred scheme is to transfer the Fermilab Pelletron to BNL after Tevatron shutdown, and to use it for DC non-magnetized cooling in RHIC. Such electron cooling system can significantly increase RHIC luminosities at low-energy operation.

  15. Electromagnetic solitary pulses in a magnetized electron-positron plasma

    SciTech Connect

    Shukla, P. K.; Eliasson, B.; Stenflo, L.

    2011-03-15

    A theory for large amplitude compressional electromagnetic solitary pulses in a magnetized electron-positron (e-p) plasma is presented. The pulses, which propagate perpendicular to the external magnetic field, are associated with the compression of the plasma density and the wave magnetic field. Here the solitary wave magnetic field pressure provides the restoring force, while the inertia comes from the equal mass electrons and positrons. The solitary pulses are formed due to a balance between the compressional wave dispersion arising from the curl of the inertial forces in Faraday's law and the nonlinearities associated with the divergence of the electron and positron fluxes, the nonlinear Lorentz forces, the advection of the e-p fluids, and the nonlinear plasma current densities. The compressional solitary pulses can exist in a well-defined speed range above the Alfven speed. They can be associated with localized electromagnetic field excitations in magnetized laboratory and space plasmas composed of electrons and positrons.

  16. Electromagnetic interactions between a fast electron beam and metamaterial cloaks.

    PubMed

    Xu, Jinying; Dong, Yunxia; Zhang, Xiangdong

    2008-10-01

    Relativistic energy loss and photon emission in the interaction of ideal and nonideal metamaterial cloaks with an external electron beam are studied based on the classical electrodynamics. The effects of various imperfect parameters on the efficiency of the cloak are emphasized. The energy-loss spectra and the photon emission for such structures with the different combinations of electron velocity and impact parameter are calculated. It is shown that the efficiency of nonideal electromagnetic cloaks and the effect of various nonideal parameters on the cloak invisibility can be exhibited in the electron energy loss spectroscopy. This means that the properties of cloak can be explored by scanning transmission electron microscopy.

  17. Cooling of hot electrons in amorphous silicon

    SciTech Connect

    Vanderhaghen, R.; Hulin, D.; Cuzeau, S.; White, J.O.

    1997-07-01

    Measurements of the cooling rate of hot carriers in amorphous silicon are made with a two-pump, one-probe technique. The experiment is simulated with a rate-equation model describing the energy transfer between a population of hot carriers and the lattice. An energy transfer rate proportional to the temperature difference is found to be consistent with the experimental data while an energy transfer independent of the temperature difference is not. This contrasts with the situation in crystalline silicon. The measured cooling rates are sufficient to explain the difficulty in observing avalanche effects in amorphous silicon.

  18. Control of electronic transport in graphene by electromagnetic dressing.

    PubMed

    Kristinsson, K; Kibis, O V; Morina, S; Shelykh, I A

    2016-01-01

    We demonstrated theoretically that the renormalization of the electron energy spectrum near the Dirac point of graphene by a strong high-frequency electromagnetic field (dressing field) drastically depends on polarization of the field. Namely, linear polarization results in an anisotropic gapless energy spectrum, whereas circular polarization leads to an isotropic gapped one. As a consequence, the stationary (dc) electronic transport in graphene strongly depends on parameters of the dressing field: A circularly polarized field monotonically decreases the isotropic conductivity of graphene, whereas a linearly polarized one results in both giant anisotropy of conductivity (which can reach thousands of percents) and the oscillating behavior of the conductivity as a function of the field intensity. Since the predicted phenomena can be observed in a graphene layer irradiated by a monochromatic electromagnetic wave, the elaborated theory opens a substantially new way to control electronic properties of graphene with light. PMID:26838371

  19. Control of electronic transport in graphene by electromagnetic dressing

    PubMed Central

    Kristinsson, K.; Kibis, O. V.; Morina, S.; Shelykh, I. A.

    2016-01-01

    We demonstrated theoretically that the renormalization of the electron energy spectrum near the Dirac point of graphene by a strong high-frequency electromagnetic field (dressing field) drastically depends on polarization of the field. Namely, linear polarization results in an anisotropic gapless energy spectrum, whereas circular polarization leads to an isotropic gapped one. As a consequence, the stationary (dc) electronic transport in graphene strongly depends on parameters of the dressing field: A circularly polarized field monotonically decreases the isotropic conductivity of graphene, whereas a linearly polarized one results in both giant anisotropy of conductivity (which can reach thousands of percents) and the oscillating behavior of the conductivity as a function of the field intensity. Since the predicted phenomena can be observed in a graphene layer irradiated by a monochromatic electromagnetic wave, the elaborated theory opens a substantially new way to control electronic properties of graphene with light. PMID:26838371

  20. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  1. Path integral approach to electron scattering in classical electromagnetic potential

    NASA Astrophysics Data System (ADS)

    Chuang, Xu; Feng, Feng; Ying-Jun, Li

    2016-05-01

    As is known to all, the electron scattering in classical electromagnetic potential is one of the most widespread applications of quantum theory. Nevertheless, many discussions about electron scattering are based upon single-particle Schrodinger equation or Dirac equation in quantum mechanics rather than the method of quantum field theory. In this paper, by using the path integral approach of quantum field theory, we perturbatively evaluate the scattering amplitude up to the second order for the electron scattering by the classical electromagnetic potential. The results we derive are convenient to apply to all sorts of potential forms. Furthermore, by means of the obtained results, we give explicit calculations for the one-dimensional electric potential. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374360, 11405266, and 11505285) and the National Basic Research Program of China (Grant No. 2013CBA01504).

  2. Relativistic electromagnetic waves in an electron-ion plasma

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  3. Control of electronic transport in graphene by electromagnetic dressing

    NASA Astrophysics Data System (ADS)

    Kristinsson, K.; Kibis, O. V.; Morina, S.; Shelykh, I. A.

    2016-02-01

    We demonstrated theoretically that the renormalization of the electron energy spectrum near the Dirac point of graphene by a strong high-frequency electromagnetic field (dressing field) drastically depends on polarization of the field. Namely, linear polarization results in an anisotropic gapless energy spectrum, whereas circular polarization leads to an isotropic gapped one. As a consequence, the stationary (dc) electronic transport in graphene strongly depends on parameters of the dressing field: A circularly polarized field monotonically decreases the isotropic conductivity of graphene, whereas a linearly polarized one results in both giant anisotropy of conductivity (which can reach thousands of percents) and the oscillating behavior of the conductivity as a function of the field intensity. Since the predicted phenomena can be observed in a graphene layer irradiated by a monochromatic electromagnetic wave, the elaborated theory opens a substantially new way to control electronic properties of graphene with light.

  4. Control of electronic transport in graphene by electromagnetic dressing.

    PubMed

    Kristinsson, K; Kibis, O V; Morina, S; Shelykh, I A

    2016-02-03

    We demonstrated theoretically that the renormalization of the electron energy spectrum near the Dirac point of graphene by a strong high-frequency electromagnetic field (dressing field) drastically depends on polarization of the field. Namely, linear polarization results in an anisotropic gapless energy spectrum, whereas circular polarization leads to an isotropic gapped one. As a consequence, the stationary (dc) electronic transport in graphene strongly depends on parameters of the dressing field: A circularly polarized field monotonically decreases the isotropic conductivity of graphene, whereas a linearly polarized one results in both giant anisotropy of conductivity (which can reach thousands of percents) and the oscillating behavior of the conductivity as a function of the field intensity. Since the predicted phenomena can be observed in a graphene layer irradiated by a monochromatic electromagnetic wave, the elaborated theory opens a substantially new way to control electronic properties of graphene with light.

  5. Use of an Electron Beam for Stochastic Cooling

    SciTech Connect

    Yaroslave Derbenev

    2007-09-10

    Microwave instability of an electron beam can be used for a multiple increase in the collective response for the perturbation caused by a particle of a co-moving ion beam, i.e. for enhancement of friction force in electron cooling method. The low scale (hundreds GHz and higher frequency range) space charge or FEL type instabilities can be produced (depending on conditions) by introducing an alternating magnetic fields along the electron beam path. Beams’ optics and noise conditioning for obtaining a maximal cooling effect and related limitations will be discussed. The method promises to increase by a few orders of magnitude the cooling rate for heavy particle beams with a large emittance for a wide energy range with respect to either electron and conventional stochastic cooling.

  6. Progress on Analytical Modeling of Coherent Electron Cooling

    SciTech Connect

    Wang, G.; Blaskiewicz, M.; Litvinenko, V.; Webb, S.

    2010-05-23

    We report recent progresses on analytical studies of Coherent Electron Cooling. The phase space electron beam distribution obtained from the 1D FEL amplifier is applied to an infinite electron plasma model and the electron density evolution inside the kicker is derived. We also investigate the velocity modulation in the modulator and obtain a closed form solution for the current density evolution for infinite homogeneous electron plasma.

  7. Cooling System Design for a Split High Field Bitter-type Electromagnet

    NASA Astrophysics Data System (ADS)

    Birmingham, William; Bates, Evan; Romero-Talamas, Carlos; Rivera, William

    2014-10-01

    For the purpose of analyzing magnetized dusty plasma at the University of Maryland Baltimore County (UMBC), we are designing a split resistive electromagnet. When completed, the magnet will be capable of generating fields of 10 T for 10 seconds. The type of design proposed here was originally developed by Francis Bitter, and achieves high magnetic fields by helically stacked disk-shaped solenoids with axially oriented cooling channels. In order to ensure the safety and functionality of the apparatus, the geometry and placement of the cooling passages must be designed to establish a manageable temperature profile throughout the coil. The estimated power consumption from resistive losses is nearly 7 MW, thus it is imperative to optimize the cooling capacity of the system. The cooling capacity is limited by the mass of chilled water available at one time and the maximum achievable mass flow through the coils. The system is also designed to withstand the resultant mechanical stresses from the Lorentz force. Slot-shaped cooling channels are used. The number and placement of these channels is optimized through an iterative and integrated design process which combines analytic calculations with finite element analyses. The methodology and results of the design process is presented.

  8. Multiscale quantum mechanics/electromagnetics simulation for electronic devices.

    PubMed

    Yam, ChiYung; Meng, Lingyi; Chen, GuanHua; Chen, Quan; Wong, Ngai

    2011-08-28

    The continuous downsizing of modern electronic devices implies the increasing importance of quantum phenomena. As the feature sizes of transistors inch towards 10 nanometer, simulations including quantum effects and atomistic details are inevitable. Here we report a novel hybrid quantum mechanics and electromagnetics (QM/EM) method to model individual electronic components at the nanoscale. QM and EM models are solved in different regions of the system in a self-consistent manner. As a demonstration, we study a carbon nanotube based electronic device embedded in a silicon block. Good agreement is obtained between simulation by QM/EM method and full QM treatment of the entire system.

  9. Laser cooling of electron beams for linear colliders

    SciTech Connect

    Telnov, V.

    1996-10-01

    A novel method of electron beam cooling is considered which can be used for linear colliders. The electron beam is cooled during collision with focused powerful laser pulse. With reasonable laser parameters (laser flash energy about 10 J) one can decrease transverse beam emittances by a factor about 10 per one stage. The ultimate transverse emittances are much below that given by other methods. Depolarization of a beam during the cooling is about 5--15% for one stage. This method is especially useful for photon colliders and open new possibilities for e{sup +}e{sup {minus}} colliders and x-ray FEL based on high energy linacs.

  10. Testing aspects of advanced coherent electron cooling technique

    SciTech Connect

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  11. Longitudinal electron cooling experiments at HIRFL-CSRe

    NASA Astrophysics Data System (ADS)

    Mao, L. J.; Zhao, H.; Yang, X. D.; Li, J.; Yang, J. C.; Yuan, Y. J.; Parkhomchuk, V. V.; Reva, V. B.; Ma, X. M.; Yan, T. L.; Tang, M. T.; Xia, J. W.

    2016-02-01

    At the heavy ion storage ring HIRFL-CSRe an electron cooler is operated to improve the beam conditions for experiments. The properties of cooled beams have been studied. The longitudinal beam dynamics during the cooling process was measured by a resonant Schottky detector. The dependencies of the parameters electron beam density and profile on cooling times were investigated. The friction force was measured directly with the aid of the high voltage system of the cooler and with the application of the beam bunching system as well. An experiment with bunched cold beam showed a dependence of the bunch length on the beam density.

  12. Coherent electron cooling proof of principle instrumentation design

    SciTech Connect

    Gassner D. M.; Litvinenko, V.; Michnoff, R.; Miller, T.; Minty, M.; Pinayev, I.

    2012-04-15

    The goal of the Coherent Electron Cooling Proof-of-Principle (CeC PoP) experiment being designed at RHIC is to demonstrate longitudinal (energy spread) cooling before the expected CD-2 for eRHIC. The scope of the experiment is to longitudinally cool a single bunch of 40 GeV/u gold ions in RHIC. This paper will describe the instrumentation systems proposed to meet the diagnostics challenges. These include measurements of beam intensity, emittance, energy spread, bunch length, position, orbit stability, and transverse and temporal alignment of electron and ion beams.

  13. Hole Cooling Is Much Faster than Electron Cooling in PbSe Quantum Dots.

    PubMed

    Spoor, Frank C M; Kunneman, Lucas T; Evers, Wiel H; Renaud, Nicolas; Grozema, Ferdinand C; Houtepen, Arjan J; Siebbeles, Laurens D A

    2016-01-26

    In semiconductor quantum dots (QDs), charge carrier cooling is in direct competition with processes such as carrier multiplication or hot charge extraction that may improve the light conversion efficiency of photovoltaic devices. Understanding charge carrier cooling is therefore of great interest. We investigate high-energy optical transitions in PbSe QDs using hyperspectral transient absorption spectroscopy. We observe bleaching of optical transitions involving higher valence and conduction bands upon band edge excitation. The kinetics of rise of the bleach of these transitions after a pump laser pulse allow us to monitor, for the first time, cooling of hot electrons and hot holes separately. Our results show that holes cool significantly faster than electrons in PbSe QDs. This is in contrast to the common assumption that electrons and holes behave similarly in Pb chalcogenide QDs and has important implications for the utilization of hot charge carriers in photovoltaic devices.

  14. Hole Cooling Is Much Faster than Electron Cooling in PbSe Quantum Dots.

    PubMed

    Spoor, Frank C M; Kunneman, Lucas T; Evers, Wiel H; Renaud, Nicolas; Grozema, Ferdinand C; Houtepen, Arjan J; Siebbeles, Laurens D A

    2016-01-26

    In semiconductor quantum dots (QDs), charge carrier cooling is in direct competition with processes such as carrier multiplication or hot charge extraction that may improve the light conversion efficiency of photovoltaic devices. Understanding charge carrier cooling is therefore of great interest. We investigate high-energy optical transitions in PbSe QDs using hyperspectral transient absorption spectroscopy. We observe bleaching of optical transitions involving higher valence and conduction bands upon band edge excitation. The kinetics of rise of the bleach of these transitions after a pump laser pulse allow us to monitor, for the first time, cooling of hot electrons and hot holes separately. Our results show that holes cool significantly faster than electrons in PbSe QDs. This is in contrast to the common assumption that electrons and holes behave similarly in Pb chalcogenide QDs and has important implications for the utilization of hot charge carriers in photovoltaic devices. PMID:26654878

  15. Partially ferromagnetic electromagnet for trapping and cooling neutral atoms to quantum degeneracy

    SciTech Connect

    Fauquembergue, M.; Riou, J-F.; Guerin, W.; Rangwala, S.; Moron, F.; Villing, A.; Le Coq, Y.; Bouyer, P.; Aspect, A.; Lecrivain, M.

    2005-10-15

    We have developed a compact partially ferromagnetic electromagnet to produce an Ioffe-Pritchard trap for neutral atoms. Our structure permits strong magnetic confinement with low power consumption. Compared to the previous iron-core electromagnet [B. Desruelle, V. Boyer, P. Bouyer, G. Birkl, M. Lecrivain, F. Alves, C. Westbrook, and A. Aspect, Eur. Phys. J. D 1, 255 (1998)], it allows for easy compensation of remnant fields and very high stability, along with cost-effective realization and compactness. We describe and characterize our apparatus and demonstrate trapping and cooling of {sup 87}Rb atoms to quantum degeneracy. Pure Bose-Einstein condensates containing 10{sup 6} atoms are routinely realized on a half-minute cycle. In addition we test the stability of the magnetic trap by producing atom lasers.

  16. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    SciTech Connect

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The Oak Ridge

  17. Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency

    SciTech Connect

    Genes, Claudiu; Ritsch, Helmut; Drewsen, Michael; Dantan, Aurelien

    2011-11-15

    We investigate a hybrid optomechanical system composed of a micromechanical oscillator as a movable membrane and an atomic three-level ensemble within an optical cavity. We show that a suitably tailored cavity field response via electromagnetically induced transparency (EIT) in the atomic medium allows for strong coupling of the membrane's mechanical oscillations to the collective atomic ground-state spin. This facilitates ground-state cooling of the membrane motion, quantum state mapping, and robust atom-membrane entanglement even for cavity widths larger than the mechanical resonance frequency.

  18. Kinetic electrons in global electromagnetic gyrokinetic particle simulations

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Wang, W.

    2005-10-01

    Employing an electromagnetic gyrokinetic simulation model,ootnotetextZ. Lin and L. Chen, Phys. Plasmas 8, 1447 (2001). kinetic electron dynamics in global tokamak geometry is investigated. The massless fluid electron model is developed as a base. We further evolve gyrokinetic equations for non-adiabatic kinetic electrons. To obtain the magnetic perturbation, the fluid-kinetic hybrid electron model^1 employs the inverse of the Faraday's law. Instead, the Ampere's law is used as a closure relation to avoid uncertainties in estimating ue|, the moment of the electron velocities. The physics goal is to investigate the finite beta effects on the turbulent transport, as well as α particle driven turbulence.ootnotetextI. Holod, Z. Lin, et al., this conference. This work is supported by Department of Energy (DOE) Cooperative Agreement No. DE-FC02-03ER54695 (UCI), DOE Contract No. DE-AC02-76CH03073 (PPPL).

  19. Effects of e-beam parameters on coherent electron cooling

    SciTech Connect

    Webb, S.D.; Litvinenko, V.N.; Wang, G.

    2011-03-28

    Coherent Electron Cooling (CeC) requires detailed control of the phase between the hadron an the FEL-amplified wave packet. This phase depends on local electron beam parameters such as the energy spread and the peak current. In this paper, we examine the effects of local density variations on the cooling rates for CeC. Coherent Electron Cooling (CeC) [1] is a new concept in intense, high energy hadron beamcooling, in which the Debye screened charge perturbation calculated in [2] is used to seed a high-gain free electron laser (FEL). Using delays to give the perturbing hadron an energy-dependent longitudinal displacement relative to its frequencymodulated charge perturbation, the hadron receives an energy-dependent kick which reduces its energy variation from the design energy. The equations of motion in [1] assume that the electron bunch is the same physical size as the hadron bunch, and has a homogeneous charge density across the entire bunch. In practice, the electron bunches will be much shorter than the hadron bunch, and this local spacial inhomogeneity in the charge distribution will alter the gain length of the FEL, resulting in both a change in the amplification of the initial signal and a phase shift. In this paper we consider these inhomogeneity effects, determining cooling equations for bunched beam CeC consistent with these effects and determining thresholds for the cooling parameters.

  20. ELECTRON COOLING IN THE PRESENCE OF UNDULATOR FIELDS

    SciTech Connect

    FEDOTOV,A.; BEN-ZVI, I.; ET AL.

    2007-06-25

    The design of the higher-energy cooler for Relativistic Heavy Ion Collider (RHIC) recently adopted a non-magnetized approach which requires a low temperature electron beam. However, to avoid significant loss of heavy ions due to recombination with electrons in the cooling section, the temperature of the electron beam should be high. These two contradictory requirements are satisfied in the design of the RWIC cooler with the help of the undulator fields. The model of the friction force in the presence of an undulator field was benchmarked vs. direct numerical simulations with an excellent agreement. Here, we discuss cooling dynamics simulations with a helical undulator, including recombination suppression and resulting luminosities.

  1. Direct electronic measurement of Peltier cooling and heating in graphene

    NASA Astrophysics Data System (ADS)

    Vera-Marun, I. J.; van den Berg, J. J.; Dejene, F. K.; van Wees, B. J.

    2016-05-01

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials.

  2. Direct electronic measurement of Peltier cooling and heating in graphene.

    PubMed

    Vera-Marun, I J; van den Berg, J J; Dejene, F K; van Wees, B J

    2016-01-01

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials. PMID:27161186

  3. Direct electronic measurement of Peltier cooling and heating in graphene

    PubMed Central

    Vera-Marun, I. J.; van den Berg, J. J.; Dejene, F. K.; van Wees, B. J.

    2016-01-01

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials. PMID:27161186

  4. Slow electron cooling in colloidal quantum dots.

    PubMed

    Pandey, Anshu; Guyot-Sionnest, Philippe

    2008-11-01

    Hot electrons in semiconductors lose their energy very quickly (within picoseconds) to lattice vibrations. Slowing this energy loss could prove useful for more efficient photovoltaic or infrared devices. With their well-separated electronic states, quantum dots should display slow relaxation, but other mechanisms have made it difficult to observe. We report slow intraband relaxation (>1 nanosecond) in colloidal quantum dots. The small cadmium selenide (CdSe) dots, with an intraband energy separation of approximately 0.25 electron volts, are capped by an epitaxial zinc selenide (ZnSe) shell. The shell is terminated by a CdSe passivating layer to remove electron traps and is covered by ligands of low infrared absorbance (alkane thiols) at the intraband energy. We found that relaxation is markedly slowed with increasing ZnSe shell thickness.

  5. Prospects for Doppler cooling of three-electronic-level molecules

    SciTech Connect

    Nguyen, J. H. V.; Odom, B.

    2011-05-15

    Analogous to the extension of laser cooling techniques from two-level to three-level atoms, Doppler cooling of molecules with an intermediate electronic state is considered. In particular, we use a rate-equation approach to simulate cooling of SiO{sup +}, in which population buildup in the intermediate state is prevented by its short lifetime. We determine that Doppler cooling of SiO{sup +} can be accomplished without optically repumping from the intermediate state, at the cost of causing undesirable parity flips and rotational diffusion. Since the necessary repumping would require a large number of continuous-wave lasers, optical pulse shaping of a femtosecond laser is proposed as an attractive alternative. Other candidate three-electron-level molecules are also discussed.

  6. Nonlinear electromagnetic gyrokinetic particle simulations with the electron hybrid model

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Lin, Z.; Chen, L.; Hahm, T.; Wang, W.; Lee, W.

    2006-10-01

    The electromagnetic model with fluid electrons is successfully implemented into the global gyrokinetic code GTC. In the ideal MHD limit, shear Alfven wave oscillation and continuum damping is demonstrated. Nonlinear electromagnetic simulation is further pursued in the presence of finite ηi. Turbulence transport in the AITG unstable β regime is studied. This work is supported by Department of Energy (DOE) Grant DE-FG02-03ER54724, Cooperative Agreement No. DE-FC02-04ER54796 (UCI), DOE Contract No. DE-AC02-76CH03073 (PPPL), and in part by SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. Z. Lin, et al., Science 281, 1835 (1998). F. Zonca and L. Chen, Plasma Phys. Controlled Fusion 30, 2240 (1998); G. Zhao and L. Chen, Phys. Plasmas 9, 861 (2002).

  7. Optimization of electron cooling by SIN tunnel junctions

    NASA Astrophysics Data System (ADS)

    Kuzmin, L.; Agulo, I.; Fominsky, M.; Savin, A.; Tarasov, M.

    2004-05-01

    We report on the optimization of electron cooling by SIN tunnel junctions due to the advanced geometry of superconducting electrodes and very effective normal metal traps for more efficient removal of quasiparticles at temperatures from 25 to 500 mK. The maximum decrease in electron temperature of about 200 mK has been observed at bath temperatures 300-350 mK. We used four-junction geometry with Al-AlOx-Cr/Cu tunnel junctions and Au traps. Efficient electron cooling was realized due to the improved geometry of the cooling tunnel junctions (quadrant shape of the superconducting electrode) and optimized Au traps just near the junctions ({\\approx }0.5~\\micmu {\\mathrm {m}} ) to reduce reabsorption of quasiparticles after removing them from normal metal. The maximum cooling effect was increased from a temperature drop of d T = -56 mK (ordinary cross geometry) to -130 mK (improved geometry of superconducting electrodes) and to d T = -200 mK (improved geometry of superconducting electrodes and effective Au traps). The heating peak (instead of cooling) near the zero voltage across cooling junctions has been observed in practice for all samples at temperatures below 150 mK. For higher cooling voltages close to the superconducting gap, the heating was converted to cooling with decreased amplitude. The leakage resistance of the tunnel junctions gives a reasonable explanation of the heating peak. The phonon reabsorption due to the recombination of quasiparticles in superconducting electrodes gives an additional improvement in the theoretical fitting but could not explain the heating peak. An anomalous zero-bias resistance peak has been observed for all tested structures. The peak is explained by Coulomb blockade of tunnelling in transistor-type structures with relatively small tunnel junctions. The work on electron cooling is devoted to the development of a cold-electron bolometer (CEB) with capacitive coupling by SIN tunnel junctions to the antenna for sensitive detection

  8. HIGH-ENERGY ELECTRON COOLING BASED ON REALISTIC SIX-DIMENSIONAL DISTRIBUTION OF ELECTRONS

    SciTech Connect

    FEDOTOV,A.; BEN-ZVI, I.; ET AL.

    2007-06-25

    The high-energy electron cooling system for RHIC-II is unique compared to standard coolers. It requires bunched electron beam. Electron bunches are produced by an Energy Recovery Linac (ERL), and cooling is planned without longitudinal magnetic field. To address unique features of the RHIC cooler, a generalized treatment of cooling force was introduced in BETACOOE code which allows us to calculate friction force for an arbitrary distribution of electrons. Simulations for RHIC cooler based on electron distribution from ERL are presented.

  9. Search for electron EDM with laser cooled radioactive atom

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, T.; Kawamura, H.; Nataraj, H. S.; Sato, T.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2013-05-01

    The permanent electric dipole moment (EDM) of the elementary particle has the sensitivity to the CP violation in the theories beyond the standard model (SM). The search for the EDM constitutes the stringent test to discriminate between the SM and beyond it. We plan to perform the electron EDM search by using the laser cooled francium (Fr) atom which has the largest enhancement factor of the electron EDM in the alkali atoms. In this paper, the present status of the laser cooled Fr factory that is being constructed at Cyclotron and Radioisotope Center (CYRIC), Tohoku University are reported.

  10. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    SciTech Connect

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  11. Passive Two-Phase Cooling for Automotive Power Electronics

    SciTech Connect

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-01-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated and tested using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245 fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator concept that incorporates features to improve performance and reduce its size was designed. Simulation results indicate the concept's thermal resistance can be 58% to 65% lower than automotive dual-side-cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers-plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  12. Effect of magnetized electron cooling on a Hopf bifurcation

    SciTech Connect

    Lee, S.Y.; Ball, M.; Brabson, B.; Budnick, J.; Caussyn, D.D.; Colestock, P.; East, G.; Ellison, M.; Hamilton, B.; Hedblom, K.; Kang, X.; Li, D.; Liu, J.Y.; Ng, K.Y.; Pei, A.; Riabko, A.; Syphers, M.; Wang, L. |||

    1996-01-01

    We have observed longitudinal limit cycle oscillations of a proton beam when a critical threshold in the relative velocity between the proton beam and the cooling electrons has been exceeded. The threshold for the bifurcation of a fixed point into a limit cycle, also known as a Hopf bifurcation, was found to be asymmetric with respect to the relative velocity. Further experiments were performed to verify that the asymmetry was related to electron beam alignment with respect to the stored proton beam. The measured amplitudes of the ensuing limit cycle were used to determine the cooling drag force, which exhibits the essential characteristics of the magnetized cooling, where the limit cycle attractor can coexist with a damping-free region and/or a fixed point attractor. {copyright} {ital 1996 The American Physical Society.}

  13. Mitigation of biofouling using electromagnetic fields in tubular heat exchangers-condensers cooled by seawater.

    PubMed

    Trueba, Alfredo; García, Sergio; Otero, Félix M

    2014-01-01

    Electromagnetic field (EMF) treatment is presented as an alternative physical treatment for the mitigation of biofouling adhered to the tubes of a heat exchanger-condenser cooled by seawater. During an experimental phase, a fouling biofilm was allowed to grow until experimental variables indicated that its growth had stabilised. Subsequently, EMF treatment was applied to seawater to eliminate the biofilm and to maintain the achieved cleanliness. The results showed that EMFs precipitated ions dissolved in the seawater. As a consequence of the application of EMFs, erosion altered the intermolecular bonding of extracellular polymers, causing the destruction of the biofilm matrix and its detachment from the inner surface of the heat exchanger-condenser tubes. This detachment led to the partial removal of a mature biofilm and a partial recovery of the efficiency lost in the heat transfer process by using a physical treatment that is harmless to the marine environment.

  14. Asymmetric Hopf bifurcation for proton beams with electron cooling

    SciTech Connect

    Kang, X.; Ball, M.; Brabson, B.; Budnick, J.; East, G.; Ellison, M.; Hamilton, B.; Lee, S.Y.; Li, D.; Liu, J.Y.; Pei, A.; Riabko, A.; Wang, L.; Wang, Y.; Caussyn, D.D.; Colestock, P.; Ng, K.Y.; Hedblom, K.; Syphers, M.

    1995-12-31

    We observed maintained longitudinal limiting cycle oscillations, which grew rapidly once a critical threshold in the relative velocity between the proton beam and the cooling electrons was exceeded. The threshold for the bifurcation of a fixed point into a limit cycle, also known as a Hopf bifurcation, was found to be asymmetric with respect to the relative velocity. This asymmetry of Hopf bifurcation was found to be related to the electron beam alignment with respect to the stored proton beam.

  15. ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.

    SciTech Connect

    BELEGGIA,M.; POZZI, G.; TONOMURA, A.

    2007-01-01

    It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.

  16. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE PAGES

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  17. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    SciTech Connect

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.

  18. Physical installation of Pelletron and electron cooling system

    SciTech Connect

    Hurh, P.

    1997-09-01

    Bremsstrahlung of 5 MeV electrons at a loss current of 50 microamp in the acceleration region is estimated to produce X-ray intensities of 7 Rad/sec. Radiation losses due to a misteer or sudden obstruction will of course be much higher still (estimated at 87,500 Rad/hr for a 0.5 mA beam current). It is estimated that 1.8 meters of concrete will be necessary to adequately shield the surrounding building areas at any possible Pelletron installation site. To satisfy our present electron cooling development plan, two Pelletron installations are required, the first at our development lab in the Lab B/NEF Enclosure area and the second at the operational Main Injector service building, MI-30, in the main Injector ring. The same actual Pelletron and electron beam-line components will be used at both locations. The Lab B installation will allow experimentation with actual high energy electron beam to develop the optics necessary for the cooling straight while Main Injector/Recycler commissioning is taking place. The MI-30 installation is obviously the permanent home for the Pelletron when electron cooling becomes operational. Construction plans for both installations will be discussed here.

  19. Progress on a cryogenically cooled RF gun polarized electron source

    SciTech Connect

    Fliller, R.P., III; Edwards, H.; /Fermilab

    2006-08-01

    RF guns have proven useful in multiple accelerator applications. An RF gun capable of producing polarized electrons is an attractive electron source for the ILC or an electron-ion collider. Producing such a gun has proven elusive. The NEA GaAs photocathode needed for polarized electron production is damaged by the vacuum environment in an RF gun. Electron and ion back bombardment can also damage the cathode. These problems must be mitigated before producing an RF gun polarized electron source. In this paper we report continuing efforts to improve the vacuum environment in a normal conducting RF gun by cooling it with liquid nitrogen after a high temperature vacuum bake out. We also report on a design of a cathode preparation chamber to produce bulk GaAs photocathodes for testing in such a gun. Future directions are also discussed.

  20. Low Frequency Electromagnetic Background Radiation From Electron Acceleration Above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Fullekrug, Martin; Mezentsev, Andrew; Soula, Serge; van der Velde, Oscar; Farges, Thomas

    2013-04-01

    It was recently proposed that the acceleration of electrons during the growth and branching of streamers above thunderclouds initiated by intense lightning discharges could result in detectable low frequency electromagnetic radiation from several tens of kHz up to several hundreds of kHz (Qin et al., GRL, 2012). The intensity of the predicted radiation scales with the streamer density which is particularly large during spectacular sprite occurrences such as jellyfish sprites and/or dancing sprites. Dancing sprites are up to one second long sequences of consecutive sprites or sprite groups which are typically separated by some hundreds of milliseconds and which tend to follow the spatial development of large scale intracloud lightning discharges. A particularly spectacular series of 10 dancing sprite events over a Mediterranean mesoscale convective system was recorded with a low light video camera in south-eastern France during the early morning hours of August 31, 2012. Each dancing sprite event was composed of ~3-4 consecutive sprites or groups of sprites. All of these sprite occurrences were associated with a sudden enhancement ~2 uV/m/Hz-1/2 of the low frequency electromagnetic background radiation as measured with a radio receiver in south-west England. It is estimated that ~1000 streamers at a height of ~40 km are necessary to epxlain the observed electric field strengths. These sudden enhancements are superimposed on a more continuous low frequency electromagnetic background radiation which accompanies each dancing sprite event. It is speculated that this low frequency 'radio glow' results from filamentary streamers near the cloud top as a result of the large scale electrostatic charging of the thundercloud and that it may be used as an indicator for sprite occurrences in future studies.

  1. Two-Phase Cooling Method Using R134a Refrigerant to Cool Power Electronic Devices

    SciTech Connect

    Lowe, Kirk T; Tolbert, Leon M; Ayers, Curtis William; Ozpineci, Burak; Campbell, Jeremy B

    2007-01-01

    This paper presents a two-phase cooling method using R134a refrigerant to dissipate the heat energy (loss) generated by power electronics (PE) such as those associated with rectifiers, converters, and inverters for a specific application in hybrid-electric vehicles (HEVs). The cooling method involves submerging PE devices in an R134a bath, which limits the junction temperature of PE devices while conserving weight and volume of the heat sink without sacrificing equipment reliability. First, experimental tests that included an extended soak for more than 300 days were performed on a submerged IGBT and gate-controller card to study dielectric characteristics, deterioration effects, and heat flux capability of R134a. Results from these tests illustrate that R134a has high dielectric characteristics, no deterioration on electrical components, and a heat flux of 114 W/cm 2 for the experimental configuration. Second, experimental tests that included simultaneous operation with a mock automotive air-conditioner (A/C) system were performed on the same IGBT and gate controller card. Data extrapolation from these tests determined that a typical automotive A/C system has more than sufficient cooling capacity to cool a typical 30 kW traction inverter. Last, a discussion and simulation of active cooling of the IGBT junction layer with R134a refrigerant is given. This technique will drastically increase the forward current ratings and reliability of the PE device

  2. Part II/Addendum Electron Beam Cooling between EBIS LINAC and Booster; Is Single Pass Cooling Possible?

    SciTech Connect

    Hershcovitch,A.

    2008-07-01

    Due to some miscommunication, incomplete data was erroneously used in examining electron beam cooling for reducing momentum of gold ions exiting the EBIS LINAC before injection into the booster. Corrected calculations still indicate that single pass cooling is, in principle, feasible; momentum spread can be reduced by an order of magnitude in about one meter. Preliminary results suggest that this cooling deserves further consideration.

  3. Cold electron sources using laser-cooled atoms

    NASA Astrophysics Data System (ADS)

    McCulloch, Andrew J.; Sparkes, Ben M.; Scholten, Robert E.

    2016-08-01

    Since the first observation of electron diffraction in 1927, electrons have been used to probe the structure of matter. High-brightness sources of thermal electrons have recently emerged that are capable of simultaneously providing high spatial resolving power along with ultrafast temporal resolution, however they are yet to demonstrate the holy grail of single-shot diffraction of non-crystalline objects. The development of the cold atom electron source, based around the ionisation of laser cooled atoms, has the potential to contribute to this goal. Electron generation from laser cooled atoms is in its infancy, but in just ten years has moved from a proposal to a source capable of performing single-shot diffraction imaging of crystalline structures. The high brightness, high transverse coherence length, and small energy spread of cold electron sources are also potentially advantageous for applications ranging from seeding of x-ray free-electron lasers and synchrotrons to coherent diffractive imaging and microscopy. In this review we discuss the context which motivates the development of these sources, the operating principles of the source, and recent experimental results. The achievements demonstrated thus far combined with theoretical proposals to alleviate current bottlenecks in development promise a bright future for these sources.

  4. Electromagnetic field generation by ATP-induced reverse electron transfer.

    PubMed

    Steele, Richard H

    2003-03-01

    This paper describes a mechanism to explain low-level light emission in biology. A biological analog of the electrical circuitry, modeled on the parallel plate capacitor, traversed by a helical structure, required to generate electromagnetic radiation in the optical spectral range, is described. The charge carrier required for the emissions is determined to be an accelerating electron driven by an ATP-induced reverse electron transfer. The radial velocity component, the emission trajectory, of the moving charges traversing helical protein structures in a cyclotron-type mechanism is proposed to be imposed by the ferromagnetic field components of the iron in the iron-sulfur proteins. The redox systems NADH, riboflavin, and chlorophyll were examined with their long-wavelength absorption maxima determining the energetic parameters for the calculations. Potentials calculated from the axial velocity components for the riboflavin and NADH systems were found to equal the standard redox potentials of these systems as measured electrochemically and enzymatically. The mechanics for the three systems determined the magnetic moments, the angular momenta, and the orbital magnetic fluxes to be adiabatic invariant parameters. The De Broglie dual wave-particle equation, the fundamental equation of wave mechanics, and the key idea of quantum mechanics, establishes the wavelengths for accelerating electrons which, divided into a given radial velocity, gives its respective emission frequency. Electrons propelled through helical structures, traversed by biologically available electric and magnetic fields, make accessible to the internal environment the optical spectral frequency range that the solar spectrum provides to the external environment.

  5. Secondary electron current loss in electron cooling devices

    NASA Astrophysics Data System (ADS)

    Sharapa, A. N.; Shemyakin, A. V.

    1994-12-01

    The efficiency of secondary electron capture in a recuperator with a longitudinal magnetic field is evaluated. To characterize this efficiency, the value of the collector secondary emission coefficient is introduced, for the calculation of which a simple formula is proposed. The effects determining the difference between the current losses in straight systems and devices with bending magnets are analyzed. It is experimentally shown that there is no unambiguous relation between the efficiency of the secondary electron capture by the collector and the current loss. The mechanism which determines the current loss in straight systems is suggested.

  6. Feasibility of Electron Cooling for Low-Energy RHIC Operation

    SciTech Connect

    Fedotov,A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.; Pozdeyev, E.; Satogata, T.

    2008-04-01

    A concrete interest in running RHIC at low energies in a range of 2.5-25 GeV/nucleon total energy of a single beam has recently emerged. Providing collisions in this energy range, which in the RHIC case is termed 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of a critical point on the QCD phase diagram. However, luminosity projections are relatively low for the lowest energy points of interest. Luminosity improvement can be provided with electron cooling applied directly in RHIC at low energies. This report summarizes the expected luminosity improvement with electron cooling, possible technical approaches and various limitations.

  7. Electron diffusion in tokamaks due to electromagnetic fluctuations

    SciTech Connect

    Horton, W.; Choi, D.I.; Yushmanov, P.N.; Parail, V.V.

    1986-05-01

    Calculations for the stochastic diffusion of electrons in tokamaks due to a spectrum of electromagnetic drift fluctuations are presented. The parametric dependence of the diffusion coefficient on the amplitude and phase velocity of the spectrum, and the bounce frequency for the electrons is studied. The wavenumber spectrum is taken to be a low order (5 x 5) randomly-phased, isotropic, Monotonic spectrum extending from k /sub perpendicular min/ approx. = ..omega../sub ci//c/sub s/ to k/sub perpendicular max/ approx. = 3..omega../sub pe//c with different power laws of decrease phi k approx. = phi 1/k/sup m/, 1 less than or equal to m less than or equal to 3. A nonlinear Ohm's law is derived for the self-consistent relation between the electrostatic and parallel vector potentials. The parallel structure of the fluctuations is taken to be such that k parallel/sup nl/upsilon/sub e/ < w/sub k/ due to the nonlinear perpendicular motion of the electrons described in the nonlinear Ohm's law. The diffusion coefficient scales approximately as the neo-Alcator and Merezhkin-Mukhovatoc empirical formulas for plasma densities above a critical density.

  8. Electromagnetic Waves and Bursty Electron Acceleration: Implications from Freja

    NASA Technical Reports Server (NTRS)

    Andersson, Laila; Ivchenko, N.; Wahlund, J.-E.; Clemmons, J.; Gustavsson, B.; Eliasson, L.

    2000-01-01

    Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about I keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). The broadband emissions are observed to become more electrostatic towards higher frequencies. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E- and B-field fluctuations below 64 Hz (the dc instrument's upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energization of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvenic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfven waves set up these local field-aligned current regions and in turn trigger more electrostatic emissions during certain conditions. In these regions ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.

  9. 49 CFR 236.8 - Operating characteristics of electromagnetic, electronic, or electrical apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Operating characteristics of electromagnetic, electronic, or electrical apparatus. 236.8 Section 236.8 Transportation Other Regulations Relating to... characteristics of electromagnetic, electronic, or electrical apparatus. Signal apparatus, the functioning...

  10. 49 CFR 236.8 - Operating characteristics of electromagnetic, electronic, or electrical apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Operating characteristics of electromagnetic, electronic, or electrical apparatus. 236.8 Section 236.8 Transportation Other Regulations Relating to... characteristics of electromagnetic, electronic, or electrical apparatus. Signal apparatus, the functioning...

  11. 49 CFR 236.8 - Operating characteristics of electromagnetic, electronic, or electrical apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Operating characteristics of electromagnetic, electronic, or electrical apparatus. 236.8 Section 236.8 Transportation Other Regulations Relating to... characteristics of electromagnetic, electronic, or electrical apparatus. Signal apparatus, the functioning...

  12. 49 CFR 236.8 - Operating characteristics of electromagnetic, electronic, or electrical apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Operating characteristics of electromagnetic, electronic, or electrical apparatus. 236.8 Section 236.8 Transportation Other Regulations Relating to... characteristics of electromagnetic, electronic, or electrical apparatus. Signal apparatus, the functioning...

  13. 49 CFR 236.8 - Operating characteristics of electromagnetic, electronic, or electrical apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Operating characteristics of electromagnetic, electronic, or electrical apparatus. 236.8 Section 236.8 Transportation Other Regulations Relating to... characteristics of electromagnetic, electronic, or electrical apparatus. Signal apparatus, the functioning...

  14. A large area cooled-CCD detector for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; Andrews, H. N.; Raeburn, C.

    1994-09-01

    Large area cooled-CCDs are an excellent medium for (indirectly) recording electron images and electron diffraction patterns in real time and for use in electron tomography; real-time imaging is extremely useful in making rapid adjustments in the electron microscope. CCDs provide high sensitivity (useful for minimising dosage to radiation-sensitive biological specimen), good resolution, stable performance, excellent dynamic range and linearity and a reasonably fast readout. We have built an electron imaging device based on the EEV 1152 by 814 pixel CCD which is controlled from a unix based SUN Sparestation operating under X-Windows. The incident 100 kV electrons are converted to visible light in a 0.5 mm thick YAG single crystal which is imaged through a lens on to the CCD. The CCD electronics is designed to be as flexible as possible and allows a wide variation in the readout speed to cater for the relatively fast application where readout noise is less critical and low readout noise applications where the extra few seconds of readout time are not significant. The CCD electronics is built in VME format which is controlled through a S-bus to VME driver. With two parallel channels of readout the whole image can be read out in ˜ 1 s (using the faster readout speed) with 16 bit precision and the image is displayed under X-Windows in a few seconds. The present readout works at 500 kHz and has a noise of ˜ 30 e rms per pixel. With a Peltier cooling device we can operate the CCD at ˜ -40°C which reduces the dark current adequately to allow exposures of up to several minutes. Several examples of patterns collected with the system on a Philips CM12 microscope will be presented.

