Science.gov

Sample records for electromechanical endocardial mapping

  1. Noninvasive epicardial and endocardial mapping of premature ventricular contractions

    PubMed Central

    Revishvili, Amiran; Metzner, Andreas; Tsyganov, Alexey; Kalinin, Vitaly; Lemes, Christine; Saguner, Ardan M.; Maurer, Tilman; Deiss, Sebastian; Sopov, Oleg; Labarkava, Eugene; Chmelevsky, Mikhail; Kuck, Karl-Heinz

    2017-01-01

    Aims The aim of the present study was to estimate the accuracy of a novel non-invasive epicardial and endocardial electrophysiology system (NEEES) for mapping ectopic ventricular depolarizations. Methods and results The study enrolled 20 patients with monomorphic premature ventricular contractions (PVCs) or ventricular tachycardia (VT). All patients underwent pre-procedural computed tomography or magnetic resonance imaging of the heart and torso. Radiographic data were semi-automatically processed by the NEEES to reconstruct a realistic 3D model of the heart and torso. In the electrophysiology laboratory, body-surface electrodes were connected to the NEEES followed by unipolar EKG recordings during episodes of PVC/VT. The body-surface EKG data were processed by the NEEES using its inverse-problem solution software in combination with anatomical data from the heart and torso. The earliest site of activation as denoted on the NEEES 3D heart model was compared with the PVC/VT origin using a 3D electroanatomical mapping system. The site of successful catheter ablation served as final confirmation. A total of 21 PVC/VT morphologies were analysed and ablated. The chamber of interest was correctly diagnosed non-invasively in 20 of 21 (95%) PVC/VT cases. In 18 of the 21 (86%) cases, the correct ventricular segment was diagnosed. Catheter ablation resulted in acute success in 19 of the 20 (95%) patients, whereas 1 patient underwent successful surgical ablation. During 6 months of follow-up, 19 of the 20 (95%) patients were free from recurrence off antiarrhythmic drugs. Conclusion The NEEES accurately identified the site of PVC/VT origin. Knowledge of the potential site of the PVC/VT origin may aid the physician in planning a successful ablation strategy. PMID:27207812

  2. Simultaneous Epicardial and Noncontact Endocardial Mapping of the Canine Right Atrium: Simulation and Experiment

    PubMed Central

    Sabouri, Sepideh; Matene, Elhacene; Vinet, Alain; Richer, Louis-Philippe; Cardinal, René; Armour, J. Andrew; Pagé, Pierre; Kus, Teresa; Jacquemet, Vincent

    2014-01-01

    Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals. PMID:24598778

  3. Simultaneous epicardial and noncontact endocardial mapping of the canine right atrium: simulation and experiment.

    PubMed

    Sabouri, Sepideh; Matene, Elhacene; Vinet, Alain; Richer, Louis-Philippe; Cardinal, René; Armour, J Andrew; Pagé, Pierre; Kus, Teresa; Jacquemet, Vincent

    2014-01-01

    Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals.

  4. Electromechanical wave imaging (EWI) validation in all four cardiac chambers with 3D electroanatomic mapping in canines in vivo

    NASA Astrophysics Data System (ADS)

    Costet, Alexandre; Wan, Elaine; Bunting, Ethan; Grondin, Julien; Garan, Hasan; Konofagou, Elisa

    2016-11-01

    Characterization and mapping of arrhythmias is currently performed through invasive insertion and manipulation of cardiac catheters. Electromechanical wave imaging (EWI) is a non-invasive ultrasound-based imaging technique, which tracks the electromechanical activation that immediately follows electrical activation. Electrical and electromechanical activations were previously found to be linearly correlated in the left ventricle, but the relationship has not yet been investigated in the three other chambers of the heart. The objective of this study was to investigate the relationship between electrical and electromechanical activations and validate EWI in all four chambers of the heart with conventional 3D electroanatomical mapping. Six (n  =  6) normal adult canines were used in this study. The electrical activation sequence was mapped in all four chambers of the heart, both endocardially and epicardially using the St Jude’s EnSite 3D mapping system (St. Jude Medical, Secaucus, NJ). EWI acquisitions were performed in all four chambers during normal sinus rhythm, and during pacing in the left ventricle. Isochrones of the electromechanical activation were generated from standard echocardiographic imaging views. Electrical and electromechanical activation maps were co-registered and compared, and electrical and electromechanical activation times were plotted against each other and linear regression was performed for each pair of activation maps. Electromechanical and electrical activations were found to be directly correlated with slopes of the correlation ranging from 0.77 to 1.83, electromechanical delays between 9 and 58 ms and R 2 values from 0.71 to 0.92. The linear correlation between electrical and electromechanical activations and the agreement between the activation maps indicate that the electromechanical activation follows the pattern of propagation of the electrical activation. This suggests that EWI may be used as a novel non-invasive method

  5. Correlation of scintigraphic phase maps with intraoperative epicardial/endocardial maps in patients with activation disturbances

    SciTech Connect

    Dae, M.W.; Botvinick, E.H.; Scheinmann, M.H.; Morady, F.J.; Davis, J.A.; Schechtmann, N.; Frais, M.; Faulkner, D.; O'Connell, W.

    1984-01-01

    To assess the true accuracy of scintigraphic findings, 8 patients (PTS), 6 with pre-excitation (PEX) syndrome and 2 with intractable ventricular tachycardia (VT), were studied by phase analysis, prior to corrective surgery. Sites of earliest phase angle were determined in multiple projections during the conduction disturbance, compared to sites of early ventricular activation determined by epicardial mapping during PEX and, when performed, by endocardial mapping during VT, and to maps previously generated at conventional electrophysiologic study (EPS). Among PEX PTS, Rt and Lt lateral, Lt anterolateral, Rt and Lt posterolateral and posteroseptal bypass pathways mapped at surgery correlated with phase localization. While localization from EPS also correlated well with surgical maps in 4 PTS, 1 PT could not be mapped by EPS and another presented ambiguities. Scintigraphic localization also correlated well with surgical mapping in a PT with a RV VT focus while EPS was suggestive but uncertain. A second PT with VT mapped scintigraphically to originate in a Lt lateral focus, demonstrated a similar localization on EPS, and during surgical mapping, an incision made through the scintigraphic focus terminated VT. Incision in regions of earliest activity in the first VT PT and in PTS with PEX resolved the arrhythmia or interrupted the bypass tract. Phase mapping correlated closely with surface mapping at surgery while providing an accurate, independent method for noninvasive assessment of conduction disturbances and a complementary tool to standard EPS.

  6. Conjunction of Endocardial and Coronary Venous System Mapping to Ablate Ventricular Arrhythmias

    PubMed Central

    Wo, Hung-Ta; Yeh, Jih-Kai; Chang, Po-Cheng; Wen, Ming-Shien; Wang, Chun-Chieh; Chou, Chung-Chuan; Yeh, San-Jou

    2016-01-01

    Background Ablation of idiopathic ventricular arrhythmias (VAs) with epicardial or intramural origins is technically challenging. Herein, we have described the successful ablation of left VAs via the coronary venous system (CVS) in conjunction with endocardial map guided by three-dimensional electroanatomical map in six patients. Methods Out of a total consecutive 84 patients with symptomatic idiopathic VAs, radiofrequency ablation via the CVS was performed on six patients (7%). Furthermore, we reviewed patient records and electrophysiologic studies with respect to clinical characteristics. Results Activation map was conducted in 5 patients, and the earliest activation sites were identified within the CVS. The preceding times to the onset of QRS complex were longer than those at the earliest endocardial sites (36.2 ± 5.6 ms vs. 14.2 ± 6.4 ms, p = 0.02, n = 5). Spiky fractionated long-duration potentials were recorded at the successful ablation sites in all 5 patients. The other patient received pacemapping only because of few spontaneous VAs during the procedure, and the best pacemap spot was found within the CVS. Irrigated catheters were required in 4 out of 6 patients because VAs were temporarily suppressed with regular ones. Conclusions Idiopathic VAs can be ablated via the CVS in conjunction with endocardial mapping. Additionally, spiky fractionated long-duration potential can function as a clue to identify the good ablation site. PMID:27274177

  7. Endocardial substrate mapping for monomorphic ventricular tachycardia ablation in ischemic and non-ischemic cardiomyopathy.

    PubMed

    Fukuzawa, Koji; Yoshida, Akihiro; Kubo, Shinya; Takano, Takatsugu; Kiuchi, Kunihiko; Kanda, Gaku; Takami, Kaoru; Kumagai, Hiroyuki; Torii, Satoko; Takami, Mitsuru; Yokoyama, Mitsuhiro; Hirata, Ken-ichi

    2008-07-18

    We investigated the differences in the endocardial substrates between ischemic cardiomyopathy (ICM) and non-ICM (NICM) by using electro-anatomical mapping and pace-mapping. We studied 18 patients (ICM and NICM, 9 each) with monomorphic ventricular tachycardia (VT) documented by 12-leads ECG. Low voltage area was defined by signal amplitude <1.5 mV. A pace-map QRS morphology that matched VT in >10 of the 12-leads ECG was regarded as a pace-map match. And conduction delay during pace-mapping was defined as the stimulus to QRS interval >or=40 ms. Low voltage area was 53.8 +/- 21.5 and 20.8 +/- 16.7 cm2 in ICM and NICM patients, respectively (P = 0.002). Pace-mapping was assessed in 6 ICM and 9 NICM. Pace-map match with conduction delay were obtained in all the 6 ICM patients. But in NICM patients, pace-map match with conduction delay was obtained in 3 patients. Pace-map match sites where conduction delay was not observed were obtained in 5 patients. Pace-map match could not be obtained in 1 patient. We attempted ablation in 6 ICM and 7 NICM patients. Subsequently, VT recurrence was not observed in ICM but it was observed in 6 of 7 NICM patients (log-rank P = 0.0016). In NICM patients, the arrhythmogenic substrate that represented the abnormal electrogram and conduction delay was observed less within the endocardial surface when compared with that observed in ICM. VT recurrence rate subsequent to endocardial ablation was higher in NICM than in ICM patients.

  8. Orthogonal electrode catheter array for mapping of endocardial focal site of ventricular activation

    SciTech Connect

    Desai, J.M.; Nyo, H.; Vera, Z.; Seibert, J.A.; Vogelsang, P.J. )

    1991-04-01

    Precise location of the endocardial site of origin of ventricular tachycardia may facilitate surgical and catheter ablation of this arrhythmia. The endocardial catheter mapping technique can locate the site of ventricular tachycardia within 4-8 cm2 of the earliest site recorded by the catheter. This report describes an orthogonal electrode catheter array (OECA) for mapping and radiofrequency ablation (RFA) of endocardial focal site of origin of a plunge electrode paced model of ventricular activation in dogs. The OECA is an 8 F five pole catheter with four peripheral electrodes and one central electrode (total surface area 0.8 cm{sup 2}). In eight mongrel dogs, mapping was performed by arbitrarily dividing the left ventricle (LV) into four segments. Each segment was mapped with OECA to find the earliest segment. Bipolar and unipolar electrograms were obtained. The plunge electrode (not visible on fluoroscopy) site was identified by the earliest wave front arrival times of -30 msec or earlier at two or more electrodes (unipolar electrograms) with reference to the earliest recorded surface ECG (I, AVF, and V1). Validation of the proximity of the five electrodes of the OECA to the plunge electrode was performed by digital radiography and RFA. Pathological examination was performed to document the proximity of the OECA to the plunge electrode and also for the width, depth, and microscopic changes of the ablation. To find the segment with the earliest LV activation a total of 10 {plus minus} 3 (mean {plus minus} SD) positions were mapped. Mean arrival times at the two earlier electrodes were -39 {plus minus} 4 msec and -35 {plus minus} 3 msec. Digital radiography showed the plunge electrode to be within the area covered by all five electrodes in all eight dogs. The plunge electrode was within 1 cm2 area of the region of RFA in all eight dogs.

  9. Validation of QwikStar Catheter for left ventricular electromechanical mapping with NOGA XP system.

    PubMed

    Fernandes, Marlos R; Silva, Guilherme V; Zheng, Yi; Oliveira, Edie M; Cardoso, Cristiano O; Canales, John; Sanz-Ruiz, Ricardo; Jimenez-Quevedo, Pilar; Baimbridge, Fred; Perin, Emerson C

    2008-01-01

    Left ventricular electromechanical mapping (LVEM) is a method for mapping the left ventricular cavity in 3 dimensions by use of a catheter that samples points on the endocardial surface. These points provide data on unipolar voltage and linear local shortening, which can then be used to evaluate myocardial ischemia and viability. The new QwikStar multi-electrode catheter, which acquires data from multiple points simultaneously, potentially improves map quality and decreases mapping time in comparison with the single-point NogaStar catheter. Our study sought to validate the QwikStar catheter's LVEM capabilities in a porcine model of chronic ischemia.Eight pigs underwent ameroid placement over the proximal left circumflex artery, to induce chronic ischemia. In 60 days, LVEM was performed on each animal with the NogaStar and QwikStar catheters. Unipolar voltage and linear local shortening results were displayed in 9-segment polar maps. The unipolar voltage data from both maps were then correlated by means of linear regression.There were no adverse events during LVEM. Mapping time was similar for both groups (QwikStar, 44.6 +/- 25.62 min; NogaStar, 65.75 +/- 25.33 min; P = 0.13). Results of mean unipolar voltage maps acquired with the 2 catheters showed a moderate correlation (r =0.59, P <0.001). Selecting segments with more than 6 point samples increased the Pearson coefficient to 0.69 (P <0.001).Our findings show that the QwikStar catheter enables the reproducible performance of LVEM by sampling fewer points, which shortens procedure time, decreases manipulation of the left ventricular cavity, and might increase procedural safety.

  10. Usefulness of ventricular endocardial electric reconstruction from body surface potential maps to noninvasively localize ventricular ectopic activity in patients.

    PubMed

    Lai, Dakun; Sun, Jian; Li, Yigang; He, Bin

    2013-06-07

    As radio frequency (RF) catheter ablation becomes increasingly prevalent in the management of ventricular arrhythmia in patients, an accurate and rapid determination of the arrhythmogenic site is of important clinical interest. The aim of this study was to test the hypothesis that the inversely reconstructed ventricular endocardial current density distribution from body surface potential maps (BSPMs) can localize the regions critical for maintenance of a ventricular ectopic activity. Patients with isolated and monomorphic premature ventricular contractions (PVCs) were investigated by noninvasive BSPMs and subsequent invasive catheter mapping and ablation. Equivalent current density (CD) reconstruction (CDR) during symptomatic PVCs was obtained on the endocardial ventricular surface in six patients (four men, two women, years 23-77), and the origin of the spontaneous ectopic activity was localized at the location of the maximum CD value. Compared with the last (successful) ablation site (LAS), the mean and standard deviation of localization error of the CDR approach were 13.8 and 1.3 mm, respectively. In comparison, the distance between the LASs and the estimated locations of an equivalent single moving dipole in the heart was 25.5 ± 5.5 mm. The obtained CD distribution of activated sources extending from the catheter ablation site also showed a high consistency with the invasively recorded electroanatomical maps. The noninvasively reconstructed endocardial CD distribution is suitable to predict a region of interest containing or close to arrhythmia source, which may have the potential to guide RF catheter ablation.

  11. Usefulness of ventricular endocardial electric reconstruction from body surface potential maps to noninvasively localize ventricular ectopic activity in patients

    NASA Astrophysics Data System (ADS)

    Lai, Dakun; Sun, Jian; Li, Yigang; He, Bin

    2013-06-01

    As radio frequency (RF) catheter ablation becomes increasingly prevalent in the management of ventricular arrhythmia in patients, an accurate and rapid determination of the arrhythmogenic site is of important clinical interest. The aim of this study was to test the hypothesis that the inversely reconstructed ventricular endocardial current density distribution from body surface potential maps (BSPMs) can localize the regions critical for maintenance of a ventricular ectopic activity. Patients with isolated and monomorphic premature ventricular contractions (PVCs) were investigated by noninvasive BSPMs and subsequent invasive catheter mapping and ablation. Equivalent current density (CD) reconstruction (CDR) during symptomatic PVCs was obtained on the endocardial ventricular surface in six patients (four men, two women, years 23-77), and the origin of the spontaneous ectopic activity was localized at the location of the maximum CD value. Compared with the last (successful) ablation site (LAS), the mean and standard deviation of localization error of the CDR approach were 13.8 and 1.3 mm, respectively. In comparison, the distance between the LASs and the estimated locations of an equivalent single moving dipole in the heart was 25.5 ± 5.5 mm. The obtained CD distribution of activated sources extending from the catheter ablation site also showed a high consistency with the invasively recorded electroanatomical maps. The noninvasively reconstructed endocardial CD distribution is suitable to predict a region of interest containing or close to arrhythmia source, which may have the potential to guide RF catheter ablation.

  12. Epicardial-endocardial breakthrough during stable atrial macroreentry: Evidence from ultra-high-resolution 3-dimensional mapping.

    PubMed

    Pathik, Bhupesh; Lee, Geoffrey; Sacher, Frédéric; Haïssaguerre, Michel; Jaïs, Pierre; Massoullié, Grégoire; Derval, Nicolas; Sanders, Prashanthan; Kistler, Peter; Kalman, Jonathan M

    2017-08-01

    Evidence for epicardial-endocardial breakthrough (EEB) is derived from mapping inferences in patients with atrial fibrillation who may also have focal activations. The purpose of this study was to investigate whether EEB could be discerned during stable right atrial (RA) macroreentry using high-density high-spatial resolution 3-dimensional mapping. Macroreentry was diagnosed using 3-dimensional mapping and entrainment. Bipolar maps were reviewed for EEB defined as (1) presence of focal endocardial activation with radial spread unaccounted for by an endocardial wavefront and (2) present with the same timing on every tachycardia cycle. The EEB site was always in proximity to a line of endocardial conduction slowing or block. Distance and conduction velocity from the line of block to the EEB site was calculated. Electrograms at EEB sites were individually analyzed for morphology and to confirm direction of activation. Entrainment was performed at EEB sites. Twenty-six patients were studied. Fourteen examples of EEB were seen: 11 at the posterior RA (4 at the superior portion of the posterior wall and 7 at the inferior section) and 1 each at the cavotricuspid isthmus postablation, RA septum, and inferolateral RA. The mean area of the EEB site was 0.6 ± 0.2 cm(2). A mean of 79.5% ± 18.6% of unipolar electrograms at the EEB site demonstrated an rS morphology. The mean distance and conduction velocity from the line of endocardial block to the EEB site at the posterior RA was 13.6 ± 2.3 mm and 59.3 ± 12.3 cm/s, respectively. In 4 patients, entrainment demonstrated that EEB sites were within the circuit and in 1 of these patients critical to arrhythmia maintenance. Activation maps during tachycardia and coronary sinus pacing demonstrated EEB at the same anatomic site. EEB sites were demonstrated in stable atrial macroreentry supported by systematic entrainment confirmation and demonstration of the same phenomenon during pacing. Copyright © 2017 Heart Rhythm Society

  13. Electromechanical Mapping With MRI Tagging and Epicardial Sock Electrodes

    PubMed Central

    McVeigh, Elliot; Faris, Owen; Ennis, Dan; Helm, Patrick; Evans, Frank

    2005-01-01

    Methods currently exist for the precise measurement of local three-dimensional myocardial motion noninvasivly with magnetic resonace imaging tagging. From these motion estimates, strain images representing the local deformation of the myocardium can be formed to show local myocardial contraction. These images clearly show the sequence of mechanical events during the activation and relaxation of the heart, making them ideal to visualize abnormalities caused by asynchronous electrical activation or ischemia. Coupled with the near simultaneous mapping of electrical depolarization with a sock electrode array, we can investigate the relationship between electical activity and mechanical function on a local level in the in vivo heart. Registered fiber angle maps can be also be obtained in the same heart with diffusion magnetic resonance imaging to assist in the construction of the electromechanical model of the whole heart. PMID:12539100

  14. Quantification of the Transmural Dynamics of Atrial Fibrillation by Simultaneous Endocardial and Epicardial Optical Mapping in an Acute Sheep Model

    PubMed Central

    Gutbrod, Sarah R.; Walton, Richard; Gilbert, Stephen; Meillet, Valentin; Jaïs, Pierre; Hocini, Mélèze; Haïssaguerre, Michel; Dubois, Rémi; Bernus, Olivier; Efimov, Igor

    2015-01-01

    Background Therapy strategies for atrial fibrillation based on electrical characterization are becoming viable personalized medicine approaches to treat a notoriously difficult disease. In light of these approaches that rely on high-density surface mapping, this study aims to evaluate the presence of three-dimensional electrical substrate variations within the transmural wall during acute episodes of atrial fibrillation Methods and Results Optical signals were simultaneously acquired from the epicardial and endocardial tissue during acute fibrillation in ovine isolated left atria. Dominant frequency, regularity index, propagation angles and phase dynamics were assessed and correlated across imaging planes to gauge the synchrony of the activation patterns compared to paced rhythms. Static frequency parameters were well correlated spatially between the endocardium and the epicardium (dominant frequency, 0.79±0.06 and regularity index, 0.93±0.009). However, dynamic tracking of propagation vectors and phase singularity trajectories revealed discordant activity across the transmural wall. The absolute value of the difference in the number, spatial stability, and temporal stability of phase singularities between the epicardial and endocardial planes was significantly greater than 0 with a median difference of 1.0, 9.27%, and 19.75%, respectively. The number of wavefronts with respect to time was significantly less correlated and the difference in propagation angle was significantly larger in fibrillation compared to paced rhythms. Conclusion Atrial fibrillation substrates are dynamic three-dimensional structures with a range of discordance between the epicardial and endocardial tissue. The results of this study suggest that transmural propagation may play a role in AF maintenance mechanisms. PMID:25713215

  15. High-resolution endocardial and epicardial optical mapping in a sheep model of stretch-induced atrial fibrillation.

    PubMed

    Filgueiras-Rama, David; Martins, Raphael Pedro; Ennis, Steven R; Mironov, Sergey; Jiang, Jiang; Yamazaki, Masatoshi; Kalifa, Jérôme; Jalife, Josè; Berenfeld, Omer

    2011-07-29

    Atrial fibrillation (AF) is a complex cardiac arrhythmia with high morbidity and mortality.(1,2) It is the most common sustained cardiac rhythm disturbance seen in clinical practice and its prevalence is expected to increase in the coming years.(3) Increased intra-atrial pressure and dilatation have been long recognized to lead to AF,(1,4) which highlights the relevance of using animal models and stretch to study AF dynamics. Understanding the mechanisms underlying AF requires visualization of the cardiac electrical waves with high spatial and temporal resolution. While high-temporal resolution can be achieved by conventional electrical mapping traditionally used in human electrophysiological studies, the small number of intra-atrial electrodes that can be used simultaneously limits the spatial resolution and precludes any detailed tracking of the electrical waves during the arrhythmia. The introduction of optical mapping in the early 90's enabled wide-field characterization of fibrillatory activity together with sub-millimeter spatial resolution in animal models(5,6) and led to the identification of rapidly spinning electrical wave patterns (rotors) as the sources of the fibrillatory activity that may occur in the ventricles or the atria.(7-9) Using combined time- and frequency-domain analyses of optical mapping it is possible to demonstrate discrete sites of high frequency periodic activity during AF, along with frequency gradients between left and right atrium. The region with fastest rotors activates at the highest frequency and drives the overall arrhythmia.(10,11) The waves emanating from such rotor interact with either functional or anatomic obstacles in their path, resulting in the phenomenon of fibrillatory conduction.(12) Mapping the endocardial surface of the posterior left atrium (PLA) allows the tracking of AF wave dynamics in the region with the highest rotor frequency. Importantly, the PLA is the region where intracavitary catheter-based ablative

  16. Comparison of Left Ventricular Electromechanical Mapping and Left Ventricular Angiography

    PubMed Central

    Sarmento-Leite, Rogerio; Silva, Guilherme V.; Dohman, Hans F.R.; Rocha, Ricardo Mourilhe; Dohman, Hans J.F.; de Mattos, Nelson Durval S.G.; Carvalho, Luis Antonio; Gottschall, Carlos A.M.; Perin, Emerson C.

    2003-01-01

    We performed this prospective cohort study to correlate the findings of left ventricular angiography (LVA) and NOGA™ left ventricular electromechanical mapping (LVEM) in the evaluation of cardiac wall motion and also to establish standards for wall motion assessment by LVEM. Fifty-five patients (35 men; mean age, 60.4 ± 11.8 years) eligible for elective left cardiac catheterization underwent LVA and LVEM. Wall motion scores, LV ejection fractions (LVEF), and LV volumes derived from LVA versus LVEM data were compared and analyzed statistically. Receiver operating characteristic (ROC) curves were used to assess the accuracy of LVEM in distinguishing between normal, hypokinetic, and akinetic/dyskinetic wall motion. Mean LVEM procedure time was 37 ± 11 minutes. The LVEM and LVA findings differed for mean LVEF (55% ± 13% vs 36% ± 9%), mean end-systolic volume (56 ± 13 mL vs 36 ± 10 mL), and mean end-diastolic volume (174 ± 104 mL vs 123 ± 65 mL). Mean wall motion scores (± SD) for normokinetic, hypokinetic, and akinetic/dyskinetic segments were 13.9% ± 5.6%, 8.3% ± 5.2%, and 3.2% ± 3.1%, respectively. Cutpoints for differentiating between wall motion types were 12% and 6%. The ROC curves showed LVEM to have a 93% accuracy in differentiating between normokinetic and akinetic/dyskinetic segments and a 73% accuracy between normokinetic and hypokinetic segments. These data suggest that LVEM can differentiate between normal and abnormal cardiac wall motion, although it is more accurate at differentiating between normokinetic and akinetic/dyskinetic motion than between normokinetic and hypokinetic motion. (Tex Heart Inst J 2003;30:19–26) PMID:12638666

  17. Non-contact left ventricular endocardial mapping in cardiac resynchronisation therapy

    PubMed Central

    Lambiase, P D; Rinaldi, A; Hauck, J; Mobb, M; Elliott, D; Mohammad, S; Gill, J S; Bucknall, C A

    2004-01-01

    Background: Up to 30% of patients with heart failure do not respond to cardiac resynchronisation therapy (CRT). This may reflect placement of the coronary sinus lead in regions of slow conduction despite optimal positioning on current criteria. Objectives: To characterise the effect of CRT on left ventricular activation using non-contact mapping and to examine the electrophysiological factors influencing optimal left ventricular lead placement. Methods and results: 10 patients implanted with biventricular pacemakers were studied. In six, the coronary sinus lead was found to be positioned in a region of slow conduction with an average conduction velocity of 0.4 m/s, v 1.8 m/s in normal regions (p < 0.02). Biventricular pacing with the left ventricle paced 32 ms before the right induced the optimal mean velocity time integral and timing for fusion of depolarisation wavefronts from the right and left ventricular pacing sites. Pacing outside regions of slow conduction decreased left ventricular activation time and increased cardiac output and dP/dtmax significantly. Conclusions: In patients undergoing CRT for heart failure, non-contact mapping can identify regions of slow conduction. Significant haemodynamic improvements can occur when the site of left ventricular pacing is outside these slow conduction areas. Failure of CRT to produce clinical benefits may reflect left ventricular lead placement in regions of slow conduction which can be overcome by pacing in more normally activating regions. PMID:14676240

  18. Comparison of NOGA Endocardial Mapping and Cardiac Magnetic Resonance Imaging for Determining Infarct Size and Infarct Transmurality for Intramyocardial Injection Therapy Using Experimental Data

    PubMed Central

    Pavo, Noemi; Jakab, Andras; Emmert, Maximilian Y.; Strebinger, Georg; Wolint, Petra; Zimmermann, Matthias; Ankersmit, Hendrik Jan; Hoerstrup, Simon P.; Maurer, Gerald; Gyöngyösi, Mariann

    2014-01-01

    Objectives We compared the accuracy of NOGA endocardial mapping for delineating transmural and non-transmural infarction to the results of cardiac magnetic resonance imaging (cMRI) with late gadolinium enhancement (LE) for guiding intramyocardial reparative substance delivery using data from experimental myocardial infarction studies. Methods Sixty domestic pigs underwent diagnostic NOGA endocardial mapping and cMRI-LE 60 days after induction of closed-chest reperfused myocardial infarction. The infarct size was determined by LE of cMRI and by delineation of the infarct core on the unipolar voltage polar map. The sizes of the transmural and non-transmural infarctions were calculated from the cMRI transmurality map using signal intensity (SI) cut-offs of>75% and>25% and from NOGA bipolar maps using bipolar voltage cut-off values of <0.8 mV and <1.9 mV. Linear regression analysis and Bland-Altman plots were used to determine correlations and systematic differences between the two images. The overlapping ratios of the transmural and non-transmural infarcted areas were calculated. Results Infarct size as determined by 2D NOGA unipolar voltage polar mapping correlated with the 3D cMRI-LE findings (r = 0.504, p<0.001) with a mean difference of 2.82% in the left ventricular (LV) surface between the two images. Polar maps of transmural cMRI and bipolar maps of NOGA showed significant association for determining of the extent of transmural infarction (r = 0.727, p<0.001, overlap ratio of 81.6±11.1%) and non-transmural infarction (r = 0.555, p<0.001, overlap ratio of 70.6±18.5%). NOGA overestimated the transmural scar size (6.81% of the LV surface) but slightly underestimated the size of the non-transmural infarction (−3.04% of the LV surface). Conclusions By combining unipolar and bipolar voltage maps, NOGA endocardial mapping is useful for accurate delineation of the targeted zone for intramyocardial therapy and is comparable to cMRI-LE. This may be useful

  19. Comparison of NOGA endocardial mapping and cardiac magnetic resonance imaging for determining infarct size and infarct transmurality for intramyocardial injection therapy using experimental data.

    PubMed

    Pavo, Noemi; Jakab, Andras; Emmert, Maximilian Y; Strebinger, Georg; Wolint, Petra; Zimmermann, Matthias; Ankersmit, Hendrik Jan; Hoerstrup, Simon P; Maurer, Gerald; Gyöngyösi, Mariann

    2014-01-01

    We compared the accuracy of NOGA endocardial mapping for delineating transmural and non-transmural infarction to the results of cardiac magnetic resonance imaging (cMRI) with late gadolinium enhancement (LE) for guiding intramyocardial reparative substance delivery using data from experimental myocardial infarction studies. Sixty domestic pigs underwent diagnostic NOGA endocardial mapping and cMRI-LE 60 days after induction of closed-chest reperfused myocardial infarction. The infarct size was determined by LE of cMRI and by delineation of the infarct core on the unipolar voltage polar map. The sizes of the transmural and non-transmural infarctions were calculated from the cMRI transmurality map using signal intensity (SI) cut-offs of>75% and>25% and from NOGA bipolar maps using bipolar voltage cut-off values of <0.8 mV and <1.9 mV. Linear regression analysis and Bland-Altman plots were used to determine correlations and systematic differences between the two images. The overlapping ratios of the transmural and non-transmural infarcted areas were calculated. Infarct size as determined by 2D NOGA unipolar voltage polar mapping correlated with the 3D cMRI-LE findings (r = 0.504, p<0.001) with a mean difference of 2.82% in the left ventricular (LV) surface between the two images. Polar maps of transmural cMRI and bipolar maps of NOGA showed significant association for determining of the extent of transmural infarction (r = 0.727, p<0.001, overlap ratio of 81.6±11.1%) and non-transmural infarction (r = 0.555, p<0.001, overlap ratio of 70.6±18.5%). NOGA overestimated the transmural scar size (6.81% of the LV surface) but slightly underestimated the size of the non-transmural infarction (-3.04% of the LV surface). By combining unipolar and bipolar voltage maps, NOGA endocardial mapping is useful for accurate delineation of the targeted zone for intramyocardial therapy and is comparable to cMRI-LE. This may be useful in patients with contraindications for c

  20. Non-contact left ventricular endocardial mapping for cardiac resynchronisation therapy: a "slow conduction" towards the fast solution.

    PubMed

    Della Bella, P; Carbucicchio, C

    2004-05-01

    Cardiac resynchronisation therapy can help to improve left ventricular function in patients with heart failure, but only if those regions of myocardium which are mostly compromised by electromechanical desynchronisation can be identified and effectively stimulated.

  1. Non-contact left ventricular endocardial mapping for cardiac resynchronisation therapy: a “slow conduction” towards the fast solution

    PubMed Central

    Bella, P Della; Carbucicchio, C

    2004-01-01

    Cardiac resynchronisation therapy can help to improve left ventricular function in patients with heart failure, but only if those regions of myocardium which are mostly compromised by electromechanical desynchronisation can be identified and effectively stimulated PMID:15084532

  2. Electromechanical mapping of the left ventricle: possible tool for online decision making in the catheterization laboratory.

    PubMed

    Tan, Eng S; Jessurun, Gillian Aj; Anthonio, Rutger L; Slart, Riemer Hja; Zijlstra, Felix; Tio, René A

    2009-05-01

    Clinical decision making in intervention cardiology often depends on information about the presence of myocardial viability and the extent of ischemia. Especially in the case of an occluded collaterally filled coronary branch, online decision making in selected patients may accelerate and improve patient care. The electromechanical NOGA mapping system offers the opportunity for online viability assessment. We describe two cases in which this diagnostic tool was used during daily practice. In our opinion, NOGA mapping can be helpful for 'online' viability evaluation in patients with an occluded collaterally filled coronary artery. In these patients, noninvasive viability evaluation may cause unnecessary delay in the overall treatment approach.

  3. Electromechanical probe and automated indentation maps are sensitive techniques in assessing early degenerated human articular cartilage.

    PubMed

    Sim, Sotcheadt; Chevrier, Anik; Garon, Martin; Quenneville, Eric; Lavigne, Patrick; Yaroshinsky, Alex; Hoemann, Caroline D; Buschmann, Michael D

    2016-06-09

    Recent advances in the development of new drugs to halt or even reverse the progression of Osteoarthritis at an early-stage requires new tools to detect early degeneration of articular cartilage. We investigated the ability of an electromechanical probe and an automated indentation technique to characterize entire human articular surfaces for rapid non-destructive discrimination between early degenerated and healthy articular cartilage. Human cadaveric asymptomatic articular surfaces (4 pairs of distal femurs and 4 pairs of tibial plateaus) were used. They were assessed ex vivo: macroscopically, electromechanically (maps of the electromechanical quantitative parameter, QP, reflecting streaming potentials), mechanically (maps of the instantaneous modulus, IM) and through cartilage thickness. Osteochondral cores were also harvested from healthy and degenerated regions for histological assessment, biochemical analyses and unconfined compression tests. The macroscopic visual assessment delimited three distinct regions on each articular surface: region I was macroscopically degenerated, region II was macroscopically normal but adjacent to region I and region III was the remaining normal articular surface. Thus, each extracted core was assigned to one of the three regions. A mixed effect model revealed that only the QP (p < 0.0001) and IM (p < 0.0001) were able to statistically discriminate the three regions. Effect size was higher for QP and IM than other assessments, indicating greater sensitivity to distinguish early degeneration of cartilage. When considering the mapping feature of the QP and IM techniques, it also revealed bilateral symmetry in a moderately similar distribution pattern between bilateral joints. This article is protected by copyright. All rights reserved.

  4. Larger low voltage zone in endocardial unipolar map compared with that in epicardial bipolar map indicates difficulty in eliminating ventricular tachycardia by catheter ablation.

    PubMed

    Miyamoto, Koji; Noda, Takashi; Satomi, Kazuhiro; Wada, Mitsuru; Nakajima, Ikutaro; Ishibashi, Kohei; Okamura, Hideo; Noguchi, Teruo; Anzai, Toshihisa; Yasuda, Satoshi; Ogawa, Hisao; Shimizu, Wataru; Aiba, Takeshi; Kamakura, Shiro; Kusano, Kengo

    2016-08-01

    Patients with ischemic and non-ischemic cardiomyopathy often have substrate for ventricular tachycardia (VT) in the endocardium (ENDO), epicardium (EPI), and/or intramural. Although it has been reported that the ENDO unipolar (UNI) voltage map is useful in detecting EPI substrate, its feasibility to detect intramural scarring and its usefulness in radiofrequency catheter ablation (RFCA) remain unclear. To assess the relationship between the left ventricle (LV) ENDO UNI voltage map and the LV EPI bipolar (BIP) voltage map, and to determine the usefulness of the ENDO UNI voltage map to guide RFCA for VT in patients with cardiomyopathy undergoing combined ENDO- and EPI RFCA. Eleven patients with VT undergoing detailed ENDO and EPI electroanatomical mapping of the LV were included (mean age 59 ± 11 years, 9 men). We assessed the value of the LV ENDO UNI voltage map in identifying EPI and/or intramural substrate in these 11 patients with non-ischemic or ischemic cardiomyopathy. The underlying heart disease was dilated cardiomyopathy in 4 patients, cardiac sarcoidosis in 3, hypertrophic cardiomyopathy in 2, and ischemic heart disease in 2 patients. The mean LV ejection fraction was 24 ± 7 %. The low voltage zone (LVZ) was defined as <1.5 mV for LV ENDO BIP electrograms (EGMs), <8.3 mV for LV ENDO UNI EGMs, and <1.0 mV for LV EPI BIP EGMs. The surface area of each LVZ was measured. We also measured the LVZ of the spatial overlap between ENDO UNI and EPI BIP voltage maps using the transparency mode on CARTO software. We performed RFCA at the ENDO and EPI based on activation and/or substrate maps, targeting the LVZ and/or abnormal EGMs. The LVZ was present in the LV ENDO BIP voltage map in 10 of 11 patients (42 ± 33 cm(2)), and in the LV ENDO UNI voltage map in 10 of 11 patients (72 ± 45 cm(2)). The LVZ was present in the EPI BIP voltage map in 9 of 11 patients (70 ± 61 cm(2)), and the LVZ in the ENDO UNI voltage map was also seen in all 9 patients

  5. Atrioventricular canal (endocardial cushion defect) (image)

    MedlinePlus

    Endocardial cushion defect is an abnormal heart condition which occurs during the development of the baby. In this condition ... mix causing the heart to work harder. Endocardial cushion defect is strongly associated with several genetic abnormalities.

  6. Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions

    SciTech Connect

    Seol, Daehee; Seo, Hosung; Jesse, Stephen; Kim, Yunseok

    2015-08-19

    Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. Finally, these results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.

  7. Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions

    DOE PAGES

    Seol, Daehee; Seo, Hosung; Jesse, Stephen; ...

    2015-08-19

    Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. Finally, these results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.

  8. Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions

    SciTech Connect

    Seol, Daehee; Seo, Hosung; Kim, Yunseok; Jesse, Stephen

    2015-08-21

    Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. These results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.

  9. Fibrillin-2b regulates endocardial morphogenesis in zebrafish.

    PubMed

    Mellman, Katharine; Huisken, Jan; Dinsmore, Colin; Hoppe, Cornelia; Stainier, Didier Y

    2012-12-01

    scotch tape (sco) is a zebrafish cardiac mutant initially proposed to exhibit a reduced amount of cardiac jelly, the extracellular matrix between the myocardial and endocardial layers. We analyzed sco(te382) mutant hearts in detail using both selective plane illumination microscopy (SPIM) and transmission electron microscopy (TEM), and observed a fascinating endocardial defect. Time-lapse SPIM imaging of wild-type and mutant embryos revealed significant and dynamic gaps between endocardial cells during development. Although these gaps close in wild-type animals, they fail to close in the mutants, ultimately leading to a near complete absence of endocardial cells in the atrial chamber by the heart looping stage. TEM analyses confirm the presence of gaps between endocardial cells in sco mutants, allowing the apparent leakage of cardiac jelly into the lumen. High-resolution mapping places the sco(te382) mutation within the fbn2b locus, which encodes the extracellular matrix protein Fibrillin 2b (OMIM ID: 121050). Complementation and further phenotypic analyses confirm that sco is allelic to puff daddy(gw1) (pfd(gw1)), a null mutant in fbn2b, and that sco(te382) is a hypomorphic allele of fbn2b. fbn2b belongs to a family of genes responsible for the assembly of microfibrils throughout development, and is essential for microfibril structural integrity. In sco(te382) mutants, Fbn2b is disabled by a missense mutation in a highly conserved cbEGF domain, which likely interferes with protein folding. Integrating data obtained from microscopy and molecular biology, we posit that this mutation impacts the rigidity of Fbn2b, imparting a structural defect that weakens endocardial adhesion thereby resulting in perforated endocardium.

  10. Epicardial/endocardial sinus node ablation after failed endocardial ablation for the treatment of inappropriate sinus tachycardia.

    PubMed

    Jacobson, Jason T; Kraus, Alexandria; Lee, Richard; Goldberger, Jeffrey J

    2014-03-01

    Success of endocardial sinus node (SN) ablation for refractory inappropriate sinus tachycardia (IST) is limited by the epicardial location of the SN and potential damage to the phrenic nerve (PN). An epicardial approach may overcome these limitations. IST patients who failed endocardial ablation underwent an epicardial approach. Percutaneous pericardial access was obtained with a double wire technique for PN protection (i.e., with a balloon catheter), if needed. Earliest sinus activation was mapped and ablated with remapping for changes in P-wave morphology or sinus rate. The endpoint was total SN ablation (patients with atrial pacing [AP]); otherwise the target was a >25% decrease in sinus rate and inversion of P-wave axis. Five patients (all female, age 36 ± 4 years) underwent ablation. Two had prior AP, and 1 elected to have SN ablation and pacemaker during the same procedure. Three had prior endocardial ablation limited by PN proximity. Baseline sinus rate was 119 ± 20 bpm. After 35.2 ± 21.3 lesions (22.4 ± 21.7 epicardial, 12.8 ± 21.3 endocardial), 4 were in junctional rhythm, 1 in atrial rhythm at 90 bpm. This latter patient had symptom recurrence and underwent combined minimally invasive surgical/catheter SN cryoablation. Atrial tachycardia subsequently occurred and was successfully ablated. The only significant complication was pericarditis (3 patients). At last follow-up (30.4 ± 18.4 months), all had symptom resolution. Two were AP >99%, 1 was AP 54%. Two remain in ectopic atrial rhythm with controlled rates. Combined epicardial/endocardial SN ablation is a viable approach for patients with severely symptomatic IST after a failed endocardial attempt. © 2013 Wiley Periodicals, Inc.

  11. Localization of endocardial ectopic activity by means of noninvasive endocardial surface current density reconstruction

    NASA Astrophysics Data System (ADS)

    Lai, Dakun; Liu, Chenguang; Eggen, Michael D.; Iaizzo, Paul A.; He, Bin

    2011-07-01

    Localization of the source of cardiac ectopic activity has direct clinical benefits for determining the location of the corresponding ectopic focus. In this study, a recently developed current-density (CD)-based localization approach was experimentally evaluated in noninvasively localizing the origin of the cardiac ectopic activity from body-surface potential maps (BSPMs) in a well-controlled experimental setting. The cardiac ectopic activities were induced in four well-controlled intact pigs by single-site pacing at various sites within the left ventricle (LV). In each pacing study, the origin of the induced ectopic activity was localized by reconstructing the CD distribution on the endocardial surface of the LV from the measured BSPMs and compared with the estimated single moving dipole (SMD) solution and precise pacing site (PS). Over the 60 analyzed beats corresponding to ten pacing sites (six for each), the mean and standard deviation of the distance between the locations of maximum CD value and the corresponding PSs were 16.9 mm and 4.6 mm, respectively. In comparison, the averaged distance between the SMD locations and the corresponding PSs was slightly larger (18.4 ± 3.4 mm). The obtained CD distribution of activated sources extending from the stimulus site also showed high consistency with the endocardial potential maps estimated by a minimally invasive endocardial mapping system. The present experimental results suggest that the CD method is able to locate the approximate site of the origin of a cardiac ectopic activity, and that the distribution of the CD can portray the propagation of early activation of an ectopic beat.

  12. Epicardial, endocardial and transmural mapping in assessing electrophysiological effects of 14-C lidocaine and 14-C propafenone on activation times in experimental chronic myocardial infarction. Correlations with myocardial drugs concentrations.

    PubMed

    Naccarella, F F; Agarwal, J B; Weintraub, W S; Bracchetti, D; Helfant, R H

    1984-10-01

    The electrophysiological effects of lidocaine (L) and propafenone (P) in chronic myocardial infarction in relation to tissue drug concentrations (TDC) are unknown. Thus of 16 dogs with one week old myocardial infarction, 8 received propafenone 2 mg/kg and 8 lidocaine 5 mg/kg followed by 0.2 mg/kg/min of either drug for 60 min. Epicardial (EPI) mapping (greater than 30 points) was performed with a bipolar electrode. Endocardial (ENDO) and transmural (TRANS) mapping (greater than 20 points) were performed with 4 pairs of needle mounted bipolar electrodes. The % change in activation times (% delta AT) in EPI, ENDO and TRANS was evaluated in normal (N) and infarcted (I) zones at control and 60 min after drugs. Ventricular arrhythmias (VA) were studied with programmed extra stimulation. Results (P less than 0.01 to L, P less than 0.01 to N zone, # P less than 0.05 to ENDO): (Table: see text) At 60' ventricular tachycardia and ventricular fibrillation were both still inducible in 50% in the lidocaine group (37% in control), while only in 16% in the propafenone group (62% in control). Despite lower drug concentrations in the infarct, the effects on AT are comparable to normal zones for both drugs. In conclusion lidocaine reduces and propafenone increases AT, affecting in opposite directions the inducibility of reentrant ventricular arrhythmias.

  13. Electromechanical latch

    DOEpatents

    Buerger, Stephen; Marron, Lisa C.; Martinez, Michael A.; Spletzer, Barry Louis

    2016-12-13

    An electromechanical latch is described herein. The electromechanical latch is a dual-actuator latch, wherein a first actuator and a second actuator are driven with precise timing to move a first latch part relative to a second latch part, and vice versa. When the electromechanical latch is in a closed position, the first rotary latch part is positioned to prevent rotation of the second rotary latch part in a first direction. To transition the electromechanical latch from the closed position to an open position, the first actuator drives the first rotary latch part such that the second rotary latch part is able to rotate in the first direction. Thereafter, the second actuator drives the second rotary latch part in the first direction until the electromechanical latch is in the open position.

  14. Electromechanical actuators

    NASA Technical Reports Server (NTRS)

    Bigham, J.

    1982-01-01

    Materials illustrating a presentation on the development of electromechanical actuators (EMA) for electric flight systems are presented. Technology issues are identified, and major steps relative to EMA development, NASA's role, and a technology procurement plan are outlined.

  15. Endocardial electrogram characteristics of epicardial ventricular arrhythmias.

    PubMed

    Tzou, Wendy S; Nguyen, Duy T; Aleong, Ryan G; Varosy, Paul D; Katz, David F; Heath, Russell R; Schuller, Joseph L; Lowery, Christopher M; Lewkowiez, Laurent; Sauer, William H

    2013-06-01

    While most ventricular arrhythmias (VA) can be ablated successfully using an endocardial (endo) approach, epicardial (epi) mapping and ablation is sometimes required. There may be suggestive clues on the surface electrocardiogram; however, identification of an epi origin of VA with certainty remains problematic. All patients referred for ablation of ventricular tachycardia or frequent ventricular ectopy from June 2007 to July 2011 were evaluated. Patients with completed endo and epi electroanatomical activation maps of an epi VA were included (n = 10). Bipolar electrograms (EGMs) in the area of earliest endo activation were analyzed and compared to the area of early epi activation. An EGM component was characterized as far field if it was monophasic and there was inability to capture. We identified 3 characteristics from endo mapping that consistently indicated need for epi ablation: (1) Diffusely early activation (>2 cm(2) region of sites with equally earliest activation within 10 milliseconds). (2) Sequence of a far-field EGM followed by a near-field EGM in the region of earliest endo activation. (3) Inability to capture the far-field component of the earliest EGM (stim-QRS < egm-QRS time) or reproduce morphological features of the VA complex with stimulation at the earliest endo site of activation. The presence of a diffusely early area of activation and inability to capture a far-field endo EGM indicates that epi ablation may be needed to eliminate a VA. © 2013 Wiley Periodicals, Inc.

  16. Probing chromatin landscape reveals roles of endocardial TBX20 in septation

    PubMed Central

    Boogerd, Cornelis J.; Aneas, Ivy; Sakabe, Noboru; Dirschinger, Ralph J.; Cheng, Quen J.; Chen, Ju; Nobrega, Marcelo A.; Evans, Sylvia M.

    2016-01-01

    Mutations in the T-box transcription factor TBX20 are associated with multiple forms of congenital heart defects, including cardiac septal abnormalities, but our understanding of the contributions of endocardial TBX20 to heart development remains incomplete. Here, we investigated how TBX20 interacts with endocardial gene networks to drive the mesenchymal and myocardial movements that are essential for outflow tract and atrioventricular septation. Selective ablation of Tbx20 in murine endocardial lineages reduced the expression of extracellular matrix and cell migration genes that are critical for septation. Using the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), we identified accessible chromatin within endocardial lineages and intersected these data with TBX20 ChIP-seq and chromatin loop maps to determine that TBX20 binds a conserved long-range enhancer to regulate versican (Vcan) expression. We also observed reduced Vcan expression in Tbx20-deficient mice, supporting a direct role for TBX20 in Vcan regulation. Further, we show that the Vcan enhancer drove reporter gene expression in endocardial lineages in a TBX20–binding site–dependent manner. This work illuminates gene networks that interact with TBX20 to orchestrate cardiac septation and provides insight into the chromatin landscape of endocardial lineages during septation. PMID:27348591

  17. Electromechanical cryocooler

    DOEpatents

    Neufeld, Kenneth W.

    1996-01-01

    An electromechanical cryocooler is disclosed for substantially reducing vibrations caused by the cooler. The direction of the force of the vibrations is measured and a counterforce sufficient to substantially reduce this vibration is calculated and generated. The counterforce is 180.degree. out of phase with the direction of the force of the vibrations.

  18. Electromechanical Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 25 units to consider for use in a tech prep competency profile for the occupation of electromechanical technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific occupation and…

  19. Electromechanical cryocooler

    DOEpatents

    Neufeld, K.W.

    1996-12-10

    An electromechanical cryocooler is disclosed for substantially reducing vibrations caused by the cooler. The direction of the force of the vibrations is measured and a counterforce sufficient to substantially reduce this vibration is calculated and generated. The counterforce is 180{degree} out of phase with the direction of the force of the vibrations. 3 figs.

  20. Electromechanical Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 25 units to consider for use in a tech prep competency profile for the occupation of electromechanical technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific occupation and…

  1. Electrical storm originating from a left ventricular epicardial scar in a patient with completely normal endocardial voltage.

    PubMed

    Sternick, Eduardo Back; Piorkowski, Christopher; Hindricks, Gerhard; Dagres, Nikolaos; Sommer, Philipp

    2011-11-01

    We report a patient with non-ischemic dilated cardiomyopathy presenting with an electrical storm because of a poorly tolerated monomorphic ventricular tachycardia. Electroanatomical mapping revealed a scar restricted to the epicardium, whereas the endocardial voltage map was completely normal. Epicardial catheter ablation based on substrate mapping and limited pace and entrainment mapping eliminated the tachycardia.

  2. BMP2 expression in the endocardial lineage is required for AV endocardial cushion maturation and remodeling.

    PubMed

    Saxon, Jacob G; Baer, Daniel R; Barton, Julie A; Hawkins, Travis; Wu, Bingruo; Trusk, Thomas C; Harris, Stephen E; Zhou, Bin; Mishina, Yuji; Sugi, Yukiko

    2017-10-01

    Distal outgrowth, maturation and remodeling of the endocardial cushion mesenchyme in the atrioventricular (AV) canal are the essential morphogenetic events during four-chambered heart formation. Mesenchymalized AV endocardial cushions give rise to the AV valves and the membranous ventricular septum (VS). Failure of these processes results in several human congenital heart defects. Despite this clinical relevance, the mechanisms governing how mesenchymalized AV endocardial cushions mature and remodel into the membranous VS and AV valves have only begun to be elucidated. The role of BMP signaling in the myocardial and secondary heart forming lineage has been well studied; however, little is known about the role of BMP2 expression in the endocardial lineage. To fill this knowledge gap, we generated Bmp2 endocardial lineage-specific conditional knockouts (referred to as Bmp2 cKO(Endo)) by crossing conditionally-targeted Bmp2(flox/flox) mice with a Cre-driver line, Nfatc1(Cre), wherein Cre-mediated recombination was restricted to the endocardial cells and their mesenchymal progeny. Bmp2 cKO(Endo) mouse embryos did not exhibit failure or delay in the initial AV endocardial cushion formation at embryonic day (ED) 9.5-11.5; however, significant reductions in AV cushion size were detected in Bmp2 cKO(Endo) mouse embryos when compared to control embryos at ED13.5 and ED16.5. Moreover, deletion of Bmp2 from the endocardial lineage consistently resulted in membranous ventricular septal defects (VSDs), and mitral valve deficiencies, as evidenced by the absence of stratification of mitral valves at birth. Muscular VSDs were not found in Bmp2 cKO(Endo) mouse hearts. To understand the underlying morphogenetic mechanisms leading to a decrease in cushion size, cell proliferation and cell death were examined for AV endocardial cushions. Phospho-histone H3 analyses for cell proliferation and TUNEL assays for apoptotic cell death did not reveal significant differences between control

  3. Clinical Utility of Atrial Electromechanical Conduction Time Measured with Speckle Tracking Echocardiography after Catheter Ablation in Patients with Atrial Fibrillation: A Validation Study with Electroanatomical Mapping.

    PubMed

    Fujii, Akira; Inoue, Katsuji; Nagai, Takayuki; Nishimura, Kazuhisa; Uetani, Teruyoshi; Suzuki, Jun; Funada, Jun-Ichi; Okura, Takafumi; Higaki, Jitsuo; Ogimoto, Akiyoshi

    2016-09-01

    Our recent report demonstrated that atrial electromechanical conduction time (EMT-ε) measured with speckle tracking echocardiography could predict cardiac events in patients with pathological left ventricular hypertrophy. This study aimed to validate EMT-ε by comparison with electroanatomical mapping and to investigate the clinical utility of EMT-ε in patients with atrial fibrillation (AF) undergoing catheter ablation. Forty-six patients with preserved LV ejection fraction (LVEF ≥ 50%) undergoing pulmonary vein isolation (PVI) for AF were studied. Atrial electrical conduction delay was determined by measuring atrial electrical activation time (EAT) using three-dimensional electroanatomical mapping just after PVI. Echocardiographic parameters were acquired within 24 hours and at 6 months after PVI. The study also included 10 control subjects. AF patients had a larger left atrial (LA) volume index (LAVI) and more prolonged EMT-ε compared with control subjects. According to the validation study, EAT was closely related to EMT-ε and a', and this association was independent of LAVI and the presence of persistent AF (EMT-ε: R(2) = 0.342, P < 0.0001, a': R(2) = 0.337, P < 0.0001). At 6 months after PVI, LAVI and EMT-ε were significantly improved. During continued follow-up beyond 6 months (total follow-up, 26 ± 12 months), the EMT-ε shortening at 6 months after PVI was significantly greater in AF-free patients than patients with AF recurrence. This study suggested that the EMT-ε could be a useful echocardiographic marker of LA electromechanical abnormalities in patients with AF. © 2016, Wiley Periodicals, Inc.

  4. Myocardium and BMP signaling are required for endocardial differentiation.

    PubMed

    Palencia-Desai, Sharina; Rost, Megan S; Schumacher, Jennifer A; Ton, Quynh V; Craig, Michael P; Baltrunaite, Kristina; Koenig, Andrew L; Wang, Jinhu; Poss, Kenneth D; Chi, Neil C; Stainier, Didier Y R; Sumanas, Saulius

    2015-07-01

    Endocardial and myocardial progenitors originate in distinct regions of the anterior lateral plate mesoderm and migrate to the midline where they coalesce to form the cardiac tube. Endocardial progenitors acquire a molecular identity distinct from other vascular endothelial cells and initiate expression of specific genes such as nfatc1. Yet the molecular pathways and tissue interactions involved in establishing endocardial identity are poorly understood. The endocardium develops in tight association with cardiomyocytes. To test for a potential role of the myocardium in endocardial morphogenesis, we used two different zebrafish models deficient in cardiomyocytes: the hand2 mutant and a myocardial-specific genetic ablation method. We show that in hand2 mutants endocardial progenitors migrate to the midline but fail to assemble into a cardiac cone and do not express markers of differentiated endocardium. Endocardial differentiation defects were rescued by myocardial but not endocardial-specific expression of hand2. In metronidazole-treated myl7:nitroreductase embryos, myocardial cells were targeted for apoptosis, which resulted in the loss of endocardial nfatc1 expression. However, endocardial cells were present and retained expression of general vascular endothelial markers. We further identified bone morphogenetic protein (BMP) as a candidate myocardium-derived signal required for endocardial differentiation. Chemical and genetic inhibition of BMP signaling at the tailbud stage resulted in severe inhibition of endocardial differentiation while there was little effect on myocardial development. Heat-shock-induced bmp2b expression rescued endocardial nfatc1 expression in hand2 mutants and in myocardium-depleted embryos. Our results indicate that the myocardium is crucial for endocardial morphogenesis and differentiation, and identify BMP as a signal involved in endocardial differentiation.

  5. Cardiac electromechanical mapping in analyzing the mechanism of left ventricular remodeling immediately after percutaneous transluminal septal ablation in patients with hypertrophic obstructive cardiomyopathy.