  15. Stimulated Electromagnetic Emissions near the Second Electron Cyclotron Harmonic

    NASA Astrophysics Data System (ADS)

    Pau, J.; Cheung, P. Y.; Zwi, H.; Wong, A. Y.

    1996-11-01

    First results of broadband stimulated electromagnetic emissions (SEE) near the second electron cyclotron harmonic (2Ω_e) are presented. The results were obtained at a recent HF heating campaign at the HIPAS Observatory with the heater frequency ωo near 2Ωe at 2.85 MHz. Experiments were performed for both O and X-mode polarizations, and under both continuous (CW) and low duty-cycle short pulse heating conditions. Typical SEE spectral features, such as the Downshifted Maximum (DM), the Broad Upshifted Maximum (BUM), and the Broad Symmetric Sidebands (BSS) were observed. While such spectral features were observed routinely at heater frequencies near the third electron cyclotron harmonic and higher at other heating facilities, this is the first observation that demonstrates that such features can also be excited near 2Ω_e. Comparison will be made between our results and past observations at higher frequencies. Physics issues involving the generation of these features such as the formation of field aligned striations and the conversion of HF pump wave to upper hybrid wave will also be discussed.

  16. Electron guns and collectors developed at INP for electron cooling devices

    SciTech Connect

    Sharapa, A.N.; Shemyakin, A.V.

    1997-09-01

    Institute of Nuclear Physics (INP) has a rich experience in designing electron guns and collectors for electron cooling devices. This paper is a review of the experience of several INP research groups in this field. Some results obtained at INP for systems without a guiding magnetic field are also discussed.

  17. Cooled electronic system with thermal spreaders coupling electronics cards to cold rails

    DOEpatents

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2013-07-23

    Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  18. Influence of electron evaporative cooling on ultracold plasma expansion

    SciTech Connect

    Wilson, Truman; Chen, Wei-Ting; Roberts, Jacob

    2013-07-15

    The expansion of ultracold neutral plasmas (UCP) is driven primarily by the thermal pressure of the electron component and is therefore sensitive to the electron temperature. For typical UCP spatial extents, evaporative cooling has a significant influence on the UCP expansion rate at lower densities (less than 10{sup 8}/cm{sup 3}). We studied the effect of electron evaporation in this density range. Owing to the low density, the effects of three-body recombination were negligible. We modeled the expansion by taking into account the change in electron temperature owing to evaporation as well as adiabatic expansion and found good agreement with our data. We also developed a simple model for initial evaporation over a range of ultracold plasma densities, sizes, and electron temperatures to determine over what parameter range electron evaporation is expected to have a significant effect. We also report on a signal calibration technique, which relates the signal at our detector to the total number of ions and electrons in the ultracold plasma.

  19. Using electron-tunneling refrigerators to cool electrons, membranes, and sensors

    NASA Astrophysics Data System (ADS)

    Miller, Nathan A.

    Many cryogenic devices require temperatures near 100 mK for optimal performance, such as thin-film, superconducting detectors. Examples include the submillimeter SCUBA camera on the James Clerk Maxwell Telescope, high-resolution X-ray sensors for semiconductor defect analysis, and a planned satellite to search for polarization in the cosmic microwave background. The cost, size, and complexity of refrigerators used to reach 100 mK (dilution and adiabatic demagnetization refrigerators) are significant and alternative technologies are desirable. We demonstrate work on developing a new option for cooling detectors to 100 mK bath temperatures. Solid-state refrigerators based on Normal metal/Insulator/Superconductor (NIS) tunnel junctions can provide cooling from pumped 3He bath temperatures (˜300 mK) to 100 mK. The cooling mechanism is the preferential tunneling of the highest energy (hottest) electrons from the normal metal through the biased tunnel junctions into the superconductor. When NIS refrigerators are combined with a micro-machined membrane, both the electrons and phonons of the membrane can be cooled. We have developed NIS-cooled membranes with both large temperature reductions and large cooling powers. We have shown the first cooling of a bulk material by cooling a neutron transmutation doped (NTD) thermistor. The fabrication of NIS refrigerators can be integrated with existing detector technology. For the first time, we have successfully integrated NIS refrigerators with both mm-wave and X-ray detectors. In particular, we have cooled X-ray detectors by more than 100 mK and have achieved a resolution of <10 eV at 6 keV at a bath temperature 85 mK above the transition temperature of the detector. The use of integrated NIS refrigerators makes the remarkable performance of cryogenic detectors available from 300 mK platforms. We have also performed preliminary work towards building a general-purpose cooling platform for microelectronics devices on separate

  20. Properties of electrons scattered by a strong plane electromagnetic wave with a linear polarization: Semiclassical treatment

    NASA Astrophysics Data System (ADS)

    Bogdanov, O. V.; Kazinski, P. O.

    2015-02-01

    The problem of scattering of ultrarelativistic electrons by a strong plane electromagnetic wave of a low (optical) frequency and linear polarization is solved in the semiclassical approximation, when the electron wave packet size is much smaller than the wavelength of electromagnetic wave. The exit momenta of ultrarelativistic electrons scattered are found using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of electrons traversed the electromagnetic wave depend weakly on the initial values of momenta. These electrons are mostly scattered at small angles to the propagation direction of the electromagnetic wave. The maximum Lorentz factor of electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momentum. The momentum component parallel to the electric field vector of the electromagnetic wave is determined solely by the laser beam diameter measured in the units of the classical electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic. A reflection law that relates the incident and reflection angles and is independent of any parameters is found.

  1. Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry

    2004-01-01

    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.

  2. Weak and electromagnetic mechanisms of neutrino-pair photoproduction in a strongly magnetized electron gas

    SciTech Connect

    Borisov, A. V.; Kerimov, B. K.; Sizin, P. E.

    2012-11-15

    Expressions for the power of neutrino radiation from a degenerate electron gas in a strong magnetic field are derived for the case of neutrino-pair photoproduction via the weak and electromagnetic interaction mechanisms (it is assumed that the neutrino possesses electromagnetic form factors). It is shown that the neutrino luminosity of a medium in the electromagnetic reaction channel may exceed substantially the luminosity in the weak channel. Relative upper bounds on the effective neutrino magnetic moment are obtained.

  3. SIMULATIONS OF RHIC COHERENT STABILITIES DUE TO WAKEFIELD AND ELECTRON COOLING

    SciTech Connect

    WANG,G.; BLASKIEWICZ, M.

    2007-06-25

    The Electron cooling beam has both coherent and incoherent effects to the circulating ion beam. The incoherent longitudinal cooling could reduce the ion beam energy spread and hence cause 'over-cooling' of the ion beam. Depending on the beam densities and cooling length, the coherent interaction between the ion and electron beam could either damp or anti-damp the ion coherent motions. Using the tracking codes, TRANFT, the threshold for 'over-cooling' has been found and compared with theoretical estimation. The transverse coherent effect of electron cooling has been implemented into the codes and its effect for the bunched ion beam is shown.

  4. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  5. Statistical EMC: A new dimension electromagnetic compatibility of digital electronic systems

    NASA Astrophysics Data System (ADS)

    Tsaliovich, Anatoly

    Electromagnetic compatibility compliance test results are used as a database for addressing three classes of electromagnetic-compatibility (EMC) related problems: statistical EMC profiles of digital electronic systems, the effect of equipment-under-test (EUT) parameters on the electromagnetic emission characteristics, and EMC measurement specifics. Open area test site (OATS) and absorber line shielded room (AR) results are compared for equipment-under-test highest radiated emissions. The suggested statistical evaluation methodology can be utilized to correlate the results of different EMC test techniques, characterize the EMC performance of electronic systems and components, and develop recommendations for electronic product optimal EMC design.

  6. Stimulated Raman up-conversion of electromagnetic waves by a gyrating electron beam

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Patel, V. L.

    1983-01-01

    A gyrating electron beam supports negative energy modes near the harmonics of electron-cyclotron frequency. An electromagnetic wave passing through such a beam parametrically up-converts into high-frequency electromagnetic modes separated from the pump frequency by the electron-cyclotron harmonics. The growth rate for this process varies directly as the oscillatory velocity of beam electrons caused by the pump and as square root of the beam density. It has a maximum at values of scattering angle close to 180 deg and is also implicitly dependent on the beam veocity and the cyclotron frequency of electrons. The effect of a cold electron component is to reduce the growth rate.

  7. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    SciTech Connect

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-05-12

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  8. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    SciTech Connect

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-11-10

    Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  9. An electromagnetic energy harvester for powering consumer electronics

    NASA Astrophysics Data System (ADS)

    Liu, Xiyuan

    This thesis introduces an electromagnetic vibratory energy harvester to power consumer electronics by generating electricity from the strides taken during walking or jogging. The harvester consists of a magnetic pendulum oscillating between two fixed magnets. The pendulum behaves similar to a rotor in a DC generator, while the fixed magnets, which are poled opposite to the pendulum, provide magnetic restoring forces similar to mechanical springs. When attached to a person's arm, the swinging motion subjects the magnetic pendulum to base excitations. Consequently, the pendulum oscillates near a stator which has three poles of wound copper coils. The motion of the pendulum induces a time-varying magnetic field in the flux path which generates electricity in the coils as per Faraday's law. To better understand the response behavior of the device, the thesis presents a nonlinear electromechanical model that describes the interaction between the mechanical and electrical subsystems. Experimental system identification is then implemented to characterize several unknown design parameters, including the nonlinear magnetic restoring torque, the mechanical damping coefficient, and the electromechanical coupling. The derived nonlinear mathematical model, which mimics the behavior of a damped Duffing oscillator, is then solved analytically using the method of multiple scales and the results are compared to experimental data showing good agreement for the design parameters considered. The performance of the device in charging a small battery while jogging is investigated. The motion of a typical swinging arm in terms of frequency and acceleration is reproduced on an electrodynamic shaker and used to charge a 100 μAh battery yielding an estimated charging time of 12 minutes.

  10. Investigation of electromagnetic interactions by means of electron--photon beams from proton accelerators

    SciTech Connect

    Govorkov, B.B.

    1980-09-01

    The methods for obtaining electron and photon beams from high-energy proton accelerators are considered. The results of investigations of the electromagnetic interactions of elementary particles obtained by means of these beams are discussed.

  11. THz electromagnetic radiation driven by intense relativistic electron beam based on ion focus regime

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Yang, Shengpeng; Xu, Jin; Zhang, Wenchao; Tang, Changjian; Duan, Zhaoyun; Gong, Yubin

    2016-06-01

    The simulation study finds that the relativistic electron beam propagating through the plasma background can produce electromagnetic (EM) radiation. With the propagation of the electron beam, the oscillations of the beam electrons in transverse and longitudinal directions have been observed simultaneously, which provides the basis for the electromagnetic radiation. The simulation results clearly show that the electromagnetic radiation frequency can reach up to terahertz (THz) wave band which may result from the filter-like property of plasma background, and the electromagnetic radiation frequency closely depends on the plasma density. To understand the above simulation results physically, the dispersion relation of the beam-plasma system has been derived using the field-matching method, and the dispersion curves show that the slow wave modes can couple with the electron beam effectively in THz wave band, which is an important theoretical evidence of the EM radiation.

  12. Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)

    DOEpatents

    David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R

    2014-12-16

    Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

  13. Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics

    SciTech Connect

    Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.

    2005-12-01

    Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.

  14. Efficient regime of electromagnetic emission in a plasma with counterstreaming electron beams

    SciTech Connect

    Timofeev, I. V.; Annenkov, V. V.

    2014-08-15

    Efficiency of electromagnetic emission produced in a magnetized plasma with counterstreaming electron beams was investigated using both the linear kinetic theory and particle-in-cell simulations. We calculated the growth rate of the beam-plasma instability taking into account both kinetic and relativistic effects and showed that there exists a regime in which transversely propagating electromagnetic waves can be generated by the coupling of the most unstable oblique beam-driven modes. It was confirmed by numerical simulations that such a tune-up of system parameters for a specific nonlinear process can lead to a substantial increase in electromagnetic emission efficiency. It was found that electromagnetic radiation emerging from the plasma in such a regime is generated near the harmonics of the pump frequency that is determined by the typical eigenfrequency of the beam-driven modes. It was also shown that the peak emission power can reach 5% of the maximal power lost by beam electrons.

  15. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    NASA Technical Reports Server (NTRS)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  16. The Screening Effect in Electromagnetic Production of Electron Positron Pairs in Relativistic Nucleus-Atom Collisions

    NASA Technical Reports Server (NTRS)

    Wu, Jianshi; Derrickson, J. H.; Parnell, T. A.; Strayer, M. R.

    1999-01-01

    We study the screening effects of the atomic electrons in the electromagnetic production of electron-positron pairs in relativistic nucleus-atom collisions for fixed target experiments. Our results are contrasted with those obtained in bare collisions, with particular attention given to its dependence on the beam energy and the target atom.

  17. Nano-PCMs for passive electronic cooling applications

    NASA Astrophysics Data System (ADS)

    Colla, L.; Fedele, L.; Mancin, S.; Buonomo, B.; Ercole, D.; Manca, O.

    2015-11-01

    The present work aims at investigating a new challenging use of oxide (TiO2, Al2O3, etc.) nanoparticles to enhance the thermal properties: thermal conductivity, specific heat, and latent heat of pure paraffin waxes to obtain a new class of Phase Change Materials (PCMs), the so-called nano-PCMs. The nano-PCMs were obtained by seeding different amounts of oxide nanoparticles in a paraffin wax having a melting temperature of 45°C. The thermophysical properties such as latent heat and thermal conductivity were then measured to understand the effects of the nanoparticles on the thermal properties of both the solid and liquid PCM. Finally, a numerical comparison between the use of the pure paraffin wax and the nano-PCM in a typical electronics passive cooling device was implemented. Numerical simulations were carried out using the Ansys-Fluent 15.0 code. Results in terms of solid and liquid phase temperatures, melting time and junction temperature were reported. Moreover, a comparison with experimental results was also performed.

  18. Spray cooling characteristics of nanofluids for electronic power devices

    NASA Astrophysics Data System (ADS)

    Hsieh, Shou-Shing; Leu, Hsin-Yuan; Liu, Hao-Hsiang

    2015-03-01

    The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm2 with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10-4 kg/cm2s.

  19. Spray cooling characteristics of nanofluids for electronic power devices.

    PubMed

    Hsieh, Shou-Shing; Leu, Hsin-Yuan; Liu, Hao-Hsiang

    2015-01-01

    The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm(2) with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10(-4) kg/cm(2)s. PMID:25852429

  20. Electron cooling of 8-GeV antiprotons at Fermilab's Recycler: Results and operational implications

    SciTech Connect

    Prost, L.R.; Broemmelsiek, D.; Burov, Alexey V.; Carlson, K.; Gattuso, C.; Hu, M.; Kroc, T.; Leibfritz, J.; Nagaitsev, S.; Pruss, S.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; /Fermilab

    2006-05-01

    Electron cooling of 8 GeV antiprotons at Fermilab's Recycler storage ring is now routinely used in the collider operation. It requires a 0.1-0.5 A, 4.3 MeV dc electron beam and is designed to increase the longitudinal phase-space density of the circulating antiproton beam. This paper briefly describes the characteristics of the electron beam that were achieved to successfully cool antiprotons. Then, results from various cooling force measurements along with comparison to a nonmagnetized model are presented. Finally, operational aspects of the implementation of electron cooling at the Recycler are discussed, such as adjustments to the cooling rate and the influence of the electron beam on the antiproton beam lifetime.

  1. Status of the R&D Towards Electron Cooling of RHIC

    SciTech Connect

    A. Favale; D. Holmes; J.J. Sredniawski; Hans Bluem; M.D. Cole; J. Rathke; T. Schultheiss; A.M.M. Todd; V.V. Parkhomchuk; V.B. Reva; J. Alduino; D.S. Barton; Dana Richard Beavis; I. Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; Andrew Burrill; Rama Calaga; P. Cameron; X. Chang; K.A. Drees; A.V. Fedotov; W. Fischer; G. Ganetis; D.M. Gassner; J.G. Grimes; Hartmut Hahn; L.R. Hammons; A. Hershcovitch; H.C. Hseuh; D. Kayran; J. Kewisch; R.F. Lambiase; D.L. Lederle; Vladimir Litvinenko; C. Longo; W.W. MacKay; G.J. Mahler; G.T. McIntyre; W. Meng; B. Oerter; C. Pai; George Parzen; D. Pate; D. Phillips; S.R. Plate; Eduard Pozdeyev; Triveni Rao; J. Reich; Thomas Roser; A.G. Ruggiero; T. Russo; C. Schultheiss; Z. Segalov; J. Smedley; K. Smith; T. Tallerico; S. Tepikian; R. Than; R.J. Todd; Dejan Trbojevic; J.E. Tuozzolo; P. Wanderer; G. WANG; D. Weiss; Q. Wu; Kin Yip; A. Zaltsman; A. Burov; S. Nagaitsev; L.R. Prost; A.O. Sidorin; A.V. Smirnov; Yaroslav Derbenev; Peter Kneisel; John Mammosser; H. Phillips; Joseph Preble; Charles Reece; Robert Rimmer; Jeffrey Saunders; Mircea Stirbet; Haipeng Wang; A.V. Aleksandrov; D.L. Douglas; Y.W. Kang; D.T. Abell; G.I. Bell; David L. Bruhwiler; R. Busby; John R. Cary; D.A. Dimitrov; P. Messmer; Vahid Houston Ranjbar; D.S. Smithe; A.V. Sobol; P. Stoltz

    2007-08-01

    The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R&D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components.

  2. Trapping of electrons in troughs of self generated electromagnetic standing waves in a bounded plasma column

    SciTech Connect

    Bhattacharjee, Sudeep; Sahu, Debaprasad; Pandey, Shail; Chatterjee, Sanghomitro; Dey, Indranuj; Roy Chowdhury, Krishanu

    2014-01-15

    Observations and measurements are reported on electron trapping in troughs of self-generated electromagnetic standing waves in a bounded plasma column confined in a minimum-B field. The boundaries are smaller than the free space wavelength of the waves. Earlier work of researchers primarily focused upon electron localization effects induced by purely electrostatic perturbation. We demonstrate the possibility in the presence of electromagnetic standing waves generated in the bounded plasma column. The electron trapping is verified with electrostatic measurements of the plasma floating potential, electromagnetic measurements of the wave field profile, and optical intensity measurements of Argon ionic line at 488 nm. The experimental results show a reasonably good agreement with predictions of a Monte Carlo simulation code that takes into account all kinematical and dynamical effects in the plasma in the presence of bounded waves and external fields.

  3. Efficiency of combined cyclotron--[hacek C]erenkov interaction between electrons and electromagnetic fields

    SciTech Connect

    Nusinovich, G.S.; Vlasov, A.N. )

    1993-02-01

    A theory is presented describing the electron cyclotron interaction at frequencies near cutoff, followed by a [hacek C]erenkov interaction region. In such a case, the cyclotron interaction withdraws only the orbital component of electron momentum, while in the [hacek C]erenkov interaction the electrons lose their axial momentum. It is shown that the addition of the [hacek C]erenkov interaction significantly enhances the total electronic efficiency. Since both kinds of operation are relatively insensitive to electron velocity spread, the efficiency of the combined interaction is also rather tolerant to velocity spread. Thus, rather efficient sources of electromagnetic radiation based on poor quality electron beams may be developed.

  4. Verification of electromagnetic fluid-kinetic hybrid electron model in global gyrokinetic particle simulation

    NASA Astrophysics Data System (ADS)

    Holod, I.; Lin, Z.

    2013-03-01

    The fluid-kinetic hybrid electron model is verified in global gyrokinetic particle simulation of linear electromagnetic drift-Alfvénic instabilities in tokamak. In particular, we have recovered the β-stabilization of the ion temperature gradient mode, transition to collisionless trapped electron mode, and the onset of kinetic ballooning mode as βe (ratio of electron kinetic pressure to magnetic pressure) increases.

  5. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    SciTech Connect

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-08-31

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  6. A robust platform cooled by superconducting electronic refrigerators

    SciTech Connect

    Nguyen, H. Q.; Meschke, M.; Pekola, J. P.

    2015-01-05

    A biased tunnel junction between a superconductor and a normal metal can cool the latter electrode. Based on a recently developed cooler with high power and superior performance, we have integrated it with a dielectric silicon nitride membrane, and cooled phonons from 305 mK down to 200 mK. Without perforation and covered under a thin alumina layer, the membrane is rigorously transformed into a cooling platform that is robust and versatile for multiple practical purposes. We discussed our results and possibilities to further improve the device.

  7. Kinetic theory of the electron bounce instability in two dimensional current sheets—Full electromagnetic treatment

    SciTech Connect

    Tur, A.; Fruit, G.; Louarn, P.

    2014-03-15

    In the general context of understanding the possible destabilization of a current sheet with applications to magnetospheric substorms or solar flares, a kinetic model is proposed for studying the resonant interaction between electromagnetic fluctuations and trapped bouncing electrons in a 2D current sheet. Tur et al. [A. Tur et al., Phys. Plasmas 17, 102905 (2010)] and Fruit et al. [G. Fruit et al., Phys. Plasmas 20, 022113 (2013)] already used this model to investigate the possibilities of electrostatic instabilities. Here, the model is completed for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period. The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasineutrality condition and the Ampere's law for the current density. It is found that for mildly strechted current, undamped modes oscillate at typical electron bounce frequency with wavelength of the order of the plasma sheet half thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in ε = B{sub z}/B{sub lobes}, the mode becomes explosive with typical growth rate of a few tens of seconds. The free energy contained in the bouncing motion of the electrons may trigger an electromagnetic instability able to disrupt the cross-tail current in a few seconds. This new instability–electromagnetic electron-bounce instability–may explain fast and global scale destabilization of current sheets as required to describe substorm phenomena.

  8. Status of the R&D towards electron cooling of RHIC

    SciTech Connect

    Ben-Zvi, I.; Alduino, J.; Barton, D.; Beavis, D.; Blaskiewicz, M.; Brennan, J.M.; Burrill, A.; Calaga, R.; Cameron, P.; Chang, X.; Drees, K.; /Brookhaven /AES, Medford /Novosibirsk, IYF /Fermilab /Dubna, JINR /Jefferson Lab /Oak Ridge /NIST, Boulder

    2007-06-01

    The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed calculations were made of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. The electron beam accelerator will be a superconducting Energy Recovery Linac (ERL). An intensive experimental R&D program engages the various elements of the accelerator, as described by 24 contributions to the 2007 PAC.

  9. STATUS OF THE RESEARCH AND DEVELOPMENT TOWARDS ELECTRON COOLING OF RHIC

    SciTech Connect

    BEN-ZVI,I.; OZAKI, T.; YOSHIDA, T.; NANKAWA, T.; KOZAI, N.; SAKAMOTO, F.; SUZUKI, Y.

    2007-06-25

    The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed calculations were made of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. The electron beam accelerator will be a superconducting Energy Recovery Linac (ERL). An intensive experimental R&D program engages the various elements of the accelerator, as described by 24 contributions to the 2007 PAC.

  10. Vibrational and rotational cooling of electrons by water vapor. [in cometary ionospheres

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.; Korosmezey, A.

    1986-01-01

    The cooling of electrons by vibrational and rotational excitation of water molecules plays an important role in the thermal balance of electrons in cometary ionospheres. The energy-loss function for rotational excitation and deexcitation of H2O by electron impact is calculated theoretically. The rotational cooling rate is calculated using this loss function for a wide range of electron and neutral temperatures. The vibrational cooling rate is calculated using measured values of electron-impact vibrational excitation cross sections. Analytical formulas are provided for some of the cooling rates. The interaction of ions with H2O molecules is also discussed, and a formula is suggested for the momentum-transfer collision frequency.

  11. Single pass electron beam cooling of gold ions between EBIS LINAC and booster is theoretically possible!

    SciTech Connect

    Hershcovitch, A.

    2011-01-01

    Electron beam cooling is examined as an option to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster. Electron beam parameters are based on experimental data (obtained at BNL) of electron beams extracted from a plasma cathode. Many issues, regarding a low energy high current electron beam that is needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, were examined. Computations and some experimental data indicate that none of these issues is a show stopper. Preliminary calculations indicate that single pass cooling is feasible; momentum spread can be reduced by more than an order of magnitude in about one meter. Hence, this option cooling deserves further more serious considerations.

  12. SRF photoinjector for proof-of-principle experiment of coherent electron cooling at RHIC

    SciTech Connect

    Kayran D.; Belomestnykh, S.; Ben-Zvi, I.; Brutus, J.C.; et al

    2012-05-20

    Coherent Electron Cooling (CEC) based on Free Electron Laser (FEL) amplifier promises to be a very good way to cool protons and ions at high energies. A proof of principle experiment to demonstrate cooling at 40 GeV/u is under construction at BNL. One of possible sources to provide sufficient quality electron beam for this experiment is a SRF photoinjector. In this paper we discuss design and simulated performance of the photoinjector based on existing 112 MHz SRF gun and newly designed single-cavity SRF linac operating at 704 MHz.

  13. Comment on "Nonrelativistic electromagnetic surface waves: dispersion properties in a magnetized dusty electron-positron plasma".

    PubMed

    Misra, Amar P; Chowdhury, A Roy

    2004-11-01

    The theory of electromagnetic surface modes propagating along the planar interface between dusty electron-positron plasma and vacuum is reexamined by the conventional matching method of boundary conditions. It is shown that in a magnetoplasma the direct use of specular reflection method is not appropriate and the derivations for the TM-mode dispersion relation [Phys. Rev. E 61, 4357 (2000)] are incorrect.

  14. The nonextensive parameter for nonequilibrium electron gas in an electromagnetic field

    SciTech Connect

    Yu, Haining; Du, Jiulin

    2014-11-15

    The nonextensive parameter for nonequilibrium electron gas of the plasma in an electromagnetic field is studied. We exactly obtained an expression of the q-parameter based on Boltzmann kinetic theories for plasmas, where Coulombian interactions and Lorentz forces play dominant roles. We show that the q-parameter different from unity is related by an equation to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the gas. The effect of the magnetic field on the q-parameter depends on the overall bulk velocity. Thus the q-parameter for the electron gas in an electromagnetic field represents the nonequilibrium nature or nonisothermal configurations of the plasma with electromagnetic interactions. - Highlights: • An expression of the q-parameter is obtained for nonequilibrium plasma with electromagnetic interactions. • The q-parameter is related to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the plasma. • The q-parameter represents the nonequilibrium nature of the complex plasma with electromagnetic interactions.

  15. Low frequency electromagnetic oscillations in dense degenerate electron-positron pair plasma, with and without ions

    SciTech Connect

    Khan, S. A.; Ayub, M. K.; Ahmad, Ali

    2012-10-15

    Quantum plasma oscillations are studied in a strongly magnetized, ultra-dense plasma with degenerate electrons and positrons. The dispersive role of electron and positron quantum effects on low frequency (in comparison to electron cyclotron frequency) shear electromagnetic wave is investigated by employing hydrodynamic formulation. In the presence of ions, the density balance changes, and the electromagnetic wave (with frequency lower than the ion cyclotron frequency) is shown to couple with electrostatic ion mode under certain conditions. For such low frequency waves, it is also seen that the contribution of electron and positron degeneracy pressure is dominant as compared to their diffraction effects. The results are analyzed numerically for illustrative purpose pointing out their relevance to the dense laboratory (e.g., super-intense laser-dense matter interactions) and astrophysical plasmas.

  16. Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    SciTech Connect

    Komar, A.; Pokol, G. I.; Fueloep, T.

    2013-01-15

    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

  17. Low frequency electromagnetic oscillations in dense degenerate electron-positron pair plasma, with and without ions

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Ayub, M. K.; Ahmad, Ali

    2012-10-01

    Quantum plasma oscillations are studied in a strongly magnetized, ultra-dense plasma with degenerate electrons and positrons. The dispersive role of electron and positron quantum effects on low frequency (in comparison to electron cyclotron frequency) shear electromagnetic wave is investigated by employing hydrodynamic formulation. In the presence of ions, the density balance changes, and the electromagnetic wave (with frequency lower than the ion cyclotron frequency) is shown to couple with electrostatic ion mode under certain conditions. For such low frequency waves, it is also seen that the contribution of electron and positron degeneracy pressure is dominant as compared to their diffraction effects. The results are analyzed numerically for illustrative purpose pointing out their relevance to the dense laboratory (e.g., super-intense laser-dense matter interactions) and astrophysical plasmas.

  18. Guiding and collimating fast electron beam by the quasi-static electromagnetic field array

    SciTech Connect

    Wang, J.; Zhao, Z. Q.; He, W. H.; Dong, K. G.; Wu, Y. C.; Zhu, B.; Zhang, T. K.; Zhang, B.; Zhang, Z. M.; Gu, Y. Q.; Cao, L. H.

    2014-10-15

    A guidance and collimation scheme for fast electron beam in a traverse periodic quasi-static electromagnetic field array is proposed with the semi-analytic method and the particle-in-cell simulation. The sheath electric fields on the surfaces of nanowires and the magnetic fields around the nanowires form a traverse periodic quasi-static electromagnetic field array. Therefore, most of the fast electrons are confined at the nanowire surfaces and transport forward. More importantly, due to the divergent property of the beams, the magnitudes of the generated fields decrease with the target depth. The lateral momenta of the electrons convert into the forward momenta through Lorenz force, and they cannot recover their initial values. Therefore, the fast electrons can be guided and collimated efficiently in the gaps between the nanowires. In our particle-in-cell simulations, the observed guiding efficiency exceeds 80% compared with the reference target.

  19. Electrostatic and electromagnetic gyroharmonic emissions due to energetic electrons in magnetospheric plasma

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Wu, C. S.

    1979-01-01

    The paper derives the growth rates and growth lengths of the electrostatic emission for spatially homogeneous and inhomogeneous energetic electrons, and numerically evaluates the growth rate and growth length spectra for several parameter sets representative of magnetospheric plasmas. In addition, the growth rates are derived for the case of electromagnetic emission modeled by the ordinary mode. The numerical results of the electromagnetic and electrostatic cases are compared with observations made by satellites in the earth's magnetosphere. It is concluded that the electrostatic gyroharmonic excitation is possible without the cold composition of plasma which is often postulated in the existing literature.

  20. Nonlinear propagation of broadband intense electromagnetic waves in an electron-positron plasma

    SciTech Connect

    Marklund, M.; Eliasson, B.; Shukla, P. K.

    2006-08-15

    A kinetic equation describing the nonlinear evolution of intense electromagnetic pulses in electron-positron (e-p) plasmas is presented. The modulational instability is analyzed for a relativistically intense partially coherent pulse, and it is found that the modulational instability is inhibited by the spectral pulse broadening. A numerical study for the one-dimensional kinetic photon equation is presented. Computer simulations reveal a Fermi-Pasta-Ulam-type recurrence phenomenon for localized broadband pulses. The results should be of importance in understanding the nonlinear propagation of broadband intense electromagnetic pulses in e-p plasmas in laser-plasma systems as well as in astrophysical plasma settings.

  1. Electronic Spectra of the Jet-Cooled Acetaminophen

    NASA Astrophysics Data System (ADS)

    Lee, Seung Jun; Min, Ahreum; Kim, Yusic; Choi, Myong Yong; Chang, Jinyoung; Lee, Sang Hak; Kim, Seong Keun

    2010-06-01

    Resonant two-photon ionization (R2PI), laser induced fluorescence (LIF) and UV-UV double resonance spectra of the jet-cooled acetaminophen, widely used as a pain reliever and fever reducer, were obtained in the gas phase. Conformational characterizations for acetaminophen will be presented with an aid of spectroscopic techniques and DFT B3LYP calculations.

  2. Evaluation of Electromagnetic Fields in a Hospital for Safe Use of Electronic Medical Equipment.

    PubMed

    Ishida, Kai; Fujioka, Tomomi; Endo, Tetsuo; Hosokawa, Ren; Fujisaki, Tetsushi; Yoshino, Ryoji; Hirose, Minoru

    2016-03-01

    Establishment of electromagnetic compatibility is important in use of electronic medical equipment in hospitals. To evaluate the electromagnetic environment, the electric field intensity induced by electromagnetic radiation in broadcasting spectra coming from outside the hospital was measured in a new hospital building before any patients visited the hospital and 6 months after the opening of the hospital. Various incoming radio waves were detected on the upper floors, with no significant difference in measured levels before and after opening of the hospital. There were no cellphone terminal signals before the hospital opened, but these signals were strongly detected at 6 months thereafter. Cellphone base stations signals were strongly detected on the upper floors, but there were no signals at most locations in the basement and in the center of the building on the lower floors. A maximum electrical intensity of 0.28 V/m from cellphone base stations (2.1 GHz) was detected at the south end of the 2nd floor before the hospital opened. This value is lower than the EMC marginal value for general electronic medical equipment specified in IEC 60601-1-2 (3 V/m). Therefore, electromagnetic interference with electronic medical equipment is unlikely in this situation. However, cellphone terminal signals were frequently detected in non-base station signal areas. This is a concern, and understanding signal strength from cellphone base stations at a hospital is important for promotion of greater safety. PMID:26643076

  3. Evaluation of Electromagnetic Fields in a Hospital for Safe Use of Electronic Medical Equipment.

    PubMed

    Ishida, Kai; Fujioka, Tomomi; Endo, Tetsuo; Hosokawa, Ren; Fujisaki, Tetsushi; Yoshino, Ryoji; Hirose, Minoru

    2016-03-01

    Establishment of electromagnetic compatibility is important in use of electronic medical equipment in hospitals. To evaluate the electromagnetic environment, the electric field intensity induced by electromagnetic radiation in broadcasting spectra coming from outside the hospital was measured in a new hospital building before any patients visited the hospital and 6 months after the opening of the hospital. Various incoming radio waves were detected on the upper floors, with no significant difference in measured levels before and after opening of the hospital. There were no cellphone terminal signals before the hospital opened, but these signals were strongly detected at 6 months thereafter. Cellphone base stations signals were strongly detected on the upper floors, but there were no signals at most locations in the basement and in the center of the building on the lower floors. A maximum electrical intensity of 0.28 V/m from cellphone base stations (2.1 GHz) was detected at the south end of the 2nd floor before the hospital opened. This value is lower than the EMC marginal value for general electronic medical equipment specified in IEC 60601-1-2 (3 V/m). Therefore, electromagnetic interference with electronic medical equipment is unlikely in this situation. However, cellphone terminal signals were frequently detected in non-base station signal areas. This is a concern, and understanding signal strength from cellphone base stations at a hospital is important for promotion of greater safety.

  4. Ultra-low-temperature cooling of two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Xia, J. S.; Adams, E. D.; Shvarts, V.; Pan, W.; Stormer, H. L.; Tsui, D. C.

    2000-05-01

    A new design has been used for cooling GaAs/Al xGa 1- xAs sample to ultra-low-temperatures. The sample, with electrical contacts directly soldered to the sintered silver powder heat exchangers, was immersed in liquid 3He, which was cooled by a PrNI 5 nuclear refrigerator. The data analysis shows that the two-dimensional electron gas (2DEG) was cooled to 4.0 mK at the refrigerator base temperature Tb of 2.0 mK. The design with heat exchanger cooling is applicable to any ultra-low-temperature transport measurements of 2DEG system.

  5. Experimental search for the electron electric dipole moment with laser cooled francium atoms

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A.; Aoki, T.; Asahi, K.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Yoshimi, A.; Sakemi, Y.

    2015-04-01

    A laser cooled heavy atom is one of the candidates to search for the permanent electric dipole moment (EDM) of the electron due to the enhancement mechanism and its long coherence time. The laser cooled francium (Fr) factory has been constructed to perform the electron EDM search at the Cyclotron and Radioisotope Center, Tohoku University. The present status of Fr production and the EDM measurement system is presented.

  6. Nonrelativistic electromagnetic surface waves: dispersion properties in a magnetized dusty electron-positron plasma

    PubMed

    Cho; Lee; Kim

    2000-04-01

    Nonrelativistic electromagnetic surface waves propagating on the plane interface between dusty electron-positron plasma and vacuum are investigated by specular reflection procedure. In the presence of an applied magnetic field (B(0)=B(0)yinsertion mark) directed perpendicular to both the interface normal and the wave vector, transverse electromagnetic modes are studied in terms of the dispersion relation. The analytic modes are derived and discussed with the aid of some numerical analysis. The cold electromagnetic surface wave dispersion relation considering the effect of dust particle shows that possible modes appear only when the normalized frequency (omega;) and the wave vector (&Kmacr;) satisfy the condition Omega;Omega;, where delta(=n(0-)/n(0+)) is the parameter of charge imbalance in the plasma and Omega; is the normalized cyclotron frequency.

  7. Inhibition of electron thermal conduction by electromagnetic instabilities. [in stellar coronas

    NASA Technical Reports Server (NTRS)

    Levinson, Amir; Eichler, David

    1992-01-01

    Heat flux inhibition by electromagnetic instabilities in a hot magnetized plasma is investigated. Low-frequency electromagnetic waves become unstable due to anisotropy of the electron distribution function. The chaotic magnetic field thus generated scatters the electrons with a specific effective mean free path. Saturation of the instability due to wave-wave interaction, nonlinear scattering, wave propagation, and collisional damping is considered. The effective mean free path is found self-consistently, using a simple model to estimate saturation level and scattering, and is shown to decrease with the temperature gradient length. The results, limited to the assumptions of the model, are applied to astrophysical systems. For some interstellar clouds the instability is found to be important. Collisional damping stabilizes the plasma, and the heat conduction can be dominated by superthermal electrons.

  8. New fine structure cooling rate. [electron impact transitions in the ionosphere

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.

    1976-01-01

    One of the dominant electron cooling processes in the ionosphere is caused by electron impact induced fine structure transitions among the ground state levels of atomic oxygen. This fine structure cooling rate is based on theoretical cross sections. Recent advances in the numerical cross section determinations to include polarization effects and more accurate representations of the atomic target result in new lower values. These cross sections are employed in this paper to derive a new fine structure cooling rate which is between 40% and 60% of the currently used rate. A new generalized formula is presented for the cooling rate (from which the fine structure cooling rate is derived), valid for arbitrary mass and temperature difference of the colliding particles and arbitrary inelastic energy difference.

  9. The integration of liquid cryogen cooling and cryocoolers withsuperconducting electronic systems

    SciTech Connect

    Green, Michael A.

    2003-07-09

    The need for cryogenic cooling has been a critical issuethat has kept superconducting electronic devices from reaching the marketplace. Even though the performance of many of the superconductingcircuits is superior to silicon electronics, the requirement forcryogenic cooling has put the superconducting devices at a seriousdisadvantage. This report discusses the process of refrigeratingsuperconducting devices with cryogenic liquids and small cryocoolers.Three types of cryocoolers are compared for vibration, efficiency, andreliability. The connection of a cryocooler to the load is discussed. Acomparison of using flexible copper straps to carry the heat load andusing heat pipe is shown. The type of instrumentation needed formonitoring and controlling the cooling is discussed.

  10. Effects of a nonlinear damping force in synchrotrons with electron cooling

    SciTech Connect

    Caussyn, D.D.; Ball, M.; Budnick, J.; East, G.; Ellison, M.; Hamilton, B.; Hedblom, K.; Kang, X.; Lee, S.Y.; Li, D.; Liu, J.Y.; Ng, K.Y.; Riabko, A.; Wang, L.; Wang, Y. ||

    1995-05-01

    The longitudinal dynamics of a stored proton beam bunch, under the influence of a nonlinear damping force produced by electron cooling, was studied experimentally. The effect of the nonlinear damping force was explored by varying the relative velocity between the cooling electrons and the stored protons. Maintained longitudinal oscillations developed, which grew rapidly once a critical threshold in the relative velocity was exceeded. The bifurcation of a fixed point into a limit cycle is also known as a Hopf bifurcation. Comparisons of experimental data with numerical simulations and analytical calculations are made. Implications for cooled beam acceleration will be discussed.

  11. Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.

    PubMed

    Amin, M R

    2015-09-01

    Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.

  12. Use of LHP for cooling power electronic components

    NASA Astrophysics Data System (ADS)

    Smitka, M.; Malcho, M.; Nemec, P.; Kolková, Z.

    2013-04-01

    The paper deals with use of cooling equipment build on basis two phase thermosyphon loop. This device belongs to a group of loop heat pipe (LHP). This LHP is a two-phase device with extremely high effective thermal conductivity that utilizes the thermodynamic pressure difference to circulate fluid. It was invented in Russia in the early 1980´s. Thermosyphon loop is similar as LHP but it doesn't contain wick and circulation of the fluid using gravitation force instead of capillary pressure as it is in LHP. The work deals with the cooling insulated gate bipolar transistor with 370 W. The paper describes the course of the heat dissipation using ribbed cooler for natural convection and using fin for forced convection. The results are compared with heat dissipation through thermosyphon loop.

  13. Recycler Electron Cooling Project: Mechanical vibrations in the Pelletron and their effect on the beam

    SciTech Connect

    Kazakevich, Grigory M.; Burov, A.; Boffo, C.; Joireman, P.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; /Fermilab

    2005-07-01

    The Fermilab's Recycler ring will employ an electron cooler to cool stored 8.9 GeV antiprotons [1]. The cooler is based on an electrostatic accelerator, Pelletron [2], working in an energy-recovery regime. A full-scale prototype of the cooler has been assembled and commissioned in a separate building [3]. The main goal of the experiments with the prototype was to demonstrate stable operation with a 3.5 MeV, 0.5 A DC electron beam while preserving a high beam quality in the cooling section. The quality is characterized, first of all, by a spread of electron velocities in the cooling section, which may be significantly affected by mechanical vibration of the Pelletron elements. This paper describes the results of vibration measurements in the Pelletron terminal and correlates them with the beam motion in the cooling section.

  14. 3D electromagnetic simulation of spatial autoresonance acceleration of electron beams

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; González, J. D.; Orozco, E. A.

    2016-02-01

    The results of full electromagnetic simulations of the electron beam acceleration by a TE 112 linear polarized electromagnetic field through Space Autoresonance Acceleration mechanism are presented. In the simulations, both the self-sustaned electric field and selfsustained magnetic field produced by the beam electrons are included into the elaborated 3D Particle in Cell code. In this system, the space profile of the magnetostatic field maintains the electron beams in the acceleration regime along their trajectories. The beam current density evolution is calculated applying the charge conservation method. The full magnetic field in the superparticle positions is found by employing the trilinear interpolation of the mesh node data. The relativistic Newton-Lorentz equation presented in the centered finite difference form is solved using the Boris algorithm that provides visualization of the beam electrons pathway and energy evolution. A comparison between the data obtained from the full electromagnetic simulations and the results derived from the motion equation depicted in an electrostatic approximation is carried out. It is found that the self-sustained magnetic field is a factor which improves the resonance phase conditions and reduces the beam energy spread.

  15. Kinetic Electron Closures for Electromagnetic Simulation of Drift and Shear-Alfven Waves (II)

    SciTech Connect

    Cohen, B I; Dimits, A M; Nevins, W M; Chen, Y; Parker, S

    2001-10-11

    An electromagnetic hybrid scheme (fluid electrons and gyrokinetic ions) is elaborated in example calculations and extended to toroidal geometry. The scheme includes a kinetic electron closure valid for {beta}{sub e} > m{sub e}/m{sub i} ({beta}{sub e} is the ratio of the plasma electron pressure to the magnetic field energy density). The new scheme incorporates partially linearized ({delta}f) drift-kinetic electrons whose pressure and number density moments are used to close the fluid momentum equation for the electron fluid (Ohm's law). The test cases used are small-amplitude kinetic shear-Alfven waves with electron Landau damping, the ion-temperature-gradient instability, and the collisionless drift instability (universal mode) in an unsheared slab as a function of the plasma {beta}{sub e}. Attention is given to resolution and convergence issues in simulations of turbulent steady states.

  16. Final Report for 'ParSEC-Parallel Simulation of Electron Cooling"

    SciTech Connect

    David L Bruhwiler

    2005-09-16

    The Department of Energy has plans, during the next two or three years, to design an electron cooling section for the collider ring at RHIC (Relativistic Heavy Ion Collider) [1]. Located at Brookhaven National Laboratory (BNL), RHIC is the premier nuclear physics facility. The new cooling section would be part of a proposed luminosity upgrade [2] for RHIC. This electron cooling section will be different from previous electron cooling facilities in three fundamental ways. First, the electron energy will be 50 MeV, as opposed to 100's of keV (or 4 MeV for the electron cooling system now operating at Fermilab [3]). Second, both the electron beam and the ion beam will be bunched, rather than being essentially continuous. Third, the cooling will take place in a collider rather than in a storage ring. Analytical work, in combination with the use and further development of the semi-analytical codes BETACOOL [4,5] and SimCool [6,7] are being pursued at BNL [8] and at other laboratories around the world. However, there is a growing consensus in the field that high-fidelity 3-D particle simulations are required to fully understand the critical cooling physics issues in this new regime. Simulations of the friction coefficient, using the VORPAL code [9], for single gold ions passing once through the interaction region, have been compared with theoretical calculations [10,11], and the results have been presented in conference proceedings papers [8,12,13,14] and presentations [15,16,17]. Charged particles are advanced using a fourth-order Hermite predictor corrector algorithm [18]. The fields in the beam frame are obtained from direct calculation of Coulomb's law, which is more efficient than multipole-type algorithms for less than {approx} 10{sup 6} particles. Because the interaction time is so short, it is necessary to suppress the diffusive aspect of the ion dynamics through the careful use of positrons in the simulations, and to run 100's of simulations with the same

  17. Equations of motion for a free-electron laser with an electromagnetic pump field and an axial electrostatic field

    NASA Technical Reports Server (NTRS)

    Hiddleston, H. R.; Segall, S. B.

    1981-01-01

    The equations of motion for a free-electron laser (FEL) with an electromagnetic pump field and a static axial electric field are derived using a Hamiltonian formalism. Equations governing the energy transfer between the electron beam and each of the electromagnetic fields are given, and the phase shift for each of the electromagnetic fields is derived from a linearized Maxwell wave equation. The relation between the static axial electric field and the resonant phase is given. Laser gain and the fraction of the electron energy converted to photon energy are determined using a simplified resonant particle model. These results are compared to those of a more exact particle simulation code.

  18. Evidence of local power deposition and electron heating by a standing electromagnetic wave in electron-cyclotron-resonance plasma.

    PubMed

    Durocher-Jean, A; Stafford, L; Dap, S; Makasheva, K; Clergereaux, R

    2014-09-01

    Microwave plasmas excited at electron-cyclotron resonance were studied in the 0.5-15 mTorr pressure range. In contrast with low-limit pressure conditions where the plasma emission highlights a fairly homogeneous spatial structure, a periodic spatial modulation (period ∼6.2 cm) appeared as pressure increased. This feature is ascribed to a local power deposition (related to the electron density) due to the presence of a standing electromagnetic wave created by the feed electromagnetic field (2.45 GHz) in the cavity formed by the reactor walls. Analysis of the electron energy probability function by Langmuir probe and optical emission spectroscopy further revealed the presence of a high-energy tail that showed strong periodic spatial modulation at higher pressure. The spatial evolution of the electron density and of the characteristic temperature of these high-energy electrons coincides with the nodes (maximum) and antinodes (minimum) of the standing wave. These spatially-modulated power deposition and electron heating mechanisms are then discussed.

  19. Evidence of local power deposition and electron heating by a standing electromagnetic wave in electron-cyclotron-resonance plasma.

    PubMed

    Durocher-Jean, A; Stafford, L; Dap, S; Makasheva, K; Clergereaux, R

    2014-09-01

    Microwave plasmas excited at electron-cyclotron resonance were studied in the 0.5-15 mTorr pressure range. In contrast with low-limit pressure conditions where the plasma emission highlights a fairly homogeneous spatial structure, a periodic spatial modulation (period ∼6.2 cm) appeared as pressure increased. This feature is ascribed to a local power deposition (related to the electron density) due to the presence of a standing electromagnetic wave created by the feed electromagnetic field (2.45 GHz) in the cavity formed by the reactor walls. Analysis of the electron energy probability function by Langmuir probe and optical emission spectroscopy further revealed the presence of a high-energy tail that showed strong periodic spatial modulation at higher pressure. The spatial evolution of the electron density and of the characteristic temperature of these high-energy electrons coincides with the nodes (maximum) and antinodes (minimum) of the standing wave. These spatially-modulated power deposition and electron heating mechanisms are then discussed. PMID:25314546

  20. Electron cooling for the Fermilab recycler: Present concept and provisional parameters

    SciTech Connect

    Nagaitsev, S.

    1997-09-01

    In all scenarios of the possible Tevatron upgrades, luminosity is essentially proportional to the number of antiprotons. Thus, a tenfold increase in luminosity could be achieved by putting five times more protons on the antiproton production target and gaining an additional factor of two from recycling antiprotons left over from the previous store. Stacking and storing ten times more antiprotons puts an unbearable burden on the stochastic cooling system of the existing Accumulator Ring. Thus, one is led to consider an additional stage of antiproton storage the so called Recycler Ring. Electron cooling of the 8 GeV antiprotons in the Recycler could provide an attractive way around the problems of large stacks. Such a system would look much like the IUCF proposal to cool 12 GeV protons in the SSC Medium Energy Booster. Although electron cooling has now become a routine tool in many laboratories, its use has been restricted to lower energy accelerators (< 500 MeV/nucleon). An R&D program is currently underway at Fermilab to extend electron cooling technology to the GeV range. This paper describes the electron cooling system design as well as the Recycler ring parameters required to accommodate this system.

  1. Proof-of-Principle Experiment for FEL-based Coherent Electron Cooling

    SciTech Connect

    Litvinenko, V; Bengtsson, J; Fedotov, A V; Hao, Y; Kayran, D; Mahler, G J; Meng, W; Roser, T; Sheehy, B; Than, R; Tuozzolo, J E; Wang, G; Webb, S D; Yakimenko, V; Bell, G I; Bruhwiler, D L; Schwartz, B T; Hutton, A; Krafft, G A; Poelker, M; Rimmer, R A

    2011-03-01

    Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron-hadron and electron-hadron colliders*. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using one of JLab’s SRF cryo-modules. In this paper, we describe the experimental setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC.

  2. Free-electron laser harmonic generation in an electromagnetic-wave wiggler and ion channel guiding

    SciTech Connect

    Mehdian, H.; Hasanbeigi, A.; Jafari, S.

    2010-02-15

    A theoretical study of electron trajectories, harmonic generation, and gain in a free-electron laser (FEL) with a linearly polarized electromagnetic-wave wiggler is presented for axial injection of electron beam. The relativistic equation of motion for a single electron has been derived and solved numerically. It is found that the trajectories consist of two regimes. The stability of these regimes has been investigated. The results show that the trajectories are stable except for some parts of the regime one. The effects of interaction on the transverse velocity of the electron are a superposition of two oscillation terms, one at the wiggler frequency and the other at the betatron ion-channel frequency. A detailed analysis of the gain equation in the low-gain-per-pass limit has been employed to investigate FEL operation in higher harmonics generation. The possibility of wave amplification at both wiggler frequency and betatron ion-channel frequency for their odd harmonics has been illustrated.

  3. Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam.

    PubMed

    Liu, Shenggang; Hu, Min; Zhang, Yaxin; Li, Yuebao; Zhong, Renbin

    2009-09-01

    This paper explores the physics of the electromagnetic diffraction radiation of a subwavelength holes array excited by a set of evanescent waves generated by a line charge of electron beam moving parallel to the array. Activated by a uniformly moving line charge, numerous physical phenomena occur such as the diffraction radiation on both sides of the array as well as the electromagnetic penetration or transmission below or above the cut-off through the holes. As a result the subwavelength holes array becomes a radiation array. Making use of the integral equation with relevant Green's functions, an analytical theory for such a radiation system is built up. The results of the numerical calculations based on the theory agree well with that obtained by the computer simulation. The relation among the effective surface plasmon wave, the electromagnetic penetration or transmission of the holes and the diffraction radiation is revealed. The energy dependence of and the influence of the hole thickness on the diffraction radiation and the electromagnetic penetration or transmission are investigated in detail. Therefore, a distinct diffraction radiation phenomenon is discovered.

  4. Electromagnetic drift waves in nonuniform quantum magnetized electron positron ion plasmas

    NASA Astrophysics Data System (ADS)

    Ren, Haijun; Wu, Zhengwei; Cao, Jintao; Chu, Paul K.

    2008-03-01

    Electromagnetic drift waves in a nonuniform quantum magnetized electron positron ion (EPI) plasma are studied. By using the quantum hydrodynamic equations with magnetic fields of the Wigner Maxwell system, we obtained a new dispersion relation in which ions' motions are not considered. The positrons component (featured by the parameter ξ), density gradient of electrons, and of positrons are shown to have a significant impact on the dispersion relation. Our results should be relevant to dense astrophysical objects, e.g. white dwarf and pulsar magnetospheres, as well as low-temperature laboratory EPI plasmas.

  5. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene

    PubMed Central

    Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.

    2015-01-01

    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955

  6. ECOFUSION: AN ELECTRON-COOLED, CELLULAR APPROACH TO HARNESSING FUSION POWER

    SciTech Connect

    Larson, D. J.

    2009-07-26

    A cellular electron-cooled storage ring system for achieving particle-beam fusion-based-energy is described. The system uses multiple electron-cooled, overlapping storage rings to enable colliding-beam fusion. Particles are continuously fed into the storage rings, and the electron cooling systems continuously correct the ion beam trajectories, compensating for various scattering events that occur in the system. This allows for large currents to be built up in the ion storage rings. The rate of fusion reactions that occur in the overlap regions between the storage rings can be increased by focusing to enable power outputs of interest for fusion-based power reactors. The system can be built with technology readily available today.

  7. Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics.

    PubMed

    Zhang, Kewei; Wang, Xue; Yang, Ya; Wang, Zhong Lin

    2015-01-01

    We report a hybridized electromagnetic-triboelectric nanogenerator for highly efficient scavenging of biomechanical energy to sustainably power wearable electronics by human walking. Based on the effective conjunction of triboelectrification and electromagnetic induction, the hybridized nanogenerator, with dimensions of 5 cm × 5 cm × 2.5 cm and a light weight of 60 g, integrates a triboelectric nanogenerator (TENG) that can deliver a peak output power of 4.9 mW under a loading resistance of 6 MΩ and an electromagnetic generator (EMG) that can deliver a peak output power of 3.5 mW under a loading resistance of 2 kΩ. The hybridized nanogenerator exhibits a good stability for the output performance and a much better charging performance than that of an individual energy-harvesting unit (TENG or EMG). Furthermore, the hybridized nanogenerator integrated in a commercial shoe has been utilized to harvest biomechanical energy induced by human walking to directly light up tens of light-emitting diodes in the shoe and sustainably power a smart pedometer for reading the data of a walking step, distance, and energy consumption. A wireless pedometer driven by the hybrid nanogenerator can work well to send the walking data to an iPhone under the distance of 25 m. This work pushes forward a significant step toward energy harvesting from human walking and its potential applications in sustainably powering wearable electronics.

  8. Simulation of collisionless ultrarelativistic electron-proton plasma dynamics in a self-consistent electromagnetic field

    NASA Astrophysics Data System (ADS)

    Ginzburg, S. L.; Dyachenko, V. F.; Orlov, Yu. N.; Fimin, N. N.; Chechetkin, V. M.

    2016-09-01

    The evolution of a collisionless electron-proton plasma in the self-consistent approximation is investigated. The plasma is assumed to move initially as a whole in a vacuum with the Lorentz factor. The behavior of the dynamical system is analyzed by applying a three-dimensional model based on the Vlasov-Maxwell equations with allowance for retarded potentials. It is shown that the analysis of the solution to the problem is not valid in the "center-of-mass frame" of the plasmoid (since it cannot be correctly defined for a relativistic plasma interacting via an electromagnetic field) and the transition to a laboratory frame of reference is required. In the course of problem solving, a chaotic electromagnetic field is generated by the plasma particles. As a result, the particle distribution functions in the phase space change substantially and differ from their Maxwell-Juttner form. Computations show that the kinetic energies of the electron and proton components and the energy of the self-consistent electromagnetic field become identical. A tendency to the isotropization of the particle momentum distribution in the direction of the initial plasmoid motion is observed.

  9. Femtosecond cooling of hot electrons in CdSe quantum-well platelets.

    PubMed

    Sippel, Philipp; Albrecht, Wiebke; van der Bok, Johanna C; Van Dijk-Moes, Relinde J A; Hannappel, Thomas; Eichberger, Rainer; Vanmaekelbergh, Daniel

    2015-04-01

    Semiconductor quantum wells are ubiquitous in high-performance optoelectronic devices such as solar cells and lasers. Understanding and controlling of the (hot) carrier dynamics is essential to optimize their performance. Here, we study hot electron cooling in colloidal CdSe quantum-well nanoplatelets using ultrafast two-photon photoemission spectroscopy at low excitation intensities, resulting typically in 1-5 hot electrons per platelet. We observe initial electron cooling in the femtosecond time domain that slows down with decreasing electron energy and is finished within 2 ps. The cooling is considerably faster at cryogenic temperatures than at room temperature, and at least for the systems that we studied, independent of the thickness of the platelets (here 3-5 CdSe units) and the presence of a CdS shell. The cooling rates that we observe are orders of magnitude faster than reported for similar CdSe platelets under strong excitation. Our results are understood by a classic cooling mechanism with emission of longitudinal optical phonons without a significant influence of the surface. PMID:25764379

  10. Excitation threshold of Stimulated Electromagnetic Emissions SEEs generated at pump frequency near the third electron gyroharmonic

    NASA Astrophysics Data System (ADS)

    Mahmoudian, A.; Bernhardt, P. A.; Scales, W.

    2012-12-01

    The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaska provides effective radiated powers in the megawatt range that have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emission (SEE) is of interest to the ionospheric community for its diagnostic purposes. In recent HAARP heating experiments, it has been shown that during the Magnetized Stimulated Brillouin Scattering MSBS instability, the pumped electromagnetic wave may decay into an electromagnetic wave and a low frequency electrostatic wave (either ion acoustic IA wave or electrostatic ion cyclotron EIC wave). Using Stimulated Electromagnetic Emission (SEE) spectral features, side bands which extend above and below the pump frequency can yield significant diagnostics for the modified ionosphere. It has been shown that the IA wave frequency offsets can be used to measure electron temperature in the heated ionosphere and EIC wave offsets can be used as a sensitive method to determine the ion species by measuring ion mass using the ion gyro-frequency offset. The threshold of each emission line has been measured by changing the amplitude of pump wave. The experimental results aimed to show the threshold for transmitter power to excite IA wave propagating along the magnetic field lines as well as for EIC wave excited at an oblique angle relative to the background magnetic field. Another parametric decay instability studied is the ion Bernstein decay instability that has been attributed to the simultaneous parametric decay of electron Bernstein waves into multiple electron Bernstein and ion Bernstein waves. The SIB process is thought to involve mode conversion from EM to EB waves followed by parametric decay of the EB wave to multiple EB and IB waves. The parametric decay instability of ion Bernstein modes has been observed simultaneously for the first time at the third electron gyroharmonics during 2011 Summer Student Research

  11. Metamorphic materials: bulk electromagnetic transitions realized in electronically reconfigurable composite media.

    PubMed

    Kyriazidou, Chryssoula A; Contopanagos, Harry F; Alexopoulos, Nicolaos G

    2006-11-01

    We present what we believe is a new class of composite electromagnetic materials characterized by the concept of metamorphism, which we define in general terms. Metamorphic materials exhibit bulk electromagnetic transitions among states characterized by distinct ranges of values of their reflection coefficient. Each such state has unique physical properties induced by the corresponding values of the reflection coefficient. We present a variety of physical realizations of the concept of metamorphic materials in microwave frequencies, showing with specific metallodielectric designs how transitions among metamorphic states can be obtained at the same frequency, for fixed material geometries, by electronic reconfigurability. We further show how a given material exhibiting certain metamorphic states at a given frequency can transform into a different combination of metamorphic states at different frequencies; i.e., metamorphic materials have a useful dispersive degree of freedom.

  12. Simulations of electromagnetic emissions produced in a thin plasma by a continuously injected electron beam

    NASA Astrophysics Data System (ADS)

    Annenkov, V. V.; Timofeev, I. V.; Volchok, E. P.

    2016-05-01

    In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in a realistic formulation allowing for the continuous injection of a relativistic electron beam through a plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of the electromagnetic plasma eigenmodes, as in an infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and the second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.

  13. Guidance note: risk management of workers with medical electronic devices and metallic implants in electromagnetic fields.

    PubMed

    Hocking, Bruce; Mild, Kjell Hansson

    2008-01-01

    Medical electronic devices and metallic implants are found in an increasing number of workers. Industrial applications requiring intense electromagnetic fields (EMF) are growing and the potential risk of injurious interactions arising from EMF affecting devices or implants needs to be managed. Potential interactions include electromagnetic interference, displacement, and electrostimulation or heating of adjacent tissue, depending on the device or implant and the frequency of the fields. A guidance note, which uses a risk management framework, has been developed to give generic advice in (a) risk identification--implementing procedures to identify workers with implants and to characterise EMF exposure within a workplace; (b) risk assessment--integrating the characteristics of devices, the anatomical localisation of implants, occupational hygiene data, and application of basic physics principles; and (c) risk control--advising the worker and employer regarding safety and any necessary changes to work practices, while observing privacy.

  14. Two-dimensional electromagnetic Child-Langmuir law of a short-pulse electron flow

    SciTech Connect

    Chen, S. H.; Tai, L. C.; Liu, Y. L.; Ang, L. K.; Koh, W. S.

    2011-02-15

    Two-dimensional electromagnetic particle-in-cell simulations were performed to study the effect of the displacement current and the self-magnetic field on the space charge limited current density or the Child-Langmuir law of a short-pulse electron flow with a propagation distance of {zeta} and an emitting width of W from the classical regime to the relativistic regime. Numerical scaling of the two-dimensional electromagnetic Child-Langmuir law was constructed and it scales with ({zeta}/W) and ({zeta}/W){sup 2} at the classical and relativistic regimes, respectively. Our findings reveal that the displacement current can considerably enhance the space charge limited current density as compared to the well-known two-dimensional electrostatic Child-Langmuir law even at the classical regime.

  15. Potential luminosity improvement for low-energy RHIC operation with electron cooling

    SciTech Connect

    Fedotov,A.

    2009-06-08

    There is a strong interest in heavy-ion RHIC collisions in the energy range below the present RHIC injection energy, which is termed 'low-energy' operation. These collisions will help to answer one of the key questions in the field of QCD about the existence and location of a critical point on the QCD phase diagram. However, luminosity projections are relatively low for the lowest energy points of interest. Luminosity improvement can be provided with RHIC electron cooling at low beam energies. This report summarizes the expected luminosity improvements with electron cooling and various limitations.

  16. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    PubMed

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions. PMID:27004879

  17. A practical procedure to prevent electromagnetic interference with electronic medical equipment.

    PubMed

    Hanada, Eisuke; Takano, Kyoko; Antoku, Yasuaki; Matsumura, Kouji; Watanabe, Yoshiaki; Nose, Yoshiaki

    2002-02-01

    Problems involving electromagnetic interference (EMI) with electronic medical equipment are well-documented. However, no systematic investigation of EMI has been done. We have systematically investigated the causes of EMI. The factors involved in EMI were determined as follows: 1) Electric-field intensity induced by invasive radio waves from outside a hospital. 2) Residual magnetic-flux density at welding points in a building. 3) Electric-field intensity induced by conveyance systems with a linear motor. 4) The shielding capacity of hospital walls. 5) The shielding capacity of commercial shields against a wide range frequency radio waves. 6) The immunity of electronic medical equipment. 7) EMI by cellular telephone and personal handy-phone system handsets. From the results of our investigation, we developed a following practical procedure to prevent EMI. 1) Measurement of electric-field intensity induced by invasive radio waves from outside the hospital and industrial systems in the hospital. 2) Measurement of residual magnetic-flux density at electric welding points of hospital buildings with steel frame structures. 3) Control of the electromagnetic environment by utilizing the shielding capacity of walls. 4) Measurement of the immunity of electronic medical equipment. And 5) Installation of electronic gate equipment at the building entrance to screen for handsets.

  18. Electron kinetic effects in atmosphere breakdown by an intense electromagnetic pulse.

    PubMed

    Solovyev, A A; Terekhin, V A; Tikhonchuk, V T; Altgilbers, L L

    1999-12-01

    A physical model is proposed for description of electron kinetics driven by a powerful electromagnetic pulse in the Earth's atmosphere. The model is based on a numerical solution to the Boltzmann kinetic equation for two groups of electrons. Slow electrons (with energies below a few keV) are described in a two-term approximation assuming a weak anisotropy of the electron distribution function. Fast electrons (with energies above a few keV) are described by a modified macroparticle method, taking into account the electron acceleration in the electric field, energy losses in the continuous deceleration approximation, and the multiple pitch angle scattering. The model is applied to a problem of the electric discharge in a nitrogen, which is preionized by an external gamma-ray source. It is shown that the runaway electrons have an important effect on the energy distribution of free electrons, and on the avalanche ionization rate. This mechanism might explain the observation of multiple lightning discharges observed in the Ivy-Mike thermonuclear test in the early 1950's.

  19. Zitterbewegung, internal momentum and spin of the circular travelling-wave electromagnetic model electron

    NASA Astrophysics Data System (ADS)

    Asif, Malik Mohammad; Khan, Salman

    2016-02-01

    This study demonstrates that an electron, going round, with tangential velocity c , in a circle of radius equal to half the reduced Compton wavelength of the electron, has Dirac-delta-like internal momentum (u,overrightarrow{p}_{θ}). The circular momentum overrightarrow{p}_{θ} and energy u emanate from the circular Dirac-delta-type rotating monochromatic electromagnetic (EM) wave, which travels itself in another circle having radius equal to the reduced Compton wavelength of the electron. The phenomenon of Zitterbewegung and the spin of the electron are natural consequences of the model. The spin is associated with the internal circulating momentum of the electron in terms of a four-component spinor, which leads to the Dirac equation linking the EM electron model with quantum-mechanical theory. Our model accurately explains the experimental results of the electron channelling experiment (P. Catillon et al., Found. Phys. 38, 659 (2008)), in which the momentum resonance is observed at 161.784MeV/ c corresponding to a Zitterbewegung frequency of 80.874MeV/ c electron beam.

  20. Electromagnetic field of microtubules: effects on transfer of mass particles and electrons.

    PubMed

    Pokorný, Jiří; Hašek, Jiří; Jelínek, František

    2005-12-01

    Biological polar molecules and polymer structures with energy supply (such as microtubules in the cytoskeleton) can get excited and generate an endogenous electromagnetic field with strong electrical component in their vicinity. The endogenous electrical fields through action on charges, on dipoles and multipoles, and through polarization (causing dielectrophoretic effect) exert forces and can drive charges and particles in the cell. The transport of mass particles and electrons is analyzed as a Wiener-Lévy process with inclusion of deterministic force (validity of the Bloch theorem is assumed for transport of electrons in molecular chains too). We compare transport driven by deterministic forces (together with an inseparable thermal component) with that driven thermally and evaluate the probability to reach the target. Deterministic forces can transport particles and electrons with higher probability than forces of thermal origin only. The effect of deterministic forces on directed transport is dominant. PMID:23345914

  1. Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas.

    PubMed

    Shukla, P K; Eliasson, B

    2007-08-31

    We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.

  2. Resonant two-photon annihilation of an electron-positron pair in a pulsed electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Voroshilo, A. I.; Roshchupkin, S. P.; Nedoreshta, V. N.

    2016-09-01

    Two-photon annihilation of an electron-positron pair in the field of a plane low-intensity circularly polarized pulsed electromagnetic wave was studied. The conditions for resonance of the process which are related to an intermediate particle that falls within the mass shell are studied. In the resonant approximation the probability of the process was obtained. It is demonstrated that the resonant probability of two-photon annihilation of an electron-positron pair may be several orders of magnitude higher than the probability of this process in the absence of the external field. The obtained results may be experimentally verified by the laser facilities of the international megaprojects, for example, SLAC (National Accelerator Laboratory), FAIR (Facility for Antiproton and Ion Research), and XFEL (European X-Ray Free-Electron Laser).

  3. Nonlinear interaction of intense electromagnetic waves with a magnetoactive electron-positron-ion plasma

    SciTech Connect

    Khorashadizadeh, S. M.; Rastbood, E.; Zeinaddini Meymand, H.; Niknam, A. R.

    2013-08-15

    The nonlinear coupling between circularly polarized electromagnetic (CPEM) waves and acoustic-like waves in a magnetoactive electron-positron-ion (e-p-i) plasma is studied, taking into account the relativistic motion of electrons and positrons. The possibility of modulational instability and its growth rate as well as the envelope soliton formation and its characteristics in such plasmas are investigated. It is found that the growth rate of modulation instability increases in the case that ω{sub c}/ω<1 (ω{sub c} and ω are the electron gyrofrequency and the CPEM wave frequency, respectively) and decreases in the case that ω{sub c}/ω>1. It is also shown that in a magnetoactive e-p-i plasma, the width of bright soliton increases/decreases in case of (ω{sub c}/ω)<1/(ω{sub c}/ω)>1 by increasing the magnetic field strength.

  4. Propagation of ultra-intense electromagnetic waves through electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Rozina, Ch.; Tsintsadze, N. L.; Jamil, M.

    2016-07-01

    A kinetic approach is used to study the propagation of ultrarelativistic (amplitude) electromagnetic waves through electron-positron-ion plasma. For our purposes, we formulate a new plasma particle distribution function in the presence of ultrarelativistically intense circularly polarized electromagnetic (EM) waves. An effective dispersion relation of constant amplitude ultrarelativistic EM wave is derived, skin depth is calculated in particular, frequency regimes and has shown numerically that the penetration depth increases with the amplitude of ultra-intense electromagnetic waves, λ s k ˜ a /1 2 , i.e., plasma will be heated more in the region of skin depth. Next, we have found that the nonlinear interaction of ultrarelativistically intense EM waves of time and space varying amplitude leads to construct kinetic nonlinear Schrödinger equation (KNSE), containing both local and non-local nonlinear terms, where nonlocal nonlinear term appears due to density perturbations of plasma species. Taking the effects of the latter into consideration, nonlinear Landau damping is discussed for KNSE, damping rate is computed, and numerically ultrarelativistic EM waves are shown to decay exponentially. The present results should be helpful to understand the specific properties of the ultrarelativistic EM waves in astrophysical plasmas, e.g., pulsars, black holes, and neutron stars.

  5. Nonlinear electromagnetic perturbations in a degenerate ultrarelativistic electron-positron plasma.

    PubMed

    El-Taibany, W F; Mamun, A A

    2012-02-01

    Nonlinear propagation of fast and slow magnetosonic perturbation modes in an ultrarelativistic, ultracold, degenerate (extremely dense) electron positron (EP) plasma (containing ultrarelativistic, ultracold, degenerate electron and positron fluids) has been investigated by the reductive perturbation method. The Alfvén wave velocity is modified due to the presence of the enthalpy correction in the fluid equations of motion. The degenerate EP plasma system (under consideration) supports the Korteweg-de Vries (KdV) solitons, which are associated with either fast or slow magnetosonic perturbation modes. It is found that the ultrarelativistic model leads to compressive (rarefactive) electromagnetic solitons corresponding to the fast (slow) wave mode. There are certain critical angles, θ(c), at which no soliton solution is found corresponding to the fast wave mode. For the slow mode, the magnetic-field intensity affects both the soliton amplitude and width. It is also illustrated that the basic features of the electromagnetic solitary structures, which are found to exist in such a degenerate EP plasma, are significantly modified by the effects of enthalpy correction, electron and positron degeneracy, magnetic-field strength, and the relativistic effect. The applications of the results in a pair-plasma medium, which occurs in many astrophysical objects (e.g., pulsars, white dwarfs, and neutron stars) are briefly discussed. PMID:22463336

  6. Regimes of the interactions of high-intensity plane electromagnetic waves with electron-ion plasmas

    SciTech Connect

    Shiryaev, O. B.

    2008-01-15

    A set of fully nonlinear equations is derived from the Maxwell equations and the electron and ion fluid dynamics in one-dimensional geometry as a model of the interactions of extremely intense plane electromagnetic waves with cold locally non-neutral electron-ion plasmas. The problem is solved for phase velocities close to the speed of light numerically and with the help of asymptotic techniques. Depending on the field magnitudes, three nonlinear regimes are found to occur in the system. At plane-wave intensities inducing relativistic electron fluid dynamics but insufficient to cause significant ion motions, the model reverts to the classic Akhiezer-Polovin problem and yields its solutions describing the nonlinear self-modulation of the electromagnetic fields in plasmas. The types of regimes sustained at field strengths entailing substantial ion dynamics are the self-modulation with a splitting of the plane-wave field spectrum into a set of closely spaced bands, and the harmonics generation with a spectrum comprising broadly distanced bands. The latter two regimes correspond to a subcritical and an overcritical range of the plasma longitudinal field potentials.

  7. On Taylor dispersion in liquid-cooled electronics applications

    NASA Astrophysics Data System (ADS)

    Tilley, B. S.

    2013-11-01

    We are interested in extending classical asymptotic approaches to allow for the spatial pattern wavenumber to vary on the macroscale variables and to find how changes in microstructure geometry affect macroscopic properties and transport. To this end, we consider here the thermal transport of a coolant through nonuniformly spaced laminates, as a simple model for heat sinks in electronics. Power is continuously being generated by the laminates, and the local rates of heat transport depend on convection, fluid inertia, buoyancy and Taylor dispersion in the coolant and conduction within both the fluid and the laminates. We find a coupled system of partial differential equations that describe the local microscale temperature and deviations from the Darcy pressure. Microscale values of all of these quantities are known in terms of the solutions to these effective eqautions. We are especially interested in geometries in the laminate spacing which allow for better thermal transport by the coolant for a prescribed power distribution. The choice of the channel geometries depend on the ability to transfer heat from the device to the enviornment, the orientation of the device with respect to gravity, and the available power needed to drive the fluid motion. This work is supported by a grant from the Air Force Office of Scientific Research, (Award No. FA9550-11-1-0197).

  8. Electronic spectrum of jet cooled SiCN

    NASA Astrophysics Data System (ADS)

    Fukushima, Masaru; Ishiwata, Takashi

    2016-09-01

    We have generated SiCN in a supersonic free expansion, and measured the laser induced fluorescence (LIF) spectrum. Prior to the experiments, ab initio calculations were carried out to obtain the information necessary for searching for the LIF signals. In addition to the X ˜ 2Π state, the optimized structures of three excited states, 2Δ, 2Σ+, and 2Σ-, have been obtained. Guided by the predictions, the LIF excitation spectrum of SiCN was observed in the UV region. The rotational structure of the 00 0 band with the origin, 29 261.639 cm-1, indicated that the electronic transition is A ˜ 2Δ- X ˜ 2Π. The spin-orbit (SO) constants of the X ˜ 2Π and A ˜ 2Δ states were determined to be 140.824 and 4.944 cm-1, respectively. In the A ˜ 2Δ state, the Fermi resonance between the (0, 20, 0) 2Δ and (0, 00, 1) 2Δ vibronic levels was identified. The molecular constants of the X ˜ 2Π state were determined through the simultaneous analysis of the combination differences derived from the present LIF data with the previously reported rotational transitions. The spectroscopic parameters of the A ˜ 2Δ state were also obtained from the analysis where the constants of the X ˜ 2Π state, derived above, were fixed at those values.

  9. Reflection of electromagnetic radiation from plasma with an anisotropic electron velocity distribution

    SciTech Connect

    Vagin, K. Yu. Uryupin, S. A.

    2013-08-15

    The reflection of a test electromagnetic pulse from the plasma formed as a result of tunnel ionization of atoms in the field of a circularly polarized high-power radiation pulse is analyzed using the kinetic approach to describe electron motion. It is shown that the reflected pulse is significantly amplified due to the development of Weibel instability. The amplification efficiency is determined by the maximum value of the instability growth rate, which depends on the degree of anisotropy of the photoelectron distribution function.

  10. NREL Helps Cool the Power Electronics in Electric Vehicles (Fact Sheet)

    SciTech Connect

    Not Available

    2011-07-01

    Researchers at the National Renewable Energy Laboratory (NREL) are developing and demonstrating innovative heat-transfer technologies for cooling power electronics devices in hybrid and electric vehicles. In collaboration with 3M and Wolverine Tube, Inc., NREL is using surface enhancements to dissipate heat more effectively, permitting a reduction in the size of power electronic systems and potentially reducing the overall costs of electric vehicles.

  11. Observation of dynamics of impurity photoconductivity in n-GaAs caused by electron cooling

    SciTech Connect

    Aleshkin, V. Ya. Morozov, S. V.; Rumyantsev, V. V.; Tuzov, I. V.

    2015-01-15

    Experimental investigation of the time dependence of impurity photoconductivity in n-GaAs is carried out upon pulsed optical excitation. It is shown that a change in the photoconductivity is determined mainly by electron cooling in the first 20 ns after photoexcitation. A theoretical model for describing the dependences under observation is proposed.

  12. Terahertz electromagnetic wave generation and amplification by an electron beam in the elliptical plasma waveguides with dielectric rod

    SciTech Connect

    Rahmani, Z. Jazi, B.; Heidari-Semiromi, E.

    2014-09-15

    The propagation of electromagnetic waves in an elliptical plasma waveguide including strongly magnetized plasma column and a dielectric rod is investigated. The dispersion relation of guided hybrid electromagnetic waves is obtained. Excitation of the waves by a thin annular relativistic elliptical electron beam will be studied. The time growth rate of electromagnetic waves is obtained. The effects of relative permittivity constant of dielectric rod, radius of dielectric rod, accelerating voltage, and current density of the annular elliptical beam on the growth rate and the frequency spectra are numerically presented.

  13. The spectral-angular and polarization characteristics of radiation from an electron beam traversing an inhomogeneous electromagnetic wave

    SciTech Connect

    Koltsov, A.V.; Serov, A.V.

    1995-12-31

    The generation of frequency harmonics of a radiation when the electron beam traverse the inhomogeneous electromagnetic wave was investigated. The electromagnetic wave are linearly polarized. The plane beam of particles enters the wave at right angle with respect to the direction of propogation of the wave and the vector E of the wave. The spartial distribution of radiation from the higher harmonics and the power density contours are caculated.

  14. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  15. Cherenkov radiation of electromagnetic waves by electron beams in the absence of an external magnetic field

    PubMed

    Nusinovich; Bliokh

    2000-08-01

    In conventional sources of coherent Cherenkov electromagnetic radiation, the electrons move linearly, guided by external magnetic fields. In the absence of such fields, the electrons can move radially, being affected by the beam self-fields as well as by the radial component of the electric field of the wave. This radial motion can, first, improve the coupling of electrons to the field of a slow wave localized near the wall of a slow-wave structure, and second, cause an energy exchange between the electrons and the wave due to an additional transverse interaction. This interaction, in particular, can lead to an experimentally observed excitation of nonsymmetric transverse electric waves in Cherenkov devices. In plasma-filled sources, the beam self-fields can be compensated for by ions, leading to a known ion focusing of the beams. In such regimes, the beam can be surrounded by an ion layer creating a potential well for electrons which can be displaced from stationary trajectories by transverse fields of the wave. The operation of such sources when the presence of ions and the radial electric field of the wave play competing focusing and defocusing roles, and electron interception by the walls restricts the output power level, is analyzed in stationary and nonstationary regimes.

  16. Cyclotron resonance cooling by strong laser field

    SciTech Connect

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-12-31

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers.

  17. Phase transition cooled window studies for high average power electron guns

    NASA Astrophysics Data System (ADS)

    Loda, G.; Forcier, D.

    1980-12-01

    The window used to transmit electron beams for use in high average power UV/visible lasers has been a critical technology issue. The window structure must satisfy a number of conflicting requirements including: vacuum integrity, strength to overcome both the static and dynamic pressure loads of the laser gas and a low mass density to minimize energy loss by the electron beam. In addition, it must not perturb the laser gas flow and must be able to dissipate the power deposited by the electron beam. Two experiments were undertaken to demonstrate the applicability of phase transition cooling for high power laser systems. In the first of these a full width 50 cm module was tested with a constant input heat source. The second experiment used a pulsed e-beam source to demonstrate cooling for a low duty cycle high peak power pulsed system. The applicability of phase transition cooling for a dual foil geometry was clearly demonstrated. Cooling rates in excess of 100 W/(sq cm)/foil surface with mass flow rates consistent with low areal mass density were achieved. This represents a factor of ten improvement over pre-existing state of the art.

  18. Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC

    NASA Astrophysics Data System (ADS)

    Huang, Yuenian; Belomestnykh, Sergey; Brutus, Jean Clifford; Lederle, Dewey; Orfin, Paul; Skaritka, John; Soria, Victor; Tallerico, Thomas; Than, Roberto

    2014-01-01

    The Coherent electron Cooling (CeC) Proof of Principle (PoP) experiment is proposed to be installed in the Relativistic Heavy Ion Collider (RHIC) to demonstrate proton and ion beam cooling with this new technique that may increase the beam luminosity in certain cases, by as much as tenfold. Within the scope of this project, a 112 MHz, 2MeV Superconducting Radio Frequency (SRF) electron gun and a 704 MHz 20MeV 5-cell SRF cavity will be installed at IP2 in the RHIC ring. The superconducting RF electron gun will be cooled in a liquid helium bath at 4.4 K. The 704 MHz 5-cell SRF cavity will be cooled in a super-fluid helium bath at 2.0 K. This paper discusses the cryogenic systems designed for both cavities. For the 112 MHz cavity cryogenic system, a condenser/boiler heat exchanger is used to isolate the cavity helium bath from pressure pulses and microphonics noise sources. For the 704 MHz 5-cell SRF cavity, a heat exchanger is also used to isolate the SRF cavity helium bath from noise sources in the sub-atmospheric pumping system operating at room temperature. Detailed designs, thermal analyses and discussions for both systems will be presented in this paper.

  19. Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC

    SciTech Connect

    Huang, Yuenian; Belomestnykh, Sergey; Brutus, Jean Clifford; Lederle, Dewey; Orfin, Paul; Skaritka, John; Soria, Victor; Tallerico, Thomas; Than, Roberto

    2014-01-29

    The Coherent electron Cooling (CeC) Proof of Principle (PoP) experiment is proposed to be installed in the Relativistic Heavy Ion Collider (RHIC) to demonstrate proton and ion beam cooling with this new technique that may increase the beam luminosity in certain cases, by as much as tenfold. Within the scope of this project, a 112 MHz, 2MeV Superconducting Radio Frequency (SRF) electron gun and a 704 MHz 20MeV 5-cell SRF cavity will be installed at IP2 in the RHIC ring. The superconducting RF electron gun will be cooled in a liquid helium bath at 4.4 K. The 704 MHz 5-cell SRF cavity will be cooled in a super-fluid helium bath at 2.0 K. This paper discusses the cryogenic systems designed for both cavities. For the 112 MHz cavity cryogenic system, a condenser/boiler heat exchanger is used to isolate the cavity helium bath from pressure pulses and microphonics noise sources. For the 704 MHz 5-cell SRF cavity, a heat exchanger is also used to isolate the SRF cavity helium bath from noise sources in the sub-atmospheric pumping system operating at room temperature. Detailed designs, thermal analyses and discussions for both systems will be presented in this paper.

  20. Beam dynamics simulations in laser electron storage rings and optical stochastic cooling

    NASA Astrophysics Data System (ADS)

    Duru, Alper

    Laser-electron storage rings are potential compact X-ray sources. Longitudinal dynamics in laser-electron storage rings is studied including the effects of both laser interaction and synchrotron radiation. It is shown that the steady state energy spread can reach as high as a few percent. The main reason is the wide spread in the energy loss by electrons to laser photons. Optical stochastic cooling has been studied numerically. The effects of the finite bandwidth of the amplifier are mixing and signal distortion. Both are included in the simulations and the results are compared to theoretical results. It is shown that the beam can be cooled both in transverse and longitudinal phase phase spaces simultaneously.

  1. Three-dimensional Toroidal Electromagnetic Gyrokinetic Simulations of Plasma Turbulence and Transport with Electron Dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Yang

    2000-10-01

    The physics of kinetic electrons and electromagnetic fluctuations are key challenges in microturbulence simulation research. Recently, we have made progress in this area by developing a drift-kinetic electron model using both the ``split-weight scheme"(I. Manuilskiy and W. W. Lee, Phys. Plasmas 7 1381 (2000)) and the canonical parallel momemtum formulation of gyrokinetics(T. S. Hahm, W. W. Lee and A. Brizard, Phys. Fluids 31(1988) 1940) in a fully nonlinear three-dimensional toroidal field-line-following simulation. This model includes magnetic field perturbations perpendicular to the equilibrium magnetic field. Numerical issues arising from the resolution of the magnetic skin depth(J. Cummings, Ph.D. Thesis, Princeton Univ. (1994)) currently limit these simulations to small <≈ β, β m_i/me <≈ O(1) and progress in this area will be reported. A complementary hybrid simulation with fully gyrokinetic ions and a zero-inertia electron fluid has been developed as well. The electron fluid equations are derived from moments of the drift kinetic equation and a predictor-corrector scheme for the fluid-hybrid model has been implemented in three-dimensional toroidal field-line-following geometry. This is a much simpler electron model and works well at high β. We are currently using both models to study the effects of electron dynamics on turbulence, including particle transport (which is zero in simulations using adiabatic response), kinetic Alfvén modes and modification to zonal flows due to kinetic electrons and the generation of zonal fields through including A_allel(A. Das and P. H. Diamond, "Kinetic theory of the zonal flow instability in electromagnetic drift-wave turbulence", to appear in Phys. Plasmas). Both hybrid and the fully kinetic simulations have been carefully benchmarked with linear theory in the slab limit. Simulation results for turbulence with both trapped-electron drive and ion-temperature-gradient drive will be presented. We will report results

  2. Ion-Electron-Conducting Polymer Composites: Promising Electromagnetic Interference Shielding Material.

    PubMed

    Vyas, Manoj Kumar; Chandra, Amita

    2016-07-20

    Polymer nanocomposites consisting of poly(vinylidenefluoride-co-hexafluoropropylene) PVdF-HFP, inorganic salt (LiBF4), organic salt (EMIMBF4), multiwalled carbon nanotubes (MWCNTs), and Fe3O4 nanoparticles were prepared as electromagnetic shield material. Improvement in conductivity and dielectric property due to the introduction of EMIMBF4, LiBF4, and MWCNTs was confirmed by complex impedance spectroscopy. The highest conductivity obtained is ∼1.86 mS/cm. This is attributed to the high ionic conductivity of the ionic liquids and the formation of a connecting network by the MWCNTs facilitating electron conduction. The total electromagnetic interference (EMI) shielding effectiveness has a major contribution to it due to absorption. Although the total shielding effectiveness in the Ku band (12.4-18 GHz) of pure ion-conducting system was found to be ∼19 dB and that for the polymer composites which are mixed (ion + electron) conductors is ∼46 dB, the contributions due to absorption are ∼16 and ∼42 dB, respectively. PMID:27351810

  3. Role of nonthermal electron on the dynamics of relativistic electromagnetic soliton in the interaction of laser-plasma

    NASA Astrophysics Data System (ADS)

    Rostampooran, Shabnam; Dorranian, Davoud

    2016-08-01

    A system of nonlinear one-dimensional equations of the electron hydrodynamics with Maxwell's equations was developed to describe electromagnetic (EM) solitons in plasma with nonthermal electrons. Equation of vector potential was derived in relativistic regime by implementing the multiple scales technique, and their solitonic answers were introduced. The allowed regions for bright and dark electromagnetic solitons were discussed in detail. Roles of number density of nonthermal electrons, temperature of electrons, and frequency of fast participate of vector potential on the Sagdeev potential and properties of EM soliton were investigated. Results show that with increasing the number of nonthermal electrons, the amplitude of vector potential of bright solitons increases. By increasing the number of nonthermal electrons, dark EM solitons may be changed to bright solitons. Increasing the energy of nonthermal electrons leads to generation of high amplitude solitons.