    PubMed

    Chen, Shao-liang; Huang, Jun; Ye, Fei; Shan, Shou-jie; Zhang, Jun-jie; Duan, Bao-xiang; Chen, Yun-dai

    2005-11-05

    Effect of percutaneous transluminal septal ablation (PTSA) with ethanol injection on electromechanical remodeling of left ventricule still remains unknown. This study was conducted to assess the potential significance of cardiac electromechanical mapping (CEMM) in analyzing the left ventricular remodeling before and immediately after percutaneous transseptal myocardial ablation (PTSMA) in patients with hypertrophic obstructive cardiomyopathy (HOCM). Eight patients with drug-refractory HOCM and 6 patients with hypertrophic cardiopathy (HM) without increased left ventricular outtract gradien (LVOTG) were enrolled into the present study. CEMM was undergone in patients with HOCM before and immediately after PTSA procedure, and in patients with HM. PTSA was successful in all patients with HOCM, LVOTG significantly decreased from (62.87 +/- 21.16) mmHg to (12.73 +/- 3.05) mmHg immediately after ablation procedure. Value of UVP in septal-base segment in HM group was higher than that in HOCM group [(22.79 +/- 2.34) mV vs (18.54 +/- 1.76) mV]. In patients with HOCM, lateral-middle and -base segments had lowest value of UVP [(15.93 +/- 1.11) mV and (15.83 +/- 1.07) mV] before PTSA. Value of UVP at posterior-middle segment decreased from (23.58 +/- 2.21) mV pre-PTSA to (18.89 +/- 1.91) mV post-procedure, PTSA led to significant increase of UVP at lateral-middle segment. Septal region in patients with HM and septal-middle, septal-base, posterior-base segments in HOCM had lower value of local linear shortening (LLS) among all patients in both HOCM and HM groups. PTSA resulted in significant reduction of LLS in anterior region and at septal-apex segment. Anterior-base and septal-middle segments in patients with HM had lowest value of local active time (LAT), and significantly differentiated from that in patients with HOCM [(-8.57 +/- 0.68) ms vs (-18.61 +/- 1.02) ms, (-6.75 +/- 0.37)ms vs (-21.90 +/- 0.96) ms, respectively]. LAT at septal-middle and -base segments in patients

  6. Fetal echocardiographic signs of congenital endocardial fibroelastosis.

    PubMed

    Veille, J C; Sivakoff, M

    1988-08-01

    Endocardial fibroelastosis is characterized by a porcelain-like thickening of the endocardium, resulting in a marked increase in echodensity of the endocardium, as well as ventricular dilatation and aortic atresia. With improvement in prenatal ultrasound, this condition can be suspected in utero on the basis of ventricular enlargement, poor ventricular contractility, and marked echodensity of the endocardial surface. We present two cases in which such conditions were found on prenatal M-mode echocardiography and two-dimensional directed pulsed Doppler. Ventriculomegaly and hypocontractility of the ventricle are, however, nonspecific for such conditions; the diagnosis can be made accurately only by pathology. When such findings appear on ultrasound, all efforts should be made to deliver the patient in a perinatal center for optimal neonatal surgery to improve the survival of the newborn.

  7. Placental immaturity, endocardial fibroelastosis and fetal hypoxia.

    PubMed

    Perez, Marie-Hélène; Boulos, Tatiana; Stucki, Pascal; Cotting, Jacques; Osterheld, Maria-Chiara; Di Bernardo, Stefano

    2009-01-01

    We describe a term newborn who, after a normal gestational course, presented at birth with absent cardiac activity and no spontaneous breathing. Death occurred within 30 h. Autopsy revealed placental villous immaturity, multiple acute hypoxic lesions, but also chronic hypoxic lesions like endocardial fibroelastosis. This striking association of endocardial fibroelastosis and placental villous immaturity is reviewed and correlated with 2 other cases of placental villous immaturity that led to in utero death at 39 and 41 weeks of gestation. Placental villous immaturity must be suspected and looked for by both pediatricians and obstetricians in every case of stillbirth or perinatal asphyxia of unclear origin. In order to minimize the risk of recurrence in further pregnancies, elective cesarean section may be considered.

  8. Transcatheter based electromechanical mapping guided intramyocardial transplantation and in vivo tracking of human stem cell based three dimensional microtissues in the porcine heart.

    PubMed

    Emmert, Maximilian Y; Wolint, Petra; Winklhofer, Sebastian; Stolzmann, Paul; Cesarovic, Nikola; Fleischmann, Thea; Nguyen, Thi D L; Frauenfelder, Thomas; Böni, Roland; Scherman, Jacques; Bettex, Dominique; Grünenfelder, Jürg; Schwartlander, Ruth; Vogel, Viola; Gyöngyösi, Mariann; Alkadhi, Hatem; Falk, Volkmar; Hoerstrup, Simon P

    2013-03-01

    Stem cells have been repeatedly suggested for cardiac regeneration after myocardial infarction (MI). However, the low retention rate of single cell suspensions limits the efficacy of current therapy concepts so far. Taking advantage of three dimensional (3D) cellular self-assembly prior to transplantation may be beneficial to overcome these limitations. In this pilot study we investigate the principal feasibility of intramyocardial delivery of in-vitro generated stem cell-based 3D microtissues (3D-MTs) in a porcine model. 3D-MTs were generated from iron-oxide (MPIO) labeled human adipose-tissue derived mesenchymal stem cells (ATMSCs) using a modified hanging-drop method. Nine pigs (33 ± 2 kg) comprising seven healthy ones and two with chronic MI in the left ventricle (LV) anterior wall were included. The pigs underwent intramyocardial transplantation of 16 × 10(3) 3D-MTs (1250 cells/MT; accounting for 2 × 10(7) single ATMSCs) into the anterior wall of the healthy pigs (n = 7)/the MI border zone of the infarcted (n = 2) of the LV using a 3D NOGA electromechanical mapping guided, transcatheter based approach. Clinical follow-up (FU) was performed for up to five weeks and in-vivo cell-tracking was performed using serial magnet resonance imaging (MRI). Thereafter, the hearts were harvested and assessed by PCR and immunohistochemistry. Intramyocardial transplantation of human ATMSC based 3D-MTs was successful in eight animals (88.8%) while one pig (without MI) died during the electromechanical mapping due to sudden cardiac-arrest. During FU, no arrhythmogenic, embolic or neurological events occurred in the treated pigs. Serial MRI confirmed the intramyocardial presence of the 3D-MTs by detection of the intracellular iron-oxide MPIOs during FU. Intramyocardial retention of 3D-MTs was confirmed by PCR analysis and was further verified on histology and immunohistochemical analysis. The 3D-MTs appeared to be viable, integrated and showed an intact micro architecture. We

  9. Mechatronics - Electromechanics and contromechanics

    NASA Astrophysics Data System (ADS)

    Miu, Denny K.

    The role of mechanical engineering in electromechanical systems is examined, with emphasis on the interaction between and the control of the electrical and mechanical components. Electromechanical sensors and actuators are addressed, applying the fundamentals of mechanical and electrodynamics to simple devices such as stepper motors, dc motors, and piezoelectric devices. Classical control theory is reviewed and the role of control in computer-controlled electromechanical systems, residual vibrations, and active damping is considered.

  10. A Mouse Model of Endocardial Fibroelastosis

    PubMed Central

    Clark, Elizabeth S.; Pepper, Victoria K.; Best, Cameron; Onwuka, Ekene; Yi, Tai; Tara, Shuhei; Cianciolo, Rachel; Baker, Peter; Shinoka, Toshiharu; Breuer, Christopher K.

    2015-01-01

    Background Endocardial Fibroelastosis (EFE) is a pathologic condition of abnormal deposition of collagen and elastin within the endocardium of the heart. It is seen in conjunction with a variety of diseases including hypoplastic left heart syndrome and viral endocarditis. While an experimental model using heterotopic heart transplant in rats has been described, we sought to fully describe a mouse model that can be used to further elucidate the potential mechanisms of and treatments for EFE. Materials and Methods The hearts of 2-day-old C57BL/6 mice were transplanted into the abdomen of 7-week-old C57BL/6 mice. At 2 weeks, the hearts were harvested and histologic analysis performed using hematoxylin and eosin, Masson’s Trichrome, Russell-Movat’s Pentachrome, Picrosirius Red, Hart’s, Verhoeff-Van Gieson, and Weigert’s Resorcin-Fuschin stains. Additionally, one heart was analysed using transmission electron microscopy (TEM). Results Specimens demonstrated abnormal accumulation of both collagen and elastin within the endocardium with occasional expansion in to the myocardium. Heterogeneity in extracellular matrix deposition was noted in the histologic specimens. In addition, TEM demonstrated the presence of excess collagen within the endocardium. Conclusions The heterotopic transplantation of an immature heart into a mouse results in changes consistent with EFE. This model is appropriate to investigate the etiology and treatment of endocardial fibroelastosis. PMID:26363814

  11. Massively Redundant Electromechanical Actuators

    DTIC Science & Technology

    2014-08-30

    date of determination). DoD Controlling Office is (insert controlling DoD office). "Massively Redundant Electromechanical Actuators" August... electromechanical systems) processes are used to manufacture reliable and reproducible stators and sliders for the actuators. These processes include

  12. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.

  13. Complete endocardial cushion defects in pregnancy: a case report.

    PubMed

    Chen, Xiangjuan; Xiao, Biru; Yang, Weiyu; Chen, Yunqin; Zhang, Wenmiao; Zhu, Haiyan

    2014-03-10

    Complete endocardial cushion defect is a congenital heart disease characterized by a variable deficiency of the atrioventricular area in the developing heart. The mortality rate for an unrepaired endocardial cushion defect in pregnancy and the postpartum period is high. We present a rare case of a pregnant woman with complete endocardial cushion defect. A 20-year-old Chinese woman with unrepaired complete endocardial cushion defect delivered a premature male baby at 33 weeks and six days of pregnancy in our hospital. The baby had a normal human karyotype and a birth defect of hypospadias deformity. Our patient died from heart failure 10 minutes after delivery. She had severe pulmonary hypertension and suspected trisomy 21. Our experience further emphasizes the necessity of prenatal screening for congenital heart defects and of prompt surgical correction for endocardial cushion defects during infancy. Mortality for endocardial cushion defect during pregnancy and the postpartum period is high and women with complete endocardial cushion defect should avoid pregnancy, especially those women who cannot intellectually judge their risks.

  14. Effects of endocardial microwave energy ablation

    PubMed Central

    Climent, Vicente; Hurlé, Aquilino; Ho, Siew Yen; Sánchez-Quintana, Damián

    2005-01-01

    Until recently the treatment of atrial fibrillation (AF) consisted primarily of palliation, mostly in the form of pharmacological intervention. However because of recent advances in nonpharmacologic therapies, the current expectation of patients and referring physicians is that AF will be cured, rather than palliated. In recent years there has been a rapid expansion in the availability and variety of energy sources and devices for ablation. One of these energies, microwave, has been applied clinically only in the last few years, and may be a promising technique that is potentially capable of treating a wide range of ventricular and supraventricular arrhythmias. The purpose of this study was to review microwave energy ablation in surgical treatment of AF with special interest in histology and ultrastructure of lesions produced by this endocardial ablation procedure. PMID:16943871

  15. Effects of endocardial microwave energy ablation.

    PubMed

    Climent, Vicente; Hurlé, Aquilino; Ho, Siew Yen; Sánchez-Quintana, Damián

    2005-07-01

    Until recently the treatment of atrial fibrillation (AF) consisted primarily of palliation, mostly in the form of pharmacological intervention. However because of recent advances in nonpharmacologic therapies, the current expectation of patients and referring physicians is that AF will be cured, rather than palliated. In recent years there has been a rapid expansion in the availability and variety of energy sources and devices for ablation. One of these energies, microwave, has been applied clinically only in the last few years, and may be a promising technique that is potentially capable of treating a wide range of ventricular and supraventricular arrhythmias. The purpose of this study was to review microwave energy ablation in surgical treatment of AF with special interest in histology and ultrastructure of lesions produced by this endocardial ablation procedure.

  16. Electromechanical wave imaging for arrhythmias

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Thanh-Hieu Nguyen, Vu; Legrand, Diégo; Okrasinski, Stan; Costet, Alexandre; Gambhir, Alok; Garan, Hasan; Konofagou, Elisa E.

    2011-11-01

    Electromechanical wave imaging (EWI) is a novel ultrasound-based imaging modality for mapping of the electromechanical wave (EW), i.e. the transient deformations occurring in immediate response to the electrical activation. The correlation between the EW and the electrical activation has been established in prior studies. However, the methods used previously to map the EW required the reconstruction of images over multiple cardiac cycles, precluding the application of EWI for non-periodic arrhythmias such as fibrillation. In this study, new imaging sequences are developed and applied based on flash- and wide-beam emissions to image the entire heart at very high frame rates (2000 fps) during free breathing in a single heartbeat. The methods are first validated by imaging the heart of an open-chest canine while simultaneously mapping the electrical activation using a 64-electrode basket catheter. Feasibility is then assessed by imaging the atria and ventricles of closed-chest, conscious canines during sinus rhythm and during right-ventricular pacing following atrio-ventricular dissociation, i.e., during a non-periodic rhythm. The EW was validated against electrode measurements in the open-chest case, and followed the expected electrical propagation pattern in the closed-chest setting. These results indicate that EWI can be used for the characterization of non-periodic arrhythmias in conditions similar to the clinical setting, in a single heartbeat, and during free breathing.

  17. Association between High Endocardial Unipolar Voltage and Improved Left Ventricular Function in Patients with Ischemic Cardiomyopathy

    PubMed Central

    Park, Ki; Lai, Dejian; Handberg, Eileen M.; Perin, Emerson C.; Pepine, Carl J.; Anderson, R. David

    2016-01-01

    We know that endocardial mapping reports left ventricular electrical activity (voltage) and that these data can predict outcomes in patients undergoing traditional revascularization. Because the mapping data from experimental models have also been linked with myocardial viability, we hypothesized an association between increased unipolar voltage in patients undergoing intramyocardial injections and their subsequent improvement in left ventricular performance. For this exploratory analysis, we evaluated 86 patients with left ventricular dysfunction, heart-failure symptoms, possible angina, and no revascularization options, who were undergoing endocardial mapping. Fifty-seven patients received bone marrow mononuclear cell (BMC) injections and 29 patients received cell-free injections of a placebo. The average mapping site voltage was 9.7 ± 2 mV, and sites with voltage of ≥6.9 mV were engaged by needle and injected (with BMC or placebo). For all patients, at 6 months, left ventricular ejection fraction (LVEF) improved, and after covariate adjustment this improvement was best predicted by injection-site voltage. For every 2-mV increase in baseline voltage, we detected a 1.3 increase in absolute LVEF units for all patients (P=0.038). Multiple linear regression analyses confirmed that voltage and the CD34+ count present in bone marrow (but not treatment assignment) were associated with improved LVEF (P=0.03 and P=0.014, respectively). In an exploratory analysis, higher endocardial voltage and bone marrow CD34+ levels were associated with improved left ventricular function among ischemic cardiomyopathy patients. Intramyocardial needle injections, possibly through stimulation of angiogenesis, might serve as a future therapy in patients with reduced left ventricular function and warrants investigation. PMID:27547135

  18. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator. Cleaner, simpler, and needs less maintenance. Features rotary-to-linear-motion converter with antibacklash gearing and position feedback via shaft-angle resolvers, which measure rotary motion.

  19. Electromechanical rotary actuator

    NASA Astrophysics Data System (ADS)

    Smith, S. P.; McMahon, W. J.

    1995-05-01

    An electromechanical rotary actuator has been developed as the prime mover for a liquid oxygen modulation valve on the Centaur Vehicle Rocket Engine. The rotary actuator requirements, design, test, and associated problems and their solutions are discussed in this paper.

  20. Noninvasive epicardial and endocardial electrocardiographic imaging of scar-related ventricular tachycardia.

    PubMed

    Wang, Linwei; Gharbia, Omar A; Horáček, B Milan; Sapp, John L

    The majority of life-threatening ventricular tachycardias (VTs) are sustained by heterogeneous scar substrates with narrow strands of surviving tissue. An effective treatment for scar-related VT is to modify the underlying scar substrate by catheter ablation. If activation sequence and entrainment mapping can be performed during sustained VT, the exit and isthmus of the circuit can often be identified. However, with invasive catheter mapping, only monomorphic VT that is hemodynamically stable can be mapped in this manner. For the majority of patients with poorly tolerated VTs or multiple VTs, a close inspection of the re-entry circuit is not possible. A noninvasive approach to fast mapping of unstable VTs can potentially allow an improved identification of critical ablation sites. For patients who underwent catheter ablation of scar-related VT, CT scan was obtained prior to the ablation procedure and 120-lead body-surface electrocardiograms (ECGs) were acquired during induced VTs. These data were used for noninvasive ECG imaging to computationally reconstruct electrical potentials on the epicardium and on the endocardium of both ventricles. Activation time and phase maps of the VT circuit were extracted from the reconstructed electrograms. They were analyzed with respect to scar substrate obtained from catheter mapping, as well as VT exits confirmed through ablation sites that successfully terminated the VT. The reconstructed re-entry circuits correctly revealed both epicardial and endocardial origins of activation, consistent with locations of exit sites confirmed from the ablation procedure. The temporal dynamics of the re-entry circuits, particularly the slowing of conduction as indicated by the crowding and zig-zag conducting of the activation isochrones, collocated well with scar substrate obtained by catheter voltage maps. Furthermore, the results indicated that some re-entry circuits involve both the epicardial and endocardial layers, and can only be

  1. Electromechanical acoustic liner

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Cattafesta, III, Louis N. (Inventor); Nishida, Toshikazu (Inventor); Horowitz, Stephen Brian (Inventor)

    2007-01-01

    A multi-resonator-based system responsive to acoustic waves includes at least two resonators, each including a bottom plate, side walls secured to the bottom plate, and a top plate disposed on top of the side walls. The top plate includes an orifice so that a portion of an incident acoustical wave compresses gas in the resonators. The bottom plate or the side walls include at least one compliant portion. A reciprocal electromechanical transducer coupled to the compliant portion of each of the resonators forms a first and second transducer/compliant composite. An electrical network is disposed between the reciprocal electromechanical transducer of the first and second resonator.

  2. Morphology of endocardial T-waves of fusion beats.

    PubMed

    Boute, W; Cals, G L; Den Heijer, P; Wittkampf, F H

    1988-11-01

    Recently developed stimulation techniques are capable of eliminating polarization afterpotentials caused by the emitted stimulus. A well-controlled study method was developed to initiate various degrees of fusion and to monitor changes in the morphology of the endocardial signal. The study was performed on two dogs. The zone during which fusion could be provoked was less than 30 ms in both dogs. In addition, the results show a significant decrease in the endocardial T-wave amplitude as soon as fusion was noticed, while the QT interval then slightly lengthened. Furthermore, the evoked R-wave duration shortened during fusion, while the stimulus to R-wave interval lengthened. These results have consequences for pacemakers that use evoked endocardial signal characteristics for driving a pacemaker function.

  3. Electro-Mechanical Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    This electromechanical technician curriculum covers the following general areas: (1) basic soldering; (2) reading diagrams and following schematics; and (3) repairing circuitry and mechanics common to major appliances, vending machines, amusement equipment, and small office machines. The manual includes the following sections: (1) course…

  4. Electromechanical railgun model

    SciTech Connect

    Hively, L.M. ); Condit, W.C. )

    1991-07-01

    In this paper, the electromechanical aspects of railgun motion are modeled analytically. A Lagrangian formulation is used to obtain the force and circuit equations, which are then solved for energy conservation and resistive flux decay. The resulting integral equation is solved for the barrel length as a measure of the launcher size and cost.

  5. Electromechanical Energy Conversion.

    ERIC Educational Resources Information Center

    LePage, Wilbur R.

    This programed text on electromechanical energy conversion (motors and generators) was developed under contract with the U.S. Office of Education as Number 12 in a series of materials for use in an electrical engineering sequence. It is intended to be used in conjunction with other materials and with other short texts in the series. (DH)

  6. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  7. Electromechanical Technician Skills Questionnaire.

    ERIC Educational Resources Information Center

    Anoka-Hennepin Technical Coll., Minneapolis, MN.

    This document contains test items to measure the job skills of electromechanical technicians. Questions are organized in four sections that cover the following topics: (1) shop math; (2) electricity and electronics; (3) mechanics and machining; and (4) plumbing, heating, ventilation and air conditioning, and welding skills. Questions call for…

  8. Single-Beat Noninvasive Imaging of Ventricular Endocardial and Epicardial Activation in Patients Undergoing CRT

    PubMed Central

    Berger, Thomas; Pfeifer, Bernhard; Hanser, Friedrich F.; Hintringer, Florian; Fischer, Gerald; Netzer, Michael; Trieb, Thomas; Stuehlinger, Markus; Dichtl, Wolfgang; Baumgartner, Christian; Pachinger, Otmar; Seger, Michael

    2011-01-01

    Background Little is known about the effect of cardiac resynchronization therapy (CRT) on endo- and epicardial ventricular activation. Noninvasive imaging of cardiac electrophysiology (NICE) is a novel imaging tool for visualization of both epi- and endocardial ventricular electrical activation. Methodology/Principal Findings NICE was performed in ten patients with congestive heart failure (CHF) undergoing CRT and in ten patients without structural heart disease (control group). NICE is a fusion of data from high-resolution ECG mapping with a model of the patient's individual cardiothoracic anatomy created from magnetic resonance imaging. Beat-to-beat endocardial and epicardial ventricular activation sequences were computed during native rhythm as well as during ventricular pacing using a bidomain theory-based heart model to solve the related inverse problem. During right ventricular (RV) pacing control patients showed a deterioration of the ventricular activation sequence similar to the intrinsic activation pattern of CHF patients. Left ventricular propagation velocities were significantly decreased in CHF patients as compared to the control group (1.6±0.4 versus 2.1±0.5 m/sec; p<0.05). CHF patients showed right-to-left septal activation with the latest activation epicardially in the lateral wall of the left ventricle. Biventricular pacing resulted in a resynchronization of the ventricular activation sequence and in a marked decrease of total LV activation duration as compared to intrinsic conduction and RV pacing (129±16 versus 157±28 and 173±25 ms; both p<0.05). Conclusions/Significance Endocardial and epicardial ventricular activation can be visualized noninvasively by NICE. Identification of individual ventricular activation properties may help identify responders to CRT and to further improve response to CRT by facilitating a patient-specific lead placement and device programming. PMID:21298045

  9. Transvenous extraction of an abandoned endocardial pacemaker lead in a dog.

    PubMed

    LeBlanc, Nicole; Scollan, Katherine; Sisson, David

    2014-03-01

    A 6-year-old male castrated labrador retriever presented with endocardial pacemaker infection following migration and subsequent repositioning of the pulse generator. An epicardial lead and pulse generator were surgically implanted and the endocardial lead could not be removed with manual traction. The endocardial lead was severed, anchored, and abandoned at the thoracic inlet. The patient presented 4 months later with endocardial lead migration, bacteremia, and suspected glomerulonephritis. The endocardial pacemaker lead was transvenously extracted using a mechanical dilator sheath and locking stylet. This report of transvenous pacemaker lead extraction in a dog addresses the challenges and describes recent advances in extraction devices.

  10. Endocardial Endothelial Dysfunction Progressively Disrupts Initially Anti then Pro-Thrombotic Pathways in Heart Failure Mice

    PubMed Central

    Schoner, Amanda; Tyrrell, Christina; Wu, Melinda; Gelow, Jill M.; Hayes, Alicia A.; Lindner, Jonathan R.; Thornburg, Kent L.; Hasan, Wohaib

    2015-01-01

    Objective An experimental model of endocardial thrombosis has not been developed and endocardial endothelial dysfunction in heart failure (HF) is understudied. We sought to determine whether disruption of the endothelial anti-coagulant activated protein C (APC) pathway in CREBA133 HF mice promotes endocardial thrombosis in the acute decompensated phase of the disease, and whether alterations in von Willebrand factor (vWF) secretion from HF endocardium reduces thrombus formation as HF stabilizes. Approach and results Echocardiography was used to follow HF development and to detect endocardial thrombi in CREBA133 mice. Endocardial thrombi incidence was confirmed with immunohistochemistry and histology. In early and acute decompensated phases of HF, CREBA133 mice had the highest incidence of endocardial thrombi and these mice also had a shorter tail-bleeding index consistent with a pro-thrombotic milieu. Both APC generation, and expression of receptors that promote APC function (thrombomodulin, endothelial protein C receptor, protein S), were suppressed in the endocardium of acute decompensated HF mice. However, in stable compensated HF mice, an attenuation occurred for vWF protein content and secretion from endocardial endothelial cells, vWF-dependent platelet agglutination (by ristocetin), and thrombin generation on the endocardial surface. Conclusions CREBA133 mice develop HF and endocardial endothelial dysfunction. Attenuation of the anti-coagulant APC pathway promotes endocardial thrombosis in early and acute decompensated phases of HF. However, in stable compensated HF mice, disruptions in endothelial vWF expression and extrusion may actually reduce the incidence of endocardial thrombosis. PMID:26565707

  11. Electromechanics of graphene spirals

    SciTech Connect

    Korhonen, Topi; Koskinen, Pekka

    2014-12-15

    Among the most fascinating nanostructure morphologies are spirals, hybrids of somewhat obscure topology and dimensionality with technologically attractive properties. Here, we investigate mechanical and electromechanical properties of graphene spirals upon elongation by using density-functional tight-binding, continuum elasticity theory, and classical force field molecular dynamics. It turns out that electronic properties are governed by interlayer interactions as opposed to strain effects. The structural behavior is governed by van der Waals interaction: in its absence spirals unfold with equidistant layer spacings, ripple formation at spiral perimeter, and steadily increasing axial force; in its presence, on the contrary, spirals unfold via smooth local peeling, complex geometries, and nearly constant axial force. These electromechanical trends ought to provide useful guidelines not only for additional theoretical investigations but also for forthcoming experiments on graphene spirals.

  12. An electromechanical Ising Hamiltonian

    PubMed Central

    Mahboob, Imran; Okamoto, Hajime; Yamaguchi, Hiroshi

    2016-01-01

    Solving intractable mathematical problems in simulators composed of atoms, ions, photons, or electrons has recently emerged as a subject of intense interest. We extend this concept to phonons that are localized in spectrally pure resonances in an electromechanical system that enables their interactions to be exquisitely fashioned via electrical means. We harness this platform to emulate the Ising Hamiltonian whose spin 1/2 particles are replicated by the phase bistable vibrations from the parametric resonances of multiple modes. The coupling between the mechanical spins is created by generating two-mode squeezed states, which impart correlations between modes that can imitate a random, ferromagnetic state or an antiferromagnetic state on demand. These results suggest that an electromechanical simulator could be built for the Ising Hamiltonian in a nontrivial configuration, namely, for a large number of spins with multiple degrees of coupling. PMID:28861469

  13. A correlated electromechanical system

    NASA Astrophysics Data System (ADS)

    Mahboob, I.; Villiers, M.; Nishiguchi, K.; Hatanaka, D.; Fujiwara, A.; Yamaguchi, H.

    2017-03-01

    A correlation with phonons sustained by a pair of electromechanical resonators that differ both in size and frequency is demonstrated. In spite of the electromechanical resonators being spatially distinct, they can still be strongly dynamically coupled via a classical analogue of the beam splitter interaction with a cooperativity exceeding five, and parametric down-conversion which results in both resonators self-oscillating. This latter regime yields a classical variant of a two-mode squeezed state which is identified as perfectly correlated phase-locked vibrations between the two resonators. The creation of a correlation between two separate mechanical resonators suggests that extending this interaction to vacuum phonon states could enable a macroscopic two-mode squeezed state to be generated. Conversely, the ability to resolve the correlated state via the self-oscillations could be harnessed to build a new class of detector where an external stimulus neutralises the phase-locked vibrations.

  14. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  15. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  16. Quantum electromechanical systems

    NASA Astrophysics Data System (ADS)

    Milburn, Gerard J.; Polkinghorne, Rodney

    2001-11-01

    We discuss the conditions under which electromechanical systems, fabricated on a sub micron scale, require a quantum description. We illustrate the discussion with the example of a mechanical electroscope for which the resonant frequency of a cantilever changes in response to a local charge. We show how such devices may be used as a quantum noise limited apparatus for detection of a single charge or spin with applications to quantum computing.

  17. Direct left ventricular endocardial pacing: an alternative when traditional resynchronization via coronary sinus is not feasible or effective.

    PubMed

    Moriña-Vázquez, Pablo; Roa-Garrido, Jessica; Fernández-Gómez, Juan M; Venegas-Gamero, José; Pichardo, Rafael B; Carranza, Manuel H

    2013-06-01

    Biventricular pacing through the coronary sinus (CS) is effective for the treatment of patients with heart failure and left bundle-branch block. However, this approach is not always feasible. Although surgical epicardial lead implantation is an alternative, the technique may be deleterious in some patients. Thus, direct left ventricular (LV) endocardial pacing under local anesthesia may be an option. We describe our technique and analyze the results of direct LV endocardial pacing. Fourteen patients with failed resynchronization via CS (April 2006-September 2011) were selected. Using a femoral approach, we performed transseptal puncture and LV mapping, then fixed the active lead where the longest electrical delay was observed; the generator was placed in the anterior thigh. For resynchronization, eight patients with a device previously implanted through the upper veins received a single-chamber generator that was set to the VVT mode to sense the subclavian pacing spike. Six patients received a complete femoral resynchronization system with either a defibrillator or pacemaker. Patients were followed for 6-54 months. The LV lead was successfully implanted in all cases. Two patients experienced excessive bleeding and two died during follow-up. All except one improved at least one New York Heart Association class and experienced improved left ventricle ejection fraction. One patient with recurrent episodes of ventricular fibrillation was asymptomatic. Direct LV endocardial pacing is safe and may be a less risky, more efficient alternative than surgical epicardial lead implantation for resynchronization via CS. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.

  18. Electromechanical coupling among edge dislocations, domain walls, and nanodomains in BiFeO3 revealed by unit-cell-wise strain and polarization maps.

    PubMed

    Lubk, A; Rossell, M D; Seidel, J; Chu, Y H; Ramesh, R; Hÿtch, M J; Snoeck, E

    2013-04-10

    The performance of ferroelectric devices, for example, the ferroelectric field effect transistor, is reduced by the presence of crystal defects such as edge dislocations. For example, it is well-known that edge dislocations play a crucial role in the formation of ferroelectric dead-layers at interfaces and hence finite size effects in ferroelectric thin films. The detailed lattice structure including the relevant electromechanical coupling mechanisms in close vicinity of the edge dislocations is, however, not well-understood, which hampers device optimization. Here, we investigate edge dislocations in ferroelectric BiFeO3 by means of spherical aberration-corrected scanning transmission electron microscopy, a dedicated model-based structure analysis, and phase field simulations. Unit-cell-wise resolved strain and polarization profiles around edge dislocation reveal a wealth of material states including polymorph nanodomains and multiple domain walls characteristically pinned to the dislocation. We locally determine the piezoelectric tensor and identify piezoelectric coupling as the driving force for the observed phenomena, explaining, for example, the orientation of the domain wall with respect to the edge dislocation. Furthermore, an atomic model for the dislocation core is derived.

  19. Endocardial left ventricular pacing after accidental aortic wall perforation.

    PubMed

    Şoşdean, Raluca; Enache, Bogdan; Macarie, Răzvan Ioan; Pescariu, Sorin

    2016-03-01

    Inadvertent endocardial placement of a pacing lead in the left ventricle through the aortic valve is a rare complication with an unknown incidence because of inadequate reporting. Reported cases are usually the result of lead insertion via the subclavian artery. A possible but very unusual situation is endocardial lead insertion in the left ventricle after aortic arch perforation. We report the case of a 72-year-old woman in whom a screw-in pacing lead accidentally perforated the aortic arch and continued its way through the ascending aorta, aortic valve and left ventricle, after insertion through the left subclavian vein. We describe how this complication was diagnosed, the predisposing factors, the risks it carries and the ways in which devastating consequences have so far been avoided, as the patient refused any surgical intervention including lead removal. Copyright © 2016. Published by Elsevier España.

  20. An electromechanical displacement transducer

    NASA Astrophysics Data System (ADS)

    Villiers, Marius; Mahboob, Imran; Nishiguchi, Katsuhiko; Hatanaka, Daiki; Fujiwara, Akira; Yamaguchi, Hiroshi

    2016-08-01

    Two modes of an electromechanical resonator are coupled through the strain inside the structure with a cooperativity as high as 107, a state-of-the-art value for purely mechanical systems, which enables the observation of normal-mode splitting. This coupling is exploited to transduce the resonator’s fundamental mode into the bandwidth of the second flexural mode, which is 1.4 MHz higher in frequency. Thus, an all-mechanical heterodyne detection scheme is implemented that can be developed into a high-precision displacement sensor.

  1. Nfatc1 directs the endocardial progenitor cells to make heart valve primordium.

    PubMed

    Wu, Bingruo; Baldwin, H Scott; Zhou, Bin

    2013-11-01

    Heart valves arise from the cardiac endocardial cushions located at the atrioventricular canal (AVC) and cardiac outflow tract (OFT) during development. A subpopulation of cushion endocardial cells undergoes endocardial to mesenchymal transformation (EMT) and generates the cushion mesenchyme, which is then remodeled into the interstitial tissue of the mature valves. The cushion endocardial cells that do not undertake EMT proliferate to elongate valve leaflets. During EMT and the post-EMT valve remodeling, endocardial cells at the cushions highly express nuclear factor in activated T cell, cytoplasmic 1 (Nfatc1), a transcription factor required for valve formation in mice. In this review, we present the current knowledge of Nfatc1 roles in the ontogeny of heart valves with a focus on the fate decision of the endocardial cells in the processes of EMT and valve remodeling. © 2013 Elsevier Inc. All rights reserved.

  2. Bilayer Graphene Electromechanical Systems

    NASA Astrophysics Data System (ADS)

    Champagne, Alexandre; Storms, Matthew; Yigen, Serap; Reulet, Bertrand

    Bilayer graphene is an outstanding electromechanical system, and its electronic and mechanical properties, as well as their coupling, are widely tunable. To the best of our knowledge, simultaneous charge transport and mechanical spectroscopy (via RF mixing) has not been realized in bilayer graphene. We present data showing clear electromechanical resonances in three suspended bilayer devices whose length range from 1 to 2 microns. We first describe the low-temperature current annealing of the devices which is crucial to achieve the transconductance, I -VG , necessary to implement a RF mixing detection method. We describe our RF mixing circuit and data. We measure clear mechanical resonances ranging in frequency from 50 to 140 MHz. We show that we can smoothly tune the resonance frequencies of our bilayer resonators with mechanical strain applied via a backgate voltage. We measure quality factors up to 4000. We briefly discuss the effects of the RF driving power on the dispersion of the mechanical resonance. We aim to use these high quality mechanical resonance as a mechanical sensor of the bilayer quantum Hall phase transitions. We show initial data of a bilayer mechanical resonance as a function of magnetic field and quantum Hall phase transitions.

  3. Spatial Transcriptional Profile of the Chick and Mouse Endocardial Cushions Identify Novel Regulators of Endocardial EMT in vitro

    PubMed Central

    DeLaughter, Daniel M.; Christodoulou, Danos C.; Robinson, Jamille Y.; Seidman, Christine E.; Baldwin, H. Scott; Seidman, J. G.; Barnett, Joey V.

    2013-01-01

    Valvular Interstitial Cells (VICs) are a common substrate for congenital and adult heart disease yet the signaling mechanisms governing their formation during early valvulogenesis are incompletely understood. We developed an unbiased strategy to identify genes important in endocardial epithelial-to-mesenchymal transformation (EMT) using a spatial transcriptional profile. Endocardial cells overlaying the cushions of the atrioventricular canal (AVC) and outflow tract (OFT) undergo an EMT to yield VICs. RNA sequencing (RNA-seq) analysis of gene expression between AVC, OFT, and ventricles (VEN) isolated from chick and mouse embryos at comparable stages of development (chick HH18; mouse E11.0) was performed. EMT occurs in the AVC and OFT cushions, but not VEN at this time. 198 genes in the chick (n=1) and 105 genes in the mouse (n=2) were enriched 2-fold in the cushions. Gene regulatory networks (GRN) generated from cushion-enriched gene lists confirmed TGFβ as a nodal point and identified NF-κB as a potential node. To reveal previously unrecognized regulators of EMT four candidate genes, Hapln1, Id1, Foxp2, and Meis2, and a candidate pathway, NF-κB, were selected. In vivo spatial expression of each gene was confirmed by in situ hybridization and a functional role for each in endocardial EMT was determined by siRNA knockdown in a collagen gel assay. Our spatial-transcriptional profiling strategy yielded gene lists which reflected the known biology of the system. Further analysis accurately identified and validated previously unrecognized novel candidate genes and the NF-κB pathway as regulators of endocardial cell EMT in vitro. PMID:23557753

  4. Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart.

    PubMed

    Zaitsev, A V; Berenfeld, O; Mironov, S F; Jalife, J; Pertsov, A M

    2000-03-03

    Tissue heterogeneities may play an important role in the mechanism of ventricular tachycardia (VT) and fibrillation (VF) and can lead to a complex spatial distribution of excitation frequencies. Here we used optical mapping and Fourier analysis to determine the distribution of excitation frequencies in >20 000 sites of fibrillating ventricular tissue. Our objective was to use such a distribution as a tool to quantify the degree of organization during VF. Fourteen episodes of VT/VF were induced via rapid pacing in 9 isolated, coronary perfused, and superfused sheep ventricular slabs (3x3 cm(2)). A dual-camera video-imaging system was used for simultaneous optical recordings from the entire epi- and endocardial surfaces. The local frequencies of excitation were determined at each pixel and displayed as dominant frequency (DF) maps. A typical DF map consisted of several (8.2+/-3.6) discrete areas (domains) with a uniform DF within each domain. The DFs in adjacent domains were often in 1:2, 3:4, or 4:5 ratios, which was shown to be a result of an intermittent Wenckebach-like conduction block at the domain boundaries. The domain patterns were relatively stable and could persist from several seconds to several minutes. The complexity in the organization of the domains, the number of domains, and the dispersion of frequencies increased with the rate of the arrhythmia. Domain patterns on the epicardial and endocardial surfaces were not correlated. Sustained epicardial or endocardial reentry was observed in only 3 episodes. Observed frequency patterns during VT/VF suggest that the underlying mechanism may be a sustained intramural reentrant source interacting with tissue heterogeneities.

  5. Exactly solvable chaos in an electromechanical oscillator

    NASA Astrophysics Data System (ADS)

    Owens, Benjamin A. M.; Stahl, Mark T.; Corron, Ned J.; Blakely, Jonathan N.; Illing, Lucas

    2013-09-01

    A novel electromechanical chaotic oscillator is described that admits an exact analytic solution. The oscillator is a hybrid dynamical system with governing equations that include a linear second order ordinary differential equation with negative damping and a discrete switching condition that controls the oscillatory fixed point. The system produces provably chaotic oscillations with a topological structure similar to either the Lorenz butterfly or Rössler's folded-band oscillator depending on the configuration. Exact solutions are written as a linear convolution of a fixed basis pulse and a sequence of discrete symbols. We find close agreement between the exact analytical solutions and the physical oscillations. Waveform return maps for both configurations show equivalence to either a shift map or tent map, proving the chaotic nature of the oscillations.

  6. Endocardial fibrosarcoma in a reticulated python (Python reticularis).

    PubMed

    Gumber, Sanjeev; Nevarez, Javier G; Cho, Doo-Youn

    2010-11-01

    A female, reticulated python (Python reticularis) of unknown age was presented with a history of lethargy, weakness, and distended coelom. Physical examination revealed severe dystocia and stomatitis. The reticulated python was euthanized due to a poor clinical prognosis. Postmortem examination revealed marked distention of the reproductive tract with 26 eggs (10-12 cm in diameter), pericardial effusion, and a slightly firm, pale tan mass (3-4 cm in diameter) adhered to the endocardium at the base of aorta. Based on histopathologic and transmission electron microscopic findings, the diagnosis of endocardial fibrosarcoma was made.

  7. In vivo measurement of swine endocardial convective heat transfer coefficient.

    PubMed

    Tangwongsan, Chanchana; Will, James A; Webster, John G; Meredith, Kenneth L; Mahvi, David M

    2004-08-01

    We measured the endocardial convective heat transfer coefficient h at 22 locations in the cardiac chambers of 15 pigs in vivo. A thin-film Pt catheter tip sensor in a Wheatstone-bridge circuit, similar to a hot wire/film anemometer, measured h. Using fluoroscopy, we could precisely locate the steerable catheter sensor tip and sensor orientation in pigs' cardiac chambers. With flows, h varies from 2500 to 9500 W/m2 x K. With zero flow, h is approximately 2400 W/m2 x K. These values of h can be used for the finite element method modeling of radiofrequency cardiac catheter ablation.

  8. Nonlinear phenomena in multiferroic nanocapacitor: Joule heating and electromechanical effects

    SciTech Connect

    Kim, Yunseok; Kumar, Amit; Tselev, Alexander; Kravchenko, Ivan I; Kalinin, Sergei V; Jesse, Stephen

    2011-01-01

    We demonstrate an approach for probing nonlinear electromechanical responses in BiFeO3 thin film nanocapacitors using half-harmonic band excitation piezoresponse force microscopy (PFM). Nonlinear PFM images of nanocapacitor arrays show clearly visible clusters of capacitors associated with variations of local leakage current through the BiFeO3 film. Strain spectroscopy measurements and finite element modeling point to significance of the Joule heating and show that the thermal effects caused by the Joule heating can provide nontrivial contributions to the nonlinear electromechanical responses in ferroic nanostructures. This approach can be further extended to unambiguous mapping of electrostatic signal contributions to PFM and related techniques.

  9. Nonlinear phenomena in multiferroic nanocapacitors: joule heating and electromechanical effects.

    PubMed

    Kim, Yunseok; Kumar, Amit; Tselev, Alexander; Kravchenko, Ivan I; Han, Hee; Vrejoiu, Ionela; Lee, Woo; Hesse, Dietrich; Alexe, Marin; Kalinin, Sergei V; Jesse, Stephen

    2011-11-22

    We demonstrate an approach for probing nonlinear electromechanical responses in BiFeO(3) thin film nanocapacitors using half-harmonic band excitation piezoresponse force microscopy (PFM). Nonlinear PFM images of nanocapacitor arrays show clearly visible clusters of capacitors associated with variations of local leakage current through the BiFeO(3) film. Strain spectroscopy measurements and finite element modeling point to significance of the Joule heating and show that the thermal effects caused by the Joule heating can provide nontrivial contributions to the nonlinear electromechanical responses in ferroic nanostructures. This approach can be further extended to unambiguous mapping of electrostatic signal contributions to PFM and related techniques.

  10. Electromechanical x-ray generator

    DOEpatents

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  11. Repeat left atrial catheter ablation: cardiac magnetic resonance prediction of endocardial voltage and gaps in ablation lesion sets.

    PubMed

    Harrison, James L; Sohns, Christian; Linton, Nick W; Karim, Rashed; Williams, Steven E; Rhode, Kawal S; Gill, Jaswinder; Cooklin, Michael; Rinaldi, C Aldo; Wright, Matthew; Schaeffter, Tobias; Razavi, Reza S; O'Neill, Mark D

    2015-04-01

    Studies have reported an inverse relationship between late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) signal intensity and left atrial (LA) endocardial voltage after LA ablation. However, there is controversy regarding the reproducibility of atrial LGE CMR and its ability to identify gaps in ablation lesions. Using systematic and objective techniques, this study examines the correlation between atrial CMR and endocardial voltage. Twenty patients who had previous ablation for atrial fibrillation and represented with paroxysmal atrial fibrillation or atrial tachycardia underwent preablation LGE CMR. During the ablation procedure, high-density point-by-point Carto voltage maps were acquired. Three-dimensional CMR reconstructions were registered with the Carto anatomies to allow comparison of voltage and LGE signal intensity. Signal intensities around the left and right pulmonary vein antra and along the LA roof and mitral lines on the CMR-segmented LA shells were extracted to examine differences between electrically isolated and reconnected lesions. There were a total of 6767 data points across the 20 patients. Only 119 (1.8%) of the points were ≤ 0.05 mV. There was only a weak inverse correlation between either unipolar (r = -0.18) or bipolar (r = -0.17) voltage and LGE CMR signal intensities with low voltage occurring across a large range of signal intensities. Signal intensities were not statistically different for electrically isolated and reconnected lesions. This study demonstrates that there is only a weak point-by-point relationship between LGE CMR and endocardial voltage in patients undergoing repeat LA ablation. Using an objective method of assessing gaps in ablation lesions, LGE CMR is unable to reliably predict sites of electrical conduction. © 2015 American Heart Association, Inc.

  12. Hybrid epicardial and endocardial ablation of persistent or permanent atrial fibrillation: a new approach for difficult cases.

    PubMed

    Pak, Hui-Nam; Hwang, Chun; Lim, Hong Euy; Kim, Jin Seok; Kim, Young-Hoon

    2007-09-01

    Although percutaneous epicardial catheter ablation (PECA) has been used for the management of epicardial ventricular tachycardia, the use of PECA for atrial fibrillation (AF) has not yet been reported. To evaluate the efficacy and feasibility of a hybrid PECA and endocardial ablation for AF. We performed PECA for AF in five patients (48.6 +/- 8.1 years old, all male, four redo ablation procedures of persistent AF with a risk of pulmonary vein (PV) stenosis, one de novo ablation of permanent [AF]) after an endocardial AF ablation guided by PV potentials and 3D mapping (NavX). Utilizing an open irrigation tip catheter, a left atrial (LA) linear ablation from the roof to the perimitral isthmus or localized ablation at the junction between the LA appendage and left-sided PVs or ligament of Marshall (LOM) was performed. PECA of AF was successful in all patients with an ablation time of <15 minutes. The left-sided PV potentials were eliminated by PECA in all patients. Bidirectional block of the perimitral line was achieved in two of two patients and a left inferior PV tachycardia with conduction block to the LA was observed during the ablation in the area of the LOM in one patient. A hemopericardium developed in one patient, but was controlled successfully. During 8.0 +/- 6.3 months of follow-up, all patients have remained in sinus rhythm (four patients without antiarrhythmic drugs). A hybrid PECA of AF is feasible and effective in patients with redo-AF ablation procedures and at risk for left-sided PV stenosis or who are resistant to endocardial linear ablation.

  13. Twist1 function in endocardial cushion cell proliferation, migration, and differentiation during heart valve development.

    PubMed

    Shelton, Elaine L; Yutzey, Katherine E

    2008-05-01

    Twist1 is a bHLH transcription factor that regulates cell proliferation, migration, and differentiation in embryonic progenitor cell populations and transformed tumor cells. While much is known about Twist1's function in a variety of mesenchymal cell types, the role of Twist1 in endocardial cushion cells is unknown. Twist1 gain and loss of function experiments were performed in primary chicken endocardial cushion cells in order to elucidate its role in endocardial cushion development. These studies indicate that Twist1 can induce endocardial cushion cell proliferation as well as promote endocardial cushion cell migration. Furthermore, Twist1 is subject to BMP regulation and can induce expression of cell migration marker genes including Periostin, Cadherin 11, and Mmp2 while repressing markers of valve cell differentiation including Aggrecan. Previously, Tbx20 has been implicated in endocardial cushion cell proliferation and differentiation, and in the current study, Tbx20 also promotes cushion cell migration. Twist1 can induce Tbx20 expression, while Tbx20 does not affect Twist1 expression. Taken together, these data indicate a role for Twist1 upstream of Tbx20 in promoting cell proliferation and migration and repressing differentiation in endocardial cushion cells during embryonic development.

  14. Electromechanical flight control actuator. [for space shuttles

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An electromechanical actuator that will follow a proportional control command with minimum wasted energy is developed. The feasibility of meeting space vehicle actuator requirements using advanced electromechanical concepts is demonstrated. Recommendations for further development are given.

  15. Electromechanical oscillations in bilayer graphene.

    PubMed

    Benameur, Muhammed M; Gargiulo, Fernando; Manzeli, Sajedeh; Autès, Gabriel; Tosun, Mahmut; Yazyev, Oleg V; Kis, Andras

    2015-10-20

    Nanoelectromechanical systems constitute a class of devices lying at the interface between fundamental research and technological applications. Realizing nanoelectromechanical devices based on novel materials such as graphene allows studying their mechanical and electromechanical characteristics at the nanoscale and addressing fundamental questions such as electron-phonon interaction and bandgap engineering. In this work, we realize electromechanical devices using single and bilayer graphene and probe the interplay between their mechanical and electrical properties. We show that the deflection of monolayer graphene nanoribbons results in a linear increase in their electrical resistance. Surprisingly, we observe oscillations in the electromechanical response of bilayer graphene. The proposed theoretical model suggests that these oscillations arise from quantum mechanical interference in the transition region induced by sliding of individual graphene layers with respect to each other. Our work shows that bilayer graphene conceals unexpectedly rich and novel physics with promising potential in applications based on nanoelectromechanical systems.

  16. Electromechanical oscillations in bilayer graphene

    PubMed Central

    Benameur, Muhammed M.; Gargiulo, Fernando; Manzeli, Sajedeh; Autès, Gabriel; Tosun, Mahmut; Yazyev, Oleg V.; Kis, Andras

    2015-01-01

    Nanoelectromechanical systems constitute a class of devices lying at the interface between fundamental research and technological applications. Realizing nanoelectromechanical devices based on novel materials such as graphene allows studying their mechanical and electromechanical characteristics at the nanoscale and addressing fundamental questions such as electron–phonon interaction and bandgap engineering. In this work, we realize electromechanical devices using single and bilayer graphene and probe the interplay between their mechanical and electrical properties. We show that the deflection of monolayer graphene nanoribbons results in a linear increase in their electrical resistance. Surprisingly, we observe oscillations in the electromechanical response of bilayer graphene. The proposed theoretical model suggests that these oscillations arise from quantum mechanical interference in the transition region induced by sliding of individual graphene layers with respect to each other. Our work shows that bilayer graphene conceals unexpectedly rich and novel physics with promising potential in applications based on nanoelectromechanical systems. PMID:26481767

  17. Electromechanical oscillations in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Benameur, Muhammed M.; Gargiulo, Fernando; Manzeli, Sajedeh; Autès, Gabriel; Tosun, Mahmut; Yazyev, Oleg V.; Kis, Andras

    2015-10-01

    Nanoelectromechanical systems constitute a class of devices lying at the interface between fundamental research and technological applications. Realizing nanoelectromechanical devices based on novel materials such as graphene allows studying their mechanical and electromechanical characteristics at the nanoscale and addressing fundamental questions such as electron-phonon interaction and bandgap engineering. In this work, we realize electromechanical devices using single and bilayer graphene and probe the interplay between their mechanical and electrical properties. We show that the deflection of monolayer graphene nanoribbons results in a linear increase in their electrical resistance. Surprisingly, we observe oscillations in the electromechanical response of bilayer graphene. The proposed theoretical model suggests that these oscillations arise from quantum mechanical interference in the transition region induced by sliding of individual graphene layers with respect to each other. Our work shows that bilayer graphene conceals unexpectedly rich and novel physics with promising potential in applications based on nanoelectromechanical systems.

  18. Electromechanical Devices. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in electromechanical devices is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored training…

  19. Electromechanical polishing of metal spheres

    SciTech Connect

    Miller, N.E.; Engelhaupt, D.E.

    1980-04-01

    Equipment has been developed to electromechanically polish metal spheres. Mechanical polishing is accomplished by the action of three cup-shaped laps which rotate against the sphere. An abrasive slurry containing an electrolyte is continuously applied to the sphere and laps. Electrochemical etching is accomplished by applying a positive potential to two of the laps and a negative potential to the third.

  20. Electromechanical Technology Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Div. of Vocational Education.

    This curriculum guide is intended to provide vocational teachers, supervisors, administrators, and counselors with a suggested model for organizing a course in electromechanical technology. Discussed first are the philosophy, purpose, and objectives of the course. Second, course admissions and recruitment procedures are outlined. Included in the…

  1. Manual Override For Electromechanical Latch

    NASA Technical Reports Server (NTRS)

    Scott, Richard

    1992-01-01

    Override mechanism enables user to operate electromechanical latching mechanism manually if primary mechanism fails. Release/Engage Mechanism (REM) moves pin receivers to confine pins on object to be held. Clutch disengages electrically driven latch normally used. Used to latch and unlatch large, heavy objects from fixed support structure.

  2. Multiple endocardial neurofibromas in a rosy-billed pochard (Netta peposaca)

    PubMed Central

    Miller, Andrew D.; Baitchman, Eric J.; Masek-Hammerman, Katherine

    2013-01-01

    Endocardial neoplasms are uncommon in veterinary species with most cases restricted to endocardial schwannomas in aged rats. A 15-year-old, male rosy-billed pochard (Netta peposaca) was diagnosed following necropsy with numerous, proliferative endocardial masses. Histologically, these masses were composed of interlacing streams and bundles of neoplastic spindle cells supported by a fine fibrovascular stroma. Rare areas of cellular and nuclear palisading were present in the nodules. Approximately 60% of the neoplastic cells were strongly positive for S-100, whereas none of the neoplastic cells was positive for desmin, synaptophysin, neurofilament, and glial fibrillary acidic protein. The histologic features coupled with the S-100 immunoreactivity led to a diagnosis of endocardial neurofibroma. PMID:22362538

  3. Vagal tone augmentation to the atrioventricular node in humans: efficacy and safety of burst endocardial stimulation.

    PubMed

    Rossi, Pietro; Bianchi, Stefano; Monari, Giancarlo; Della Scala, Alberto; Porcelli, Daniele; Valsecchi, Sergio; Canonaco, Sergio; Kornet, Lilian; Azzolini, Paolo

    2010-05-01

    Control of atrioventricular (AV) nodal conduction by endocardial stimulation of efferent AV nodal vagal fibers [atrioventricular nodal vagal stimulation (AVNS)] is a promising approach for long-term device-based modulation of ventricular rate during atrial fibrillation (AF). However, few data on the efficacy of AVNS delivered as high-frequency stimulus packages (burst AVNS) in humans are available. The purpose of this study was to determine whether burst AVNS can to modulate AV nodal conduction during AF and whether burst AVNS delivered during sinus rhythm (SR) in the effective atrial refractory period allows safe implantation of a permanent lead in a position suitable for AVNS. Twenty patients (10 in SR and 10 in AF) who were candidates for dual-chamber pacemaker implantation for sick sinus syndrome were enrolled in the study. The posteroseptal right atrium was mapped to identify a location at which burst AVNS would achieve AV nodal conduction modulation (lengthening of PR interval in SR and reduction of ventricular rate in AF). Subsequently, a lead was screwed in at that site and burst stimulation (pulse rate 50 Hz, burst duration 180 ms) was delivered at different burst rates, pulse durations, and amplitudes. In all SR patients, PR-interval prolongation was evoked at 90 and 120 bursts/minute with pulse durations < or =1 ms. Specifically, the mean voltages required to obtain PR-interval prolongation and advanced AV block were 4.3 +/- 2.2 V and 5.4 +/- 1.8 V (at 90 bursts/minute and 1 ms), respectively. Similarly, ventricular rate reduction was obtained in all AF patients, starting from 90 bursts/minute and 0.5-ms pulse duration (at 5.4 +/- 1.8 V). Ventricular arrhythmias were never induced during AVNS. Endocardial right atrial burst AVNS reduces ventricular rate during AF. Burst AVNS delivered during SR in the effective atrial refractory period allows optimization of lead positioning for AVNS. Copyright 2010 Heart Rhythm Society. Published by Elsevier Inc. All

  4. Genetic interaction between pku300 and fbn2b controls endocardial cell proliferation and valve development in zebrafish.

    PubMed

    Wang, Xu; Yu, Qingming; Wu, Qing; Bu, Ye; Chang, Nan-Nan; Yan, Shouyu; Zhou, Xiao-Hai; Zhu, Xiaojun; Xiong, Jing-Wei

    2013-03-15

    Abnormal cardiac valve morphogenesis is a common cause of human congenital heart disease. The molecular mechanisms regulating endocardial cell proliferation and differentiation into cardiac valves remain largely unknown, although great progress has been made on the endocardial contribution to the atrioventricular cushion and valve formation. We found that scotch tape(te382) (sco(te382)) encodes a novel transmembrane protein that is crucial for endocardial cell proliferation and heart valve development. The zebrafish sco(te382) mutant showed diminished endocardial cell proliferation, lack of heart valve leaflets and abnormal common cardinal and caudal veins. Positional cloning revealed a C946T nonsense mutation of a novel gene pku300 in the sco(te382) locus, which encoded a 540-amino-acid protein on cell membranes with one putative transmembrane domain and three IgG domains. A known G3935T missense mutation of fbn2b was also found ∼570 kb away from pku300 in sco(te382) mutants. The genetic mutant sco(pku300), derived from sco(te382), only had the C946T mutation of pku300 and showed reduced numbers of atrial endocardial cells and an abnormal common cardinal vein. Morpholino knockdown of fbn2b led to fewer atrial endocardial cells and an abnormal caudal vein. Knockdown of both pku300 and fbn2b phenocopied these phenotypes in sco(te382) genetic mutants. pku300 transgenic expression in endocardial and endothelial cells, but not myocardial cells, partially rescued the atrial endocardial defects in sco(te382) mutants. Mechanistically, pku300 and fbn2b were required for endocardial cell proliferation, endocardial Notch signaling and the proper formation of endocardial cell adhesion and tight junctions, all of which are crucial for cardiac valve development. We conclude that pku300 and fbn2b represent the few genes capable of regulating endocardial cell proliferation and signaling in zebrafish cardiac valve development.

  5. EMMA: Electromechanical Modeling in ALEGRA

    SciTech Connect

    1996-12-31

    To ensure high levels of deterrent capability in the 21st century, new stockpile stewardship principles are being embraced at Sandia National Laboratories. The Department of Energy Accelerated Strategic Computing Initiative (ASCI) program is providing the computational capacity and capability as well as funding the system and simulation software infrastructure necessary to provide accurate, precise and predictive modeling of important components and devices. An important class of components require modeling of piezoelectric and ferroceramic materials. The capability to run highly resolved simulations of these types of components on the ASCI parallel computers is being developed at Sandia in the ElectroMechanical Modeling in Alegra (EMMA) code. This a simulation capability being developed at Sandia National Laboratories for high-fidelity modeling of electromechanical devices. these devices can produce electrical current arising from material changes due to shock impact or explosive detonation.

  6. Electromechanical propellant control system actuator

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  7. Electromechanical propellant control system actuator

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  8. Metal Ir coatings on endocardial electrode tips, obtained by MOCVD

    NASA Astrophysics Data System (ADS)

    Vikulova, Evgeniia S.; Kal'nyi, Danila B.; Shubin, Yury V.; Kokovkin, Vasily V.; Morozova, Natalya B.; Hassan, Aseel; Basova, Tamara V.

    2017-12-01

    The present work demonstrates the application of the Metal-Organic Chemical Vapor Deposition technique to fabricate metal iridium coatings onto the pole tips of endocardial electrodes. Using iridium (III) acetylacetonate as a volatile precursor, the target coatings were successfully applied to the working surface of cathodes and anodes of pacemaker electrodes in the flow type reactor in hydrogen atmosphere at deposition temperature of 550 °C. The coating samples were characterized by means of XRD, SEM, Raman- and XPS-spectroscopies. The formation of non-textured coatings with fractal-like morphology and 7-24 nm crystallite size has been realized. The electrochemical properties of the coatings were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The charge storage capacity values of the electrochemically activated samples were 17.0-115 mC cm-2 and 14.4-76.5 mC cm-2 for measurements carried out in 0.1 M sulfuric acid and in phosphate buffer saline solutions, respectively. A comparison of some characteristics of the samples obtained with commercially available cathode of pacemaker electrodes is also presented.

  9. Hybrid electromechanical actuator and actuation system

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Xu, Tian-Bing (Inventor)

    2008-01-01

    A hybrid electromechanical actuator has two different types of electromechanical elements, one that expands in a transverse direction when electric power is applied thereto and one that contracts in a transverse direction when electric power is applied thereto. The two electromechanical elements are (i) disposed in relation to one another such that the transverse directions thereof are parallel to one another, and (ii) mechanically coupled to one another at least at two opposing edges thereof. Electric power is applied simultaneously to the elements.

  10. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells.

    PubMed

    Kehat, Izhak; Khimovich, Leonid; Caspi, Oren; Gepstein, Amira; Shofti, Rona; Arbel, Gil; Huber, Irit; Satin, Jonathan; Itskovitz-Eldor, Joseph; Gepstein, Lior

    2004-10-01

    Cell therapy is emerging as a promising strategy for myocardial repair. This approach is hampered, however, by the lack of sources for human cardiac tissue and by the absence of direct evidence for functional integration of donor cells into host tissues. Here we investigate whether cells derived from human embryonic stem (hES) cells can restore myocardial electromechanical properties. Cardiomyocyte cell grafts were generated from hES cells in vitro using the embryoid body differentiating system. This tissue formed structural and electromechanical connections with cultured rat cardiomyocytes. In vivo integration was shown in a large-animal model of slow heart rate. The transplanted hES cell-derived cardiomyocytes paced the hearts of swine with complete atrioventricular block, as assessed by detailed three-dimensional electrophysiological mapping and histopathological examination. These results demonstrate the potential of hES-cell cardiomyocytes to act as a rate-responsive biological pacemaker and for future myocardial regeneration strategies.

  11. Endocardial Brg1 disruption illustrates the developmental origins of semilunar valve disease.

    PubMed

    Akerberg, Brynn N; Sarangam, Maithri L; Stankunas, Kryn

    2015-11-01

    The formation of intricately organized aortic and pulmonic valves from primitive endocardial cushions of the outflow tract is a remarkable accomplishment of embryonic development. While not always initially pathologic, developmental semilunar valve (SLV) defects, including bicuspid aortic valve, frequently progress to a disease state in adults requiring valve replacement surgery. Disrupted embryonic growth, differentiation, and patterning events that "trigger" SLV disease are coordinated by gene expression changes in endocardial, myocardial, and cushion mesenchymal cells. We explored roles of chromatin regulation in valve gene regulatory networks by conditional inactivation of the Brg1-associated factor (BAF) chromatin remodeling complex in the endocardial lineage. Endocardial Brg1-deficient mouse embryos develop thickened and disorganized SLV cusps that frequently become bicuspid and myxomatous, including in surviving adults. These SLV disease-like phenotypes originate from deficient endocardial-to-mesenchymal transformation (EMT) in the proximal outflow tract (pOFT) cushions. The missing cells are replaced by compensating neural crest or other non-EMT-derived mesenchyme. However, these cells are incompetent to fully pattern the valve interstitium into distinct regions with specialized extracellular matrices. Transcriptomics reveal genes that may promote growth and patterning of SLVs and/or serve as disease-state biomarkers. Mechanistic studies of SLV disease genes should distinguish between disease origins and progression; the latter may reflect secondary responses to a disrupted developmental system.

  12. Common pathways regulate Type III TGFβ receptor-dependent cell invasion in epicardial and endocardial cells.

    PubMed

    Clark, Cynthia R; Robinson, Jamille Y; Sanchez, Nora S; Townsend, Todd A; Arrieta, Julian A; Merryman, W David; Trykall, David Z; Olivey, Harold E; Hong, Charles C; Barnett, Joey V

    2016-06-01

    Epithelial-Mesenchymal Transformation (EMT) and the subsequent invasion of epicardial and endocardial cells during cardiac development is critical to the development of the coronary vessels and heart valves. The transformed cells give rise to cardiac fibroblasts and vascular smooth muscle cells or valvular interstitial cells, respectively. The Type III Transforming Growth Factor β (TGFβR3) receptor regulates EMT and cell invasion in both cell types, but the signaling mechanisms downstream of TGFβR3 are not well understood. Here we use epicardial and endocardial cells in in vitro cell invasion assays to identify common mechanisms downstream of TGFβR3 that regulate cell invasion. Inhibition of NF-κB activity blocked cell invasion in epicardial and endocardial cells. NF-κB signaling was found to be dysregulated in Tgfbr3(-/-) epicardial cells which also show impaired cell invasion in response to ligand. TGFβR3-dependent cell invasion is also dependent upon Activin Receptor-Like Kinase (ALK) 2, ALK3, and ALK5 activity. A TGFβR3 mutant that contains a threonine to alanine substitution at residue 841 (TGFβR3-T841A) induces ligand-independent cell invasion in both epicardial and endocardial cells in vitro. These findings reveal a role for NF-κB signaling in the regulation of epicardial and endocardial cell invasion and identify a mutation in TGFβR3 which stimulates ligand-independent signaling.

  13. Hybrid approach to atrial fibrillation ablation using bipolar radiofrequency devices epicardially and cryoballoon endocardially.

    PubMed

    Kumar, Narendra; Pison, Laurent; La Meir, Mark; Maessen, Jos; Crijns, Harry J

    2014-10-01

    Bipolar radiofrequency (RF) devices are used epicardially by cardiac surgeons and cryoballoon endocardially by cardiac electrophysiologists for atrial fibrillation (AF) ablation, but in separate entities. The study's objective was to evaluate the feasibility and safety of combining an endocardial cryoballoon with epicardial bipolar RF ablation for the treatment of AF. A cohort of 7 patients with AF underwent a hybrid thoracoscopic surgical and endocardial ablation. To prevent bilateral sequential lung deflation in these patients with severe chronic obstructive pulmonary disease, the right pulmonary veins (PVs) were isolated using an epicardial bipolar RF clamp and the contralateral veins with an endocardial cryoballoon. A box lesion set was made epicardially using a bipolar RF pen. Acutely, pacing manoeuvres proved a bidirectional block in all PVs in all patients. No complications were seen. A box lesion was made in 5 patients. During follow-up, 2 of them had AF recurrence: 1 was treated successfully with sotalol and another underwent redo RF catheter ablation with reisolation of the right inferior PV. At present, 6 of 7 patients are in sinus rhythm without any anti-arrythmic drugs during a follow-up of more than 40 ± 3 months. A hybrid approach to AF ablation using a cryoballoon endocardially and a bipolar RF device epicardially is feasible and safe. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  14. Endocardial or epicardial ventricular tachycardia in nonischemic cardiomyopathy? The role of 12-lead ECG criteria in clinical practice.

    PubMed

    Piers, Sebastiaan R D; Silva, Marta de Riva; Kapel, Gijsbert F L; Trines, Serge A; Schalij, Martin J; Zeppenfeld, Katja

    2014-06-01

    Specific 12-lead ECG criteria have been reported to predict an epicardial site of origin (SoO) of induced ventricular tachycardias (VTs) in left ventricular nonischemic cardiomyopathy. The purpose of this study was to (1) determine the value of ECG criteria to predict an epicardial SoO of clinically documented VTs, (2) analyze the effect of VT cycle length (CL) and antiarrhythmic drugs on the accuracy of ECG criteria, and (3) assess interobserver variability. In 36 consecutive patients with nonischemic left ventricular cardiomyopathy (age 58 ± 16 years, 75% male) who underwent combined endocardial/epicardial VT ablation, all clinically documented and induced right bundle branch block VTs were analyzed for previously reported ECG criteria to determine the SoO, as defined by ≥11/12 pace-map, concealed entrainment, and/or VT termination during ablation. In 21 patients with clinically documented (25 mm/s) right bundle branch block VT, none of the ECG criteria differentiated between patients with and those without an epicardial SoO. In induced VTs (100 mm/s), 2 of 4 interval criteria differentiated between an endocardial and epicardial SoO for slow VTs (CL >350 ms) and 2 of 4 criteria in patients on amiodarone, but none for fast VTs (CL ≤350 ms) or patients off amiodarone. The Q wave in lead I was the most accurate criterion for an epicardial SoO (sensitivity 88%, specificity 80%). In both clinically documented and induced VTs, interobserver agreement was poor for pseudodelta wave and moderate for other criteria. When applied to clinically documented VTs, no ECG criterion could differentiate between patients with and those without an epicardial SoO. Published interval-based ECG criteria do not apply to fast VTs and patients off amiodarone. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  15. Electromechanically tuned resistive switching device

    NASA Astrophysics Data System (ADS)

    Li, Lijie

    2013-12-01

    Hysteresis I-V is observed in our Cu-ZnO nanowire-Cu devices, the dynamic characteristics of which are measured across a very wide frequency band. The devices demonstrate a strong frequency dependent I-V. A working mechanism based on that of electromechanically tunable varistors is postulated by analyzing the experimental results. Electrostatic force induced by the external voltage was able to alter the location of the nanowires and in turn change the nonlinearity of the varistor. The theory also well elucidates the behavior of our devices driven at higher frequencies.

  16. Acquired tricuspid valve stenosis associated with two ventricular endocardial pacing leads in a dog.

    PubMed

    Tompkins, Emily; Dulake, Michelle I; Ghaffari, Shadie; Nakamura, Reid K

    2015-01-01

    Acquired tricuspid valve stenosis (TVS) is a rare complication of endocardial pacing lead implantation in humans that has only been described once previously in the veterinary literature in a dog with excessive lead redundancy. A 12 yr old terrier presented with right-sided congestive heart failure 6 mo after implantation of a second ventricular endocardial pacing lead. The second lead was placed due to malfunction of the first lead, which demonstrated abnormally low impedance. Transthoracic echocardiography identified hyperechoic tissue associated with the pacing leads as they crossed the tricuspid valve annulus as well as a stenotic tricuspid inflow pattern via spectral Doppler interrogation. Medical management was ultimately unsuccessful and the dog was euthanized 6 wk after TVS was diagnosed. The authors report the first canine case of acquired TVS associated with two ventricular endocardial pacing leads.

  17. Cell Autonomous Requirement of Endocardial Smad4 During Atrioventricular Cushion Development in Mouse Embryos

    PubMed Central

    Song, Langying; Zhao, Mei; Wu, Bingruo; Zhou, Bin; Wang, Qin; Jiao, Kai

    2011-01-01

    Atrioventricular (AV) cushions are the precursors of AV septum and valves. In this study, we examined roles of Smad4 during AV cushion development using a conditional gene inactivation approach. We found that endothelial/endocardial inactivation of Smad4 led to the hypocellular AV cushion defect and that both reduced cell proliferation and increased apoptosis contributed to the defect. Expression of multiple genes critical for cushion development was down-regulated in mutant embryos. In collagen gel assays, the number of mesenchymal cells formed is significantly reduced in mutant AV explants compared to that in control explants, suggesting that the reduction of cushion mesenchyme formation in mutants is unlikely secondary to their gross vasculature abnormalities. Using a previously developed immortal endocardial cell line, we showed that Smad4 is required for BMP signaling- stimulated upregulation of Tbx20 and Gata4. Therefore, our data collectively support the cell-autonomous requirement of endocardial Smad4 in regulating AV cushion development. PMID:21089072

  18. Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis

    PubMed Central

    Cai, Xiaoqiang; Zhang, Weijia; Hu, Jun; Zhang, Lu; Sultana, Nishat; Wu, Bingruo; Cai, Weibin; Zhou, Bin; Cai, Chen-Leng

    2013-01-01

    Cardiac valves are essential to direct forward blood flow through the cardiac chambers efficiently. Congenital valvular defects are prevalent among newborns and can cause an immediate threat to survival as well as long-term morbidity. Valve leaflet formation is a rigorously programmed process consisting of endocardial epithelial-mesenchymal transformation (EMT), mesenchymal cell proliferation, valve elongation and remodeling. Currently, little is known about the coordination of the diverse signals that regulate endocardial cushion development and valve elongation. Here, we report that the T-box transcription factor Tbx20 is expressed in the developing endocardial cushions and valves throughout heart development. Ablation of Tbx20 in endocardial cells causes severe valve elongation defects and impaired cardiac function in mice. Our study reveals that endocardial Tbx20 is crucial for valve endocardial cell proliferation and extracellular matrix development, but is not required for initiation of EMT. Elimination of Tbx20 also causes aberrant Wnt/β-catenin signaling in the endocardial cushions. In addition, Tbx20 regulates Lef1, a key transcriptional mediator for Wnt/β-catenin signaling, in this developmental process. Our study suggests a model in which Tbx20 regulates the Wnt pathway to direct endocardial cushion maturation and valve elongation, and provides new insights into the etiology of valve defects in humans. PMID:23824573

  19. Electromechanical Componentry. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Lindemann, Don

    This training module on electromechanical components contains 10 units for a two-year vocational program packaging system equipment control course at Wisconsin Indianhead Technical College. This module describes the functions of electromechanical devices essential for understanding input/output devices for Programmable Logic Control (PLC)…

  20. Docking-mechanism attenuator with electromechanical damper

    NASA Technical Reports Server (NTRS)

    Syromyatnikov, V. S.

    1971-01-01

    Theoretical and practical problems involved in the application of electromechanical damping for spacecraft docking-mechanism attenuation are discussed. Some drawbacks of hydraulic dampers used for the purpose are pointed out. The basic scheme of the attenuator with the electromechanical damper is given.

  1. Long-term performance of epimyocardial pacing leads in adults: comparison with endocardial leads.

    PubMed

    Helguera, M E; Maloney, J D; Woscoboinik, J R; Trohman, R G; McCarthy, P M; Morant, V A; Wilkoff, B L; Castle, L W; Pinski, S L

    1993-03-01

    The long-term performance of epimyocardial pacing leads in children is well established, but few studies have analyzed the performance in adults. This issue has clinical relevance in view of the increased use of epimyocardial leads with implantable cardioverter defibrillator and antitachycardia pacing systems. We analyzed 93 epimyocardial pacing "systems" (121 leads: 65 unipolar, 28 bipolar) in adult patients (age 57 +/- 16 years), implanted since January 1980. Two different models were studied: Medtronic 4951 "Stab-on" (n = 35) and Medtronic 6917/6917A "Screw-in" (n = 58). A control group was created by randomly matching each epimyocardial system with two endocardial leads, according to age and year of implant. Epimyocardial and endocardial leads were followed-up for 44 +/- 35 and 43 +/- 35 months, respectively (P = NS). Freedom from failure for epimyocardial leads was 0.91 (95% Confidence Interval [95% CI] = 0.82 to 0.96) at 5 years, and 0.91 (95% CI = 0.69 to 0.98) at 10 years. No difference was found between the two analyzed models. Freedom from failure for endocardial leads was 0.97 (95% CI = 0.93 to 0.99) and 0.90 (95% CI = 0.61 to 0.97) at 5 and 10 years, respectively. Epimyocardial leads had a significantly poorer short-term survival than endocardial leads, secondarily to earlier "technique related" failures (P = 0.03; relative risk 3.0; Wilcoxon test). However, overall long-term performance was similar to endocardial leads. Epimyocardial pacing leads, meticulously implanted and tested, have a long-term performance similar to endocardial pacing leads.

  2. Strongly Coupled Nanotube Electromechanical Resonators.

    PubMed

    Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-09-14

    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.

  3. Combined Right Ventricular Outflow Tract Epicardial and Endocardial Late Potential Ablation for Treatment of Brugada Storm: A Case Report and Review of the Literature.

    PubMed

    Saha, Sandeep A; Krishnan, Kousik; Madias, Christopher; Trohman, Richard G

    2016-12-01

    A 34-year-old man with Brugada syndrome (BrS) presented with electrical storm, manifested as multiple appropriate shocks from his implantable cardioverter-defibrillator over a period of 7 hours. He had not tolerated prior treatment with quinidine, and had self-discontinued cilostazol citing persistent palpitations. After stabilization with intravenous isoproterenol, an electrophysiology study was performed but no spontaneous or induced ventricular ectopic beats were identified. A three-dimensional (3D) endocardial electro-anatomic map of the right ventricular outflow tract (RVOT), pulmonic valve, and pulmonary artery, as well as a 3D epicardial map of the RVOT, were created. Low voltage, complex, fractionated electrograms and late potentials were targeted for irrigated radiofrequency ablation both endocardially and epicardially. Post-procedure, he was maintained on cilostazol (referring clinician preference), and has had no further ventricular tachyarrhythmia episodes over the past forty-one months. We propose that this novel ablation strategy may be useful for acute management of selected patients with BrS.

  4. S1pr2/Gα13 signaling regulates the migration of endocardial precursors by controlling endoderm convergence.

    PubMed

    Xie, Huaping; Ye, Ding; Sepich, Diane; Lin, Fang

    2016-06-15

    Formation of the heart tube requires synchronized migration of endocardial and myocardial precursors. Our previous studies indicated that in S1pr2/Gα13-deficient embryos, impaired endoderm convergence disrupted the medial migration of myocardial precursors, resulting in the formation of two myocardial populations. Here we show that endoderm convergence also regulates endocardial migration. In embryos defective for S1pr2/Gα13 signaling, endocardial precursors failed to migrate towards the midline, and the presumptive endocardium surrounded the bilaterally-located myocardial cells rather than being encompassed by them. In vivo imaging of control embryos revealed that, like their myocardial counterparts, endocardial precursors migrated with the converging endoderm, though from a more anterior point, then moved from the dorsal to the ventral side of the endoderm (subduction), and finally migrated posteriorly towards myocardial precursors, ultimately forming the inner layer of the heart tube. In embryos defective for endoderm convergence due to an S1pr2/Gα13 deficiency, both the medial migration and the subduction of endocardial precursors were impaired, and their posterior migration towards the myocardial precursors was premature. This placed them medial to the myocardial populations, physically blocking the medial migration of the myocardial precursors. Furthermore, contact between the endocardial and myocardial precursor populations disrupted the epithelial architecture of the myocardial precursors, and thus their medial migration; in embryos depleted of endocardial cells, the myocardial migration defect was partially rescued. Our data indicate that endoderm convergence regulates the medial migration of endocardial precursors, and that premature association of the endocardial and myocardial populations contributes to myocardial migration defects observed in S1pr2/Gα13-deficient embryos. The demonstration that endoderm convergence regulates the synchronized

  5. Increased number of cerebral emboli during percutaneous endocardial pulmonary vein isolation versus a thoracoscopic epicardial approach.

    PubMed

    Sauren, Loes D; la Meir, Mark; de Roy, Luc; Pison, Laurent; van der Veen, Frederik H; Mess, Werner H; Crijns, Harry J; Maessen, Jos G

    2009-11-01

    Pulmonary vein isolation (PVI) using ablation energy appears an effective treatment for atrial fibrillation (AF) with a success rate of approximately 80%. However, post-procedural neurological complications still occur in 0.5-10% of all patients undergoing PVI, presumably due to embolism. Therefore, we investigated the occurrence of cerebral micro-embolic signals (MES) as a surrogate marker for the risk of neurological impairment of two different PVI methods: (1) percutaneous endocardial radio-frequency (RF) ablation and (2) thoracoscopic epicardial ablation using RF energy. Ten patients (eight persistent AF and two paroxysmal AF) underwent a minimally invasive thoracoscopic epicardial (EPI) RF ablation and 10 patients (one persistent AF and nine paroxysmal AF) underwent a percutaneous endocardial (ENDO) isolation. Transcranial Doppler (TCD) was used to detect an MES in the middle cerebral arteries. An average of 5 (+/-6) MES were detected during epicardial PVI procedure versus 3908 (+/-2816) MES during percutaneous endocardial PVI procedure. During the ablation application period, respectively, 1 (+/-1) and 2566 (+/-2296) cerebral MES were detected. Cerebral micro-emboli during epicardial ablation are almost absent when compared to the thousands of emboli measured during percutaneous endocardial ablation.

  6. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease

    PubMed Central

    von Gise, Alexander; Pu, William T.

    2012-01-01

    Epithelial to mesenchymal transition (EMT) converts epithelial cells to mobile and developmentally plastic mesenchymal cells. All cells in the heart arise from one or more EMTs. Within the developing heart, endocardial and epicardial EMTs produce most of the non-cardiomyocyte lineages of the mature heart. Endocardial EMT generates valve progenitor cells and is necessary for formation of the cardiac valves and for complete cardiac septation. Epicardial EMT is required for myocardial growth and coronary vessel formation, and generates cardiac fibroblasts, vascular smooth muscle cells, a subset of coronary endothelial cells, and possibly a subset of cardiomyocytes. Emerging studies suggest that these developmental mechanisms are redeployed in adult heart valve disease, in cardiac fibrosis, and in myocardial responses to ischemic injury. Redirection and amplification of disease-related EMTs offer potential new therapeutic strategies and approaches for treatment of heart disease. Here we review the role and molecular regulation of endocardial and epicardial EMT in fetal heart development, and we summarize key literature implicating reactivation of endocardial and epicardial EMT in adult heart disease. PMID:22679138

  7. Endocardial to Myocardial Notch-Wnt-Bmp Axis Regulates Early Heart Valve Development

    PubMed Central

    Wang, Yidong; Wu, Bingruo; Chamberlain, Alyssa A.; Lui, Wendy; Koirala, Pratistha; Susztak, Katalin; Klein, Diana; Taylor, Verdon; Zhou, Bin

    2013-01-01

    Endocardial to mesenchymal transformation (EMT) is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC) endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1) show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT. PMID:23560082

  8. Micro electro-mechanical heater

    DOEpatents

    Oh, Yunje; Asif, Syed Amanulla Syed; Cyrankowski, Edward; Warren, Oden Lee

    2016-04-19

    A sub-micron scale property testing apparatus including a test subject holder and heating assembly. The assembly includes a holder base configured to couple with a sub-micron mechanical testing instrument and electro-mechanical transducer assembly. The assembly further includes a test subject stage coupled with the holder base. The test subject stage is thermally isolated from the holder base. The test subject stage includes a stage subject surface configured to receive a test subject, and a stage plate bracing the stage subject surface. The stage plate is under the stage subject surface. The test subject stage further includes a heating element adjacent to the stage subject surface, the heating element is configured to generate heat at the stage subject surface.

  9. Micro electro-mechanical heater

    DOEpatents

    Oh, Yunje; Asif, Syed Amanulla Syed; Cyrankowski, Edward; Warren, Oden Lee

    2017-09-12

    A sub-micron scale property testing apparatus including a test subject holder and heating assembly. The assembly includes a holder base configured to couple with a sub-micron mechanical testing instrument and electro-mechanical transducer assembly. The assembly further includes a test subject stage coupled with the holder base. The test subject stage is thermally isolated from the holder base. The test subject stage includes a stage subject surface configured to receive a test subject, and a stage plate bracing the stage subject surface. The stage plate is under the stage subject surface. The test subject stage further includes a heating element adjacent to the stage subject surface, the heating element is configured to generate heat at the stage subject surface.

  10. Dynamics of electromechanical flow structures.

    NASA Technical Reports Server (NTRS)

    Jones, T. B., Jr.; Melcher, J. R.

    1973-01-01

    Free-surface gravity flows and capillary wicking provide examples of flow structures with fluid partially ducted at free surfaces by external forces. Wall-less electromechanical flow structures are developed which have a similar nature, but with polarization forces providing the orientation at free surfaces. Like their mechanical counterparts, these have the ability to ingest liquid or expel vapor through their walls. The structures consist of electrodes running in the flow direction z with slowly varying cross sections in a plane transverse to the flow. A formulation is given of the long-wave nonlinear (principal mode) dynamics, with use made of energy functions to represent a broad class of possible mechanical and electrical structure geometries.

  11. Electromechanical responses of Cu strips

    NASA Astrophysics Data System (ADS)

    Zhao, Guangfeng; Liu, Ming; An, Zhinan; Ren, Yang; Liaw, Peter K.; Yang, Fuqian

    2013-05-01

    Electrical-thermal-mechanical behavior of materials plays an important role in controlling the structural integrity of electromechanical structures of small volumes. The electromechanical response of Cu strips was studied by passing an electric current through the strips with electric current densities in the range of 12.34 to 29.60 kA/cm2. The passage of the electric current of high current densities introduced electrical-thermal-mechanical interactions, which caused grain growth and grain rotation in both the melted region and heat-affected zone. The electrothermal interactions led to the elastoplastic buckling of the Cu strips with the maximum deflection of the Cu strips increasing with the increase of the electric current density. The total strain is a quadratic function of the electric current density. There was a quasi-steady state in which the electric resistance of the Cu strips linearly increased with time before the occurrence of electric fusing. A power-law relation was used to describe the dependence of the time-to-failure (electric fusing) on the electric current density. For the region of relatively low current densities, the current exponent ranged from 17.9 to 44.6, and for the region of high current densities, the current exponent ranged from 2.5 to 5.2. The current exponent for relatively low current densities decreased with increasing the length of Cu strips, showing size-dependence. Finite element analyses were performed to analyze the current-induced deflection of a Cu strip. The simulation results showed that the maximum deflection for the electric current density larger than or equal to 5 kA/cm2 is a linear function of the current density in agreement with the experimental observation.

  12. Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease.

    PubMed

    Ford, Stephanie M; McPheeters, Matthew T; Wang, Yves T; Ma, Pei; Gu, Shi; Strainic, James; Snyder, Christopher; Rollins, Andrew M; Watanabe, Michiko; Jenkins, Michael W

    2017-05-01

    The relationship between changes in endocardial cushion and resultant congenital heart diseases (CHD) has yet to be established. It has been shown that increased regurgitant flow early in embryonic heart development leads to endocardial cushion defects, but it remains unclear how abnormal endocardial cushions during the looping stages might affect the fully septated heart. The goal of this study was to reproducibly alter blood flow in vivo and then quantify the resultant effects on morphology of endocardial cushions in the looping heart and on CHDs in the septated heart. Optical pacing was applied to create regurgitant flow in embryonic hearts, and optical coherence tomography (OCT) was utilized to quantify regurgitation and morphology. Embryonic quail hearts were optically paced at 3 Hz (180 bpm, well above intrinsic rate 60-110 bpm) at stage 13 of development (3-4 weeks human) for 5 min. Pacing fatigued the heart and led to at least 1 h of increased regurgitant flow. Resultant morphological changes were quantified with OCT imaging at stage 19 (cardiac looping-4-5 weeks human) or stage 35 (4 chambered heart-8 weeks human). All paced embryos imaged at stage 19 displayed structural changes in cardiac cushions. The amount of regurgitant flow immediately after pacing was inversely correlated with cardiac cushion size 24-h post pacing (P value < .01). The embryos with the most regurgitant flow and smallest cushions after pacing had a decreased survival rate at 8 days (P < .05), indicating that those most severe endocardial cushion defects were lethal. Of the embryos that survived to stage 35, 17/18 exhibited CHDs including valve defects, ventricular septal defects, hypoplastic ventricles, and common AV canal. The data illustrate a strong inverse relationship in which regurgitant flow precedes abnormal and smaller cardiac cushions, resulting in the development of CHDs. © 2016 Wiley Periodicals, Inc.

  13. A multimode electromechanical parametric resonator array

    PubMed Central

    Mahboob, I.; Mounaix, M.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.

    2014-01-01

    Electromechanical resonators have emerged as a versatile platform in which detectors with unprecedented sensitivities and quantum mechanics in a macroscopic context can be developed. These schemes invariably utilise a single resonator but increasingly the concept of an array of electromechanical resonators is promising a wealth of new possibilities. In spite of this, experimental realisations of such arrays have remained scarce due to the formidable challenges involved in their fabrication. In a variation to this approach, we identify 75 harmonic vibration modes in a single electromechanical resonator of which 7 can also be parametrically excited. The parametrically resonating modes exhibit vibrations with only 2 oscillation phases which are used to build a binary information array. We exploit this array to execute a mechanical byte memory, a shift-register and a controlled-NOT gate thus vividly illustrating the availability and functionality of an electromechanical resonator array by simply utilising higher order vibration modes. PMID:24658349

  14. Overview of Honeywell electromechanical actuation programs

    NASA Technical Reports Server (NTRS)

    Wyllie, C.

    1982-01-01

    Materials illustrating a presentation on electromechanical actuation programs (EMA) are presented. The development history is outlined. Space shuttle flight control systems and the advantages of EMAS, and EMA technology status and development requirements are outlined.

  15. Electromechanical Surface Hardening of Tubing Steels

    NASA Astrophysics Data System (ADS)

    Fedorova, L. V.; Fedorov, S. K.; Serzhant, A. A.; Golovin, V. V.; Systerov, S. V.

    2017-07-01

    Results of metallographic studies of the structure of steels 38G2S and 37G2F and steels of group D after electromechanical surface hardening of tube specimens over the external diameter are presented.

  16. Six-Message Electromechanical Display System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2007-01-01

    A proposed electromechanical display system would be capable of presenting as many as six distinct messages. In the proposed system, each display element would include a cylinder having a regular hexagonal cross section.

  17. Cannon launched electromechanical control actuation system development

    NASA Technical Reports Server (NTRS)

    Johnston, J. G.

    1983-01-01

    The evolution of an electromechanical control actuation system from trade study results through breadboard test and high-g launch demonstration tests is summarized. Primary emphasis is on design, development, integration and test of the gear reduction system.

  18. Circuit electromechanics with single photon strong coupling

    SciTech Connect

    Xue, Zheng-Yuan Yang, Li-Na; Zhou, Jian

    2015-07-13

    In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.

  19. Electromechanical flight control actuator, volume 1

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An electromechanical actuator was developed that will follow a proportional control command with minimum wasted energy to demonstrate the feasibility of meeting space vehicle actuator requirements using advanced electromechanical concepts. The approach was restricted to a four-channel redundant configuration. Each channel has independent drive and control electronics, a brushless electric motor with brake, and velocity and position feedback transducers. A differential gearbox sums the output velocities of the motors. Normally, two motors are active and the other two are braked.

  20. Electromechanical instability in suspended carbon nanotubes.

    PubMed

    Jonsson, L Magnus; Gorelik, Leonid Y; Shekhter, Robert I; Jonson, Mats

    2005-06-01

    We have theoretically investigated electromechanical properties of freely suspended carbon nanotubes when a current is injected into the tubes using a scanning tunneling microscope. We show that a shuttle-like electromechanical instability can occur if the bias voltage exceeds a dissipation-dependent threshold value. An instability results in large amplitude vibrations of the carbon nanotube bending mode, which modify the current-voltage characteristics of the system.

  1. Electromechanical response of NCC-PEO composites

    NASA Astrophysics Data System (ADS)

    Bass, Patrick S.; Baltzell, Matthew; Zhang, Lin; Zhang, Daihui; Tu, Maobing; Cheng, Zhongyang

    2014-03-01

    Poly(ethylene oxide) (PEO) has been widely studied as a solid-polymer electrolyte where both the cations and anions can move inside of it under an applied electric field. The motion of these charge carriers in the PEO results in the accumulation of ions close to the electrodes. The inherent size difference between the types of ions causes an unequal volume change between the two sides which translates to an observed mechanical bending. This is similar to electroactive polymers made from conducting polymers. Typically, PEO has a slow response. Some efforts have been given to develop PEO-based polymer blends to improve their performance. In this work, a fundamental study on the electromechanical response is conducted: the time dependence of the electromechanical response is characterized for PEO under different electric fields. Based on the results, a new methodology to monitor the electromechanical response is introduced. The method is based on the frequency dependence of the samples' dielectric properties. To improve the electromechanical response, the PEO is embedded with piezoelectric nanocrystalline cellulose (NCC). NCC is a biomass derivative that is biodegradable, renewable, and inexpensive. The dielectric, mechanical, and electromechanical properties of the NCC-PEO composites are characterized. It is found that the mechanical and electromechanical properties of the PEO are significantly improved with adding NCC. For example, the composites with 1.5 vol.% of NCC exhibit an electromechanical strain and elastic modulus that is 33.4% and 20.1% higher, respectively, than for PEO without NCC. However, the electromechanical response decreases when the NCC content is high.

  2. Electromechanics of packed granular beds

    SciTech Connect

    Robinson, K.S.

    1982-01-01

    Strong, electrical, interparticle forces are induced by applied electric fields within packed beds of dielectric particles. Proposed applications utilizing electropacked beds (EPBs) or electrofluidized beds (EFBs) include air filtration and gas clean-up, fine particle separation, commercial drying and coating processes, heat and mass transfer, and bulk bed control. A new distributed circuit model of the electrical interparticle force is presented that identifies the role of surface roughness as determining the interparticle spacing. The dc steady state force is predicted to increase nearly linearly with the applied electric field and is theoretically independent of particle surface conductivity. The electric stress is found to vary nearly linearly with the applied electric field. Data are generally consistent with the theoretical contention that increased surface roughness decreases electromechanical effects. Surface conductivity variations of three to four times have no measurable effect on the dc steady state electric stress. The electric stress is insensitive to the dielectric properties of the interstitial gas eliminating Townsend discharge as a candidate for the nonlinear charge transport process thought to occur near interparticle contacts. The theoretical upper bound of the electric stress calculated using the distributed circuit model falls within the scatter of the data if a limit on the electric field in the interparticle gap which models nonlinear charge transport is in the range of 1 to 6 x 10/sup 7/ V/m. Estimates of the charge relaxation time using transient angle of repose experiments are somewhat smaller but comparable with theoretical values calculated by ignoring nonlinear charge transport.

  3. Electromechanical capacitor for energy transfer

    SciTech Connect

    Carroll, T.A.; Chowdhuri, P.; Marshall, J.

    1983-01-01

    Inductive energy transfer between two magnets can be achieved with almost 100% efficiency with a transfer capacitor. However, the bulk and cost will be high, and reliability low if conventional capacitors are used. A homopolar machine, used as a capacitor, will be compact and economical. A homopolar machine was designed with counter-rotating copper disks completely immersed in a liquid metal (NaK-78) to work as a pulse capacitor. Absence of solid-brush collectors minimized wear and frictional losses. Wetting of the copper disks throughout the periphery by the liquid metal minimized the resistive losses at the collector interface. A liquid-metal collector would, however, introduce hydrodynamic and magnetohydrodynamic losses. The selected liquid metal, e.g., NaK-78 will produce the lowest of such losses among the available liquid metals. An electromechanical capacitor of this design was tested at various dc magnetic fields. Its measured capacitance was about 100 farads at a dc magnetic field of 1.15 tesla.

  4. Electromechanical Materials for Cryogenic Use

    NASA Technical Reports Server (NTRS)

    Leidinger, Peter; Pilgrim, Steven M.

    1996-01-01

    Electromechanical materials can be used in smart sensor and actuator devices. Yet none performing at low temperatures are available. To meet this need, Pb((MgNi)(1/3)Ta(2/3))03 was synthesized as an electrostrictive ceramic for applications in cryogenic environments. Employing the columbite precursor route, samples with 0% to 100% Ni substitution for Mg were prepared, but only samples with Ni-substitutions less than or equal to 20% yielded primarily the desired perovskite phase. For these compositions the temperature of highest permittivity decreased linearly with increasing Ni content to yield a minimum value of -124 C for 20% Ni-substitution. This composition showed good relaxor dielectric behavior with a maximum relative permittivity of 5890 at 1 kHz. Additionally, in samples with excess MgO, the magnitude of permittivity doubled. In this effort, Pb((MgNi)(1/3)Ta(2/3))03 (PMNiTa) was fabricated to lower its transition temperature by substituting Ni for Mg successively.

  5. Effects of Fatigue on Voluntary Electromechanical and Relaxation Electromechanical Delay.

    PubMed

    Smith, Cory M; Housh, Terry J; Hill, Ethan C; Keller, Joshua L; Johnson, Glen O; Schmidt, Richard J

    2017-09-01

    The purposes of the present study were to examine: 1) the effects of fatigue on electromechanical delay from the onsets of the electromyographic signal to force production (EMDE-F), the onsets of the electromyographic to mechanomyographic signals (EMDE-M), the onsets of the mechanomyographic signal to force production (EMDM-F), as well as the cessations of the electromyographic to force production (R-EMDE-F), cessation of the electromyographic to mechanomyographic signals (R-EMDE-M), and cessations of the mechanomyographic signal to force production (R-EMDM-F); and 2) the relative contributions from EMDE-M and EMDM-F to EMDE-F as well as R-EMDE-M and R-EMDM-F to R-EMDE-F from the vastus lateralis in non-fatigued and fatigued states. The values EMDE-F, EMDE-M, EMDM-F, R-EMDE-F, R-EMDE-M and R-EMDM-F were calculated during maximal voluntary isometric contractions, before and after 70% 1-repetition maximum leg extensions to failure. There were significant pretest to posttest increases in EMDE-F (73%;p<0.01), EMDE-M (99%;p<0.01), EMDM-F (60%;p<0.01), R-EMDE-F (101%;p<0.01) and R-EMDM-F (368%;p<0.01), but no significant change in R-EMDE-M (25%;p=0.46). Fatigue-induced increase in EMDE-F indicated excitation-contraction coupling failure (EMDE-M) and increases in the compliance of the series elastic component (EMDM-F). Increases in R-EMDE-F were due to increases in relaxation time for the series elastic component (R-EMDM-F), but not changes in the reversal of excitation-contraction coupling (R-EMDE-M). © Georg Thieme Verlag KG Stuttgart · New York.

  6. Reciprocal myocardial-endocardial interactions pattern the delay in atrioventricular junction conduction

    PubMed Central

    Bressan, Michael; Yang, PoAn Brian; Louie, Jonathan D.; Navetta, Alicia M.; Garriock, Robert J.; Mikawa, Takashi

    2014-01-01

    Efficient blood flow depends on two developmental processes that occur within the atrioventricular junction (AVJ) of the heart: conduction delay, which entrains sequential chamber contraction; and valve formation, which prevents retrograde fluid movement. Defects in either result in severe congenital heart disease; however, little is known about the interplay between these two crucial developmental processes. Here, we show that AVJ conduction delay is locally assigned by the morphogenetic events that initiate valve formation. Our data demonstrate that physical separation from endocardial-derived factors prevents AVJ myocardium from becoming fast conducting. Mechanistically, this physical separation is induced by myocardial-derived factors that support cardiac jelly deposition at the onset of valve formation. These data offer a novel paradigm for conduction patterning, whereby reciprocal myocardial-endocardial interactions coordinate the processes of valve formation with establishment of conduction delay. This, in turn, synchronizes the electrophysiological and structural events necessary for the optimization of blood flow through the developing heart. PMID:25273084

  7. Endocardial cell epithelial-mesenchymal transformation requires Type III TGFβ receptor interaction with GIPC.

    PubMed

    Townsend, Todd A; Robinson, Jamille Y; How, Tam; DeLaughter, Daniel M; Blobe, Gerard C; Barnett, Joey V

    2012-01-01

    An early event in heart valve formation is the epithelial-mesenchymal transformation (EMT) of a subpopulation of endothelial cells in specific regions of the heart tube, the endocardial cushions. The Type III TGFβ receptor (TGFβR3) is required for TGFβ2- or BMP-2-stimulated EMT in atrioventricular endocardial cushion (AVC) explants in vitro but the mediators downstream of TGFβR3 are not well described. Using AVC and ventricular explants as an in vitro assay, we found an absolute requirement for specific TGFβR3 cytoplasmic residues, GAIP-interacting protein, C terminus (GIPC), and specific Activin Receptor-Like Kinases (ALK)s for TGFβR3-mediated EMT when stimulated by TGFβ2 or BMP-2. The introduction of TGFβR3 into nontransforming ventricular endocardial cells, followed by the addition of either TGFβ2 or BMP-2, results in EMT. TGFβR3 lacking the entire cytoplasmic domain, or only the 3C-terminal amino acids that are required to bind GIPC, fails to support EMT in response to TGFβ2 or BMP-2. Overexpression of GIPC in AVC endocardial cells enhanced EMT while siRNA-mediated silencing of GIPC in ventricular cells overexpressing TGFβR3 significantly inhibited EMT. Targeting of specific ALKs by siRNA revealed that TGFβR3-mediated EMT requires ALK2 and ALK3, in addition to ALK5, but not ALK4 or ALK6. Taken together, these data identify GIPC, ALK2, ALK3, and ALK5 as signaling components required for TGFβR3-mediated endothelial cell EMT. Copyright © 2011. Published by Elsevier Inc.

  8. ENDOCARDIAL CELL EPITHELIAL-MESENCHYMAL TRANSFORMATION REQUIRES TYPE III TGFβ RECEPTOR INTERACTION WITH GIPC

    PubMed Central

    Townsend, Todd A.; Robinson, Jamille Y.; How, Tam; DeLaughter, Daniel M.; Blobe, Gerard C.; Barnett, Joey V.

    2011-01-01

    An early event in heart valve formation is the epithelial-mesenchymal transformation (EMT) of a subpopulation of endothelial cells in specific regions of the heart tube, the endocardial cushions. The Type III TGFβ receptor (TGFβR3) is required for TGFβ2- or BMP-2-stimulated EMT in atrioventricular endocardial cushion (AVC) explants in vitro but the mediators downstream of TGFβR3 are not well described. Using AVC and ventricular explants as an in vitro assay, we found an absolute requirement for specific TGFβR3 cytoplasmic residues, GAIP-interacting protein, C terminus (GIPC), and specific Activin Receptor-Like Kinases (ALK)s for TGFβR3-mediated EMT when stimulated by TGFβ2 or BMP-2. The introduction of TGFβR3 into nontransforming ventricular endocardial cells, followed by the addition of either TGFβ2 or BMP-2, results in EMT. TGFβR3 lacking the entire cytoplasmic domain, or only the 3 C-terminal amino acids that are required to bind GIPC, fails to support EMT in response to TGFβ2 or BMP-2. Overexpression of GIPC in AVC endocardial cells enhanced EMT while siRNA-mediated silencing of GIPC in ventricular cells overexpressing TGFβR3 significantly inhibited EMT. Targeting of specific ALK’s by siRNA revealed that TGFβR3-mediated EMT requires ALK2 and ALK3, in addition to ALK5, but not ALK4 or ALK6. Taken together, these data identify GIPC, ALK2, ALK3, and ALK5 as signaling components required for TGFβR3-mediated endothelial cell EMT. PMID:21945156

  9. Tip surface changes in endocardial stimulation electrode, visualised by scanning electron microscopy.

    PubMed

    Hladky, M; Horn, V; Kamaryt, P; Cabanova, J; Zeman, K

    1975-01-01

    The authors have been probably the first investigators who applied scanning electron microscopy to studies of the changes occurring in the surface of the metalic tip of an endocardial stimulating electrode. They found a lowered conductivity for secondary electron emission, and describe the surface changes in a platiniridium-tipped electrode which had been used for almost four years, in comparison with an unused electrode.

  10. Cell autonomous requirement of endocardial Smad4 during atrioventricular cushion development in mouse embryos.

    PubMed

    Song, Langying; Zhao, Mei; Wu, Bingruo; Zhou, Bin; Wang, Qin; Jiao, Kai

    2011-01-01

    Atrioventricular (AV) cushions are the precursors of AV septum and valves. In this study, we examined roles of Smad4 during AV cushion development using a conditional gene inactivation approach. We found that endothelial/endocardial inactivation of Smad4 led to the hypocellular AV cushion defect and that both reduced cell proliferation and increased apoptosis contributed to the defect. Expression of multiple genes critical for cushion development was down-regulated in mutant embryos. In collagen gel assays, the number of mesenchymal cells formed is significantly reduced in mutant AV explants compared to that in control explants, suggesting that the reduction of cushion mesenchyme formation in mutants is unlikely secondary to their gross vasculature abnormalities. Using a previously developed immortal endocardial cell line, we showed that Smad4 is required for BMP signaling- stimulated upregulation of Tbx20 and Gata4. Therefore, our data collectively support the cell-autonomous requirement of endocardial Smad4 in regulating AV cushion development. © 2010 Wiley-Liss, Inc.

  11. Combined use of non-thoracotomy cardioverter defibrillators and endocardial pacemakers.

    PubMed Central

    Noguera, H. H.; Peralta, A. O.; John, R. M.; Venditti, F. J.; Martin, D. T.

    1997-01-01

    OBJECTIVE: To study the potential interactions in patients with endocardial permanent pacemakers and non-thoracotomy implantable cardioverter defibrillator (ICD) systems. DESIGN: Case series and cohort study. SETTING: Tertiary referral centre. PATIENTS: Fifteen consecutive patients with both endocardial pacemakers (12 dual chamber and three single chamber) and non-thoracotomy ICD systems. MAIN OUTCOME MEASURES: Detection inhibition of induced ventricular fibrillation; double counting; and pacemaker function after shocks. In the evaluation of detection inhibition, 124 VF inductions were analysed for detection duration compared with induced VF episodes in controls with an ICD but without a pacemaker. RESULTS: Two patients (13%) showed detection inhibition of VF and required pacemaker system change at the time of the ICD implant. With the final lead position, despite frequent pacemaker undersensing of VF, ICD detection of VF was not inhibited during any induction, and neither initial detection nor redetection times for VF were different from controls. Double/triple counting of pacemaker artefact and evoked electrogram was noted in three patients (20%). In two, this was remedied during the implantation procedure, and in the other it was abolished when amiodarone treatment was discontinued. Pacemaker function was affected by ICD discharges in two patients, one who showed postshock atrial undersensing and loss of capture, and another whose pacemaker reverted to VVI mode. CONCLUSIONS: When careful testing is performed at implantation to detect and remedy device interactions, non-thoracotomy ICD treatment and endocardial pacemakers can be used safely in combination. Images PMID:9290402

  12. A hybrid electromechanical solid state switch for ac power control

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Bidirectional thyristor coupled to a series of actuator driven electromechanical contacts generates hybrid electromechanical solid state switch for ac power control. Device is useful in power control applications where zero crossover switching is required.

  13. Virtual cardioscopy: interactive endocardial visualization to guide RF cardiac ablation

    NASA Astrophysics Data System (ADS)

    Holmes, David R., III; Rettmann, Maryam E.; Cameron, Bruce M.; Camp, Jon J.; Robb, Richard A.

    2006-03-01

    Cardiac arrhythmias are a debilitating, potentially life threatening condition involving aberrant electrical activity in the heart which results in abnormal heart rhythm. Virtual cardioscopy can play an important role in minimally invasive treatment of cardiac arrhythmias. Second and third generation image-guidance systems are now available for the treatment of arrhythmias using RF ablation catheters. While these 3D tools provide useful information to the clinician, additional enhancements to the virtual cardioscopy display paradigm are critical for optimal therapy guidance. Based on input from clinical collaborators, several key visualization techniques have been developed to enhance the use of virtual cardioscopy during cardiac ablation procedures. We have identified, designed and incorporated several visual cues important to successful virtual cardioscopy. These features include the use of global reference maps, parametric mapping, and focused navigation and targeting using abnormal electro-physiologic activity. Our virtual cardioscopy system is designed for real-time use during RF cardiac ablation procedures. Several unique visualizations from our virtual cardioscopy system will be presented. Evaluation of the system with phantom and animal studies will be presented. This research is supported by grant EB002834 from the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health.

  14. Modeling of dielectric elastomer as electromechanical resonator

    SciTech Connect

    Li, Bo Liu, Lei; Chen, Hualing; Jia, Shuhai; Zhang, Junshi; Li, Dichen

    2014-09-28

    Dielectric elastomers (DEs) feature nonlinear dynamics resulting from an electromechanical coupling. Under alternating voltage, the DE resonates with tunable performances. We present an analysis of the nonlinear dynamics of a DE as electromechanical resonator (DEER) configured as a pure shear actuator. A theoretical model is developed to characterize the complex performance under different boundary conditions. Physical mechanisms are presented and discussed. Chaotic behavior is also predicted, illustrating instabilities in the dynamics. The results provide a guide to the design and application of DEER in haptic devices.

  15. Modeling of dielectric elastomer as electromechanical resonator

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhang, Junshi; Liu, Lei; Chen, Hualing; Jia, Shuhai; Li, Dichen

    2014-09-01

    Dielectric elastomers (DEs) feature nonlinear dynamics resulting from an electromechanical coupling. Under alternating voltage, the DE resonates with tunable performances. We present an analysis of the nonlinear dynamics of a DE as electromechanical resonator (DEER) configured as a pure shear actuator. A theoretical model is developed to characterize the complex performance under different boundary conditions. Physical mechanisms are presented and discussed. Chaotic behavior is also predicted, illustrating instabilities in the dynamics. The results provide a guide to the design and application of DEER in haptic devices.

  16. Electromechanical batteries and the electric locomotive

    SciTech Connect

    Post, R.F.

    1992-09-21

    This technical note describes an electromechanical battery to be used as an electrical storage system for powering locomotives instead of traditional diesel-electric generators. The electromechanical battery would entail a high-speed rotor, supported by a magnetic suspension/bearing system, and carrying an integrally mounted generator/motor, the whole operating in an evacuated enclosure. The concept also includes the concept of modularity, i.e. using many relatively small units to build up a battery bank, in the same manner that ordinary batteries are used. This note emphasizes the rotor, its material, and its volumetric energy storage density.

  17. A tunable electromechanical Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Liu, Fei

    Acoustic liners are used in turbofan engine nacelles for the suppression of engine noise. For a given engine, there are different optimum impedance distributions associated with take-off, cut-back, and approach flight conditions. The impedance of conventional acoustic liners is fixed for a given geometry, and conventional active liner approaches are impractical. This project addresses the need for a tunable impedance through the development of an electromechanical Helmholtz resonator (EMHR). The device consists of a Helmholtz resonator with the standard rigid backplate replaced by a compliant piezoelectric composite. Analytical models (i.e., a lumped element model (LEM) and a transfer matrix (TM) representation of the EMHR) are developed to predict the acoustic behavior of the EMHR. The EMHR is experimentally investigated using the standard two-microphone method (TMM). The measurement results validate both the LEM and the TM of the EMHR. Good agreement between predicted and measured impedance is obtained. Short- and open-circuit loads define the limits of the tuning range using resistive and capacitive loads. There is approximately a 9% tuning limit under these conditions for the non-optimized resonator configuration studied. Inductive shunt loads result in a 3 degree-of-freedom (DOF) system and an enhanced tuning range of over 47% that is not restricted by the short- and open-circuit limits. Damping coefficient measurements for a piezoelectric backplate in a vacuum chamber are performed and indicate that the damping is dominated by structural damping losses. A Pareto optimization design based on models of the EMHR is performed with non-inductive loads. The EMHR with non-inductive loads has 2DOF and two resonant frequencies. The tuning ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be optimized simultaneously, so a trade-off (Pareto solution) must be reached. The Pareto solution shows how design trade-offs can be used to satisfy

  18. Assessing the atrial electromechanical coupling during atrial focal tachycardia, flutter, and fibrillation using electromechanical wave imaging in humans.

    PubMed

    Provost, Jean; Costet, Alexandre; Wan, Elaine; Gambhir, Alok; Whang, William; Garan, Hasan; Konofagou, Elisa E

    2015-10-01

    Minimally-invasive treatments of cardiac arrhythmias such as radio-frequency ablation are gradually gaining importance in clinical practice but still lack a noninvasive imaging modality which provides insight into the source or focus of an arrhythmia. Cardiac deformations imaged at high temporal and spatial resolution can be used to elucidate the electrical activation sequence in normal and paced human subjects non-invasively and could potentially aid to better plan and monitor ablation-based arrhythmia treatments. In this study, a novel ultrasound-based method is presented that can be used to quantitatively characterize focal and reentrant arrhythmias. Spatio-temporal maps of the full-view of the atrial and ventricular mechanics were obtained in a single heartbeat, revealing with otherwise unobtainable detail the electromechanical patterns of atrial flutter, fibrillation, and tachycardia in humans. During focal arrhythmias such as premature ventricular complex and focal atrial tachycardia, the previously developed electromechanical wave imaging methodology is hereby shown capable of identifying the location of the focal zone and the subsequent propagation of cardiac activation. During reentrant arrhythmias such as atrial flutter and fibrillation, Fourier analysis of the strains revealed highly correlated mechanical and electrical cycle lengths and propagation patterns. High frame rate ultrasound imaging of the heart can be used non-invasively and in real time, to characterize the lesser-known mechanical aspects of atrial and ventricular arrhythmias, also potentially assisting treatment planning for intraoperative and longitudinal monitoring of arrhythmias. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Electromechanical actuator (AMA) rocket motor controller

    NASA Astrophysics Data System (ADS)

    Zubkow, Zygmunt

    An Internal Research and Design effort of Honeywell Space Systems Group to develop and test electromechanical actuator (EMA) systems for use in first and second stage thrust vector control of rocket engines is presented. An overview of the test program is included.

  20. Electromechanical Technology. Post Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Butler, Raymond H.; And Others

    This curriculum guide provides a model for a postsecondary electromechanical technology program. It is divided into 10 sections. Section 1 overviews the philosophy, purpose, and goals for vocational education in Georgia. Contents of section 2 include a definition of the guide's purpose and program objective. Section 3 describes the occupational…

  1. Electromechanical Technology. Post Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Butler, Raymond H.; And Others

    This curriculum guide provides a model for a postsecondary electromechanical technology program. It is divided into 10 sections. Section 1 overviews the philosophy, purpose, and goals for vocational education in Georgia. Contents of section 2 include a definition of the guide's purpose and program objective. Section 3 describes the occupational…

  2. Carbon nanostructures as an electromechanical bicontinuum.

    PubMed

    Nisoli, Cristiano; Lammert, Paul E; Mockensturm, Eric; Crespi, Vincent H

    2007-07-27

    A two-field model provides a unifying framework for elasticity, lattice dynamics and electromechanical coupling in graphene and carbon nanotubes, describes optical phonons, nontrivial acoustic branches, strain-induced gap opening, gap-induced phonon softening, doping-induced deformations, and even the hexagonal graphenic Brillouin zone, and thus explains and extends a previously disparate accumulation of analytical and computational results.

  3. Electromechanical flight control actuator, volume 3

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design verification tests which were conducted on the electromechanical actuator are described. A description is also given of the power components tests which were conducted to aid in selecting the power transistors for use in the single-channel power electronics breadboard and the results of tests which were conducted on the power electronics breadboard.

  4. Mapping.

    ERIC Educational Resources Information Center

    Kinney, Douglas M.; McIntosh, Willard L.

    1979-01-01

    The area of geological mapping in the United States in 1978 increased greatly over that reported in 1977; state geological maps were added for California, Idaho, Nevada, and Alaska last year. (Author/BB)

  5. Electromechanical properties of biomembranes and nerves

    NASA Astrophysics Data System (ADS)

    Heimburg, T.; Blicher, A.; Mosgaard, L. D.; Zecchi, K.

    2014-12-01

    Lipid membranes are insulators and capacitors, which can be charged by an external electric field. This phenomenon plays an important role in the field of electrophysiology, for instance when describing nerve pulse conduction. Membranes are also made of polar molecules meaning that they contain molecules with permanent electrical dipole moments. Therefore, the properties of membranes are subject to changes in trans-membrane voltage. Vice versa, mechanical forces on membranes lead to changes in the membrane potential. Associated effects are flexoelectricity, piezoelectricity, and electrostriction. Lipid membranes can melt from an ordered to a disordered state. Due to the change of membrane dimensions associated with lipid membrane melting, electrical properties are linked to the melting transition. Melting of the membrane can induce changes in trans-membrane potential, and application of voltage can lead to a shift of the melting transition. Further, close to transitions membranes are very susceptible to piezoelectric phenomena. We discuss these phenomena in relation with the occurrence of lipid ion channels. Close to melting transitions, lipid membranes display step-wise ion conduction events, which are indistinguishable from protein ion channels. These channels display a voltage-dependent open probability. One finds asymmetric current-voltage relations of the pure membrane very similar to those found for various protein channels. This asymmetry falsely has been considered a criterion to distinguish lipid channels from protein channels. However, we show that the asymmetry can arise from the electromechanical properties of the lipid membrane itself. Finally, we discuss electromechanical behavior in connection with the electromechanical theory of nerve pulse transduction. It has been found experimentally that nerve pulses are related to changes in nerve thickness. Thus, during the nerve pulse a solitary mechanical pulse travels along the nerve. Due to

  6. Electrophysiological mapping and radiofrequency catheter ablation for ventricular tachycardia in a patient with peripartum cardiomyopathy.

    PubMed

    Tokuda, Michifumi; Stevenson, William G; Nagashima, Koichi; Rubin, David A

    2013-11-01

    A 38-year-old female with prior failed endocardial ablation for ventricular tachycardia (VT) was referred for further treatment. She had been diagnosed with peripartum cardiomyopathy 7 years before and had persistent left ventricular dysfunction with an ejection fraction of 20%. Epicardial voltage mapping showed extensive epicardial scar despite absence of endocardial scar. Five distinct VT morphologies were induced. Ablation was aided by electrogram characteristics, pace mapping, entrainment mapping, and establishing electrical inexcitability along areas of epicardial scar. After epicardial ablation no sustained VT was induced. She had been doing well without VT occurrence but died 1 year later unexpectedly at home.