  4. Nonlinear evolution of the electromagnetic electron-cyclotron instability in bi-Kappa distributed plasma

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Lazar, M.

    2015-06-01

    This paper presents a numerical study of the linear and nonlinear evolution of the electromagnetic electron-cyclotron (EMEC) instability in a bi-Kappa distributed plasma. Distributions with high energy tails described by the Kappa power-laws are often observed in collision-less plasmas (e.g., solar wind and accelerators), where wave-particle interactions control the plasma thermodynamics and keep the particle distributions out of Maxwellian equilibrium. Under certain conditions, the anisotropic bi-Kappa distribution gives rise to plasma instabilities creating low-frequency EMEC waves in the whistler branch. The instability saturates nonlinearly by reducing the temperature anisotropy until marginal stability is reached. Numerical simulations of the Vlasov-Maxwell system of equations show excellent agreement with the growth-rate and real frequency of the unstable modes predicted by linear theory. The wave-amplitude of the EMEC waves at nonlinear saturation is consistent with magnetic trapping of the electrons.

  5. New electronics of the spectrometric channel for the SND detector electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Achasov, M. N.; Aulchenko, V. M.; Bogdanchikov, A. G.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Koshuba, S. V.; Kovrizhin, D. P.; Serednyakov, S. I.; Surin, I. K.; Tekut`ev, A. I.; Usov, Yu. V.

    2016-07-01

    The Spherical Neutral Detector (SND) is intended for study of electron-positron annihilation at the VEPP-2000 e+e- collider (BINP, Novosibirsk) in the center-of-mass energy region below 2 GeV. The main part of the detector is a three-layer electromagnetic calorimeter based on NaI(Tl) crystals. The physics program of the SND experiment includes a high statistics study of neutron-antineutron production near threshold, for which time measurements in the calorimeter are required. In this paper we describe new shaping and digitizing calorimeter electronics, which allow to reach a time resolution of about 1 ns for 100 MeV signal and an amplitude resolution of about 250 keV.

  6. Nonlinear evolution of the electromagnetic electron-cyclotron instability in bi-Kappa distributed plasma

    SciTech Connect

    Eliasson, B.; Lazar, M.

    2015-06-15

    This paper presents a numerical study of the linear and nonlinear evolution of the electromagnetic electron-cyclotron (EMEC) instability in a bi-Kappa distributed plasma. Distributions with high energy tails described by the Kappa power-laws are often observed in collision-less plasmas (e.g., solar wind and accelerators), where wave-particle interactions control the plasma thermodynamics and keep the particle distributions out of Maxwellian equilibrium. Under certain conditions, the anisotropic bi-Kappa distribution gives rise to plasma instabilities creating low-frequency EMEC waves in the whistler branch. The instability saturates nonlinearly by reducing the temperature anisotropy until marginal stability is reached. Numerical simulations of the Vlasov-Maxwell system of equations show excellent agreement with the growth-rate and real frequency of the unstable modes predicted by linear theory. The wave-amplitude of the EMEC waves at nonlinear saturation is consistent with magnetic trapping of the electrons.

  7. Electromagnetic properties of a double-layer graphene system with electron-hole pairing

    NASA Astrophysics Data System (ADS)

    Germash, K. V.; Fil, D. V.

    2016-05-01

    We study electromagnetic properties of a double-layer graphene system in which electrons from one layer are coupled with holes from the other layer. The gauge invariant linear response functions are obtained. The frequency dependences of the transmission, reflection, and absorption coefficients are computed. We predict a peak in the reflection and absorption at the frequency equal to the gap in the quasiparticle spectrum. It is shown that the electron-hole pairing results in an essential modification of the spectrum of surface TM plasmons. We find that the optical TM mode splits into a low frequency undamped branch and a high frequency damped branch. At zero temperature the lower branch disappears. It is established that the pairing does not influence the acoustic TM mode. It is also shown that the pairing opens the frequency window in the subgap range for the surface TE wave.

  8. Development of a fast electromagnetic beam blanker for compressed sensing in scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Béché, A.; Goris, B.; Freitag, B.; Verbeeck, J.

    2016-02-01

    The concept of compressed sensing was recently proposed to significantly reduce the electron dose in scanning transmission electron microscopy (STEM) while still maintaining the main features in the image. Here, an experimental setup based on an electromagnetic beam blanker placed in the condenser plane of a STEM is proposed. The beam blanker deflects the beam with a random pattern, while the scanning coils are moving the beam in the usual scan pattern. Experimental images at both the medium scale and high resolution are acquired and reconstructed based on a discrete cosine algorithm. The obtained results confirm that compressed sensing is highly attractive to limit beam damage in experimental STEM even though some remaining artifacts need to be resolved.

  9. Stimulated electromagnetic emissions during pump frequency sweep through fourth electron cyclotron harmonic

    NASA Astrophysics Data System (ADS)

    Carozzi, T. D.; Thidé, B.; Grach, S. M.; Leyser, T. B.; Holz, M.; Komrakov, G. P.; Frolov, V. L.; Sergeev, E. N.

    2002-09-01

    The frequency of a high-power HF radio wave incident on the ionosphere was swept, using a computer-controlled transmitter signal, in <10 s within a 60-kHz-wide frequency band approximately centered on the fourth harmonic of the electron cyclotron frequency. Measurements of the spectral behavior of stimulated electromagnetic emissions (SEE) across this harmonic after preconditioning could thereby be made with unprecedented resolution, speed, and ionospheric stability. Comparison of local electron cyclotron frequency estimations based on the experimental data reveals discrepancies between certain downshifted maximum models and the empirical broad upshifted maximum (BUM) feature formula ΔfBUM = f0 - nfce. Weak emissions related to the BUM were discovered below the nominal BUM cutoff frequency. Finally, we observed that the intensity of certain SEE components differed depending on the whether the pump frequency sweep was ascending or descending.

  10. Ground state and the spin precession of the Dirac electron in counterpropagating plane electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Borzdov, G. N.

    2016-06-01

    The fundamental solution of the Dirac equation for an electron in an electromagnetic field with harmonic dependence on space-time coordinates is obtained. The field is composed of three standing plane harmonic waves with mutually orthogonal phase planes and the same frequency. Each standing wave consists of two eigenwaves with different complex amplitudes and opposite directions of propagation. The fundamental solution is obtained in the form of the projection operator defining the subspace of solutions to the Dirac equation. It is illustrated by the analysis of the ground state and the spin precession of the Dirac electron in the field of two counterpropagating plane waves with left and right circular polarizations. Interrelations between the fundamental solution and approximate partial solutions is discussed and a criterion for evaluating the accuracy of approximate solutions is suggested.

  11. Subnanosecond electron transport in a gas in the presence of polarized electromagnetic waves

    SciTech Connect

    Dey, Indranuj; Mathew, Jose V.; Bhattacharjee, Sudeep; Jain, Sachin

    2008-04-15

    An ensemble of free electrons in a classical Boltzmann gas under equilibrium condition follow a square law for the number of collisions suffered during random walk, in the elastic limit [N{proportional_to}({lambda}/{lambda}){sup 2}]. This study reveals for the first time that in the same limit the dependence is considerably modified in the presence of linearly polarized electromagnetic waves. The phenomenon happens at time scales shorter ({approx}10{sup -10} s) than the characteristic discharge initiation time and the wave period. Considering the actual dependence of collision cross-sections on electron energy, a new relation is obtained, which tends to the classical result for the zero field case. The random walk parameter <{chi}{sup 2}> characterizes a true versus constrained random process. The implications of the new relation describing the phenomena are discussed in the light of applications.

  12. Quantifying the auroral response from measured source populations of electrons and electromagnetic wave activity

    NASA Astrophysics Data System (ADS)

    Samara, M.; Michell, R.; Grubbs, G. A., II; Davidson, R. K.; Khazanov, G. V.; Glocer, A.; Hampton, D.

    2015-12-01

    A case study is presented, where a quantitative connection is made between the measured auroral intensities and the source populations of electromagnetic waves and trapped electrons measured by THEMIS. We combine a theoretical model and high-resolution multi-spectral ground based imaging of the aurora at the THEMIS footpoint in order to interpret these data in the context of the coupled magnetosphere-ionosphere system. The THEMIS wave and particle measurements form the inputs into the Khazanov, et al., 2014 model that uses a Boltzman-Landau kinetic equation, uniformly describing the entire electron distribution function, which includes the affiliated production of secondary electrons (E < 600 eV) and their associated ionosphere-magnetosphere coupling processes. The model output will in turn be used to determine the expected auroral intensities (in Rayleighs) when considering only the primary precipitating electrons and also when both the primary and mirroring secondary electrons are included. These predicted auroral intensities will be compared to measured ones from several ground-based imagers at Poker Flat, AK, where we have high-resolution multiple emission line (557.7 nm and 427.8 nm) data at a 3.3 Hz frame rate.

  13. Attosecond Electro-Magnetic Forces Acting on Metal Nanospheres Induced By Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Lagos, M. J.; Batson, P. E.; Reyes-Coronado, A.; Echenique, P. M.; Aizpurua, J.

    2014-03-01

    Swift electron scattering near nanoscale materials provides information about light-matter behavior, including induced forces. We calculate time-dependent electromagnetic forces acting on 1-1.5 nm metal nanospheres induced by passing swift electrons, finding both impulse-like and oscillatory response forces. Initially, impulse-like forces are generated by a competition between attractive electric forces and repulsive magnetic forces, lasting a few attoseconds (5-10 as). Oscillatory, plasmonic response forces take place later in time, last a few femtoseconds (1- 5 fs), and apparently rely on photon emission by decay of the electron-induced surface plasmons. A comparison of the strength of these two forces suggests that the impulse-like behavior dominates the process, and can transfer significant linear momentum to the sphere. Our results advance understanding of the physics behind the observation of both attractive and repulsive behavior of gold nano-particles induced by electron beams in aberration-corrected electron microscopy. Work supported under DOE, Award # DE-SC0005132, Basque Gov. project ETORTEK inano, Spanish Ministerio de Ciencia e Innovacion, No. FIS2010-19609-C02-01.

  14. Cryofixation of tissue specimens studied by cooling rate measurements and scanning electron microscopy.

    PubMed

    Zierold, K

    1980-03-01

    The freezing velocity, the most important parameter for the quality of cryofixation of biological objects, was measured in frog liver specimens. The cooling course was found to depend on the size of the specimen, the specimen support and the cooling medium used (liquid nitrogen, supercooled nitrogen, Freon 12 and propane). The results were compared with scanning electron micrographs of freeze fractures cryofixed in the same manner: Propane yielded the highest cooling rates and, consequently, the best structural preservation. Morphologically similar results were obtained by combining Freon 12 and very small specimen supports. Generally, it can be said that the smaller both specimen and specimen support are, the higher is the freezing rate and the better the structural preservation. The findings are discussed with regard to further possibilities of improving the cryofixation of biological tissue. PMID:7392964

  15. Ground state cooling of a nanomechanical resonator using electron transport in hybrid systems

    NASA Astrophysics Data System (ADS)

    Rastelli, Gianluca; Stadler, Pascal; Belzig, Wolfgang

    A still open challenge in nanoelectromechanical systems is the achievement of the quantum regime via active cooling and using electron transport. I will discuss active ground state cooling in a bottom-up device, viz. a carbon nanotube quantum dot suspended between two electric nano-contacts, and for two different coherent transport regimes: (i) spin-polarized current between two ferromagnets and (ii) sub-gap Andreev current between a superconductor and a normal metal. I will show that efficient ground state cooling of the resonator can be achieved for realistic parameters of the system and varying the transport parameters, e.g. gate voltage, magnetic field, etc. Finally I will discuss the signatures in the current-voltage characteristics of the non-equilibrium state of the nanoresonator. Zukunftskolleg of the University of Konstanz; DFG through SFB 767 and BE 3803/5.

  16. Proof-of-principle experiment for FEL-based coherent electron cooling

    SciTech Connect

    Litvinenko, V.N.; Belomestnykh, S.; Ben-Zvi, I.; Brutus, J.C.; Fedotov, A.; Hao, Y.; Kayran, D.; Mahler, G.; Marusic, A.; Meng, W.; McIntyre, G.; Minty, M.; Ptitsyn, V.; Pinayev, I.; Rao, T.; Roser, T.; Sheehy, B.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tuozzolo, J.; Wang, G.; Yakimenko, V.; Poelker, M.; Hutton, A.; Kraft, G.; Rimmer, R.; Bruhwiler, D.L.; Abell, D.T.; Nieter, C.; Ranjbar, V.; Schwartz, B.T.; Vobly, P.; Kholopov, M.; Shevchenko, O.; Mcintosh, P.; Wheelhouse, A.

    2011-08-21

    Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron-hadron and electron-hadron colliders. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using SRF linac. In this paper, we describe the setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC. We plan to complete the program in five years. During first two years we will build coherent electron cooler in IP2 of RHIC. In parallel we will develop complete package of computer simulation tools for the start-to-end simulation predicting exact performance of a CeC. The later activity will be the core of Tech X involvement into the project. We will use these tools to predict the performance of our CeC device. The experimental demonstration of the CeC will be undertaken in years three to five of the project. The goal of this experiment is to demonstrate the cooling of ion beam and to compare its measured performance with predictions made by us prior to the experiments.

  17. COOLING RATES FOR RELATIVISTIC ELECTRONS UNDERGOING COMPTON SCATTERING IN STRONG MAGNETIC FIELDS

    SciTech Connect

    Baring, Matthew G.; Wadiasingh, Zorawar; Gonthier, Peter L. E-mail: zw1@rice.edu

    2011-05-20

    For inner magnetospheric models of hard X-ray and gamma-ray emission in high-field pulsars and magnetars, resonant Compton upscattering is anticipated to be the most efficient process for generating continuum radiation. This is in part due to the proximity of a hot soft photon bath from the stellar surface to putative radiation dissipation regions in the inner magnetosphere. Moreover, because the scattering process becomes resonant at the cyclotron frequency, the effective cross section exceeds the classical Thomson value by over two orders of magnitude, thereby enhancing the efficiency of continuum production and the cooling of relativistic electrons. This paper presents computations of the electron cooling rates for this process, which are needed for resonant Compton models of non-thermal radiation from such highly magnetized pulsars. The computed rates extend previous calculations of magnetic Thomson cooling to the domain of relativistic quantum effects, sampled near and above the quantum critical magnetic field of 44.13 TG. This is the first exposition of fully relativistic, quantum magnetic Compton cooling rates for electrons, and it employs both the traditional Johnson and Lippmann cross section and a newer Sokolov and Ternov (ST) formulation of Compton scattering in strong magnetic fields. Such ST formalism is formally correct for treating spin-dependent effects that are important in the cyclotron resonance and has not been addressed before in the context of cooling by Compton scattering. The QED effects are observed to profoundly lower the rates below extrapolations of the familiar magnetic Thomson results, as expected, when recoil and Klein-Nishina reductions become important.

  18. Radiation of de-excited electrons at large times in a strong electromagnetic plane wave

    SciTech Connect

    Kazinski, P.O.

    2013-12-15

    The late time asymptotics of the physical solutions to the Lorentz–Dirac equation in the electromagnetic external fields of simple configurations–the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave–are found. The solutions to the Landau–Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime. -- Highlights: •Late time asymptotics of the solutions to the Lorentz–Dirac equation are studied. •General properties of the total radiation power of electrons are established. •The total radiation power equals a half the rest energy divided by the proper-time. •Spectral densities of radiation formed on the late time asymptotics are derived. •Possible experimental verification of the results is proposed.

  19. Relativistically intense plane electromagnetic waves in electron-positron plasmas: Nonlinear self-modulation and harmonics generation regimes

    SciTech Connect

    Shiryaev, O. B.

    2006-11-15

    A fully nonlinear one-dimensional problem describing the interactions of relativistically intense plane electromagnetic waves and cold locally non-neutral electron-positron plasmas is derived from Maxwell and fluid dynamics equations. Numerical and asymptotic solutions to this problem for phase velocities close to the speed of light are presented. Depending on the magnitude of the plasma longitudinal electric-field potential, the system considered is found to support two distinct regimes of plane electromagnetic wave propagation: a nonlinear self-modulation one with the coupling of a fast transversely polarized electromagnetic field to a slow longitudinal plasma field, and a harmonics generation one with both of these fields oscillating with comparable frequencies. In the former case, a splitting of the electromagnetic field spectrum into a series of closely located bands occurs, whereas in the latter one the propagating field spectrum is a set of radiation harmonics.

  20. Stability of a transverse electromagnetic wave in electrons streaming parallel to an external electric field

    SciTech Connect

    Minaev, Yu.A.; Pogorelov, E.N.

    1992-09-01

    The stability of a circularly polarized electromagnetic wave convected by a dense electron beam in an external longitudinal electrostatic field is studied. It is shown that when the electron density in the stream is high enough the amplitude a of the wave is an S-shaped function of the potential U of the longitudinal field (in the quasistatic approximation). An approximate solution is found for the self-consistent problem. This is compared with the results of numerical simulation and the linear perturbation theory, which makes it possible to demonstrate and describe the instability of the quasistatic stream-wave system when the function a(U) is decreasing. The instability occurs regardless of the direction of the longitudinal field, associated with the negative sign of the wave energy, and can be interpreted as {open_quotes}slipping{close_quotes} of the fields inside the beam relative to the electron flow. The nature of the quasiequilibrium electron states when the function a(U) is decreasing is also discussed. 5 refs., 2 figs.

  1. Hybridized Electromagnetic-Triboelectric Nanogenerator for a Self-Powered Electronic Watch.

    PubMed

    Quan, Ting; Wang, Xue; Wang, Zhong Lin; Yang, Ya

    2015-12-22

    We report a hybridized nanogenerator including a triboelectric nanogenerator (TENG) and six electromagnetic generators (EMGs) that can effectively scavenge biomechanical energy for sustainably powering an electronic watch. Triggered by the natural motions of the wearer's wrist, a magnetic ball at the center in an acrylic box with coils on each side will collide with the walls, resulting in outputs from both the EMGs and the TENG. By using the hybridized nanogenerator to harvest the biomechanical energy, the electronic watch can be continuously powered under different motion types of the wearer's wrist, where the best approach is to charge a 100 μF capacitor in 39 s to maintain the continuous operation of the watch for 456 s. To increase the working time of the watch further, a homemade Li-ion battery has been utilized as the energy storage unit for realizing the continuous working of the watch for about 218 min by using the hybridized nanogenerator to charge the battery within 32 min. This work will provide the opportunities for developing a nanogenerator-based built-in power source for self-powered wearable electronics such as an electronic watch.

  2. Enhanced nonlinear interaction of powerful electromagnetic waves with ionospheric plasma near the second electron gyroharmonic

    SciTech Connect

    Istomin, Ya. N.; Leyser, T. B.

    2013-05-15

    Plasma experiments in which a powerful electromagnetic pump wave is transmitted into the ionosphere from the ground give access to a rich range of phenomena, including gyroharmonic effects when the pump frequency is near an harmonic of the ionospheric electron gyrofrequency. For pump frequencies close to the second gyroharmonic, experiments show a strong enhancement, as observed in radar scatter from pump-induced geomagnetic field-aligned density striations and optical emissions. This is in contrast to the case at the third harmonic and higher at which most of the effects are instead suppressed. We show theoretically that electrostatic oscillations can be localized in density inhomogeneities associated with small scale striations. The localized field is a mixture of the electron Bernstein and upper hybrid modes when the pump frequency is near the second gyroharmonic. The coupling of the modes is enabled by a symmetry feature of the linear electron Bernstein and upper hybrid dispersion properties that occur only near the second gyroharmonic. Electron acceleration inside the density inhomogeneities by localized azimuthal electrostatic oscillations is more efficient near the second gyroharmonic than at higher frequencies, consistent with the observed enhancements.

  3. Dispersion characteristics of the electromagnetic waves in a relativistic electron beam guided by the ion channel

    SciTech Connect

    Mirzanejhad, Saeed; Sohbatzadeh, Farshad; Ghasemi, Maede; Sedaghat, Zeinab; Mahdian, Zeinab

    2010-05-15

    In this article, the dispersion characteristics of the paraxial (near axis) electromagnetic (EM) waves in a relativistic electron beam guided by the ion channel are investigated. Equilibrium fields such as ion-channel electrostatic field and self-fields of relativistic electron beam are included in this formalism. In accordance with the equilibrium field structure, radial and azimuthal waves are selected as base vectors for EM waves. It is shown that the dispersion of the radially polarized EM and space charge waves are influenced by the equilibrium fields, but azimuthally polarized wave remain unaffected. In some wave number domains, the radially polarized EM and fast space charge waves are coupled. In these regions, instability is analyzed as a function of equilibrium structure. It is shown that the total equilibrium radial force due to the ion channel and electron beam and also relativistic effect play a key role in the coupling of the radially polarized EM wave and space charge wave. Furthermore, some asymptotic behaviors such as weak and strong ion channel, nonrelativistic case and cutoff frequencies are discussed. This instability could be used as an amplification mechanism for radially polarized EM waves in a beam-plasma system where a relativistic electron beam is guided by the ion channel.

  4. Towards the measurement of the electron EDM with laser cooled francium atoms

    NASA Astrophysics Data System (ADS)

    Kawamura, Hirokazu; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Sakamoto, K.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Yoshida, H. P.; Wakasa, T.; Sakemi, Y.

    2014-09-01

    The electric dipole moment (EDM) of a particle is a probe into new physics beyond the standard model. The electron EDM might be observed with an enhancement in heavier paramagnetic atoms. Francium (Fr), whose electron structure is useful for laser-cooling and trapping, has a large enhancement factor. Fr produced at high temperature via a fusion reaction will be laser-cooled and trapped in an optical lattice where the EDM is measured. The magneto-optical trapping of Fr is required in advance of the lattice trapping. The technique observing a small number of atoms makes it easy to search for the resonant frequency of Fr. The improvement of the beam purity should lead to a more efficient trap. The techniques towards Fr trapping and EDM measurement have been developed. The electric dipole moment (EDM) of a particle is a probe into new physics beyond the standard model. The electron EDM might be observed with an enhancement in heavier paramagnetic atoms. Francium (Fr), whose electron structure is useful for laser-cooling and trapping, has a large enhancement factor. Fr produced at high temperature via a fusion reaction will be laser-cooled and trapped in an optical lattice where the EDM is measured. The magneto-optical trapping of Fr is required in advance of the lattice trapping. The technique observing a small number of atoms makes it easy to search for the resonant frequency of Fr. The improvement of the beam purity should lead to a more efficient trap. The techniques towards Fr trapping and EDM measurement have been developed. Supported by MEXT/JSPS KAKENHI Grants (21104005, 25610112 and 26220705) and Tohoku University's Focused Research Project.

  5. The design of an asymmetric bionic branching channel for electronic chips cooling

    NASA Astrophysics Data System (ADS)

    Xu, Shanglong; Qin, Jie; Guo, Wei; Fang, Kuang

    2013-06-01

    Inspired by the wing vein of Lepidoptera, a designment of asymmetric bionic branching channel for electronic chips cooling is developed. Lepidoptera vein D was chosen to measure the angle of first and second branch level. Based on these regular patterns, an asymmetric bionic branching channel is designed in a 35 mm × 35 mm chip. Comparing with fractal-like branching channel, it provides a stronger heat transfer capability, lower pressure drop and lower flow resistance in the experiment.

  6. Status of Proof-of-principle Experiment for Coherent Electron Cooling

    SciTech Connect

    Pinayev, I; Ben-Zvi, I; Bengtsson, J; Elizarov, A; Fedotov, A V; Gassner, D M; Hao, Y; Kayran, D; Litvinenko, V; Mahler, G J; Meng, W; Roser, T; Sheehy, B; Than, R; Tuozzolo, J E; Wang, G; Webb, S D; Yakimenko, V; Bell, G I; Bruhwiler, D L; Ranjbar, V H; Schwartz, B T; Hutton, A; Krafft, G A; Poelker, M; Rimmer, R A; Kholopov, M A; Vobly, P

    2012-07-01

    Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron colliders. To verify the concept we conduct proof-of-the-principle experiment at RHIC. In this paper, we describe the current experimental setup to be installed into 2 o'clock RHIC interaction regions. We present current design, status of equipment acquisition and estimates for the expected beam parameters.

  7. High-coherence electron and ion bunches from laser-cooled atoms.

    PubMed

    Sparkes, Ben M; Thompson, Daniel J; McCulloch, Andrew J; Murphy, Dene; Speirs, Rory W; Torrance, Joshua S J; Scholten, Robert E

    2014-08-01

    Cold atom electron and ion sources produce electron bunches and ion beams by photoionization of laser-cooled atoms. They offer high coherence and the potential for high brightness, with applications including ultra-fast electron-diffractive imaging of dynamic processes at the nanoscale. The effective brightness of electron sources has been limited by nonlinear divergence caused by repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that electron bunches with ellipsoidal shape and uniform density distribution have linear internal Coulomb fields, such that the Coulomb explosion can be reversed using conventional optics. Our source can create bunches shaped in three dimensions and hence in principle achieve the transverse spatial coherence and brightness needed for picosecond-diffractive imaging with nanometer resolution. Here we present results showing how the shaping capability can be used to measure the spatial coherence properties of the cold electron source. We also investigate space-charge effects with ions and generate electron bunches with durations of a few hundred picoseconds. Future development of the cold atom electron and ion source will increase the bunch charge and charge density, demonstrate reversal of Coulomb explosion, and ultimately, ultra-fast coherent electron-diffractive imaging.

  8. Cooling of Electronically-Excited He2 Molecules in a Microcavity Plasma Jet

    NASA Astrophysics Data System (ADS)

    Su, Rui; Houlahan, Thomas J., Jr.; Eden, J. Gary

    2016-06-01

    Helium dimers in the d3Σ+u excited electronic state with potential energy >24 eV and radiative lifetime of 25 ns have been generated in a microcavity plasma jet and rotationally cooled by supersonic expansion in vacuum. The dynamic process of cooling is recorded by imaging the axis of expansion onto the slit of Czerny-Turner spectrometer, yielding spatial-temporal spectrograms of d3Σ+u→b3Πg (v', v'')=(0, 0) emission. Analysis of the data shows the spatial-temporal evolution of the rotational temperature to be a damped sinusoid that reaches a minimum value of 100K. This reproducible behavior is attributed to the reflection of electrons from a virtual cathode located downstream of the nozzle and indicates that the spatially-averaged electron density is 108 cm-3. We present this observed rotational temperature oscillation during the supersonic cooling process as an example of the potential of our supersonic microplasma expansion as a tool to explore physical dynamics in diatomic molecules having high excitation energies and small lifetimes.

  9. Low Energy Electron Cooling and Accelerator Physics for the Heidelberg CSR

    NASA Astrophysics Data System (ADS)

    Fadil, H.; Grieser, M.; von Hahn, R.; Orlov, D.; Schwalm, D.; Wolf, A.; Zajfman, D.

    2006-03-01

    The Cryogenic Storage Ring (CSR) is currently under construction at MPI-K in Heidelberg. The CSR is an electrostatic ring with a total circumference of about 34 m, straight section length of 2.5 m and will store ions in the 20 ˜ 300 keV energy range (E/Q). The cryogenic system in the CSR is expected to cool the inner vacuum chamber down to 2 K. The CSR will be equipped with an electron cooler which has also to serve as an electron target for high resolution recombination experiments. In this paper we present the results of numerical investigations of the CSR lattice with finite element calculations of the deflection and focusing elements of the ring. We also present a layout of the CSR electron cooler which will have to operate in low energy mode to cool 20 keV protons in the CSR, as well as numerical estimations of the cooling times to be expected with this device.

  10. Cool and Quiet: Partnering to Enhance the Aerodynamic and Acoustic Performance of Installed Electronics Cooling Fans: A White Paper

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; VanZante, Dale E.

    2006-01-01

    Breathtaking images of distant planets. Spacewalks to repair a telescope in orbit. Footprints on the moon. The awesome is made possible by the mundane. Every achievement in space exploration has relied on solid, methodical advances in engineering. Space exploration fuels economic development like no other endeavor can. But which advances will make their way into our homes and businesses? And how long will it take? Answers to these questions are dependent upon industrial involvement in government sponsored research initiatives, market demands, and timing. Recognizing an opportunity is half the battle. This proposal describes the framework for a collaborative research program aimed at improving the aerodynamic and acoustic performance of electronics cooling fans. At its best, the program would involve NASA and academic researchers, as well as corporate researchers representing the Information Technology (IT) and fan manufacturing industries. The momentum of space exploration, the expertise resultant from the nation's substantial investment in turbofan noise reduction research, and the competitiveness of the IT industry are intended to be catalysts of innovation.

  11. Electromagnetic fields from pulsed electron beam experiments in space - Spacelab-2 results

    NASA Technical Reports Server (NTRS)

    Bush, R. I.; Reeves, G. D.; Banks, P. M.; Neubert, T.; Williamson, P. R.

    1987-01-01

    During the Spacelab-2 mission a small satellite carrying various plasma diagnostic instruments was released from the Shuttle to coorbit at distances up to 300 m. During a magnetic conjunction of the Shuttle and the satellite an electron beam modulated at 1.22 kHz was emitted from the Shuttle during a 7 min period. The spatial structure of the electromagnetic fields generated by the beam was observed from the satellite out to a distance of 153 m perpendicular to the beam. The magnetic field amplitude of the strongest harmonics were comparable to the amplitude of simultaneously observed whistlers, while the electric field amplitudes were estimated to 1-10 mV/m.

  12. Measurement of the phase of the electromagnetic wave in a free-electron laser amplifier

    SciTech Connect

    Orzechowski, T.J.; Scharlemann, E.T.; Hopkins, D.B.

    1987-03-01

    The phase change of an electromagnetic wave propagating through a free-electron laser (FEL) amplifier has been measured. The FEL operated at 34.6 GHz, with both a uniform and a tapered wiggler. The results of the experiment show a nearly constant phase derivative with increasing wiggler length through the exponential gain region and are in good agreement with analytical theory. For the tapered-wiggler amplifier, the phase derivative decreases at a point approximately one third of a synchrotron period past saturation; the decrease is in good agreement with numerical simulation. For the untapered-wiggler amplifier, however, numerical simulations predict an increase in phase derivative past saturation, whereas in the experiment the phase derivative abruptly vanishes. Several explanations for the discrepancy are discussed.

  13. Nonlinear dispersion and transverse profile of intense electromagnetic waves, propagating through electron-positron-ion hot magnetoplasma

    SciTech Connect

    Javan, N. Sepehri Homami, S. H. H.

    2015-02-15

    Self-guided nonlinear propagation of intense circularly-polarized electromagnetic waves in a hot electron-positron-ion magnetoplasma is studied. Using a relativistic fluid model, a nonlinear equation is derived, which describes the interaction of the electromagnetic wave with the plasma in the quasi-neutral approximation. Transverse Eigen modes, the nonlinear dispersion relation and the group velocity are obtained. Results show that the transverse profile in the case of magnetized plasma with cylindrical symmetry has a radially damping oscillatory form. Effect of applying external magnetic fields, existence of the electron-positron pairs, changing the amplitude of the electromagnetic wave, and its polarization on the nonlinear dispersion relation and Eigen modes are studied.

  14. Interaction of a two-dimensional electromagnetic breather with an electron inhomogeneity in an array of carbon nanotubes

    SciTech Connect

    Zhukov, Alexander V. Bouffanais, Roland; Fedorov, E. G.; Belonenko, Mikhail B.

    2014-05-28

    Propagation of ultrashort laser pulses through various nano-objects has recently became an attractive topic for both theoretical and experimental studies due to its promising perspectives in a variety of problems of modern nanoelectronics. Here, we study the propagation of extremely short two-dimensional bipolar electromagnetic pulses in a heterogeneous array of semiconductor carbon nanotubes. Heterogeneity is defined as a region of enhanced electron density. The electromagnetic field in an array of nanotubes is described by Maxwell's equations, reduced to a multidimensional wave equation. Our numerical analysis shows the possibility of stable propagation of an electromagnetic pulse in a heterogeneous array of nanotubes. Furthermore, we establish that, depending on its speed of propagation, the pulse can pass through the area of increased electron concentration or be reflected therefrom.

  15. Effect of a novel nonlinearity, viz., electron temperature dependence of electron-ion recombination on electromagnetic wave. Plasma interaction: Nonlinear propagation in the E-layer

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Mishra, Rashmi; Srivastava, Sweta

    2016-03-01

    In this paper, we consider the nonlinearity in the propagation of electromagnetic (e.m.) waves in a plasma caused by the electron temperature dependence of the coefficient of recombination of electrons with ions; specifically, the ionospheric E layer has been investigated. The enhancement in electron temperature by an intense electromagnetic wave causes reduction of the electron-ion recombination coefficient and thereby enhancement of electron density, the electron collision frequency also gets enhanced. The equations for number and energy balance of electrons and the wave equation have been used to predict the dependence of electron density/collision frequency and the nonlinear refractive index and absorption coefficient on αE02 (proportional to wave irradiance). The dependence of the propagation parameters on αE02 has been used to investigate the nonlinear electromagnetic wave propagation in the ionosphere. The study concludes that the electron temperature dependence of the recombination coefficient should be considered in all analyses of nonlinear plasma-e.m. wave interaction.

  16. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells.

    PubMed

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-01-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries.

  17. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-08-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries.

  18. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells

    PubMed Central

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-01-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries. PMID:27499446

  19. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells.

    PubMed

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-01-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries. PMID:27499446

  20. Modelization For Electromagnetic Electron Scattering at Low Energies for Radiotherapy applications.

    NASA Astrophysics Data System (ADS)

    Nazaryan, Vahagn; Gueye, Paul

    2006-03-01

    Since release of the GEANT4 particle simulation toolkit in 2003, there has been a growing interest in its applications to medical physics. The applicability of GEANT4 to radiotherapy has been a subject of several investigations in recent years, and it was found to be of great use. Its low-energy model allows for electromagnetic interaction simulations down to 250 eV. The electron physics data are obtained from the Lawrence Livermore National Laboratory's Evaluated Electron Data Library (EEDL). At very lower energies (below 10 MeV), some of the tabulated data in EEDL have big uncertainties (more than 50%), and rely on various extrapolations to energy regions where there is no experimental data. We have investigated the variations of these cross-section data to radiotherapy applications. Our study suggests a strong need for better theoretical models of electron interactions with matter at these energies, and the necessity of new and more reliable experimental data. The progress towards such theoretical model will be presented.

  1. Laser Cooled Francium Factory for the Electron Electric Dipole Moment Search

    NASA Astrophysics Data System (ADS)

    Hayamizu, Tomohiro; Arikawa, Hiroshi; Ezure, Saki; Harada, Ken-ichi; Inoue, Takeshi; Ishikawa, Taisuke; Itoh, Masatoshi; Kato, Tomohiro; Kawamura, Hirokazu; Sato, Tomoya; Ando, Shun; Aoki, Takahiro; Kato, Ko; Uchiyama, Aiko; Aoki, Takatoshi; Furukawa, Takeshi; Hatakeyama, Atsushi; Hatanaka, Kichiji; Imai, Kenichi; Murakami, Tetsuya; Nataraj, Huliyar; Shimizu, Yasuhiro; Wakasa, Tomotsugu; Yoshida, Hidetomo; Sakemi, Yasuhiro

    A permanent electric dipole moment (EDM) of an elementary particle is a candidate observable exhibiting CP violation beyond the standard model. In the present study, we plan to search for the electron EDM in francium (Fr), which is the heaviest alkali atom, captured in a far-off resonance optical trap. Since the number of Fr atoms is essential to high precision measurements, we have developed a cold Fr source called "Laser cooled Fr factory" in order to trap the radioactive Fr produced through a nuclear fusion reaction. The Fr produced was released as an ion from a gold production target in a Fr ion source, transported as an ion beam, and converted from ion to atom in a neutralizer. The neutralized Fr atom will be trapped in a magneto-optical trap(MOT) and then be transferred to an optical dipole trap. The rate of Fr atoms so far achieved was 1 × 106 ions/sec from the ion source and 1 atom/sec of the neutralized Fr atom from the neutralizer. In order to optimize performance of the Fr beam line, Rb atoms were trapped in the MOT. In addition to the beam-line experiment, in an off-line MOT system, polarization gradient cooling was applied to the trapped Rb atoms to cool them down to temperatures lower than the Rb Doppler-cooling limit. In this paper, we describe the present status of this experimental apparatus.

  2. An Electromagnetic Spectrum for Millennial Students: Teaching Light, Color, Energy, and Frequency Using the Electronic Devices of Our Time

    ERIC Educational Resources Information Center

    Murphy, Maureen Kendrick

    2010-01-01

    In this article, a comparison of student learning outcomes is made in sophomore-level physical science classes using a "traditional" pedagogical approach versus a "modern" approach. Specifically, when students were taught the electromagnetic spectrum using diagrams and examples that incorporate technological advances and electronic devices of our…

  3. New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten

    1994-01-01

    We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.

  4. Electronics and Sensor Cooling with a Stirling Cycle for Venus Surface Mission

    NASA Technical Reports Server (NTRS)

    Mellott, Ken

    2004-01-01

    The inhospitable ambient surface conditions of Venus, with a 450 C temperature and 92 bar pressure, may likely require any extended-duration surface exploratory mission to incorporate some type of cooling for probe electronics and sensor devices. A multiple-region Venus mission study was completed at NASA GRC in December of 2003 that resulted in the preliminary design of a kinematically-driven, helium charged, Stirling cooling cycle with an estimated over-all COP of 0.376 to lift 100 watts of heat from a 200 C cold sink temperature and reject it at a hot sink temperature of 500 C. This paper briefly describes the design process and also describes and summarizes key features of the kinematic, Stirling cooler preliminary design concept.

  5. Theoretical study of electromagnetic electron cyclotron waves in the presence of AC field in Uranian magnetosphere

    NASA Astrophysics Data System (ADS)

    Pandey, R. S.; Kaur, Rajbir

    2015-10-01

    Electromagnetic electron cyclotron (EMEC) waves with temperature anisotropy in the magnetosphere of Uranus have been studied in present work. EMEC waves are investigated using method of characteristic solution by kinetic approach, in presence of AC field. In 1986, Voyager 2 encounter with Uranus revealed that magnetosphere of Uranus exhibit non-Maxwellian high-energy tail distribution. So, the dispersion relation, real frequency and growth rate are evaluated using Lorentzian Kappa distribution function. Effect of temperature anisotropy, AC frequency and number density of particles is found. The study is also extended to oblique propagation of EMEC waves in presence and absence of AC field. Through comprehensive mathematical analysis it is found that when EMEC wave propagates parallel to intrinsic magnetic field of Uranus, its growth is more enhanced than in case of oblique propagation. Results are also discussed in context to magnetosphere of Earth and also gives theoretical explanation to existence of high energetic particles observed by Voyager 2 in the magnetosphere of Uranus. The results can present a further insight into the nature of electron-cyclotron instability condition for the whistler mode waves in the outer radiation belts of Uranus or other space plasmas.

  6. Scattering of relativistic and ultra-relativistic electrons by obliquely propagating Electromagnetic Ion Cyclotron waves

    NASA Astrophysics Data System (ADS)

    Uzbekov, Bogdan; Shprits, Yuri Y.; Orlova, Ksenia

    2016-10-01

    Electromagnetic Ion Cyclotron (EMIC) waves are transverse plasma waves that are generated in the Earth magnetosphere by ring current protons with temperature anisotropy in three different bands: below the H+, He+ and O+ ion gyrofrequencies. EMIC events are enhanced during the main phase of a geomagnetic storm when intensifications in the electric field result in enhanced injections of ions and are usually confined to high-density regions just inside the plasmapause or within drainage plumes. EMIC waves are capable of scattering radiation belt electrons and thus provide an important link between the intensification of the electric field, ion populations, and radiation belt electrons. Bounce-averaged diffusion coefficients computed with the assumption of parallel wave propagation are compared to the results of the code that uses the full cold plasma dispersion relation taking into account oblique propagation of waves and higher-order resonances. We study the sensitivity of the scattering rates to a number of included higher-order resonances, wave spectral distribution parameters, wave normal angle distribution parameters, ambient plasma density, and ion composition. Inaccuracies associated with the neglect of higher-order resonances and oblique propagation of waves are compared to potential errors introduced by uncertainties in the model input parameters.

  7. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect

    Lowe, K.T.

    2005-10-07

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be

  8. Pitch-angle diffusion of electrons through growing and propagating along a magnetic field electromagnetic wave in Earth's radiation belts

    SciTech Connect

    Choi, C.-R. Dokgo, K.; Min, K.-W.; Woo, M.-H.; Choi, E.-J.; Hwang, J.; Park, Y.-D.; Lee, D.-Y.

    2015-06-15

    The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can be applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts.

  9. Quasiparticle cascade amplifier based on strong electron cooling of normal metal traps

    NASA Astrophysics Data System (ADS)

    Kuzmin, L.

    2002-08-01

    A novel concept of the quasiparticle amplifier based on the trapping of nonequilibrium quasiparticles, strong direct electron cooling, and the cascade principle of amplification has been suggested. The amplifier can be useful for the normal metal hot-electron bolometers (NHEB) with SIN tunnel junctions and similar devices. In the suggested concept, the second stage is working in a regime of strong direct electron cooling whereby all released energy is removed from the trap by the second tunnel junction. In this case, one can maintain the temperature of the trap near a base level while keeping a high coefficient of amplification. Another important feature of the proposed amplifier is adding the stimulated current I2 to the main measurement current I1 to increase amplification. In this regime, the coefficient of amplification will be greater than unity in any case. The junctions T1 and T2 (of a different area) work in opposite directions with the same voltage near Δ that can be realized only in voltage-biased mode. The principle of cascade amplification can be extended further for a third stage (and so on) with the same adding amplified currents from junctions of increased area. The cascade principle with the same voltage bias for all junctions gives an opportunity to realize an amplifier without an additional power supply and additional wires. This feature can be extremely important for the realization of the multi-pixel arrays of the sensors.

  10. Electromagnetic metamaterial-inspired band gap and perfect transmission in semiconductor and graphene-based electronic and photonic structures

    NASA Astrophysics Data System (ADS)

    Mahdy, M. R. C.; Al Sayem, Ayed; Shahriar, Arif; Shawon, Jubayer; Al-Quaderi, Golam Dastegir; Jahangir, Ifat; Matin, M. A.

    2016-04-01

    In this article, at first we propose a unified and compact classification of single negative electromagnetic metamaterial-based perfect transmission unit cells. The classes are named as: type-A, -B and -C unit cells. Then based on the classification, we have extended these ideas in semiconductor and graphene regimes. For type-A: Based on the idea of electromagnetic Spatial Average Single Negative bandgap, novel bandgap structures have been proposed for electron transmission in semiconductor heterostructures. For type-B: with dielectric-graphene-dielectric structure, almost all angle transparency is achieved for both polarizations of electromagnetic wave in the terahertz frequency range instead of the conventional transparency in the microwave frequency range. Finally the application of the gated dielectric-graphene-dielectric has been demonstrated for the modulation and switching purpose.