  7. On estimating intraventricular hemodynamic forces from endocardial dynamics: A comparative study with 4D flow MRI.

    PubMed

    Pedrizzetti, Gianni; Arvidsson, Per M; Töger, Johannes; Borgquist, Rasmus; Domenichini, Federico; Arheden, Håkan; Heiberg, Einar

    2017-07-26

    Intraventricular pressure gradients or hemodynamic forces, which are their global measure integrated over the left ventricular volume, have a fundamental importance in ventricular function. They may help revealing a sub-optimal cardiac function that is not evident in terms of tissue motion, which is naturally heterogeneous and variable, and can influence cardiac adaptation. However, hemodynamic forces are not utilized in clinical cardiology due to the unavailability of simple non-invasive measurement tools. Hemodynamic forces depend on the intraventricular flow; nevertheless, most of them are imputable to the dynamics of the endocardial flow boundary and to the exchange of momentum across the mitral and aortic orifices. In this study, we introduce a simplified model based on first principles of fluid dynamics that allows estimating hemodynamic forces without knowing the velocity field inside the LV. The model is validated with 3D phase-contrast MRI (known as 4D flow MRI) in 15 subjects, (5 healthy and 10 patients) using the endocardial surface reconstructed from the three standard long-axis projections. Results demonstrate that the model provides consistent estimates for the base-apex component (mean correlation coefficient r=0.77 for instantaneous values and r=0.88 for root mean square) and good estimates of the inferolateral-anteroseptal component (r=0.50 and 0.84, respectively). The present method represents a potential integration to the existing ones quantifying endocardial deformation in MRI and echocardiography to add a physics-based estimation of the corresponding hemodynamic forces. These could help the clinician to early detect sub-clinical diseases and differentiate between different cardiac dysfunctional states. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sex differences in venous stenosis and occlusion in patients with endocardial leads.

    PubMed

    Boczar, Krzysztof; Dębski, Maciej; Ząbek, Andrzej; Haberka, Kazimierz; Sławuta, Agnieszka; Lelakowski, Jacek; Małecka, Barbara

    2017-05-23

    Venous stenosis and occlusion (VSO) in the presence of endocardial leads constitute one of the complications of permanent cardiac pacing. At present there are no scientific reports on the influence of sex on the incidence of VSO. The aim of the study was to examine the influence of sex on the incidence of VSO in patients with earlier implanted endocardial leads in a single-center retrospective analysis. The material consists of 284 records of consecutive patients admitted to hospital to undergo electrotherapy procedures. In all patients a contrast venography for ipsilateral venous confluence was performed before the procedure. Patients were divided into two groups according to sex criterion. Groups were compared concerning following parameters: demographic characteristics, cardiac implantable electronic device (CIED) characteristics, comorbidities, CHA2DS2-VASc score, selected risk factors for VSO. Group I consist of 101 females, whereas group II consist of 183 males. Both groups did not differ significantly for age, number of implanted endocardial leads and lead dwell time. In the cohort males were with significantly greater burden of morbidity, reflected by the mean result of CHA2DS2-VASc (P=0.0098). In males there was significantly more often chronic heart failure (P<0.0001), chronic obstructive pulmonary disease (P=0.0450) and tobacco use (P=0.0159). Males had more ICD implanted than females (P=0.0270). In the examine cohort 88 patients (31%) had VSO. There was no statistically significant difference in terms of presence of VSO between females and males (P=0.4685). The detailed analysis of the patients with VSO divided according to sex revealed higher morbidity in males. The equality of VSO incidence in groups of males and females along with the predominance of factors protecting against VSO in group of males support the assumption that female gender is a protective factor against the development of VSO, equally as known protective factors in males.

  9. Retinoic Acid Signaling Is Essential for Valvulogenesis by Affecting Endocardial Cushions Formation in Zebrafish Embryos.

    PubMed

    Li, Junbo; Yue, Yunyun; Zhao, Qingshun

    2016-02-01

    Retinoic acid (RA) plays important roles in many stages of heart morphogenesis. Zebrafish embryos treated with exogenous RA display defective atrio-ventricular canal (AVC) specification. However, whether endogenous RA signaling takes part in cardiac valve formation remains unknown. Herein, we investigated the role of RA signaling in cardiac valve development by knocking down aldh1a2, the gene encoding an enzyme that is mainly responsible for RA synthesis during early development, in zebrafish embryos. The results showed that partially knocking down aldh1a2 caused defective formation of primitive cardiac valve leaflets at 108 hpf (hour post-fertilization). Inhibiting endogenous RA signaling by 4-diethylaminobenzal-dehyde revealed that 16-26 hpf was a key time window when RA signaling affects the valvulogenesis. The aldh1a2 morphants had defective formation of endocardial cushion (EC) at 76 hpf though they had almost normal hemodynamics and cardiac chamber specification at early development. Examining the expression patterns of AVC marker genes including bmp4, bmp2b, nppa, notch1b, and has2, we found the morphants displayed abnormal development of endocardial AVC but almost normal development of myocardial AVC at 50 hpf. Being consistent with the reduced expression of notch1b in endocardial AVC, the VE-cadherin gene cdh5, the downstream gene of Notch signaling, was ectopically expressed in AVC of aldh1a2 morphants at 50 hpf, and overexpression of cdh5 greatly affected the formation of EC in the embryos at 76 hpf. Taken together, our results suggest that RA signaling plays essential roles in zebrafish cardiac valvulogenesis.

  10. Endocardial Cushion Morphogenesis and Coronary Vessel Development Require Chicken Ovalbumin Upstream Promoter-Transcription Factor II

    PubMed Central

    Lin, Fu-Jung; You, Li-Ru; Yu, Cheng-Tai; Hsu, Wen-Hsin; Tsai, Ming-Jer; Tsai, Sophia Y.

    2013-01-01

    Objective Septal defects and coronary vessel anomalies are common congenital heart defects, yet their ontogeny and the underlying genetic mechanisms are not well understood. Here, we investigated the role of chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII, NR2F2) in cardiac organogenesis. Methods and Results We analyzed embryos deficient in COUP-TFII and observed a spectrum of cardiac defects, including atrioventricular septal defect, thin-walled myocardium, and abnormal coronary morphogenesis. We show by expression analysis that COUP-TFII is expressed in the endocardium and the epicardium but not in the myocardium of the ventricle. Using endothelial-specific COUP-TFII mutants and molecular approaches, we show that COUP-TFII deficiency resulted in endocardial cushion hypoplasia. This was attributed to the reduced growth and survival of atrioventricular cushion mesenchymal cells and defective epithelial-mesenchymal transformation (EMT) in the underlying endocardium. In addition, the endocardial EMT defect was accompanied by downregulation of Snai1, one of the master regulators of EMT, and upregulation of vascular endothelial-cadherin. Furthermore, we show that although COUP-TFII does not play a major role in the formation of epicardial cell cysts, it is critically important for the formation of epicardium. Ablation of COUP-TFII impairs epicardial EMT and coronary plexus formation. Conclusion Our results reveal that COUP-TFII plays cell-autonomous roles in the endocardium and the epicardium for endocardial and epicardial EMT, which are required for proper valve and coronary vessel formation during heart development. PMID:22962329

  11. Improvement of Right Ventricular Hemodynamics with Left Ventricular Endocardial Pacing during Cardiac Resynchronization Therapy

    PubMed Central

    HYDE, EOIN R.; BEHAR, JONATHAN M.; CROZIER, ANDREW; CLARIDGE, SIMON; JACKSON, TOM; SOHAL, MANAV; GILL, JASWINDER S.; O'NEILL, MARK D.; RAZAVI, REZA; RINALDI, CHRISTOPHER A.

    2016-01-01

    Background Cardiac resynchronization therapy (CRT) with biventricular epicardial (BV‐CS) or endocardial left ventricular (LV) stimulation (BV‐EN) improves LV hemodynamics. The effect of CRT on right ventricular function is less clear, particularly for BV‐EN. Our objective was to compare the simultaneous acute hemodynamic response (AHR) of the right and left ventricles (RV and LV) with BV‐CS and BV‐EN in order to determine the optimal mode of CRT delivery. Methods Nine patients with previously implanted CRT devices successfully underwent a temporary pacing study. Pressure wires measured the simultaneous AHR in both ventricles during different pacing protocols. Conventional epicardial CRT was delivered in LV‐only (LV‐CS) and BV‐CS configurations and compared with BV‐EN pacing in multiple locations using a roving decapolar catheter. Results Best BV‐EN (optimal AHR of all LV endocardial pacing sites) produced a significantly greater RV AHR compared with LV‐CS and BV‐CS pacing (P < 0.05). RV AHR had a significantly increased standard deviation compared to LV AHR (P < 0.05) with a weak correlation between RV and LV AHR (Spearman rs = −0.06). Compromised biventricular optimization, whereby RV AHR was increased at the expense of a smaller decrease in LV AHR, was achieved in 56% of cases, all with BV‐EN pacing. Conclusions BV‐EN pacing produces significant increases in both LV and RV AHR, above that achievable with conventional epicardial pacing. RV AHR cannot be used as a surrogate for optimizing LV AHR; however, compromised biventricular optimization is possible. The beneficial effect of endocardial LV pacing on RV function may have important clinical benefits beyond conventional CRT. PMID:27001004

  12. Endocardial fibroelastosis in L-transposition of the great arteries with Ebstein's anomaly: revisited.

    PubMed

    Dahdah, N S; van Doesburg, N H; Russo, P

    1998-01-01

    Ebstein's anomaly is a congenital deformity of the tricuspid valve consisting mainly of leaflet malinsertion. Clinical presentation varies from asymptomatic patients to those with congestive heart failure secondary to significant valvular regurgitation and low right ventricular output. We report here the case of an infant with a diagnosis of corrected transposition of the great arteries and Ebstein's deformity of the left-sided tricuspid valve who developed pulmonary hypertension and endocardial fibroelastosis, two unusual associations with this lesion. We also discuss the pathophysiology of this association and related literature.

  13. Relationship-Based Care for Newborns With Down Syndrome and Endocardial Cushion Defect.

    PubMed

    Phillips, Cathi; Boyd, Margaret

    2015-01-01

    Down syndrome with endocardial cushion defect is a challenging diagnosis for parents as well as members of the health care team. Utilizing a framework of relationship-based care, nurses are in a position to positively affect parents' experience by providing education, advocacy, and support from initial diagnosis through discharge. The plan of care is multidisciplinary and focuses on critical developmental needs, such as bonding and feeding. Because Down syndrome is associated with multiple anomalies, anticipatory guidance is needed to assist parents with establishing a health maintenance plan for their child after discharge. © 2015 AWHONN.

  14. Left Ventricular Myocardial Segmentation in 3-D Ultrasound Recordings: Effect of Different Endocardial and Epicardial Coupling Strategies.

    PubMed

    Pedrosa, Joao; Barbosa, Daniel; Heyde, Brecht; Schnell, Frederic; Rosner, Assami; Claus, Piet; D'hooge, Jan

    2017-03-01

    Cardiac volume/function assessment remains a critical step in daily cardiology, and 3-D ultrasound plays an increasingly important role. Though development of automatic endocardial segmentation methods has received much attention, the same cannot be said about epicardial segmentation, in spite of the importance of full myocardial segmentation. In this paper, different ways of coupling the endocardial and epicardial segmentations are contrasted and compared with uncoupled segmentation. For this purpose, the B-spline explicit active surfaces framework was used; 27 3-D echocardiographic images were used to validate the different coupling strategies, which were compared with manual contouring of the endocardial and epicardial borders performed by an expert. It is shown that an independent segmentation of the endocardium followed by an epicardial segmentation coupled to the endocardium is the most advantageous. In this way, a framework for fully automatic 3-D myocardial segmentation is proposed using a novel coupling strategy.

  15. Loss of muscleblind-like 1 promotes invasive mesenchyme formation in endocardial cushions by stimulating autocrine TGFβ3

    PubMed Central

    2012-01-01

    Background Valvulogenesis and septation in the developing heart depend on the formation and remodeling of endocardial cushions in the atrioventricular canal (AVC) and outflow tract (OFT). These cushions are invaded by a subpopulation of endocardial cells that undergo an epithelial-mesenchymal transition in response to paracrine and autocrine transforming growth factor β (TGFβ) signals. We previously demonstrated that the RNA binding protein muscleblind-like 1 (MBNL1) is expressed specifically in the cushion endocardium, and knockdown of MBNL1 in stage 14 embryonic chicken AVC explants enhances TGFβ-dependent endocardial cell invasion. Results In this study, we demonstrate that the effect of MBNL1 knockdown on invasion remains dependent on TGFβ3 after it is no longer required to induce basal levels of invasion. TGFβ3, but not TGFβ2, levels are elevated in medium conditioned by MBNL1-depleted AVC explants. TGFβ3 is elevated even when the myocardium is removed, indicating that MBNL1 modulates autocrine TGFβ3 production in the endocardium. More TGFβ3-positive cells are observed in the endocardial monolayer following MBNL1 knockdown. Addition of exogenous TGFβ3 to AVC explants recapitulates the effects of MBNL1 knockdown. Time course experiments demonstrate that knockdown of MBNL1 induces precocious TGFβ3 secretion, and early exposure to excess TGFβ3 induces precocious invasion. MBNL1 expression precedes TGFβ3 in the AVC endocardium, consistent with a role in preventing precocious autocrine TGFβ3 signaling. The stimulatory effects of MBNL1 knockdown on invasion are lost in stage 16 AVC explants. Knockdown of MBNL1 in OFT explants similarly enhances cell invasion, but not activation. TGFβ is necessary and sufficient to mediate this effect. Conclusions Taken together, these data support a model in which MBNL1 negatively regulates cell invasion in the endocardial cushions by restricting the magnitude and timing of endocardial-derived TGFβ3 production. PMID

  16. Global Bi-ventricular endocardial distribution of activation rate during long duration ventricular fibrillation in normal and heart failure canines.

    PubMed

    Luo, Qingzhi; Jin, Qi; Zhang, Ning; Han, Yanxin; Wang, Yilong; Huang, Shangwei; Lin, Changjian; Ling, Tianyou; Chen, Kang; Pan, Wenqi; Wu, Liqun

    2017-04-13

    The objective of this study was to detect differences in the distribution of the left and right ventricle (LV & RV) activation rate (AR) during short-duration ventricular fibrillation (SDVF, <1 min) and long-duration ventricular fibrillation VF (LDVF, >1 min) in normal and heart failure (HF) canine hearts. Ventricular fibrillation (VF) was electrically induced in six healthy dogs (control group) and six dogs with right ventricular pacing-induced congestive HF (HF group). Two 64-electrode basket catheters deployed in the LV and RV were used for global endocardium electrical mapping. The AR of VF was estimated by fast Fourier transform analysis from each electrode. In the control group, the LV was activated faster than the RV in the first 20 s, after which there was no detectable difference in the AR between them. When analyzing the distribution of the AR within the bi-ventricles at 3 min of LDVF, the posterior LV was activated fastest, while the anterior was slowest. In the HF group, a detectable AR gradient existed between the two ventricles within 3 min of VF, with the LV activating more quickly than the RV. When analyzing the distribution of the AR within the bi-ventricles at 3 min of LDVF, the septum of the LV was activated fastest, while the anterior was activated slowest. A global bi-ventricular endocardial AR gradient existed within the first 20 s of VF but disappeared in the LDVF in healthy hearts. However, the AR gradient was always observed in both SDVF and LDVF in HF hearts. The findings of this study suggest that LDVF in HF hearts can be maintained differently from normal hearts, which accordingly should lead to the development of different management strategies for LDVF resuscitation.

  17. Modelling and validation of electromechanical shock absorbers

    NASA Astrophysics Data System (ADS)

    Tonoli, Andrea; Amati, Nicola; Girardello Detoni, Joaquim; Galluzzi, Renato; Gasparin, Enrico

    2013-08-01

    Electromechanical vehicle suspension systems represent a promising substitute to conventional hydraulic solutions. However, the design of electromechanical devices that are able to supply high damping forces without exceeding geometric dimension and mass constraints is a difficult task. All these challenges meet in off-road vehicle suspension systems, where the power density of the dampers is a crucial parameter. In this context, the present paper outlines a particular shock absorber configuration where a suitable electric machine and a transmission mechanism are utilised to meet off-road vehicle requirements. A dynamic model is used to represent the device. Subsequently, experimental tests are performed on an actual prototype to verify the functionality of the damper and validate the proposed model.

  18. Packaging of implantable accelerometers to monitor epicardial and endocardial wall motion.

    PubMed

    Brancato, Luigi; Weydts, Tristan; Oosterlinck, Wouter; Herijgers, Paul; Puers, Robert

    2017-09-01

    Acceleration signals, collected from the inner and the outer heart wall, offer a mean of assessing cardiac function during surgery. Accelerometric measurements can also provide detailed insights into myocardial motion during exploratory investigations. Two different implantable accelerometers to respectively record endocardial and epicardial vibrations, have been developed by packaging a commercially available capacitive transducer. The same coating materials have been deposited on the two devices to ensure biocompatibility of the implants: Parylene-C, medical epoxy and Polydimethylsiloxane (PDMS). The different position-specific requirements resulted in two very dissimilar sensor assemblies. The endocardial accelerometer, that measures accelerations from the inner surface of the heart during acute animal tests, is a 2 mm-radius hemisphere fixed on a polymethyl methacrylate (PMMA) rod to be inserted through the heart wall. The epicardial accelerometer, that monitors the motion of the outer surface of the heart, is a three-legged structure with a stretchable polytetrafluoroethylene (PTFE) reinforcement. This device can follow the continuous motion of the myocardium (the muscular tissue of the heart) during the cardiac cycle, without hindering its natural movement. Leakage currents lower than 1 μA have been measured during two weeks of continuous operation in saline. Both transducers have been used, during animal tests, to simultaneously record and compare acceleration signals from corresponding locations on the inner and the outer heart wall of a female sheep.

  19. Disruption of pdgfra alters endocardial and myocardial fusion during zebrafish cardiac assembly

    PubMed Central

    El-Rass, Suzan; Eisa-Beygi, Shahram; Khong, Edbert; Brand-Arzamendi, Koroboshka; Mauro, Antonio; Zhang, Haibo; Clark, Karl J.; Ekker, Stephen C.

    2017-01-01

    ABSTRACT Cardiac development in vertebrates is a finely tuned process regulated by a set of conserved signaling pathways. Perturbations of these processes are often associated with congenital cardiac malformations. Platelet-derived growth factor receptor α (PDGFRα) is a highly conserved tyrosine kinase receptor, which is essential for development and organogenesis. Disruption of Pdgfrα function in murine models is embryonic lethal due to severe cardiovascular defects, suggesting a role in cardiac development, thus necessitating the use of alternative models to explore its precise function. In this study, we generated a zebrafish pdgfra mutant line by gene trapping, in which the Pdgfra protein is truncated and fused with mRFP (Pdgfra-mRFP). Our results demonstrate that pdgfra mutants have defects in cardiac morphology as a result of abnormal fusion of myocardial precursors. Expression analysis of the developing heart at later stages suggested that Pdgfra-mRFP is expressed in the endocardium. Further examination of the endocardium in pdgfra mutants revealed defective endocardial migration to the midline, where cardiac fusion eventually occurs. Together, our data suggests that pdgfra is required for proper medial migration of both endocardial and myocardial precursors, an essential step required for cardiac assembly and development. PMID:28167492

  20. Disruption of pdgfra alters endocardial and myocardial fusion during zebrafish cardiac assembly.

    PubMed

    El-Rass, Suzan; Eisa-Beygi, Shahram; Khong, Edbert; Brand-Arzamendi, Koroboshka; Mauro, Antonio; Zhang, Haibo; Clark, Karl J; Ekker, Stephen C; Wen, Xiao-Yan

    2017-03-15

    Cardiac development in vertebrates is a finely tuned process regulated by a set of conserved signaling pathways. Perturbations of these processes are often associated with congenital cardiac malformations. Platelet-derived growth factor receptor α (PDGFRα) is a highly conserved tyrosine kinase receptor, which is essential for development and organogenesis. Disruption of Pdgfrα function in murine models is embryonic lethal due to severe cardiovascular defects, suggesting a role in cardiac development, thus necessitating the use of alternative models to explore its precise function. In this study, we generated a zebrafish pdgfra mutant line by gene trapping, in which the Pdgfra protein is truncated and fused with mRFP (Pdgfra-mRFP). Our results demonstrate that pdgfra mutants have defects in cardiac morphology as a result of abnormal fusion of myocardial precursors. Expression analysis of the developing heart at later stages suggested that Pdgfra-mRFP is expressed in the endocardium. Further examination of the endocardium in pdgfra mutants revealed defective endocardial migration to the midline, where cardiac fusion eventually occurs. Together, our data suggests that pdgfra is required for proper medial migration of both endocardial and myocardial precursors, an essential step required for cardiac assembly and development.

  1. Endocardial Lead Extraction in the Polish Registry – clinical practice versus current Heart Rhythm Society consensus

    PubMed Central

    Kutarski, Andrzej; Mitkowski, Przemysław; Przybylski, Andrzej; Lewek, Joanna; Małecka, Barbara; Smukowski, Tomasz; Maciąg, Aleksander; Śmigielski, Janusz

    2013-01-01

    Introduction Over the last 10 years, there has been an increasing number of patients with pacemaker (PM) and cardioverter-defibrillator (ICD). This study is a retrospective analysis of indications for endocardial pacemaker and ICD lead extractions between 2003 and 2009 based on the experience of three Polish Referral Lead Extraction Centers. Material and methods Since 2003, the authors have consecutively retrospectively collected all cases and entered the information in the database. All patients which had indication for lead extraction according to Heart Rhythm Society Guidelines were included to final analyze. Between 2003 and 2005, the data were analyzed together. Since 2006, data have been collected and analyzed annually. Results In each year, a significant increase in lead extraction was observed. The main indications for LE were infections in 52.4% of patients. Nonfunctioning lead extraction constituted the second group of indications for LE in 29.7% of patients. During the registry period, the percentage of class I indications decreased from 80% in 2006 to only 47% in 2009. On the other hand, increasingly more leads were removed because of class 2, especially class 2b. In 2009, 40% of leads were extracted due to class 2b. Conclusions Polish Registry of Endocardial Lead Extraction 2003-2009, shows an increasing frequency of lead extraction. The main indication for LE is infection: systemic and pocket. An increase in class 2, especially 2b, LE indication in every center during the study period was found. PMID:24904658

  2. Electromechanical flight control actuator, volume 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Schematic diagrams are given for both the four-channel electromechanical actuator and the single-channel power electronics breadboard. Detailed design data is also given on the gears used in the differential gearbox and a copy of the operations manual for the system is included. Performance test results are given for the EMA motor and its current source indicator, the drive control electronics, and the overall system. The power converter waveform test results are also summarized.

  3. Passive magnetic bearings for vehicular electromechanical batteries

    SciTech Connect

    Post, R

    1996-03-01

    This report describes the design of a passive magnetic bearing system to be used in electromechanical batteries (flywheel energy storage modules) suitable for vehicular use. One or two such EMB modules might, for example, be employed in a hybrid-electric automobile, providing efficient means for power peaking, i.e., for handling acceleration and regenerative braking power demands at high power levels. The bearing design described herein will be based on a ''dual-mode'' operating regime.

  4. MAPS

    Atmospheric Science Data Center

    2014-07-03

    ... Measurement of Air Pollution from Satellites (MAPS) data were collected during Space Shuttle flights in 1981, ... Facts Correlative Data  - CDIAC - Spring & Fall 1994 - Field and Aircraft Campaigns SCAR-B Block:  ...

  5. [Effects of prolonged endocardial stimulation on left ventricular mechanical synchrony. A pilot study applying gated-SPECT phase analysis. Endocardial stimulation and dyssynchrony].

    PubMed

    Ferrando-Castagnetto, Federico; Ricca-Mallada, Roberto; Vidal, Alejandro; Ferrando, Rodolfo

    2017-01-25

    To evaluate left ventricular mechanical dyssynchrony (LVMD) associated to prolonged right ventricular pacing through an innovative imaging technique, as a pilot study in Uruguay. We performed 99mTc-MIBI gated-SPECT and phase analysis in 12 patients with pacemakers implanted at least one year before scintigraphy due to advanced atrioventricular block. Clinical data, QRS duration, rate, mode and site of pacing in right ventricle, chamber diameters, presence and extension of myocardial scar and ischemia and rest LVEF were recorded. Using V-Sync of Emory Cardiac Toolbox we obtained standard deviation (PSD) and bandwidth (PBW) from rest phase histogram and then we compared these indexes with controls in the subgroups of patients with LVEF≥and<50%. Patients with prolonged RV endocardial pacing exhibited marked LVMD. More severe dyssynchrony was found in patients with impaired LVEF than in patients with preserved LVEF (PSD: 46.67(o) vs. 26.81(o), P<.05; PBW: 144.33(o) vs. 77.41(o), P<.05). Higher left ventricle diameters, extensive infarct or significant ischemia were found in patients with impaired LVEF. Chronic right ventricular pacing was invariably associated with LVMD, even when systolic function was preserved. Phase analysis could be a potentially useful technique to evaluate LMVD associated with myocardial scar in patients with pacemanker and to decide promptly the upgrading to biventricular pacing. Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  6. Transseptal Leftventricular Endocardial Pacing is an Alternative Technique in Cardiac Resynchronization Therapy. One Year Experience in a High Volume Center.

    PubMed

    Neuhoff, I; Szilágyi, S; Molnár, L; Osztheimer, I; Zima, E; Dan, G A; Merkely, B; Gellér, L

    2016-01-01

    In patients receiving cardiac resynchronization therapy (CRT), failure rate to implant the left ventricular (LV) lead by the traditional trans-venous approach is 4-8%. Surgical epicardial implantation is considered as an alternative, but this technique is not without morbidity. Evidence from case documentation and from small trial batches demonstrated the viability of endocardial LV lead implantation where surgical epicardial lead placement is not applicable. Four patients were implanted with endocardial LV lead using the transseptal atrial approach after unsuccessful transvenous implantation. Implantation of an endocardial active fixation LV leads was successful in all patients with stable electrical parameters immediately after implantation and over the follow-up period. All patients received anticoagulation therapy in order to target the international normalized ratio of 2.5-3.5 and have not experienced any thromboembolic, hemorrhagic events, or infection. Follow-up echocardiography indicated significant improvement of LV systolic function (24 + 4.9 to 32 + 5.1 %, P = 0.023) with a notable improvement of the functional status. Endocardial left ventricular lead implantation can be a valuable and safe alternative technique to enable LV stimulation in high surgical risk patients where standard coronary sinus implant is unsuccessful.

  7. A Hybrid Method for Endocardial Contour Extraction of Right Ventricle in 4-Slices from 3D Echocardiography Dataset.

    PubMed

    Dawood, Faten A; Rahmat, Rahmita W; Kadiman, Suhaini B; Abdullah, Lili N; Zamrin, Mohd D

    2014-01-01

    This paper presents a hybrid method to extract endocardial contour of the right ventricular (RV) in 4-slices from 3D echocardiography dataset. The overall framework comprises four processing phases. In Phase I, the region of interest (ROI) is identified by estimating the cavity boundary. Speckle noise reduction and contrast enhancement were implemented in Phase II as preprocessing tasks. In Phase III, the RV cavity region was segmented by generating intensity threshold which was used for once for all frames. Finally, Phase IV is proposed to extract the RV endocardial contour in a complete cardiac cycle using a combination of shape-based contour detection and improved radial search algorithm. The proposed method was applied to 16 datasets of 3D echocardiography encompassing the RV in long-axis view. The accuracy of experimental results obtained by the proposed method was evaluated qualitatively and quantitatively. It has been done by comparing the segmentation results of RV cavity based on endocardial contour extraction with the ground truth. The comparative analysis results show that the proposed method performs efficiently in all datasets with overall performance of 95% and the root mean square distances (RMSD) measure in terms of mean ± SD was found to be 2.21 ± 0.35 mm for RV endocardial contours.

  8. Early morphologic changes following microwave endocardial ablation for treatment of chronic atrial fibrillation during mitral valve surgery.

    PubMed

    Climent, Vicente; Hurlé, Aquilino; Ho, Siew Yen; Sáenz-Santamaría, Javier; Nogales, Agustín G; Sánchez-Quintana, Damián

    2004-11-01

    The aim of this study was to investigate the early qualitative and quantitative structural changes in the left atrial wall after endocardial microwave ablation in patients with chronic atrial fibrillation (AF) undergoing mitral surgery. Seven patients with chronic AF of for at least 6 months underwent surgical microwave energy ablation. Linear isolation of pulmonary veins was performed in all patients by microwave energy applications to the endocardial surface delivered by catheter at 65-W constant power for 45 seconds. Biopsies were obtained from a selected site (below the right lower pulmonary vein) of the left atrial posterior wall before and after the ablation procedure in all patients. Control tissues from the same sites were obtained at autopsy from patients with noncardiac causes of death. Light and electron microscopy was used to examine qualitative and quantitative changes in tissue morphology. Tissues after endocardial ablation procedure showed significantly increased loss of contractile material. Electron microscopy of atrial tissue demonstrated loss of profile of perinuclear and plasma membranes of myocytes, disruption of the endothelial cells of capillary vessels, and presence of macrophages. Lesions created by endocardial microwave energy ablation revealed a transmural effect on the left atrial wall without a significant reduction in thickness but a significant increase in the myolytic areas involving the entire cytosol and occlusion of the small intramyocardial vessels within the ablative lesion.

  9. Cardiac Resynchronization Therapy With Wireless Left Ventricular Endocardial Pacing: The SELECT-LV Study.

    PubMed

    Reddy, Vivek Y; Miller, Marc A; Neuzil, Petr; Søgaard, Peter; Butter, Christian; Seifert, Martin; Delnoy, Peter Paul; van Erven, Lieselot; Schalji, Martin; Boersma, Lucas V A; Riahi, Sam

    2017-05-02

    A total of 30% to 40% of patients with congestive heart failure eligible for cardiac resynchronization therapy (CRT) either do not respond to conventional CRT or remain untreated due to an inability or impediment to coronary sinus (CS) lead implantation. The WiSE-CRT system (EBR Systems, Sunnyvale, California) was developed to address this at-risk patient population by performing biventricular pacing via a wireless left ventricular (LV) endocardial pacing electrode. The SELECT-LV (Safety and Performance of Electrodes implanted in the Left Ventricle) study is a prospective multicenter non-randomized trial assessing the safety and performance of the WiSE-CRT system. A total of 35 patients indicated for CRT who had "failed" conventional CRT underwent implantation of an LV endocardial pacing electrode and a subcutaneous pulse generator. System performance, clinical efficacy, and safety events were assessed out to 6 months post-implant. The procedure was successful in 97.1% (n = 34) of attempted implants. The most common indications for endocardial LV pacing were difficult CS anatomy (n =12), failure to respond to conventional CRT (n = 10), and a high CS pacing threshold or phrenic nerve capture (n = 5). The primary performance endpoint, biventricular pacing on the 12-lead electrocardiogram at 1 month, was achieved in 33 of 34 patients. A total of 28 patients (84.8%) had improvement in the clinical composite score at 6 months, and 21 (66%) demonstrated a positive echocardiographic CRT response (≥5% absolute increase in LV ejection fraction). There were no pericardial effusions, but serious procedure/device-related events occurred in 3 patients (8.6%) within 24 h, and 8 patients (22.9%) between 24 h and 1 month. The SELECT-LV study demonstrates the clinical feasibility for the WiSE-CRT system, and provided clinical benefits to a majority of patients within an otherwise "failed" CRT population. (Safety and Performance of Electrodes Implanted in the Left Ventricle

  10. Patient-specific modeling of left ventricular electromechanics as a driver for haemodynamic analysis

    PubMed Central

    Augustin, Christoph M.; Crozier, Andrew; Neic, Aurel; Prassl, Anton J.; Karabelas, Elias; Ferreira da Silva, Tiago; Fernandes, Joao F.; Campos, Fernando; Kuehne, Titus; Plank, Gernot

    2017-01-01

    Aims Models of blood flow in the left ventricle (LV) and aorta are an important tool for analysing the interplay between LV deformation and flow patterns. Typically, image-based kinematic models describing endocardial motion are used as an input to blood flow simulations. While such models are suitable for analysing the hemodynamic status quo, they are limited in predicting the response to interventions that alter afterload conditions. Mechano-fluidic models using biophysically detailed electromechanical (EM) models have the potential to overcome this limitation, but are more costly to build and compute. We report our recent advancements in developing an automated workflow for the creation of such CFD ready kinematic models to serve as drivers of blood flow simulations. Methods and results EM models of the LV and aortic root were created for four pediatric patients treated for either aortic coarctation or aortic valve disease. Using MRI, ECG and invasive pressure recordings, anatomy as well as electrophysiological, mechanical and circulatory model components were personalized. Results The implemented modeling pipeline was highly automated and allowed model construction and execution of simulations of a patient’s heartbeat within 1 day. All models reproduced clinical data with acceptable accuracy. Conclusion Using the developed modeling workflow, the use of EM LV models as driver of fluid flow simulations is becoming feasible. While EM models are costly to construct, they constitute an important and nontrivial step towards fully coupled electro-mechano-fluidic (EMF) models and show promise as a tool for predicting the response to interventions which affect afterload conditions. PMID:28011839

  11. Patient-specific modeling of left ventricular electromechanics as a driver for haemodynamic analysis.

    PubMed

    Augustin, Christoph M; Crozier, Andrew; Neic, Aurel; Prassl, Anton J; Karabelas, Elias; Ferreira da Silva, Tiago; Fernandes, Joao F; Campos, Fernando; Kuehne, Titus; Plank, Gernot

    2016-12-01

    Models of blood flow in the left ventricle (LV) and aorta are an important tool for analysing the interplay between LV deformation and flow patterns. Typically, image-based kinematic models describing endocardial motion are used as an input to blood flow simulations. While such models are suitable for analysing the hemodynamic status quo, they are limited in predicting the response to interventions that alter afterload conditions. Mechano-fluidic models using biophysically detailed electromechanical (EM) models have the potential to overcome this limitation, but are more costly to build and compute. We report our recent advancements in developing an automated workflow for the creation of such CFD ready kinematic models to serve as drivers of blood flow simulations. EM models of the LV and aortic root were created for four pediatric patients treated for either aortic coarctation or aortic valve disease. Using MRI, ECG and invasive pressure recordings, anatomy as well as electrophysiological, mechanical and circulatory model components were personalized. The implemented modeling pipeline was highly automated and allowed model construction and execution of simulations of a patient's heartbeat within 1 day. All models reproduced clinical data with acceptable accuracy. Using the developed modeling workflow, the use of EM LV models as driver of fluid flow simulations is becoming feasible. While EM models are costly to construct, they constitute an important and nontrivial step towards fully coupled electro-mechano-fluidic (EMF) models and show promise as a tool for predicting the response to interventions which affect afterload conditions. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  12. The neuropeptide galanin promotes an anti-thrombotic phenotype on endocardial endothelial cells from heart failure patients.

    PubMed

    Tyrrell, Christina; Toyooka, Amanda; Khan, Faiza; Thornburg, Kent L; Mudd, James O; Hasan, Wohaib

    2017-09-01

    Thromboembolic complications are a significant cause of mortality and re-hospitalization in heart failure (HF) patients. One source of thrombi is the ventricular endocardial surface that becomes increasingly pro-thrombotic as HF progresses. Anticoagulation comes with bleeding risks so identifying therapeutic agents for improving cardiac endothelial health are of critical clinical importance. Endocardial endothelial cells are closely apposed to cardiac sympathetic nerves. In HF, cardiac sympathetic nerves are dysregulated and promote disease progression. Whether endocardial endothelial health and function is impacted by sympathetic dysregulation in HF is unknown. Also unexplored is the impact of neuropeptides, such as galanin and neuropeptide Y (NPY), co-released from sympathetic nerve terminals, on endothelial health. In this study we examined the effect of sympathetic nerve-released neurotransmitters and neuropeptides on the procoagulant phenotype of cultured human endocardial endothelial cells from HF patients. As a functional readout of procoagulant state we examined thrombin-mediated von Willebrand factor (vWF) extrusion and multimer expression. We demonstrate that vWF extrusion and multimer expression is promoted by thrombin, that isoproterenol (a beta-adrenergic receptor agonist) augments this effect, whereas co-treatment with the beta-blockers propranolol and carvedilol blocks this effect. We also show that vWF extrusion and multimer expression is attenuated by treatment with the neuropeptide galanin, but not with NPY. Our results are consistent with a protective role of beta-blockers and galanin on endocardial endothelial health in heart failure. Improving endothelial health through galanin therapy is a future clinical application of this study. Copyright © 2017. Published by Elsevier B.V.

  13. Congenital endocardial cushion defect detected during uncomplicated pregnancy: a case report.

    PubMed

    Frank, Jennifer; Beck, David

    2012-01-01

    The first symptoms of previously undiagnosed congenital heart disease may become apparent during pregnancy. It is important to recognize structural heart lesions since they require additional monitoring during the prenatal, peripartum, and postpartum periods and are associated with increased maternal and fetal morbidity and mortality. We report a case of a new diagnosis of an endocardial cushion defect in an otherwise healthy woman in her third trimester whose presenting complaint was dyspnea in the left lateral decubitus position. We located only one other case report of a congenital heart lesion first diagnosed during pregnancy. While rare, since the signs and symptoms of congenital heart disease may also occur in normal pregnant women, it is important for the clinician to be aware that structural heart lesions are part of the differential diagnosis.

  14. Automatic generation of endocardial surface meshes with 1-to-1 correspondence from cine-MR images

    NASA Astrophysics Data System (ADS)

    Su, Yi; Teo, S.-K.; Lim, C. W.; Zhong, L.; Tan, R. S.

    2015-03-01

    In this work, we develop an automatic method to generate a set of 4D 1-to-1 corresponding surface meshes of the left ventricle (LV) endocardial surface which are motion registered over the whole cardiac cycle. These 4D meshes have 1- to-1 point correspondence over the entire set, and is suitable for advanced computational processing, such as shape analysis, motion analysis and finite element modelling. The inputs to the method are the set of 3D LV endocardial surface meshes of the different frames/phases of the cardiac cycle. Each of these meshes is reconstructed independently from border-delineated MR images and they have no correspondence in terms of number of vertices/points and mesh connectivity. To generate point correspondence, the first frame of the LV mesh model is used as a template to be matched to the shape of the meshes in the subsequent phases. There are two stages in the mesh correspondence process: (1) a coarse matching phase, and (2) a fine matching phase. In the coarse matching phase, an initial rough matching between the template and the target is achieved using a radial basis function (RBF) morphing process. The feature points on the template and target meshes are automatically identified using a 16-segment nomenclature of the LV. In the fine matching phase, a progressive mesh projection process is used to conform the rough estimate to fit the exact shape of the target. In addition, an optimization-based smoothing process is used to achieve superior mesh quality and continuous point motion.

  15. Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition

    PubMed Central

    Midgett, Madeline; López, Claudia S.; David, Larry; Maloyan, Alina; Rugonyi, Sandra

    2017-01-01

    Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease. However, the progressive detrimental remodeling processes that relate altered blood flow to cardiac defects remain unclear. Endothelial–mesenchymal cell transition is one of the many complex developmental events involved in transforming the early embryonic outflow tract into the aorta, pulmonary trunk, interventricular septum, and semilunar valves. This study elucidated the effects of increased hemodynamic load on endothelial–mesenchymal transition remodeling of the outflow tract cushions in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24. Increased hemodynamic load induced increased cell density in outflow tract cushions, fewer cells along the endocardial lining, endocardium junction disruption, and altered periostin expression as measured by confocal microscopy analysis. In addition, 3D focused ion beam scanning electron microscopy analysis determined that a portion of endocardial cells adopted a migratory shape after outflow tract banding that is more irregular, elongated, and with extensive cellular projections compared to normal cells. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with a more active stage of endothelial–mesenchymal transition. Outflow tract banding enhances the endothelial–mesenchymal transition phenotype during formation of the outflow tract cushions, suggesting that endothelial–mesenchymal transition is a critical developmental process that when disturbed by altered blood flow gives rise to cardiac malformation and defects. PMID:28228731

  16. Circuit For Control Of Electromechanical Prosthetic Hand

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.

  17. Circuit For Control Of Electromechanical Prosthetic Hand

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.

  18. Scaling law in carbon nanotube electromechanical devices.

    PubMed

    Lefèvre, R; Goffman, M F; Derycke, V; Miko, C; Forró, L; Bourgoin, J P; Hesto, P

    2005-10-28

    We report a method for probing electromechanical properties of multiwalled carbon nanotubes (CNTs). This method is based on atomic force microscopy measurements on a doubly clamped suspended CNT electrostatically deflected by a gate electrode. We measure the maximum deflection as a function of the applied gate voltage. Data from different CNTs scale into an universal curve within the experimental accuracy, in agreement with a continuum model prediction. This method and the general validity of the scaling law constitute a very useful tool for designing actuators and in general conducting nanowire-based nanoelectromechanical systems.

  19. A New Chaotic Electro-Mechanical Oscillator

    NASA Astrophysics Data System (ADS)

    Buscarino, Arturo; Famoso, Carlo; Fortuna, Luigi; Frasca, Mattia

    In this paper, a new electro-mechanical chaotic oscillator is presented. The system is based on the motion of the metal tip of a beam in a double-well potential generated by two magnets, and works thanks to the vibrations generated in the flexible mechanical structure by two rotating coils that produce noise-like signals. As the source of vibration is internal, the system may be considered an autonomous oscillator. Chaotic motion is experimentally observed and verified with a mathematical model of the phenomenon.

  20. Electromechanical Actuator Performance of Carbon Nanotube Fibers

    NASA Astrophysics Data System (ADS)

    Munoz, Edgar; Kozlov, Mikhail; Collins, Steve; Dalton, Alan B.; Razal, Joselito; Zakhidov, Anvar A.; Baughman, Ray H.

    2003-03-01

    Single-walled carbon nanotube (SWNT) assemblies (sheets and fibers) have been investigated as electromechanical actuators. SWNT fibers provide maximum isometric actuator stress values of 20-26 MPa, which is about 5-10 times larger that those corresponding to SWNT sheets. This actuation performance is about 100 timer larger than the stress generation capability of natural muscle. The effect of employing different electrolytes as well as SWNTs produced by different routes, and the potential applications of these actuators will be also discussed.

  1. Electro-mechanical sine/cosine generator

    NASA Technical Reports Server (NTRS)

    Flagge, B. (Inventor)

    1972-01-01

    An electromechanical device for generating both sine and cosine functions is described. A motor rotates a cylinder about an axis parallel to and a slight distance from the central axis of the cylinder. Two noncontacting displacement sensing devices are placed ninety degrees apart, equal distances from the axis of rotation of the cylinder and short distances above the surface of cylinder. Each of these sensing devices produces an electrical signal proportional to the distance that it is away from the cylinder. Consequently, as the cylinder is rotated the outputs from the two sensing devices are the sine and cosine functions.

  2. Electromechanical film as a photoacoustic transducer.

    PubMed

    Manninen, Albert; Sand, Johan; Saarela, Jaakko; Sorvajärvi, Tapio; Toivonen, Juha; Hernberg, Rolf

    2009-09-14

    An electromechanical film, EMFi, is utilized as a transducer in a photoacoustic (PA) gas sensor. The film is a sensitive acoustic transducer, it is easily formable, and it exhibits a wide frequency response regardless of its large surface area. As a demonstration of its capabilities, the EMFi-based PA detector is used to measure NO(2) with pulsed excitation at 436 and 473 nm. The minimum detectable absorption coefficient is extrapolated to be 5.10(-7) cm(-1). Improvements for EMFi-based PA detector are discussed.

  3. Endocardial left ventricle feature tracking and reconstruction from tri-plane trans-esophageal echocardiography data

    NASA Astrophysics Data System (ADS)

    Dangi, Shusil; Ben-Zikri, Yehuda K.; Cahill, Nathan; Schwarz, Karl Q.; Linte, Cristian A.

    2015-03-01

    Two-dimensional (2D) ultrasound (US) has been the clinical standard for over two decades for monitoring and assessing cardiac function and providing support via intra-operative visualization and guidance for minimally invasive cardiac interventions. Developments in three-dimensional (3D) image acquisition and transducer design and technology have revolutionized echocardiography imaging enabling both real-time 3D trans-esophageal and intra-cardiac image acquisition. However, in most cases the clinicians do not access the entire 3D image volume when analyzing the data, rather they focus on several key views that render the cardiac anatomy of interest during the US imaging exam. This approach enables image acquisition at a much higher spatial and temporal resolution. Two such common approaches are the bi-plane and tri-plane data acquisition protocols; as their name states, the former comprises two orthogonal image views, while the latter depicts the cardiac anatomy based on three co-axially intersecting views spaced at 600 to one another. Since cardiac anatomy is continuously changing, the intra-operative anatomy depicted using real-time US imaging also needs to be updated by tracking the key features of interest and endocardial left ventricle (LV) boundaries. Therefore, rapid automatic feature tracking in US images is critical for three reasons: 1) to perform cardiac function assessment; 2) to identify location of surgical targets for accurate tool to target navigation and on-target instrument positioning; and 3) to enable pre- to intra-op image registration as a means to fuse pre-op CT or MR images used during planning with intra-operative images for enhanced guidance. In this paper we utilize monogenic filtering, graph-cut based segmentation and robust spline smoothing in a combined work flow to process the acquired tri-plane TEE time series US images and demonstrate robust and accurate tracking of the LV endocardial features. We reconstruct the endocardial LV

  4. 25 CFR 502.8 - Electronic or electromechanical facsimile.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... facsimile means a game played in an electronic or electromechanical format that replicates a game of chance by incorporating all of the characteristics of the game, except when, for bingo, lotto, and other games similar to bingo, the electronic or electromechanical format broadens participation by...

  5. 25 CFR 502.8 - Electronic or electromechanical facsimile.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... facsimile means a game played in an electronic or electromechanical format that replicates a game of chance by incorporating all of the characteristics of the game, except when, for bingo, lotto, and other games similar to bingo, the electronic or electromechanical format broadens participation by...

  6. 25 CFR 502.8 - Electronic or electromechanical facsimile.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... facsimile means a game played in an electronic or electromechanical format that replicates a game of chance by incorporating all of the characteristics of the game, except when, for bingo, lotto, and other games similar to bingo, the electronic or electromechanical format broadens participation by...

  7. 25 CFR 502.8 - Electronic or electromechanical facsimile.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... facsimile means a game played in an electronic or electromechanical format that replicates a game of chance by incorporating all of the characteristics of the game, except when, for bingo, lotto, and other games similar to bingo, the electronic or electromechanical format broadens participation by...

  8. 25 CFR 502.8 - Electronic or electromechanical facsimile.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... facsimile means a game played in an electronic or electromechanical format that replicates a game of chance by incorporating all of the characteristics of the game, except when, for bingo, lotto, and other games similar to bingo, the electronic or electromechanical format broadens participation by...

  9. Guidelines for Establishing and Evaluating High School Technical Electromechanics Programs.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Vocational, Technical and Adult Education.

    Educators and industrial representatives developed these guidelines for school officials, instructors in technical education, and program and facility planners to use in planning a high school program in technical electromechanics. Designed to train students for entry into industry in applied electromechanics, the program includes electricity,…

  10. Dynamic electromechanical instability of a dielectric elastomer balloon

    NASA Astrophysics Data System (ADS)

    Chen, Feifei; Zhu, Jian; Wang, Michael Yu

    2015-11-01

    Electromechanical instability, a significant phenomenon in dielectric elastomers, has been well studied in the literature. However, most previous work was based on the assumption that dielectric elastomers undergo quasi-static deformation. This letter investigates the dynamic electromechanical instability of a dielectric elastomer balloon which renders four types of oscillation subject to a parametric combination of DC and AC voltages. The simulated oscillations show that dynamic electromechanical instability occurs within quite a large range of excitation frequency, in the form of snap-through or snap-back, when the DC and AC voltages reach critical values. The balloon is at its most susceptible to dynamic electromechanical instability when the superharmonic, harmonic or subharmonic resonance is excited. Taking all excitation parameters into account, this letter analyzes the global critical condition which triggers the dynamic electromechanical instability of the balloon.

  11. Electromechanics and Electrical Breakdown of Particulate Layers

    NASA Astrophysics Data System (ADS)

    Moslehi, Bizhan G. R.

    A comprehensive theory of the electromechanics and electrical breakdown of a current-carrying particulate layer is developed, which takes into account its inhomogeneous nature and mode of compaction. The theory treates the general case of combined surface and volume conduction and takes account of self-compression of the layer due to electrical forces. The electromechanical theory predicts the existence of a remarkably large electrical cohesive stress in the layer due to a strong field enhancement in and around the contact regions. Furthermore, it shows a decrease in the apparent resistivity of the layer with increasing electric field as a result of self-compression. The analysis of electrical breakdown of current -carrying particulate layer predicts the onset of breakdown of the layer in the form of intermittent microsparks in the gap between the contacting particles when the electric field at the contact or in the surrounding gap exceeds the threshold breakdown value. An analysis of the behavior of the layer after breakdown in terms of a simplified equivalent lumped circuit predicts increases of sparking frequency and average current as the applied average field exceeds the threshold average field for the onset of breakdown. The results of measurements on layers of glass beads and fly-ash in a standard resistivity cell are in good agreement with the theoretical predictions for the field-dependent resistivity characteristics. The work has particular significance for electrostatic precipitation and addresses the phenomenon of backdischarge and the questions of the retention, rapping, and reentrainment of precipitation ash layers.

  12. Tunable electromechanical actuation in silicone dielectric film

    NASA Astrophysics Data System (ADS)

    Lamberti, Andrea; Di Donato, Marco; Chiappone, Annalisa; Giorgis, Fabrizio; Canavese, Giancarlo

    2014-10-01

    Dielectric elastomer actuator films were fabricated on transparent conductive electrode using bi-component poly(dimethyl)siloxane (PDMS). PDMS is a well-known material in microfluidics and soft lithography for biomedical applications, being easy to process, low cost, biocompatible and transparent. Moreover its mechanical properties can be easily tuned by varying the mixing ratio between the oligomer base and the crosslinking agent. In this work we investigate the chemical composition and the electromechanical properties of PDMS thin film verifying for the first time the tuneable actuation response by simply modifying the amount of the curing agent. We demonstrate that, for a 20:1 ratio of base:crosslinker mixture, a striking 150% enhancement of Maxwell strain occurs at 1 Hz actuating frequency.

  13. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, Douglas S.

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  14. Torsional electromechanical quantum oscillations in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cohen-Karni, Tzahi; Segev, Lior; Srur-Lavi, Onit; Cohen, Sidney R.; Joselevich, Ernesto

    2006-10-01

    Carbon nanotubes can be distinctly metallic or semiconducting depending on their diameter and chirality. Here we show that continuously varying the chirality by mechanical torsion can induce conductance oscillations, which can be attributed to metal-semiconductor periodic transitions. The phenomenon is observed in multiwalled carbon nanotubes, where both the torque and the current are shown to be carried predominantly by the outermost wall. The oscillation period with torsion is consistent with the theoretical shifting of the corners of the first Brillouin zone of graphene across different sub-bands allowed in the nanotube. Beyond a critical torsion, the conductance irreversibly drops due to torsional failure, allowing us to determine the torsional strength of carbon nanotubes. Carbon nanotubes could be ideal torsional springs for nanoscopic pendulums, because electromechanical detection of motion could replace the microscopic detection techniques used at present. Our experiments indicate that carbon nanotubes could be used as electronic sensors of torsional motion in nanoelectromechanical systems.

  15. Quantum electromechanics on silicon nitride nanomembranes

    NASA Astrophysics Data System (ADS)

    Fink, J. M.; Kalaee, M.; Pitanti, A.; Norte, R.; Heinzle, L.; Davanço, M.; Srinivasan, K.; Painter, O.

    2016-08-01

    Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom--mechanical, optical and microwave--would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments.

  16. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  17. Electromechanical actuation for cryogenic valve control

    NASA Technical Reports Server (NTRS)

    Lister, M. J.; Reichmuth, D. M.

    1993-01-01

    The design and analysis of the electromechanical actuator (EMA) being developed for the NASA/Marshall Space Flight Center as part of the National Launch System (NLS) Propellant Control Effector Advanced Development Program (ADP) are addressed. The EMA design uses several proven technologies combined into a single modular package which includes single stage high ratio gear reduction, redundant electric motors mounted on a common drive shaft, redundant drive and control electronics, and digital technology for performing the closed loop position feedback, communication, and health monitoring functions. Results of tests aimed at evaluating both component characteristics and overall system performance demonstrated that the goal of low cost, reliable control in a cryogenic environment is feasible.

  18. Actinide recovery techniques utilizing electromechanical processes

    SciTech Connect

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy.

  19. Qualitative and quantitative effects of harmonic echocardiographic imaging on endocardial edge definition and side-lobe artifacts

    NASA Technical Reports Server (NTRS)

    Rubin, D. N.; Yazbek, N.; Garcia, M. J.; Stewart, W. J.; Thomas, J. D.

    2000-01-01

    Harmonic imaging is a new ultrasonographic technique that is designed to improve image quality by exploiting the spontaneous generation of higher frequencies as ultrasound propagates through tissue. We studied 51 difficult-to-image patients with blinded side-by-side cineloop evaluation of endocardial border definition by harmonic versus fundamental imaging. In addition, quantitative intensities from cavity versus wall were compared for harmonic versus fundamental imaging. Harmonic imaging improved left ventricular endocardial border delineation over fundamental imaging (superior: harmonic = 71.1%, fundamental = 18.7%; similar: 10.2%; P <.001). Quantitative analysis of 100 wall/cavity combinations demonstrated brighter wall segments and more strikingly darker cavities during harmonic imaging (cavity intensity on a 0 to 255 scale: fundamental = 15.6 +/- 8.6; harmonic = 6.0 +/- 5.3; P <.0001), which led to enhanced contrast between the wall and cavity (1.89 versus 1.19, P <.0001). Harmonic imaging reduces side-lobe artifacts, resulting in a darker cavity and brighter walls, thereby improving image contrast and endocardial delineation.

  20. Peak endocardial acceleration-based clinical testing of the "BEST" DDDR pacemaker. European PEA Clinical Investigation Group.

    PubMed

    Langenfeld, H; Krein, A; Kirstein, M; Binner, L

    1998-11-01

    The peak endocardial acceleration (PEA, unit g) shows a near correlation with myocardial contractility during the isometric systolic contraction of the heart (dP/dtmax), with sympathetic activity and, thus, with physiological heart rate modulation. The (Biomechanical Endocardial Sorin Transducer (BEST) sensor is incorporated in the tip of a pacing lead and measures PEA directly near the myocardium. In an international study, the lead was implanted with the dual chamber pacemaker Living-1 (Sorin) in 105 patients. The behavior of the PEA signal was tested under conditions of physical and mental stress and during daily life activities by 24-hour recordings of PEA (PEA Holter) at 1 to 2 months and approximately 1 year after implantation. Implantation of the BEST lead was performed without complications in all patients. The sensor functioned properly in the short- and long-term in 98% of patients. Although PEA values differed from patient to patient, the values closely reflected the variations in sympathetic activity due to physical and mental stress in each patient. During exercise and during daily life activities a close correlation between PEA and heart rate was observed among patients with normal sinus rhythm. Peak endocardial acceleration allows a nearly physiological control of the pacing rate.

  1. Deletion of Fstl1 (Follistatin-Like 1) From the Endocardial/Endothelial Lineage Causes Mitral Valve Disease.

    PubMed

    Prakash, Stuti; Borreguero, Luis J J; Sylva, Marc; Flores Ruiz, Lorena; Rezai, Fereshte; Gunst, Quinn D; de la Pompa, José-Luis; Ruijter, Jan M; van den Hoff, Maurice J B

    2017-09-01

    Fstl1 (Follistatin-like 1) is a secreted protein that is expressed in the atrioventricular valves throughout embryonic development, postnatal maturation, and adulthood. In this study, we investigated the loss of Fstl1 in the endocardium/endothelium and their derived cells. We conditionally ablated Fstl1 from the endocardial lineage using a transgenic Tie2-Cre mouse model. These mice showed a sustained Bmp and Tgfβ signaling after birth. This resulted in ongoing proliferation and endocardial-to-mesenchymal transition and ultimately in deformed nonfunctional mitral valves and a hypertrophic dilated heart. Echocardiographic and electrocardiographic analyses revealed that loss of Fstl1 leads to mitral regurgitation and left ventricular diastolic dysfunction. Cardiac function gradually deteriorated resulting in heart failure with preserved ejection fraction and death of the mice between 2 and 4 weeks after birth. We report on a mouse model in which deletion of Fstl1 from the endocardial/endothelial lineage results in deformed mitral valves, which cause regurgitation, heart failure, and early cardiac death. The findings provide a potential molecular target for the clinical research into myxomatous mitral valve disease. © 2017 American Heart Association, Inc.

  2. Automated classification of wall motion abnormalities by principal component analysis of endocardial shape motion patterns in echocardiograms

    NASA Astrophysics Data System (ADS)

    Bosch, Johan G.; Nijland, Francisca; Mitchell, Steven C.; Lelieveldt, Boudewijn P. F.; Kamp, Otto; Sonka, Milan; Reiber, Johan H. C.

    2003-05-01

    Principal Component Analysis of sets of temporal shape sequences renders eigenvariations of shape/motion, including typical normal and pathological endocardial contraction patterns. A previously developed Active Appearance Model for time sequences (AAMM) was employed to derive AAMM shape coefficients (ASCs) and we hypothesized these would allow classification of wall motion abnormalities (WMA). A set of stress echocardiograms (single-beat 4-chamber and 2-chamber sequences with expert-verified endocardial contours) of 129 infarct patients was split randomly into training (n=65) and testing (n=64) sets. AAMMs were generated from the training set and for all sequences ASCs were extracted and statistically related to regional/global Visual Wall Motion Scoring (VWMS) and clinical infarct severity and volumetric parameters. Linear regression showed clear correlations between ASCs and VWMS. Infarct severity measures correlated poorly to both ASCs and VWMS. Discriminant analysis showed good prediction from low #ASCs of both segmental (85% correctness) and global WMA (90% correctness). Volumetric parameters correlated poorly to regional VWMS. Conclusions: 1)ASCs show promising accuracy for automated WMA classification. 2)VWMS and endocardial border motion are closely related; with accurate automated border detection, automated WMA classification should be feasible. 3)ASC shape analysis allows contour set evaluation by direct comparison to clinical parameters.