  11. The influence of longitudinal space charge fields on the modulation process of coherent electron cooling

    SciTech Connect

    Wang, G.; Blaskiewicz, M.; Litvinenko, V. N.

    2014-05-21

    Initial modulation in Coherent electron cooling (CeC) scheme relies on ion charge screening by electrons. In a CeC system with bunched electron beam, the long-range longitudinal space charge force is inevitably induced. For a relatively dense electron beam, it can be comparable or even greater than the attractive force from the ion. Hence, space-charge field influence to the modulation process could be important. If the longitudinal Debye length is much smaller than the electron bunch length, the modulation induced by the ion happens locally. In this case, the long-range longitudinal space charge field can be approximated as a uniform electric field across the region. In this paper we developed an analytical model to study the dynamics of ion shielding in the presence of a uniform electric field. We are solving the coupled Vlasov-Poisson equation system for infinite anisotropic electron plasma and estimate the influences of the longitudinal space charge field to the modulation process. We present numerical estimates for a case of the proof of CeC principle experiment at RHIC.

  12. Fraunhofer diffraction of atomic matter waves: electron transfer studies with a laser cooled target.

    PubMed

    van der Poel, M; Nielsen, C V; Gearba, M A; Andersen, N

    2001-09-17

    We have constructed an apparatus combining the experimental techniques of cold target recoil ion momentum spectroscopy and a laser cooled target. We measure angle differential cross sections in Li(+)+Na-->Li+Na(+) electron transfer collisions in the keV energy regime with a momentum resolution of 0.12 a.u. yielding an order of magnitude better angular resolution than previous measurements. We resolve Fraunhofer-type diffraction patterns in the differential cross sections. Good agreement with predictions of the semiclassical impact parameter method is obtained.

  13. Electron-cooled accumulation of 4 × 109 positrons for production and storage of antihydrogen atoms

    NASA Astrophysics Data System (ADS)

    Fitzakerley, D. W.; George, M. C.; Hessels, E. A.; Skinner, T. D. G.; Storry, C. H.; Weel, M.; Gabrielse, G.; Hamley, C. D.; Jones, N.; Marable, K.; Tardiff, E.; Grzonka, D.; Oelert, W.; Zielinski, M.; ATRAP Collaboration

    2016-03-01

    Four billion positrons (e+) are accumulated in a Penning-Ioffe trap apparatus at 1.2 K and <6 × 10-17 Torr. This is the largest number of positrons ever held in a Penning trap. The e+ are cooled by collisions with trapped electrons (e-) in this first demonstration of using e- for efficient loading of e+ into a Penning trap. The combined low temperature and vacuum pressure provide an environment suitable for antihydrogen (\\bar{{{H}}}) production, and long antimatter storage times, sufficient for high-precision tests of antimatter gravity and of CPT.

  14. Communication: Uncovering correlated vibrational cooling and electron transfer dynamics with multidimensional spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Zhenkun; Giokas, Paul G.; Cheshire, Thomas P.; Williams, Olivia F.; Dirkes, David J.; You, Wei; Moran, Andrew M.

    2016-09-01

    Analogues of 2D photon echo methods in which two population times are sampled have recently been used to expose heterogeneity in chemical kinetics. In this work, the two population times sampled for a transition metal complex are transformed into a 2D rate spectrum using the maximum entropy method. The 2D rate spectrum suggests heterogeneity in the vibrational cooling (VC) rate within the ensemble. In addition, a cross peak associated with VC and back electron transfer (BET) dynamics reveals correlation between the two processes. We hypothesize that an increase in the strength of solute-solvent interactions, which accelerates VC, drives the system toward the activationless regime of BET.

  15. Communication: Uncovering correlated vibrational cooling and electron transfer dynamics with multidimensional spectroscopy.

    PubMed

    Guo, Zhenkun; Giokas, Paul G; Cheshire, Thomas P; Williams, Olivia F; Dirkes, David J; You, Wei; Moran, Andrew M

    2016-09-14

    Analogues of 2D photon echo methods in which two population times are sampled have recently been used to expose heterogeneity in chemical kinetics. In this work, the two population times sampled for a transition metal complex are transformed into a 2D rate spectrum using the maximum entropy method. The 2D rate spectrum suggests heterogeneity in the vibrational cooling (VC) rate within the ensemble. In addition, a cross peak associated with VC and back electron transfer (BET) dynamics reveals correlation between the two processes. We hypothesize that an increase in the strength of solute-solvent interactions, which accelerates VC, drives the system toward the activationless regime of BET. PMID:27634244

  16. Propagation and Generation of Electromagnetic Waves at Proton Gyrofrequencies in a Relativistic Electron-Positron Plasma. II. Excitation of Electromagnetic Waves

    NASA Astrophysics Data System (ADS)

    Zheleznyakov, V. V.; Bespalov, P. A.

    2016-04-01

    In part I of this work [1], we study the dispersion characteristics of low-frequency waves in a relativistic electron-positron plasma. In part II, we examine the electromagnetic wave instability in this plasma caused by an admixture of nonrelativistic protons with energy comparable with the energy of relativistic low-mass particles. The instability occurs in the frequency band between the fundamental harmonic of proton gyrofrequency and the fundamental harmonic of relativistic electron gyrofrequency. The results can be used for the interpretation of known observations of the pulsar emissions obtained with a high time and frequency resolution. The considered instability can probably be the initial stage of the microwave radio emission nanoshots typical of the pulsar in the Crab Nebula.

  17. Validation of convection-limited cooling of samples for freeze-fracture electron microscopy.

    PubMed

    Bailey, S M; Zasadzinski, J A

    1991-09-01

    Rapid freezing is the most important step in sample preparation for freeze-fracture and other cryotechniques for electron microscopy. A simple heat transfer model is experimentally validated to show that convection from the cryogen to the specimen is the limiting step in rapid freezing of small samples [Biot modulus, (hd/k) less than 1] by measuring cooling rates in a variety of samples, materials, and cryogens. In comparison to the commonly accepted conduction-limited model, the convection-limited model predicts, and our experiments show, that cooling rates are proportional to the surface area to volume ratio, independent of the sample thermal conductivity, and inversely proportional to the product of sample density and heat capacity. We show that almost any material can be frozen at similar rates if the sample thickness, the cryogen, and the method and velocity of contact with cryogen are similar. Liquid ethane or propane cooled to liquid nitrogen temperature are shown to give the best results. PMID:1960713

  18. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    PubMed Central

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Bud’ko, Sergey L.; Canfield, Paul C.; Gegenwart, Philipp

    2016-01-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1−xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.

  19. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    PubMed Central

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Bud’ko, Sergey L.; Canfield, Paul C.; Gegenwart, Philipp

    2016-01-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1−xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration. PMID:27626073

  20. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling.

    PubMed

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S; Bud'ko, Sergey L; Canfield, Paul C; Gegenwart, Philipp

    2016-09-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with (3)He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require (3)He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1-x Sc x Co2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration. PMID:27626073

  1. Laser cooling of the AlCl molecule with a three-electronic-level theoretical model

    NASA Astrophysics Data System (ADS)

    Wan, Mingjie; Yuan, Di; Jin, Chengguo; Wang, Fanhou; Yang, Yujie; Yu, You; Shao, Juxiang

    2016-07-01

    Feasibility of laser-cooling AlCl molecule is investigated using ab initio quantum chemistry. Potential energy curves, permanent dipole moments, and transition dipole moments for the X1Σ+, a3Π, and A1Π states are studied based on multi-reference configuration interaction plus Davidson corrections (MRCI+Q) method with ACVQZ basis set, spin-orbit coupling effects are considered at the MRCI+Q level. Highly diagonally distributed Franck-Condon factors (f00 = 0.9988 and f11 = 0.9970) and branching ratios (R00 = 0.9965, R01 = 2.85 × 10-3, R02 = 6.35 × 10-4, and R03 = 2.05 × 10-6) for the A 1 Π 1 ( ν ' = 0 ) → X 1 Σ0 + + ( ν ″ = 0 ) transition are determined. A sufficiently radiative lifetime τ (A1Π1) = 4.99 ns is predicted for rapid laser cooling. The proposed cooling wavelength is deep in the ultraviolet region at λ00 = 261.75 nm. Total emission rates for the a 3 Π 0 + → X 1 Σ0 + + , a 3 Π 1 → X 1 Σ0 + + , A1Π1 → a3Π0+, and A1Π1 → a3Π1 transitions are particularly small (˜10 s-1-650 s-1). The calculated vibrational branching loss ratio to the intermediate a3Π0+ and a3Π1 states can be negligible. The results imply the probability of laser cooling AlCl molecule with three-electronic-level.

  2. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    SciTech Connect

    Rufai, O. R. Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  3. Issues concerning high current lower energy electron beams required for ion cooling between EBIS LINAC and booster

    SciTech Connect

    Hershcovitch,A.

    2009-03-01

    Some issues, regarding a low energy high current electron beam that will be needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, are examined. Options for propagating such an electron beam, as well as the effect of neutralizing background plasma on electron and ion beam parameters are calculated. Computations and some experimental data indicate that none of these issues is a show stopper.

  4. Electron cooling system in the booster synchrotron of the HIAF project

    NASA Astrophysics Data System (ADS)

    Mao, L. J.; Yang, J. C.; Xia, J. W.; Yang, X. D.; Yuan, Y. J.; Li, J.; Ma, X. M.; Yan, T. L.; Yin, D. Y.; Chai, W. P.; Sheng, L. N.; Shen, G. D.; Zhao, H.; Tang, M. T.

    2015-06-01

    The High Intensity heavy ion Accelerator Facility (HIAF) is a new accelerator complex under design at the Institute of Modern Physics (IMP). The facility is aiming at the production of high intensity heavy ion beams for a wide range of experiments in high energy density physics, nuclear physics, atomic physics and other applications. It consists of a superconducting electron-cyclotron-resonance ion source and an intense proton ion source, a linear accelerator, a 34 Tm booster synchrotron ring, a 43 Tm multifunction compression synchrotron ring, a 13 Tm high precision spectrometer ring and several experimental terminals. A magnetized electron cooling device is supposed to be used in the booster ring for decreasing the transverse emittance of injected beams. The conceptual design and main parameters of this cooler are presented in this paper.

  5. Frequency-Domain Analysis of Diffusion-Cooled Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, A.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.

    1998-01-01

    A new theoretical model is introduced to describe heterodyne mixer conversion efficiency and noise (from thermal fluctuation effects) in diffusion-cooled superconducting hot-electron bolometers. The model takes into account the non-uniform internal electron temperature distribution generated by Wiedemann-Franz heat conduction, and accepts for input an arbitrary (analytical or experimental) superconducting resistance-versus- temperature curve. A non-linear large-signal solution is solved iteratively to calculate the temperature distribution, and a linear frequency-domain small-signal formulation is used to calculate conversion efficiency and noise. In the small-signal solution the device is discretized into segments, and matrix algebra is used to relate the heating modulation in the segments to temperature and resistance modulations. Matrix expressions are derived that allow single-sideband mixer conversion efficiency and coupled noise power to be directly calculated. The model accounts for self-heating and electrothermal feedback from the surrounding bias circuit.

  6. The design and implementation of the machine protection system for the Fermilab electron cooling facility

    SciTech Connect

    Warner, A.; Carmichael, L.; Carlson, K.; Crisp, J.; Goodwin, R.; Prost, L.; Saewert, G.; Shemyakin, A.; /Fermilab

    2009-05-01

    The Fermilab Recycler ring employs an electron cooler to store and cool 8.9-GeV antiprotons. The cooler is based on a 4.3-MV, 0.1-A, DC electrostatic accelerator for which current losses have to remain low ({approx}10{sup -5}) in order to operate reliably. The Machine Protection System (MPS) has been designed to interrupt the beam in a matter of 1-2 {micro}s when losses higher than a safe limit are detected, either in the accelerator itself or in the beam lines. This paper highlights the various diagnostics, electronics and logic that the MPS relies upon to successfully ensure that no damage be sustained to the cooler or the Recycler ring.

  7. Aircraft skin cooling system for thermal management of onboard high power electronic equipment

    SciTech Connect

    Hashemi, A.; Dyson, E.

    1996-12-31

    Integration of high-power electronic devices into existing aircraft, while minimizing the impact of additional heat load on the environmental control system of the aircraft, requires innovative approaches. One such approach is to reject heat through the aircraft skin by use of internal skin ducts with enhanced surfaces. This approach requires a system level consideration of the effect of cooling ducts, inlets and outlets on the performance of the electronic equipment and effectiveness of the heat rejection system. This paper describes the development of a system-level model to evaluate the performance of electronic equipment in an aircraft cabin and heat rejection through the skin. In this model, the outer surface of the fuselage is treated as a heat exchanger. Hot air from an equipment exhaust plenum is drawn into a series of baffled ducts within the fuselage support structure, where the heat is rejected, and then recirculated into the cabin. The cooler air form the cabin is then drawn into the electronic equipment. The aircraft air conditioning unit is also modeled to provide chilled air directly into the cabin. In addition, this paper describes a series of tests which were performed to verify the model assumptions for heat dissipation from and air flow through the equipment. The tests were performed using the actual electronic equipment in a representative cabin configuration. Results indicate very good agreement between the analytical calculations for the design point and model predictions.

  8. Status of proof-of-principle experiment for coherent electron cooling

    SciTech Connect

    Pinayev I.; Belomestnykh, S.; Bengtsson, J.; Ben-Zvi, I.; Elizarov, A. et al

    2012-05-20

    Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron colliders. To verify the concept we conduct proof-of-the-principle experiment at RHIC. In this paper, we describe the current experimental setup to be installed into 2 o'clock RHIC interaction regions. We present current design, status of equipment acquisition and estimates for the expected beam parameters. We use a dogleg to merge the electron and ion beams. The ions 'imprint' their distribution into the electron beam via a space charge density modulation. The modulation is amplified in an FEL comprised of a 7-m long helical wiggler. The ions are co-propagating with electron beam through the FEL. The ion's average velocity is matched to the group velocity of the wave-packet of e-beam density modulation in the FEL. A three-pole wiggler at the exit of the FEL tune the phase of the wave-packet so the ion with the central energy experience the maximum of the e-beam density modulation, where electric field is zero. The time-of-flight dependence on ion's provides for the electrical field caused by the density modulation to reduce energy spread of the ion beam. The used electron beam is bent off the ion path and damped.

  9. Electron Lenses and Cooling for the Fermilab Integrable Optics Test Accelerator

    SciTech Connect

    Stancari, G.; Burov, A.; Lebedev, V.; Nagaitsev, S.; Prebys, E.; Valishev, A.

    2015-11-05

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whether nonlinear integrable optics allows electron coolers to exceed limitations set by both coherent or incoherent instabilities excited by space charge.

  10. Prototype of readout electronics for the LHAASO KM2A electromagnetic particle detectors

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Chang, Jing-Fan; Wang, Zheng; Fan, Lei

    2016-07-01

    The KM2A (one kilometer square extensive air shower array) is the largest detector array in the LHAASO (Large High Altitude Air Shower Observatory) project. The KM2A consists of 5242 EDs (Electromagnetic particle Detectors) and 1221 MDs (Muon Detectors). The EDs are distributed and exposed in the wild. Two channels, anode and dynode, are employed for the PMT (photomultiplier tube) signal readout. The readout electronics designed in this paper aims at accurate charge and arrival time measurement of the PMT signals, which cover a large amplitude range from 20 P.E. (photoelectrons) to 2 × 105 P.E. By using a “trigger-less” architecture, we digitize signals close to the PMTs. All digitized data is transmitted to DAQ (Data Acquisition) via a simplified White Rabbit protocol. Compared with traditional high energy experiments, high precision of time measurement over such a large area and suppression of temperature effects in the wild become the key techniques. Experiments show that the design has fulfilled the requirements in this project. Supported by National Natural Science Foundation of China (11375210) and the Knowledge Innovation Fund of IHEP, Beijing

  11. Electronic properties of carbon nanotubes investigated by means of standard electromagnetic simulators

    NASA Astrophysics Data System (ADS)

    Mencarelli, Davide; Rozzi, Tullio; Maccari, Luca; di Donato, Andrea; Farina, Marco

    2007-02-01

    Due to the formal analogy between Maxwell and Schrödinger equations, electromagnetic (e.m.) simulators may become a powerful numerical tool for the analysis of carrier transport in low-dimensional systems. In the following, we exploit this analogy in order to investigate the electronic properties of carbon nanotubes (CNTs). As a matter of fact, e.m. commercial solvers have reached a high degree of efficiency due to the demand of the high-speed and microwave circuit market. In this paper, we suggest applying e.m. numerical solvers to CNTs with a view to derive their main properties, such as dispersion curves and effective masses. In particular, we have used the “CST Microwave Studio,” implementing a finite element method (FEM). However, many other e.m. solvers are available, exploiting different approaches (FDTD, Method of Moment, TLM, etc.). In order to assess the validity of the approach, we have investigated an important example of band-gap distortion and splitting of degenerate states with respect to the angular momentum, due to an external electric field. The model can also be applied in order to better explain the behavior of metal-CNT contacts, representing a critical point for analysis and synthesis of nanotransistor devices.

  12. Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas

    SciTech Connect

    Heidari, E.; Aslaninejad, M.; Eshraghi, H.; Rajaee, L.

    2014-03-15

    Using a one-dimensional self-consistent fluid model, we investigate standing relativistic bright solitons in hot electron-positron plasmas. The positron dynamics is taken into account. A set of nonlinear coupled differential equations describing the evolution of electromagnetic waves in fully relativistic two-fluid plasma is derived analytically and solved numerically. As a necessary condition for the existence of standing solitons the system should be relativistic. For the case of ultra-relativistic plasma, we investigate non-drifting bright solitary waves. Detailed discussions of the acceptable solutions are presented. New single hump non-trivial symmetric solutions for the scalar potential were found, and single and multi-nodal symmetric and anti-symmetric solutions for the vector potential are presented. It is shown that for a fixed value of the fluid velocity excited modes with more zeros in the profile of the vector potential show a higher magnitude for the scalar potential. An increase in the plasma fluid velocity also increases the magnitude of the scalar potential. Furthermore, the Hamiltonian and the first integral of the system are given.

  13. Effects of electromagnetic wiggler and ion channel guiding on equilibrium orbits and waves propagation in a free electron laser

    NASA Astrophysics Data System (ADS)

    Amri, Hassan Ehsani; Mohsenpour, Taghi

    2016-02-01

    In this paper, an analysis of equilibrium orbits for electrons by a simultaneous solution of the equation of motion and the dispersion relation for electromagnetic wave wiggler in a free-electron laser (FEL) with ion-channel guiding has been presented. A fluid model has been used to investigate interactions among all possible waves. The dispersion relation has been derived for electrostatic and electromagnetic waves with all relativistic effects included. This dispersion relation has been solved numerically. For group I and II orbits, when the transverse velocity is small, only the FEL instability is found. In group I and II orbits with relatively large transverse velocity, new couplings between other modes are found.

  14. Superconducting Tunnel Junction Refrigerators for Sub-Kelvin Cooling of Electrons, Phonons, and Arbitrary, User-Supplied Payloads

    NASA Astrophysics Data System (ADS)

    Lowell, Peter Joseph

    Modern science often requires measurements at sub-Kelvin temperatures. Temperatures of 300 mK can be reached by using liquid 3He, but reaching lower temperatures requires the use of adiabatic demagnetization and dilution refrigerators which are complex, large, and costly. Normal-metalInsulatorSuperconductor (NIS) tunnel junctions provide an alternative refrigeration method that is simple to use, compact, and provides continuous cooling power that has the potential to expand the accessibility of these sub-Kelvin temperatures. When properly biased, the electron system in the normal metal of an NIS junction is cooled since the hottest electrons preferentially tunnel from the normal metal to the superconductor, transferring heat in the process. When the normal metal is extended onto a thermally isolated membrane, the cold electrons cool the phonons in the membrane through electron-phonon coupling. In previous work, NIS junctions have been used to cool detectors and bulk objects that were integrated with the membrane, but could not be considered a general-purpose refrigerator since they could not cool arbitrary objects. The goal of this work has been to demonstrate a general-purpose NIS refrigerator to which a user can attach arbitrary bulk objects. First, we discuss NIS refrigeration and then develop a model to predict phonon cooling. We fabricated and tested NIS refrigerators capable of cooling bulk objects and used the model to explain the results. The devices were able to cool phonons from 300 mK to 154 mK with 100 pW of cooling power at 200 mK. With these devices, we were able to cool a 2 cm3 piece of copper from 290 mK to 256 mK with 700 pW of cooling power at 290 mK. This demonstration marks the emergence of NIS refrigerators as a true, general-purpose refrigerator since users can attach arbitrary objects. Measurements of Andreev reflections in the devices and next-generation refrigerators that cool electrons from 100 mK to below 50 mK are also presented.

  15. Improvement of the technique of identification of electrons and positrons with use of electromagnetic calorimeter of the CLAS detector

    SciTech Connect

    Gevorgyan, N. E.; Dashyan, N. B.; Paremuzyan, R. G.; Stepanyan, S. G.

    2010-01-01

    We study the dependence of the sensitivity of response of the electromagnetic calorimeter of CLAS plant on the momenta of electrons and positrons. We made calculation of this dependence and elaborated a method for its employment in identification of e- and e+. We have shown that the new method of selection of e- and e+ improves the quality of identification by about 10%. We used the experimental data obtained with the plant CLAS of linear accelerator at Jefferson laboratory (USA).

  16. Strong neutrino cooling by cycles of electron capture and β- decay in neutron star crusts.

    PubMed

    Schatz, H; Gupta, S; Möller, P; Beard, M; Brown, E F; Deibel, A T; Gasques, L R; Hix, W R; Keek, L; Lau, R; Steiner, A W; Wiescher, M

    2014-01-01

    The temperature in the crust of an accreting neutron star, which comprises its outermost kilometre, is set by heating from nuclear reactions at large densities, neutrino cooling and heat transport from the interior. The heated crust has been thought to affect observable phenomena at shallower depths, such as thermonuclear bursts in the accreted envelope. Here we report that cycles of electron capture and its inverse, β(-) decay, involving neutron-rich nuclei at a typical depth of about 150 metres, cool the outer neutron star crust by emitting neutrinos while also thermally decoupling the surface layers from the deeper crust. This 'Urca' mechanism has been studied in the context of white dwarfs and type Ia supernovae, but hitherto was not considered in neutron stars, because previous models computed the crust reactions using a zero-temperature approximation and assumed that only a single nuclear species was present at any given depth. The thermal decoupling means that X-ray bursts and other surface phenomena are largely independent of the strength of deep crustal heating. The unexpectedly short recurrence times, of the order of years, observed for very energetic thermonuclear superbursts are therefore not an indicator of a hot crust, but may point instead to an unknown local heating mechanism near the neutron star surface. PMID:24291788

  17. Cooling of relativistic electron beams in intense laser pulses: Chirps and radiation

    NASA Astrophysics Data System (ADS)

    Yoffe, S. R.; Noble, A.; Macleod, A. J.; Jaroszynski, D. A.

    2016-09-01

    Next-generation high-power laser facilities (such as the Extreme Light Infrastructure) will provide unprecedented field intensities, and will allow us to probe qualitatively new physical regimes for the first time. One of the important fundamental questions which will be addressed is particle dynamics when radiation reaction and quantum effects play a significant role. Classical theories of radiation reaction predict beam cooling in the interaction of a relativistic electron bunch and a high-intensity laser pulse, with final-state properties only dependent on the laser fluence. The observed quantum suppression of this cooling instead exhibits a dependence on the laser intensity directly. This offers the potential for final-state properties to be modified or even controlled by tailoring the intensity profile of the laser pulse. In addition to beam properties, quantum effects will be manifest in the emitted radiation spectra, which could be manipulated for use as radiation sources. We compare predictions made by classical, quasi-classical and stochastic theories of radiation reaction, and investigate the influence of chirped laser pulses on the observed radiation spectra.

  18. Strong neutrino cooling by cycles of electron capture and decay in neutron star crusts

    SciTech Connect

    Schatz, Hendrik; Gupta, Sanjib; Moeller, Peter; Beard, Mary; Brown, Edward; Deibel, A. T.; Gasques, Leandro; Hix, William Raphael; Keek, Laurens; Lau, Rita; Steiner, Andrew M; Wiescher, Michael

    2013-01-01

    The temperature in the crust of an accreting neutron star, which comprises its outermost kilometre, is set by heating from nuclear reactions at large densities, neutrino cooling and heat transport from the interior. The heated crust has been thought to affect observable phenomena at shallower depths, such as thermonuclear bursts in the accreted envelope. Here we report that cycles of electron capture and its inverse, decay, involving neutron-rich nuclei at a typical depth of about 150 metres, cool the outer neutron star crust by emitting neutrinos while also thermally decoupling the surface layers from the deeper crust. This Urca mechanism has been studied in the context of white dwarfs13 and type Ia supernovae, but hitherto was not considered in neutron stars, because previous models1, 2 computed the crust reactions using a zero-temperature approximation and assumed that only a single nuclear species was present at any given depth. The thermal decoupling means that X-ray bursts and other surface phenomena are largely independent of the strength of deep crustal heating. The unexpectedly short recurrence times, of the order of years, observed for very energetic thermonuclear superbursts are therefore not an indicator of a hot crust, but may point instead to an unknown local heating mechanism near the neutron star surface.

  19. The electromagnetic radiation fields of a relativistic electron avalanche with special attention to the origin of narrow bipolar pulses

    NASA Astrophysics Data System (ADS)

    Cooray, G. V.; Cooray, G. K.

    2011-12-01

    Gurevich et al. [1] postulated that the source of narrow bipolar pulses, a class of high energy pulses that occur during thunderstorms, could be a runaway electron avalanche driven by the intense electric fields of a thunderstorm. Recently, Watson and Marshall [2] used the modified transmission line model to test the mechanism of the source of narrow bipolar pulses. In a recent paper, Cooray and Cooray [3] demonstrated that the electromagnetic fields of accelerating charges could be used to evaluate the electromagnetic fields from electrical discharges if the temporal and spatial variation of the charges in the discharge is known. In the present study, those equations were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This makes it possible to extract directly the spatial variation of the e-folding length of the avalanche from the measured radiation fields. In the study this model avalanche was used to investigate whether it can be used to describe the measured electromagnetic fields of narrow bipolar pulses. The results obtained are in reasonable agreement with the two station data of Eack [4] for speeds of propagation around (2 - 2.5) x 10^8 m/s and when the propagation effects on the electric fields measured at the distant station is taken into account. [1] Gurevich et al. (2004), Phys. Lett. A., 329, pp. 348 -361. [2] Watson, S. S. and T. C. Marshall (2007), Geophys. Res. Lett., Vol. 34, L04816, doi: 10

  20. Progress towards an electron electric dipole moment measurement with laser-cooled atoms

    NASA Astrophysics Data System (ADS)

    Solmeyer, Neal

    This dissertation recounts the progress made towards a measurement of the electron electric dipole moment. The existence of a permanent electric dipole moment of any fundamental particle would imply that both time reversal and parity invariance are violated. If an electric dipole moment were measured within current experimental limits it would be the first direct evidence for physics beyond the standard model. For our measurement we use laser-cooled alkali atoms trapped in a pair of 1D optical lattices. The lattices run through three electric field plates so that the two groups of atoms see opposing electric fields. The measurement chamber is surrounded by a four layer mu-metal magnetic shield. Under electric field quantization, the atoms are prepared in a superposition of magnetic sublevels that is sensitive to the electron electric dipole moment in Ramsey-like spectroscopy. The experiment requires very large electric fields and very small magnetic fields. Engineering a system compatible with both of these goals simultaneously is not trivial. Searches for electric dipole moments using neutral atoms in optical lattices have much longer possible interaction times and potentially give more precise information about the inherent symmetry breaking than other methods. This comes at the cost of a higher sensitivity to magnetic fields and possible sources of error associated with the trapping light. If noise and systematic errors can be controlled to our design specifications our experiment will significantly improve the current experimental limit of the electron electric dipole moment.

  1. Electron cooling and finite potential drop in a magnetized plasma expansion

    SciTech Connect

    Martinez-Sanchez, M.; Navarro-Cavallé, J.; Ahedo, E.

    2015-05-15

    The steady, collisionless, slender flow of a magnetized plasma into a surrounding vacuum is considered. The ion component is modeled as mono-energetic, while electrons are assumed Maxwellian upstream. The magnetic field has a convergent-divergent geometry, and attention is restricted to its paraxial region, so that 2D and drift effects are ignored. By using the conservation of energy and magnetic moment of particles and the quasi-neutrality condition, the ambipolar electric field and the distribution functions of both species are calculated self-consistently, paying attention to the existence of effective potential barriers associated to magnetic mirroring. The solution is used to find the total potential drop for a set of upstream conditions, plus the axial evolution of various moments of interest (density, temperatures, and heat fluxes). The results illuminate the behavior of magnetic nozzles, plasma jets, and other configurations of interest, showing, in particular, in the divergent plasma the collisionless cooling of electrons, and the generation of collisionless electron heat fluxes.

  2. Injection method of barrier bucket supported by off-aligned electron cooling for CRing of HIAF

    NASA Astrophysics Data System (ADS)

    Shen, Guo-Dong; Yang, Jian-Cheng; Xia, Jia-Wen; Mao, Li-Jun; Yin, Da-Yu; Chai, Wei-Ping; Shi, Jian; Sheng, Li-Na; Smirnov, A.; Wu, Bo; Zhao, He

    2016-08-01

    A new accelerator complex, HIAF (the High Intensity Heavy Ion Accelerator Facility), has been approved in China. It is designed to provide intense primary and radioactive ion beams for research in high energy density physics, nuclear physics, atomic physics as well as other applications. In order to achieve a high intensity of up to 5×1011 ppp 238U34+, the Compression Ring (CRing) needs to stack more than 5 bunches transferred from the Booster Ring (BRing). However, the normal bucket to bucket injection scheme can only achieve an intensity gain of 2, so an injection method, fixed barrier bucket (BB) supported by electron cooling, is proposed. To suppress the severe space charge effect during the stacking process, off-alignment is adopted in the cooler to control the transverse emittance. In this paper, simulation and optimization with the BETACOOL program are presented. Supported by New Interdisciplinary and Advanced Pilot Fund of Chinese Academy of Sciences

  3. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  4. Modular jet impingement assemblies with passive and active flow control for electronics cooling

    DOEpatents

    Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh

    2016-09-13

    Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.

  5. Trajectories of electrons with large longitudinal momenta in the phase plane during surfatron acceleration by an electromagnetic wave

    SciTech Connect

    Mkrtichyan, G. S.

    2015-07-15

    The trajectories of electrons with large longitudinal momenta in the phase plane in the course of their surfatron acceleration by an electromagnetic wave propagating in space plasma across the external magnetic field are analyzed. Electrons with large longitudinal momenta are trapped immediately if the initial wave phase Ψ(0) on the particle trajectory is positive. For negative values of Ψ(0), no electrons trapping by the wave is observed over the available computational times. According to numerical calculations, the trajectories of trapped particles in the phase plane have a singular point of the stable focus type and the behavior of the trajectory corresponds to the motion in a complex nonstationary effective potential well. For some initial phases, electrons are confined in the region of the accelerating electric field for relatively short time, the energy gain being about 50–130% and more.

  6. Analysis of the damage threshold of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Xi, Xiao-Wen; Chai, Chang-Chun; Liu, Yang; Yang, Yin-Tang; Fan, Qing-Yang; Shi, Chun-Lei

    2016-08-01

    An electromagnetic pulse (EMP)-induced damage model based on the internal damage mechanism of the GaAs pseudomorphic high electron mobility transistor (PHEMT) is established in this paper. With this model, the relationships among the damage power, damage energy, pulse width and signal amplitude are investigated. Simulation results show that the pulse width index from the damage power formula obtained here is higher than that from the empirical formula due to the hotspot transferring in the damage process of the device. It is observed that the damage energy is not a constant, which decreases with the signal amplitude increasing, and then changes little when the signal amplitude reaches up to a certain level. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  7. Experimental observations of nonlinearly enhanced 2omega-UH electromagnetic radiation excited by steady-state colliding electron beams

    NASA Technical Reports Server (NTRS)

    Intrator, T.; Hershkowitz, N.; Chan, C.

    1984-01-01

    Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.

  8. Combined effect of constant high voltage electrostatic field and variable frequency pulsed electromagnetic field on the morphology of calcium carbonate scale in circulating cooling water systems.

    PubMed

    Zhao, Ju-Dong; Liu, Zhi-An; Zhao, Er-Jun

    2014-01-01

    Research on scale inhibition is of importance to improve the heat transfer efficiency of heat exchangers. The combined effect of high voltage electrostatic and variable frequency pulsed electromagnetic fields on calcium carbonate precipitation was investigated, both theoretically and experimentally. Using energy dispersive spectrum analysis, the predominant phase was found to be CaCO(3). The formed crystal phases mainly consist of calcite and aragonite, which is, in part, verified by theory. The results indicate that the setting of water flow velocity, and high voltage electrostatic and variable frequency pulsed electromagnetic fields is very important. Favorable values of these parameters can have a significant anti-scaling effect, with 68.95% of anti-scaling ratio for scale sample 13, while unfavorable values do not affect scale inhibition, but rather promoted fouling, such as scale sample 6. By using scanning electron microscopy analysis, when the anti-scaling ratio is positive, the particle size of scale was found to become smaller than that of untreated sample and the morphology became loose. The X-ray diffraction results verify that the good combined effect favors the appearance and growth of aragonite and restrains its transition to calcite. The mechanism for scale reduction is discussed. PMID:25259497

  9. Combined effect of constant high voltage electrostatic field and variable frequency pulsed electromagnetic field on the morphology of calcium carbonate scale in circulating cooling water systems.

    PubMed

    Zhao, Ju-Dong; Liu, Zhi-An; Zhao, Er-Jun

    2014-01-01

    Research on scale inhibition is of importance to improve the heat transfer efficiency of heat exchangers. The combined effect of high voltage electrostatic and variable frequency pulsed electromagnetic fields on calcium carbonate precipitation was investigated, both theoretically and experimentally. Using energy dispersive spectrum analysis, the predominant phase was found to be CaCO(3). The formed crystal phases mainly consist of calcite and aragonite, which is, in part, verified by theory. The results indicate that the setting of water flow velocity, and high voltage electrostatic and variable frequency pulsed electromagnetic fields is very important. Favorable values of these parameters can have a significant anti-scaling effect, with 68.95% of anti-scaling ratio for scale sample 13, while unfavorable values do not affect scale inhibition, but rather promoted fouling, such as scale sample 6. By using scanning electron microscopy analysis, when the anti-scaling ratio is positive, the particle size of scale was found to become smaller than that of untreated sample and the morphology became loose. The X-ray diffraction results verify that the good combined effect favors the appearance and growth of aragonite and restrains its transition to calcite. The mechanism for scale reduction is discussed.

  10. Low-Cost Tracking Ground Terminal Designed to Use Cryogenically Cooled Electronics

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Romanofsky, Robert R.; Warner, Joseph D.

    2000-01-01

    A computer-controlled, tracking ground terminal will be assembled at the NASA Glenn Research Center at Lewis Field to receive signals transmitted by the Glenn's Direct Data Distribution (D3) payload planned for a shuttle flight in low Earth orbit. The terminal will enable direct data reception of up to two 622-megabits-per-second (Mbps) beams from the space-based, K-band (19.05-GHz) transmitting array at an end-user bit error rate of up to 10(exp -12). The ground terminal will include a 0.9-m-diameter receive-only Cassegrain reflector antenna with a corrugated feed horn incorporating a dual circularly polarized, K-band feed assembly mounted on a multiaxis, gimbaled tracking pedestal as well as electronics to receive the downlink signals. The tracking system will acquire and automatically track the shuttle through the sky for all elevations greater than 20 above the horizon. The receiving electronics for the ground terminal consist of a six-pole microstrip bandpass filter, a three-stage monolithic microwave integrated circuit (MMIC) amplifier, and a Stirling cycle cryocooler (1 W at 80 K). The Sterling cycle cryocooler cools the front end of the receiver, also known as the low-noise amplifier (LNA), to about 77 K. Cryocooling the LNA significantly increases receiver performance, which is necessary so that it can use the antenna, which has an aperture of only 0.9 m. The following drawing illustrates the cryoterminal.

  11. Electromagnetic and gravitational responses of two-dimensional noninteracting electrons in a background magnetic field

    NASA Astrophysics Data System (ADS)

    Abanov, Alexander G.; Gromov, Andrey

    2014-07-01

    We compute electromagnetic, gravitational, and mixed linear response functions of two-dimensional free fermions in an external quantizing magnetic field at an integer filling factor. The results are presented in the form of the effective action and as an expansion of currents and stresses in wave vectors and frequencies of the probing electromagnetic and metric fields. In addition to the well-studied U (1) Chern-Simons and Wen-Zee terms we find a gravitational Chern-Simons term that controls the correction to the Hall viscosity due to the background curvature. We relate the coefficient in front of the term with the chiral central charge.

  12. PHYSICAL BASIS OF QUANTUM ELECTRONICS: Stimulated scattering of electromagnetic waves by a relativistic electron beam in a three-dimensional geometry

    NASA Astrophysics Data System (ADS)

    Karimov, A. R.; Poponin, V. P.; Rukhadze, Anri A.; Shcheglov, V. A.

    1999-05-01

    The properties of stimulated coherent scattering of an electromagnetic wave by a relativistic electron beam were studied in the framework of a three-wave approximation for a noncollinear geometry, when the incident and the scattered waves can propagate at arbitrary angles relative to the electron beam direction. The dispersion equation was obtained, making it possible to investigate the modes of collective (Raman) and single-particle (Compton) scattering from a unified viewpoint and to include the effect of an external longitudinal magnetic field on the electron motion in the field of a combination wave. Formulas were obtained for the amplitude increments of the scattered and the combination waves for those scattering modes, which can be used to make estimates when selecting the optimal scheme of a free-electron laser with a noncollinear scattering geometry.

  13. First Measurements of the Unique Influence of Spin on the Energy Loss of Ultrarelativistic Electrons in Strong Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Kirsebom, K.; Mikkelsen, U.; Uggerhøj, E.; Elsener, K.; Ballestrero, S.; Sona, P.; Vilakazi, Z. Z.

    2001-07-01

    Although some authors have claimed that the effect is not detectable, we show experimentally for the first time that as the quantum parameter χ grows beyond 1, an increasingly large part of the hard radiation emitted arises from the spin of the electron. Results for the energy loss of electrons in the energy range 35-243 GeV incident on a W single crystal are presented. Close to the axial direction the strong electromagnetic fields induce a radiative energy loss which is significantly enhanced compared to incidence on an amorphous target. In such continuously strong fields, the radiation process is highly nonperturbative for ultrarelativistic particles and a full quantum description is needed. The remarkable effect of spin flips and the energy loss is connected to the presence of a field comparable in magnitude to the Schwinger critical field, E0 = m2c3/eħ, in the rest frame of the emitting electron.

  14. First measurements of the unique influence of spin on the energy loss of ultrarelativistic electrons in strong electromagnetic fields.

    PubMed

    Kirsebom, K; Mikkelsen, U; Uggerhøj, E; Elsener, K; Ballestrero, S; Sona, P; Vilakazi, Z Z

    2001-07-30

    Although some authors have claimed that the effect is not detectable, we show experimentally for the first time that as the quantum parameter chi grows beyond 1, an increasingly large part of the hard radiation emitted arises from the spin of the electron. Results for the energy loss of electrons in the energy range 35-243 GeV incident on a W single crystal are presented. Close to the axial direction the strong electromagnetic fields induce a radiative energy loss which is significantly enhanced compared to incidence on an amorphous target. In such continuously strong fields, the radiation process is highly nonperturbative for ultrarelativistic particles and a full quantum description is needed. The remarkable effect of spin flips and the energy loss is connected to the presence of a field comparable in magnitude to the Schwinger critical field, E0 = m(2)c(3)/ePlanck's over 2pi, in the rest frame of the emitting electron.

  15. A thermal analysis for the use of cooled rotating drums in electron processing

    NASA Astrophysics Data System (ADS)

    Fletcher, P. Michael; Williams, Kenneth E.

    The thermal response of rotating drums under an electron beam has been analyzed using a finite difference thermal analysis computer code. Rotating drums are used to convey thin webs or films under the electron beams while controlling their temperature and, in some cases, in dissipating the exotherm involved in curing coatings applied to them. Each portion of the drum surface receives one heat pulse per rotation as it passes under the beam. The drum's thermal behavior shows both an immediate response to each heat pulse and a more gradual response to the average heat acquired over many pulses. After many rotations a steady state is reached where there is only an immediate response to each heat pulse but the gradual heating has tapered off. Nevertheless the steady state temperatures are strongly dependent on the gradual heating that led to them. Slow and fast speeds of rotation are compared showing the effects of both gradual and immediate heating components. The thermal analysis is extended to include the coolant fluid inside the drum shell and the web on the drum surface. The coolant's incoming temperature, volumetric flow rate, flow speed through the coolant channels and film coefficient between the outer shell and fluid are all included in the analysis. The small air gap between the web and drum, the convective cooling of the web to the ambient air, and the exothermic reaction of any chemical reactions on the web are included. The stresses produced in the drum shell (i.e. between the outer surface and the temperature-controlling fluid within the drum) are analyzed in order to define safe e-beam powers and rotating speeds. The analysis provides the basis for many design decisions and can give an end-user a full temperature history for his product for any set of conditions.

  16. Effect of Material Inhomogeneity on Thermal Performance of a Rheocast Aluminum Heatsink for Electronics Cooling

    NASA Astrophysics Data System (ADS)

    Payandeh, M.; Belov, I.; Jarfors, A. E. W.; Wessén, M.

    2016-06-01

    The relation between microstructural inhomogeneity and thermal conductivity of a rheocast component manufactured from two different aluminum alloys was investigated. The formation of two different primary α-Al particles was observed and related to multistage solidification process during slurry preparation and die cavity filling process. The microstructural inhomogeneity of the component was quantified as the fraction of α 1-Al particles in the primary Al phase. A high fraction of coarse solute-lean α 1-Al particles in the primary Al phase caused a higher thermal conductivity of the component in the near-to-gate region. A variation in thermal conductivity through the rheocast component of 10% was discovered. The effect of an inhomogeneous temperature-dependent thermal conductivity on the thermal performance of a large rheocast heatsink for electronics cooling in an operation environment was studied by means of simulation. Design guidelines were developed to account for the thermal performance of heatsinks with inhomogeneous thermal conductivity, as caused by the rheocasting process. Under the modeling assumptions, the simulation results showed over 2.5% improvement in heatsink thermal resistance when the higher conductivity near-to-gate region was located at the top of the heatsink. Assuming homogeneous thermo-physical properties in a rheocast heatsink may lead to greater than 3.5% error in the estimation of maximum thermal resistance of the heatsink. The variation in thermal conductivity within a large rheocast heatsink was found to be important for obtaining of a robust component design.

  17. [A Compact Source of Terahertz Radiation Based on Interaction of Electrons in à Quantum Well with an Electromagnetic Wave of a Corrugated Waveguide].

    PubMed

    Shchurova, L Yu; Namiot, V A; Sarkisyan, D R

    2015-01-01

    Coherent sources of electromagnetic waves in the terahertz frequency range are very promising for various applications, including biology and medicine. In this paper we propose a scheme of a compact terahertz source, in which terahertz radiation is generated due to effective interaction of electrons in a quantum well with an electromagnetic wave of a corrugated waveguide. We have shown that the generation of electromagnetic waves with a frequency of 1012 sec(-1) and an output power of up to 25. mW is possible in the proposed scheme.

  18. Apparatus and method for detecting electromagnetic radiation using electron photoemission in a micromechanical sensor

    DOEpatents

    Datskos, Panagiotis G.; Rajic, Slobodan; Datskou, Irene C.; Egert, Charles M.

    2002-01-01

    A micromechanical sensor and method for detecting electromagnetic radiation involve producing photoelectrons from a metal surface in contact with a semiconductor. The photoelectrons are extracted into the semiconductor, which causes photo-induced bending. The resulting bending is measured, and a signal corresponding to the measured bending is generated and processed. A plurality of individual micromechanical sensors can be arranged in a two-dimensional matrix for imaging applications.

  19. Radiation of de-excited electrons at large times in a strong electromagnetic plane wave

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2013-12-01

    The late time asymptotics of the physical solutions to the Lorentz-Dirac equation in the electromagnetic external fields of simple configurations-the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave-are found. The solutions to the Landau-Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime.

  20. On the possibility of the autoresonant motion of an electron in a slow electromagnetic wave

    SciTech Connect

    Milantiev, V.P.

    1994-12-31

    By autoresonant motion one usually means the motion when the condition of cyclotron resonance of gyrating particle with electromagnetic wave is conserved during all the time of the motion in spite of the relativistic mass increase. Such a motion takes place only in the case of vacuum wave, when the phase velocity {nu}{sub p} is equal to the speed of light in a vacuum C. Otherwise autoresonance is impossible, and energy of the particle oscillates in time. The authors now discuss the possibility of the autoresonance in a slow electromagnetic wave ({nu}{sub p} < c) propagating along the straight lines of the external magnetic field. It turns out that the autoresonant regime of the motion in a slow electromagnetic wave possible if some rather restrictive relations between the electric drift velocity and the phase velocity of wave take place. It depends also on the polarization of wave. The general case of the elliptical polarization is considered. The optimal regime corresponds to the wave with linear polarization in the direction of the constant electric field. For this case the calculations show that energy of the particle can unlimitedly increase (or decrease). The rate of acceleration can be even larger than in the case of vacuum wave. Radiation forces will restrict this process.

  1. Radio-frequency electromagnetic field measurements for direct detection of electron Bernstein waves in a torus plasma

    SciTech Connect

    Yatsuka, Eiichi; Kinjo, Kiyotake; Morikawa, Junji; Ogawa, Yuichi

    2009-02-15

    To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic.

  2. Radio-frequency electromagnetic field measurements for direct detection of electron Bernstein waves in a torus plasma.

    PubMed

    Yatsuka, Eiichi; Kinjo, Kiyotake; Morikawa, Junji; Ogawa, Yuichi

    2009-02-01

    To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic.

  3. Electron acceleration by an obliquely propagating electromagnetic wave in the regime of validity of the Fokker-Planck-Kolmogorov approach

    NASA Technical Reports Server (NTRS)

    Hizanidis, Kyriakos; Vlahos, L.; Polymilis, C.

    1989-01-01

    The relativistic motion of an ensemble of electrons in an intense monochromatic electromagnetic wave propagating obliquely in a uniform external magnetic field is studied. The problem is formulated from the viewpoint of Hamiltonian theory and the Fokker-Planck-Kolmogorov approach analyzed by Hizanidis (1989), leading to a one-dimensional diffusive acceleration along paths of constant zeroth-order generalized Hamiltonian. For values of the wave amplitude and the propagating angle inside the analytically predicted stochastic region, the numerical results suggest that the diffusion probes proceeds in stages. In the first stage, the electrons are accelerated to relatively high energies by sampling the first few overlapping resonances one by one. During that stage, the ensemble-average square deviation of the variable involved scales quadratically with time. During the second stage, they scale linearly with time. For much longer times, deviation from linear scaling slowly sets in.

  4. Pulse pile-up recovery for the front-end electronics of the PANDA Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Tambave, G.; Kavatsyuk, M.; Guliyev, E.; Schreuder, F.; Moeini, H.; Löhner, H.

    2012-11-01

    At the future Facility for Antiproton and Ion Research near Darmstadt in Germany the PANDA detector will be employed to study the charmonium spectrum and to search for narrow exotic hadronic states, predicted by Quantum Chromodynamics. In the PANDA experiment, 1.5 to 15 GeV/c anti-protons will annihilate with a hydrogen target at an average rate of 20MHz. Among the sub-detectors of PANDA is the Electromagnetic Calorimeter (EMC) planned for the studies of electromagnetic transitions and neutral meson decays. Due to the high annihilation rates, the EMC will be exposed to single-detector hit rates up to 500kHz, which may lead to pulse overlap. Hence, to recover the energy and time information of the overlapping pulses, a pulse pile-up recovery method is developed. The method is easy to implement in FPGA for online data processing. The Constant Fraction Timing algorithm is applied at the trailing edge to determine the time stamp of pile-up pulses. The energy and the time information of pile-up pulses can be recovered up to time differences of 50ns, equal to the pulse rise-time, in a large dynamic energy range.

  5. Petawatt laser-driven wakefield accelerator: All-optical electron injection via collision of laser pulses and radiation cooling of accelerated electron bunches.

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serguei; Avitzour, Yoav; Yi, S. Austin; Shvets, Gennady

    2007-11-01

    We explore an electron injection into the laser wakefield accelerator (LWFA) using nearly head-on collision of the petawatt ultrashort (˜30 fs) laser pulse (driver) with a low- amplitude laser (seed) beam of the same duration and polarization. To eliminate the threat to the main laser amplifier we consider two options: (i) a frequency-shifted seed and (ii) a seed pulse propagating at a small angle to the axis. We show that the emission of synchrotron radiation due to betatron oscillations of trapped and accelerated electrons results in significant transverse cooling of quasi- monoenergetic accelerated electrons (with energies above 1 GeV). At the same time, the energy losses due to the synchrotron emission preserve the final energy spread of the electron beam. The ``dark current'' due to the electron trapping in multiple wake buckets and the effect of beam loading (wake destruction at the instant of beams collision) are discussed.

  6. Theory of hysteresis during electron heating of electromagnetic wave scattering by self-organized dust structures in complex plasmas

    SciTech Connect

    Tsytovich, Vadim; Gusein-zade, Namik; Ignatov, Alexander

    2015-07-15

    Dust structuring is a natural and universal process in complex plasmas. The scattering of electromagnetic waves by dust structures is governed by the factor of coherency, i.e., the total number of coherent electrons in a single structure. In the present paper, we consider how the factor of coherency changes due to additional pulse electron heating and show that it obeys a hysteresis. After the end of the pulse heating, the scattering intensity differs substantially from that before heating. There are three necessary conditions for scattering hysteresis: first, the radiation wavelength should be larger than the pattern (structure) size; second, the total number of coherent electrons confined by the structure should be large; and third, the heating pulse duration should be shorter than the characteristic time of dust structure formation. We present the results of numerical calculations using existing models of self-consistent dust structures with either positively or negatively charged dust grains. It is shown that, depending on the grain charge and the ionization rate, two types of hysteresis are possible: one with a final increase of the scattering and the other with a final decrease of the scattering. It is suggested that the hysteresis of coherent scattering can be used as a tool in laboratory experiments and that it can be a basic mechanism explaining the observed hysteresis in radar scattering by noctilucent clouds during active experiments on electron heating in mesosphere.

  7. Damage effect and mechanism of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Xiao-Wen, Xi; Chang-Chun, Chai; Gang, Zhao; Yin-Tang, Yang; Xin-Hai, Yu; Yang, Liu

    2016-04-01

    The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900), and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  8. Relativistic electron precipitation events driven by electromagnetic ion-cyclotron waves

    SciTech Connect

    Khazanov, G. Sibeck, D.; Tel'nikhin, A.; Kronberg, T.

    2014-08-15

    We adopt a canonical approach to describe the stochastic motion of relativistic belt electrons and their scattering into the loss cone by nonlinear EMIC waves. The estimated rate of scattering is sufficient to account for the rate and intensity of bursty electron precipitation. This interaction is shown to result in particle scattering into the loss cone, forming ∼10 s microbursts of precipitating electrons. These dynamics can account for the statistical correlations between processes of energization, pitch angle scattering, and relativistic electron precipitation events, that are manifested on large temporal scales of the order of the diffusion time ∼tens of minutes.

  9. Random walk study of electron motion in helium in crossed electromagnetic fields

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1972-01-01

    Random walk theory, previously adapted to electron motion in the presence of an electric field, is extended to include a transverse magnetic field. In principle, the random walk approach avoids mathematical complexity and concomitant simplifying assumptions and permits determination of energy distributions and transport coefficients within the accuracy of available collisional cross section data. Application is made to a weakly ionized helium gas. Time of relaxation of electron energy distribution, determined by the random walk, is described by simple expressions based on energy exchange between the electron and an effective electric field. The restrictive effect of the magnetic field on electron motion, which increases the required number of collisions per walk to reach a terminal steady state condition, as well as the effect of the magnetic field on electron transport coefficients and mean energy can be quite adequately described by expressions involving only the Hall parameter.

  10. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W.; Xiong, B.; Guo, S. Q.; Cao, R.; Ruan, L.; Zhang, X. Z.; Sun, L. T.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.

    2014-02-15

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0–1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  11. Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions)

    SciTech Connect

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Bulanov, Stepan S.

    2011-11-15

    When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.

  12. Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions).

    PubMed

    Bulanov, Sergei V; Esirkepov, Timur Zh; Kando, Masaki; Koga, James K; Bulanov, Stepan S

    2011-11-01

    When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.

  13. Electron random walk and collisional crossover in a gas in presence of electromagnetic waves and magnetostatic fields

    SciTech Connect

    Bhattacharjee, Sudeep; Paul, Samit; Dey, Indranuj

    2013-04-15

    This paper deals with random walk of electrons and collisional crossover in a gas evolving toward a plasma, in presence of electromagnetic (EM) waves and magnetostatic (B) fields, a fundamental subject of importance in areas requiring generation and confinement of wave assisted plasmas. In presence of EM waves and B fields, the number of collisions N suffered by an electron with neutral gas atoms while diffusing out of the volume during the walk is significantly modified when compared to the conventional field free square law diffusion; N=1.5({Lambda}/{lambda}){sup 2}, where {Lambda} is the characteristic diffusion length and {lambda} is the mean free path. There is a distinct crossover and a time scale associated with the transition from the elastic to inelastic collisions dominated regime, which can accurately predict the breakdown time ({tau}{sub c}) and the threshold electric field (E{sub BD}) for plasma initiation. The essential features of cyclotron resonance manifested as a sharp drop in {tau}{sub c}, lowering of E{sub BD} and enhanced electron energy gain is well reproduced in the constrained random walk.

  14. Random walk of electrons in a gas in the presence of polarized electromagnetic waves: Genesis of a wave induced discharge

    SciTech Connect

    Bhattacharjee, Sudeep; Paul, Samit

    2009-10-15

    The average number of collisions N of seed electrons with neutral gas atoms during random walk in escaping from a given volume, in the presence of polarized electromagnetic waves, is found to vary as N=B({lambda}/{lambda}){sup 2}/[1+C({lambda}/{lambda})]{sup 2}, indicating a modification to the conventional field free square law N=A({lambda}/{lambda}){sup 2}, where {lambda} is the characteristic diffusion length and {lambda} the mean free path. It is found that for the field free case A=1.5 if all the electrons originate at the center and is 1.25 if they are allowed to originate at any random point in the given volume. The B and C coefficients depend on the wave electric field and frequency. Predictions of true discharge initiation time {tau}{sub c} can be made from the temporal evolution of seed electrons over a wide range of collision frequencies. For linearly polarized waves of 2.45 GHz and electric field in the range (0.6-1.0)x10{sup 5} V/m, {tau}{sub c}=5.5-1.6 ns for an unmagnetized microwave driven discharge at 1 Torr argon.

  15. PHYSICAL BASIS OF QUANTUM ELECTRONICS: Reflection of electromagnetic waves from nonstationary media (exactly solvable models)

    NASA Astrophysics Data System (ADS)

    Shvartsburg, Aleksandr B.

    1998-03-01

    An analysis is made of propagation of electromagnetic waves in media which are nonstationary because of relaxation of the refractive index. A series of models of oscillatory and transient regimes of such relaxation is developed. Several characteristic times are used in these models and exact analytic solutions of the Maxwell equations can be obtained for these regimes. In contrast to the traditional approaches, the exact solutions are obtained without assuming smallness or slowness of temporal variations of the parameters of the medium and these solutions are valid even when the characteristic relaxation time is comparable with the period of oscillations of the wave field. A nonstationary generalisation of the Fresnel formulae is derived. It is shown that waves reflected from a nonstationary surface experience amplitude and frequency modulation, and the modulation effect is localised in an interval of the order of one relaxation time. It is shown that a short broadband perturbation pulse forms in the reflected wave and that this pulse contains one or several oscillations of the field. It should be possible to use nonstationary broadening of the spectrum of a probe wave reflected from a surface perturbed by a powerful laser pulse in estimating the relaxation times of fast optical processes.

  16. Integrated three-dimensional module heat exchanger for power electronics cooling

    DOEpatents

    Bennion, Kevin; Lustbader, Jason

    2013-09-24

    Embodiments discussed herein are directed to a power semiconductor packaging that removes heat from a semiconductor package through one or more cooling zones that are located in a laterally oriented position with respect to the semiconductor package. Additional embodiments are directed to circuit elements that are constructed from one or more modular power semiconductor packages.

  17. Electromagnetic interchange-like mode and zonal flow in electron-magnetohydrodynamic plasma

    SciTech Connect

    Chakrabarti, Nikhil; Horiuchi, Ritoku

    2006-10-15

    A numerical simulation of the nonlinear state of interchange instability associated with electron inertia in an unmagnetized plasma is studied. It is shown that a self-consistent sheared transverse electron current flow is generated due to nonlinear mechanisms. This zonal flow can reduce the growth rate of the magnetic interchange-like instability and reach a steady state. The zonal flow generation mechanisms are discussed by truncated Fourier mode representation. In the truncated model, three mode equations are considered that have an exact analytic solution that matches well with the numerical solution. The effect of different boundary conditions in such investigations is also discussed.

  18. Adsorption behavior of beryllium(II) on copper-oxide nanoparticles dispersed in water: A model for (7)Be colloid formation in the cooling water for electromagnets at high-energy accelerator facilities.

    PubMed

    Bessho, Kotaro; Kanaya, Naoki; Shimada, Saki; Katsuta, Shoichi; Monjushiro, Hideaki

    2014-01-01

    The adsorption behavior of Be(II) on CuO nanoparticles dispersed in water was studied as a model for colloid formation of radioactive (7)Be nuclides in the cooling water used for electromagnets at high-energy proton accelerator facilities. An aqueous Be(II) solution and commercially available CuO nanoparticles were mixed, and the adsorption of Be(II) on CuO was quantitatively examined. From a detailed analysis of the adsorption data measured as a function of the pH, it was confirmed that Be(II) is adsorbed on the CuO nanoparticles by complex formation with the hydroxyl groups on the CuO surface (>S-OH) according to the following equation: n > S-OH + Be(2+) ⇔ (>S-O)n Be((2-n)+) + nH(+) (n = 2, 3) S : solid surface. The surface-complexation constants corresponding to the above equilibrium, β(s,2) and β(s,3), were determined for four types of CuO nanoparticles. The β(s,2) value was almost independent of the type of nanoparticle, whereas the β(s,3) values varied with the particle size. These complexation constants successfully explain (7)Be colloid formation in the cooling water used for electromagnets at the 12-GeV proton accelerator facility.

  19. Amplification of electromagnetic waves by a ring-beam distribution of moderately relativistic electrons

    NASA Technical Reports Server (NTRS)

    Shi, B. R.; Gaffey, J. D., Jr.; Wu, C. S.

    1986-01-01

    The possibility of a new mechanism for the excitation of unstable modes in cold background plasmas is indicated in this paper. These beam-cyclotron modes are excited by the presence of the ring-beam distribution of suprathermal electrons. The usual eigenmode excitation of a cold plasma is reviewed, and the new type of instability is examined using a single-harmonic approximation and multiharmonic treatment.

  20. Electron beam excitation of left-handed surface electromagnetic waves at artificial interfaces

    SciTech Connect

    Averkov, Yu. O.; Kats, A. V.; Yakovenko, V. M.

    2009-05-15

    In this Brief Report we present the theoretical analysis of excitation of the surface plasmon polaritons by a thin electron beam propagating in the vacuum gap separating a plasmalike medium (metal) from an artificial dielectric with negative magnetic permeability. We have obtained and discussed the dispersion relation for the vacuum-gap-localized waves for an arbitrary vacuum-gap width. We have shown that the interface-localized waves with the negative total energy flux can be excited.

  1. Low-noise electromagnetic δf particle-in-cell simulation of electron Bernstein waves

    NASA Astrophysics Data System (ADS)

    Xiang, Nong; Cary, John R.; Barnes, Daniel C.; Carlsson, John

    2006-06-01

    The conversion of the extraordinary (X) mode to an electron Bernstein wave (EBW) is one way to get rf energy into an overdense plasma. Analysis of this is complex, as the EBW is a fully kinetic wave, and so its linear propagation is described by an intractable integro-differential equation. Nonlinear effects cannot be calculated within this rubric at all. Full particle-in-cell (PIC) simulations cannot be used for these analyses, as the noise levels for reasonable simulation parameters are much greater than the typical rf amplitudes. It is shown that the delta-f computations are effective for this analysis. In particular, the accuracy of those computations has been verified by comparison with full PIC, cold plasma theory, and small gyroradius theory. This computational method is then used to analyze mode conversion in different frequency regimes. In particular, reasonable agreement with the theoretical predictions of Ram and Schultz [Phys. Plasmas 7, 4084 (2000)] in the linear regime is found, where 100% X -B mode conversion has been obtained when the driving frequency is less than twice the electron gyrofrequency. The results show that cold-plasma theory well predicts the mode conversion efficiency, as is consistent with the phase-space picture of mode conversion. From this it can be shown that nearly 100% X -B mode conversion cannot be obtained when the frequency is higher than the electron second harmonic cyclotron frequency.

  2. Effect of Oblique Electromagnetic Ion Cyclotron Waves on Relativistic Electron Scattering: CRRES Based Calculation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2007-01-01

    We consider the effect of oblique EMIC waves on relativistic electron scattering in the outer radiation belt using simultaneous observations of plasma and wave parameters from CRRES. The main findings can be s ummarized as follows: 1. In 1comparison with field-aligned waves, int ermediate and highly oblique distributions decrease the range of pitc h-angles subject to diffusion, and reduce the local scattering rate b y an order of magnitude at pitch-angles where the principle absolute value of n = 1 resonances operate. Oblique waves allow the absolute va lue of n > 1 resonances to operate, extending the range of local pitc h-angle diffusion down to the loss cone, and increasing the diffusion at lower pitch angles by orders of magnitude; 2. The local diffusion coefficients derived from CRRES data are qualitatively similar to the local results obtained for prescribed plasma/wave parameters. Conseq uently, it is likely that the bounce-averaged diffusion coefficients, if estimated from concurrent data, will exhibit the dependencies similar to those we found for model calculations; 3. In comparison with f ield-aligned waves, intermediate and highly oblique waves decrease th e bounce-averaged scattering rate near the edge of the equatorial lo ss cone by orders of magnitude if the electron energy does not excee d a threshold (approximately equal to 2 - 5 MeV) depending on specified plasma and/or wave parameters; 4. For greater electron energies_ ob lique waves operating the absolute value of n > 1 resonances are more effective and provide the same bounce_averaged diffusion rate near the loss cone as fiel_aligned waves do.

  3. Electromagnetic acceleration of material from a plate hit by a pulsed electron beam

    SciTech Connect

    Garcia, M.

    1998-04-16

    An intense pulsed electron beam traversing a thin metal plate creates a volume of dense plasma. Current flows in this plasma as a result of the charge and magnetic field introduced by the relativistic electrons. A magnetic field may linger after the electron beam pulse because of the conductivity of the material. This field decays by both diffusing out of the conducting matter and causing it to expand. If the magnetized matter is of low density and high conductivity it may expand quickly. Scaling laws for this acceleration are sought by analyzing the idealization of a steady axisymmetric flow. This case simplifies a general formulation based on both Euler`s and Maxwell`s equations. As an example, fluid with conductivity {sigma} = 8 x 10{sup 4} Siemens/m, density {rho} = 8 x 10{sup -3} kg/m{sup 3}, and initially magnetized to B = 1 Tesla can accelerate to v = 10{sup 4} m/s within a distance comparable to L = 1 mm and a time comparable to {sigma}{mu}L{sup 2} = 100 ns, which is the magnetic diffusion time. If instead, {sigma} = 8 x 10{sup 3} Siemens/m and {rho} = 8 x 10{sup -5} kg/m{sup 3} then v = 10{sup 5} m/s with a magnetic diffusion time {sigma}{mu}L{sup 2} = 10 ns. These idealized flows have R{sub M} = {sigma}{mu}vL = 1, where R{sub M} is the magnetic Reynolds number. The target magnetizes by a thermal electric effect.

  4. Enhancement of electromagnetic showers initiated by ultrarelativistic electrons in aligned thick germanium crystals

    NASA Astrophysics Data System (ADS)

    Baurichter, A.; Mikkelsen, U.; Kirsebom, K.; Medenwaldt, R.; Møller, S.; Uggerhøj, E.; Worm, T.; Elsener, K.; Ballestrero, S.; Sona, P.; Romano, J.; Biino, C.; Moore, R.; Vilakazi, Z. Z.

    1996-10-01

    The distribution of the energy deposited in thin silicon detectors placed on the downstream side of a thick germanium single crystal bombarded with a 70, 150 and 250 GeV electron beam along directions close to the <110> axis or {110} and {100} planes has been measured. The enhancement of the shower with respect to random incidence, as reflected in the higher value of the centroid of the distribution, is studied as a function of the incidence angle to the axis or plane.

  5. Linear theory of electron cyclotron instability of electromagnetic waves in a magnetoactive plasma waveguide

    SciTech Connect

    Zaginaylov, G. I.; Shcherbinin, V. I.; Schuenemann, K.

    2007-08-15

    The linear stage of electron cyclotron instability of quasi-TE modes in a waveguide filled with a magnetoactive plasma is studied using a kinetic approach. The dispersion relation of the instability is derived analytically. It is shown that the presence of the plasma can reduce both the linear instability growth rate and the instability region; in this case, the maximum of the growth rate is displaced toward lower frequencies. The results obtained are compared with the available experimental observations. They can be useful for optimizing the operating regimes of high-power continuous-wave gyrotrons.

  6. The theory of electro-magnetic radiation of electron transiting through the resonance-tunnel structure

    SciTech Connect

    Tkach, M.; Seti, Ju.; Voitsekhivska, O.; Fartushynsky, R.

    2009-12-14

    The quasi-stationary electron states are studied in the three-barrier resonance-tunnel structure which is the basic element of coherent quantum cascade lasers. In the models of rectangular and delta-barrier potentials there is established theory of evolution and collapse of double resonance complexes in a symmetric resonance-tunnel structure. The induced conductivity of nano-system is calculated within the both models. It is shown that the negative induced conductivity of three-barrier resonance-tunnel structure in delta-barrier model is dozens times smaller than more realistic magnitudes obtained within the rectangular potentials model.

  7. Frequency bandwidth and conversion loss of a semiconductor heterodyne receiver with phonon cooling of two-dimensional electrons

    SciTech Connect

    Shangina, E. L. Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Gol'tsman, G. N.; Verevkin, A. A.; Toropov, A. I.

    2010-11-15

    The temperature and concentration dependences of the frequency bandwidth of terahertz heterodyne AlGaAs/GaAs detectors based on hot electron phenomena with phonon cooling of two-dimensional electrons have been measured by submillimeter spectroscopy with a high time resolution. At a temperature of 4.2 K, the frequency bandwidth at a level of 3 dB (f{sub 3dB}) is varied from 150 to 250 MHz with a change in the concentration n{sub s} according to the power law f{sub 3dB} {proportional_to} n{sub s}{sup -0.5} due to the dominant contribution of piezoelectric phonon scattering. The minimum conversion loss of the semiconductor heterodyne detector is obtained in structures with a high carrier mobility ({mu} > 3 x 10{sup 5} cm{sup 2} V{sup -1} s{sup -1} at 4.2 K).

  8. Investigation of the Electromagnetic Radiation Emitted by Sub-GeV Electrons in a Bent Crystal.

    PubMed

    Bandiera, L; Bagli, E; Germogli, G; Guidi, V; Mazzolari, A; Backe, H; Lauth, W; Berra, A; Lietti, D; Prest, M; De Salvador, D; Vallazza, E; Tikhomirov, V

    2015-07-10

    The radiation emitted by 855 MeV electrons via planar channeling and volume reflection in a 30.5-μm-thick bent Si crystal has been investigated at the MAMI (Mainzer Mikrotron) accelerator. The spectral intensity was much more intense than for an equivalent amorphous material, and peaked in the MeV range in the case of channeling radiation. Differently from a straight crystal, also for an incidence angle larger than the Lindhard angle, the spectral intensity remains nearly as high as for channeling. This is due to volume reflection, for which the intensity remains high at a large incidence angle over the whole angular acceptance, which is equal to the bending angle of the crystal. Monte Carlo simulations demonstrated that incoherent scattering significantly influences both the radiation spectrum and intensity, either for channeling or volume reflection. In the latter case, it has been shown that incoherent scattering increases the radiation intensity due to the contribution of volume-captured particles. As a consequence, the experimental spectrum becomes a mixture of channeling and pure volume reflection radiations. These results allow a better understanding of the radiation emitted by electrons subjected to coherent interactions in bent crystals within a still-unexplored energy range, which is relevant for possible applications for innovative and compact x-ray or γ-ray sources.

  9. Different roles of electron beam in two stream instability in an elliptical waveguide for generation and amplification of THz electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Safari, S.; Jazi, B.; Jahanbakht, S.

    2016-08-01

    In this work, two stream instability in a metallic waveguide with elliptical cross-section and with a hollow annular dielectric layer is studied for generation and amplification of THz electromagnetic waves. Dispersion relation of waves and their dependents to geometric dimensions and characteristics of the electron beam are analyzed. In continuation, the diagrams of growth rate for some operating frequencies are presented, so that effective factors on the growth rates, such as geometrical dimensions, dielectric constant of dielectric layer, accelerating voltage, and applied current intensity are analyzed. It is shown that while an electron beam is responsible for instability, another electron beam plays a stabilizing role.

  10. Kinetic description of a free electron laser with an electromagnetic-wave wiggler and ion-channel guiding by using the Einstein coefficient technique

    NASA Astrophysics Data System (ADS)

    Mehdian, H.; AbasiRostami, S.; Hasanbeigi, A.

    2016-04-01

    A theoretical study of electron trajectories and gain in a free electron laser (FEL) with an electromagnetic-wave wiggler and ion-channel guiding is presented based on the Einstein coefficient method. The laser gain in the low-gain regime is obtained for the case of a cold tenuous relativistic electron beam, where the beam plasma frequency is much less than the radiation frequency propagating in this configuration. The resulting gain equation is analyzed numerically over a wide range of system parameters.

  11. Two dimensional electromagnetic shock structures in dense electron-positron-ion magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Masood, W.; Rizvi, H.; Hussain, S.

    2011-04-01

    Linear and nonlinear analysis of low frequency magnetoacoustic waves propagating at an angle θ with the ambient magnetic field are investigated in dense electron-positron-ion (e-p-i) plasmas using the quantum magnetohydrodynamic (QMHD) model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived in the small amplitude limit. The stability of KPB equation is also presented. The variation of the nonlinear fast and slow magnetoacoustic shock waves with the positron concentration, kinematic viscosity, obliqueness parameter θ, and the magnetic field, are also investigated. It is observed that the aforementioned plasma parameters significantly modify the propagation characteristics of two dimensional nonlinear magnetoacoustic shock waves in dissipative quantum magnetoplasmas. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.

  12. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, Ross D.; Deis, Gary A.

    1992-01-01

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  13. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  14. High frequency electromagnetic modes in a weakly magnetized relativistic electron plasma

    NASA Astrophysics Data System (ADS)

    Abbas, Gohar; Murtaza, G.; Kingham, R. J.

    2010-07-01

    Using the linearized Vlasov-Maxwell model, the polarization tensor for a weakly magnetized electron plasma is derived. For isotropic relativistic Maxwellian velocity distribution function, dispersion relations are obtained for both parallel and perpendicular propagations. The integrals (called Meijer G functions) that arise due to relativistic effects are examined in various limits and dispersion relations are derived for the nonrelativistic, weakly, strongly, and ultrarelativistic Maxwellian velocity distributions. It is generally observed that the propagation domains of the modes are enlarged as one proceeds from the nonrelativistic to the highly relativistic regime. Resultantly, due to the relativistic effects, the Whistler mode is suppressed in the R-wave, the nonpropagation band of X-mode is reduced, and the X-mode itself approaches the O-mode. Further, the results derived in the ultra- and nonrelativistic limits found to be in agreement with the earlier calculations [G. Abbas et al. Phys. Scr. 76, 649 (2007); F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, New York, 1984), Vol. 1].

  15. Contributions to the second workshop on medium energy electron cooling - MEEC96

    SciTech Connect

    MacLachlan, J.

    1997-09-01

    MEEC96 was a workshop devoted primarily to discussion within four working groups, not a mini-conference of prepared reports. Therefore, although there are contributions bearing the name of a single author, much of what was learned came in extemporaneous discussion of the issues posed to the participants. The original plan to produce formal proceedings has been dropped because of the limited number of participants willing to write up their own contributions and because of the difficulty of converting free-wheeling discussion to the written word. The premsise for the 1996 gathering was to set a critique of Fermilab`s R&D effort at cooling a ring of 8 GeV {bar p}`s. Separate abstracts have been submitted to the energy database for contributions to this workshop.

  16. Nonlinear quantum theory of stimulated Cherenkov radiation of transverse electromagnetic waves from a low-density relativistic electron beam in a dielectric medium

    SciTech Connect

    Bobylev, Yu. B.; Kuzelev, M. V.

    2012-06-15

    A nonlinear quantum theory of stimulated Cherenkov radiation of transverse electromagnetic waves from a low-density relativistic electron beam in an isotropic dielectric medium is presented. A quantum model based on the Klein-Gordon equation is used. The growth rates of beam instabilities caused by the effect of stimulated Cherenkov radiation have been determined in the linear approximation. Mechanisms of the nonlinear saturation of relativistic quantum Cherenkov beam instabilities have been analyzed and the corresponding analytical solutions have been obtained.

  17. Development of an electric field application system with transparent electrodes towards the electron EDM measurement with laser-cooled Fr atoms

    NASA Astrophysics Data System (ADS)

    Ishikawa, Taisuke; Ando, Shun; Aoki, Takahiro; Arikawa, Hiroshi; Harada, Ken-Ichi; Hayamizu, Tomohiro; Inoue, Takeshi; Itoh, Masatoshi; Kawamura, Hirokazu; Kato, Ko; Sakamoto, Kosuke; Uchiyama, Aiko; Sakemi, Yasuhiro

    2014-09-01

    The permanent electric dipole moment (EDM) of elementary particles is a good probe for new physics beyond the standard model. Since the francium (Fr) atom has a large enhancement factor of the electron EDM and laser-cooled atoms can have long coherence times, we plan to utilize laser-cooled Fr atoms for the electron EDM search experiment. Besides, a strong electric field is one of key issues for the EDM experiment. Recently, we have embarked on a development of the electric field application system with transparent electrodes coated by tin-doped indium oxide (ITO). The ITO electrodes break the difficulty in the coexistence of electrodes with several cooling laser lights. The actual electric field applied to the atom is evaluated by measuring the dc Stark shift for the laser-cooled rubidium atoms. In this presentation, the present status of the electric field application system will be reported. The permanent electric dipole moment (EDM) of elementary particles is a good probe for new physics beyond the standard model. Since the francium (Fr) atom has a large enhancement factor of the electron EDM and laser-cooled atoms can have long coherence times, we plan to utilize laser-cooled Fr atoms for the electron EDM search experiment. Besides, a strong electric field is one of key issues for the EDM experiment. Recently, we have embarked on a development of the electric field application system with transparent electrodes coated by tin-doped indium oxide (ITO). The ITO electrodes break the difficulty in the coexistence of electrodes with several cooling laser lights. The actual electric field applied to the atom is evaluated by measuring the dc Stark shift for the laser-cooled rubidium atoms. In this presentation, the present status of the electric field application system will be reported. This work is supported by Grants-in-Aid for Scientific Research (No. 26220705) and Tohoku University's Focused Research Project.

  18. Giant electromagnetic vortex and MeV monoenergetic electrons generated by short laser pulses in underdense plasma near quarter critical density region.

    PubMed

    Zhidkov, Alexei; Nemoto, Koshichi; Nayuki, Takuya; Oishi, Yuji; Fuji, Takashi

    2007-07-01

    Very efficient generation of monoenergetic, about 1MeV , electrons from underdense plasma with its electron density close to the critical, when irradiated by an intense femtosecond laser pulse, is found via two dimensional particle-in-cell simulation. The stimulated Raman scattering of a laser pulse with frequency omega< or =2omega(pl max) gives rise to a giant electromagnetic vortex. In contrast to electron acceleration by the well-known laser pulse wake, injected plasma electrons are accelerated up to vortex ponderomotive potential forming a quite monoenergetic distribution. A relatively high charge of such an electron source makes very efficient generation of soft gamma rays with homega>300 keV .

  19. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling

    NASA Astrophysics Data System (ADS)

    Grapes, Michael D.; LaGrange, Thomas; Friedman, Lawrence H.; Reed, Bryan W.; Campbell, Geoffrey H.; Weihs, Timothy P.; LaVan, David A.

    2014-08-01

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns-500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (102 K/s-105 K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  20. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling

    SciTech Connect

    Grapes, Michael D.; LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H.; Friedman, Lawrence H.; LaVan, David A.; Weihs, Timothy P.

    2014-08-15

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns–500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10{sup 2} K/s–10{sup 5} K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  1. Neutrinos from SN 1987A - Implications for cooling of the nascent neutron star and the mass of the electron antineutrino

    NASA Technical Reports Server (NTRS)

    Loredo, Thomas J.; Lamb, Don Q.

    1989-01-01

    Data on neutrinos from SN 1987A are compared here with parameterized models of the neutrino emission using a consistent and straightforward statistical methodology. The empirically measured detector background spectra are included in the analysis, and the data are compared with a much wider variety of neutrino emission models than was explored previously. It is shown that the inferred neutrino emission model parameters are strongly correlated. The analysis confirms that simple models of the neutrino cooling of the nascent neutron star formed by the SN adequately explain the data. The inferred radius and binding energy of the neutron star are in excellent agreement with model calculations based on a wide range of equations of state. The results also raise the upper limit of the electron antineutrino rest mass to roughly 25 eV at the 95 percent confidence level, roughly 1.5-5 times higher than found previously.

  2. Linear and nonlinear coupling of electromagnetic and electrostatic fluctuations with one dimensional trapping of electrons using product bi (r,q) distribution

    NASA Astrophysics Data System (ADS)

    Aziz, Tahir; Masood, W.; Qureshi, M. N. S.; Shah, H. A.; Yoon, P. H.

    2016-06-01

    In the present paper, we have investigated the ramifications of adiabatic trapping of electrons using a bi product ( r , q ) distribution function on obliquely propagating Alfven waves in a low β plasma. In this regard, we have analyzed the linear and nonlinear dispersion characteristics of finite amplitude coupled kinetic Alfven-acoustic solitary waves using the two-potential theory and employing Sagdeev potential approach. We have deliberated upon the results of the present inquest and highlighted its importance by citing works that have reported the simultaneous presence of electromagnetic pulses and flat-topped distribution of electrons.

  3. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Sun, L T; Qian, C; Guo, J W; Fang, X; Feng, Y C; Yang, Y; Ma, H Y; Zhang, X Z; Ma, B H; Xiong, B; Guo, S Q; Ruan, L; Zhao, H W

    2015-04-01

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months' commissioning, some outstanding results have been achieved, such as 1.97 emA of O(6+), 1.7 emA of Ar(8+), 1.07 emA of Ar(9+), and 118 euA of Bi(28+). The source has also successfully delivered O(5+) and Ar(8+) ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  4. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W. Sun, L. T.; Qian, C.; Feng, Y. C.; Ma, H. Y.; Zhang, X. Z.; Ma, B. H.; Zhao, H. W.; Guo, J. W.; Fang, X.; Yang, Y.; Xiong, B.; Guo, S. Q.; Ruan, L.

    2015-04-15

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months’ commissioning, some outstanding results have been achieved, such as 1.97 emA of O{sup 6+}, 1.7 emA of Ar{sup 8+}, 1.07 emA of Ar{sup 9+}, and 118 euA of Bi{sup 28+}. The source has also successfully delivered O{sup 5+} and Ar{sup 8+} ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  5. "Do Type III-associated escaping electron beams cool the corona?"

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, P.; Wang, L.; Vilmer, N.; Kerdraon, A.

    2012-12-01

    A recent study of decimetric Type III radio burst emission from data from the Nancay Radio Heliograph will be presented. It examined sizes, locations, and fluxes of close to 10'000 decimetric Type III bursts. The flux study suggests that electron beams related to Type III emission could be responsible for carrying energy away from the corona in a proportion similar to EUV nanoflares. This tentative conclusion was reached from comparing Type III dN/dS distributions to the dN/dS of EUV/SXR nano-/micro-flares. The biggest uncertainty is the radiative efficiency, i.e. the ratio of radiated energy in decimetric Type III bursts and the energy of the electrons in the beams associated with them. We will constrain this value through other, new observations: we have already computed the amount of Type III radiated energy from NRH observations, and we will now compare them with the amount of energy in the corresponding beam electron detected in-situ by the Wind spacecraft. Given our sample of close to 10'000 decimetric Type IIIs, we expect a decent amount of in-situ beam energy estimates from magnetically connected events. Moreover, we will compare with X-ray-derived energies from corresponding RHESSI (micro)flares, when such an association exists.

  6. Do Type III-associated Escaping Electron Beams Cool The Corona?

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, Pascal; Wang, L.; Christe, S. D.; Vilmer, N.; Kerdraon, A.; Lin, R. P.

    2012-05-01

    A recent study of decimetric Type III radio burst emission from data from the Nancay Radio Heliograph (NRH) will be presented. It examined sizes, locations, and fluxes of close to 10'000 decimetric Type III bursts. The flux study suggests that electron beams related to Type III emission could be responsible for carrying energy away from the corona in a proportion similar to that of EUV nanoflare heating. This tentative conclusion was reached from comparing Type III dN/dS distributions to the dN/dS of EUV/SXR nano-/micro-flares. The biggest uncertainty is the radiative efficiency, i.e. the ratio of radiated energy in decimetric Type III bursts and the energy of the electrons in the beams associated with them. We will constrain this value through other, new observations: we have already computed the amount of Type III radiated energy from NRH observations, and we will now compare them with the amount of energy in the corresponding beam electron detected in-situ by the Wind spacecraft. Given our sample of close to 10'000 decimetric Type IIIs, we expect a decent amount of in-situ beam energy estimates from magnetically connected events. Moreover, we will compare with X-ray-derived energies from corresponding RHESSI (micro)flares, when such an association exists.

  7. Spectroscopy and electronic structure of jet-cooled NiPd and PdPt

    NASA Astrophysics Data System (ADS)

    Taylor, Scott; Spain, Eileen M.; Morse, Michael D.

    1990-03-01

    Resonant two-photon ionization spectroscopy of jet-cooled NiPd and PdPt has revealed a dense vibronic spectrum for NiPd and a much more sparse spectrum for PdPt. Four vibrational progressions have been identified for NiPd, and three have been located for PdPt. High resolution investigations of NiPd have established a ground state bond length of r″0 =2.242±0.005 Å with Ω″=2. The observed spectra have been used to bracket the ionization potentials, giving IP(NiPd)=7.18±0.76 eV and IP(PdPt)=8.27±0.38 eV. In contrast to previous work on Ni2, NiPt, and Pt2, no abrupt onset of rapid predissociation is observed for either NiPd or PdPt. A discussion of this result in terms of the expected potential energy curves for the palladium-containing diatomics is presented, which when combined with the frequencies of the highest energy vibronic bands observed yields estimates of D0(NiPd)≊1.46 eV and D0(PdPt)≊1.98 eV. The lack of observable vibronic transitions in Pd2 above 11 375 cm-1 places D0(Pd2) below 1.41 eV, in agreement with Knudsen effusion mass spectrometry. Finally a comparison of the platinum group dimers and the coinage metal dimers is given, demonstrating the increasing importance of d-orbital contributions to the bonding in the platinum group dimers as one moves down the periodic table. The anomalous behavior of the palladium-containing diatomics is also discussed in terms of the highly stable 4d105s0, 1S0 ground state of atomic palladium.

  8. A modified Bitter-type electromagnet and control system for cold atom experiments.

    PubMed

    Luan, Tian; Zhou, Tianwei; Chen, Xuzong; Ma, Zhaoyuan

    2014-02-01

    We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000 G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10(-5). PMID:24593377

  9. A modified Bitter-type electromagnet and control system for cold atom experiments.

    PubMed

    Luan, Tian; Zhou, Tianwei; Chen, Xuzong; Ma, Zhaoyuan

    2014-02-01

    We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000 G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10(-5).

  10. A modified Bitter-type electromagnet and control system for cold atom experiments

    NASA Astrophysics Data System (ADS)

    Luan, Tian; Zhou, Tianwei; Chen, Xuzong; Ma, Zhaoyuan

    2014-02-01

    We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000 G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10-5.

  11. A modified Bitter-type electromagnet and control system for cold atom experiments

    SciTech Connect

    Luan, Tian; Zhou, Tianwei; Chen, Xuzong; Ma, Zhaoyuan

    2014-02-15

    We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000 G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10{sup −5}.

  12. Neutrino Signal of Electron-Capture Supernovae from Core Collapse to Cooling

    SciTech Connect

    Huedepohl, L.; Mueller, B.; Janka, H.-T.; Marek, A.; Raffelt, G. G.

    2010-06-25

    An 8.8M{sub {center_dot}}electron-capture supernova was simulated in spherical symmetry consistently from collapse through explosion to essentially complete deleptonization of the forming neutron star. The evolution time ({approx}9 s) is short because high-density effects suppress our neutrino opacities. After a short phase of accretion-enhanced luminosities ({approx}200 ms), luminosity equipartition among all species becomes almost perfect and the spectra of {nu}{sub e} and {nu}{sub {mu},{tau}}very similar, ruling out the neutrino-driven wind as r-process site. We also discuss consequences for neutrino flavor oscillations.

  13. Neutrino signal of electron-capture supernovae from core collapse to cooling.

    PubMed

    Hüdepohl, L; Müller, B; Janka, H-T; Marek, A; Raffelt, G G

    2010-06-25

    An 8.8M{⊙} electron-capture supernova was simulated in spherical symmetry consistently from collapse through explosion to essentially complete deleptonization of the forming neutron star. The evolution time (∼9  s) is short because high-density effects suppress our neutrino opacities. After a short phase of accretion-enhanced luminosities (∼200  ms), luminosity equipartition among all species becomes almost perfect and the spectra of ν{e} and ν{μ,τ} very similar, ruling out the neutrino-driven wind as r-process site. We also discuss consequences for neutrino flavor oscillations.