  3. Qualitative and quantitative effects of harmonic echocardiographic imaging on endocardial edge definition and side-lobe artifacts

    NASA Technical Reports Server (NTRS)

    Rubin, D. N.; Yazbek, N.; Garcia, M. J.; Stewart, W. J.; Thomas, J. D.

    2000-01-01

    Harmonic imaging is a new ultrasonographic technique that is designed to improve image quality by exploiting the spontaneous generation of higher frequencies as ultrasound propagates through tissue. We studied 51 difficult-to-image patients with blinded side-by-side cineloop evaluation of endocardial border definition by harmonic versus fundamental imaging. In addition, quantitative intensities from cavity versus wall were compared for harmonic versus fundamental imaging. Harmonic imaging improved left ventricular endocardial border delineation over fundamental imaging (superior: harmonic = 71.1%, fundamental = 18.7%; similar: 10.2%; P <.001). Quantitative analysis of 100 wall/cavity combinations demonstrated brighter wall segments and more strikingly darker cavities during harmonic imaging (cavity intensity on a 0 to 255 scale: fundamental = 15.6 +/- 8.6; harmonic = 6.0 +/- 5.3; P <.0001), which led to enhanced contrast between the wall and cavity (1.89 versus 1.19, P <.0001). Harmonic imaging reduces side-lobe artifacts, resulting in a darker cavity and brighter walls, thereby improving image contrast and endocardial delineation.

  4. Electro-mechanical dysfunction in long QT syndrome: Role for arrhythmogenic risk prediction and modulation by sex and sex hormones.

    PubMed

    Lang, C N; Menza, M; Jochem, S; Franke, G; Perez Feliz, S; Brunner, M; Koren, G; Zehender, M; Bugger, H; Jung, B A; Foell, D; Bode, C; Odening, K E

    2016-01-01

    Long QT syndrome (LQTS) is a congenital arrhythmogenic channelopathy characterized by impaired cardiac repolarization. Increasing evidence supports the notion that LQTS is not purely an "electrical" disease but rather an "electro-mechanical" disease with regionally heterogeneously impaired electrical and mechanical cardiac function. In the first part, this article reviews current knowledge on electro-mechanical (dys)function in LQTS, clinical consequences of the observed electro-mechanical dysfunction, and potential underlying mechanisms. Since several novel imaging techniques - Strain Echocardiography (SE) and Magnetic Resonance Tissue Phase Mapping (TPM) - are applied in clinical and experimental settings to assess the (regional) mechanical function, advantages of these non-invasive techniques and their feasibility in the clinical routine are particularly highlighted. The second part provides novel insights into sex differences and sex hormone effects on electro-mechanical cardiac function in a transgenic LQT2 rabbit model. Here we demonstrate that female LQT2 rabbits exhibit a prolonged time to diastolic peak - as marker for contraction duration and early relaxation - compared to males. Chronic estradiol-treatment enhances these differences in time to diastolic peak even more and additionally increases the risk for ventricular arrhythmia. Importantly, time to diastolic peak is particularly prolonged in rabbits exhibiting ventricular arrhythmia - regardless of hormone treatment - contrasting with a lack of differences in QT duration between symptomatic and asymptomatic LQT2 rabbits. This indicates the potential added value of the assessment of mechanical dysfunction in future risk stratification of LQTS patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Electromechanical transducers based on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Stampfer, C.; Jungen, A.; Helbling, T.; Durrer, L.; Hierold, C.

    2008-08-01

    Carbon Nanotubes are intensively studied as a new functional material for nanoelectronics and nano electromechanical systems, including nanosensor devices. Single-walled carbon nanotubes (SWNTs) show unique mechanical and electromechanical properties and they change electronic properties by interacting with the environment (this can be e.g. used for chemical and biochemical sensing). Therefore nanotubes are very promising candidates for active elements in future nanoscaled transducers. Concepts for carbon nanotube sensors for mechanical and chemical detection schemes are presented. We focus on single-walled carbon nanotubes as natural macro molecular functional structures with an option for low scale integration in micro and nano electromechanical systems (MEMS and NEMS).

  6. Multimodal electromechanical model of piezoelectric transformers by Hamilton's principle.

    PubMed

    Nadal, Clement; Pigache, Francois

    2009-11-01

    This work deals with a general energetic approach to establish an accurate electromechanical model of a piezoelectric transformer (PT). Hamilton's principle is used to obtain the equations of motion for free vibrations. The modal characteristics (mass, stiffness, primary and secondary electromechanical conversion factors) are also deduced. Then, to illustrate this general electromechanical method, the variational principle is applied to both homogeneous and nonhomogeneous Rosen-type PT models. A comparison of modal parameters, mechanical displacements, and electrical potentials are presented for both models. Finally, the validity of the electrodynamical model of nonhomogeneous Rosen-type PT is confirmed by a numerical comparison based on a finite elements method and an experimental identification.

  7. Molecular analysis of the nondisjoined chromosome in trisomy 21 with and without endocardial cushion defects

    SciTech Connect

    Zittergruen, M.M.; Murray, J.C.; Lauer, R.M.

    1994-09-01

    Congenital heart disease is found in approximately 40% of patients with Down syndrome (DS), with endocardial cushion defects (ECDs) comprising one-third of the defects. Sixteen highly polymorphic microsatellite markers were typed in two groups (Group 1: DS with ECD, n=43, and Group 2: DS without ECD, n=52) to determine: (1) the parental origin of the extra chromosome, (2) the presence or absence of disomic homozygosity (reduced) or heterozygosity (nonreduced) of the markers along 21q, and (3) the presence or absence of recombination in the nondisjoined chromosome. The association of these three factors with the presence of ECD in DS was then determined. The origin of the nondisjoined chromosome was maternal in 86.3% of the total cases with no significant differences between groups 1 and 2. The most centromeric marker was nonreduced in 77% of the maternally-derived trisomies (indicative of a meiosis II nondisjunction) with no significant differences between groups 1 and 2. The most telomeric markers showed no differences in the number of reduced or nonreduced markers between maternally and paternally derived chromosomes or between groups 1 and 2. Recombination was significantly decreased in group 1 (28%) compared to group 2 (56%) (chi-square 7.45, p < 0.01) with similar values for both paternally and maternally-derived trisomies. Overall, recombination was present in 43.2% of the nondisjoined chromosomes which is similar to the 42.3% recombination reported in nondisjoined chromosomes in trisomy 21.

  8. Myopotential interference with DDD pacemakers: endocardial electrographic telemetry in the diagnosis of pacemaker-related arrhythmias.

    PubMed

    Halperin, J L; Camuñas, J L; Stern, E H; Rothlauf, E B; Kupersmith, J; Estioko, M R; Mace, R C; Steinmetz, M Y; Teichholz, L E

    1984-07-01

    Skeletal myopotentials may inhibit the output of unipolar demand ventricular pacemakers, resulting in protracted episodes of asystole in susceptible patients. The new DDD-mode pacemakers have, in addition to a unipolar ventricular lead, a unipolar atrial lead to enable atrioventricular sequential or atrial synchronous function. During clinical investigation of a new dual-unipolar cardiac pacing system programmed to operate in the DDD mode (Pacesetter AFP models 281 and 283), 6 patients were noted (5 men and 1 woman, aged 22 to 68 years) who manifested paroxysmal acceleration of ventricular pacing rate approaching the maximal tracking rate. Two patients also had abrupt slowing or cessation of ventricular output. With the use of atrial electrographic recordings (obtained with telemetry), the following mechanisms of rate change were found: myopotential tracking, myopotential inhibition, interference-mode asynchronous operation, sudden increases in sinus rate, and pacemaker-mediated reentrant tachycardia. In all patients, reprogramming of the implanted devices, based on telemetered atrial electrography, resulted in disappearance of the arrhythmias and loss of symptoms while maintaining the DDD pacing mode. Thus, several mechanisms of rhythm disturbances are peculiar to dual-chamber cardiac pacing systems that use unipolar electrodes. Endocardial telemetry combined with extensive programming capability offers the best opportunity for proper diagnosis and management of these problems.

  9. NASA Electrical, Electronic and Electromechanical (EEE) Parts Assurance, An Overview

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.; Sampson, Michael J.

    2017-01-01

    This presentation will cover NASA Electrical, Electronic and Electromechanical (EEE) Parts Assurance Structure, NASA Electronic Parts and Packaging (NEPP) Program, NASA Electronic Parts Assurance Group (NEPAG), examples of assurance challenges, and future challenges.

  10. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Boland, Conor S.; Khan, Umar; Ryan, Gavin; Barwich, Sebastian; Charifou, Romina; Harvey, Andrew; Backes, Claudia; Li, Zheling; Ferreira, Mauro S.; Möbius, Matthias E.; Young, Robert J.; Coleman, Jonathan N.

    2016-12-01

    Despite its widespread use in nanocomposites, the effect of embedding graphene in highly viscoelastic polymer matrices is not well understood. We added graphene to a lightly cross-linked polysilicone, often encountered as Silly Putty, changing its electromechanical properties substantially. The resulting nanocomposites display unusual electromechanical behavior, such as postdeformation temporal relaxation of electrical resistance and nonmonotonic changes in resistivity with strain. These phenomena are associated with the mobility of the nanosheets in the low-viscosity polymer matrix. By considering both the connectivity and mobility of the nanosheets, we developed a quantitative model that completely describes the electromechanical properties. These nanocomposites are sensitive electromechanical sensors with gauge factors >500 that can measure pulse, blood pressure, and even the impact associated with the footsteps of a small spider.

  11. Electromechanical stability domain of dielectric elastomer film actuators

    NASA Astrophysics Data System (ADS)

    Sun, Shouhua; Liu, Liwu; Zhang, Zhen; Yu, Kai; Liu, Yanju; Leng, Jinsong

    2009-07-01

    The dielectric elastomer film will encounter electrical breaking-down frequently in its working state due to the coupling effect of electric field and mechanical force field. Referring to the electromechanical coupling system stability theory of dielectric elastomer proposed by Suo and Zhao, the electromechanical stability analysis of dielectric elastomer has been investigated. The free energy function of dielectric elastomer can be represented by the principle of superposition based on Suo's theory. Unstable domain of electromechanical coupling system of Neo-Hookean type silicone was analyzed by R. Díaz-Calleja et al. In the current work, the elastic strain energy function with two material constants was used to analyze the stable domain of electromechanical coupling system of Mooney-Rivlin type silicone, and the results seem to support R. Díaz-Calleja's theory. These results provide useful guidelines for the design and fabrication of actuators based on dielectric elastomer.

  12. Digital system accurately controls velocity of electromechanical drive

    NASA Technical Reports Server (NTRS)

    Nichols, G. B.

    1965-01-01

    Digital circuit accurately regulates electromechanical drive mechanism velocity. The gain and phase characteristics of digital circuits are relatively unimportant. Control accuracy depends only on the stability of the input signal frequency.

  13. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites.

    PubMed

    Boland, Conor S; Khan, Umar; Ryan, Gavin; Barwich, Sebastian; Charifou, Romina; Harvey, Andrew; Backes, Claudia; Li, Zheling; Ferreira, Mauro S; Möbius, Matthias E; Young, Robert J; Coleman, Jonathan N

    2016-12-09

    Despite its widespread use in nanocomposites, the effect of embedding graphene in highly viscoelastic polymer matrices is not well understood. We added graphene to a lightly cross-linked polysilicone, often encountered as Silly Putty, changing its electromechanical properties substantially. The resulting nanocomposites display unusual electromechanical behavior, such as postdeformation temporal relaxation of electrical resistance and nonmonotonic changes in resistivity with strain. These phenomena are associated with the mobility of the nanosheets in the low-viscosity polymer matrix. By considering both the connectivity and mobility of the nanosheets, we developed a quantitative model that completely describes the electromechanical properties. These nanocomposites are sensitive electromechanical sensors with gauge factors >500 that can measure pulse, blood pressure, and even the impact associated with the footsteps of a small spider. Copyright © 2016, American Association for the Advancement of Science.

  14. INTERIOR, FIRST FLOOR, SHOWING BANKS OF ELECTROMECHANICAL RELAYS, CAMERA FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR, FIRST FLOOR, SHOWING BANKS OF ELECTRO-MECHANICAL RELAYS, CAMERA FACING SOUTHEAST. - New Haven Rail Yard, Interlocking Control Building, Vicinity of Union Avenue, New Haven, New Haven County, CT

  15. Beneficial Effect on Cardiac Resynchronization From Left Ventricular Endocardial Pacing Is Mediated by Early Access to High Conduction Velocity Tissue: Electrophysiological Simulation Study.

    PubMed

    Hyde, Eoin R; Behar, Jonathan M; Claridge, Simon; Jackson, Tom; Lee, Angela W C; Remme, Espen W; Sohal, Manav; Plank, Gernot; Razavi, Reza; Rinaldi, Christopher A; Niederer, Steven A

    2015-10-01

    Cardiac resynchronization therapy (CRT) delivered via left ventricular (LV) endocardial pacing (ENDO-CRT) is associated with improved acute hemodynamic response compared with LV epicardial pacing (EPI-CRT). The role of cardiac anatomy and physiology in this improved response remains controversial. We used computational electrophysiological models to quantify the role of cardiac geometry, tissue anisotropy, and the presence of fast endocardial conduction on myocardial activation during ENDO-CRT and EPI-CRT. Cardiac activation was simulated using the monodomain tissue excitation model in 2-dimensional (2D) canine and human and 3D canine biventricular models. The latest activation times (LATs) for LV endocardial and biventricular epicardial tissue were calculated (LVLAT and TLAT), as well the percentage decrease in LATs for endocardial (en) versus epicardial (ep) LV pacing (defined as %dLV=100×(LVLATep-LVLATen)/LVLATep and %dT=100×(TLATep-TLATen)/TLATep, respectively). Normal canine cardiac anatomy is responsible for %dLV and %dT values of 7.4% and 5.5%, respectively. Concentric and eccentric remodeled anatomies resulted in %dT values of 15.6% and 1.3%, respectively. The 3D biventricular-paced canine model resulted in %dLV and %dT values of -7.1% and 1.5%, in contrast to the experimental observations of 16% and 11%, respectively. Adding fast endocardial conduction to this model altered %dLV and %dT to 13.1% and 10.1%, respectively. Our results provide a physiological explanation for improved response to ENDO-CRT. We predict that patients with viable fast-conducting endocardial tissue or distal Purkinje network or both, as well as concentric remodeling, are more likely to benefit from reduced ATs and increased synchrony arising from endocardial pacing. © 2015 American Heart Association, Inc.

  16. Electromechanical interaction in rotordynamics of cage induction motors

    NASA Astrophysics Data System (ADS)

    Holopainen, Timo P.; Tenhunen, Asmo; Arkkio, Antero

    2005-06-01

    Eccentric rotor motion induces an unbalanced magnetic pull between the rotor and stator of cage induction motors. Recently, a linear parametric model of this eccentricity force due to the arbitrary rotor motion was presented. The purpose of this study is to combine this electromagnetic force model with a simple mechanical rotor model, and further, to demonstrate the rotordynamic response induced by this electromechanical interaction. An electromechanical rotor model is derived on the basis of the Jeffcott rotor with two additional variables for the harmonic currents of the rotor cage. Applying this model, the rotordynamic effects of electromechanical interaction were studied. Three induction motors were used in the numerical examples. The electromechanical parameters of these motors were estimated from the numerical simulations carried out separately. The results obtained show that the electromechanical interaction may decrease the natural frequencies of the rotor, induce additional damping or cause rotordynamic instability. These interaction effects are most significant in motors operating at or near the first bending critical speed. Excluding the potential rotordynamic instability, the numerical results indicate that the electromechanical interaction reduces effectively the unbalance response close to the first bending critical speed.

  17. Resistor-damped electromechanical lever blocks

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo; Genequand, Pierre M.; Kjelberg, Ivar

    1998-06-01

    The paper presents an innovative technical solution which provides a combined damping and isolation interface with the appropriate transmissibility characteristics between a vibrating base and a sensitive payload, typically an optical terminal/telescope. The novelty of the solution is primarily found in the implementation of uncoupling and magnification of the incurred vibrations by means of flexures combined with the implementation of energy dissipation by means of a linear electro-magnetic actuator to constitute a passive integrated resistor-damped electromechanic lever block. By means of frictionless flexible lever systems, the amplitude of the payload vibrations is adapted to the optimal range of the actuator with a magnification by a factor ranging typically between 10 and 30. Passive viscous damping is obtained by simply short-circuiting the electro-magnetic motor and can be adapted by setting the impedance of the shorting connection. The desired stiffness is provided by the passive springs of the elastic motor suspension and by the stiffness of the lever flexure blades. The mobile mass of the motors also provide a reaction mass which, like damping and stiffness, is amplified by the square of the lever factor. A theoretical model of resistor-damped electromechanical lever blocks has been established. A particular property is it the good attenuation of excited vibrations only over a set frequency range. Above this range the interface properties rejoin the ones of a rigid connection. This performance makes this type of isolators particularly suitable for integration into multi-layer vibration control systems where sensitive equipment is protected by a mix of passive and active damping/isolation devices acting optimally at different frequency ranges. Experiments performed with a dummy load (80 Kg) representative of a satellite based optical terminal demonstrated the efficiency of the system in protecting the payload by passive damping for vibration excitations

  18. Nanostructured Silicon for Electronic and Electromechanic Devices

    NASA Astrophysics Data System (ADS)

    Kotthaus, Jorg P.

    2001-03-01

    Fabrication technologies with nanometer resolution enable us now to realize silicon devices in which the electronic and electromechanical functions are governed by artificial geometric confinement and may sensitively depend on the environment. One example are single electron tranistors fabricated on silicon-on-insulator substrates in which the quantum confinement of electrons down to 10 nm yields strongly aperiodic Coulomb blockade oscillations of the conductance visible up to temperatures well above 100 K /1/. Another are suspended nanoelectromechanical resonators exhibiting highly non-linear resonances at radio frequencies /2/. These can be employed for mechanical radio frequency mixing as well as for sensitively sensing their local environment. Alternatively, nanomechanical levers can serve as electrical switching devices with very high resonance frequencies/3/. The perspectives of using such silicon-based nanodevices for local manipulation and sensing applications and high frequency signal processing will be discussed. /1/ A. Tilke et al., Appl. Phys. Lett. 75, 3704 (1999) and Appl. Phys. A71, 357 (2000) /2/ L. Pescini et al., Nanotechnology 10, 418 (1999), H. Krömmer et al., Europhys. Lett. 50, 101 (2000) /3/ A. Erbe et al., Appl. Phys. Lett. 73, 3751 (1998), A. Erbe et al., Physica B280, 553 (2000)

  19. Electromechanical lever blocks for active vibration isolation

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo; Genequand, Pierre M.

    2000-04-01

    This paper is a follow-up of a presentation at the Smart Structures Symposium of 1998. There we described an innovative technical solution which provides a combined passive damping and isolation interface with the appropriate transmissibility characteristics between a vibrating base and a sensitive payload, typically an optical terminal/telescope. The particularity of the solution is primarily found in the implementation of energy dissipation by means linear electromagnetic linear motors leveraged by means of flexure elements, to constitute an integrated resistor-damped electromechanic lever block, which we called MEDI (Mechanical Elastic element for Damping and Isolation). Passive viscous damping with attenuation of the order of -20 dB at 50 Hz with respect to a hard fixation, is obtained by simply short- circuiting the electro-magnetic motor. The study and test program presented here extends the application of MEDIs to active vibration reduction systems. The study, contracted by the European Space Agency, aimed at investigating the possibility of using the MEDI as an active isolator for scientific experiments in the International Space Station. By controlling the current in the electromagnetic motor in closed loop with the signal from specially designed force sensor (with extremely low noise), we achieved attenuation of the order of -15 dB at 1 Hz, -30 dB at 10 Hz, -50 dB at 30 Hz, with the isolation slope starting as low as 0.1 Hz.

  20. 40 HP Electro-Mechanical Actuator

    NASA Technical Reports Server (NTRS)

    Fulmer, Chris

    1996-01-01

    This report summarizes the work performed on the 40 BP electro-mechanical actuator (EMA) system developed on NASA contract NAS3-25799 for the NASA National Launch System and Electrical Actuation (ELA) Technology Bridging Programs. The system was designed to demonstrate the capability of large, high power linear ELA's for applications such as Thrust Vector Control (TVC) on rocket engines. It consists of a motor controller, high frequency power source, drive electronics and a linear actuator. The power source is a 25kVA 20 kHz Mapham inverter. The drive electronics are based on the pulse population modulation concept and operate at a nominal frequency of 40 kHz. The induction motor is a specially designed high speed, low inertia motor capable of a 68 peak HP. The actuator was originally designed by MOOG Aerospace under an internal R & D program to meet Space Shuttle Main Engine (SSME) TVC requirements. The design was modified to meet this programs linear rate specification of 7.4 inches/second. The motor and driver were tested on a dynamometer at the Martin Marietta Space Systems facility. System frequency response and step response tests were conducted at the Marshall Space Flight Center facility. A complete description of the system and all test results can be found in the body of the report.

  1. Toward GPGPU accelerated human electromechanical cardiac simulations

    PubMed Central

    Vigueras, Guillermo; Roy, Ishani; Cookson, Andrew; Lee, Jack; Smith, Nicolas; Nordsletten, David

    2014-01-01

    In this paper, we look at the acceleration of weakly coupled electromechanics using the graphics processing unit (GPU). Specifically, we port to the GPU a number of components of Heart—a CPU-based finite element code developed for simulating multi-physics problems. On the basis of a criterion of computational cost, we implemented on the GPU the ODE and PDE solution steps for the electrophysiology problem and the Jacobian and residual evaluation for the mechanics problem. Performance of the GPU implementation is then compared with single core CPU (SC) execution as well as multi-core CPU (MC) computations with equivalent theoretical performance. Results show that for a human scale left ventricle mesh, GPU acceleration of the electrophysiology problem provided speedups of 164 × compared with SC and 5.5 times compared with MC for the solution of the ODE model. Speedup of up to 72 × compared with SC and 2.6 × compared with MC was also observed for the PDE solve. Using the same human geometry, the GPU implementation of mechanics residual/Jacobian computation provided speedups of up to 44 × compared with SC and 2.0 × compared with MC. © 2013 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons, Ltd. PMID:24115492

  2. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    The advanced launch system (ALS), is a launch vehicle that is designed to be cost-effective, highly reliable, and operationally efficient with a goal of reducing the cost per pound to orbit. An electromechanical actuation (EMA) system is being developed as an attractive alternative to the hydraulic systems. The controller will integrate 20 kHz resonant link power management and distribution (PMAD) technology and pulse population modulation (PPM) techniques to implement field-oriented vector control (FOVC) of a new advanced induction motor. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a built-in test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance, and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA thrust vector control (TVC) system. The EMA system and work proposed for the future are discussed.

  3. Solitary electromechanical pulses in lobster neurons.

    PubMed

    Gonzalez-Perez, A; Mosgaard, L D; Budvytyte, R; Villagran-Vargas, E; Jackson, A D; Heimburg, T

    2016-09-01

    Investigations of nerve activity have focused predominantly on electrical phenomena. Nerves, however, are thermodynamic systems, and changes in temperature and in the dimensions of the nerve can also be observed during the action potential. Measurements of heat changes during the action potential suggest that the nerve pulse shares many characteristics with an adiabatic pulse. First experiments in the 1980s suggested small changes in nerve thickness and length during the action potential. Such findings have led to the suggestion that the action potential may be related to electromechanical solitons traveling without dissipation. However, there have been no modern attempts to study mechanical phenomena in nerves. Here, we present ultrasensitive AFM recordings of mechanical changes on the order of 2-12Å in the giant axons of the lobster. We show that the nerve thickness changes in phase with voltage changes. When stimulated at opposite ends of the same axon, colliding action potentials pass through one another and do not annihilate. These observations are consistent with a mechanical interpretation of the nervous impulse. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Flywheel energy storage for electromechanical actuation systems

    NASA Technical Reports Server (NTRS)

    Hockney, Richard L.; Goldie, James H.; Kirtley, James L.

    1991-01-01

    The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.

  5. An electromechanical model of myosin molecular motors.

    PubMed

    Masuda, Tadashi

    2003-12-21

    There is a long-running debate on the working mechanism of myosin molecular motors, which, by interacting with actin filaments, convert the chemical energy of ATP into a variety of mechanical work. After the development of technologies for observing and manipulating individual working molecules, experimental results negating the widely accepted 'lever-arm hypothesis' have been reported. In this paper, based on the experimental results so far accumulated, an alternative hypothesis is proposed, in which motor molecules are modelled as electromechanical components that interact with each other through electrostatic force. Electrostatic attractive force between myosin and actin is assumed to cause a conformational change in the myosin head during the attachment process. An elastic energy resulting from the conformational change then produces the power stroke. The energy released at the ATP hydrolysis is mainly used to detach the myosin head from actin filaments. The mechanism presented in this paper is compatible with the experimental results contradictory to the previous theories. It also explains the behavior of myosins V and VI, which are engaged in cellular transport and move processively along actin filaments.

  6. Flywheel energy storage for electromechanical actuation systems

    NASA Technical Reports Server (NTRS)

    Hockney, Richard L.; Goldie, James H.; Kirtley, James L.

    1991-01-01

    The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.

  7. Designing piezoelectric films for micro electromechanical systems.

    PubMed

    Trolier-McKinstry, Susan; Griggio, Flavio; Yaeger, Charles; Jousse, Pierre; Zhao, Dalong; Bharadwaja, Srowthi S N; Jackson, Thomas N; Jesse, Stephen; Kalinin, Sergei V; Wasa, Kiyotaka

    2011-09-01

    Piezoelectric thin films are of increasing interest in low-voltage micro electromechanical systems for sensing, actuation, and energy harvesting. They also serve as model systems to study fundamental behavior in piezoelectrics. Next-generation technologies such as ultrasound pill cameras, flexible ultrasound arrays, and energy harvesting systems for unattended wireless sensors will all benefit from improvements in the piezoelectric properties of the films. This paper describes tailoring the composition, microstructure, orientation of thin films, and substrate choice to optimize the response. It is shown that increases in the grain size of lead-based perovskite films from 75 to 300 nm results in 40 and 20% increases in the permittivity and piezoelectric coefficients, respectively. This is accompanied by an increase in the nonlinearity in the response. Band excitation piezoresponse force microscopy was used to interrogate the nonlinearity locally. It was found that chemical solution-derived PbZr(0.52)Ti(0.48)O(3) thin films show clusters of larger nonlinear response embedded in a more weakly nonlinear matrix. The scale of the clusters significantly exceeds that of the grain size, suggesting that collective motion of many domain walls contributes to the observed Rayleigh behavior in these films. Finally, it is shown that it is possible to increase the energy-harvesting figure of merit through appropriate materials choice, strong imprint, and composite connectivity patterns.

  8. Electromechanical response of silicone dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Cârlescu, V.; Prisăcaru, G.; Olaru, D.

    2016-08-01

    This paper presents an experimental technique to investigate the electromechanical properties of silicone dielectric elastomers actuated with high DC electric fields. A non-contact measurement technique is used to capture and monitor the thickness strain (contraction) of a circular film placed between two metallic disks electrodes. Two active fillers such as silica (10, 15 and 30 wt%) and barium titanate (5 and 15 wt%) were incorporated in order to increase the actuation performance. Thickness strain was measured at HV stimuli up to 4.5 kV and showed a quadratic dependence against applied electric field indicating that the induced strain is triggered by the Maxwell effect and/or electrostriction phenomenon as reported in literature. The actuation process evidences a rapid contraction upon HV activation and a slowly relaxation when the electrodes are short-circuit due to visco-elastic nature of elastomers. A maximum of 1.22 % thickness strain was obtained at low actuating field intensity (1.5 V/pm) comparable with those reported in literature for similar dielectric elastomer materials.

  9. Quantum electromechanics on silicon nitride nanomembranes

    PubMed Central

    Fink, J. M.; Kalaee, M.; Pitanti, A.; Norte, R.; Heinzle, L.; Davanço, M.; Srinivasan, K.; Painter, O.

    2016-01-01

    Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom—mechanical, optical and microwave—would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments. PMID:27484751

  10. Toward GPGPU accelerated human electromechanical cardiac simulations.

    PubMed

    Vigueras, Guillermo; Roy, Ishani; Cookson, Andrew; Lee, Jack; Smith, Nicolas; Nordsletten, David

    2014-01-01

    In this paper, we look at the acceleration of weakly coupled electromechanics using the graphics processing unit (GPU). Specifically, we port to the GPU a number of components of CHeart--a CPU-based finite element code developed for simulating multi-physics problems. On the basis of a criterion of computational cost, we implemented on the GPU the ODE and PDE solution steps for the electrophysiology problem and the Jacobian and residual evaluation for the mechanics problem. Performance of the GPU implementation is then compared with single core CPU (SC) execution as well as multi-core CPU (MC) computations with equivalent theoretical performance. Results show that for a human scale left ventricle mesh, GPU acceleration of the electrophysiology problem provided speedups of 164 × compared with SC and 5.5 times compared with MC for the solution of the ODE model. Speedup of up to 72 × compared with SC and 2.6 × compared with MC was also observed for the PDE solve. Using the same human geometry, the GPU implementation of mechanics residual/Jacobian computation provided speedups of up to 44 × compared with SC and 2.0 × compared with MC. © 2013 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons, Ltd.

  11. Designing Piezoelectric Films for Micro Electromechanical Systems

    SciTech Connect

    Trolier-McKinstry, Susan; Griggio, Flavio; Yaeger, Charles; Jousse, Pierre; Zhao, Dalong; Bharadwaja, Srowthi; Jackson, Thomas N; Jesse, Stephen; Kalinin, Sergei V; Wasa, Kiyotaka

    2011-01-01

    Piezoelectric thin films are of increasing interest in low-voltage micro electromechanical systems for sensing, actuation, and energy harvesting. They also serve as model systems to study fundamental behavior in piezoelectrics. Next-generation technologies such as ultrasound pill cameras, flexible ultrasound arrays, and energy harvesting systems for unattended wireless sensors will all benefit from improvements in the piezoelectric properties of the films. This paper describes tailoring the composition, microstructure, orientation of thin films, and substrate choice to optimize the response. It is shown that increases in the grain size of lead-based perovskite films from 75 to 300 nm results in 40 and 20% increases in the permittivity and piezoelectric coefficients, respectively. This is accompanied by an increase in the nonlinearity in the response. Band excitation piezoresponse force microscopy was used to interrogate the nonlinearity locally. It was found that chemical solution-derived PbZr(0.52)Ti(0.48)O(3) thin films show clusters of larger nonlinear response embedded in a more weakly nonlinear matrix. The scale of the clusters significantly exceeds that of the grain size, suggesting that collective motion of many domain walls contributes to the observed Rayleigh behavior in these films. Finally, it is shown that it is possible to increase the energy-harvesting figure of merit through appropriate materials choice, strong imprint, and composite connectivity patterns.

  12. Clinical evaluation of peak endocardial acceleration as a sensor for rate responsive pacing.

    PubMed

    Greco, Enrico Maria; Ferrario, Marco; Romano, Salvatore

    2003-04-01

    An innovative control parameter for rate responsive (RR) pacing that uses a sensor to measure mechanical vibrations generated by the myocardium during the isovolumetric contraction phase (peak endocardial acceleration [PEA]), has been devised by SORIN Biomedica (BEST Living System). To assess the physiological sensitivity of the pacemaker sensor along with reliability of the algorithm to supply appropriate pacing rates three different relationships were examined (linear regression analysis): (1) recorded deltaPEA exercise steps against the calculated energy cost of exercise (MET), (2) exercise pacing rates against predicted values, and (3) deltaPEA against exercise pacing rates. Fifteen patients (mean age 68 +/- 12 years) in NYHA Class I-II, implanted with the BEST Living System (Living 1 DDDR pacemaker) for advanced AVB and/or SSS, underwent one of the following maximal exercise stress protocols: bicycle (25 W, 2-minute steps) or Bruce or Chronotropic Assessment Exercise Protocol (CAEP). Pacing rates for each step were matched against those predicted by a reliable and tested custom software called Pacing Rate Profile Software (PRPS). The PRPS is based on the oxygen pulse reserve (OPR) method (OPR = VO2 reserve divided by heart rate reserve), American College of Sports Medicine (ACSM) formulas for calculating workload/metabolic requirements, and data derived from the Weber functional classes. On the basis of certain patient, data the PRPS then supplies appropriate metabolic pacing rate profiles. In all 15 patients linear regression analysis of deltaPEA against MET, as evaluated during the exercise protocol steps, showed a high correlation (r = 0.97). Likewise, a high correlation was also obtained between PRPS predicted heart rates and exercise pacing rates (r = 0.96) and PEA against exercise pacing rates (r = 0.96). The results of this study show that, through PEA dynamic monitoring, the SORIN Best Living System produces physiological pacing rates that are

  13. Control of microwave signals using bichromatic electromechanically induced transparency in multimode circuit electromechanical systems

    NASA Astrophysics Data System (ADS)

    Cheng, Jiang; Yuanshun, Cui; Xintian, Bian; Xiaowei, Li; Guibin, Chen

    2016-05-01

    We theoretically investigate the tunable delay and advancement of microwave signals based on bichromatic electromechanically induced transparency in a three-mode circuit electromechanical system, where two nanomechanical resonators with closely spaced frequencies are independently coupled to a common microwave cavity. In the presence of a strong microwave pump field, we obtain two transparency windows accompanied by steep phase dispersion in the transmitted microwave probe field. The width of the transparency window and the group delay of the probe field can be controlled effectively by the power of the pump field. It is shown that the maximum group delay of 0.12 ms and the advancement of 0.27 ms can be obtained in the current experiments. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304110 and 11174101), the Jiangsu Natural Science Foundation, China (Grant Nos. BK20130413 and BK2011411), and the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant Nos. 13KJB140002 and 15KJB460004).

  14. Recent Advances in Electromechanical Imaging on the Nanometer Scale: Polarization Dynamics in Ferroelectrics, Biopolymers, and Liquid Imaging

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei V.; Jesse, Stephen; Rodriguez, Brian J.; Seal, Katyayani; Baddorf, Arthur P.; Zhao, Tong; Chu, Y. H.; Ramesh, Ramamoorthy; Eliseev, Eugene A.; Morozovska, Anna N.; Mirman, B.; Karapetian, Edgar

    2007-09-01

    Coupling between electrical and mechanical phenomena is ubiquitous in nature, with examples ranging from piezoelectricity in polar perovskites and chemical bonds to complex pathways of electromechanical transformations underpinning the functionality of electromotor proteins, cells, and tissues. Piezoresponse force microscopy (PFM) had originally emerged as a technique to study electromechanical phenomena in ferroelectric perovskites on the nanoscale. In recent years, the applicability of PFM for studying a broad range of non-ferroelectric polar materials has been demonstrated, necessitating further development of the technique, including theory of the image formation mechanism as well as probe and controller development. Here, we review the basic principles of PFM and summarize some of the recent advances, including switching spectroscopy, mapping of polarization dynamics in ferroelectric and multiferroic nanostructures, imaging of biopolymers in calcified and connective tissues and PFM in liquid environments.

  15. Electromechanically active polymer transducers: research in Europe

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Graz, Ingrid; Jager, Edwin; Ladegaard Skov, Anne; Vidal, Frédéric

    2013-10-01

    Smart materials and structures based on electromechanically active polymers (EAPs) represent a fast growing and stimulating field of research and development. EAPs are materials capable of changing dimensions and/or shape in response to suitable electrical stimuli. They are commonly classified in two major families: ionic EAPs (activated by an electrically induced transport of ions and/or solvent) and electronic EAPs (activated by electrostatic forces). These polymers show interesting properties, such as sizable active strains and/or stresses in response to electrical driving, high mechanical flexibility, low density, structural simplicity, ease of processing and scalability, no acoustic noise and, in most cases, low costs. Since many of these characteristics can also describe natural muscle tissues from an engineering standpoint, it is not surprising that EAP transducers are sometimes also referred to as 'muscle-like smart materials' or 'artificial muscles'. They are used not only to generate motion, but also to sense or harvest energy from it. In particular, EAP electromechanical transducers are studied for applications that can benefit from their 'biomimetic' characteristics, with possible usages from the micro- to the macro-scale, spanning several disciplines, such as mechatronics, robotics, automation, biotechnology and biomedical engineering, haptics, fluidics, optics and acoustics. Currently, the EAP field is just undergoing its initial transition from academic research into commercialization, with companies starting to invest in this technology and the first products appearing on the market. This focus issue is intentionally aimed at gathering contributions from the most influential European groups working in the EAP field. In fact, today Europe hosts the broadest EAP community worldwide. The rapid expansion of the EAP field in Europe, where it historically has strong roots, has stimulated the creation of the 'European Scientific Network for Artificial

  16. Electromechanical Reshaping of Ex Vivo Porcine Trachea

    PubMed Central

    Hussain, Syed; Manuel, Cyrus T.; Protsenko, Dmitriy E.; Wong, Brian J. F.

    2015-01-01

    Objectives The trachea is a composite cartilaginous structure particularly prone to various forms of convexities. Electromechanical reshaping (EMR) is an emerging technique used to reshape cartilaginous tissues by applying electric current in tandem with imposed mechanical deformation to achieve shape change. In this study, EMR was used to reshape tracheal cartilage rings to demonstrate the feasibility of this technology as a potentially minimally invasive procedure to alter tracheal structure. Study Design Controlled laboratory study using ex vivo porcine tracheae. Methods The natural concavity of each porcine tracheal ring was reversed around a cork mandrel. Two pairs of electrodes were inserted along the long axis of the tracheal ring and placed 1.5 millimeters from the midline. Current was applied over a range of voltages (3 volts [V], 4V, and 5V) for either 2 or 3 minutes. The degree of EMR-induced reshaping was quantified from photographs using digital techniques. Confocal imaging with fluorescent live and dead assays was conducted to determine viability of the tissue after EMR. Results Specimens that underwent EMR for 2 or 3 minutes at 4V or 5V were observed to have undergone significant (P <.05) reshaping relative to the control. Viability results demonstrated that EMR reshaping occurs at the expense of tissue injury, although the extent of injury is modest relative to conventional techniques. Conclusion EMR reshapes tracheal cartilage rings as a function of voltage and application time. It has potential as a minimally invasive and cost-efficient endoscopic technology to treat pathologic tracheal convexities. Given our findings, consideration of EMR for use in larger ex vivo tracheal segments and animal studies is now plausible. Level of Evidence N/A. PMID:25692713

  17. Electromechanically cooled germanium radiation detector system

    NASA Astrophysics Data System (ADS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-02-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++ [1], GAMANL [2], GRPANL [3]and MGAU [4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service [5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  18. Cardiac Electromechanical Models: From Cell to Organ

    PubMed Central

    Trayanova, Natalia A.; Rice, John Jeremy

    2011-01-01

    The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computational physiology and medicine. This review focuses on electromechanical (EM) models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single-cell models and the second half addresses organ models. At the subcellular level, myofilament models represent actin–myosin interaction and Ca-based activation. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered to be the cellular basis of the Frank–Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of the field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction–diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and defibrillation. PMID:21886622

  19. Cardiac electromechanical models: from cell to organ.

    PubMed

    Trayanova, Natalia A; Rice, John Jeremy

    2011-01-01

    The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computational physiology and medicine. This review focuses on electromechanical (EM) models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single-cell models and the second half addresses organ models. At the subcellular level, myofilament models represent actin-myosin interaction and Ca-based activation. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered to be the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of the field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and defibrillation.

  20. Electromechanically-cooled germanium radiation detector system

    SciTech Connect

    Lavietes, A. D., LLNL.

    1998-05-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high-purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++[1], GAMANL[2], GRPANL[3] and MGAU[4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organizations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service[5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  1. 78 FR 15682 - Notification of Proposed Production Activity TTI, Inc.; Subzone 196A (Electromechanical and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... (Electromechanical and Circuit Protection Devices Production/ Kitting); Fort Worth, TX TTI, Inc. (TTI), operator of... County), Texas. The facilities are used for electromechanical and circuit protection device production..., connectors, discretes, potentiometers, trimmers, magnetic and circuit protection components, wire and cable...

  2. Multilayer electromechanical composites with controlled piezelectric coefficient distribution

    NASA Astrophysics Data System (ADS)

    Vartuli, James S.; Milius, David L.; Li, Xiaoping; Shih, Wan Y.; Shih, Wei-Heng; Prud'homme, Robert K.; Aksay, Ilhan A.

    1997-02-01

    We have fabricated multilayer electromechanical composites with controlled piezoelectric coefficient distributions using tape casting. Tapes of doped lead zirconate titanate were cut and stacked in accordance with their characteristic electromechanical coupling values and modulus of elasticity. This technique is an extremely versatile method to fabricate displacement actuators to fabricate monolithic ceramic parts with controlled material property gradients. To obtain a quantifiable method to optimize this type of transducer, we have devised a processing model. Given the functional distribution of the electromechanical coupling coefficient, d31, and the functional distribution of elastic modulus through the thickness of the transducer, the analysis predicts the displacement as a function of loading. The tape casting method coupled with the model provides an actuator that maximizes displacement and generated force for the given material properties.

  3. BCN nanotubes as highly sensitive torsional electromechanical transducers.

    PubMed

    Garel, Jonathan; Zhao, Chong; Popovitz-Biro, Ronit; Golberg, Dmitri; Wang, Wenlong; Joselevich, Ernesto

    2014-11-12

    Owing to their mechanically tunable electronic properties, carbon nanotubes (CNTs) have been widely studied as potential components for nanoelectromechanical systems (NEMS); however, the mechanical properties of multiwall CNTs are often limited by the weak shear interactions between the graphitic layers. Boron nitride nanotubes (BNNTs) exhibit a strong interlayer mechanical coupling, but their high electrical resistance limits their use as electromechanical transducers. Can the outstanding mechanical properties of BNNTs be combined with the electromechanical properties of CNTs in one hybrid structure? Here, we report the first experimental study of boron carbonitride nanotube (BCNNT) mechanics and electromechanics. We found that the hybrid BCNNTs are up to five times torsionally stiffer and stronger than CNTs, thereby retaining to a large extent the ultrahigh torsional stiffness of BNNTs. At the same time, we show that the electrical response of BCNNTs to torsion is 1 to 2 orders of magnitude higher than that of CNTs. These results demonstrate that BCNNTs could be especially attractive building blocks for NEMS.

  4. Electron shuttle instability for nano electromechanical mass sensing.

    PubMed

    Stampfer, C; Güttinger, J; Roman, C; Jungen, A; Helbling, T; Hierold, C

    2007-09-01

    We discuss the potential use of the electromechanical shuttle instability in suspended nanostructures (e.g., nanotubes or nanowires) for nanomechanical sensing. The tunneling-assisted (shuttle-like) electron transport mechanism is addressed from a mechanical and electromechanical point of view, showing strong dependencies on the fundamental frequency, the mechanical restoring and damping force, and the electromechanical charging of the suspended nanostructure. We propose to use these nonlinear dependencies to sense minute mass (and tension) changes. Therefore, we introduce a conceptual sensing device and investigate its operation in the frame of a simple model system. Finally, we discuss different measurement techniques and report on high sensitivities (e.g., 1 nA/zeptogram (zg), or 1 mV/zg depending on the measurement technique) and potential resolutions in the range of 10 zg (10(-23) kg).

  5. Apoptosis in the left ventricle of chronic volume overload causes endocardial endothelial dysfunction in rats.

    PubMed

    Cox, Michael J; Sood, Harpreet S; Hunt, Matthew J; Chandler, Derrick; Henegar, Jeffrey R; Aru, Giorgio M; Tyagi, Suresh C

    2002-04-01

    the oxidative stress and generation of nitrotyrosine are, in part, responsible for the activation of metalloproteinase and decreased endocardial endothelial function in chronic LV volume overload.

  6. Fetal echocardiographic assessment of endocardial fibroelastosis in maternal anti-SSA antibody-associated complete heart block.

    PubMed

    Aoki, Hisaaki; Inamura, Noboru; Kawazu, Yukiko; Nakayama, Masahiro; Kayatani, Futoshi

    2011-01-01

    There are few reports describing the features of maternal anti-SSA antibody-associated congenital complete heart block (CCHB) patients developing endocardial fibroelastosis (EFE). The aim of this study was to describe the clinical features and the outcome of patients with CCHB, with or without EFE. Over a 20-year period, 12 consecutive patients diagnosed with maternal anti-SSA antibody-associated CCHB were identified. The maternal anti-SSA antibody levels were measured and fetal echocardiographic findings were reviewed. The ratios of the thickness of the endocardium to that of the whole wall of the left ventricle (LE/W) and right ventricle (RE/W) were measured to investigate the degree of endocardial thickening. A total of 7 patients survived (living group) and were not diagnosed as having EFE. The remaining 5 patients died and were diagnosed with EFE during autopsy (dead group). Fetal echocardiography of the patients showed differences in the thickening and hyperintensity of the endocardium. The RE/W value was significantly higher in the dead group than in the living group. The titers of both maternal anti-52-kDa and anti-60-kDa SSA antibodies were high, but showed no significant differences between the 2 patient groups. EFE was the major negative prognostic factor for CCHB. Myocardial damage, predominantly in the right ventricle, was related to the outcome of CCHB associated with EFE.

  7. Theoretical and experimental studies of carbon nanotube electromechanical coupling.

    PubMed

    Hartman, A Z; Jouzi, M; Barnett, R L; Xu, J M

    2004-06-11

    We present an investigation into electromechanical coupling in carbon nanotubes by focusing on phonon frequency shifts as a result of charge injection. A nearest-neighbor, tight-binding theoretical model is accompanied by a computational explication carried out using the Vienna ab initio simulation package density functional theory code. Raman spectroscopic measurements of the electromechanic couplings under varied but controlled charge injection conditions are also carried out, and the close agreement between the model results and the measured Raman peak shifts suggests that geometrical changes of charged carbon nanotubes previously observed or speculated in different experiments can indeed originate from the simple quantum effects described herein.

  8. Theoretical and Experimental Studies of Carbon Nanotube Electromechanical Coupling

    NASA Astrophysics Data System (ADS)

    Hartman, A. Z.; Jouzi, M.; Barnett, R. L.; Xu, J. M.

    2004-06-01

    We present an investigation into electromechanical coupling in carbon nanotubes by focusing on phonon frequency shifts as a result of charge injection. A nearest-neighbor, tight-binding theoretical model is accompanied by a computational explication carried out using the Vienna abinitio simulation package density functional theory code. Raman spectroscopic measurements of the electromechanic couplings under varied but controlled charge injection conditions are also carried out, and the close agreement between the model results and the measured Raman peak shifts suggests that geometrical changes of charged carbon nanotubes previously observed or speculated in different experiments can indeed originate from the simple quantum effects described herein.

  9. Electromechanical resistive switching via back-to-back Schottky junctions

    SciTech Connect

    Li, Lijie

    2015-09-15

    The physics of the electromechanical resistive switching is uncovered using the theory of back-to-back Schottky junctions combined with the quantum domain space charge transport. A theoretical model of the basic element of resistive switching devices realized by the metal-ZnO nanowires-metal structure has been created and analyzed. Simulation results show that the reverse biased Schottky junction and the air gap impedance dominate the current-voltage relation at higher external voltages; thereby electromechanically varying the air gap thickness causes the device exhibit resistive tuning characteristics. As the device dimension is in nanometre scale, investigation of the model based on quantum mechanics has also been conducted.

  10. Parallel FEM Simulation of Electromechanics in the Heart

    NASA Astrophysics Data System (ADS)

    Xia, Henian; Wong, Kwai; Zhao, Xiaopeng

    2011-11-01

    Cardiovascular disease is the leading cause of death in America. Computer simulation of complicated dynamics of the heart could provide valuable quantitative guidance for diagnosis and treatment of heart problems. In this paper, we present an integrated numerical model which encompasses the interaction of cardiac electrophysiology, electromechanics, and mechanoelectrical feedback. The model is solved by finite element method on a Linux cluster and the Cray XT5 supercomputer, kraken. Dynamical influences between the effects of electromechanics coupling and mechanic-electric feedback are shown.

  11. Electromechanical resistive switching via back-to-back Schottky junctions

    NASA Astrophysics Data System (ADS)

    Li, Lijie

    2015-09-01

    The physics of the electromechanical resistive switching is uncovered using the theory of back-to-back Schottky junctions combined with the quantum domain space charge transport. A theoretical model of the basic element of resistive switching devices realized by the metal-ZnO nanowires-metal structure has been created and analyzed. Simulation results show that the reverse biased Schottky junction and the air gap impedance dominate the current-voltage relation at higher external voltages; thereby electromechanically varying the air gap thickness causes the device exhibit resistive tuning characteristics. As the device dimension is in nanometre scale, investigation of the model based on quantum mechanics has also been conducted.

  12. Single-heartbeat electromechanical wave imaging with optimal strain estimation using temporally unequispaced acquisition sequences

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Thiébaut, Stéphane; Luo, Jianwen; Konofagou, Elisa E.

    2012-02-01

    Electromechanical Wave Imaging (EWI) is a non-invasive, ultrasound-based imaging method capable of mapping the electromechanical wave (EW) in vivo, i.e. the transient deformations occurring in response to the electrical activation of the heart. Optimal imaging frame rates, in terms of the elastographic signal-to-noise ratio, to capture the EW cannot be achieved due to the limitations of conventional imaging sequences, in which the frame rate is low and tied to the imaging parameters. To achieve higher frame rates, EWI is typically performed by combining sectors acquired during separate heartbeats, which are then combined into a single view. However, the frame rates achieved remain potentially sub-optimal and this approach precludes the study of non-periodic arrhythmias. This paper describes a temporally unequispaced acquisition sequence (TUAS) for which a wide range of frame rates are achievable independently of the imaging parameters, while maintaining a full view of the heart at high beam density. TUAS is first used to determine the optimal frame rate for EWI in a paced canine heart in vivo and then to image during ventricular fibrillation. These results indicate how EWI can be optimally performed within a single heartbeat, during free breathing and in real time, for both periodic and non-periodic cardiac events.

  13. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type

  14. Fast Electromechanical Switches Based on Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama; Wong, Eric; Epp, Larry

    2008-01-01

    Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma

  15. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  16. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  17. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  18. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  19. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Electromechanical interlocking machine; locking... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that...

  20. Zebrafish Crip2 plays a critical role in atrioventricular valve development by downregulating the expression of ECM genes in the endocardial cushion.

    PubMed

    Kim, Jun-Dae; Kim, Hey-Jin; Koun, Soonil; Ham, Hyung-Jin; Kim, Myoung-Jin; Rhee, Myungchull; Huh, Tae-Lin

    2014-05-01

    The initial step of atrioventricular (AV) valve development involves the deposition of extracellular matrix (ECM) components of the endocardial cushion and the endocardial-mesenchymal transition. While the appropriately regulated expression of the major ECM components, Versican and Hyaluronan, that form the endocardial cushion is important for heart valve development, the underlying mechanism that regulates ECM gene expression remains unclear. We found that zebrafish crip2 expression is restricted to a subset of cells in the AV canal (AVC) endocardium at 55 hours post-fertilization (hpf). Knockdown of crip2 induced a heart-looping defect in zebrafish embryos, although the development of cardiac chambers appeared to be normal. In the AVC of Crip2-deficient embryos, the expression of both versican a and hyaluronan synthase 2 (has2) was highly upregulated, but the expression of bone morphogenetic protein 4 (bmp4) and T-box 2b (tbx2b) in the myocardium and of notch1b in the endocardium in the AVC did not change. Taken together, these results indicate that crip2 plays an important role in AV valve development by downregulating the expression of ECM components in the endocardial cushion.

  1. Dynamical model of microscale electromechanical spatial light modulator

    NASA Astrophysics Data System (ADS)

    Wetsel, Grover C., Jr.; Strozewski, Kirk J.

    1993-06-01

    A model based on classical physics describing the nonlinear dynamics of a microscale spatial light modulator has been developed. The coupled electromechanical equations of motion have been solved for steady-state, transient, and harmonic excitation. Comparison of theoretical predictions with the results of experiment for representative devices shows good agreement for small-amplitude deflections, large-amplitude deflections, and unstable transitions.

  2. Combined electromechanical impedance and fiber optic diagnosis of aerospace structures

    NASA Astrophysics Data System (ADS)

    Schlavin, Jon; Zagrai, Andrei; Clemens, Rebecca; Black, Richard J.; Costa, Joey; Moslehi, Behzad; Patel, Ronak; Sotoudeh, Vahid; Faridian, Fereydoun

    2014-03-01

    Electromechanical impedance is a popular diagnostic method for assessing structural conditions at high frequencies. It has been utilized, and shown utility, in aeronautic, space, naval, civil, mechanical, and other types of structures. By contrast, fiber optic sensing initially found its niche in static strain measurement and low frequency structural dynamic testing. Any low frequency limitations of the fiber optic sensing, however, are mainly governed by its hardware elements. As hardware improves, so does the bandwidth (frequency range * number of sensors) provided by the appropriate enabling fiber optic sensor interrogation system. In this contribution we demonstrate simultaneous high frequency measurements using fiber optic and electromechanical impedance structural health monitoring technologies. A laboratory specimen imitating an aircraft wing structure, incorporating surfaces with adjustable boundary conditions, was instrumented with piezoelectric and fiber optic sensors. Experiments were conducted at different structural boundary conditions associated with deterioration of structural health. High frequency dynamic responses were collected at multiple locations on a laboratory wing specimen and conclusions were drawn about correspondence between structural damage and dynamic signatures as well as correlation between electromechanical impedance and fiber optic sensors spectra. Theoretical investigation of the effect of boundary conditions on electromechanical impedance spectra is presented and connection to low frequency structural dynamics is suggested. It is envisioned that acquisition of high frequency structural dynamic responses with multiple fiber optic sensors may open new diagnostic capabilities for fiber optic sensing technologies.

  3. Electromechanical Devices and Controllers. Electronics Module 10. Instructor's Guide.

    ERIC Educational Resources Information Center

    Carter, Ed

    This module is the tenth of 10 modules in the competency-based electronics series. Introductory materials include a listing of competencies addressed in the module, a parts/equipment list, and a cross-reference table of instructional materials. Six instructional units cover: electromechanical control devices; programmable logic controllers (PLC);…

  4. Electromechanical hand incorporates touch sensors and trigger function

    NASA Technical Reports Server (NTRS)

    Dane, D. H.

    1970-01-01

    Electromechanical hand incorporates touch sensors, concealed fingers, and a structure that allows the hand to hold a tool on a flat surface. The hands can be mounted on most types of existing manipulators either directly or by means of modified mounting brackets.

  5. Electromechanical Teaching Toys for Infants and Toddlers with Disabilities.

    ERIC Educational Resources Information Center

    Hanline, Mary Frances; And Others

    1985-01-01

    The article describes the use and design of several electromechanical toys that provide motivation, reinforcement, feedback, and contingent consequences to disabled infants and toddlers. Illustrations and explanations are offered for weight bearing boards, responsive puzzles, reach and grasp wheels, body parts teaching dolls, and kickpanels. (CL)

  6. A Variational Approach to the Analysis of Dissipative Electromechanical Systems

    PubMed Central

    Allison, Andrew; Pearce, Charles E. M.; Abbott, Derek

    2014-01-01

    We develop a method for systematically constructing Lagrangian functions for dissipative mechanical, electrical, and electromechanical systems. We derive the equations of motion for some typical electromechanical systems using deterministic principles that are strictly variational. We do not use any ad hoc features that are added on after the analysis has been completed, such as the Rayleigh dissipation function. We generalise the concept of potential, and define generalised potentials for dissipative lumped system elements. Our innovation offers a unified approach to the analysis of electromechanical systems where there are energy and power terms in both the mechanical and electrical parts of the system. Using our novel technique, we can take advantage of the analytic approach from mechanics, and we can apply these powerful analytical methods to electrical and to electromechanical systems. We can analyse systems that include non-conservative forces. Our methodology is deterministic, and does does require any special intuition, and is thus suitable for automation via a computer-based algebra package. PMID:24586221

  7. Electromechanical Devices and Controllers. Electronics Module 10. Instructor's Guide.

    ERIC Educational Resources Information Center

    Carter, Ed

    This module is the tenth of 10 modules in the competency-based electronics series. Introductory materials include a listing of competencies addressed in the module, a parts/equipment list, and a cross-reference table of instructional materials. Six instructional units cover: electromechanical control devices; programmable logic controllers (PLC);…

  8. Electromechanical Simulation of Actively Controlled Rotordynamic Systems with Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Lin, Reng Rong; Palazzolo, A. B.; Kascak, A. F.; Montague, G.

    1991-01-01

    Theories and tests for incorporating piezoelectric pushers as actuator devices for active vibration control are discussed. It started from a simple model with the assumption of ideal pusher characteristics and progressed to electromechanical models with nonideal pushers. Effects on system stability due to the nonideal characteristics of piezoelectric pushers and other elements in the control loop were investigated.

  9. A variational approach to the analysis of dissipative electromechanical systems.

    PubMed

    Allison, Andrew; Pearce, Charles E M; Abbott, Derek

    2014-01-01

    We develop a method for systematically constructing Lagrangian functions for dissipative mechanical, electrical, and electromechanical systems. We derive the equations of motion for some typical electromechanical systems using deterministic principles that are strictly variational. We do not use any ad hoc features that are added on after the analysis has been completed, such as the Rayleigh dissipation function. We generalise the concept of potential, and define generalised potentials for dissipative lumped system elements. Our innovation offers a unified approach to the analysis of electromechanical systems where there are energy and power terms in both the mechanical and electrical parts of the system. Using our novel technique, we can take advantage of the analytic approach from mechanics, and we can apply these powerful analytical methods to electrical and to electromechanical systems. We can analyse systems that include non-conservative forces. Our methodology is deterministic, and does does require any special intuition, and is thus suitable for automation via a computer-based algebra package.