  14. Measuring the electron electric dipole moment using laser-cooled cesium atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Zhu, Kunyan

    Semiconductor photocatalysis is a dynamic field at the forefront of environmental and energy research. This dissertation has focused on the development of novel nanomaterials to exceed performance for environmental and energy related applications in both liquid and gas phases as compared to traditional materials. This project investigated the impact of size of noble metal clusters on photocatalytic activity induced by UV and visible light. Compared to larger particles, sub-nanometer particles have shown much better activity for catalytic reactions in both liquid and gas phases. These nanoclusters supported on various semiconductors, such as TiO2 and CdS showed outstanding catalytic properties for oxidation of phenol in gas phase, removal of NO2 from gas phase via both oxidation and reduction routes and hydrogen production from water. The catalytic activities of sub-nanometer particles were much higher than those of known commercially available catalysts. Overall, this project has provided the first ever demonstration of the unique properties of ultra-small nanoparticles in sub-nanometer range for photocatalytic applications. Additionally, this project has focused on utilization of novel nanostructures to provide a high surface area support for photocatalysts and to achieve better dispersion of nanoparticles. More specifically, this research has focused on a new generation of highly ordered mesoporous SBA-15 sieves, which have large pore diameter (22 nm) and short pore length (500 nm), which were subsequently templated to facilitate photo-oxidation reactions. In addition, this project has focused on inverse opal structures to facilitate a better light capture inside these 3D structures, which can potentially lead to enhancement of photocatalytic reactions. All catalysts and catalysts' precursors were characterized using high resolution electron microscopy (HR-EM), which included Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Scanning

  15. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons

    NASA Astrophysics Data System (ADS)

    Smith, Ray T.; Jjunju, Fred P. M.; Young, Iain S.; Taylor, Stephen; Maher, Simon

    2016-07-01

    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting's theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond.

  16. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons

    PubMed Central

    Smith, Ray T.; Jjunju, Fred P. M.; Young, Iain S.; Taylor, Stephen

    2016-01-01

    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting’s theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond. PMID:27493580

  17. The cooling of particle beams

    SciTech Connect

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling.

  18. The recent and prospective developments of cooled IR FPAs for double application at Electron NRI

    NASA Astrophysics Data System (ADS)

    Arutunov, V. A.; Vasilyev, I. S.; Ivanov, V. G.; Prokofyev, A. E.

    2003-09-01

    The recent and prospective developments of monolithic silicon IR-Schottky-barrier staring focal plane arrays (IR SB FPAs), photodetector assembly, and digital thermal imaging cameras (TICs) at Electron National Research Institute (Electron NRI) are considered. Basic parameters for IR SB FPAs with 256x256 and 512x512 pixels, and TICs based on these arrays are presented. The problems emerged while proceeding from the developments of IR SB FPAs for the wavelength range from 3 μm to 5 μm to the developments of those ones for xLWIR range are indicated (an abrupt increase in the level of background architecture). Possibility for further improvement in basic parameters of IR SB FPAs are discussed (a decrease in threshold signal power down to 0.5-1.0"1013 W/element with an increase in quantum efficiency, a decrease in output noise and proceeding to Schottky barriers of degenerated semiconductor/silicon heterojunction, and implementation of these array parameters in photodetector assembly with improved thermal background shielding taking into consideration an optical structure of TIC for concrete application). It is concluded that relative simplicity of the technology and expected low cost of monolithic silicon IR SB FPAs with basic parameters compared with hybrid IR FPAs for the wavelength ranges from 3 μm to 5 μm and from 8 μm to 12 μm maintain large monolithic IR SB FPAs as a basis for developments of double application digital TICs in the Russian Federation.

  19. A multi-band, multi-level, multi-electron model for efficient FDTD simulations of electromagnetic interactions with semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Ravi, Koustuban; Wang, Qian; Ho, Seng-Tiong

    2015-08-01

    We report a new computational model for simulations of electromagnetic interactions with semiconductor quantum well(s) (SQW) in complex electromagnetic geometries using the finite-difference time-domain method. The presented model is based on an approach of spanning a large number of electron transverse momentum states in each SQW sub-band (multi-band) with a small number of discrete multi-electron states (multi-level, multi-electron). This enables accurate and efficient two-dimensional (2-D) and three-dimensional (3-D) simulations of nanophotonic devices with SQW active media. The model includes the following features: (1) Optically induced interband transitions between various SQW conduction and heavy-hole or light-hole sub-bands are considered. (2) Novel intra sub-band and inter sub-band transition terms are derived to thermalize the electron and hole occupational distributions to the correct Fermi-Dirac distributions. (3) The terms in (2) result in an explicit update scheme which circumvents numerically cumbersome iterative procedures. This significantly augments computational efficiency. (4) Explicit update terms to account for carrier leakage to unconfined states are derived, which thermalize the bulk and SQW populations to a common quasi-equilibrium Fermi-Dirac distribution. (5) Auger recombination and intervalence band absorption are included. The model is validated by comparisons to analytic band-filling calculations, simulations of SQW optical gain spectra, and photonic crystal lasers.

  20. Doubling of sensitivity and bandwidth in phonon-cooled hot-electron bolometer mixers

    NASA Astrophysics Data System (ADS)

    Baselmans, Jochem J. A.; Hajenius, Merlijn; Gao, Jianrong; Korte, Piet d.; Klapwijk, Teun M.; Voronov, Boris; Gol'tsman, Gregory

    2004-10-01

    NbN hot electron bolometer (HEB) mixers are at this moment the best heterodyne detectors for frequencies above 1 THz. However, the fabrication procedure of these devices is such that the quality of the interface between the NbN superconducting film and the contact structure is not under good control. This results in a contact resistance between the NbN bolometer and the contact pad. We compare identical bolometers, with different NbN - contact pad interfaces, coupled with a spiral antenna. We find that cleaning the NbN interface and adding a thin additional superconductor prior to the gold contact deposition improves the noise temperature and the bandwidth of the HEB mixers with more than a factor of 2. We obtain a DSB noise temperature of 950 K at 2.5 THz and a Gain bandwidth of 5-6 GHz. For use in real receiver systems we design small volume (0.15x1 micron) HEB mixers with a twin slot antenna. We find that these mixers combine good sensitivity (900 K at 1.6 THz) with low LO power requirement, which is 160 - 240 nW at the Si lens of the mixer. This value is larger than expected from the isothermal technique and the known losses in the lens by a factor of 3-3.5.

  1. Cooling of stored beams

    SciTech Connect

    Mills, F.E.

    1986-10-15

    Beam cooling methods developed for the accumulation of antiprotons are being employed to assist in the performance of experiments in Nuclear and Particle Physics with ion beams stored in storage rings. The physics of beam cooling, and the ranges of utility of stochastic and electron cooling are discussed in this paper.

  2. Electronic Spectroscopy of Jet-Cooled Triatomics and Cumulenes: Hydrogen Sulfide, Carbon Disulfide, Allene, and Carbon Suboxide.

    NASA Astrophysics Data System (ADS)

    Lantz, Kathleen O'brien

    The primary emphasis of this dissertation is to investigate the photoreactivity of a few small polyatomic molecules in their excited electronic states in the vacuum ultraviolet region. In this thesis, there are two types of polyatomics explored; triatomics (CS_2 and H_2S) and cumulenes (rm C_3O_2 and rm C_3H_4). The excited electronic states whose photoreactivity is investigated are the ^1Pi_{rm g} electronic state of CS_2 (1800-1650 A), the first electronic band of hydrogen sulfide (2300 -1700 A), the ^1{rm B}_2 electronic state of allene, H_2 C=C=CH_2, and a moderately strong structured band of carbon suboxide, O=C=C=C=O, centered at 1780 A. To understand the photoreactivity of a molecule, it is ideal to characterize the relevant potential energy surfaces and interpret the dynamics along these surfaces from reactant to products. This requires the collaboration of experimentalist and theoreticians. The allure of triatomics is that they are the simplest of polyatomic molecules having only three or four vibrational degrees of freedom. In practice, even triatomics have eluded a detailed analysis of their photoreactivity due to the complexity of the dynamics occurring on coupled multiple surfaces. Cumulenes are much more complex systems consisting of repetitive double bonds. These rigid molecules give rise to very low vibrational frequencies in the bending and torsional modes, which makes these molecules interesting prototypes for studying the effects of low frequency motions on the dynamics of the photodissociation. In this work, direct absorption spectroscopy will be used coupled with a supersonic expansion of the molecules under investigation. Direct absorption spectroscopy provides important information on the early time dynamics of the molecules' photodissociation toward products. A supersonic expansion of the sample reduces spectral congestion by cooling internal rotational and vibrational degrees of freedom of the molecules which facilitates the analysis of the

  3. Experimental investigation of the ionospheric hysteresis effect on the threshold excitation level of the Stimulated Electromagnetic Emission (SEE) during heating at the second electron gyro-harmonic frequency

    NASA Astrophysics Data System (ADS)

    Samimi, A.; Scales, W.; Cruz, M.; Isham, B.; Bernhardt, P. A.

    2012-12-01

    Recent experimental observations of the stimulated electromagnetic emission (SEE) spectrum during heating at the second electron gyro-harmonic show structures ordered by ion gyro-frequency. The proposed generation mechanism considers parametric decay of a pump upper hybrid/electron Bernstein (UH/EB) wave into another UH/EB and a group of neutralized ion Bernstein waves. The presumption of the proposed mechanism is that the pump electromagnetic wave is converted into the UH/EB wave. This conversion process generates field aligned irregularity which exhibits hysteresis effect. The predicted ionospheric hysteresis effect is studied during the PARS 2012 at HAARP. The preliminary results are presented for the first time. Also, experimental study of the effects of 1) the transmitter beam angle and 2) the transmitter frequency offset relative to the second electron gyro-harmonic frequency on the ion gyro-harmonic structures in the SEE spectrum are provided. The aforementioned observations are compared to the predictions of the analytical model. Possible connection of the SEE spectral features and artificially generated ionospheric descending layer is also discussed

  4. Quantum theory of stimulated Cherenkov emission and stimulated compton scattering of electromagnetic waves by a low-density relativistic electron beam

    SciTech Connect

    Kuzelev, M. V.

    2010-07-15

    A quantum theory of instabilities of a relativistic electron beam due to the stimulated Cherenkov effect in a dielectric and the stimulated Compton effect in vacuum is presented. The instability growth rates are found in a linear approximation and are shown to go over to the familiar growth rates in the classical approximation. A nonlinear theory of instabilities in the quantum case is developed. Analytic solutions are obtained that describe the nonlinear saturation of the amplitudes of the electromagnetic waves emitted by the beam.

  5. Electromagnetic radiation from positive-energy bound electrons in the Coulomb field of a nucleus at rest in a strong uniform magnetic field

    SciTech Connect

    Arsenyev, S. A.; Koryagin, S. A.

    2012-06-15

    A classical analysis is presented of the electromagnetic radiation emitted by positive-energy electrons performing bound motion in the Coulomb field of a nucleus at rest in a strong uniform magnetic field. Bounded trajectories exist and span a wide range of velocity directions near the nucleus (compared to free trajectories with similar energies) when the electron Larmor radius is smaller than the distance at which the electron-nucleus Coulomb interaction energy is equal to the mechanical energy of an electron. The required conditions occur in magnetic white dwarf photospheres and have been achieved in experiments on production of antihydrogen. Under these conditions, the radiant power per unit volume emitted by positive-energy bound electrons is much higher than the analogous characteristic of bremsstrahlung (in particular, in thermal equilibrium) at frequencies that are below the electron cyclotron frequency but higher than the inverse transit time through the interaction region in a close collision in the absence of a magnetic field. The quantum energy discreteness of positive-energy bound states restricts the radiation from an ensemble of bound electrons (e.g., in thermal equilibrium) to nonoverlapping spectral lines, while continuum radiative transfer is dominated by linearly polarized bremsstrahlung.

  6. Advanced composite materials and subcooled liquid change-of-phase (COP) cooling for thermal management in advanced electronic systems

    SciTech Connect

    Morgan, R.E.; Ehlers, S.L.; Mudawar, I.

    1996-12-31

    High performance, high density airborne and spaceborne electronic systems (both DoD and commercial) are performance and reliability limited by materials and thermal management. There is a continual need to improve performance and reliability in high density systems and to reduce adverse effects induced by excessive weight, dissipated heat, and related environmental incompatibilities. The penalties effected by these limitations prevail from cradle-to-grave in the life of high performance airborne systems, beginning at the development stage, continuing through manufacturing and procurement, and throughout system life, ultimately raising the cost of ownership. The objective of this effort is to investigate the use of selected high specific property composites and change-of-phase (COP) (i.e., liquid to vapor) cooling (using non-CFC, perfluorohexane fluids) to combat these limitations. High density (e.g., 2 kw SEM-E configuration), miniaturized avionics are assumed. Material systems for enclosure and module packaging as well as COP mechanisms will be discussed at this time relative to a retrofit scenario, interfacing with existing aircraft environmental control systems (ECS) for coolant reconditioning.

  7. Cooling in a compound bucket

    SciTech Connect

    Shemyakin, A.; Bhat, C.; Broemmelsiek, D.; Burov, A.; Hu, M.; /Fermilab

    2007-09-01

    Electron cooling in the Fermilab Recycler ring is found to create correlation between longitudinal and transverse tails of the antiproton distribution. By separating the core of the beam from the tail and cooling the tail using 'gated' stochastic cooling while applying electron cooling on the entire beam, one may be able to significantly increase the overall cooling rate. In this paper, we describe the procedure and first experimental results.

  8. Stimulated electromagnetic emission and plasma line during pump wave frequency stepping near 4th electron gyroharmonic at HAARP

    NASA Astrophysics Data System (ADS)

    Grach, Savely; Sergeev, Evgeny; Shindin, Alexey; Mishin, Evgeny; Watkins, Brenton

    Concurrent observations of stimulated (secondary) electromagnetic emissions (SEE) and incoherent plasma line (PL) backscatter from the MUIR radar during HF pumping of the ionosphere by the HAARP heating facility (62.4(°) °N, 145.15(°) W, magnetic inclination α = 75.8^circ) with the pump wave (PW) frequency sweeps about the fourth electron gyroharmonic (4f_c) are presented. The PW frequency f0 was changed every 0.2 s in a 1-kHz step, i.e. with the rate of r_{f_0}=5 kHz/s. PW was transmitted at the magnetic zenith (MZ). Prior to sweeping, PW was transmitted continuously (CW) during 2 min at f_0 = 5730 kHz <4f_c to create the “preconditioned” ionosphere with small-scale magnetic field-aligned irregularities. During CW pumping, a typical SEE spectrum for f_0<4f_c, containing the prominent downshifted maxiμm (DM) shifted by Delta f_{DM} = f_{DM}-f_0approx-9 kHz, developed in 5-10 s after PW turn on. The PL echoes were observed during 2-3 s from the range dsim 220 km corresponding to the altitude slightly above PW reflection height. After sim5 s the PL echoes descended to dsim 210-212 km corresponding to the height h = d / (sinalpha) by sim 7 km below the height where f_0 = 4f_c. During frequency sweeps, two upshifted features appeared in the SEE spectrum for f_0> 4f_c, namely BUM_S and BUM_D. The former (stationary broad upshifted maxiμm) peaks at Delta f_{BUMs} approx f0 - nfc (d) + 15-20 kHz and is a typical SEE spectral feature. The latter, the dynamic BUM_D at smaller Delta f, is observed only at high pump powers (ERP=1.7 GW) and corresponds to artificial descending plasma layers created in the F-region ionosphere [1]. In the experiment in question, the BUM_D was present for f_0> f^*, where f^* was 5805-5815 kHz during stepping up and sim 10 kHz less for stepping down, and located 8-10 km below the background F-layer. The miniμm DM which indicated that f_0=4f_c=f_{uh} in the background ionospheric plasma, was sim 5760 kHz. The PL was observed only for f_0

  9. Amplification of an electromagnetic field at the scattering of the nonrelativistic electron by an ion in the external field of medium intensity for an arbitrary angle of the initial electron

    NASA Astrophysics Data System (ADS)

    Tsybul'nik, V. A.; Roshchupkin, S. P.

    2014-08-01

    We theoretically study the gain coefficient for a electromagnetic field, in the scattering of nonrelativistic electrons by ions in a elliptically polarized light wave. We obtain a simple analytical expression for a field amplification constant in logarithmic approach to an arbitrary angle of the initial electron. The formula supplements and extends the domain of applicability of the known Marcuse formula for the linear polarization in the presence of a weak field. It is demonstrated that the maximum gain is reached when the initial electron velocity directs along the major semi-axis of the polarization ellipse. In the range of optical frequencies, the gain coefficient of the laser radiation can be significant for relatively high powers of electron beams. Obtained results may be experimentally verified, for example, by the scientific facilities at the SLAC National Accelerator Laboratory and FAIR (Facility for Antiproton and Ion Research, Darmstadt, Germany).

  10. Trapping of high-energy electrons into regime of surfatron acceleration by electromagnetic waves in space plasma

    SciTech Connect

    Erokhin, A. N.; Erokhin, N. S.; Milant'ev, V. P.

    2012-05-15

    The phenomenon of trapping of weakly relativistic charged particles (with kinetic energies on the order of mc{sup 2}) into a regime of surfatron acceleration by an electromagnetic wave that propagates in plasma across a weak external magnetic field has been studied using nonlinear numerical calculations based on a solution of the relativistic equations of motion. Analysis showed that, for the wave amplitude above a certain threshold value and the initial wave phase outside the interval favorable for the surfing regime, the trajectory of a charged particle initially corresponds to its cyclotron rotation in the external magnetic field. For the initial particle energies studied, the period of this rotation is relatively short. After a certain number (from several dozen to several thousand and above) of periods of rotation, the wave phase takes a value that is favorable for trapping of the charged particle on its trajectory by the electromagnetic wave, provided the Cherenkov resonance conditions are satisfied. As a result, the wave traps the charged particle and imparts it an ultrarelativistic acceleration. In momentum space, the region of trapping into the regime of surfing on an electromagnetic wave turns out to be rather large.

  11. Electromagnetic fields of a relativistic electron avalanche with special attention to the origin of lightning signatures known as narrow bipolar pulses

    NASA Astrophysics Data System (ADS)

    Cooray, Vernon; Cooray, Gerald; Marshall, Thomas; Arabshahi, Shahab; Dwyer, Joseph; Rassoul, Hamid

    2014-11-01

    In the present study, electromagnetic fields of accelerating charges were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This model of the avalanche was utilized to test the idea whether the source of the lightning signatures known as narrow bipolar pulses could be relativistic avalanches. The idea was tested by using the simultaneously measured electric fields of narrow bipolar pulses at two distances, one measured far away from the source and the other in the near vicinity. The avalanche parameters were extracted from the distant field and they are used to evaluate the close field. The results show that the source of the NBP can be modeled either as a single or a multiple burst of relativistic avalanches with speed of avalanches in the range of 2-3 × 108 m/s. The multiple avalanche model agrees better with the experimental data in that it can also generate the correct signature of the time derivatives and the HF and VHF radiation bursts of NBP.

  12. Amplification of electromagnetic field in the course of the nonrelativistic electron scattering by ion in the presence of the field of the medium-intensity elliptically polarized light wave

    NASA Astrophysics Data System (ADS)

    Roshchupkin, S. P.

    2009-08-01

    The amplification factor of the electromagnetic field is theoretically studied for the scattering of nonrelativistic electrons by ions in the presence of the field of the elliptically polarized electromagnetic wave. A simple analytical formula for the gain is derived for the medium-intensity range. The formula supplements and extends the domain of applicability of the known Marcuse formula for the linear polarization in the presence of a weak field. It is demonstrated that the maximum gain is reached when the initial electron velocities belong to the polarization plane of the electromagnetic wave. In the range of optical frequencies, the amplification factor of the laser radiation can be significant for relatively high powers of electron beams.

  13. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  14. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  15. Assessment of Electromagnetic Interference with Active Cardiovascular Implantable Electronic Devices (CIEDs) Caused by the Qi A13 Design Wireless Charging Board.

    PubMed

    Seckler, Tobias; Jagielski, Kai; Stunder, Dominik

    2015-05-27

    Electromagnetic interference is a concern for people wearing cardiovascular implantable electronic devices (CIEDs). The aim of this study was to assess the electromagnetic compatibility between CIEDs and the magnetic field of a common wireless charging technology. To do so the voltage induced in CIEDs by Qi A13 design magnetic fields were measured and compared with the performance limits set by ISO 14117. In order to carry this out a measuring circuit was developed which can be connected with unipolar or bipolar pacemaker leads. The measuring system was positioned at the four most common implantation sites in a torso phantom filled with physiological saline solution. The phantom was exposed by using Helmholtz coils from 5 µT to 27 µT with 111 kHz sine‑bursts or by using a Qi A13 design wireless charging board (Qi‑A13‑Board) in two operating modes "power transfer" and "pinging". With the Helmholtz coils the lowest magnetic flux density at which the performance limit was exceeded is 11 µT. With the Qi‑A13‑Board in power transfer mode 10.8% and in pinging mode 45.7% (2.2% at 10 cm distance) of the performance limit were reached at maximum. In neither of the scrutinized cases, did the voltage induced by the Qi‑A13‑Board exceed the performance limits.

  16. Assessment of Electromagnetic Interference with Active Cardiovascular Implantable Electronic Devices (CIEDs) Caused by the Qi A13 Design Wireless Charging Board.

    PubMed

    Seckler, Tobias; Jagielski, Kai; Stunder, Dominik

    2015-06-01

    Electromagnetic interference is a concern for people wearing cardiovascular implantable electronic devices (CIEDs). The aim of this study was to assess the electromagnetic compatibility between CIEDs and the magnetic field of a common wireless charging technology. To do so the voltage induced in CIEDs by Qi A13 design magnetic fields were measured and compared with the performance limits set by ISO 14117. In order to carry this out a measuring circuit was developed which can be connected with unipolar or bipolar pacemaker leads. The measuring system was positioned at the four most common implantation sites in a torso phantom filled with physiological saline solution. The phantom was exposed by using Helmholtz coils from 5 µT to 27 µT with 111 kHz sine‑bursts or by using a Qi A13 design wireless charging board (Qi‑A13‑Board) in two operating modes "power transfer" and "pinging". With the Helmholtz coils the lowest magnetic flux density at which the performance limit was exceeded is 11 µT. With the Qi‑A13‑Board in power transfer mode 10.8% and in pinging mode 45.7% (2.2% at 10 cm distance) of the performance limit were reached at maximum. In neither of the scrutinized cases, did the voltage induced by the Qi‑A13‑Board exceed the performance limits. PMID:26024360

  17. Assessment of Electromagnetic Interference with Active Cardiovascular Implantable Electronic Devices (CIEDs) Caused by the Qi A13 Design Wireless Charging Board

    PubMed Central

    Seckler, Tobias; Jagielski, Kai; Stunder, Dominik

    2015-01-01

    Electromagnetic interference is a concern for people wearing cardiovascular implantable electronic devices (CIEDs). The aim of this study was to assess the electromagnetic compatibility between CIEDs and the magnetic field of a common wireless charging technology. To do so the voltage induced in CIEDs by Qi A13 design magnetic fields were measured and compared with the performance limits set by ISO 14117. In order to carry this out a measuring circuit was developed which can be connected with unipolar or bipolar pacemaker leads. The measuring system was positioned at the four most common implantation sites in a torso phantom filled with physiological saline solution. The phantom was exposed by using Helmholtz coils from 5 µT to 27 µT with 111 kHz sine-bursts or by using a Qi A13 design wireless charging board (Qi-A13-Board) in two operating modes “power transfer” and “pinging”. With the Helmholtz coils the lowest magnetic flux density at which the performance limit was exceeded is 11 µT. With the Qi-A13-Board in power transfer mode 10.8% and in pinging mode 45.7% (2.2% at 10 cm distance) of the performance limit were reached at maximum. In neither of the scrutinized cases, did the voltage induced by the Qi-A13-Board exceed the performance limits. PMID:26024360

  18. Electromagnetic direct implicit PIC simulation

    SciTech Connect

    Langdon, A.B.

    1983-03-29

    Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes.

  19. Formation of very hard electron and gamma-ray spectra of flat-spectrum radio quasars in the fast-cooling regime

    NASA Astrophysics Data System (ADS)

    Yan, Dahai; Zhang, Li; Zhang, Shuang-Nan

    2016-07-01

    In the external Compton scenario, we investigate the formation of a very hard electron spectrum in the fast-cooling regime, using a time-dependent emission model. It is shown that a very hard electron distribution, N^' }_e({γ ^' })∝ {γ ^' }^{-p}, with spectral index p ˜ 1.3 is formed below the minimum energy of injection electrons when inverse Compton scattering takes place in the Klein-Nishina regime, i.e. inverse Compton scattering of relativistic electrons on broad-line region radiation in flat-spectrum radio quasars. This produces a very hard gamma-ray spectrum and can explain in reasonable fashion the very hard Fermi-Large Area Telescope (LAT) spectrum of the flat-spectrum radio quasar 3C 279 during the extreme gamma-ray flare in 2013 December.

  20. Electromagnetic properties of open and closed overmoded slow-wave resonators for interaction with relativistic electron beams

    SciTech Connect

    Main, W. ); Carmel, Y.; Weaver, J. . Inst. for Plasma Research)

    1994-10-01

    Specific slow wave structures are needed in order to produce coherent Cherenkov radiation in overmoded relativistic generators. The electromagnetic characteristics of such slow wave, resonant, finite length structures commonly used in relativistic backward wave oscillators have been studied both experimentally and theoretically. In experiments, perturbation techniques were used to study both the fundamental and higher order symmetric transverse magnetic (TM) modes. Finite length effects lead to end reflections and quantization of the wave number. The effects of end reflections in open slow wave structures were found from the spectral broadening of the discrete resonances of the different axial modes. The measured axial and radial field distributions are in excellent agreement with the results of a 2-D code developed for the calculation of the fields in these structures.

  1. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  2. Cooling for a rotating anode X-ray tube

    DOEpatents

    Smither, Robert K.

    1998-01-01

    A method and apparatus for cooling a rotating anode X-ray tube. An electromagnetic motor is provided to rotate an X-ray anode with cooling passages in the anode. These cooling passages are coupled to a cooling structure located adjacent the electromagnetic motor. A liquid metal fills the passages of the cooling structure and electrical power is provided to the motor to rotate the anode and generate a rotating magnetic field which moves the liquid metal through the cooling passages and cooling structure.

  3. Analysis of the dependence of surfatron acceleration of electrons by an electromagnetic wave in space plasma on the particle momentum along the wave front

    NASA Astrophysics Data System (ADS)

    Erokhin, A. N.; Zol'nikova, N. N.; Erokhin, N. S.

    2016-01-01

    Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front g y (0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phase Ψ(0) on the particle trajectory. It is assumed in the calculations that |Ψ(0)| ≤ π. For strongly relativistic values of g y (0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones.

  4. Ab initio study on the electronic states and laser cooling of AlCl and AlBr

    NASA Astrophysics Data System (ADS)

    Rong, Yang; Bin, Tang; Tao, Gao

    2016-04-01

    We investigate whether AlCl and AlBr are promising candidates for laser cooling. We report new ab initio calculations on the ground state X1Σ+ and two low-lying states (A1Π and a3Π) of AlCl and AlBr. The calculated spectroscopic constants show good agreement with available theoretical and experimental results. We also obtain the permanent dipole moments (PDMs) curve at multi-reference configuration interaction (MRCI) level of theory. The transition properties of A1Π and a3Π states are predicted, including the transition dipole moments (TDMs), Franck-Condon factors (FCFs), radiative times and radiative width. The calculated radiative lifetimes are of the order of a nanosecond, implying that they are sufficiently short for rapid laser cooling. Both AlCl and AlBr have highly diagonally distributed FCFs which are crucial requirement for molecular laser cooling. The results demonstrate the feasibility of laser cooling AlCl and AlBr, and we propose laser cooling schemes for AlCl and AlBr.

  5. Electromagnetic structure of nuclei

    SciTech Connect

    Arnold, R.G.

    1986-07-01

    A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs. (LEW)

  6. On extreme field limits in high power laser matter interactions: radiation dominant regimes in high intensity electromagnetic wave interaction with electrons

    NASA Astrophysics Data System (ADS)

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Nakamura, Tatsufumi; Bulanov, Stepan S.; Zhidkov, Alexei G.; Kato, Yoshiaki; Korn, Georg

    2013-05-01

    We discuss the key important regimes of electromagnetic field interaction with charged particles. Main attention is paid to the nonlinear Thomson/Compton scattering regime with the radiation friction and quantum electrodynamics effects taken into account. This process opens a channel of high efficiency electromagnetic energy conversion into hard electromagnetic radiation in the form of ultra short high power gamma ray flashes.

  7. Information Security due to Electromagnetic Environments

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Hidenori; Seto, Shinji

    Generally, active electronic devices emit slightly unintentional electromagnetic noise. From long ago, electromagnetic emission levels have been regulated from the aspect of electromagnetic compatibility (EMC). Also, it has been known the electromagnetic emissions have been generated from the ON/OFF of signals in the device. Recently, it becomes a topic of conversation on the information security that the ON/OFF on a desired signal in the device can be reproduced or guessed by receiving the electromagnetic emission. For an example, a display image on a personal computer (PC) can be reconstructed by receiving and analyzing the electromagnetic emission. In sum, this fact makes known information leakage due to electromagnetic emission. “TEMPEST" that has been known as a code name originated in the U. S. Department of Defense is to prevent the information leakage caused by electromagnetic emissions. This paper reports the brief summary of the information security due to electromagnetic emissions from information technology equipments.

  8. Self-consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 2. Wave Induced Ring Current Precipitation and Thermal Electron Heating

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.; Liemohn, M. W.

    2007-01-01

    This paper continues presentation and discussion of the results from our new global self-consistent theoretical model of interacting ring current ions and propagating electromagnetic ion cyclotron waves [Khazanov et al., 2006]. To study the effects of electromagnetic ion cyclotron wave propagation and refraction on the wave induced ring current precipitation and heating of the thermal plasmaspheric electrons, we simulate the May 1998 storm. The main findings after a simulation can be summarized as follows. Firstly, the wave induced ring current precipitation exhibits quite a lot of fine structure, and is highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 x 10(exp 6) (cm(raised dot) s(raised dot) sr(raised dot) (sup -1)) are observed during the maill and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not connected to the most intense waves in simple manner. The characteristics of the wave power spectral density distribution over the wave normal angle are extremely crucial for the effectiveness of the ring current ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from RAM [Kozyra et al., 1997a] reveals that although we observe a qualitative agreement between the localizations of the wave induced precipitations in the models, there is no quantitative agreement between the magnitudes of the fluxes. The quantitative differences are mainly due to a qualitative difference between the characteristics of the wave power spectral density distributions over the wave normal angle in RAM and in our model. Thirdly, the heat fluxes to plasmaspheric electrons caused by Landau resonate energy absorption from electromagnetic ion cyclotron waves are observed in the postnoon-premidnight MLT sector, and can reach the magnitude of 10(exp 11) eV/(cm(sup 2)(raised dot)s). The Coulomb

  9. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  10. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  11. Electromagnetic compatibility - A general overview

    NASA Astrophysics Data System (ADS)

    Wood, M. J.

    The initial flight was not known to be affected by electromagnetic interference. Had it of done it would have sown the seeds for electromagnetic compatibility (EMC). however, it was not until the introduction of electric / electronic navigational aids and communications that the effects were realized. The definition of electromagnetic compatibility (EMC) is: The ability of electrical and electronic equipments, sub systems and systems to share the electomagnetic spectrum and perform their desired function without unacceptable degradation from or to the specified electomagnetic enviromnment. In other words the equipment must work without causing interference or being upset by interference from d. c. to light frequencies.

  12. Electron impact cross-sections and cooling rates for methane. [in thermal balance of electrons in atmospheres and ionospheres of planets and satellites in outer solar system

    NASA Technical Reports Server (NTRS)

    Gan, L.; Cravens, T. E.

    1992-01-01

    Energy transfer between electrons and methane gas by collisional processes plays an important role in the thermal balance of electrons in the atmospheres and ionospheres of planets and satellites in the outer solar system. The literature is reviewed for electron impact cross-sections for methane in this paper. Energy transfer rates are calculated for elastic and inelastic processes using a Maxwellian electron distribution. Vibrational, rotational, and electronic excitation and ionization are included. Results are presented for a wide range of electron temperatures and neutral temperatures.

  13. Electromagnetic particle simulation codes

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.

    1985-01-01

    Electromagnetic particle simulations solve the full set of Maxwell's equations. They thus include the effects of self-consistent electric and magnetic fields, magnetic induction, and electromagnetic radiation. The algorithms for an electromagnetic code which works directly with the electric and magnetic fields are described. The fields and current are separated into transverse and longitudinal components. The transverse E and B fields are integrated in time using a leapfrog scheme applied to the Fourier components. The particle pushing is performed via the relativistic Lorentz force equation for the particle momentum. As an example, simulation results are presented for the electron cyclotron maser instability which illustrate the importance of relativistic effects on the wave-particle resonance condition and on wave dispersion.

  14. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  15. Is cooling still cool?

    PubMed

    Subramaniam, Ashwin; Tiruvoipati, Ravindranath; Botha, John

    2015-03-01

    Therapeutic hypothermia (TH), where patients are cooled to between 32°C and 36°C for a period of 12-24 hours and then gradually rewarmed, may reduce the risk of ischemic injury to cerebral tissue following a period of insufficient blood flow. This strategy of TH could improve mortality and neurological function in patients who have experienced out-of-hospital cardiac arrest (OOHCA). The necessity of TH in OOHCA was challenged in late 2013 by a fascinating and potentially practice changing publication, which found that targeting a temperature of 36°C had similar outcomes to cooling patients to 33°C. This article reviews the current literature and summarizes the uncertainties and questions raised when considering cooling of patients at risk of hypoxic brain injury. Irrespective of whether TH or targeted temperature management is deployed in patients at risk of hypoxic brain injury, it would seem that avoiding hyperpyrexia is important and that a more rigorous approach to neurological evaluation is mandated. PMID:25423577

  16. Extensive theoretical study on electronically excited states of calcium monochloride: Molecular laser cooling and production of ultracold chlorine atoms.

    PubMed

    Fu, Mingkai; Ma, Haitao; Cao, Jianwei; Bian, Wensheng

    2016-05-14

    Nine doublet Λ-S states of calcium monochloride (CaCl) are calculated using the internally contracted multireference configuration interaction method with the Davidson correction. Both the core subvalence and spin-orbit coupling effects are taken into account. Laser cooling of CaCl and production of ultracold chlorine atoms are investigated and assessed. Our computed spectroscopic constants and radiative lifetimes match the available experimental data very well. The determined Franck-Condon factors and vibrational branching ratios of the A(2)Π1/2(ν('))←X(2)Σ1/2 (+)(ν) transition are highly diagonally distributed and the evaluated radiative lifetime for the A(2)Π1/2(ν' = 0) state is 28.2 ns, which is short enough for rapid laser cooling. Subsequently, detection of cold molecules via resonance enhanced multiphoton ionization to determine the final quantum state populations is discussed and the ionization energy calculated. A multi-pulse excitation scheme is proposed for producing ultracold chlorine atoms from zero-energy photodissociation of the cooled CaCl. Our results demonstrate the possibility of producing ultracold CaCl molecules and Cl atoms.

  17. Extensive theoretical study on electronically excited states of calcium monochloride: Molecular laser cooling and production of ultracold chlorine atoms

    NASA Astrophysics Data System (ADS)

    Fu, Mingkai; Ma, Haitao; Cao, Jianwei; Bian, Wensheng

    2016-05-01

    Nine doublet Λ-S states of calcium monochloride (CaCl) are calculated using the internally contracted multireference configuration interaction method with the Davidson correction. Both the core subvalence and spin-orbit coupling effects are taken into account. Laser cooling of CaCl and production of ultracold chlorine atoms are investigated and assessed. Our computed spectroscopic constants and radiative lifetimes match the available experimental data very well. The determined Franck-Condon factors and vibrational branching ratios of the A 2 Π 1 / 2 ( ν ' ) ← X 2 Σ1 / 2 + ( ν ) transition are highly diagonally distributed and the evaluated radiative lifetime for the A2Π1/2(ν' = 0) state is 28.2 ns, which is short enough for rapid laser cooling. Subsequently, detection of cold molecules via resonance enhanced multiphoton ionization to determine the final quantum state populations is discussed and the ionization energy calculated. A multi-pulse excitation scheme is proposed for producing ultracold chlorine atoms from zero-energy photodissociation of the cooled CaCl. Our results demonstrate the possibility of producing ultracold CaCl molecules and Cl atoms.

  18. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  19. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    NASA Technical Reports Server (NTRS)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  20. Electron beam dynamics and self-cooling up to PeV level due to betatron radiation in plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Deng, Aihua; Nakajima, Kazuhisa; Liu, Jiansheng; Shen, Baifei; Zhang, Xiaomei; Yu, Yahong; Li, Wentao; Li, Ruxin; Xu, Zhizhan

    2012-08-01

    In plasma-based accelerators, electrons are accelerated by ultrahigh gradient of 1-100GV/m and undergo the focusing force with the same order as the accelerating force. Heated electrons are injected in a plasma wake and exhibit the betatron oscillation that generates synchrotron radiation. Intense betatron radiation from laser-plasma accelerators is attractive x-ray/gamma-ray sources, while it produces radiation loss and significant effects on energy spread and transverse emittance via the radiation reaction force. In this article, electron beam dynamics on transverse emittance and energy spread with considering radiation reaction effects are studied numerically. It is found that the emittance growth and the energy spread damping initially dominate and balance with radiative damping due to the betatron radiation. Afterward the emittance turns to decrease at a constant rate and leads to the equilibrium at a nanometer radian level with growth due to Coulomb scattering at PeV-level energies. A constant radiation loss rate RT=2/3 is found without regard to the electron beam and plasma conditions. Self-cooling of electron beams due to betatron radiation may guarantee TeV-range linear colliders and give hints on astrophysical ultrahigh-energy phenomena.

  1. 3D printed electromagnetic transmission and electronic structures fabricated on a single platform using advanced process integration techniques

    NASA Astrophysics Data System (ADS)

    Deffenbaugh, Paul Issac

    3D printing has garnered immense attention from many fields including in-office rapid prototyping of mechanical parts, outer-space satellite replication, garage functional firearm manufacture, and NASA rocket engine component fabrication. 3D printing allows increased design flexibility in the fabrication of electronics, microwave circuits and wireless antennas and has reached a level of maturity which allows functional parts to be printed. Much more work is necessary in order to perfect the processes of 3D printed electronics especially in the area of automation. Chapter 1 shows several finished prototypes of 3D printed electronics as well as newly developed techniques in fabrication. Little is known about the RF and microwave properties and applications of the standard materials which have been developed for 3D printing. Measurement of a wide variety of materials over a broad spectrum of frequencies up to 10 GHz using a variety of well-established measurement methods is performed throughout chapter 2. Several types of high frequency RF transmission lines are fabricated and valuable model-matched data is gathered and provided in chapter 3 for future designers' use. Of particular note is a fully 3D printed stripline which was automatically fabricated in one process on one machine. Some core advantages of 3D printing RF/microwave components include rapid manufacturing of complex, dimensionally sensitive circuits (such as antennas and filters which are often iteratively tuned) and the ability to create new devices that cannot be made using standard fabrication techniques. Chapter 4 describes an exemplary fully 3D printed curved inverted-F antenna.

  2. Electromagnetic Gyrokinetic Simulations

    SciTech Connect

    Wan, W

    2003-11-19

    A new electromagnetic kinetic electron {delta} particle simulation model has been demonstrated to work well at large values of plasma {beta} times the ion-to-electron mass ratio. The simulation is three-dimensional using toroidal flux-tube geometry and includes electron-ion collisions. The model shows accurate shear Alfven wave damping and microtearing physics. Zonal flows with kinetic electrons are found to be turbulent with the spectrum peaking at zero and having a width in the frequency range of the driving turbulence. This is in contrast with adiabatic electron cases where the zonal flows are near stationary, even though the linear behavior of the zonal flow is not significantly affected by kinetic electrons. zonal fields are found to be very weak, consistent with theoretical predictions for {beta} below the kinetic ballooning limit. Detailed spectral analysis of the turbulence data is presented in the various limits.

  3. Three-dimensional electromagnetic strong turbulence: Dependence of the statistics and dynamics of strong turbulence on the electron to ion temperature ratio

    NASA Astrophysics Data System (ADS)

    Graham, D. B.; Cairns, Iver H.; Skjaeraasen, O.; Robinson, P. A.

    2012-02-01

    The temperature ratio Ti/Te of ions to electrons affects both the ion-damping rate and the ion-acoustic speed in plasmas. The effects of changing the ion-damping rate and ion-acoustic speed are investigated for electrostatic strong turbulence and electromagnetic strong turbulence in three dimensions. When ion damping is strong, density wells relax in place and act as nucleation sites for the formation of new wave packets. In this case, the density perturbations are primarily density wells supported by the ponderomotive force. For weak ion damping, corresponding to low Ti/Te, ion-acoustic waves are launched radially outwards when wave packets dissipate at burnout, thereby increasing the level of density perturbations in the system and thus raising the level of scattering of Langmuir waves off density perturbations. Density wells no longer relax in place so renucleation at recent collapse sites no longer occurs, instead wave packets form in background low density regions, such as superpositions of troughs of propagating ion-acoustic waves. This transition is found to occur at Ti/Te ≈ 0.1. The change in behavior with Ti/Te is shown to change the bulk statistical properties, scaling behavior, spectra, and field statistics of strong turbulence. For Ti/Te>rsim0.1, the electrostatic results approach the predictions of the two-component model of Robinson and Newman, and good agreement is found for Ti/Te>rsim0.15.

  4. The effect of Non- ionizing electromagnetic field with a frequency of 50 Hz in Rat ovary: A transmission electron microscopy study

    PubMed Central

    Khaki, Amir Afshin; Khaki, Arash; Ahmadi, Seyed Shahin

    2016-01-01

    Background: Recently, there are increasing concerns and interests about the potential effects of Electromagnetic Field (EMF) on both human and animal health. Objective: The goal of this study was to evaluate the harmful effects of 50 Hz non-ionizing EMF on rat oocytes. Materials and Methods: In this experimental study 30 rats were randomly taken from laboratory animals and their ags and weights were determined. These 3 month's old rats were randomly divided into 3 groups. The control group consisted of 10 rats without receiving any treatment and kept under normal conditions. Experimental group 1 (10 rats) received EMF for 8 weeks (3 weeks intrauterine +5 weeks after births) and experimental group 2 (10 rats) received EMF for 13 weeks (3 weeks intrauterine +10 weeks after birth). After removing the ovaries and isolating follicles, granulosa cells were fixed in glutaraldehyde and osmium tetroxide. Electron microscopy was used to investigate the traumatic effects of EMF on follicles. Results: In control group nucleus membrane and mitochondria in follicle’s cytoplasm seemed normal in appearance. Theca layer of primary follicles in experimental group was separated clearly, zona layer demonstrated trot with irregular thickness and ovarian stroma seemed isolated with dilated vessels showing infiltration. Conclusion: According to the results of this study, it can be concluded that EMF has harmful effects on the ovarian follicles. PMID:27200427

  5. Direct observation of transition to electron Bernstein waves from electromagnetic mode by three mode-conversion scenarios in the dipole confinement torus plasma

    NASA Astrophysics Data System (ADS)

    Uchijima, K.; Takemoto, T.; Morikawa, J.; Ogawa, Y.

    2015-06-01

    Direct measurement experiments on the mode conversion to the electron Bernstein wave (EBW) have been conducted in dipole confinement torus plasmas for three excitation scenarios; i.e. perpendicular injections of an eXtraordinary mode (X-mode) from the low- and high-magnetic-field sides, and the oblique injection of an Ordinary mode (O-mode) from the low-magnetic-field side. By inserting probe antennas into plasmas, wave propagation has been directly measured. At plasma conditions for the EBW excitation, several characteristics which indicate the mode conversion to the EBWs have been observed; i.e. a short wavelength wave, an electrostatic and longitudinal mode, backward propagation at the upper hybrid resonance (UHR) region. Meanwhile, the wavelengths experimentally observed might be slightly longer than those of theoretical prediction. In the case of the oblique injection of the O-mode, it has been identified that the window of the injection angle for the excitation of the EBW would be quite limited, and the optimum angle seems to be roughly in agreement with theory. These experimental results might support that the electromagnetic waves injected outside of torus plasmas reach to the UHR region and convert wave characteristics to the EBWs for three excitation scenarios.

  6. Thermal effects on the STAR electromagnetic calorimeter

    SciTech Connect

    Fornek, T.; Guarino, V.; Spinka, H.; Underwood, D.

    1994-07-19

    The STAR detector for the RHIC colliding beam accelerator is under construction at Brookhaven National Laboratory. This detector will consist of a number of subsystems. These include a silicon vertex detector (SVT) for charged particle tracks near the interaction region, a time projection chamber (TPC) for charged particle tracking, an array of plastic scintillation counters (CTB) in a layer around the TPC for triggering on charged particles, a conventional solenoidal magnet, and some additional small triggering detectors along the beam-line. An electromagnetic calorimeter (EMC) is an upgrade to the ``baseline`` detector configuration above. The conventional magnet and numerous electronic channels for the SVT and TPC subsystems will generate a considerable amount of heat during the operation of STAR. However, it is possible that a chiller for the magnet cooling water will not be available during some of the early STAR runs. As a result, the average magnet temperature may vary considerably between winter and summer. This note summarizes calculations and measurements performed to evaluate the effects of an elevated magnet temperature on the performance of the electromagnetic calorimeter.

  7. Comparison of SAR and induced current densities in adults and children exposed to electromagnetic fields from electronic article surveillance devices

    NASA Astrophysics Data System (ADS)

    Martínez-Búrdalo, M.; Sanchis, A.; Martín, A.; Villar, R.

    2010-02-01

    Electronic article surveillance (EAS) devices are widely used in most stores as anti-theft systems. In this work, the compliance with international guidelines in the human exposure to these devices is analysed by using the finite-difference time-domain (FDTD) method. Two sets of high resolution numerical phantoms of different size (REMCOM/Hershey and Virtual Family), simulating adult and child bodies, are exposed to a 10 MHz pass-by panel-type EAS consisting of two overlapping current-carrying coils. Two different relative positions between the EAS and the body (frontal and lateral exposures), which imply the exposure of different parts of the body at different distances, have been considered. In all cases, induced current densities in tissues of the central nervous system and specific absorption rates (SARs) are calculated to be compared with the limits from the guidelines. Results show that induced current densities are lower in the case of adult models as compared with those of children in both lateral and frontal exposures. Maximum SAR values calculated in lateral exposure are significantly lower than those calculated in frontal exposure, where the EAS-body distance is shorter. Nevertheless, in all studied cases, with an EAS driving current of 4 A rms, maximum induced current and SAR values are below basic restrictions.

  8. Infrared and Electronic Spectroscopy of the Jet-Cooled 5-Methyl-2-furanylmethyl Radical Derived from the Biofuel 2,5-Dimethylfuran.

    PubMed

    Kidwell, Nathanael M; Mehta-Hurt, Deepali N; Korn, Joseph A; Zwier, Timothy S

    2016-08-18

    The electronic and infrared spectra of the 5-methyl-2-furanylmethyl (MFM) radical have been characterized under jet-cooled conditions in the gas phase. This resonance-stabilized radical is formed by H atom loss from one of the methyl groups of 2,5-dimethylfuran (DMF), a promising second-generation biofuel. As a resonance-stabilized radical, it plays an important role in the flame chemistry of DMF. The D0-D1 transition was studied using two-color resonant two-photon ionization (2C-R2PI) spectroscopy. The electronic origin is in the middle of the visible spectrum (21934 cm(-1) = 455.9 nm) and is accompanied by Franck-Condon activity involving the hindered methyl rotor. The frequencies and intensities are fit to a one-dimensional methyl rotor potential, using the calculated form of the ground state potential. The methyl rotor reports sensitively on the local electronic environment and how it changes with electronic excitation, shifting from a preferred ground state orientation with one CH in-plane and anti to the furan oxygen, to an orientation in the excited state in which one CH group is axial to the plane of the furan ring. Ground and excited state alkyl CH stretch infrared spectra are recorded using resonant ion-dip infrared (RIDIR) spectroscopy, offering a complementary view of the methyl group and its response to electronic excitation. Dramatic changes in the CH stretch transitions with electronic state reflect the changing preference for the methyl group orientation. PMID:27456434

  9. Stochastic cooling at Fermilab

    SciTech Connect

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system.

  10. Slot design of optimized electromagnetic pump

    SciTech Connect

    Leboucher, L. . Institut de Mecanique); Villani, D. )

    1993-11-01

    Electromagnetic pumps are used for the transportation of liquid metals such as the cooling sodium of fast breeder nuclear reactors. The design of this induction machine is close to that of a tubular linear induction motor. A non uniform slot distribution is used to optimize electromagnetic pumps. This geometry is tested with a finite element code. The performances are compared with the regular slot distribution of Industrial prototypes.

  11. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Modeling and Computing Example for Effective Electromagnetic Parameters of Multiphase Composite Media

    NASA Astrophysics Data System (ADS)

    Song, Wei-Li; Yuan, Jie; Hou, Zhi-Ling; Cao, Mao-Sheng

    2009-05-01

    A method using strong fluctuation theory (SFT) to compute the effective electromagnetic parameters of multiphase composite media, and common materials used to design radar-absorbing materials, is demonstrated. The effective electromagnetic parameters of ultrafine carbonyl-iron (DT-50) and fiber fabric, which are both multiphase composite media and represent coated and structured radar absorbing materials, respectively, are investigated, and the corresponding equations of electromagnetic parameters by using the SFT are attained. Moreover, we design a program to simplify the solutions, and the results are discussed.

  12. Development of the Measurement System for the Search of an Electric Dipole Moment of the Electron with Laser-Cooled Francium Atoms

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kato, T.; Kawamura, H.; Nataraj, H. S.; Sato, T.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2014-03-01

    We plan to measure the permanent electric dipole moment (EDM) of the electron, which has the sensitivity to the CP violation in theories beyond the standard model by using the laser-cooled francium (Fr) atom. This paper reports the present status of the EDM measurement system. A high voltage application system was constructed in order to produce the strong electric field (100 kV/cm) needed for the experiment. After conditioning, the leakage current was 10 pA when a high voltage of 43 kV was applied. Also, a drift of an environmental field was measured at the planned location of the Fr-EDM experiment. The drift is suppressed at present down to the level of 10 pT by installing a 4-layermagnetic shield. Improvements are still needed to reach the required field stability of 1 fT.

  13. Antiproton cooling in the Fermilab Recycler Ring

    SciTech Connect

    Nagaitsev, S.; Bolshakov, A.; Broemmelsiek, D.; Burov, Alexey V.; Carlson, K.; Gattuso, C.; Hu, M.; Kazakevich, G.; Kramper, B.; Kroc, T.; Leibfritz, J.; Prost, L.; Pruss, S.; Saewert, G; Schmidt, C.W.; Seletskiy, S.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; Zenkevich, P.; /Fermilab /Moscow, ITEP /Novosibirsk, IYF /Rochester U.

    2005-12-01

    The 8.9-GeV/c Recycler antiproton storage ring is equipped with both stochastic and electron cooling systems. These cooling systems are designed to assist accumulation of antiprotons for the Tevatron collider operations. In this paper we report on an experimental demonstration of electron cooling of high-energy antiprotons. At the time of writing this report, the Recycler electron cooling system is routinely used in collider operations. It has helped to set recent peak luminosity records.

  14. Electromagnetic Reciprocity.

    SciTech Connect

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a

  15. Anisotropic conducting films for electromagnetic radiation applications

    DOEpatents

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  16. Evidence that the maximum electron energy in hotspots of FR II galaxies is not determined by synchrotron cooling

    NASA Astrophysics Data System (ADS)

    Araudo, Anabella T.; Bell, Anthony R.; Crilly, Aidan; Blundell, Katherine M.

    2016-08-01

    It has been suggested that relativistic shocks in extragalactic sources may accelerate the highest energy cosmic rays. The maximum energy to which cosmic rays can be accelerated depends on the structure of magnetic turbulence near the shock but recent theoretical advances indicate that relativistic shocks are probably unable to accelerate particles to energies much larger than a PeV. We study the hotspots of powerful radiogalaxies, where electrons accelerated at the termination shock emit synchrotron radiation. The turnover of the synchrotron spectrum is typically observed between infrared and optical frequencies, indicating that the maximum energy of non-thermal electrons accelerated at the shock is ≲ TeV for a canonical magnetic field of ˜100 μG. Based on theoretical considerations we show that this maximum energy cannot be constrained by synchrotron losses as usually assumed, unless the jet density is unreasonably large and most of the jet upstream energy goes to non-thermal particles. We test this result by considering a sample of hotspots observed with high spatial resolution at radio, infrared and optical wavelengths.

  17. Cooling wall

    SciTech Connect

    Nosenko, V.I.

    1995-07-01

    Protecting the shells of blast furnaces is being resolved by installing cast iron cooling plates. The cooling plates become non-operational in three to five years. The problem is that defects occur in manufacturing the cooling plates. With increased volume and intensity of work placed on blast furnaces, heat on the cast iron cooling plates reduces their reliability that limits the interim repair period of blast furnaces. Scientists and engineers from the Ukraine studied this problem for several years, developing a new method of cooling the blast furnace shaft called the cooling wall. Traditional cast iron plates were replaced by a screen of steel tubes, with the area between the tubes filled with fireproof concrete. Before placing the newly developed furnace shaft into operation, considerable work was completed such as theoretical calculations, design, research of temperature fields and tension. Continual testing over many years confirms the value of this research in operating blast furnaces. The cooling wall works with water cooling as well as vapor cooling and is operating in 14 blast furnaces in the Ukraine and two in Russia, and has operated for as long as 14 years.

  18. The mechanism of slow hot-hole cooling in lead-iodide perovskite: first-principles calculation on carrier lifetime from electron-phonon interaction.

    PubMed

    Kawai, Hiroki; Giorgi, Giacomo; Marini, Andrea; Yamashita, Koichi

    2015-05-13

    We report on an analysis of hot-carrier lifetimes from electron-phonon interaction in lead iodide perovskites using first-principles calculations. Our calculations show that the holes in CsPbI3 have very long lifetimes in the valence band region situated 0.6 eV below the top of the valence band. On the other hand, no long lifetime is predicted in PbI3(-). These different results reflect the different electronic density of states (DOSs) in the valence bands, that is, a small DOS for the former structure while a sharp DOS peak for the latter structure. We propose a reduction of the relaxation paths in the small valence DOS as being the origin of the slow hot-hole cooling. Analyzing the generalized Eliashberg functions, we predict that different perovskite A-site cations do not have an impact on the carrier decay mechanism. The similarity between the DOS structures of CsPbI3 and CH3NH3PbI3 enables us to extend the description of the decay mechanism of fully inorganic CsPbI3 to its organic-inorganic counterpart, CH3NH3PbI3. PMID:25807270

  19. Noise and Bandwidth Measurements of Diffusion-Cooled Nb Hot-Electron Bolometer Mixers at Frequencies Above the Superconductive Energy Gap

    NASA Technical Reports Server (NTRS)

    Wyss, R. A.; Karasik, B. S.; McGrath, W. R.; Bumble, B.; LeDuc, H.

    1999-01-01

    Diffusion-cooled Nb hot-electron bolometer (HEB) mixers have the potential to simultaneously achieve high intermediate frequency (IF) bandwidths and low mixer noise temperatures for operation at THz frequencies (above the superconductive gap energy). We have measured the IF signal bandwidth at 630 GHz of Nb devices with lengths L = 0.3, 0.2, and 0.1 micrometer in a quasioptical mixer configuration employing twin-slot antennas. The 3-dB EF bandwidth increased from 1.2 GHz for the 0.3 gm long device to 9.2 GHz for the 0.1 gm long device. These results demonstrate the expected 1/L squared dependence of the IF bandwidth at submillimeter wave frequencies for the first time, as well as the largest EF bandwidth obtained to date. For the 0.1 gm device, which had the largest bandwidth, the double sideband (DSB) noise temperature of the receiver was 320-470 K at 630 GHz with an absorbed LO power of 35 nW, estimated using the isothermal method. A version of this mixer with the antenna length scaled for operation at 2.5 THz has also been tested. A DSB receiver noise temperature of 1800 plus or minus 100 K was achieved, which is about 1,000 K lower than our previously reported results. These results demonstrate that large EF bandwidth and low-noise operation of a diffusion-cooled HEB mixer is possible at THz frequencies with the same device geometry.

  20. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  1. An optical-optical double resonance probe of the lowest triplet state of jet-cooled thiophosgene: Rovibronic structures and electronic relaxation

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takashige; Lim, Edward C.; Judge, Richard H.; Moule, David C.

    2006-03-01

    The vibrational structure, rotational structure, and electronic relaxation of the "dark" T1A23(n,π*) state of jet-cooled thiophosgene have been investigated by two-color S2←T1←S0 optical-optical double resonance (OODR) spectroscopy, which monitors the S2→S0 fluorescence generated by S2←T1 excitation. This method is capable of isolating the T1 vibrational structure into a1, b1, and b2 symmetry blocks. The fluorescence-detected vibrational structure of the Tz spin state of T1 shows that the CS stretching frequency as well as the barrier height for pyramidal deformation are significantly greater in the A23(n,π*) state than in the corresponding A21(n,π*) state. The differing vibrational parameters of the T1 thiophosgene relative to the S1 thiophosgene can be attributed to the motions of unpaired electrons that are better correlated when they are in the excited singlet state than when they are in the triplet state of same electron configuration. A set of T1 structural parameters and the information concerning the T1 spin states have been obtained from least-square fittings of the rotationally resolved T1←S0 excitation spectrum. The nearly degenerate ∣x⟩ and ∣y⟩ spin states are well removed from ∣z⟩ spin component, indicating that T1 thiophosgene is a good example of case (ab) coupling. The decay of the ∣z⟩ spin state of T1 thiophosgene, obtained from time-resolved S2←T1←S0 OODR experiment, is characteristic of strong-coupling intermediate-case decay in which an initial rapid decay is followed by recurrences and/or a long-lived quasiexponential decay.

  2. Spectroscopy of jet-cooled AlMn and trends in the electronic structure of the 3d transition metal aluminides

    NASA Astrophysics Data System (ADS)

    Behm, Jane M.; Morse, Michael D.

    1994-10-01

    Jet-cooled diatomic AlMn has been spectroscopically investigated and is shown to possess a 5Πi ground state deriving from the Al (3s23p1,2P0)+Mn (3d54s2,6S) separated atom limit. This implies that the aluminum atom favors a 3pπ approach to the manganese atom, a result that is in agreement with previous studies on the related AlCa and AlZn molecules. The ground state bond length has been measured as 2.6384±0.0010 Å, a value which includes corrections due to spin-uncoupling effects in the X 5Πi state. It is suggested that the 5Πi state emerges as the ground state due to a particularly favorable configuration interaction with a low-lying 5Πi state that derives from the interaction of Al (3s23p1,2P0)+Mn [3d6(5D)4s1,6D]. Combination of the atoms in this excited state leads to a strong σ2 covalent bond via a 3pσAl-4sσMn interaction, which causes this excited electronic state to drop in energy so that it is expected to lie within a few thousand cm-1 of the ground electronic state. Following a discussion of the spectroscopic results on AlMn, an overall summary of the spectroscopic results on the 3d series of transition metal aluminides is presented, along with predictions of the ground electronic states of the as yet unobserved AlSc, AlTi, and AlFe molecules.

  3. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 2; Waves, Precipitating Ring Current Ions, and Thermal Electron Heating

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.

    2006-01-01

    This paper is dedicated to further presentations and discussions of the results from our new global self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2006; here referred to as Paper 1]. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation [for details see Paper 1]. To demonstrate the effects of the EMIC wave propagation and refraction on the RC proton precipitations and heating of the thermal plasmaspheric electrons we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. Firstly, the wave induced precipitations have a quite fine structure, and are highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 (raised dot) 10(exp 6) [(cm (raised dot) s (raised dot) sr)(sup -l)] are observed during the main and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not simply connected to the most intense EMIC waves. The character of the EMIC wave power spectral density distribution over the equatorial wave normal angle is an extremely crucial for the effectiveness of the RC ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from other ring current model [Kozyra et al., 1997] reveals that although we observe a qualitative agreement between localizations of the wave induced fluxes in the models, there is no quantitative agreement between the magnitudes of these fluxes. These differences are mainly due to a qualitative difference between the characters of the EMIC wave power spectral density distributions over the equatorial wave normal angle. Finally, the two energy sources to the

  4. Electromagnetic effects on geodesic acoustic modes

    SciTech Connect

    Bashir, M. F.; Smolyakov, A. I.; Elfimov, A. G.; Melnikov, A. V.; Murtaza, G.

    2014-08-15

    By using the full electromagnetic drift kinetic equations for electrons and ions, the general dispersion relation for geodesic acoustic modes (GAMs) is derived incorporating the electromagnetic effects. It is shown that m = 1 harmonic of the GAM mode has a finite electromagnetic component. The electromagnetic corrections appear for finite values of the radial wave numbers and modify the GAM frequency. The effects of plasma pressure β{sub e}, the safety factor q, and the temperature ratio τ on GAM dispersion are analyzed.

  5. The CMS Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Ryan, M.

    2008-06-01

    The CMS experiment at the CERN Large Hadron Collider has placed great emphasis on precise calorimetry. The electromagnetic calorimeter (ECAL) contains 75000 scintillating lead tungstate crystals that are read out using sophisticated electronics; this paper describes these technologies and how they were implemented in the calorimeter. The results of pre-calibration measurements for the detector modules are detailed. Installation of the ECAL into the underground cavern has commenced and the commissioning process and its status are discussed. The experiment is scheduled to start in 2008 and prospects for the first year of operation and running are given.

  6. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  7. ATHENA X-IFU detector cooling chain

    NASA Astrophysics Data System (ADS)

    Branco, M. B. C.; Charles, I.; Butterworth, J.

    2014-07-01

    The TES (Transition Edge Sensors) micro-calorimeter detector technology in the X-IFU instrument for ATHENA (Astrophyics of the Hot and Energetic universe - Europe's next generation X-ray observatory ATHENA) will require cooling down to 50 mK, and a stable and quiet Electro-Magnetic and micro-vibrations environment. In order to achieve this temperature and environment, a cooling chain integrated in a compact cryostat with an optimized electromagnetic environment has to be developed. Critical technology developments are covered, such as mechanical cryocoolers, support structures, radiative and EMC shields, micro-vibrations reduction, and others.

  8. Estimation of electron concentration in plasma and plasma frequency in the vicinity of a hypersonic aircraft that moves in atmosphere and analysis of propagation frequencies of electromagnetic waves in such plasma

    NASA Astrophysics Data System (ADS)

    Fedorov, V. A.

    2016-05-01

    Electron concentration in plasma and plasma frequency are estimated for the plasma that is formed in the vicinity of a hypersonic aircraft that moves in atmosphere. The frequencies of electromagnetic waves that may propagate in plasma emerging in the vicinity of the aircraft are determined. Formulas that make it possible to analytically (rather than graphically) calculate electron concentration in plasma at altitudes of 30, 60, and 90 km are derived for two speeds. Several specific features of variations in the electron concentration in plasma depending on the above altitudes and speeds are presented. Quasi-periodic variations in the plasma concentration can be obtained using an increase and decrease in the speed of aircraft.

  9. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.

    PubMed

    Subramaniam, Chandramouli; Yasuda, Yuzuri; Takeya, Satoshi; Ata, Seisuke; Nishizawa, Ayumi; Futaba, Don; Yamada, Takeo; Hata, Kenji

    2014-03-01

    Increasing functional complexity and dimensional compactness of electronic devices have led to progressively higher power dissipation, mainly in the form of heat. Overheating of semiconductor-based electronics has been the primary reason for their failure. Such failures originate at the interface of the heat sink (commonly Cu and Al) and the substrate (silicon) due to the large mismatch in thermal expansion coefficients (∼300%) of metals and silicon. Therefore, the effective cooling of such electronics demands a material with both high thermal conductivity and a similar coefficient of thermal expansion (CTE) to silicon. Addressing this demand, we have developed a carbon nanotube-copper (CNT-Cu) composite with high metallic thermal conductivity (395 W m(-1) K(-1)) and a low, silicon-like CTE (5.0 ppm K(-1)). The thermal conductivity was identical to that of Cu (400 W m(-1) K(-1)) and higher than those of most metals (Ti, Al, Au). Importantly, the CTE mismatch between CNT-Cu and silicon was only ∼10%, meaning an excellent compatibility. The seamless integration of CNTs and Cu was achieved through a unique two-stage electrodeposition approach to create an extensive and continuous interface between the Cu and CNTs. This allowed for thermal contributions from both Cu and CNTs, resulting in high thermal conductivity. Simultaneously, the high volume fraction of CNTs balanced the thermal expansion of Cu, accounting for the low CTE of the CNT-Cu composite. The experimental observations were in good quantitative concurrence with the theoretically described 'matrix-bubble' model. Further, we demonstrated identical in-situ thermal strain behaviour of the CNT-Cu composite to Si-based dielectrics, thereby generating the least interfacial thermal strain. This unique combination of properties places CNT-Cu as an isolated spot in an Ashby map of thermal conductivity and CTE. Finally, the CNT-Cu composite exhibited the greatest stability to temperature as indicated by its low

  10. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.

    PubMed

    Subramaniam, Chandramouli; Yasuda, Yuzuri; Takeya, Satoshi; Ata, Seisuke; Nishizawa, Ayumi; Futaba, Don; Yamada, Takeo; Hata, Kenji

    2014-03-01

    Increasing functional complexity and dimensional compactness of electronic devices have led to progressively higher power dissipation, mainly in the form of heat. Overheating of semiconductor-based electronics has been the primary reason for their failure. Such failures originate at the interface of the heat sink (commonly Cu and Al) and the substrate (silicon) due to the large mismatch in thermal expansion coefficients (∼300%) of metals and silicon. Therefore, the effective cooling of such electronics demands a material with both high thermal conductivity and a similar coefficient of thermal expansion (CTE) to silicon. Addressing this demand, we have developed a carbon nanotube-copper (CNT-Cu) composite with high metallic thermal conductivity (395 W m(-1) K(-1)) and a low, silicon-like CTE (5.0 ppm K(-1)). The thermal conductivity was identical to that of Cu (400 W m(-1) K(-1)) and higher than those of most metals (Ti, Al, Au). Importantly, the CTE mismatch between CNT-Cu and silicon was only ∼10%, meaning an excellent compatibility. The seamless integration of CNTs and Cu was achieved through a unique two-stage electrodeposition approach to create an extensive and continuous interface between the Cu and CNTs. This allowed for thermal contributions from both Cu and CNTs, resulting in high thermal conductivity. Simultaneously, the high volume fraction of CNTs balanced the thermal expansion of Cu, accounting for the low CTE of the CNT-Cu composite. The experimental observations were in good quantitative concurrence with the theoretically described 'matrix-bubble' model. Further, we demonstrated identical in-situ thermal strain behaviour of the CNT-Cu composite to Si-based dielectrics, thereby generating the least interfacial thermal strain. This unique combination of properties places CNT-Cu as an isolated spot in an Ashby map of thermal conductivity and CTE. Finally, the CNT-Cu composite exhibited the greatest stability to temperature as indicated by its low

  11. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  12. Colouring cryo-cooled crystals: online microspectrophotometry

    PubMed Central

    McGeehan, John; Ravelli, Raimond B. G.; Murray, James W.; Owen, Robin Leslie; Cipriani, Florent; McSweeney, Sean; Weik, Martin; Garman, Elspeth F.

    2009-01-01

    X-rays can produce a high concentration of radicals within cryo-cooled macromolecular crystals. Some radicals have large extinction coefficients in the visible (VIS) range of the electromagnetic spectrum, and can be observed optically and spectrally. An online microspectrophotometer with high temporal resolution has been constructed that is capable of measuring UV/VIS absorption spectra (200–1100 nm) during X-ray data collection. The typical X-ray-induced blue colour that is characteristic of a wide range of cryo-conditions has been identified as trapped solvated electrons. Disulphide-containing proteins are shown to form disulphide radicals at millimolar concentrations, with absorption maxima around 400 nm. The solvated electrons and the disulphide radicals seem to have a lifetime in the range of seconds up to minutes at 100 K. The temperature dependence of the kinetics of X-ray-induced radical formation is different for the solvated electrons compared with the disulphide radicals. The online microspectrophotometer provides a technique complementary to X-ray diffraction for analysing and characterizing intermediates and redox states of proteins and enzymes. PMID:19240328

  13. Flow-Induced Vibration of a Reed in a Channel: Effect of Reed Shape on Convective Heat Transfer with Application to Electronic Cooling

    NASA Astrophysics Data System (ADS)

    Rips, Aaron; Shoele, Kourosh; Glezer, Ari; Mittal, Rajat

    2015-11-01

    Flow-induced vibration of a reed (a thin plate or flag) in a channel can improve heat transfer efficiency in forced convection applications, allowing for more heat transfer for the same fan power. Such systems have wide ranging applications in electronic and power cooling. We investigate the effect of 3D reed shape on heat transfer enhancement. To study 3D effects, we first use 2D fluid-structure interaction (FSI) simulations of an optimized reed (in terms of mass and stiffness) to generate a prescribed reed motion. We then apply that motion to a pseudo 3D reed (i.e. infinitely stiff in the spanwise direction) and study the heat transfer enhancement in a 3D channel. This method allows us to explore a large parameter space exhaustively, and using this method, we examine the effect of several parameters, such as reed planform and spanwise gap, on the heat transfer enhancements for forced convection in a channel. Simulations indicate that these geometrical feature have a significant effect on the vortex dynamics in the wake as well as the heat transfer efficiency. This work was supported by grants from AFOSR, EPRI and NSF.

  14. Experimental investigation of photon multiplicity and radiation cooling for 150 GeV electrons/positrons traversing diamond and Si crystals

    NASA Astrophysics Data System (ADS)

    Kirsebom, K.; Medenwaldt, R.; Mikkelsen, U.; Møller, S. P.; Paludan, K.; Uggerhøj, E.; Worm, T.; Elsener, K.; Ballestrero, S.; Sona, P.; Romano, J.; Connell, S. H.; Sellschop, J. P. F.; Avakian, R. O.; Avetisian, A. E.; Taroian, S. P.

    1996-10-01

    Detailed experimental investigations of photon multiplicities for 150 GeV electrons/positrons traversing thin diamond and Si crystals have been performed. Along axial directions up to 10 photons are emitted in 1.5 mm diamond for a radiative energy loss larger than 4 GeV. This corresponds to a mean free path for photon emission of about two orders of magnitude shorter than in an amorphous target. This is in agreement with an enhanced radiative energy loss of ˜ 30 times that in amorphous targets. The strongly enhanced photon emission leads to radiation cooling which can result in particles exiting the crystal with a reduced angle to the axis. For incidences along planar directions the average multiplicity is still above one, even for the thinnest crystals used in the present experiment, so a single-photon spectrum can only be obtained for thicknesses ≤50 μm, which, on the other hand, is comparable to the coherence lengths for GeV photons, leading to destruction of the coherent effects.

  15. Cool Vest

    NASA Technical Reports Server (NTRS)

    1982-01-01

    ILC, Dover Division's lightweight cooling garment, called Cool Vest was designed to eliminate the harmful effects of heat stress; increases tolerance time in hot environments by almost 300 percent. Made of urethane-coated nylon used in Apollo, it works to keep the body cool, circulating chilled water throughout the lining by means of a small battery-powered pump. A pocket houses the pump, battery and the coolant which can be ice or a frozen gel, a valve control allows temperature regulation. One version is self-contained and portable for unrestrained movement, another has an umbilical line attached to an external source of coolant, such as standard tap water, when extended mobility is not required. It is reported from customers that the Cool Vest pays for itself in increased productivity in very high temperatures.

  16. Cool School.

    ERIC Educational Resources Information Center

    Stephens, Suzanne

    1980-01-01

    The design for Floyd Elementary School in Miami (Florida) seeks to harness solar energy to provide at least 70 percent of the annual energy for cooling needs and 90 percent for hot water. (Author/MLF)

  17. Acoustical Convective Cooling Or Heating

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.; Robey, Judith L.

    1988-01-01

    Small, efficient ultrasonic device circulates fluid. Vibrating at ultrasonic frequency, piezoelectric driver sets up vortexes transfering heat to or from object in space. Used on Earth to apply localized or concentrated cooling to individual electronic components or other small parts.

  18. Electromagnetic Transport from Microtearing Mode Turbulence

    SciTech Connect

    Guttenfelder, W.; Kaye, S. M.; Bell, R. E.; Hammett, G. W.; LeBlanc, B. P.; Mikkelsen, D. R.; Candy, J.; Nevins, W. M.; Wang, E.; Yuh, H.

    2011-04-15

    This Letter presents nonlinear gyrokinetic simulations of microtearing mode turbulence. The simulations include collisional and electromagnetic effects and use experimental parameters from a high-{beta} discharge in the National Spherical Torus Experiment. The predicted electron thermal transport is comparable to that given by experimental analysis, and it is dominated by the electromagnetic contribution of electrons free-streaming along the resulting stochastic magnetic field line trajectories. Experimental values of flow shear can significantly reduce the predicted transport.

  19. Electromagnetic Transport From Microtearing Mode Turbulence

    SciTech Connect

    Guttenfelder, W; Kaye, S M; Nevins, W M; Wang, E; Bell, R E; Hammett, G W; LeBlanc, B P; Mikkelsen, D R

    2011-03-23

    This Letter presents non-linear gyrokinetic simulations of microtearing mode turbulence. The simulations include collisional and electromagnetic effects and use experimental parameters from a high beta discharge in the National Spherical Torus Experiment (NSTX). The predicted electron thermal transport is comparable to that given by experimental analysis, and it is dominated by the electromagnetic contribution of electrons free streaming along the resulting stochastic magnetic field line trajectories. Experimental values of flow shear can significantly reduce the predicted transport.

  20. Electromagnetic topology: Characterization of internal electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  1. Electron

    NASA Astrophysics Data System (ADS)

    Springford, Michael

    1997-03-01

    1. J. J. Thomson and the discovery of the electron A. B. P. Pippard; 2. The isolated electron W. N. Cottingham; 3. The relativistic electron D. I. Olive; 4. The electron glue B. L. Gyorffy; 5. The electron fluid P. Coleman; 6. The magnetic electron G. G. Lonzarich; 7. The paired electron A. J. Leggett; 8. The heavy electron M. Springford; 9. The coherent electron Y. Imry and M. Peskin; 10. The composite electron R. Nicholas; 11. The electron in the cosmos M. S. Longair.

  2. Electron

    NASA Astrophysics Data System (ADS)

    Springford, Michael

    2008-12-01

    1. J. J. Thomson and the discovery of the electron A. B. P. Pippard; 2. The isolated electron W. N. Cottingham; 3. The relativistic electron D. I. Olive; 4. The electron glue B. L. Gyorffy; 5. The electron fluid P. Coleman; 6. The magnetic electron G. G. Lonzarich; 7. The paired electron A. J. Leggett; 8. The heavy electron M. Springford; 9. The coherent electron Y. Imry and M. Peskin; 10. The composite electron R. Nicholas; 11. The electron in the cosmos M. S. Longair.

  3. An experimental and ab initio study of the electronic spectrum of the jet-cooled F{sub 2}BO free radical

    SciTech Connect

    Grimminger, Robert; Clouthier, Dennis J.; Sheridan, Phillip M.

    2014-04-28

    We have studied the B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} laser-induced fluorescence (LIF) spectrum of the jet-cooled F{sub 2}BO radical for the first time. The transition consists of a strong 0{sub 0}{sup 0} band at 446.5 nm and eight weak sequence bands to shorter wavelengths. Single vibronic level emission spectra obtained by laser excitation of individual levels of the B{sup ~} state exhibit two electronic transitions: a very weak, sparse B{sup ~}–X{sup ~} band system in the 450–500 nm region and a stronger, more extensive set of B{sup ~} {sup 2}A{sub 1}–A{sup ~} {sup 2}B{sub 1} bands in the 580–650 nm region. We have also performed a series of high level ab initio calculations to predict the electronic energies, molecular structures, vibrational frequencies, and rotational and spin-rotation constants in the X{sup ~} {sup 2}B{sub 2}, A{sup ~2}B{sub 1} and B{sup ~} {sup 2}A{sub 1} electronic states as an aid to the analysis of the experimental data. The theoretical results have been used as input for simulations of the rotationally resolved B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} 0{sub 0}{sup 0} LIF band and Franck-Condon profiles of the LIF and single vibronic level emission spectra. The agreement between the simulations obtained with purely ab initio parameters and the experimental spectra validates the geometries calculated for the ground and excited states and the conclusion that the radical has C{sub 2v} symmetry in the X{sup ~}, A{sup ~}, and B{sup ~} states. The spectra provide considerable new information about the vibrational energy levels of the X{sup ~} and A{sup ~} states, but very little for the B{sup ~} state, due to the very restrictive Franck-Condon factors in the LIF spectra.

  4. k-space drift due to the density variation as a cause of electromagnetic emission generation of type III solar radio bursts by a non-gyrotropic electron beam

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David; Schmitz, Holger

    2013-04-01

    , in long term evolution of electromagnetic emission generation of type III solar radio bursts. The following improvements and progress in understanding of the radio emission mechanism are made: (i) Improved numerical simulations with larger spatial domain and longer end-simulation times; (ii) The electron beam injection on a density plateau followed by a decreasing density gradient that mimics the Sun-earth system; (iii) Consideration of a ring and shifted ring electron initial velocity distribution functions; (iv) The role of the k-space drift in the radio emission; (v) Estimation of the ECM growth rate and its role in the emission generation. It is worthwhile to note that Ref.[3] proposed mode coupling on the density gradient as a source of radio emission as opposed to the k-space drift advocated in the present work. The situation is analogous to the auroral waves emitted near the plasma frequency in Earth auroral ionosphere [A. Layden, I. H. Cairns, P. A. Robinson, and J. LaBelle, J. Geophys. Res. 116, A12328 (2011)]. [1] D. Tsiklauri, "An alternative to the plasma emission model: Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts", Physics of Plasmas 18, 052903 (2011) [2] R. Pechhacker, D. Tsiklauri, "The effect of electron beam pitch angle and density gradient on solar type III radio bursts", Phys. Plasmas 19, 112903 (2012) [3] R. Pechhacker, D. Tsiklauri, "Electron cyclotron maser emission mode coupling to the z-mode on a longitudinal density gradient in the context of solar type III bursts", Phys. Plasmas 19, 110702 (2012) [4] H. Schmitz, D. Tsiklauri, "k-space drift due to the density variation as a cause of electromagnetic emission generation of type III solar radio bursts by a non-gyrotropic electron beam", Phys. Plasmas, in preparation, (2013)

  5. On steady electromagnetic equilibria

    NASA Astrophysics Data System (ADS)

    Lehnert, B.

    1986-12-01

    The existence of steady electromagnetic equilibrium states predicted by an extended Lorentz invariant formulation of Maxwell's equations is analyzed. General equilibrium solutions are outlined which lead to integrated field quantities of the system, such as total charge qo, magnetic moment Mo, mass mo and angular momentum so. The quantization of moMo/qo in terms of Bohr magnetons is shown to be equivalent to the proposed resonance condition of circulating self-confined radiation. Exact equilibrium solutions were deduced in two simple cases, thereby leading to a so of the same order as that of the electron, and to a qo one order of magnitude larger than the electronic charge. A variational procedure is suggested in search for states of minimum charge, under the subsidiary quantum conditions on moMo/qo and so, i.e., by varying the profile of the electric space charge distribution.

  6. New fine structure cooling rate

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.

    1976-01-01

    One of the dominant electron cooling processes in the ionosphere is caused by electron impact induced fine structure transitions among the ground state levels of atomic oxygen. This fine structure cooling rate is based on theoretical cross sections. Recent advances in the numerical cross section determinations to include polarization effects and more accurate representations of the atomic target result in new lower values. These cross sections are employed in this paper to derive a new fine structure cooling rate which is between 40% and 60% of the currently used rate. A new generalized formula is presented for the cooling rate (from which the fine structure cooling rate is derived), valid for arbitrary mass and temperature difference of the colliding particles and arbitrary inelastic energy difference.

  7. Electromagnetic radiation.

    PubMed

    Ahlbom, Anders; Feychting, Maria

    2003-01-01

    Electromagnetic fields (EMF) are ubiquitous in modern society. It is well known that exposure to strong fields can result in acute effects, such as burns; the mechanisms behind such effects are well established. There is, however, also a concern that long-term exposure to weak fields might have health effects due to an as-yet unknown mechanism. Because of the already widespread exposure, even small health effects could have profound public health implications. Comprehensive research efforts are therefore warranted, and are indeed ongoing. The strongest evidence for health risks is from exposure to fields generated in connection with use of electric power. As for fields used by telecommunications technology, there is still considerably fewer data available and for the time being there is only very weak support for the existence of health effects. However, extensive research activities are ongoing and much more data will be available in the near future. This situation of scientific uncertainty and considerable public concern creates dilemmas for decision makers.

  8. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  9. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  10. Effectiveness-weighted control method for a cooling system

    SciTech Connect

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.

    2015-12-15

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  11. Effectiveness-weighted control of cooling system components

    SciTech Connect

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simmons, Robert E.

    2015-12-22

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  12. Cooling Vest

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  13. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  14. Electromagnetic radiation from beam-plasma instabilities

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Whelan, D. A.

    1982-01-01

    The mechanism by which unstable electrostatic waves of an electron-beam plasma system are converted into observed electromagnetic waves is of great current interest in space plasma physics. Electromagnetic radiation arises from both natural beam-plasma systems, e.g., type III solar bursts and kilometric radiation, and from man-made electron beams injected from rockets and spacecraft. In the present investigation the diagnostic difficulties encountered in space plasmas are overcome by using a large laboratory plasma. A finite diameter (d approximately equal to 0.8 cm) electron beam is injected into a uniform quiescent magnetized afterglow plasma of dimensions large compared with electromagnetic wavelength. Electrostatic waves grow, saturate and decay within the uniform central region of the plasma volume so that linear mode conversion on density gradients can be excluded as a possible generation mechanism for electromagnetic waves.

  15. Advance in MEIC cooling studies

    SciTech Connect

    Zhang, Yuhong; Derbenev, Ya.; Douglas, D.; Hutton, A.; Kimber, A.; Li, R.; Nissen, E.; Tennant,; Zhang, H.

    2013-06-01

    Cooling of ion beams is essential for achieving a high luminosity for MEIC at Jefferson Lab. In this paper, we present the design concept of the electron cooling system for MEIC. In the design, two facilities are required for supporting a multi-staged cooling scheme; one is a 2 MeV DC cooler in the ion pre-booster; the other is a high electron energy (up to 55 MeV) ERL-circulator cooler in the collider ring. The simulation studies of beam dynamics in an ERL-circulator cooler are summarized and followed by a report on technology development for this cooler. We also discuss two proposed experiments for demonstrating high energy cooling with a bunched electron beam and the ERL-circulator cooler.

  16. Cooling Mechanical Oscillators by Coherent Control

    NASA Astrophysics Data System (ADS)

    Frimmer, Martin; Gieseler, Jan; Novotny, Lukas

    2016-10-01

    In optomechanics, electromagnetic fields are harnessed to control a single mode of a mechanically compliant system, while other mechanical degrees of freedom remain unaffected due to the modes' mutual orthogonality and high quality factor. Extension of the optical control beyond the directly addressed mode would require a controlled coupling between mechanical modes. Here, we introduce an optically controlled coupling between two oscillation modes of an optically levitated nanoparticle. We sympathetically cool one oscillation mode by coupling it coherently to the second mode, which is feedback cooled. Furthermore, we demonstrate coherent energy transfer between mechanical modes and discuss its application for ground-state cooling.

  17. Cool Sportswear

    NASA Technical Reports Server (NTRS)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  18. An assessment of hazards caused by electromagnetic interaction on humans present near short-wave physiotherapeutic devices of various types including hazards for users of electronic active implantable medical devices (AIMD).

    PubMed

    Karpowicz, Jolanta; Gryz, Krzysztof

    2013-01-01

    Leakage of electromagnetic fields (EMF) from short-wave radiofrequency physiotherapeutic diathermies (SWDs) may cause health and safety hazards affecting unintentionally exposed workers (W) or general public (GP) members (assisting patient exposed during treatment or presenting there for other reasons). Increasing use of electronic active implantable medical devices (AIMDs), by patients, attendants, and workers, needs attention because dysfunctions of these devices may be caused by electromagnetic interactions. EMF emitted by 12 SWDs (with capacitive or inductive applicators) were assessed following international guidelines on protection against EMF exposure (International Commission on Nonionizing Radiation Protection for GP and W, new European directive 2013/35/EU for W, European Recommendation for GP, and European Standard EN 50527-1 for AIMD users). Direct EMF hazards for humans near inductive applicators were identified at a distance not exceeding 45 cm for W or 62 cm for GP, but for AIMD users up to 90 cm (twice longer than that for W and 50% longer than that for GP because EMF is pulsed modulated). Near capacitive applicators emitting continuous wave, the corresponding distances were: 120 cm for W or 150 cm for both-GP or AIMD users. This assessment does not cover patients who undergo SWD treatment (but it is usually recommended for AIMD users to be careful with EMF treatment).

  19. An Assessment of Hazards Caused by Electromagnetic Interaction on Humans Present near Short-Wave Physiotherapeutic Devices of Various Types Including Hazards for Users of Electronic Active Implantable Medical Devices (AIMD)

    PubMed Central

    Gryz, Krzysztof

    2013-01-01

    Leakage of electromagnetic fields (EMF) from short-wave radiofrequency physiotherapeutic diathermies (SWDs) may cause health and safety hazards affecting unintentionally exposed workers (W) or general public (GP) members (assisting patient exposed during treatment or presenting there for other reasons). Increasing use of electronic active implantable medical devices (AIMDs), by patients, attendants, and workers, needs attention because dysfunctions of these devices may be caused by electromagnetic interactions. EMF emitted by 12 SWDs (with capacitive or inductive applicators) were assessed following international guidelines on protection against EMF exposure (International Commission on Nonionizing Radiation Protection for GP and W, new European directive 2013/35/EU for W, European Recommendation for GP, and European Standard EN 50527-1 for AIMD users). Direct EMF hazards for humans near inductive applicators were identified at a distance not exceeding 45 cm for W or 62 cm for GP, but for AIMD users up to 90 cm (twice longer than that for W and 50% longer than that for GP because EMF is pulsed modulated). Near capacitive applicators emitting continuous wave, the corresponding distances were: 120 cm for W or 150 cm for both—GP or AIMD users. This assessment does not cover patients who undergo SWD treatment (but it is usually recommended for AIMD users to be careful with EMF treatment). PMID:24089662

  20. Quantum states and linear response in dc and electromagnetic fields for the charge current and spin polarization of electrons at the Bi/Si interface with the giant spin-orbit coupling

    SciTech Connect

    Khomitsky, D. V.

    2012-05-15

    An expansion of the nearly free-electron model constructed by Frantzeskakis, Pons, and Grioni [1] describing quantum states at the Bi/Si(111) interface with the giant spin-orbit coupling is developed and applied for the band structure and spin polarization calculation, as well as for the linear response analysis of the charge current and induced spin caused by a dc field and by electromagnetic radiation. It is found that the large spin-orbit coupling in this system may allow resolving the spin-dependent properties even at room temperature and at a realistic collision rate. The geometry of the atomic lattice combined with spin-orbit coupling leads to an anisotropic response for both the current and spin components related to the orientation of the external field. The in-plane dc electric field produces only the in-plane components of spin in the sample, while both the in-plane and out-of-plane spin components can be excited by normally propagating electromagnetic wave with different polarizations.