  10. Worthy test programmes and developments of smart electromechanical actuators

    NASA Astrophysics Data System (ADS)

    Annaz, Fawaz Yahya

    2007-02-01

    Early aircraft flight control systems were totally manually operated, that is, the force required to move flight control surfaces was generated by the pilot and transmitted by cables and rods. As aerodynamics and airframe technology developed and speeds increased, the forces required to move control surfaces increased, as did the number of surfaces. In order to provide the extra power required, hydraulic technology was introduced. To date, the common element in the development of flight control systems has been, mainly, restricted to this type of technology. This is because of its proven reliability and the lack of alternative technologies. However, the technology to build electromechanically actuated primary flight control systems is now available. Motors developing the required power at the required frequencies are now possible (with the use of high energy permanent magnetic materials and compact high speed electronic circuits). It is this particular development which may make the concept of an 'all electric aircraft' realizable in the near future. The purpose of the all electric aircraft concept is the consolidation of all secondary power systems into electric power. The elimination of hydraulic and pneumatic secondary power systems will improve maintainability, flight readiness and use of energy. This paper will present the development of multi-lane smart electric actuators and offer an insight into other subsequent fields of study. The key areas of study may be categorized as follows. State of the art hydraulic actuators. Electromechanical actuator system test programmes. Development of electromechanical actuators. Modelling of electromechanical actuators.

  11. DETAIL OF ELECTROMECHANICAL RELAYS ON SHELVES, FIRST FLOOR, CAMERA FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF ELECTRO-MECHANICAL RELAYS ON SHELVES, FIRST FLOOR, CAMERA FACING SOUTHWEST. THESE "UNION ROUTE INTERLOCKING SELECTION UNITS" ALLOWED RELATIVELY EASY REPLACEMENT OF MALFUNCTIONING CIRCUITS. - New Haven Rail Yard, Interlocking Control Building, Vicinity of Union Avenue, New Haven, New Haven County, CT

  12. Integration framework for design information of electromechanical systems

    NASA Astrophysics Data System (ADS)

    Qureshi, Sohail Mehboob

    The objective of this research is to develop a framework that can be used to provide an integrated view of electromechanical system design information. The framework is intended to provide a platform where various standard and pseudo standard information models such as STEP and IBIS can be integrated to provide an integrated view of design information beyond just part numbers, CAD drawings, or some specific geometry. A database application can make use of this framework to provide reuse of design information fragments including geometry, function, behavior, design procedures, performance specification, design rationale, project management, product characteristics, and configuration and version. An "Integration Core Model" is developed to provide the basis for the integration framework, and also facilitate integration of product and process data for the purpose of archiving integrated design history. There are two major subdivisions of the integration core model: product core model providing the high level structure needed to associate process information to the product data, and process core model providing the generic process information that is needed to capture and organize process information. The process core model is developed using a hybrid of structure-oriented and process-oriented approaches to process modeling. Using such a scheme the process core model is able to represent information such as hierarchies of processes, logical and temporal relationships between various design activities, and relationships between activities and the product data at various levels of abstraction. Based upon the integration core model, an integration methodology is developed to provide a systematic way of integrating various information models. Mapping theorems have been developed to methodically point out the problems that may be encountered during the integration of two information models. The integration core model is validated through a case study. Design information

  13. Electromechanical-assisted training for walking after stroke.

    PubMed

    Mehrholz, J; Werner, C; Kugler, J; Pohl, M

    2007-10-17

    Electromechanical and robotic-assisted gait training devices are used in rehabilitation and might help to improve walking after stroke. To investigate the effect of automated electromechanical and robotic-assisted gait training devices for improving walking after stroke. We searched the Cochrane Stroke Group Trials Register (last searched September 2006), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, Issue 3, 2006), MEDLINE (1966 to September 2006), EMBASE (1980 to September 2006), CINAHL (1982 to October 2006), AMED (1985 to October 2006), SPORTDiscus (1949 to August 2006), the Physiotherapy Evidence Database (PEDro, searched September 2006) and the engineering databases COMPENDEX (1972 to October 2006) and INSPEC (1969 to October 2006). We handsearched relevant conference proceedings, searched trials and research registers, checked reference lists and contacted authors in an effort to identify further published, unpublished and ongoing trials. We included studies using random assignment. Two review authors independently selected trials for inclusion, assessed trial quality and extracted the data. The primary outcome was the proportion of patients walking independently (without assistance or help of a person) at follow up. Eight trials (414 participants) were included in this review. Electromechanical-assisted gait training in combination with physiotherapy increased the odds of becoming independent in walking (odds ratio (OR) 3.06, 95% confidence interval (CI) 1.85 to 5.06; P < 0.001), and increased walking capacity (mean difference (MD) = 34 metres walked in six minutes, 95% CI 8 to 60; P = 0.010), but did not increase walking velocity significantly (MD = 0.08 m/sec, 95% CI -0.01 to 0.17; P = 0.08). However, the results must be interpreted with caution because (1) variations between the trials were found with respect to duration and frequency of treatment and differences in ambulatory status of patients, and (2) some trials

  14. Endo-epicardial versus only-endocardial ablation as a first line strategy for the treatment of ventricular tachycardia in patients with ischemic heart disease.

    PubMed

    Izquierdo, Maite; Sánchez-Gómez, Juan Miguel; Ferrero de Loma-Osorio, Angel; Martínez, Angel; Bellver, Alejandro; Peláez, Antonio; Núñez, Julio; Núñez, Carlos; Chorro, Javier; Ruiz-Granell, Ricardo

    2015-08-01

    Epicardial ablation has shown improvement in clinical outcomes of patients with ischemic heart disease (IHD) after ventricular tachycardia (VT) ablation. However, usually epicardial access is only performed when endocardial ablation has failed. Our aim was to compare the efficacy of endocardial+epicardial ablation versus only endocardial ablation in the first procedure in patients with IHD. Fifty-three patients with IHD, referred for a first VT ablation to our institution, from 2012 to 2014, were included. They were divided in 2 groups according to enrollment time: from May 2013, we started to systematically perform endo-epicardial access (Epi-Group) as first-line approach in consecutive patients with IHD (n=15). Patients who underwent only an endocardial VT ablation in their first procedure (Endo-Group) included patients with previous cardiac surgery and the historical (before May 2013; n=35). All late-potentials in the scar zone were eliminated, and if VT was tolerated, critical isthmuses were also approached. The end point was the noninducibility of any VT. During a median follow-up of 15±10 months, the combined end point (hospital or emergency admission because of a ventricular tachycardia or reablation) occurred in 14 patients of the Endo-group and in one patient in the Epi-group (event-free survival curves by Grey-test, P=0.03). Ventricular arrhythmia recurrences occurred in 16 and in 3 patients in the Endo and Epi-Group, respectively (Grey-test, P=0.2). A combined endocardial-epicardial ablation approach for initial VT ablation was associated with fewer readmissions for VT and repeat ablations. Further studies are warranted. © 2015 American Heart Association, Inc.

  15. Segmentation of the endocardial wall of the left atrium using local region-based active contours and statistical shape learning

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Gholami, Behnood; MacLeod, Robert S.; Blauer, Joshua; Haddad, Wassim M.; Tannenbaum, Allen R.

    2010-03-01

    Atrial fibrillation, a cardiac arrhythmia characterized by unsynchronized electrical activity in the atrial chambers of the heart, is a rapidly growing problem in modern societies. One treatment, referred to as catheter ablation, targets specific parts of the left atrium for radio frequency ablation using an intracardiac catheter. Magnetic resonance imaging has been used for both pre- and and post-ablation assessment of the atrial wall. Magnetic resonance imaging can aid in selecting the right candidate for the ablation procedure and assessing post-ablation scar formations. Image processing techniques can be used for automatic segmentation of the atrial wall, which facilitates an accurate statistical assessment of the region. As a first step towards the general solution to the computer-assisted segmentation of the left atrial wall, in this paper we use shape learning and shape-based image segmentation to identify the endocardial wall of the left atrium in the delayed-enhancement magnetic resonance images.

  16. Portable electro-mechanically cooled high-resolution germanium detector

    SciTech Connect

    Neufeld, K.W.; Ruhter, W.D.

    1995-05-01

    We have integrated a small, highly-reliable, electro-mechanical cryo-cooler with a high-resolution germanium detector for portable/field applications. The system weighs 6.8 kg and requires 40 watts of power to operate once the detector is cooled to its operating temperature. the detector is a 500 mm{sup 2} by 20-mm thick low-energy configuration that gives a full-width at half maximum (FWHM) energy resolution of 523 eV at 122 keV, when cooled with liquid nitrogen. The energy resolution of the detector, when cooled with the electro-mechanical cooler, is 570 eV at 122 keV. We have field tested this system in measurements of plutonium and uranium for isotopic and enrichment information using the MGA and MGAU analysis programs without any noticeable effects on the results.

  17. Thermopiezoelectric and Nonlinear Electromechanical Effects in Quantum Dots and Nanowires

    NASA Astrophysics Data System (ADS)

    Patil, Sunil; Bahrami-Samani, M.; Melnik, R. V. N.; Toropova, M.; Zu, Jean

    2010-01-01

    We report thermopiezoelectric (TPE) and nonlinear electromechanical (NEM) effects in quantum dots (QD) and nanowires (NW) analyzed with a model based on coupled thermal, electric and mechanical balance equations. Several representative examples of low dimensional semiconductor structures (LDSNs) are studied. We focus mainly on GaN/AlN QDs and CdTe/ZnTe NWs which we analyze for different geometries. GaN/AlN nano systems are observed to be more sensitive to thermopiezoelectric effects than those of CdTe/ZnTe. Furthermore, noticeable qualitative and quantitative variations in electromechanical fields are observed as a consequence of taking into account NEM effects, in particular in GaN/AlN QDs.

  18. A triple quantum dot based nano-electromechanical memory device

    SciTech Connect

    Pozner, R.; Lifshitz, E.; Peskin, U.

    2015-09-14

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.

  19. A Bio-Inspired Electromechanical System: Artificial Hair Cell

    NASA Astrophysics Data System (ADS)

    Ahn, Kang-Hun

    Inspired by recent biophysical study on the auditory sensory organs, we study electromechanical system which functions similar to the hair cell of the ear. One of the important mechanisms of hair cells, adaptation, is mimicked by an electromechanical feedback loop. The proposed artificial hair cell functions similar to a living sensory organ in the sense that it senses input force signal in spite of the relatively strong noise. Numerical simulation of the proposed system shows otoacoustic sound emission, which was observed in the experiments on the hair cells of the bullfrog. This spontaneous motion is noise-induced periodic motion which is controlled by the time scale of adaptation process and the mechanical damping.

  20. Modeling and Simulation of Explosively Driven Electromechanical Devices

    NASA Astrophysics Data System (ADS)

    Demmie, Paul N.

    2002-07-01

    Components that store electrical energy in ferroelectric materials and produce currents when their permittivity is explosively reduced are used in a variety of applications. The modeling and simulation of such devices is a challenging problem since one has to represent the coupled physics of detonation, shock propagation, and electromagnetic field generation. The high fidelity modeling and simulation of complicated electromechanical devices was not feasible prior to having the Accelerated Strategic Computing Initiative (ASCI) computers and the ASCI developed codes at Sandia National Laboratories (SNL). The EMMA computer code is used to model such devices and simulate their operation. In this paper, I discuss the capabilities of the EMMA code for the modeling and simulation of one such electromechanical device, a slim-loop ferroelectric (SFE) firing set.

  1. Geometry of electromechanically active structures in Gadolinium - doped Cerium oxides

    DOE PAGES

    Li, Yuanyuan; Kraynis, Olga; Kas, Joshua; ...

    2016-05-20

    Local distortions from average structure are important in many functional materials, such as electrostrictors or piezoelectrics, and contain clues about their mechanism of work. However, the geometric attributes of these distortions are exceedingly difficult to measure, leading to a gap in knowledge regarding their roles in electromechanical response. This task is particularly challenging in the case of recently reported non-classical electrostriction in Cerium-Gadolinium oxides (CGO), where only a small population of Ce-O bonds that are located near oxygen ion vacancies responds to external electric field. In this study, we used high-energy resolution fluorescence detection (HERFD) technique to collect X-ray absorptionmore » spectra in CGO in situ, with and without an external electric field, coupled with theoretical modeling to characterize three-dimensional geometry of electromechanically active units.« less

  2. Electromechanical co-design and experiment of structurally integrated antenna

    NASA Astrophysics Data System (ADS)

    Zhou, Jinzhu; Huang, Jin; Song, Liwei; Zhang, Dan; Ma, Yunchao

    2015-03-01

    This paper proposes an electromechanical co-design method of a structurally integrated antenna to simultaneously meet mechanical and electrical requirements. The method consists of three stages. The first stage involves finishing an initial design of the microstrip antenna without a facesheet or honeycomb, according to some predefined performances. Subsequently, the facesheet and honeycomb of the structurally integrated antenna are designed using an electromechanical co-design optimization. Based on the results from the first and second stages, a fine full-wave electromagnetic model is developed and the coarse design results are further optimized to meet the electrical performance. The co-design method is applied to the design of a 2.5 GHz structurally integrated antenna, and then the designed antenna is fabricated. Experiments from the mechanical and electrical performances are conducted, and the results confirm the effectiveness of the co-design method. This method shows great promise for the multidisciplinary design of a structurally integrated antenna.

  3. Electro-Mechanical Actuation of Carbon Nanotube Yarns, Sheets, Composites

    NASA Astrophysics Data System (ADS)

    Oh, Jiyoung; Kozlov, Mikhail; Zhang, Mei; Fang, Shaoli; Baughman, Ray

    2011-03-01

    We report preparation of highly conductive carbon nanotube yarns and sheets. The materials aim at such applications as electronic textiles, electro-mechanical actuators, and conductive coatings. The electro-mechanical response of the specimens was measured using custom made force transducer operating in an isometric mode. The measurements were carried out at room temperature in aqueous and organic electrolytes; square-wave potential of variable amplitude was applied with a potentiostat. It was found that the maximum isometric stress generated by nanotube actuators could be as large as 12 MPa. This approaches the stress generation capability of commercial ferroelectrics and is significantly larger than that of natural muscles. A variety of applications of the materials is discussed.

  4. A review of mechanical and electromechanical properties of piezoelectric nanowires.

    PubMed

    Espinosa, Horacio D; Bernal, Rodrigo A; Minary-Jolandan, Majid

    2012-09-04

    Piezoelectric nanowires are promising building blocks in nanoelectronic, sensing, actuation and nanogenerator systems. In spite of great progress in synthesis methods, quantitative mechanical and electromechanical characterization of these nanostructures is still limited. In this article, the state-of-the art in experimental and computational studies of mechanical and electromechanical properties of piezoelectric nanowires is reviewed with an emphasis on size effects. The review covers existing characterization and analysis methods and summarizes data reported in the literature. It also provides an assessment of research needs and opportunities. Throughout the discussion, the importance of coupling experimental and computational studies is highlighted. This is crucial for obtaining unambiguous size effects of nanowire properties, which truly reflect the effect of scaling rather than a particular synthesis route. We show that such a combined approach is critical to establish synthesis-structure-property relations that will pave the way for optimal usage of piezoelectric nanowires.

  5. Electromechanical instability in soft materials: Theory, experiments and applications

    NASA Astrophysics Data System (ADS)

    Suo, Zhigang

    2013-03-01

    Subject to a voltage, a membrane of a dielectric elastomer reduces thickness and expands area, possibly straining over 100%. The phenomenon is being developed as transducers for broad applications, including soft robots, adaptive optics, Braille displays, and electric generators. The behavior of dielectric elastomers is closely tied to electromechanical instability. This instability may limit the performance of devices, and may also be used to achieve giant actuation strains. This talk reviews the theory of dielectric elastomers, coupling large deformation and electric potential. The theory is developed within the framework of continuum mechanics and thermodynamics. The theory attempts to answer commonly asked questions. How do mechanics and electrostatics work together to generate large deformation? How efficiently can a material convert energy from one form to another? How do molecular processes affect macroscopic behavior? The theory is used to describe electromechanical instability, and is related to recent experiments.

  6. Ab-initio modeling of electromechanical coupling at Si surfaces

    SciTech Connect

    Hoppe, Sandra; Müller, Stefan; Michl, Anja; Weissmüller, Jörg

    2014-08-21

    The electromechanical coupling at the silicon (100) and (111) surfaces was studied via density functional theory by calculating the response of the ionization potential and the electron affinity to different types of strain. We find a branched strain response of those two quantities with different coupling coefficients for negative and positive strain values. This can be attributed to the reduced crystal symmetry due to anisotropic strain, which partially lifts the degeneracy of the valence and conduction bands. Only the Si(111) electron affinity exhibits a monotonously linear strain response, as the conduction band valleys remain degenerate under strain. The strain response of the surface dipole is linear and seems to be dominated by volume changes. Our results may help to understand the mechanisms behind electromechanical coupling at an atomic level in greater detail and for different electronic and atomic structures.

  7. Controller modeling and evaluation for PCV electro-mechanical actuator

    NASA Technical Reports Server (NTRS)

    Parker, Joey K.

    1993-01-01

    Hydraulic actuators are currently used to operate the propellant control valves (PCV) for the space shuttle main engine (SSME) and other rocket engines. These actuators are characterized by large power to weight ratios, large force capabilities, and rapid accelerations, which favor their use in control valve applications. However, hydraulic systems are also characterized by susceptibility to contamination, which leads to frequent maintenance requirements. The Control Mechanisms Branch (EP34) of the Component Development Division of the Propulsion Laboratory at the Marshall Space Flight Center (MSFC) has been investigating the application of electromechanical actuators as replacements for the hydraulic units in PCV's over the last few years. This report deals with some testing and analysis of a PCV electromechanical actuator (EMA) designed and fabricated by HR Textron, Inc. This prototype actuator has undergone extensive testing by EP34 personnel since early 1993. At this time, the performance of the HR Textron PCV EMA does not meet requirements for position tracking.

  8. Outer hair cell electromechanical properties in a nonlinear piezoelectric model

    PubMed Central

    Liu, Yi-Wen; Neely, Stephen T.

    2009-01-01

    A nonlinear piezoelectric circuit is proposed to model electromechanical properties of the outer hair cell (OHC) in mammalian cochleae. The circuit model predicts (a) that the nonlinear capacitance decreases as the stiffness of the load increases, and (b) that the axial compliance of the cell reaches a maximum at the same membrane potential for peak capacitance. The model was also designed to be integrated into macro-mechanical models to simulate cochlear wave propagation. Analytic expressions of the cochlear-partition shunt admittance and the wave propagation function are derived in terms of OHC electro-mechanical parameters. Small-signal analyses indicate that, to achieve cochlear amplification, (1) nonlinear capacitance must be sufficiently high and (2) the OHC receptor current must be sensitive to the velocity of the reticular lamina. PMID:19640041

  9. A Hybrid Actuation System Demonstrating Significantly Enhanced Electromechanical Performance

    NASA Technical Reports Server (NTRS)

    Su, Ji; Xu, Tian-Bing; Zhang, Shujun; Shrout, Thomas R.; Zhang, Qiming

    2004-01-01

    A hybrid actuation system (HYBAS) utilizing advantages of a combination of electromechanical responses of an electroactive polymer (EAP), an electrostrictive copolymer, and an electroactive ceramic single crystal, PZN-PT single crystal, has been developed. The system employs the contribution of the actuation elements cooperatively and exhibits a significantly enhanced electromechanical performance compared to the performances of the device made of each constituting material, the electroactive polymer or the ceramic single crystal, individually. The theoretical modeling of the performances of the HYBAS is in good agreement with experimental observation. The consistence between the theoretical modeling and experimental test make the design concept an effective route for the development of high performance actuating devices for many applications. The theoretical modeling, fabrication of the HYBAS and the initial experimental results will be presented and discussed.

  10. Geometry of electromechanically active structures in Gadolinium - doped Cerium oxides

    SciTech Connect

    Li, Yuanyuan; Zacharowicz, Renee; Frenkel, Anatoly I. E-mail: anatoly.frenkel@yu.edu; Kraynis, Olga; Lubomirsky, Igor E-mail: anatoly.frenkel@yu.edu; Kas, Joshua; Weng, Tsu-Chien; Sokaras, Dimosthenis

    2016-05-15

    Local distortions from average structure are important in many functional materials, such as electrostrictors or piezoelectrics, and contain clues about their mechanism of work. However, the geometric attributes of these distortions are exceedingly difficult to measure, leading to a gap in knowledge regarding their roles in electromechanical response. This task is particularly challenging in the case of recently reported non-classical electrostriction in Cerium-Gadolinium oxides (CGO), where only a small population of Ce-O bonds that are located near oxygen ion vacancies responds to external electric field. We used high-energy resolution fluorescence detection (HERFD) technique to collect X-ray absorption spectra in CGO in situ, with and without an external electric field, coupled with theoretical modeling to characterize three-dimensional geometry of electromechanically active units.

  11. Thermoplastic Dielectric Elastomer of Triblock Copolymer with High Electromechanical Performance.

    PubMed

    Ma, Zipeng; Xie, Yuhan; Mao, Jie; Yang, Xuxu; Li, Tiefeng; Luo, Yingwu

    2017-08-01

    Dielectric elastomer (DE) actuators have been shown to have promising applications as soft electromechanical transducers in many emerging technologies. The DE actuators, which are capable of large actuation strain over a wide range of excitation frequencies, are highly desirable. Here, the first single-component DE of a triblock copolymer with attractive electromechanical performance is reported. Symmetric poly(styrene-b-butyl acrylate-b-styrene) (SBAS) is designed and synthesized. The SBAS actuator exhibits about 100% static actuation area strain and excellent dynamic performance, as evidenced by a wide half bandwidth of 300 Hz and a very high specific power of 1.2 W g(-1) within the excitation frequency range of 300-800 Hz. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Decreasing Outer Hair Cell Membrane Cholesterol Increases Cochlear Electromechanics

    NASA Astrophysics Data System (ADS)

    Brownell, William E.; Jacob, Stefan; Hakizimana, Pierre; Ulfendahl, Mats; Fridberger, Anders

    2011-11-01

    The effect of decreasing membrane cholesterol on the mechanical response of the cochlea to acoustic and/or electrical stimulation was monitored using laser interferometry. In contrast to pharmacological interventions that typically decrease cochlear electromechanics, reducing membrane cholesterol increased the response. The electromechanical response in untreated preparations was asymmetric with greater displacements in response to positive currents and cholesterol depletion increased the asymmetry. The results confirm that outer hair cell electromotility is enhanced by low membrane cholesterol. The asymmetry of the response indicates the outer hair cell resting membrane potential is hyperpolarized relative to the voltage of maximum gain for the outer hair cell voltage-displacement function. The magnitude of the response increase suggests a non-uniform distribution of cholesterol along the lateral wall of normal adult outer hair cells.

  13. Electromechanical characteristic analysis of a dielectric electroactive polymer (DEAP) actuator

    NASA Astrophysics Data System (ADS)

    Zhu, Yinlong; Zhou, Hongpin; Wang, Huaming

    2015-10-01

    To assist in the design and optimization of dielectric electroactive polymer (DEAP) actuators, an analytical model for the electromechanical response of cone DEAP actuators is developed. Using the Yeoh form strain energy potential and the Maxwell stress tensor, the constitutive relationship of the DEAP that accounts for the electromechanical coupling behavior is deduced. The equilibrium equations of DEAP actuators with a cone configuration are derived and an analytical model is then proposed. With this model, the actuation characteristics of the DEAP actuator, including actuation displacement, force output and efficiency can be calculated. Additionally, the principal stresses and principal stretch ratio of the membrane under different actuation voltages can be determined, along with the wrinkling failure mode of DEAP actuators. The experimental results for the DEAP actuator matched the numerical results determined using the proposed model. As such, the proposed work is beneficial as a guide for the design optimization of DEAP actuators.

  14. Enhanced electromechanical behaviors of cellulose ZnO hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Mun, Seongchoel; Min, Seung-Ki; Kim, Hyun Chan; Im, Jongbeom; Geddis, Demetris L.; Kim, Jaehwan

    2015-04-01

    Inorganic-organic hybrid composite has attracted as its combined synergistic properties. Cellulose based inorganicorganic hybrid composite was fabricated with semiconductive nanomaterials which has functionality of nanomaterial and biocompatibility piezoelectricity, high transparency and flexibility of cellulose electro active paper namely EAPap. ZnO is providing semiconductive functionality to EAPap for hybrid nanocomposite by simple chemical reaction. Cellulose- ZnO hybrid nanocomposite (CEZOHN) demonstrates novel electrical, photoelectrical and electromechanical behaviors. This paper deals with methods to improve electromechanical property of CEZOHN. The fabrication process is introduced briefly, charging mechanism and evaluation is studied with measured piezoelectric constant. And its candidate application will be discussed such as artificial muscle, energy harvester, strain sensor, flexible electrical device.

  15. A nonlinear generalized continuum approach for electro-mechanical coupling

    NASA Astrophysics Data System (ADS)

    Skatulla, S.; Arockiarajan, A.; Sansour, C.

    2008-07-01

    Electro-active polymers (EAP) are "smart materials" whose mechanical properties may be changed significantly by the application of electric field. Hence, these materials can serve as actuators in electro-mechanical systems, artificial muscles, etc. In this paper, we provide a generalized continuum framework basis for the characterization of the nonlinear electroelastic properties of these materials. This approach introduces new strain and stress measures which lead to the formulation of a corresponding generalized variational principle. The theory is then completed by Dirichlet boundary conditions for the displacement field and the electric potential and then derivatives normal to the boundary. The basic idea behind this generalized continuum framework is the consideration of a micro- and a macro-space which together span the generalized space. All quantities including the constitutive law for the electro-mechanically coupled nonlinear hyperelasticity are defined in the generalized space. Numerical examples are presented to demonstrate the numerical accuracy of the implemented formulation using the mesh free method.

  16. Outer hair cell electromechanical properties in a nonlinear piezoelectric model.

    PubMed

    Liu, Yi-Wen; Neely, Stephen T

    2009-08-01

    A nonlinear piezoelectric circuit is proposed to model electromechanical properties of the outer hair cell (OHC) in mammalian cochleae. The circuit model predicts (a) that the nonlinear capacitance decreases as the stiffness of the load increases, and (b) that the axial compliance of the cell reaches a maximum at the same membrane potential for peak capacitance. The model was also designed to be integrated into macro-mechanical models to simulate cochlear wave propagation. Analytic expressions of the cochlear-partition shunt admittance and the wave propagation function are derived in terms of OHC electro-mechanical parameters. Small-signal analyses indicate that, to achieve cochlear amplification, (1) nonlinear capacitance must be sufficiently high and (2) the OHC receptor current must be sensitive to the velocity of the reticular lamina.

  17. An electromechanical attenuator/actuator for Space Station docking

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean; Carroll, Monty B.

    1987-01-01

    The development of a docking system for aerospace vehicles has identified the need for reusable and variably controlled attenuators/actuators for energy absorption and compliance. One approach to providing both the attenuator and the actuator functions is by way of an electromechanical attenuator/actuator (EMAA) as opposed to a hydraulic system. The use of the electromechanical devices is considered to be more suitable for a space environment because of the absence of contamination from hydraulic fluid leaks and because of the cost effectiveness of maintenance. A smart EMAA that uses range/rate/attitude sensor information to preadjust a docking interface to eliminate misalignments and to minimize contact and stroking forces is described. A prototype EMAA was fabricated and is being tested and evaluated. Results of preliminary testing and analysis already performed have established confidence that this concept is feasible and will provide the desired reliability and low maintenance for repetitive long term operation typical of Space Station requirements.

  18. Zero-fluoroscopy cryothermal ablation of atrioventricular nodal reentry tachycardia guided by endovascular and endocardial catheter visualization using intracardiac echocardiography (Ice&ICE Trial).

    PubMed

    Luani, Blerim; Zrenner, Bernhard; Basho, Maksim; Genz, Conrad; Rauwolf, Thomas; Tanev, Ivan; Schmeisser, Alexander; Braun-Dullaeus, Rüdiger C

    2017-09-27

    Stochastic damage of the ionizing radiation to both patients and medical staff is a drawback of fluoroscopic guidance during catheter ablation of cardiac arrhythmias. Therefore, emerging zero-fluoroscopy catheter-guidance techniques are of great interest. We investigated in a prospective pilot study the feasibility and safety of the cryothermal (CA) slow-pathway ablation in patients with symptomatic atrioventricular-nodal-reentry-tachycardia (AVNRT) using solely intracardiac echocardiography (ICE) for endovascular and endocardial catheter visualization. Twenty-five consecutive patients (mean age 55.6±12.0 years, 17 female) with ECG-documentation or symptoms suggesting AVNRT underwent an electrophysiology study (EPS) in our laboratory utilizing ICE for catheter navigation. Supraventricular tachycardia was inducible in 23 (92%) patients; AVNRT was confirmed by appropriate stimulation maneuvers in 20 (80%) patients. All EPS in the AVNRT subgroup could be accomplished without need for fluoroscopy, relying solely on ICE-guidance. CA guided by anatomical location and slow-pathway potentials was successful in all patients, median cryo-mappings = 6 (IQR:3-10), median cryo-ablations = 2 (IQR:1-3). Fluoroscopy was used to facilitate the transseptal puncture and localization of the ablation substrate in the remaining 3 patients (one focal atrial tachycardia and 2 atrioventricular-reentry-tachycardias). Mean EPS duration in the AVNRT subgroup was 99.8±39.6 min, ICE guided catheter placement 11.9±5.8 min, time needed for diagnostic evaluation 27.1±10.8 min and cryo-application duration 26.3±30.8 min. ICE-guided zero-fluoroscopy CA in AVNRT patients is feasible and safe. Real-time visualization of the true endovascular borders and cardiac structures allow for safe catheter navigation during the ICE-guided EPS and might be an alternative to visualization technologies using geometry reconstructions. This article is protected by copyright. All rights reserved. This

  19. Tracking problem for electromechanical system under influence of external perturbations

    NASA Astrophysics Data System (ADS)

    Kochetkov, Sergey A.; Krasnova, Svetlana A.; Utkin, Victor A.

    2017-01-01

    For electromechanical objects the new control algorithms (vortex algprithms) are developed on the base of discontinuous functions. The distinctive feature of these algorithms is providing of asymptotical convergence of the output variables to zero under influence of unknown bounded disturbances of prescribed class. The advantages of proposed approach is demonstrated for direct current motor with permanent excitation. It is shown that inner variables of the system converge to unknown bounded disturbances and guarantee asymptotical convergence of output variables to zero.

  20. Mechanic and electromechanic effects in biaxially stretched liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Diaz-Calleja, Ricardo; Llovera-Segovia, Pedro; Riande, Evaristo; Quijano López, Alfredo

    2013-02-01

    The effect of combined electromechanic force fields in nematic side chain liquid crystal elastomers will be analyzed. A biaxially stretched plate in the x- and y-directions under an electric field applied in the perpendicular direction to the plate will be considered. A neo-Hookean model is chosen, which implies Gaussian behaviour. Results are obtained for both a soft and semisoft case showing the effect of the electric field on the rotation of the director and the free energy density function.

  1. Electromechanical actuator for the tongs of a servomanipulator

    DOEpatents

    Martin, H. Lee; Killough, Stephen M.

    1986-01-01

    Computer-augmented electromechanical system is provided for controlling the tongs of a servomanipulator. The mechanical tongs are motor-driven through the remote slave arm of the manipulator, and the motor control current is supplied by a position sensor which senses the position of a spring-loaded trigger in the master arm handle on the manipulator. The actuator for the tongs provides the operator with artificial force reflection in a unilateral force-force control loop.

  2. Electromechanical imaging of biological systems with sub-10 nm resolution

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei V.; Rodriguez, B. J.; Jesse, S.; Thundat, T.; Gruverman, A.

    2005-08-01

    Electromechanical imaging of tooth dentin and enamel has been performed with sub-10nm resolution using piezoresponse force microscopy. Characteristic piezoelectric domain size and local protein fiber ordering in dentin have been determined. The shape of a single protein fibril in enamel is visualized in real space and local hysteresis loops are measured. Because of the ubiquitous presence of piezoelectricity in biological systems, this approach is expected to find broad application in high-resolution studies of a wide range of biomaterials.

  3. Active feedback cooling of massive electromechanical quartz resonators

    SciTech Connect

    Jahng, Junghoon; Lee, Manhee; Stambaugh, Corey; Bak, Wan; Jhe, Wonho

    2011-08-15

    We present a general active feedback cooling scheme for massive electromechanical quartz resonators. We cool down two kinds of macrosized quartz tuning forks and find several characteristic constants for this massive quartz-resonator feedback cooling, in good agreement with theoretical calculations. When combined with conventional cryogenic techniques and low-noise devices, one may reach the quantum sensitivity for macroscopic sensors. This may be useful for high sensitivity measurements and for quantum information studies.

  4. A Fully Coupled Model for Electromechanics of the Heart

    PubMed Central

    Xia, Henian; Wong, Kwai; Zhao, Xiaopeng

    2012-01-01

    We present a fully coupled electromechanical model of the heart. The model integrates cardiac electrophysiology and cardiac mechanics through excitation-induced contraction and deformation-induced current. Numerical schemes based on finite element were implemented in a supercomputer. Numerical examples were presented using a thin cardiac tissue and a dog ventricle with realistic geometry. Performance of the parallel simulation scheme was studied. The model provides a useful tool to understand cardiovascular dynamics. PMID:23118801

  5. Electro-Mechanical Actuators (EMA's) for Space Applications

    NASA Astrophysics Data System (ADS)

    Verhoeven, Didier; De Coster, Francois

    2013-09-01

    The scope of this paper is to present two concepts for electromechanical actuators (EMA's) for space applications:• The first concept implements external anti-rotation devices, as well as a blocking device in order to meet the specific Intermediate eXperimental Vehicle (IXV) constraints.• The second concept is a new anti-rotation device based on DIN 32712-B P4C profile.

  6. Integrated Electromechanical Devices for Active Control of Vibration and Sound

    DTIC Science & Technology

    1997-11-01

    of peak power • Minimize ambient noise generation broadband and narrowband • Standard temperature (-25C--55C) with possible extended operation • Must...operate in a vacuum and in non-volatile fluids • Minimize heat generation , EMI, and outgassing • Baseline for application to flat surfaces but allow... generation . An actuator integrated in an electromechanical device could generate sufficient internal heat to affect other components, or alter its

  7. Continuum electromechanical modeling of protein-membrane interactions.

    PubMed

    Zhou, Y C; Lu, Benzhuo; Gorfe, Alemayehu A

    2010-10-01

    A continuum electromechanical model is proposed to describe the membrane curvature induced by electrostatic interactions in a solvated protein-membrane system. The model couples the macroscopic strain energy of membrane and the electrostatic solvation energy of the system, and equilibrium membrane deformation is obtained by minimizing the electroelastic energy functional with respect to the dielectric interface. The model is illustrated with the systems with increasing geometry complexity and captures the sensitivity of membrane curvature to the permanent and mobile charge distributions.

  8. Electromechanical tuning of vertically-coupled photonic crystal nanobeams.

    PubMed

    Midolo, L; Yoon, S N; Pagliano, F; Xia, T; van Otten, F W M; Lermer, M; Höfling, S; Fiore, A

    2012-08-13

    We present the design, the fabrication and the characterization of a tunable one-dimensional (1D) photonic crystal cavity (PCC) etched on two vertically-coupled GaAs nanobeams. A novel fabrication method which prevents their adhesion under capillary forces is introduced. We discuss a design to increase the flexibility of the structure and we demonstrate a large reversible and controllable electromechanical wavelength tuning (> 15 nm) of the cavity modes.

  9. The electromechanical battery: The new kid on the block

    SciTech Connect

    Post, R.F.

    1993-08-01

    In a funded program at the Lawrence Livermore National Laboratory new materials and novel designs are being incorporated into a new approach to an old concept -- flywheel energy storage. Modular devices, dubbed ``electromechanical batteries`` (EMB) are being developed that should represent an important alternative to the electrochemical storage battery for use in electric vehicles or for stationary applications, such as computer back-up power or utility load-leveling.

  10. Nano-hierarchical structure and electromechanical coupling properties of clamshell.

    PubMed

    Li, Tao; Zeng, Kaiyang

    2012-10-01

    Electromechanical coupling is a nearly universal property of biomaterials, and may play an important role in many physiological and functional phenomena. The intrinsic or externally-generated electric field within biomaterials may also contribute to their predominant mechanical properties. Mollusc shells are well known for their outstanding mechanical properties, which are generally believed to originate from their hierarchical structures in multi-levels. This paper is therefore focused on the studies of the hierarchical structures and electromechanical coupling behaviors of clamshell from micro- to nano-levels, and in particular, the biopolymer concentrated regions. Detailed studies are performed to characterize the piezoelectric and ferroelectric properties of clamshell. It was found that the piezoresponse of clamshell is originated from the biopolymers between the mineral grains, as well as those intercalated within the mineral crystalline structure after the biomineralization process. Local ferroelectric hysteresis loops of clamshell have also been observed and analyzed on the samples with different orientations, biopolymer contents, or moisture contents. It is believed that the overall functioning of the clamshell or even other mollusc shells may incorporate many mechanisms interacting together, rather than originate from the hierarchical structure alone. This study of the electromechanical coupling effects of clamshell can be a path to have more comprehensive understandings of the properties and behaviors of mollusc shells.

  11. Dissipation engineering in a coherent feedback electromechanical network

    NASA Astrophysics Data System (ADS)

    Kerckhoff, Joseph

    2014-03-01

    Modern superconducting microwave circuit experiments often consist of a quantum circuit under study, followed by a quantum-limited microwave amplifier. The subfield of quantum electromechanics, in which the quantum circuit is a mechanical resonator coupled to a microwave resonator, is no exception. However, a simple modification of the cables between these devices turns this open-loop, serial network into a fully-cryogenic, coherent feedback network. In effect, this easy-to-build network becomes a brand new kind of device, with useful and novel dynamics. Applied to an electromechanical context, the microwave and electromechanical dissipation is greatly modified through these closed loop dynamics, leading to dynamically tunable and phase-sensitive decay. We experimentally demonstrate that the microwave decay rate may be modulated by at least a factor of 10 at a rate greater than 104 times the mechanical response rate. Similarly, the mechanical state can be dynamically squeezed and unsqueezed. While we have only investigated dynamics in the classical regime, we expect analogous behavior in the quantum regime. Finally, this approach is suitable for both 3D and planar architectures. I will describe my observations of this network and the general utility of networks of modular quantum circuits to dissipation engineering. With support from the NRC, and partial support from DARPA QuEST, DARPA ORCHID, and the NSF PFC at JILA.

  12. Imaging the mechanics and electromechanics of the heart.

    PubMed

    Konofagou, Elisa E; Fung-Kee-Fung, Simon; Luo, Jianwen; Pernot, Mathieu

    2006-01-01

    The heart is a mechanical pump that is electrically driven. We have previously shown that the contractility of the cardiac muscle can reliably be used in order to assess the extent of ischemia using myocardial elastography. Myocardial elastography estimates displacement and strain during the natural contraction of the myocardium using signal processing techniques on echocardiograms in order to assess the change in mechanical properties as a result of disease. In this paper, we showed that elastographic techniques can be used to estimate and image both the mechanics and electromechanics of normal and pathological hearts in vivo. In order to image the mechanics throughout the entire cardiac cycle, the minimum frame rate was determined to be on the order of 150 fps in a long-axis view and 300 fps in a short-axis view. The incremental and cumulative displacement and strains were measured and imaged for the characterization of normal function and differentiation from infracted myocardium. In order to image the electromechanical function, the incremental displacement was imaged inconsecutive cardiac cycles during end-systole in both dogs and humans. The contraction wave velocity in normal dogs was found to be twice higher than in normal humans and twice lower than in ischemic dogs. In conclusion, we have demonstrated that elastographic techniques can be used to detect and quantify the mechanics and electromechanics of the myocardium in vivo. Ongoing investigations entail assessment of myocardial elastography in characterizing and quantifying ischemia and infarction in vivo.

  13. Electromechanical properties of dried tendon and isoelectrically focused collagen hydrogels.

    PubMed

    Denning, D; Abu-Rub, M T; Zeugolis, D I; Habelitz, S; Pandit, A; Fertala, A; Rodriguez, B J

    2012-08-01

    Assembling artificial collagenous tissues with structural, functional, and mechanical properties which mimic natural tissues is of vital importance for many tissue engineering applications. While the electro-mechanical properties of collagen are thought to play a role in, for example, bone formation and remodeling, this functional property has not been adequately addressed in engineered tissues. Here the electro-mechanical properties of rat tail tendon are compared with those of dried isoelectrically focused collagen hydrogels using piezoresponse force microscopy under ambient conditions. In both the natural tissue and the engineered hydrogel D-periodic type I collagen fibrils are observed, which exhibit shear piezoelectricity. While both tissues also exhibit fibrils with parallel orientations, Fourier transform analysis has revealed that the degree of parallel alignment of the fibrils in the tendon is three times that of the dried hydrogel. The results obtained demonstrate that isoelectrically focused collagen has similar structural and electro-mechanical properties to that of tendon, which is relevant for tissue engineering applications.

  14. Geometrical specifications accuracy influence on the quality of electromechanical devices

    NASA Astrophysics Data System (ADS)

    Glukhov, V. I.; Lakeenko, M. N.; Dolzhikov, S. N.

    2017-06-01

    To improve the quality of electromechanical products is possible due to the geometrical specifications optimization of values and tolerances. Electromechanical products longevity designates the rolling-contact bearings of the armature shaft. Longevity of the rolling-contact bearings is less than designed one, since assembly and fitting alter gaps, sizes and geometric tolerances for the working parts of the basic rolling bearing details. Geometrical models of the rolling-contact bearing details for the armature shaft and the end shield are developed on the basis of an electric locomotive traction motor in the present work. The basic elements of the details conjugating with the adjacent details and materializing the generalized and auxiliary coordinate systems are determined. Function, informativeness and the number of geometrical specifications for the elements location are specified. The recommendations on amending the design documentation due to geometrical models to improve the accuracy and the quality of the products are developed: the replacement of the common axis of the shaft’s technological datums by the common axis of the basic design datums; coaxiality tolerances for these design datums with respect to their common axis; the modifiers for these auxiliary datums and these datums location tolerances according to the principles of datums uniformity, inversion and the shortest dimension chains. The investigation demonstrated that the problem of enhancing the durability, longevity, and efficiency coefficient for electromechanical products can be solved with the systematic normalizations of geometrical specifications accuracy on the basis of the coordinate systems introduced in the standards on geometrical product specifications (GPS).

  15. A new electro-mechanical bioreactor for soft tissue engineering.

    PubMed

    Mantero, S; Sadr, N; Riboldi, S A; Lorenzoni, S; Montevecchi, F M

    2007-01-01

    By enabling the maintenance of controlled chemical and physical environmental conditions, bioreactors proved that electro-mechanical stimulation improves tissue development in vitro, especially in the case of tissues which are subjected to stimuli during embryogenesis and growth (i.e. skeletal and cardiac muscle tissue). However, most of the bioreactors developed in the last 20 yrs, designed to suit specific applications, lack versatility. With the aim to provide researchers with a yielding, versatile tool, we designed and realized in this study an electro-mechanical stimulator capable of dynamically culturing four biological constructs, delivering assignable stretching and electrical stimulation patterns. The device has been conceived to be easy to handle and customizable for different applications, while ensuring sterility along with stimuli delivery. The gripping equipment, modular and adaptable to scaffolds of different consistencies, is provided with dedicated tools for supporting sample insertion into the culture chamber performed under a laminar flow hood. As to performance, a wide range of electro-mechanical stimulation patterns and their relative occurrence can be accomplished, permitting the adjustment of the dynamic culture parameters both to the specific cell species and to the developmental phase of the cultured cells.

  16. In situ TEM electromechanical testing of nanowires and nanotubes.

    PubMed

    Espinosa, Horacio D; Bernal, Rodrigo A; Filleter, Tobin

    2012-11-05

    The emergence of one-dimensional nanostructures as fundamental constituents of advanced materials and next-generation electronic and electromechanical devices has increased the need for their atomic-scale characterization. Given its spatial and temporal resolution, coupled with analytical capabilities, transmission electron microscopy (TEM) has been the technique of choice in performing atomic structure and defect characterization. A number of approaches have been recently developed to combine these capabilities with in-situ mechanical deformation and electrical characterization in the emerging field of in-situ TEM electromechanical testing. This has enabled researchers to establish unambiguous synthesis-structure-property relations for one-dimensional nanostructures. In this article, the development and latest advances of several in-situ TEM techniques to carry out mechanical and electromechanical testing of nanowires and nanotubes are reviewed. Through discussion of specific examples, it is shown how the merging of several microsystems and TEM has led to significant insights into the behavior of nanowires and nanotubes, underscoring the significant role in-situ techniques play in the development of novel nanoscale systems and materials.

  17. Experimental on-line identification of an electromechanical system.

    PubMed

    Eker, Ilyas

    2004-01-01

    Identification of electromechanical systems operating in open-loop or closed-loop conditions has long been of prime interest in industrial applications. This paper presents experimental on-line identification of an electromechanical system represented by a digital input/output model. The paper also bridges the theory and practice gap for applied researchers. Studies are carried out by formulating the mathematical model using differential equations and experimental discrete-time identification using on-line plant input-output data. A recursive least-squares method is used to estimate the unknown parameters of the system. Discrete-time data for the parameter identification are obtained experimentally from a setup constructed in the laboratory. A root-mean-square error criterion is used for model validation. Results are presented which show variations in parameters of the electromechanical system. It is demonstrated that identified model output and actual system output match. All tests are performed with no previous results from finite element simulations.

  18. Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Tan, T.; Yan, Z.; Hajj, M.

    2016-09-01

    Analysis of cantilever-based piezoelectric energy harvesting systems is usually performed using coupled equations that represent the mechanical displacement and the voltage output. These equations are then solved simultaneously. In contrast to this representation, we use analytical solutions of the governing equation to derive an algebraic equation of the power as a function of the beam displacement, electromechanical coefficients, and the load resistance. Such an equation can be more useful in the design of such harvesters. Particularly, the mechanical displacement is computed from a mechanical governing equation with modified natural frequency and damping ratio that account for the electromechanical coupling. The voltage and the harvested power are then obtained by relating them directly to the mechanical displacement. We validate the proposed analysis by comparing its solution including the tip displacement and harvested power with those of numerical simulations of the governing equations. To demonstrate the generality of the proposed approach, we consider the cases of base excitation, galloping, and autoparametric vibration. The model proposed in this study simplifies the electromechanical coupling problem for practical applications of cantilever-beam piezoelectric energy harvesting systems.

  19. Design and test of electromechanical actuators for thrust vector control

    NASA Technical Reports Server (NTRS)

    Cowan, J. R.; Weir, Rae Ann

    1993-01-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

  20. Epicardial only mapping and ablation of ventricular tachycardia: a case series.

    PubMed

    Berte, Benjamin; Yamashita, Seigo; Sacher, Frederic; Cochet, Hubert; Hooks, Darren; Aljefairi, Nora; Amraoui, Sana; Denis, Arnaud; Derval, Nicolas; Hocini, Meleze; Haïssaguerre, Michel; Jaïs, Pierre

    2016-02-01

    Ventricular tachycardia (VT) ablation for ventricular arrhythmias is a validated approach, typically performed endocardially, or combined with an epicardial approach if endocardial ablation failed or in case of non-ischaemic cardiomyopathy. We report our experience with epicardial only procedure in a subset of patients with incessant VT or VT storm. This was a single centre retrospective study. Between 2011 and 2014, all patients referred for VT ablation were reviewed at CHU Bordeaux. All patients with an epicardial only (anterior percutaneous approach) mapping and ablation procedure were included. In total, 296 patients underwent a VT ablation and 4 (all male, 70 ± 7 years, 27 ± 11% left ventricular ejection fraction) of them underwent an epicardial only procedure: two ischaemic patients had an endocardial left ventricular thrombus and incessant VT. One patient post-myocarditis had a failed a previous endocardial procedure without local abnormal ventricular activity (LAVA). The fourth patient had a dilated cardiomyopathy and a complicated epicardial puncture followed by mild continuous bleeding (200 mL) precluding anticoagulation associated with left ventricular endocardial access. Local abnormal ventricular activity elimination was verified only epicardially in all and obtained in two patients and non-inducibility was tested and achieved in the two patients without thrombus. No further complications occurred. After a mean follow-up of 21 ± 12 months, one patient (25%) had recurrence of VT and no patient death was observed. Epicardial only ablation seems feasible and effective and useful in a limited subset of patients with incessant VT. However, endpoints are more difficult to evaluate and long-term follow-up is needed. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  1. Double-Layer Mediated Electromechanical Response of Amyloid Fibrils in Liquid Environment

    PubMed Central

    Nikiforov, M.P.; Thompson, G.L.; Reukov, V.V.; Jesse, S.; Guo, S.; Rodriguez, B.J.; Seal, K.; Vertegel, A.A.; Kalinin, S.V.

    2010-01-01

    Harnessing electrical bias-induced mechanical motion on the nanometer and molecular scale is a critical step towards understanding the fundamental mechanisms of redox processes and implementation of molecular electromechanical machines. Probing these phenomena in biomolecular systems requires electromechanical measurements be performed in liquid environments. Here we demonstrate the use of band excitation piezoresponse force microscopy for probing electromechanical coupling in amyloid fibrils. The approaches for separating the elastic and electromechanical contributions based on functional fits and multivariate statistical analysis are presented. We demonstrate that in the bulk of the fibril the electromechanical response is dominated by double-layer effects (consistent with shear piezoelectricity of biomolecules), while a number of electromechanically active hot spots possibly related to structural defects are observed. PMID:20088597

  2. Double-layer mediated electromechanical response of amyloid fibrils in liquid environment.

    PubMed

    Nikiforov, M P; Thompson, G L; Reukov, V V; Jesse, S; Guo, S; Rodriguez, B J; Seal, K; Vertegel, A A; Kalinin, S V

    2010-02-23

    Harnessing electrical bias-induced mechanical motion on the nanometer and molecular scale is a critical step toward understanding the fundamental mechanisms of redox processes and implementation of molecular electromechanical machines. Probing these phenomena in biomolecular systems requires electromechanical measurements be performed in liquid environments. Here we demonstrate the use of band excitation piezoresponse force microscopy for probing electromechanical coupling in amyloid fibrils. The approaches for separating the elastic and electromechanical contributions based on functional fits and multivariate statistical analysis are presented. We demonstrate that in the bulk of the fibril the electromechanical response is dominated by double-layer effects (consistent with shear piezoelectricity of biomolecules), while a number of electromechanically active hot spots possibly related to structural defects are observed.

  3. Importance of Ventricular Tachycardia Induction and Mapping for Patients Referred for Epicardial Ablation.

    PubMed

    Nazer, Babak; Woods, Christopher; Dewland, Thomas; Moyers, Brian; Badhwar, Nitish; Gerstenfeld, Edward P

    2015-11-01

    Many nonischemic cardiomyopathy (NICMP) patients referred for catheter ablation of ventricular tachycardia (VT) undergo an initial epicardial approach under general anesthesia (GA). However, GA may suppress inducibility and decrease tolerance of induced VT, leaving substrate modification as the sole ablation method. Determine the utility of a strategy of initial programmed electrical stimulation (PES) under light sedation in patients referred for epicardial ablation of VT. Of 68 NICMP patients referred for VT ablation, 25 were referred specifically for epicardial ablation. All patients underwent PES under conscious sedation, with conversion to GA and epicardial access only if VT morphology and/or endocardial mapping suggested an epicardial substrate. VT was induced with PES in 24 of 25 patients (mean age 52 years; 76% male; ejection fraction 38 ± 18%). VT was hemodynamically tolerated in 63% and unstable in 38% of patients. The noninducible/unstable VT patients underwent substrate modification based on voltage and pace mapping. Of the patients with stable VT, 73% were mapped and ablated endocardially (six right ventricle, three left ventricle, one left coronary cusp, one middle cardiac vein), and 33% were successfully ablated in areas of normal endocardial voltage. After ablation, the clinical VT was noninducible in all patients. After mean follow-up of 10 months, 80% were free of implantable cardioverter defibrillator shocks or sustained VT. An initial approach of PES and entrainment mapping under conscious sedation is critically important for patients with NICMP referred for epicardial ablation. Empiric ablation of endocardial/epicardial scar would have missed the clinical VT in 20% of patients. © 2015 Wiley Periodicals, Inc.

  4. Electromechanical-assisted training for walking after stroke.

    PubMed

    Mehrholz, Jan; Thomas, Simone; Werner, Cordula; Kugler, Joachim; Pohl, Marcus; Elsner, Bernhard

    2017-05-10

    Electromechanical- and robotic-assisted gait-training devices are used in rehabilitation and might help to improve walking after stroke. This is an update of a Cochrane Review first published in 2007. To investigate the effects of automated electromechanical- and robotic-assisted gait-training devices for improving walking after stroke. We searched the Cochrane Stroke Group Trials Register (last searched 9 August 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 8), MEDLINE in Ovid (1950 to 15 August 2016), Embase (1980 to 15 August 2016), CINAHL (1982 to 15 August 2016), AMED (1985 to 15 August 2016), Web of Science (1899 to 16 August 2016), SPORTDiscus (1949 to 15 September 2012), the Physiotherapy Evidence Database (PEDro) (searched 16 August 2016), and the engineering databases COMPENDEX (1972 to 16 November 2012) and Inspec (1969 to 26 August 2016). We handsearched relevant conference proceedings, searched trials and research registers, checked reference lists, and contacted authors in an effort to identify further published, unpublished, and ongoing trials. We included all randomised controlled trials and randomised controlled cross-over trials in people over the age of 18 years diagnosed with stroke of any severity, at any stage, in any setting, evaluating electromechanical- and robotic-assisted gait training versus normal care. Two review authors independently selected trials for inclusion, assessed methodological quality and risk of bias, and extracted the data. The primary outcome was the proportion of participants walking independently at follow-up. We included 36 trials involving 1472 participants in this review update. Electromechanical-assisted gait training in combination with physiotherapy increased the odds of participants becoming independent in walking (odds ratio (random effects) 1.94, 95% confidence interval (CI) 1.39 to 2.71; P < 0.001; I² = 8%; moderate-quality evidence) but did not

  5. Electromechanical-assisted training for walking after stroke.

    PubMed

    Mehrholz, Jan; Elsner, Bernhard; Werner, Cordula; Kugler, Joachim; Pohl, Marcus

    2013-07-25

    Electromechanical and robotic-assisted gait training devices are used in rehabilitation and might help to improve walking after stroke. This is an update of a Cochrane Review first published in 2007. To investigate the effects of automated electromechanical and robotic-assisted gait training devices for improving walking after stroke. We searched the Cochrane Stroke Group Trials Register (last searched April 2012), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 2), MEDLINE (1966 to November 2012), EMBASE (1980 to November 2012), CINAHL (1982 to November 2012), AMED (1985 to November 2012), SPORTDiscus (1949 to September 2012), the Physiotherapy Evidence Database (PEDro, searched November 2012) and the engineering databases COMPENDEX (1972 to November 2012) and INSPEC (1969 to November 2012). We handsearched relevant conference proceedings, searched trials and research registers, checked reference lists and contacted authors in an effort to identify further published, unpublished and ongoing trials. We included all randomised and randomised cross-over trials consisting of people over 18 years old diagnosed with stroke of any severity, at any stage, or in any setting, evaluating electromechanical and robotic-assisted gait training versus normal care. Two review authors independently selected trials for inclusion, assessed methodological quality and extracted the data. The primary outcome was the proportion of participants walking independently at follow-up. In this update of our review, we included 23 trials involving 999 participants. Electromechanical-assisted gait training in combination with physiotherapy increased the odds of participants becoming independent in walking (odds ratio (OR) (random effects) 2.39, 95% confidence interval (CI) 1.67 to 3.43; P < 0.00001; I² = 0%) but did not significantly increase walking velocity (mean difference (MD) = 0.04 metres/s, 95% CI -0.03 to 0.11; P = 0.26; I² = 73%) or

  6. Effects of halothane on action potential configuration in sub-endocardial and sub-epicardial myocytes from normotensive and hypertensive rat left ventricle.

    PubMed

    Rithalia, A; Hopkins, P M; Harrison, S M

    2003-04-01

    Halothane shortens ventricular action potential duration (APD), as a consequence of its inhibitory effects on a variety of membrane currents, an effect that is greater in sub-endocardial than sub-epicardial myocytes. In hypertrophied ventricle, APD is prolonged as a consequence of electrical remodelling. In this study, we compared the effects of halothane on transmural APD in myocytes from normal and hypertrophied ventricle. Myocytes were isolated from the sub-endocardium and sub-epicardium of the left ventricle of spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Action potentials were recorded before, during, and after a 1-min exposure to 0.6 mM halothane and APD measured from the peak of the action potential to repolarization at -50 mV (APD(-50 mV)). Data are presented as mean (SEM). In WKY myocytes, halothane reduced APD(-50 mV) from 21 (2) to 18 (2) ms (P<0.001, n=15) in sub-epicardial myocytes but abbreviated APD(-50 mV) to a greater extent in sub-endocardial myocytes (37 (4) to 28 (3) ms; P<0.001, n=14). In SHR myocytes, APD(-50 mV) values were prolonged compared with WKY and APD(-50 mV) was reduced by halothane from 36 (6) to 27 (4) ms (P<0.016) and from 77 (10) to 38 (4) ms (P<0.001) in sub-epicardial and sub-endocardial myocytes, respectively. In the SHR, hypertrophic remodelling was not homogeneous; APD(-50 mV) was prolonged to a greater extent in sub-endocardial than sub-epicardial cells. Halothane reduced APD to a greater extent in sub-endocardium than sub-epicardium in both WKY and SHR but this effect was larger proportionately in SHR myocytes. The transmural gradient of repolarization was reduced in WKY and effectively abolished in SHR by halothane, which might disturb normal ventricular repolarization.

  7. Selecting the Appropriate Ablation Strategy: the Role of Endocardial and/or Epicardial Access

    PubMed Central

    Njeim, Mario; Bogun, Frank

    2015-01-01

    Percutaneous catheter ablation has emerged as an effective treatment modality for the management of ventricular tachycardia. Despite years of progress in this field, the role of epicardial mapping and ablation needs to be further refined. In this review, we discuss the relationship between the type of underlying heart disease and the location of the arrythmogenic substrate as it pertains to a procedural approach. We describe the contribution of preprocedural and intraprocedural diagnostic tools for the localisation of the arrhythmogenic substrate, with a special emphasis on cardiac MRI and electrophysiological mapping. In our opinion, the preferred approach to target ventricular tachycardia should depend on the patient’s underlying heart disease and the location of scar tissue, which can be best visualised using cardiac MRI. PMID:26835123

  8. Endocardial endothelium in the avascular frog heart: role for diffusion of NO in control of cardiac O2 consumption.

    PubMed

    Adler, Alexandra; Huang, Harer; Wang, Zipping; Conetta, Joseph; Levee, Ellen; Zhang, Xiaoping; Hintze, Thomas H

    2004-07-01

    We investigated the role of nitric oxide (NO) in the control of myocardial O(2) consumption in the hearts of female Xenopus frogs, which lack a coronary vascular endothelium and in which the endocardial endothelium is the only source of NO to regulate cardiac myocyte function. Hence, frogs are an ideal model in which to explore the role of diffusion of NO from the endocardial endothelium (EE) without vascular endothelial or cardiac cell NO production. In Xenopus hearts we examined the regulation of cardiac O(2) consumption in vitro at 25 degrees C and 37 degrees C. The NO-mediated control of O(2) consumption by bradykinin or carbachol was significantly (P < 0.05) lower at 25 degrees C (79 +/- 13 or 73 +/- 11 nmol/min) than at 37 degrees C (159 +/- 26 or 201 +/- 13 nmol/min). The response to the NO donor S-nitroso-N-acetyl penicillamine was also markedly lower at 25 degrees C (90 +/- 8 nmol/min) compared with 37 degrees C (218 +/- 15 nmol/min). When Triton X-100 was perfused into hearts, the inhibition of myocardial O(2) consumption by bradykinin (18 +/- 2 nmol/min) or carbachol (29 +/- 4 nmol/min) was abolished. Hematoxylin and eosin slides of Triton X-100-perfused heart tissue confirmed the absence of the EE. Although endothelial NO synthase protein levels were decreased to a variable degree in the Triton X-100-perfused heart, NO(2) production (indicating eNOS activity) decreased by >80%. It appears that the EE of the frog heart is the sole source of NO to regulate myocyte O(2) consumption. When these cells are removed, the ability of NO to regulate O(2) consumption is severely limited. Thus our results suggest that the EE produces enough NO, which diffuses from the EE to cardiac myocytes, to regulate myocardial O(2) consumption. Because of the close proximity of the EE to underlying myocytes, NO can diffuse over a distance and act as a messenger between the EE and the rest of the heart to control mitochondrial function and O(2) consumption.

  9. Prophylactic catheter ablation of ventricular tachycardia before cardioverter-defibrillator implantation in patients with non-ischemic cardiomyopathy: Clinical outcomes after a single endocardial ablation.

    PubMed

    Suzuki, Atsushi; Yoshida, Akihiro; Takei, Asumi; Fukuzawa, Koji; Kiuchi, Kunihiko; Takami, Kaoru; Itoh, Mitsuaki; Imamura, Kimitake; Fujiwara, Ryudo; Nakanishi, Tomoyuki; Yamashita, Soichiro; Matsumoto, Akinori; Shimane, Akira; Okajima, Katsunori; Hirata, Ken-Ichi

    2015-06-01

    Outcomes related to prophylactic catheter ablation (PCA) for ventricular tachycardia (VT) before implantable cardioverter-defibrillator (ICD) implantation in non-ischemic cardiomyopathy (NICM) are not well characterized. We assessed the efficacy of single endocardial PCA in NICM patients. We retrospectively analyzed 101 consecutive NICM patients with sustained VT. We compared clinical outcomes of patients who underwent PCA (ABL group) with those who did not (No ABL group). Successful PCA was defined as no inducible clinical VT. We also compared the clinical outcomes of patients with successful PCA (PCA success group) with those of the No ABL group. Endpoints were appropriate ICD therapy (shock and anti-tachycardia pacing) and the occurrence of electrical storm (ES). PCA was performed in 42 patients, and it succeeded in 20. The time to ES occurrence was significantly longer in the ABL group than in the No ABL group (p=0.04). The time to first appropriate ICD therapy and ES occurrence were significantly longer in the PCA success group than in the No ABL group (p=0.02 and p<0.01, respectively). Single endocardial PCA can decrease ES occurrence in NICM patients. However, high rates of VT recurrence and low success rates are issues to be resolved; therefore, the efficacy of single endocardial PCA is currently limited.

  10. Prophylactic catheter ablation of ventricular tachycardia before cardioverter-defibrillator implantation in patients with non-ischemic cardiomyopathy: Clinical outcomes after a single endocardial ablation

    PubMed Central

    Suzuki, Atsushi; Yoshida, Akihiro; Takei, Asumi; Fukuzawa, Koji; Kiuchi, Kunihiko; Takami, Kaoru; Itoh, Mitsuaki; Imamura, Kimitake; Fujiwara, Ryudo; Nakanishi, Tomoyuki; Yamashita, Soichiro; Matsumoto, Akinori; Shimane, Akira; Okajima, Katsunori; Hirata, Ken-ichi

    2015-01-01

    Background Outcomes related to prophylactic catheter ablation (PCA) for ventricular tachycardia (VT) before implantable cardioverter-defibrillator (ICD) implantation in non-ischemic cardiomyopathy (NICM) are not well characterized. We assessed the efficacy of single endocardial PCA in NICM patients. Methods We retrospectively analyzed 101 consecutive NICM patients with sustained VT. We compared clinical outcomes of patients who underwent PCA (ABL group) with those who did not (No ABL group). Successful PCA was defined as no inducible clinical VT. We also compared the clinical outcomes of patients with successful PCA (PCA success group) with those of the No ABL group. Endpoints were appropriate ICD therapy (shock and anti-tachycardia pacing) and the occurrence of electrical storm (ES). Results PCA was performed in 42 patients, and it succeeded in 20. The time to ES occurrence was significantly longer in the ABL group than in the No ABL group (p=0.04). The time to first appropriate ICD therapy and ES occurrence were significantly longer in the PCA success group than in the No ABL group (p=0.02 and p<0.01, respectively). Conclusion Single endocardial PCA can decrease ES occurrence in NICM patients. However, high rates of VT recurrence and low success rates are issues to be resolved; therefore, the efficacy of single endocardial PCA is currently limited. PMID:26336545

  11. Demonstration of TGF-β and XIIIα in Endocardial Biopsies of Carcinoid Heart Disease Patients: an Immunofluorescence Study

    PubMed Central

    Diepholz, Dorgrit; Wilke, Andreas; Maisch, Bernhard; Steverding, Dietmar

    2011-01-01

    Background Serotonin and other vasoactive substances play a critical role in the development of carcinoid heart disease, but the exact etiology of the illness is still unknown. Methods By using immunofluorescence microscopy, we investigated the expression of transforming growth factor-β (TGF-β) and the presence of fibrin-stabilizing factor (XIIIα) in endomyocardial biopsy specimens of patients with carcinoid heart disease. In addition, the tissue integrity of the specimens was studied by staining for laminin. Results Both TGF-β and XIIIα co-localized in the endocardium beneath carcinoid plaques: while TGF-β was found within myocytes, XIIIα was detected on the surface of cells in fibrotic lesions stretching out into the tissue. Laminin staining revealed that the integrity of the endocardium was dissolved and that the tissue consisted of hypertrophic and hypotrophic myocytes. Conclusions The results suggest that the presence of TGF-β and XIIIα in carcinoid heart lesions indicates that endocardial damage induced by serotonin and other vasoactive substances gives rise to an overshooting wound healing process.

  12. Early human experience with use of a deflectable fiberoptic endocardial visualization catheter to facilitate coronary sinus cannulation.

    PubMed

    Anh, D J; Chen, Henry A; Eversull, Christian S; Mourlas, Nicholas J; Mead, R Hardwin; Liem, L Bing; Hsia, Henry H; Wang, Paul J; Al-Ahmad, Amin

    2006-08-01

    Despite improvements in cardiac resynchronization therapy (CRT) implantation techniques, a significant minority of CRT attempts are unsuccessful. Inability to cannulate the coronary sinus (CS) because of difficult anatomy is a major reason for unsuccessful CRT implantation. Direct visualization of intracardiac structures during the implant may facilitate access into the CS. The present study describes CRT implantation with the aid of an endocardial visualization catheter (EVC). Fifty-eight consecutive patients (mean age 72 +/- 12 years; ejection fraction 26.2% +/- 7.0%; New York Heart Association [NYHA] class 2.9) underwent CRT implantation using a steerable fiberoptic EVC (Acumen Medical, Inc., Sunnyvale, CA). The EVC was able to visualize the CS ostium in all cases. The CS was successfully cannulated in 57 (98.3%) of 58 patients. The time from vascular access to CS visualization was 6 +/- 5 minutes, and the total time to CS access was 8 +/- 6 minutes. Successful left ventricle (LV) lead implantation was accomplished in 55 (94.8%) of 58 patients. Three patients who had a previous history of failed LV lead implantation were successfully implanted using the EVC. Fiberoptic imaging of intracardiac structures during CRT implantation may be performed rapidly in a wide range of patients with an EVC. The ability to visualize right atrial anatomy may aid CS access and LV lead implantation.

  13. Id4 functions downstream of Bmp signaling to restrict TCF function in endocardial cells during atrioventricular valve development.

    PubMed

    Ahuja, Suchit; Dogra, Deepika; Stainier, Didier Y R; Reischauer, Sven

    2016-04-01

    The atrioventricular canal (AVC) connects the atrial and ventricular chambers of the heart and its formation is critical for the development of the cardiac valves, chamber septation and formation of the cardiac conduction system. Consequently, problems in AVC formation can lead to congenital defects ranging from cardiac arrhythmia to incomplete cardiac septation. While our knowledge about early heart tube formation is relatively comprehensive, much remains to be investigated about the genes that regulate AVC formation. Here we identify a new role for the basic helix-loop-helix factor Id4 in zebrafish AVC valve development and function. id4 is first expressed in the AVC endocardium and later becomes more highly expressed in the atrial chamber. TALEN induced inactivation of id4 causes retrograde blood flow at the AV canal under heat induced stress conditions, indicating defects in AV valve function. At the molecular level, we found that id4 inactivation causes misexpression of several genes important for AVC and AV valve formation including bmp4 and spp1. We further show that id4 appears to control the number of endocardial cells that contribute to the AV valves by regulating Wnt signaling in the developing AVC endocardium. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Endocardial Remodeling in Heart Failure Patients with Impaired and Preserved Left Ventricular Systolic Function--A Magnetic Resonance Image Study.

    PubMed

    Lin, Lian-Yu; Su, Mao-Yuan M; Pham, Van-Truong; Tran, Thi-Thao; Wang, Yung-Hung; Tseng, Wen-Yih I; Lo, Men-Tzung; Lin, Jiunn-Lee

    2016-02-15

    Left ventricular (LV) trabeculation has been studied in certain forms of cardiomyopathy. However, the changes of LV endocardial trabeculation during the remodeling process leading to heart failure (HF) are unclear. Seventy-four patients with systolic heart failure (SHF), 65 with heart failure with preserved ejection fraction (HFpEF) and 61 without HF were prospectively enrolled. All subjects received magnetic resonance imaging (MRI) study including cine, T1 and late gadolinium enhancement (LGE) images. Trabecular-papillary muscle (TPM) mass, fractal dimension (FD) and extracellular volume (ECV) were derived. The results showed that TPM mass index was higher in patients with SHF than that in patients with HFpEF and non-HF. The TPM mass-LV mass ratio (TPMm/LVM) was higher in SHF group than that in HFpEF and non-HF. FD was not different among groups. The presence of LGE was inversely associated with TPM mass index and TPMm/LVM while the ECV were positively associated with TPMm/LVM. The FD was positively associated with LV chamber size. In conclusion, TPM increases in patients with SHF and are probably related to myocardial cell hypertrophy and fibrotic repair during remodeling. The FD increases with the dilatation of LV chamber but remain unchanged with the deterioration of LV function.

  15. Length-tension relationships of sub-epicardial and sub-endocardial single ventricular myocytes from rat and ferret hearts.

    PubMed

    Cazorla, O; Le Guennec, J Y; White, E

    2000-05-01

    In vivo the sub-epicardial myocardium (EPI) and sub-endocardial myocardium (ENDO) operate over different ranges of sarcomere length (SL). However, it has not been previously shown whether EPI and ENDO work upon different ranges of the same or differing length-tension curves. We have compared the SL-tension relationship of intact, single ventricular EPI and ENDO myocytes from rat and ferret hearts. Cells were attached to carbon fibres of known compliance in order to stretch them and to record force at rest (passive tension) and during contractions (active tension). In both species, ENDO cells were significantly stiffer (i.e. had steeper SL-passive tension relationships) than EPI cells. Ferret ENDO cells had significantly steeper SL-active tension relationships than EPI cells; rat cells tended to behave similarly but no significant regional differences in active properties were observed. There were no inter-species differences in the active and passive properties of EPI cells, but ferret ENDO cells displayed significantly steeper passive and active SL-tension relationships than rat ENDO. We conclude that in vivo, ferret EPI and ENDO myocytes will function over different ranges of different SL-tension curves. There is a close relationship between SL and active tension (the Frank-Starling law of the heart), and our observations suggest that regional differences in the response to ventricular dilation will depend on both the change in SL and differing regional slopes of the SL-active tension curves.

  16. Nuclear Membranes ETB Receptors Mediate ET-1-induced Increase of Nuclear Calcium in Human Left Ventricular Endocardial Endothelial Cells.

    PubMed

    Jules, Farah; Avedanian, Levon; Al-Khoury, Johny; Keita, Ramatoulaye; Normand, Alexandre; Bkaily, Ghassan; Jacques, Danielle

    2015-07-01

    In fetal human left ventricular endocardial endothelial cells (EECLs), both plasma membrane (PM) ET(A)R and ET(B)R were reported to mediate ET-1-induced increase of intracellular calcium [Ca](i); however, this effect was mediated by ET(A)R in right EECs (EECRs). In this study, we verified whether, as for the PM, nuclear membranes (NMs) ET-1 receptors activation in EECLs and EECRs induce an increase of nuclear calcium ([Ca](n)) and if this effect is mediated through the same receptor type as in PM. Using a plasmalemma-perforated technique and 3D confocal microscopy, our results showed that, as in PM intact cells, superfusion of nuclei of both cell types with cytosolic ET-1 induced a concentration-dependent sustained increase of [Ca](n). In EECRs, the ET(A)R antagonist prevented the effect of ET-1 on [Ca](n) without affecting EECLs. However, in both cell types, the effect of cytosolic ET-1 on [Ca](n) was prevented by the ETBR antagonist. In conclusion, both NMs' ET(A)R and ET(B)R mediated the effect of cytosolic ET-1 on [Ca](n) in EECRs. In contrast, only NMs' ET(B)R activation mediated the effect of cytosolic ET-1 in EECLs. Hence, the type of NMs' receptors mediating the effect of ET-1 on [Ca](n) are different from those of PM mediating the increase in [Ca](i).

  17. Mechanism of electromechanical coupling in voltage-gated potassium channels.

    PubMed

    Blunck, Rikard; Batulan, Zarah

    2012-01-01

    Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion - sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3-4e(+) each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during gating.

  18. Mechanism of Electromechanical Coupling in Voltage-Gated Potassium Channels

    PubMed Central

    Blunck, Rikard; Batulan, Zarah

    2012-01-01

    Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3–4e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4–S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during

  19. Modelling and design of all-organic electromechanic transducers

    NASA Astrophysics Data System (ADS)

    Fortuna, L.; Graziani, S.; La Rosa, M.; Nicolosi, D.; Sicurella, G.; Umana, E.

    2009-04-01

    The recent development of innovative organic materials with intriguing features such as their flexibility, lightness, low cost and easy manufacturability, has driven researchers to develop innovative smart applications based on such kind of materials. In this work, all-organic electromechanical transducers, with both sensing and acting capabilities are proposed. The actuator and sensor models have been identified by using a grey box approach, as a function of membrane geometric parameters. The obtained models have been validated through comparison among estimated and experimental data.

  20. A versatile feedback controller for electro-mechanical stimulation devices.

    PubMed

    Bohnenberger, J; Seyfarth, E A; Barth, F G

    1983-12-01

    Neurophysiological and behavioral work often requires that various laboratory stimulators be feedback-stabilized. We describe the design and performance of a versatile electronic controller that can be used to extend and flatten the frequency response of commercially available stimulating devices. The design includes flexible proportional-integral-derivative control action and active second-order, high-pass compensation. As an example application of this controller to 3 different electro-mechanical vibrator/transducer combinations demonstrates that the useful frequency response can be extended by more than a decade as compared with the uncontrolled device.

  1. Micro Electro-Mechanical System (MEMS) Pressure Sensor for Footwear

    DOEpatents

    Kholwadwala, Deepesh K.; Rohrer, Brandon R.; Spletzer, Barry L.; Galambos, Paul C.; Wheeler, Jason W.; Hobart, Clinton G.; Givler, Richard C.

    2008-09-23

    Footwear comprises a sole and a plurality of sealed cavities contained within the sole. The sealed cavities can be incorporated as deformable containers within an elastic medium, comprising the sole. A plurality of micro electro-mechanical system (MEMS) pressure sensors are respectively contained within the sealed cavity plurality, and can be adapted to measure static and dynamic pressure within each of the sealed cavities. The pressure measurements can provide information relating to the contact pressure distribution between the sole of the footwear and the wearer's environment.

  2. Inherent Problems in Designing Two-Failure Tolerant Electromechanical Actuators

    NASA Technical Reports Server (NTRS)

    Hornyak, S.

    1984-01-01

    An electromechanical ac-powered rotary actuated four-bar linkage system for rotating the Shuttle/Centaur deployment adapter is described. The essential features of the deployment adapter rotation system (DARS) are increased reliability for mission success and maximum practical hazard control for safety. The requirements, concept development, hardware configuration, quality assurance provisions, and techniques used to meet two-fault tolerance requirements are highlighted. The rationale used to achieve a degree of safety equivalent of that of two-failure tolerance is presented. Conditions that make this approach acceptable, including single failure point components with regard to redundancy versus credibility of failure modes, are also discussed.

  3. Micro-electromechanical spatial light modulators with integrated electronics

    NASA Astrophysics Data System (ADS)

    Cornelissen, Steven; Bifano, Thomas G.; Bierden, Paul A.

    2002-02-01

    This paper describes design and development of a microelectromechanical, micromachined spatial light modulator ((mu) SLM) integrated with complementary metal- oxide semiconductor (CMOS) electronics, for control of optical phase in phase-only optical correlators. The (mu) SLM will consist of a large array of piston-motion MEMS mirror segments (pixels) each of which capable of altering the phase of reflected light by up to one wavelength for infrared (1.5 micrometers ) illumination. Results of a proof-of- concept study are presented along with an electromechanical model and details of the fabrication process for the (mu) SLM.

  4. Design and application of electromechanical actuators for deep space missions

    NASA Technical Reports Server (NTRS)

    Haskew, Tim A.; Wander, John

    1995-01-01

    This third semi-annual progress report covers the reporting period from August 16, 1994 through February 15, 1995 on NASA Grant NAG8-240, 'Design and Application of Electromechanical Actuators for Deep Space Missions'. There are two major report sections: Motor Control Status/Electrical Experiment Planning and Experiment Planning and Initial Results. The primary emphasis of our efforts during the reporting period has been final construction and testing of the laboratory facilities. As a result, this report is dedicated to that topic.

  5. Optical driven electromechanical transistor based on tunneling effect.

    PubMed

    Jin, Leisheng; Li, Lijie

    2015-04-15

    A new electromechanical transistor based on an optical driven vibrational ring structure has been postulated. In the device, optical power excites the ring structure to vibrate, which acts as the shuttle transporting electrons from one electrode to the other forming the transistor. The electrical current of the transistor is adjusted by the optical power. Coupled opto-electro-mechanical simulation has been performed. It is shown from the dynamic analysis that the stable working range of the transistor is much wider than that of the optical wave inside the cavity, i.e., the optical resonance enters nonperiodic states while the mechanical vibration of the ring is still periodic.

  6. Design of high power electromechanical actuator for thrust vector control

    NASA Technical Reports Server (NTRS)

    Cowan, J. R.; Myers, W. N.

    1991-01-01

    NASA-Marshall has undertaken the development of electromechanical actuators (EMAs) for thrust vector control (TVC) augmentation system implementation. The TVC EMA presented has as its major components two three-phase brushless dc motors, a two-pass gear-reduction system, and a roller screw for rotary-to-linear motion conversion. System control is furnished by a solid-state electronic controller and power supply; a pair of resolvers deliver position feedback to the controller, such that precise positioning is achieved. Peformance comparisons have been conducted between the EMA and comparable-performance hydraulic systems applicable to TVCs.

  7. Improved electromechanical behavior in castable dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Akbari, Samin; Rosset, Samuel; Shea, Herbert R.

    2013-02-01

    Non-viscoelastic castable elastomers are replacing the polyacrylate VHB films in the new generations of dielectric elastomer actuators (DEAs) to achieve fast and reliable actuation. We introduce the optimum prestretch conditions to enhance the electromechanical behavior of the castable DEAs resulting in large actuation strain. For castable actuator in which the thickness is selected independent of the prestretch, uniaxial prestretch mode offers the highest actuation strain in the transverse direction compared to biaxial and pure shear. We experimentally demonstrate that miniaturization hinders the loss of tension and up to 85% linear actuation strain is generated with a 300 × 300 μm2 polydimethylsiloxanes-based DEA.

  8. Revolution of Sensors in Micro-Electromechanical Systems

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    2012-08-01

    Microsensors realized by micro-electromechanical systems (MEMS) technology play a key role as the input devices of systems. In this report, the following sensors are reviewed: piezoresistive and capacitive pressure sensors, surface acoustic wave (SAW) wireless pressure sensors, tactile sensor networks for robots, accelerometers, angular velocity sensors (gyroscopes), range image sensors using optical scanners, infrared imagers, chemical sensing systems as Fourier transform infrared (FTIR) spectroscopy and gas chromatography, flow sensors for fluids, and medical sensors such as ultrafine optical-fiber blood pressure sensors and implantable pressure sensors.

  9. Hopf and period-doubling bifurcations in an electromechanical resonator

    NASA Astrophysics Data System (ADS)

    Mahboob, I.; Dupuy, R.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.

    2016-08-01

    An electromechanical resonator is developed in which the dissipation can be dynamically eliminated. The resultant motional dynamics captured by the Van der Pol equation of motion opens up the possibility of a Hopf bifurcation where the mechanical resonance loses stability when the dissipation is eliminated and period-doubling bifurcations when the dissipation becomes negative. In this latter regime, the mechanical spectral response is characterised by multi-stability spanning a bandwidth that is more than an order of magnitude wider than the intrinsic linewidth and it sustains a peak structure that can be tuned by the input used to dynamically manipulate the dissipation.

  10. Electromechanical and conductance switching properties of single oligothiophene molecules.

    PubMed

    Xu, Bingqian Q; Li, Xiulan L; Xiao, Xiaoyin Y; Sakaguchi, Hiroshi; Tao, Nongjian J

    2005-07-01

    We have studied the electron transport and electromechanical properties of single oligothiophenes with three and four thiophene repeating units covalently linked to two Au electrodes. The four-repeating unit molecule is found to be more conductive than the three-repeating unit molecule. This unusual length dependence is due to the different electronic states of the molecules. Both molecules can be switched reversibly between a high and low conducting state by oxidizing and reducing the molecules using an electrochemical gate. The conductance of the molecules decreases upon stretching, which is attributed to a force-induced increase in the HOMO-LUMO gap.

  11. Design of high power electromechanical actuator for thrust vector control

    NASA Technical Reports Server (NTRS)

    Cowan, J. R.; Myers, W. N.

    1991-01-01

    NASA-Marshall has undertaken the development of electromechanical actuators (EMAs) for thrust vector control (TVC) augmentation system implementation. The TVC EMA presented has as its major components two three-phase brushless dc motors, a two-pass gear-reduction system, and a roller screw for rotary-to-linear motion conversion. System control is furnished by a solid-state electronic controller and power supply; a pair of resolvers deliver position feedback to the controller, such that precise positioning is achieved. Peformance comparisons have been conducted between the EMA and comparable-performance hydraulic systems applicable to TVCs.

  12. Cardiovascular magnetic resonance of the myocardium at risk in acute reperfused myocardial infarction: comparison of T2-weighted imaging versus the circumferential endocardial extent of late gadolinium enhancement with transmural projection.

    PubMed

    Ubachs, Joey F A; Engblom, Henrik; Erlinge, David; Jovinge, Stefan; Hedström, Erik; Carlsson, Marcus; Arheden, Håkan

    2010-03-29

    In the situation of acute coronary occlusion, the myocardium supplied by the occluded vessel is subject to ischemia and is referred to as the myocardium at risk (MaR). Single photon emission computed tomography has previously been used for quantitative assessment of the MaR. It is, however, associated with considerable logistic challenges for employment in clinical routine. Recently, T2-weighted cardiovascular magnetic resonance (CMR) has been introduced as a new method for assessing MaR several days after the acute event. Furthermore, it has been suggested that the endocardial extent of infarction as assessed by late gadolinium enhanced (LGE) CMR can also be used to quantify the MaR. Hence, we sought to assess the ability of endocardial extent of infarction by LGE CMR to predict MaR as compared to T2-weighted imaging. Thirty-seven patients with early reperfused first-time ST-segment elevation myocardial infarction underwent CMR imaging within the first week after percutaneous coronary intervention. The ability of endocardial extent of infarction by LGE CMR to assess MaR was evaluated using T2-weighted imaging as the reference method. MaR determined with T2-weighted imaging (34 +/- 10%) was significantly higher (p < 0.001) compared to the MaR determined with endocardial extent of infarction (23 +/- 12%). There was a weak correlation between the two methods (r2 = 0.17, p = 0.002) with a bias of -11 +/- 12%. Myocardial salvage determined with T2-weighted imaging (58 +/- 22%) was significantly higher (p < 0.001) compared to myocardial salvage determined with endocardial extent of infarction (45 +/- 23%). No MaR could be determined by endocardial extent of infarction in two patients with aborted myocardial infarction. This study demonstrated that the endocardial extent of infarction as assessed by LGE CMR underestimates MaR in comparison to T2-weighted imaging, especially in patients with early reperfusion and aborted myocardial infarction.

  13. Troubleshooting of an Electromechanical System (Westinghouse PLC Controlling a Pneumatic Robot). High-Technology Training Module.

    ERIC Educational Resources Information Center

    Tucker, James D.

    This training module on the troubleshooting of an electromechanical system, The Westinghouse Programmable Logic Controller (PLC) controlling a pneumatic robot, is used for a troubleshooting unit in an electromechanical systems/robotics and automation systems course. In this unit, students locate and repair a defect in a PLC-operated machine. The…

  14. Automated system for definition of life-cycle resources of electromechanical equipment

    NASA Astrophysics Data System (ADS)

    Zhukovskiy, Y.; Koteleva, N.

    2017-02-01

    The frequency of maintenance of electromechanical equipment depends on the plant, which uses and runs this equipment. Very often the maintenance frequency is poorly correlated with the actual state of the electromechanical equipment. Furthermore, traditional methods of diagnosis sometimes cannot work without stopping the process (for example, for equipment located in hard to reach places) and so the maintenance costs are increased. This problem can be solved using the indirect methods of diagnosing of the electromechanical equipment. The indirect methods often use the parameters in the real time and seldom use the parameters of traditional diagnostic methods for determination of the resource of electromechanical equipment. This article is dedicated to developing the structure of a special automated control system. This system must use the big flow of the information about the direct and indirect parameters of the equipment state from plants from different areas of industry and factories which produce the electromechanical equipment.

  15. Electromechanical phase transition in dielectric elastomers under uniaxial tension and electrical voltage

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Suo, Zhigang

    2012-02-01

    Subject to forces and voltage, a dielectric elastomer may undergo electromechanical phase transition. A phase diagram is constructed for an ideal dielectric elastomer membrane under uniaxial force and voltage, reminiscent of the phase diagram for liquid-vapor transition of a pure substance. We identify a critical point for the electromechanical phase transition. Two states of deformation (thick and thin) may coexist during the phase transition, with the mismatch in lateral stretch accommodated by wrinkling of the membrane in the thin state. The processes of electromechanical phase transition under various conditions are discussed. A reversible cycle is suggested for electromechanical energy conversion using the dielectric elastomer membrane, analogous to the classical Carnot cycle for a heat engine. The amount of energy conversion, however, is limited by failure of the dielectric elastomer due to electrical breakdown. With a particular combination of material properties, the electromechanical energy conversion can be significantly extended by taking advantage of the phase transition without electrical breakdown.

  16. Towards local electromechanical probing of cellular and biomolecular systems in a liquid environment.

    PubMed

    Kalinin, Sergei V; Rodriguez, Brian J; Jesse, Stephen; Seal, Katyayani; Proksch, Roger; Hohlbauch, Sophia; Revenko, Irene; Thompson, Gary Lee; Vertegel, Alexey A

    2007-10-24

    Electromechanical coupling is ubiquitous in biological systems, with examples ranging from simple piezoelectricity in calcified and connective tissues to voltage-gated ion channels, energy storage in mitochondria, and electromechanical activity in cardiac myocytes and outer hair cell stereocilia. Piezoresponse force microscopy (PFM) originally emerged as a technique to study electromechanical phenomena in ferroelectric materials, and in recent years has been employed to study a broad range of non-ferroelectric polar materials, including piezoelectric biomaterials. At the same time, the technique has been extended from ambient to liquid imaging on model ferroelectric systems. Here, we present results on local electromechanical probing of several model cellular and biomolecular systems, including insulin and lysozyme amyloid fibrils, breast adenocarcinoma cells, and bacteriorhodopsin in a liquid environment. The specific features of PFM operation in liquid are delineated and bottlenecks on the route towards nanometre-resolution electromechanical imaging of biological systems are identified.

  17. Electrets in soft materials: nonlinearity, size effects, and giant electromechanical coupling.

    PubMed

    Deng, Qian; Liu, Liping; Sharma, Pradeep

    2014-07-01

    Development of soft electromechanical materials is critical for several tantalizing applications such as soft robots and stretchable electronics, among others. Soft nonpiezoelectric materials can be coaxed to behave like piezoelectrics by merely embedding charges and dipoles in their interior and assuring some elastic heterogeneity. Such so-called electret materials have been experimentally shown to exhibit very large electromechanical coupling. In this work, we derive rigorous nonlinear expressions that relate effective electromechanical coupling to the creation of electret materials. In contrast to the existing models, we are able to both qualitatively and quantitatively capture the known experimental results on the nonlinear response of electret materials. Furthermore, we show that the presence of another form of electromechanical coupling, flexoelectricity, leads to size effects that dramatically alter the electromechanical response at submicron feature sizes. One of our key conclusions is that nonlinear deformation (prevalent in soft materials) significantly enhances the flexoelectric response and hence the aforementioned size effects.

  18. The electromechanical response of silicon nanowires to buckling mode transitions.

    PubMed

    Wong, Chee Chung; Reboud, Julien; Neuzil, Pavel; Soon, Jeffrey; Agarwal, Ajay; Balasubramanian, Naranayan; Liao, Kin

    2010-10-08

    Here we show how the electromechanical properties of silicon nanowires (NWs) are modified when they are subjected to extreme mechanical deformations (buckling and buckling mode transitions), such as those appearing in flexible devices. Flexible devices are prone to frequent dynamic stress variations, especially buckling, while the small size of NWs could give them an advantage as ultra-sensitive electromechanical stress sensors embedded in such devices. We evaluated the NWs post-buckling behavior and the effects of buckling mode transition on their piezoresistive gauge factor (GF). Polycrystalline silicon NWs were embedded in SiO(2) microbridges to facilitate concurrent monitoring of their electrical resistance without problematic interference, while an external stylus performed controlled deformations of the microbridges. At points of instability, the abrupt change in the buckling configuration of the microbridge corresponded to a sharp resistance change in the embedded NWs, without altering the NWs' GF. These results also highlight the importance of strategically positioning the NW in the devices, since electrical monitoring of buckling mode transitions is feasible when the deformations impact a region where the NW is placed. The highly flexible NWs also exhibited unusually large fracture strength, sustaining tensile strains up to 5.6%; this will prove valuable in demanding flexible sensors.

  19. An electromechanical model of neuronal dynamics using Hamilton's principle

    PubMed Central

    Drapaca, Corina S.

    2015-01-01

    Damage of the brain may be caused by mechanical loads such as penetration, blunt force, shock loading from blast, and by chemical imbalances due to neurological diseases and aging that trigger not only neuronal degeneration but also changes in the mechanical properties of brain tissue. An understanding of the interconnected nature of the electro-chemo-mechanical processes that result in brain damage and ultimately loss of functionality is currently lacking. While modern mathematical models that focus on how to link brain mechanics to its biochemistry are essential in enhancing our understanding of brain science, the lack of experimental data required by these models as well as the complexity of the corresponding computations render these models hard to use in clinical applications. In this paper we propose a unified variational framework for the modeling of neuronal electromechanics. We introduce a constrained Lagrangian formulation that takes into account Newton's law of motion of a linear viscoelastic Kelvin–Voigt solid-state neuron as well as the classic Hodgkin–Huxley equations of the electronic neuron. The system of differential equations describing neuronal electromechanics is obtained by applying Hamilton's principle. Numerical simulations of possible damage dynamics in neurons will be presented. PMID:26236195

  20. Modeling and Simulation of Explosively Driven Electromechanical Devices

    NASA Astrophysics Data System (ADS)

    Demmie, Paul N.

    2001-06-01

    Components that store electrical energy in ferroelectrics and produce currents when their permittivity is explosively reduced are used in a variety of applications. The modeling and simulation of such devices is a challenging problem since one has to represent the coupled physics of detonation, shock propagation, and electromagnetic field generation. The high fidelity modeling and simulation of complicated electromechanical devices was not feasible prior to having the ASCI computer and the ASCI developed codes at Sandia National Laboratories. One tool used to model and simulate the performance of such devices is the EMMA computer code. EMMA is based on the ALEGRA code which is an arbitrary Lagrangian-Eulerian material dynamics code that accommodates large deformations and strong shock physics. EMMA adds to ALEGRA the capabilities to perform electromagnetic calculations based on a quasi-static approximation to Maxwell's equations and to model circuits. EMMA includes models for ferroelectric materials that couple the stress and dielectric tensors through a set of electrostrictive coupling parameters. Here, I discuss the capabilities of the EMMA code for modeling and simulation one such electromechanical device, a firing set, with the added complexity of assessing its performance with aged materials. The calibration of the models using experimental data is also discussed.

  1. Effective electromechanical moduli of ferroelectric ceramics with fiber textures

    NASA Astrophysics Data System (ADS)

    Zhou, Y. C.; Liu, J.; Li, J. Y.

    2005-06-01

    In this letter, we report the predictions on the effective piezoelectric coefficients and electromechanical coupling factors of ferroelectric ceramics BaTiO3 and Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) with various fiber textures, including [001], [011], and [111], using a two-scale micromechanical model that accounts for microstructural phenomena at both domain and grain levels. It was observed that for BaTiO3 the [011] texture is optimal with highest d31 and d33, while for PMN-PT [001] texture is optimal despite the fact that [011]-oriented single-crystalline PMN-PT has higher d32 than that of [001]-oriented PMN-PT single crystal. In fact, [011]-textured PMN-PT ceramics have much smaller piezoelectric coefficients d32 and d33 than does [011]-oriented PMN-PT single crystal. It is also noted that [001]-textured BaTiO3 and PMN-PT ceramics have even higher electromechanical coupling factor k31 than that of [001]-oriented single crystals.

  2. Design and application of electromechanical actuators for deep space missions

    NASA Astrophysics Data System (ADS)

    Haskew, Tim A.; Wander, John

    1993-09-01

    The annual report Design and Application of Electromechanical Actuators for Deep Space Missions is presented. The reporting period is 16 Aug. 1992 to 15 Aug. 1993. However, the primary focus will be work performed since submission of our semi-annual progress report in Feb. 1993. Substantial progress was made. We currently feel confident in providing guidelines for motor and control strategy selection in electromechanical actuators to be used in thrust vector control (TVC) applications. A small portion was presented in the semi-annual report. At this point, we have implemented highly detailed simulations of various motor/drive systems. The primary motor candidates were the brushless dc machine, permanent magnet synchronous machine, and the induction machine. The primary control implementations were pulse width modulation and hysteresis current control. Each of the two control strategies were applied to each of the three motor choices. With either pulse width modulation or hysteresis current control, the induction machine was always vector controlled. A standard test position command sequence for system performance evaluation is defined. Currently, we are gathering all of the necessary data for formal presentation of the results. Briefly stated for TVC application, we feel that the brushless dc machine operating under PWM current control is the best option. Substantial details on the topic, with supporting simulation results, will be provided later, in the form of a technical paper prepared for submission and also in the next progress report with more detail than allowed for paper publication.

  3. Electromechanical impedance response of a cracked Timoshenko beam.

    PubMed

    Zhang, Yuxiang; Xu, Fuhou; Chen, Jiazhao; Wu, Cuiqin; Wen, Dongdong

    2011-01-01

    Typically, the Electromechanical Impedance (EMI) technique does not use an analytical model for basic damage identification. However, an accurate model is necessary for getting more information about any damage. In this paper, an EMI model is presented for predicting the electromechanical impedance of a cracked beam structure quantitatively. A coupled system of a cracked Timoshenko beam with a pair of PZT patches bonded on the top and bottom surfaces has been considered, where the bonding layers are assumed as a Kelvin-Voigt material. The shear lag model is introduced to describe the load transfer between the PZT patches and the beam structure. The beam crack is simulated as a massless torsional spring; the dynamic equations of the coupled system are derived, which include the crack information and the inertial forces of both PZT patches and adhesive layers. According to the boundary conditions and continuity conditions, the analytical expression of the admittance of PZT patch is obtained. In the case study, the influences of crack and the inertial forces of PZT patches are analyzed. The results show that: (1) the inertial forces affects significantly in high frequency band; and (2) the use of appropriate frequency range can improve the accuracy of damage identification.

  4. Electromechanical Impedance Response of a Cracked Timoshenko Beam

    PubMed Central

    Zhang, Yuxiang; Xu, Fuhou; Chen, Jiazhao; Wu, Cuiqin; Wen, Dongdong

    2011-01-01

    Typically, the Electromechanical Impedance (EMI) technique does not use an analytical model for basic damage identification. However, an accurate model is necessary for getting more information about any damage. In this paper, an EMI model is presented for predicting the electromechanical impedance of a cracked beam structure quantitatively. A coupled system of a cracked Timoshenko beam with a pair of PZT patches bonded on the top and bottom surfaces has been considered, where the bonding layers are assumed as a Kelvin-Voigt material. The shear lag model is introduced to describe the load transfer between the PZT patches and the beam structure. The beam crack is simulated as a massless torsional spring; the dynamic equations of the coupled system are derived, which include the crack information and the inertial forces of both PZT patches and adhesive layers. According to the boundary conditions and continuity conditions, the analytical expression of the admittance of PZT patch is obtained. In the case study, the influences of crack and the inertial forces of PZT patches are analyzed. The results show that: (1) the inertial forces affects significantly in high frequency band; and (2) the use of appropriate frequency range can improve the accuracy of damage identification. PMID:22164017

  5. Circuit Electromechanics with a Non-Metallized Nano- beam

    NASA Astrophysics Data System (ADS)

    Pernpeintner, Matthias; Faust, T.; Hocke, F.; Kotthaus, J. P.; Weig, E. M.; Huebl, H.; Gross, R.

    2015-03-01

    In the field of cavity optomechanics, a motional degree of freedom is coupled to an optical cavity. This approach can be transferred to the solid state environment by combining a superconducting microwave cavity with a nanomechanical resonator. Typically, metallized mechanical resonators are used, coupling capacitively to the microwave cavity. In contrast, non-metallized nanomechanical beams provide higher quality factors and have therefore been employed e. g. for mechanical sensing devices. Here, we present an approach to integrate a pure, i. e. non-metallized nanobeam, into a nano-electromechanical device, which is based on the dielectric coupling between a superconducting coplanar waveguide microwave resonator and a tensile-stressed silicon nitride nanobeam. By making use of the Duffing nonlinearity of the strongly driven beam, we calibrate the amplitude spectrum of the mechanical motion and determine the electromechanical vacuum coupling. We find a quality factor of 480 , 000 at a resonance frequency of 14 MHz and 0.5 K. We deduce a vacuum coupling of 11 . 5 mHz , which is in quantitative agreement with finite element based model calculations.

  6. An electromechanical model of neuronal dynamics using Hamilton's principle.

    PubMed

    Drapaca, Corina S

    2015-01-01

    Damage of the brain may be caused by mechanical loads such as penetration, blunt force, shock loading from blast, and by chemical imbalances due to neurological diseases and aging that trigger not only neuronal degeneration but also changes in the mechanical properties of brain tissue. An understanding of the interconnected nature of the electro-chemo-mechanical processes that result in brain damage and ultimately loss of functionality is currently lacking. While modern mathematical models that focus on how to link brain mechanics to its biochemistry are essential in enhancing our understanding of brain science, the lack of experimental data required by these models as well as the complexity of the corresponding computations render these models hard to use in clinical applications. In this paper we propose a unified variational framework for the modeling of neuronal electromechanics. We introduce a constrained Lagrangian formulation that takes into account Newton's law of motion of a linear viscoelastic Kelvin-Voigt solid-state neuron as well as the classic Hodgkin-Huxley equations of the electronic neuron. The system of differential equations describing neuronal electromechanics is obtained by applying Hamilton's principle. Numerical simulations of possible damage dynamics in neurons will be presented.

  7. Electromechanical properties of smart aggregate: theoretical modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Kong, Qingzhao; Shi, Zhifei; Song, Gangbing

    2016-09-01

    Smart aggregate (SA), as a piezoceramic-based multi-functional device, is formed by sandwiching two lead zirconate titanate (PZT) patches with copper shielding between a pair of solid-machined cylindrical marble blocks with epoxy. Previous researches have successfully demonstrated the capability and reliability of versatile SAs to monitor the structural health of concrete structures. However, the previous works concentrated mainly on the applications of SAs in structural health monitoring; no reasonable theoretical model of SAs was proposed. In this paper, electromechanical properties of SAs were investigated using a proposed theoretical model. Based on one dimensional linear theory of piezo-elasticity, the dynamic solutions of a SA subjected to an external harmonic voltage were solved. Further, the electric impedance of the SA was computed, and the resonance and anti-resonance frequencies were calculated based on derived equations. Numerical analysis was conducted to discuss the effects of the thickness of epoxy layer and the dimension of PZT patch on the fundamental resonance and anti-resonance frequencies as well as the corresponding electromechanical coupling factor. The dynamic solutions based on the proposed theoretical model were further experimentally verified with two SA samples. The fundamental resonance and anti-resonance frequencies of SAs show good agreements in both theoretical and experimental results. The presented analysis and results contribute to the overall understanding of SA properties and help to optimize the working frequencies of SAs in structural health monitoring of civil structures.

  8. Design and application of electromechanical actuators for deep space missions

    NASA Technical Reports Server (NTRS)

    Haskew, Tim A.; Wander, John

    1993-01-01

    The annual report Design and Application of Electromechanical Actuators for Deep Space Missions is presented. The reporting period is 16 Aug. 1992 to 15 Aug. 1993. However, the primary focus will be work performed since submission of our semi-annual progress report in Feb. 1993. Substantial progress was made. We currently feel confident in providing guidelines for motor and control strategy selection in electromechanical actuators to be used in thrust vector control (TVC) applications. A small portion was presented in the semi-annual report. At this point, we have implemented highly detailed simulations of various motor/drive systems. The primary motor candidates were the brushless dc machine, permanent magnet synchronous machine, and the induction machine. The primary control implementations were pulse width modulation and hysteresis current control. Each of the two control strategies were applied to each of the three motor choices. With either pulse width modulation or hysteresis current control, the induction machine was always vector controlled. A standard test position command sequence for system performance evaluation is defined. Currently, we are gathering all of the necessary data for formal presentation of the results. Briefly stated for TVC application, we feel that the brushless dc machine operating under PWM current control is the best option. Substantial details on the topic, with supporting simulation results, will be provided later, in the form of a technical paper prepared for submission and also in the next progress report with more detail than allowed for paper publication.

  9. Nanotechnology in Auditory Research: Membrane Electromechanics in Hearing

    PubMed Central

    Araya, Mussie; Brownell, William E.

    2016-01-01

    The soft, thin membranes that envelop all living cells are 2D, nanoscale, fluid assemblies of phospholipids, sterols, proteins and other molecules. Mechanical interactions between these components facilitate membrane function, a key example of which is ion flow mediated by the mechanical opening and closing of channels. Hearing and balance are initiated by the modulation of ion flow through mechanoreceptor channels in stereocilia membranes. Cochlear amplification by the outer hair cell involves modulation of ion movement by the membrane protein prestin. Voltage gated ion channels shape the receptor potential in hair cells and are responsible for the initiation of action potentials that are at the heart of sensory processing in the brain. All three processes require a membrane and their kinetics are modulated by the mechanical (ie. material) properties of the membrane. This chapter reviews the methodology for measuring the mechanics of cellular membranes and introduces a method for examining membrane electromechanics. The approach allows examination of electromechanically mediated interactions between the different molecular species in the membrane that contribute to the biology of hearing and balance. PMID:27259937

  10. (Electro)Mechanical Properties of Olefinic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Spontak, Richard

    2014-03-01

    Conventional styrenic triblock copolymers (SBCs) swollen with a midblock-selective oil have been previously shown to exhibit excellent electromechanical properties as dielectric elastomers. In this class of electroactive polymers, compliant electrodes applied as active areas to opposing surfaces of an elastomer attract each other, and thus compress the elastomer due to the onset of a Maxwell stress, upon application of an external electric field. This isochoric process is accompanied by an increase in lateral area, which yields the electroactuation strain (measuring beyond 300% in SBC systems). Performance parameters such as the Maxwell stress, transverse strain, dielectric breakdown, energy density and electromechanical efficiency are determined directly from the applied electric field and resulting electroactuation strain. In this study, the same principle used to evaluate SBC systems is extended to olefinic block copolymers (OBCs), which can be described as randomly-coupled multiblock copolymers that consist of crystallizable polyethylene hard segments and rubbery poly(ethylene-co-octene) soft segments. Considerations governing the development of a methodology to fabricate electroresponsive OBC systems are first discussed for several OBCs differing in composition and bulk properties. Evidence of electroactuation in selectively-solvated OBC systems is presented and performance metrics measured therefrom are quantitatively compared with dielectric elastomers derived from SBC and related materials.

  11. Electromechanical properties of nanotube-PVA composite actuator bimorphs.

    PubMed

    Bartholome, Christèle; Derré, Alain; Roubeau, Olivier; Zakri, Cécile; Poulin, Philippe

    2008-08-13

    Oxidized multiwalled carbon nanotube (oxidized-MWNT)/polyvinyl alcohol (PVA) composite sheets have been prepared for electromechanical actuator applications. MWNT have been oxidized by nitric acid treatments. They were then dispersed in water and mixed with various amounts of PVA of high molecular weight (198 000 g mol(-1)). The composite sheets were then obtained through a membrane filtration process. The composition of the systems has been optimized to combine suitable mechanical and electrical properties. Thermogravimetric analysis, mechanical tensile tests and conductivity measurements show that the best compromise of mechanical and electrical properties was obtained for a PVA weight fraction of about 30 wt%. In addition, one face of the sheets was coated with gold to increase the conductivity of the sheets and promote uniform actuation. Pseudo-bimorph devices have been realized by subsequently coating the composite sheets with an inert layer of PVA. The devices have been tested electromechanically in a liquid electrolyte (tetrabutylammonium/tetrafluoroborate (TBA/TFB) in acetonitrile) at constant frequency and different applied voltages, from 2 to 10 V. Measurements of the bimorph deflections were used to determine the stress generated by the nanotube-PVA sheets. The results show that the stress generated increases with increasing amplitude of the applied voltage and can reach 1.8 MPa. This value compares well with and even exceeds the stress generated by recently obtained bimorphs made of gold nanoparticles.

  12. A unique, efficient, implantable, electromechanical, total artificial heart.

    PubMed

    Takatani, S; Shiono, M; Sasaki, T; Sakuma, I; Glueck, J; Sekela, M; Noon, G; Nose, Y; DeBakey, M

    1991-01-01

    A completely implantable, one piece electromechanical total artificial heart (TAH) intended for permanent human use was developed. It consisted of left and right conically shaped pusher-plate blood pumps sandwiching a thin centerpiece with a compact, efficient electromechanical actuator. The actuator consisted of a direct current brushless motor; a planetary roller screw fit the space between the two conically shaped pusher-plates. The rotational motion of the motor was converted to the rectilinear motion of the rollerscrew to displace the left and right pusher-plates in the left master alternate mode. The diameter of the assembled TAH was 97 mm, with a central thickness of 82 mm. The overall weight was 620 g, with a displaced volume of 510 ml. The pump provided flows of 3-8 L/min with a preload of 1-15 mmHg against an afterload of 100 mmHg. The net efficiency ranged from 15% to 18%. This model showed good fit in the pericardial space of heart transplant recipients (body weight, 77 kg).

  13. Electromechanical coupling in piezoelectric nanobeams due to the flexoelectric effect

    NASA Astrophysics Data System (ADS)

    Zhou, Z. D.; Yang, C. P.; Su, Y. X.; Huang, R.; Lin, X. L.

    2017-09-01

    The flexoelectric effect is a coupling of polarization and strain gradient, which exists in a wide variety of materials and may lead to strong size-dependent properties at the nanoscale. Based on an extension to the classical beam model, this paper investigates the electromechanical coupling response of piezoelectric nanobeams with different electrical boundary conditions including the effect of flexoelectricity. The electric Gibbs free energy and the variational principle are used to derive the governing equations with three types of electrical boundary conditions. Closed-form solutions are obtained for static bending of cantilever beams. The results show that the normalized effective stiffness increases with decreasing beam thickness in the open circuit electrical boundary conditions with or without surface electrodes. The induced electric potential due to the flexoelectric effect is obtained under the open circuit conditions, which may be important for sensing or energy harvesting applications. An intrinsic thickness depending on the material properties is identified for the maximum induced electric potential. The present results also show that flexoelectricity has a more significant effect on the electroelastic responses than piezoelectricity at the nanoscale. Our analysis in the present study can be useful for understanding of the electromechanical coupling in nanobeams with flexoelectricity.

  14. Silicon Micropore based Electromechanical Transducer to Differentiate Tumor Cells

    NASA Astrophysics Data System (ADS)

    Ali, Waqas; Raza, Muhammad U.; Khanzada, Raja R.; Kim, Young-Tae; Iqbal, Samir M.

    2015-03-01

    Solid-state micropores have been used before to differentiate cancer cells from normal cells using size-based filtering. Tumor cells differ from normal ones not only in size but also in physical properties like elasticity, shape, motility etc. Tumor cells show different physical attributes depending on the stage and type of cancer. We report a micropore based electromechanical transducer that differentiated cancer cells based on their mechanophysical properties. The device was interfaced with a high-speed patch-clamp measurement system that biased the ionic solution across the silicon-based membrane. The bias resulted in the flow of ionic current. Electrical pulses were generated when cells passed through. Different cells depicted characteristic pulses. Translocation profiles of cells that were either small or were more elastic and flexible caused electrical pulses shorter in widths and amplitudes whereas cells with larger size or lesser elasticity/flexibility showed deeper and wider pulses. Three non-small cell lung cancer (NSCLC) cell lines NCI-H1155, A549 and NCI-H460 were successfully differentiated. NCI-H1155, due to their comparatively smaller size, were found quickest in translocating through. The solid-sate micropore based electromechanical transducer could process the whole blood sample of cancer patient without any pre-processing requirements and is ideal for point-of-care applications. Support Acknowledged from NSF through ECCS-1201878.

  15. A multiple degree of freedom electromechanical Helmholtz resonator.

    PubMed

    Liu, Fei; Horowitz, Stephen; Nishida, Toshikazu; Cattafesta, Louis; Sheplak, Mark

    2007-07-01

    The development of a tunable, multiple degree of freedom (MDOF) electromechanical Helmholtz resonator (EMHR) is presented. An EMHR consists of an orifice, backing cavity, and a compliant piezoelectric composite diaphragm. Electromechanical tuning of the acoustic impedance is achieved via passive electrical networks shunted across the piezoceramic. For resistive and capacitive loads, the EMHR is a 2DOF system possessing one acoustic and one mechanical DOF. When inductive ladder networks are employed, multiple electrical DOF are added. The dynamics of the multi-energy domain system are modeled using lumped elements and are represented in an equivalent electrical circuit, which is used to analyze the tunable acoustic input impedance of the EMHR. The two-microphone method is used to measure the acoustic impedance of two EMHR designs with a variety of resistive, capacitive, and inductive shunts. For the first design, the data demonstrate that the tuning range of the second resonant frequency for an EMHR with non-inductive shunts is limited by short- and open-circuit conditions, while an inductive shunt results in a 3DOF system possessing an enhanced tuning range. The second design achieves stronger coupling between the Helmholtz resonator and the piezoelectric backplate, and both resonant frequencies can be tuned with different non-inductive loads.

  16. Tuning the Electromechanical Properties of Single DNA Molecular Junctions.

    PubMed

    Bruot, Christopher; Xiang, Limin; Palma, Julio L; Li, Yueqi; Tao, Nongjian

    2015-11-04

    Understanding the interplay between the electrical and mechanical properties of DNA molecules is important for the design and characterization of molecular electronic devices, as well as understanding the role of charge transport in biological functions. However, to date, force-induced melting has limited our ability to investigate the response of DNA molecular conductance to stretching. Here we present a new molecule-electrode linker based on a hairpin-like design, which prevents force-induced melting at the end of single DNA molecules during stretching by stretching both strands of the duplex evenly. We find that the new linker group gives larger conductance than previously measured DNA-electrode linkers, which attach to the end of one strand of the duplex. In addition to changing the conductance the new linker also stabilizes the molecule during stretching, increasing the length a single DNA molecule can be stretched before an abrupt decrease in conductance. Fitting these electromechanical properties to a spring model, we show that distortion is more evenly distributed across the single DNA molecule during stretching, and thus the electromechanical effects of the π-π coupling between neighboring bases is measured.

  17. Assessment of atrial electromechanical interval using echocardiography after catheter ablation in patients with persistent atrial fibrillation

    PubMed Central

    Chen, Xiaodong; Chen, Minglong; Wang, Yingying; Yang, Bing; Ju, Weizhu; Zhang, Fengxiang; Cao, Kejiang

    2016-01-01

    Abstract We sought to investigate variation of atrial electromechanical interval after catheter ablation procedure in patients with persistent atrial fibrillation using pulse Doppler (PW) and pulse tissue Doppler imaging (PW-TDI). A total of 25 consecutive in-patients with persistent atrial fibrillation, who restored sinus rhythm after ablation procedure, were recruited in our cardiac center. Echocardiography was performed on each patient at 2 hours, 1 day, 5 days, 1 month and 3 months after the ablation therapy, and atrial electromechanical delay was measured simultaneously by PW and PW-TDI. There was no significant difference between PW and TDI in measuring atrial electromechanical delay. However, at postoperative 2 hours, peak A detection rates were mathematically but nonsignificantly greater by PW-TDI than by PW. Second, there was a significant decreasing trend in atrial electromechanical interval from postoperative 2 hours to 3 months, but only postoperative 2-hour atrial electromechanical interval was significantly greater than atrial electromechanical interval at other time. Lastly, patients without postoperative 2-hour atrial electromechanical interval had a significantly longer duration of atrial fibrillation as compared to those with postoperative 2-hour atrial electromechanical interval, by the PW or by PW-TDI, respectively. In patients with persistent atrial fibrillation, atrial electromechanical interval may decrease significantly within the first 24 hours after ablation but remain consistent later, and was significantly related to patients’ duration of atrial fibrillation. Atrial electromechanical interval, as a potential predicted factor, is recommended to be measured by either PW or TDI after 24 hours, when patients had recovered sinus rhythm by radiofrequency ablation. PMID:27924066

  18. Development of a Tunable Electromechanical Acoustic Liner for Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Liu, Fei; Sheplak, Mark; Cattafesta, Louis N., III

    2007-01-01

    This report describes the development of a tunable electromechanical Helmholtz resonator (EMHR) for engine nacelles using smart materials technology. This effort addresses both near-term and long-term goals for tunable electromechanical acoustic liner technology for the Quiet Aircraft Technology (QAT) Program. Analytical models, i.e. lumped element model (LEM) and transfer matrix (TM) representation of the EMHR, have been developed to predict the acoustic behavior of the EMHR. The models have been implemented in a MATLAB program and used to compare with measurement results. Moreover, the prediction performance of models is further improved with the aid of parameter extraction of the piezoelectric backplate. The EMHR has been experimentally investigated using standard two-microphone method (TMM). The measurement results validated both the LEM and TM models of the EMHR. Good agreement between predicted and measured impedance is obtained. Short- and open circuit loads define the limits of the tuning range using resistive and capacitive loads. There is approximately a 9% tuning limit under these conditions for the non-optimized resonator configuration studied. Inductive shunt loads result in a 3 degree-of-freedom DOF) system and an enhanced tuning range of over 20% that is not restricted by the short- and open-circuit limits. Damping coefficient ' measurements for piezoelectric backplates in a vacuum chamber are also performed and indicate that the damping is dominated by the structural damping losses, such as compliant boundaries, and other intrinsic loss mechanisms. Based on models of the EMHR, a Pareto optimization design of the EMHR has been performed for the EMHR with non-inductive loads. The EMHR with non-inductive loads is a 2DOF system with two resonant fiequencies. The tuning ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be optimized simultaneously; a trade-off (i.e., a Pareto solution) must be reached. The Pareto solution

  19. Electro-Mechanical Systems for Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad M.; Tyler, Tony R.; Abel, Phillip B.; Levanas, Greg

    2011-01-01

    Exploration beyond low earth orbit presents challenges for hardware that must operate in extreme environments. The current state of the art is to isolate and provide heating for sensitive hardware in order to survive. However, this protection results in penalties of weight and power for the spacecraft. This is particularly true for electro-mechanical based technology such as electronics, actuators and sensors. Especially when considering distributed electronics, many electro-mechanical systems need to be located in appendage type locations, making it much harder to protect from the extreme environments. The purpose of this paper to describe the advances made in the area of developing electro-mechanical technology to survive these environments with minimal protection. The Jet Propulsion Lab (JPL), the Glenn Research Center (GRC), the Langley Research Center (LaRC), and Aeroflex, Inc. over the last few years have worked to develop and test electro-mechanical hardware that will meet the stringent environmental demands of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators and electronics have been built and tested. Brushless DC actuators designed by Aeroflex, Inc have been tested with interface temperatures as low as 14 degrees Kelvin. Testing of the Aeroflex design has shown that a brushless DC motor with a single stage planetary gearbox can operate in low temperature environments for at least 120 million cycles (measured at motor) if long life is considered as part of the design. A motor control distributed electronics concept developed by JPL was built and operated at temperatures as low as -160 C, with many components still operational down to -245 C. Testing identified the components not capable of meeting the low temperature goal of -230 C. This distributed controller is universal in design with the ability to control different types of motors and read many different types of sensors. The controller

  20. PITX2 Loss-of-Function Mutation Contributes to Congenital Endocardial Cushion Defect and Axenfeld-Rieger Syndrome

    PubMed Central

    Zhao, Cui-Mei; Peng, Lu-Ying; Li, Li; Liu, Xing-Yuan; Wang, Juan; Zhang, Xian-Ling; Yuan, Fang; Li, Ruo-Gu; Qiu, Xing-Biao; Yang, Yi-Qing

    2015-01-01

    Congenital heart disease (CHD), the most common type of birth defect, is still the leading non-infectious cause of infant morbidity and mortality in humans. Aggregating evidence demonstrates that genetic defects are involved in the pathogenesis of CHD. However, CHD is genetically heterogeneous and the genetic components underpinning CHD in an overwhelming majority of patients remain unclear. In the present study, the coding exons and flanking introns of the PITX2 gene, which encodes a paired-like homeodomain transcription factor 2essential for cardiovascular morphogenesis as well as maxillary facial development, was sequenced in 196 unrelated patients with CHD and subsequently in the mutation carrier’s family members available. As a result, a novel heterozygous PITX2 mutation, p.Q102X for PITX2a, or p.Q148X for PITX2b, or p.Q155X for PITX2c, was identified in a family with endocardial cushion defect (ECD) and Axenfeld-Rieger syndrome (ARS). Genetic analysis of the pedigree showed that the nonsense mutation co-segregated with ECD and ARS transmitted in an autosomal dominant pattern with complete penetrance. The mutation was absent in 800 control chromosomes from an ethnically matched population. Functional analysis by using a dual-luciferase reporter assay system revealed that the mutant PITX2 had no transcriptional activity and that the mutation eliminated synergistic transcriptional activation between PITX2 and NKX2.5, another transcription factor pivotal for cardiogenesis. To our knowledge, this is the first report on the association of PITX2 loss-of-function mutation with increased susceptibility to ECD and ARS. The findings provide novel insight into the molecular mechanisms underpinning ECD and ARS, suggesting the potential implications for the antenatal prophylaxis and personalized treatment of CHD and ARS. PMID:25893250

  1. Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial epithelial-mesenchymal transition via Bmp2.

    PubMed

    Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M; Cai, Chen-Leng

    2011-12-15

    During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is expressed predominantly in the AVC of early heart tube. It was shown that Tbx20 activates Nmyc1 and suppresses Tbx2 expression to promote proliferation and specification of the atrial and ventricular chambers, yet it is not known if Tbx20 is involved in early AVC development. Here, we report that mice lacking Tbx20 in the AVC myocardium fail to form the AVC constriction, and the endocardial epithelial-mesenchymal transition (EMT) is severely perturbed. Tbx20 maintains expression of a variety of genes, including Bmp2, Tbx3 and Hand1 in the AVC myocardium. Intriguingly, we found Bmp2 downstream genes involved in the EMT initiation are also downregulated. In addition, re-expression of Bmp2 in the AVC myocardium substantially rescues the EMT defects resulting from the lack of Tbx20, suggesting Bmp2 is one of the key downstream targets of Tbx20 in AVC development. Our data support a complex signaling network with Tbx20 suppressing Tbx2 in the AVC myocardium but also indirectly promoting Tbx2 expression through Bmp2. The spatiotemporal expression of Tbx2 in the AVC appears to be balanced between these two opposing signals. Overall, our study provides genetic evidence that Tbx20 has essential roles in regulating AVC development that coordinate early cardiac chamber formation.

  2. PITX2 Loss-of-Function Mutation Contributes to Congenital Endocardial Cushion Defect and Axenfeld-Rieger Syndrome.

    PubMed

    Zhao, Cui-Mei; Peng, Lu-Ying; Li, Li; Liu, Xing-Yuan; Wang, Juan; Zhang, Xian-Ling; Yuan, Fang; Li, Ruo-Gu; Qiu, Xing-Biao; Yang, Yi-Qing

    2015-01-01

    Congenital heart disease (CHD), the most common type of birth defect, is still the leading non-infectious cause of infant morbidity and mortality in humans. Aggregating evidence demonstrates that genetic defects are involved in the pathogenesis of CHD. However, CHD is genetically heterogeneous and the genetic components underpinning CHD in an overwhelming majority of patients remain unclear. In the present study, the coding exons and flanking introns of the PITX2 gene, which encodes a paired-like homeodomain transcription factor 2essential for cardiovascular morphogenesis as well as maxillary facial development, was sequenced in 196 unrelated patients with CHD and subsequently in the mutation carrier's family members available. As a result, a novel heterozygous PITX2 mutation, p.Q102X for PITX2a, or p.Q148X for PITX2b, or p.Q155X for PITX2c, was identified in a family with endocardial cushion defect (ECD) and Axenfeld-Rieger syndrome (ARS). Genetic analysis of the pedigree showed that the nonsense mutation co-segregated with ECD and ARS transmitted in an autosomal dominant pattern with complete penetrance. The mutation was absent in 800 control chromosomes from an ethnically matched population. Functional analysis by using a dual-luciferase reporter assay system revealed that the mutant PITX2 had no transcriptional activity and that the mutation eliminated synergistic transcriptional activation between PITX2 and NKX2.5, another transcription factor pivotal for cardiogenesis. To our knowledge, this is the first report on the association of PITX2 loss-of-function mutation with increased susceptibility to ECD and ARS. The findings provide novel insight into the molecular mechanisms underpinning ECD and ARS, suggesting the potential implications for the antenatal prophylaxis and personalized treatment of CHD and ARS.

  3. Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial epithelial-mesenchymal transition via Bmp2

    PubMed Central

    Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M.; Cai, Chen-Leng

    2011-01-01

    During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is expressed predominantly in the AVC of early heart tube. It was shown that Tbx20 activates Nmyc1 and suppresses Tbx2 expression to promote proliferation and specification of the atrial and ventricular chambers, yet it is not known if Tbx20 is involved in early AVC development. Here, we report that mice lacking Tbx20 in the AVC myocardium fail to form the AVC constriction, and the endocardial epithelial-mesenchymal transition (EMT) is severely perturbed. Tbx20 maintains expression of a variety of genes, including Bmp2, Tbx3 and Hand1 in the AVC myocardium. Intriguingly, we found Bmp2 downstream genes involved in the EMT initiation are also downregulated. In addition, re-expression of Bmp2 in the AVC myocardium substantially rescues the EMT defects resulting from the lack of Tbx20, suggesting Bmp2 is one of the key downstream targets of Tbx20 in AVC development. Our data support a complex signaling network with Tbx20 suppressing Tbx2 in the AVC myocardium but also indirectly promoting Tbx2 expression through Bmp2. The spatiotemporal expression of Tbx2 in the AVC appears to be balanced between these two opposing signals. Overall, our study provides genetic evidence that Tbx20 has essential roles in regulating AVC development that coordinate early cardiac chamber formation. PMID:21983003

  4. Initial Evaluation of a New Electromechanical Cooler for Safeguards Applications

    SciTech Connect

    Coleman, RL

    2002-10-21

    The use of liquid nitrogen (LN{sub 2}) constitutes the current state of the art in cryogenic cooling for high-purity germanium (HPGe) detectors, which are widely used for {gamma}-ray and characteristic X-ray spectroscopy because of their excellent energy discrimination. Use of LN{sub 2} requires a liquid nitrogen supply, cumbersome storage tanks and plumbing, and the frequent attention of personnel to be sure that nitrogen levels are sufficient to maintain the detectors at a sufficiently low operating temperature. Safety hazards also are associated with the use of LN{sub 2}, both because of the potential for severe frostbite on exposure to skin and because it displaces ambient oxygen when it evaporates in closed spaces. Existing electromechanical coolers have, until now, been more expensive to procure and maintain than LN{sub 2} systems. Performance and reliability have also been serious issues because of microphonic degradation of photon energy peak resolution and cooler failures due to compressor oil becoming entrained in the refrigerant. This report describes the results of tests of a new HPGe detector cooling technology, the PerkinElmer ORTEC{reg_sign} Products X-Cooler{trademark} that, according to the manufacturer, significantly reduces the lifetime cost of the cooling system without degradation of the output signal. The manufacturer claims to have overcome cost, performance and reliability problems of older-generation electromechanical coolers, but the product has no significant history of use, and this project is the first independent evaluation of its performance for Total cost savings for the DOE and other agencies that use HPGe systems extensively for safeguards monitoring is expected to be quite significant if the new electromechanical cooler technology is shown to be reliable and if performance characteristics indicate its usefulness for this application. The technology also promises to make HPGe monitoring, characterization and detection available for

  5. Impaired Sarcoplasmic Reticulum Calcium Uptake and Release Promote Electromechanically and Spatially Discordant Alternans: A Computational Study.

    PubMed

    Weinberg, Seth H

    2016-01-01

    Cardiac electrical dynamics are governed by cellular-level properties, such as action potential duration (APD) restitution and intracellular calcium (Ca) handling, and tissue-level properties, including conduction velocity restitution and cell-cell coupling. Irregular dynamics at the cellular level can lead to instabilities in cardiac tissue, including alternans, a beat-to-beat alternation in the action potential and/or the intracellular Ca transient. In this study, we incorporate a detailed single cell coupled map model of Ca cycling and bidirectional APD-Ca coupling into a spatially extended tissue model to investigate the influence of sarcoplasmic reticulum (SR) Ca uptake and release properties on alternans and conduction block. We find that an intermediate SR Ca uptake rate and larger SR Ca release resulted in the widest range of stimulus periods that promoted alternans. However, both reduced SR Ca uptake and release promote arrhythmogenic spatially and electromechanically discordant alternans, suggesting a complex interaction between SR Ca handling and alternans characteristics at the cellular and tissue level.

  6. Electromechanical actuators affected by multiple failures: Prognostic method based on spectral analysis techniques

    NASA Astrophysics Data System (ADS)

    Belmonte, D.; Vedova, M. D. L. Dalla; Ferro, C.; Maggiore, P.

    2017-06-01

    The proposal of prognostic algorithms able to identify precursors of incipient failures of primary flight command electromechanical actuators (EMA) is beneficial for the anticipation of the incoming failure: an early and correct interpretation of the failure degradation pattern, in fact, can trig an early alert of the maintenance crew, who can properly schedule the servomechanism replacement. An innovative prognostic model-based approach, able to recognize the EMA progressive degradations before his anomalous behaviors become critical, is proposed: the Fault Detection and Identification (FDI) of the considered incipient failures is performed analyzing proper system operational parameters, able to put in evidence the corresponding degradation path, by means of a numerical algorithm based on spectral analysis techniques. Subsequently, these operational parameters will be correlated with the actual EMA health condition by means of failure maps created by a reference monitoring model-based algorithm. In this work, the proposed method has been tested in case of EMA affected by combined progressive failures: in particular, partial stator single phase turn to turn short-circuit and rotor static eccentricity are considered. In order to evaluate the prognostic method, a numerical test-bench has been conceived. Results show that the method exhibit adequate robustness and a high degree of confidence in the ability to early identify an eventual malfunctioning, minimizing the risk of fake alarms or unannounced failures.

  7. Impaired Sarcoplasmic Reticulum Calcium Uptake and Release Promote Electromechanically and Spatially Discordant Alternans: A Computational Study

    PubMed Central

    Weinberg, Seth H.

    2016-01-01

    Cardiac electrical dynamics are governed by cellular-level properties, such as action potential duration (APD) restitution and intracellular calcium (Ca) handling, and tissue-level properties, including conduction velocity restitution and cell–cell coupling. Irregular dynamics at the cellular level can lead to instabilities in cardiac tissue, including alternans, a beat-to-beat alternation in the action potential and/or the intracellular Ca transient. In this study, we incorporate a detailed single cell coupled map model of Ca cycling and bidirectional APD-Ca coupling into a spatially extended tissue model to investigate the influence of sarcoplasmic reticulum (SR) Ca uptake and release properties on alternans and conduction block. We find that an intermediate SR Ca uptake rate and larger SR Ca release resulted in the widest range of stimulus periods that promoted alternans. However, both reduced SR Ca uptake and release promote arrhythmogenic spatially and electromechanically discordant alternans, suggesting a complex interaction between SR Ca handling and alternans characteristics at the cellular and tissue level. PMID:27385917

  8. Loss of endothelial KATP channel-dependent, NO-mediated dilation of endocardial resistance coronary arteries in pigs with left ventricular hypertrophy.

    PubMed

    Gendron, Marie-Eve; Thorin, Eric; Perrault, Louis P

    2004-09-01

    The influence of left ventricular hypertrophy (LVH) on the endothelial function of resistance endocardial arteries is not well established. The aim of this study was to characterise the mechanisms responsible for UK-14,304 (alpha(2)-adrenoreceptor agonist)-induced endothelium-dependent dilation in pig endocardial arteries isolated from hearts with or without LVH. LVH was induced by aortic banding 2 months before determining endothelial function. Following euthanasia, hearts were harvested and endocardial resistance arteries were isolated and pressurised to 100 mmHg in no-flow conditions. Vessels were preconstricted with acetylcholine (ACh) or high external K(+) (40 mmol l(-1) KCl). Results are expressed as mean+/-s.e.m. UK-14,304 induced a maximal dilation representing 79+/-6% (n=8) of the maximal diameter. NO synthase (l-NNA, 10 micromol l(-1), n=7) or guanylate cyclase (ODQ, 10 micromol l(-1), n=4) inhibition reduced (P<0.05) UK-14,304-dependent dilation to 35+/-6 and 18+/-7%, respectively. Apamin and charybdotoxin reduced (P<0.05) to 39+/-8% (n=4) the dilation induced by UK-14,304. In depolarised conditions, however, this dilation was prevented (P<0.05). UK-14,304-induced dilation was reduced (P<0.05) by glibenclamide (Glib, 1 micromol l(-1)), a K(ATP) channel blocker, either alone (35+/-10%, n=5) or in combination with l-NNA (34+/-9%, n=4). In LVH, UK-14,304-induced maximal dilation was markedly reduced (25+/-4%, P<0.05) compared to control; it was insensitive to l-NNA (21+/-5%) but prevented either by the combination of l-NNA, apamin and charybdotoxin, or by 40 mmol l(-1) KCl. Activation of endothelial alpha(2)-adrenoreceptor induces an endothelium-dependent dilation of pig endocardial resistance arteries. This dilation is in part dependent on NO, the release of which appears to be dependent on the activation of endothelial K(ATP) channels. This mechanism is blunted in LVH, leading to a profound reduction in UK-14,304-dependent dilation.

  9. Mass sensing based on a circuit cavity electromechanical system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    We present a scheme for mass sensing based on a circuit cavity electromechanical system where a free-standing, flexible aluminium membrane is capacitively coupled to a superconducting microwave cavity. Integration with the microwave cavity enables capacitive readout of the mechanical resonance directly on the chip. A microwave pump field and a second probe field are simultaneously applied to the cavity. The accreted mass landing on the membrane can be measured conveniently by tracking the mechanical resonance frequency shifts due to mass changes in the probe transmission spectrum. The mass responsivity for the membrane is 0.72 Hz/ag and we demonstrate that frequency shifts induced by adsorption of one hundred 1587 bp DNA molecules can be well resolved in the probe transmission spectrum.

  10. Evaluation of Electromechanical Systems Dynamically Emulating a Candidate Hydrokinetic Turbine

    SciTech Connect

    Cavagnaro, Robert J.; Neely, Jason C.; Fay, Franois-Xavier; Mendia, Joseba Lopez; Rea, Judith A.

    2016-11-06

    The use of controllable motor-generator sets to emulate the dynamics of a hydrokinetic turbine is evaluated as an alternative to field testing a prototype. The emulator control dynamic equations are presented, methods for scaling turbine parameters are examined, and experimental results are presented from three electromechanical emulation machines (EEMs) programmed to emulate the same vertical-axis fixed-pitch turbine. Although hardware platforms and control implementations varied, results show that each EEM is successful in emulating the turbine model, thus demonstrating the general feasibility of the approach. However, performance of motor control under torque command, current command or speed command differed. In one of the EEMs evaluated, the power take off controller tracks the maximum power-point of the turbine in response to turbulence. Utilizing realistic inflow conditions and control laws, the emulator dynamic speed response is shown to agree well at low frequencies with numerical simulation but to deviate at high frequencies.

  11. Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy

    DOE PAGES

    Balke, Nina; Maksymovych, Petro; Jesse, Stephen; ...

    2015-06-02

    Ferroelectricity in functional materials remains one of the most fascinating areas of modern science in the past several decades. In the last several years, the rapid development of piezoresponse force microscopy (PFM) and spectroscopy revealed the presence of electromechanical hysteresis loops and bias-induced remnant polar states in a broad variety of materials including many inorganic oxides, polymers, and biosystems. In many cases, this behavior was interpreted as the ample evidence for ferroelectric nature of the system. Here, we systematically analyze PFM responses on ferroelectric and nonferroelectric materials and demonstrate that mechanisms unrelated to ferroelectricity can induce ferroelectric-like characteristics through chargemore » injection and electrostatic forces on the tip. In this paper, we will focus on similarities and differences in various PFM measurement characteristics to provide an experimental guideline to differentiate between ferroelectric material properties and charge injection. In conclusion, we apply the developed measurement protocols to an unknown ferroelectric material.« less

  12. Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications

    PubMed Central

    Ashraf, Muhammad Waseem; Tayyaba, Shahzadi; Afzulpurkar, Nitin

    2011-01-01

    Micro Electromechanical Systems (MEMS) based microfluidic devices have gained popularity in biomedicine field over the last few years. In this paper, a comprehensive overview of microfluidic devices such as micropumps and microneedles has been presented for biomedical applications. The aim of this paper is to present the major features and issues related to micropumps and microneedles, e.g., working principles, actuation methods, fabrication techniques, construction, performance parameters, failure analysis, testing, safety issues, applications, commercialization issues and future prospects. Based on the actuation mechanisms, the micropumps are classified into two main types, i.e., mechanical and non-mechanical micropumps. Microneedles can be categorized according to their structure, fabrication process, material, overall shape, tip shape, size, array density and application. The presented literature review on micropumps and microneedles will provide comprehensive information for researchers working on design and development of microfluidic devices for biomedical applications. PMID:21747700

  13. Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy

    SciTech Connect

    Balke, Nina; Maksymovych, Petro; Jesse, Stephen; Herklotz, Andreas; Tselev, Alexander; Eom, Chang-Beom; Kravchenko, Ivan I.; Yu, Pu; Kalinin, Sergei V.

    2015-06-02

    Ferroelectricity in functional materials remains one of the most fascinating areas of modern science in the past several decades. In the last several years, the rapid development of piezoresponse force microscopy (PFM) and spectroscopy revealed the presence of electromechanical hysteresis loops and bias-induced remnant polar states in a broad variety of materials including many inorganic oxides, polymers, and biosystems. In many cases, this behavior was interpreted as the ample evidence for ferroelectric nature of the system. Here, we systematically analyze PFM responses on ferroelectric and nonferroelectric materials and demonstrate that mechanisms unrelated to ferroelectricity can induce ferroelectric-like characteristics through charge injection and electrostatic forces on the tip. In this paper, we will focus on similarities and differences in various PFM measurement characteristics to provide an experimental guideline to differentiate between ferroelectric material properties and charge injection. In conclusion, we apply the developed measurement protocols to an unknown ferroelectric material.

  14. An electromechanical, patient positioning system for head and neck radiotherapy.

    PubMed

    Ostyn, Mark; Dwyer, Thomas; Miller, Matthew; King, Paden; Sacks, Rachel; Cruikshank, Ross; Rosario, Melvin; Martinez, Daniel; Kim, Siyong; Yeo, Woon-Hong

    2017-09-05

    In cancer treatment with radiation, accurate patient setup is critical for proper dose delivery. Improper arrangement can lead to disease recurrence, permanent organ damage, or lack of disease control. While current immobilization equipment often helps for patient positioning, manual adjustment is required, involving iterative, time-consuming steps. Here, we present an electromechanical robotic system for improving patient setup in radiotherapy, specifically targeting head and neck cancer. This positioning system offers six degrees of freedom for a variety of applications in radiation oncology. An analytical calculation of inverse kinematics serves as fundamental criteria to design the system. Computational mechanical modeling and experimental study of radiotherapy compatibility and x-ray-based imaging demonstrates the device feasibility and reliability to be used in radiotherapy. An absolute positioning accuracy test in a clinical treatment room supports the clinical feasibility of the system.

  15. An electromechanical, patient positioning system for head and neck radiotherapy

    NASA Astrophysics Data System (ADS)

    Ostyn, Mark; Dwyer, Thomas; Miller, Matthew; King, Paden; Sacks, Rachel; Cruikshank, Ross; Rosario, Melvin; Martinez, Daniel; Kim, Siyong; Yeo, Woon-Hong

    2017-09-01

    In cancer treatment with radiation, accurate patient setup is critical for proper dose delivery. Improper arrangement can lead to disease recurrence, permanent organ damage, or lack of disease control. While current immobilization equipment often helps for patient positioning, manual adjustment is required, involving iterative, time-consuming steps. Here, we present an electromechanical robotic system for improving patient setup in radiotherapy, specifically targeting head and neck cancer. This positioning system offers six degrees of freedom for a variety of applications in radiation oncology. An analytical calculation of inverse kinematics serves as fundamental criteria to design the system. Computational mechanical modeling and experimental study of radiotherapy compatibility and x-ray-based imaging demonstrates the device feasibility and reliability to be used in radiotherapy. An absolute positioning accuracy test in a clinical treatment room supports the clinical feasibility of the system.

  16. Compositional Effects on Electromechanical Degradation of RAINBOW Actuators

    NASA Technical Reports Server (NTRS)

    Dausch, David E.; Wise, Stephanie A.

    1998-01-01

    The effect of ceramic composition on the electromechanical displacement degradation of RAINBOW (Reduced and Internally Biased Oxide Wafer) actuators was investigated. RAINBOWs were fabricated from commercially available PZT-5H and PZT-5A piezoelectric disks as well as from tape cast PLZT piezoelectric 7/65/35 and electrostrictive 9/65/35 compositions. Displacement properties were measured at low electric fields (10 to 13 kV/cm) under loads of 0 to 500 g, and displacement degradation as a function of time was observed over 107 cycles. The PZT-5A and PLZT 9/65/35 compositions exhibited minimal decrease in displacement when load was applied. Furthermore, these compositions retained approximately 65 percent of their initial displacement after 10(exp 7) cycles under a load of 300 g. PZT-5H and PLZT 7/65/35 degraded completely under these conditions.

  17. Sub-kBT micro-electromechanical irreversible logic gate.

    PubMed

    López-Suárez, M; Neri, I; Gammaitoni, L

    2016-06-28

    In modern computers, computation is performed by assembling together sets of logic gates. Popular gates like AND, OR and XOR, processing two logic inputs and yielding one logic output, are often addressed as irreversible logic gates, where the sole knowledge of the output logic value is not sufficient to infer the logic value of the two inputs. Such gates are usually believed to be bounded to dissipate a finite minimum amount of energy determined by the input-output information difference. Here we show that this is not necessarily the case, by presenting an experiment where a OR logic gate, realized with a micro-electromechanical cantilever, is operated with energy well below the expected limit, provided the operation is slow enough and frictional phenomena are properly addressed.

  18. Sub-kBT micro-electromechanical irreversible logic gate

    NASA Astrophysics Data System (ADS)

    López-Suárez, M.; Neri, I.; Gammaitoni, L.

    2016-06-01

    In modern computers, computation is performed by assembling together sets of logic gates. Popular gates like AND, OR and XOR, processing two logic inputs and yielding one logic output, are often addressed as irreversible logic gates, where the sole knowledge of the output logic value is not sufficient to infer the logic value of the two inputs. Such gates are usually believed to be bounded to dissipate a finite minimum amount of energy determined by the input-output information difference. Here we show that this is not necessarily the case, by presenting an experiment where a OR logic gate, realized with a micro-electromechanical cantilever, is operated with energy well below the expected limit, provided the operation is slow enough and frictional phenomena are properly addressed.

  19. Sub-kBT micro-electromechanical irreversible logic gate

    PubMed Central

    López-Suárez, M.; Neri, I.

    2016-01-01

    In modern computers, computation is performed by assembling together sets of logic gates. Popular gates like AND, OR and XOR, processing two logic inputs and yielding one logic output, are often addressed as irreversible logic gates, where the sole knowledge of the output logic value is not sufficient to infer the logic value of the two inputs. Such gates are usually believed to be bounded to dissipate a finite minimum amount of energy determined by the input–output information difference. Here we show that this is not necessarily the case, by presenting an experiment where a OR logic gate, realized with a micro-electromechanical cantilever, is operated with energy well below the expected limit, provided the operation is slow enough and frictional phenomena are properly addressed. PMID:27350333

  20. Electromechanical imaging of biomaterials by scanning probe microscopy.

    PubMed

    Rodriguez, B J; Kalinin, S V; Shin, J; Jesse, S; Grichko, V; Thundat, T; Baddorf, A P; Gruverman, A

    2006-02-01

    The majority of calcified and connective tissues possess complex hierarchical structure spanning the length scales from nanometers to millimeters. Understanding the biological functionality of these materials requires reliable methods for structural imaging on the nanoscale. Here, we demonstrate an approach for electromechanical imaging of the structure of biological samples on the length scales from tens of microns to nanometers using piezoresponse force microscopy (PFM), which utilizes the intrinsic piezoelectricity of biopolymers such as proteins and polysaccharides as the basis for high-resolution imaging. Nanostructural imaging of a variety of protein-based materials, including tooth, antler, and cartilage, is demonstrated. Visualization of protein fibrils with sub-10nm spatial resolution in a human tooth is achieved. Given the near-ubiquitous presence of piezoelectricity in biological systems, PFM is suggested as a versatile tool for micro- and nanostructural imaging in both connective and calcified tissues.

  1. Design and application of electromechanical actuators for deep space missions

    NASA Technical Reports Server (NTRS)

    Haskew, Tim A.; Wander, John

    1994-01-01

    This progress report documents research and development efforts performed from August 16, 1993 through August 15, 1994 on NASA Grant NAG8-240, 'Design and Application of Electromechanical Actuators for Deep Space Missions.' Since the submission of our last progress report in February 1994, our efforts have been almost entirely focused on final construction of the test stand and experiment design. Hence, this report is dedicated solely to these topics. However, updates on our research personnel and our health monitoring and fault management efforts are provided in this summary. Following this executive summary are two report sections. The first is devoted to the motor drive being constructed for the test stand. The thrust of the next section is the mechanical and hydraulic design and construction based on the planned experimental requirements. Following both major sections are three appendices.

  2. Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems.

    PubMed

    Jiang, Cheng; Cui, Yuanshun; Zhu, Ka-Di

    2014-06-02

    Nanomechanical resonators provide an unparalleled mass sensitivity sufficient to detect single biomolecules, viruses and nanoparticles. In this work we propose a scheme for mass sensing based on the hybrid opto-electromechanical system, where a mechanical resonator is coupled to an optical cavity and a microwave cavity simultaneously. When the two cavities are driven by two pump fields with proper frequencies and powers, a weak probe field is used to scan across the optical cavity resonance frequency. The mass of a single baculovirus landing onto the surface of the mechanical resonator can be measured by tracking the resonance frequency shift in the probe transmission spectrum before and after the deposition. We also propose a nonlinear mass sensor based on the measurement of the four-wave mixing (FWM) spectrum, which can be used to weigh a single 20-nm-diameter gold nanoparticle with sub-femtogram resolution.

  3. Theory of charge density wave depinning by electromechanical effect

    NASA Astrophysics Data System (ADS)

    Quémerais, P.

    2017-03-01

    We discuss the first theory for the depinning of low-dimensional, incommensurate, charge density waves (CDWs) in the strong electron-phonon (e-p) regime. Arguing that most real CDWs systems invariably develop a gigantic dielectric constant (GDC) at very low frequencies, we propose an electromechanical mechanism which is based on a local field effect. At zero electric field and large enough e-p coupling the structures are naturally pinned by the lattice due to its discreteness, and develop modulation functions which are characterized by discontinuities. When the electric field is turned on, we show that it exists a finite threshold value for the electric field above which the discontinuities of the modulation functions vanish due to CDW deformation. The CDW is then free to move. The signature of this pinning/depinning transition as a function of the increasing electric field can be directly observed in the phonon spectrum by using inelastic neutrons or X-rays experiments.

  4. An electromechanical actuation system for an expendable launch vehicle

    NASA Astrophysics Data System (ADS)

    Burrows, Linda M.; Roth, Mary E.

    A major effort at NASA-Lewis in recent years has been to develop electro-mechanical actuators (EMA's) to replace the hydraulic systems used for thrust vector control (TVC) on launch vehicles. This is an attempt to overcome the inherent inefficiencies and costs associated with the existing hydraulic structures. General Dynamics Space Systems Division, under contract to NASA Lewis, is developing 18.6 kW (25 hp), 29.8 kW (40 hp), and 52.2 kW (70 hp) peak EMA systems to meet the power demands for TVC on a family of vehicles developed for the National Launch System. These systems utilize a pulse population modulated converter and field-oriented control scheme to obtain independent control of both the voltage and frequency. These techniques allow an induction motor to be operated at its maximum torque at all times.

  5. Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications.

    PubMed

    Ashraf, Muhammad Waseem; Tayyaba, Shahzadi; Afzulpurkar, Nitin

    2011-01-01

    Micro Electromechanical Systems (MEMS) based microfluidic devices have gained popularity in biomedicine field over the last few years. In this paper, a comprehensive overview of microfluidic devices such as micropumps and microneedles has been presented for biomedical applications. The aim of this paper is to present the major features and issues related to micropumps and microneedles, e.g., working principles, actuation methods, fabrication techniques, construction, performance parameters, failure analysis, testing, safety issues, applications, commercialization issues and future prospects. Based on the actuation mechanisms, the micropumps are classified into two main types, i.e., mechanical and non-mechanical micropumps. Microneedles can be categorized according to their structure, fabrication process, material, overall shape, tip shape, size, array density and application. The presented literature review on micropumps and microneedles will provide comprehensive information for researchers working on design and development of microfluidic devices for biomedical applications.

  6. Crack detection in pipelines using multiple electromechanical impedance sensors

    NASA Astrophysics Data System (ADS)

    Zuo, Chunyuan; Feng, Xin; Zhang, Yu; Lu, Lu; Zhou, Jing

    2017-10-01

    An extensive network of pipeline systems is used to transport and distribute national energy resources that heavily influence a nation’s economy. Therefore, the structural integrity of these pipeline systems must be monitored and maintained. However, structural damage detection remains a challenge in pipeline engineering. To this end, this study developed a modified electromechanical impedance (EMI) technique for crack detection that involves fusing information from multiple sensors. We derived a new damage-sensitive feature factor based on a pipeline EMI model that considers the influence of the bonding layer between the EMI sensors and pipeline. We experimentally validated the effectiveness of the proposed method. Finally, we used a damage index—root mean square deviation—to examine the degree and position of crack damage in a pipeline.

  7. Low tension graphene drums for electromechanical pressure sensing

    NASA Astrophysics Data System (ADS)

    Patel, Raj N.; Mathew, John P.; Borah, Abhinandan; Deshmukh, Mandar M.

    2016-03-01

    We present a process to fabricate electromechanical pressure sensors using multilayer graphene in a sealed drum geometry. The drum resonators are fabricated on insulating sapphire substrates with a local back gate for direct radio frequency ({\\text{}}{{rf}}) actuation and detection of the mechanical modes. Using this scheme, we show the detection and electrostatic tuning of multiple resonant modes of the membrane up to 200 MHz. The geometry of the device also helps in attaining low tensile stress in the membrane, thereby giving high gate tunability (∼1 MHz/V) of the resonator modes. We study the resonant frequency shifts in the presence of helium gas and demonstrate a sensing capability of 1 Torr pressure in a cryogenic environment.

  8. Electromechanical Imaging of Biomaterials by Scanning Probe Microscopy

    SciTech Connect

    Rodriguez, Brian J; Kalinin, Sergei V; Shin, Junsoo; Jesse, Stephen; Grichko, V.; Thundat, Thomas George; Baddorf, Arthur P; Gruverman, A.

    2006-01-01

    The majority of calcified and connective tissues possess complex hierarchical structure spanning the length scales from nanometers to millimeters. Understanding the biological functionality of these materials requires reliable methods for structural imaging on the nanoscale. Here, we demonstrate an approach for electromechanical imaging of the structure of biological samples on the length scales from tens of microns to nanometers using piezoresponse force microscopy (PFM), which utilizes the intrinsic piezoelectricity of biopolymers such as proteins and polysaccharides as the basis for high-resolution imaging. Nanostructural imaging of a variety of protein-based materials, including tooth, antler, and cartilage, is demonstrated. Visualization of protein fibrils with sub-10 nm spatial resolution in a human tooth is achieved. Given the near-ubiquitous presence of piezoelectricity in biological systems, PFM is suggested as a versatile tool for micro- and nanostructural imaging in both connective and calcified tissues.

  9. Adaptive integral robust control and application to electromechanical servo systems.

    PubMed

    Deng, Wenxiang; Yao, Jianyong

    2017-03-01

    This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers.

  10. An electromechanical actuation system for an expendable launch vehicle

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Roth, Mary E.

    1992-01-01

    A major effort at NASA-Lewis in recent years has been to develop electro-mechanical actuators (EMA's) to replace the hydraulic systems used for thrust vector control (TVC) on launch vehicles. This is an attempt to overcome the inherent inefficiencies and costs associated with the existing hydraulic structures. General Dynamics Space Systems Division, under contract to NASA Lewis, is developing 18.6 kW (25 hp), 29.8 kW (40 hp), and 52.2 kW (70 hp) peak EMA systems to meet the power demands for TVC on a family of vehicles developed for the National Launch System. These systems utilize a pulse population modulated converter and field-oriented control scheme to obtain independent control of both the voltage and frequency. These techniques allow an induction motor to be operated at its maximum torque at all times.

  11. Superconducting Cavity Electromechanics on a Silicon-on-Insulator Platform

    NASA Astrophysics Data System (ADS)

    Dieterle, Paul B.; Kalaee, Mahmoud; Fink, Johannes M.; Painter, Oskar

    2016-07-01

    Fabrication processes involving anhydrous hydrofluoric vapor etching are developed to create high-Q aluminum superconducting microwave resonators on free-standing silicon membranes formed from a silicon-on-insulator wafer. Using this fabrication process, a high-impedance 8.9-GHz coil resonator is coupled capacitively with a large participation ratio to a 9.7-MHz micromechanical resonator. Two-tone microwave spectroscopy and radiation pressure backaction are used to characterize the coupled system in a dilution refrigerator down to temperatures of Tf=11 mK , yielding a measured electromechanical vacuum coupling rate of g0/2 π =24.6 Hz and a mechanical resonator Q factor of Qm=1.7 ×1 07. Microwave backaction cooling of the mechanical resonator is also studied, with a minimum phonon occupancy of nm≈16 phonons being realized at an elevated fridge temperature of Tf=211 mK .

  12. Electromechanical computing at 500 degrees C with silicon carbide.

    PubMed

    Lee, Te-Hao; Bhunia, Swarup; Mehregany, Mehran

    2010-09-10

    Logic circuits capable of operating at high temperatures can alleviate expensive heat-sinking and thermal-management requirements of modern electronics and are enabling for advanced propulsion systems. Replacing existing complementary metal-oxide semiconductor field-effect transistors with silicon carbide (SiC) nanoelectromechanical system (NEMS) switches is a promising approach for low-power, high-performance logic operation at temperatures higher than 300 degrees C, beyond the capability of conventional silicon technology. These switches are capable of achieving virtually zero off-state current, microwave operating frequencies, radiation hardness, and nanoscale dimensions. Here, we report a microfabricated electromechanical inverter with SiC complementary NEMS switches capable of operating at 500 degrees C with ultralow leakage current.

  13. Electromechanical behavior of carbon nanotube fibers under transverse compression

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Lu, Weibang; Sockalingam, Subramani; Gu, Bohong; Sun, Baozhong; Gillespie, John W.; Chou, Tsu-Wei

    2017-03-01

    Although in most cases carbon nanotube (CNT) fibers experience axial stretch or compression, they can also be subjected to transverse compression, for example, under impact loading. In this paper, the electromechanical properties of both aerogel-spun and dry-spun CNT fibers under quasi-static transverse compressive loading are investigated for the first time. Transverse compression shows a nonlinear and inelastic behavior. The compressive modulus/strength of the aerogel-spun and dry-spun CNT fibers are about 0.21 GPa/0.796 GPa and 1.73 GPa/1.036 GPa, respectively. The electrical resistance goes through three stages during transverse compressive loading/unloading: initially it decreases, then it increases during the loading, and finally it decreases upon unloading. This study extends our knowledge of the overall properties of CNT fibers, and will be helpful in promoting their engineering applications.

  14. Study of dynamic contacts for graphene nano-electromechanical switches

    NASA Astrophysics Data System (ADS)

    Wang, Wenzhen; Muruganathan, Manoharan; Kulothungan, Jothiramalingam; Mizuta, Hiroshi

    2017-04-01

    We study graphene–metal static contacts by fabricating the transmission line model (TLM) pattern on a graphene nanoribbon (GNR) and dynamic contacts by GNR nano-electromechanical (GNEM) switches with and without periodic concave patterns on the suspended top electrode. A negative contact resistance extracted from the results of TLM analysis is attributable to the inhomogeneity of GNRs owing to the doping from the metal and the substrate. All the dynamic contacts in GNEM switches show clear pull-in operations, which are not reversible. GNEM switches with periodic arrays of concave contacts show global pull-in onto the bottom surface of the concave and then exhibit local pull-in onto the slanted sidewall surfaces of the concave, which is confirmed by finite element method simulation. In addition, plastic deformation at the contact is observed as a result of the local pull-in failure mode, which completely hinders the GNRs from pulling out from the contact surface.

  15. Dynamic Electromechanical Characterization of Axially Poled PZT 95/5

    SciTech Connect

    Chhabildas, Lalit C.; Furnish, Michael D.; Montgomery, Stephen T.; Setchell, Robert E.

    1999-06-25

    We are conducting a comprehensive experimental study of the electromechanical behavior of poled PZT 95/5 (lead zirconate titattate). As part of this study, eight plane-wave tests have been conducted on axially poled PZT 95/5 at stress levels ranging from 0.9 to 4.6 GPa, using VISAR and electrical diagnos- tics. Observed wave velocities were slightly decreased from ultrasonic vahtes, by contrast' with unpoled samples. Compression waveforms show a step at 0.6 GPa more marked than for normally poled or unpoled samples; this may correspond to a poling effect on the ferroelectric/antiferroelectric transition. A similar step is observed on release. The released charge upon loading to 0.9 GPa is consistent with nearly complete depoling. Loading to higher stresses gave lower currents (factor of 10), suggesting shock-induced conduc- tivity or electrical breakdown.

  16. Evaluation of the electromechanical properties of the cardiovascular system

    NASA Technical Reports Server (NTRS)

    Bergman, S. A., Jr.; Hoffler, G. W.; Johnson, R. L.

    1974-01-01

    Cardiovascular electromechanical measurements were collected on returning Skylab crewmembers at rest and during both lower body negative pressure and exercise stress testing. These data were compared with averaged responses from multiple preflight tests. Systolic time intervals and first heart sound amplitude changes were measured. Clinical cardiovascular examinations and clinical phonocardiograms were evaluated. All changes noted returned to normal within 30 days postflight so that the processes appear to be transient and self limited. The cardiovascular system seems to adapt quite readily to zero-g, and more importantly it is capable of readaptation to one-g after long duration space flight. Repeated exposures to zero-g also appear to have no detrimental effects on the cardiovascular system.

  17. Flywheel for an electro-mechanical fastener driving tool

    SciTech Connect

    Crutcher, J. P.

    1985-05-28

    An improved flywheel for an electro-mechanical tool, such as a nailer or stapler. The tool is of the type provided with a driver which is frictionally moved through a working stroke by means of an electrically driven flywheel which presses the driver against a support element, such as a counterrotating flywheel, a low inertia roller, or the like. The flywheel is provided with circumferential grooves while maintaining the optimum contact area between the flywheel and the driver. The grooves provide voids along the travelling driver-flywheel contact line into which foreign material on the driver and flywheel flows to prevent build-up of such foreign material at the driver-flywheel contact area sufficient to result in loss of friction therebetween.

  18. Transversely excited multipass photoacoustic cell using electromechanical film as microphone.

    PubMed

    Saarela, Jaakko; Sand, Johan; Sorvajärvi, Tapio; Manninen, Albert; Toivonen, Juha

    2010-01-01

    A novel multipass photoacoustic cell with five stacked electromechanical films as a microphone has been constructed, tested and characterized. The photoacoustic cell is an open rectangular structure with two steel plates facing each other. The longitudinal acoustic resonances are excited transversely in an optical multipass configuration. A detection limit of 22 ppb (10(-9)) was achieved for flowing NO(2) in N(2) at normal pressure by using the maximum of 70 laser beams between the resonator plates. The corresponding minimum detectable absorption and the normalized noise-equivalent absorption coefficients were 2.2 × 10(-7) cm(-1) and 3.2 × 10(-9) cm(-1) WHz(-1/2), respectively.

  19. Prestin modulates mechanics and electromechanical force of the plasma membrane.

    PubMed

    Zhang, Rui; Qian, Feng; Rajagopalan, Lavanya; Pereira, Fred A; Brownell, William E; Anvari, Bahman

    2007-07-01

    The voltage-dependent movement, or electromotility, of cochlear outer hair cells contributes to cochlear amplification in mammalian hearing. Outer hair-cell electromotility involves a membrane-based motor in which the membrane protein prestin plays a central role. We have investigated the contribution of prestin to the mechanics and electromechanical force (EMF) generation of the membrane using membrane tethers formed from human embryonic kidney (HEK) cells. Several measures of membrane tether mechanics are greater in tethers pulled from HEK cells transfected with prestin when compared to control untransfected HEK cells. A single point mutation of alanine to tryptophan (A100W) in prestin eliminates prestin-associated charge movement and diminishes EMF but does not alter passive membrane mechanics. These results suggest that prestin-associated charge transfer is necessary for maximal EMF generation by the membrane.

  20. Transversely Excited Multipass Photoacoustic Cell Using Electromechanical Film as Microphone

    PubMed Central

    Saarela, Jaakko; Sand, Johan; Sorvajärvi, Tapio; Manninen, Albert; Toivonen, Juha

    2010-01-01

    A novel multipass photoacoustic cell with five stacked electromechanical films as a microphone has been constructed, tested and characterized. The photoacoustic cell is an open rectangular structure with two steel plates facing each other. The longitudinal acoustic resonances are excited transversely in an optical multipass configuration. A detection limit of 22 ppb (10−9) was achieved for flowing NO2 in N2 at normal pressure by using the maximum of 70 laser beams between the resonator plates. The corresponding minimum detectable absorption and the normalized noise-equivalent absorption coefficients were 2.2 × 10−7 cm−1 and 3.2 × 10−9 cm−1WHz−1/2, respectively. PMID:22219662

  1. Electromechanical and Elastic Probing of Bacteria in Cell Culture Medium

    PubMed Central

    Thompson, G.L.; Reukov, V.V.; Nikiforov, M.P.; Jesse, S.; Kalinin, S.V.; Vertegel, A.A.

    2012-01-01

    Rapid phenotype characterization and identification of cultured cells, which is needed for progress in tissue engineering and drug testing, requires an experimental technique that measures physical properties of cells with sub-micron resolution. Recently, band excitation piezoresponse force microscopy (BEPFM) has been proven useful for recognition and imaging of different types of bacteria in pure water. Here, the BEPFM method is performed for the first time in physiologically-relevant electrolyte media, such as Dulbecco’s phosphate-buffered saline (DPBS) and Dulbecco’s modified Eagle’s medium (DMEM). Distinct electromechanical responses for Micrococcus lysodeikticus (Gram-positive) and Pseudomonas fluorescens (Gram-negative) bacteria are demonstrated in DPBS. The results suggest that mechanical properties of the outer surface coating each bacterium, as well as the electrical double layer around them, are responsible for the BEPFM image formation mechanism in electrolyte media. PMID:22641388

  2. Complex structure of triangular graphene: electronic, magnetic and electromechanical properties.

    PubMed

    Ezawa, Motohiko

    2012-01-01

    We have investigated electronic and magnetic properties of graphene nanodisks (nanosize triangular graphene) as well as electromechanical properties of graphene nanojunctions. Nanodisks are nanomagnets made of graphene, which are robust against perturbation such as impurities and lattice defects, where the ferromagnetic order is assured by Lieb's theorem. We can generate a spin current by spin filter, and manipulate it by a spin valve, a spin switch and other spintronic devices made of graphene nanodisks. We have analyzed nanodisk arrays, which have multi-degenerate perfect flat bands and are ferromagnet. By connecting two triangular graphene corners, we propose a nanomechanical switch and rotator, which can detect a tiny angle rotation by measuring currents between the two corners. By making use of the strain induced Peierls transition of zigzag nanoribbons, we also propose a nanomechanical stretch sensor, in which the conductance can be switched off by a nanometer scale stretching.

  3. Hydrostatics and steady dynamics of spatially varying electromechanical flow structures

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1974-01-01

    The hydrostatic and steady laminar hydrodynamic equilibria of spatially varying electromechanical flow structures are investigated. Under certain conditions the relationship between the dielectric height of rise and the applied voltage is found to be double valued. It is found that one of the two equilibrium values is always unstable. This gives rise to the experimentally observed spontaneous rise of the fluid to the top of the structure, once a certain critical voltage is reached. Starting above this critical voltage with the structure completely filled and decreasing the applied voltage toward the critical value results in pinch-in failure at an intermediate point along the structure and trapping of dielectric fluid at the top. The simple mathematical model developed predicts all these phenomena, without recourse to tedious point-by-point surface force equilibrium determination. Experiments are reported which verify the results for the hydrostatic case.

  4. Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy.

    PubMed

    Balke, Nina; Maksymovych, Petro; Jesse, Stephen; Herklotz, Andreas; Tselev, Alexander; Eom, Chang-Beom; Kravchenko, Ivan I; Yu, Pu; Kalinin, Sergei V

    2015-06-23

    Ferroelectricity in functional materials remains one of the most fascinating areas of modern science in the past several decades. In the last several years, the rapid development of piezoresponse force microscopy (PFM) and spectroscopy revealed the presence of electromechanical hysteresis loops and bias-induced remnant polar states in a broad variety of materials including many inorganic oxides, polymers, and biosystems. In many cases, this behavior was interpreted as the ample evidence for ferroelectric nature of the system. Here, we systematically analyze PFM responses on ferroelectric and nonferroelectric materials and demonstrate that mechanisms unrelated to ferroelectricity can induce ferroelectric-like characteristics through charge injection and electrostatic forces on the tip. We will focus on similarities and differences in various PFM measurement characteristics to provide an experimental guideline to differentiate between ferroelectric material properties and charge injection. In the end, we apply the developed measurement protocols to an unknown ferroelectric material.

  5. Fast and durable electromechanical shutter for imaging spectrometers.

    PubMed

    Pöhler, Denis

    2009-03-01

    The presented electromechanical shutter for imaging spectrometers meets the needs of imaging spectroscopy with continuous exposure at short integration times. The shutter blocks the light during readout of the two-dimensional charge-coupled device detector to preserve the spatial resolution. Commercially available shutters have significant problems in terms of lifetime and sometimes also in speed. The developed shutter is fast with a total response time of 3 ms to open and 5 ms to close and durable since the lifetime exceeds 20x10(6) exposures. The shutter is constructed with only a few simple mechanical parts. It can therefore easily be repaired, which reduces the running cost. The construction of the shutter, the mechanical properties, and the required optical configurations will be described. Furthermore the performance for imaging spectroscopic measurements with short exposure times is demonstrated.

  6. Enhanced electromechanical response of ferroelectrics due to charged domain walls

    PubMed Central

    Sluka, Tomas; Tagantsev, Alexander K.; Damjanovic, Dragan; Gureev, Maxim; Setter, Nava

    2012-01-01

    While commonly used piezoelectric materials contain lead, non-hazardous, high-performance piezoelectrics are yet to be discovered. Charged domain walls in ferroelectrics are considered inactive with regards to the piezoelectric response and, therefore, are largely ignored in this search. Here we demonstrate a mechanism that leads to a strong enhancement of the dielectric and piezoelectric properties in ferroelectrics with increasing density of charged domain walls. We show that an incomplete compensation of bound polarization charge at these walls creates a stable built-in depolarizing field across each domain leading to increased electromechanical response. Our model clarifies a long-standing unexplained effect of domain wall density on macroscopic properties of domain-engineered ferroelectrics. We show that non-toxic ferroelectrics like BaTiO3 with dense patterns of charged domain walls are expected to have strongly enhanced piezoelectric properties, thus suggesting a new route to high-performance, lead-free ferroelectrics. PMID:22434191

  7. Enhanced electromechanical response of ferroelectrics due to charged domain walls.

    PubMed

    Sluka, Tomas; Tagantsev, Alexander K; Damjanovic, Dragan; Gureev, Maxim; Setter, Nava

    2012-03-20

    While commonly used piezoelectric materials contain lead, non-hazardous, high-performance piezoelectrics are yet to be discovered. Charged domain walls in ferroelectrics are considered inactive with regards to the piezoelectric response and, therefore, are largely ignored in this search. Here we demonstrate a mechanism that leads to a strong enhancement of the dielectric and piezoelectric properties in ferroelectrics with increasing density of charged domain walls. We show that an incomplete compensation of bound polarization charge at these walls creates a stable built-in depolarizing field across each domain leading to increased electromechanical response. Our model clarifies a long-standing unexplained effect of domain wall density on macroscopic properties of domain-engineered ferroelectrics. We show that non-toxic ferroelectrics like BaTiO(3) with dense patterns of charged domain walls are expected to have strongly enhanced piezoelectric properties, thus suggesting a new route to high-performance, lead-free ferroelectrics.

  8. Electromechanical flywheel battery EDU development project. Final report

    SciTech Connect

    1996-12-01

    In January 1993, American Flywheel Systems Inc. (AFS) initiated a program to develop and commercialize its proprietary Electro-Mechanical Flywheel Battery (EMFB) for commercial deployment in electric vehicles. The operational prototype was to demonstrate the technical viability and operation of the Electro Mechanical Flywheel Battery (EMFB) as a commercially feasible replacement to conventional chemical batteries. As an intermediate technical step in that process, and to provide an opportunity to evaluate a pre-prototype EMFB, an Engineering Development Unit (EDU) was also to be constructed. EMFBs present the prospect of providing an environmentally compatible energy source offering outstanding life and performance for electric vehicles. Contrasted with the chemical species of battery, the EMFB is not an electro-chemical device. Instead it is an electro-mechanical system that efficiently converts (through its motor-generator) the mechanical kinetic energy stored in a high speed rotating flywheel rotor into usable electrical power. Recharging the EMFB reverses that energy exchange and the battery stores supplied electrical energy as mechanical kinetic energy as the motor spins-up the flywheel rotor to speed. Operating in a vacuum to minimize losses, and enclosed in a safety vessel, the EMFB is a mechanical battery, not a chemical battery, and therefore is not sensitive to the typical thermal degradation and other life limiting factors inherent to chemical batteries. A successfully developed EMFB has the potential of offering high specific energy (multiples above lead acid batteries) and specific power (sufficient to provide outstanding acceleration and capture the available energy of regenerative braking) in an environmentally benign package.

  9. Unraveling the origins of electromechanical response in mixed-phase Bismuth Ferrite

    SciTech Connect

    Vasudevan, Rama K; Okatan, M. B.; Liu, Y. Y.; Jesse, Stephen; Yang, J.-C.; Liang, W. -I.; Chu, Ying-Hao; Li, J. Y.; Kalinin, Sergei V; Valanoor, Nagarajan V

    2013-01-01

    The origin of giant electromechanical response in a mixed-phase rhombohedral-tetragonal BiFeO3 thin film is probed using sub-coercive scanning probe microscopy based multiple-harmonic measurements. Significant contributions to the strain arise from a second-order harmonic response localized at the phase boundaries. Strain and dissipation data, backed by thermodynamic calculations suggest that the source of the enhanced electromechanical response is the motion of phase boundaries. These findings elucidate the key role of labile phase boundaries, both natural and artificial, in achieving thin films with giant electromechanical properties.

  10. Endocardial silicone lead wear: description of tribological phenomena on the basis of microscopic examination of removed leads. Preliminary report.

    PubMed

    Małecka, Barbara; Ząbek, Andrzej; Ciaś, Andrzej; Stępiński, Janusz; Kutarski, Andrzej; Rońda, Jacek; Lelakowski, Jacek; Małecki, Janusz

    2014-01-01

    The passage of a lead in tissues and in the cardiovascular system depends on the implantation technique. The structure of the leads, which is a combination of two or more materials, triggers their wear. Breakage of the external pacemaker (PM) lead insulation causes unsealing of the lead and exposure of its internal spaces, which can be the anchor of lead-dependent infective endocarditis (LDIE). In the case of implantable cardioverter-defibrillator (ICD) leads, damage to external insulation isthe cause of externalisation of the cable. To describe endocardial lead abrasion as a tribological phenomenon resulting from rubbing the leads against each other in the mechanism of polymer on polymer friction, and other mechanisms associated with lead structure i.e. polymer on metal friction. Twenty-two leads were extracted from ten patients (three women) aged 66.5 ± 13.4 years. In all cases, the reason for lead removal was infection — in 80% LDIE. The PM (one ICD) two- and three-lead systems, all with silicone insulation, were aged 3–25, mean 8.3 years. The destroyed polymer insulation was examined by optical and scanning electron microscopy. The site of damage was defined as the length of the lead from its distal end. This lead segment motion was analysed on chest scopy performed prior to the removal procedure. In this way, three sites of lead damage were distinguished: intracardiac, intravenous, and intrapocket. Tribological wear was observed on the polymer-metal interface and between the leads. The following characteristics were recorded: the type of PM or ICD system in which the extracted leads worked, the lead dwell time,and the lead model. Scanning electron examinations showed that in all cases lead insulation had undergone tribological failure. In all samples, the image of fatigue wear was recorded. In all examined places, we found evidence that adhesive wear was present with the transfer of material to the edges of friction zones and/or to friction partners. In

  11. Tumor-induced eosinophilia and endocardial fibrosis: evidence for ectopic eosinophilopoietin production and toxic O2 metabolite-mediated endothelial damage.

    PubMed

    Slungaard, A; Vercellotti, G; Zanjani, E; Ascensao, J; Jacob, H S

    1982-01-01

    We have described a patient with the clinical triad of anaplastic pulmonary carcinoma, extreme eosinophilia, and endocardial damage, with resulting fibrosis and mural "thrombosis." Since the "thrombi" consisted mainly of masses of aggregated eosinophils in close approximation to areas of fibrotic cardiac endothelium, it was hypothesized that eosinophils might provoke endothelial damage. Indeed, eosinophils generated large amounts of toxic oxygen species and were highly toxic to cultured endothelial cells in vitro; moreover, high concentrations of corticosteroids inhibited in tandem these phenomena. In addition, from the patient's tumor a 45,000-dalton "eosinophilopoietin" was extracted which stimulated eosinophil colonies without help from T-lymphocytes. We believe our results help explain both the hypereosinophilia which accompanies certain anaplastic carcinomas and the endocardial damage with thrombosis and embolization which may occur in any patient with excessive eosinophils. In this latter regard, our studies suggest that very high doses of corticosteroids--since they decrease generation of toxic oxygen products by, and the numbers of, eosinophils--may be rational therapy in hypereosinophilic syndromes.

  12. Comparison of treadmill exercise stress cardiac MRI to stress echocardiography in healthy volunteers for adequacy of left ventricular endocardial wall visualization: A pilot study.

    PubMed

    Thavendiranathan, Paaladinesh; Dickerson, Jennifer A; Scandling, Debbie; Balasubramanian, Vijay; Pennell, Michael L; Hinton, Alice; Raman, Subha V; Simonetti, Orlando P

    2014-05-01

    To compare exercise stress cardiac magnetic resonance (cardiac MR) to echocardiography in healthy volunteers with respect to adequacy of endocardial visualization and confidence of stress study interpretation. Twenty-eight healthy volunteers (age 28 ± 11 years, 15 males) underwent exercise stress echo and cardiac MR one week apart assigned randomly to one test first. Stress cardiac MR was performed using an MRI-compatible treadmill; stress echo was performed as per routine protocol. Cardiac MR and echo images were independently reviewed and scored for adequacy of endocardial visualization and confidence in interpretation of the stress study. Heart rate at the time of imaging was similar between the studies. Average time from cessation of exercise to start of imaging (21 vs. 31 s, P < 0.001) and time to acquire stress images (20 vs. 51 s, P < 0.001) was shorter for cardiac MR. The number of myocardial segments adequately visualized was significantly higher by cardiac MR at rest (99.8% vs. 96.4%, P = 0.002) and stress (99.8% vs. 94.1%, P = 0.001). The proportion of subjects in whom there was high confidence in the interpretation was higher for cardiac MR than echo (96% vs. 60%, P = 0.005). Exercise stress cardiac MR to assess peak exercise wall motion is feasible and can be performed at least as rapidly as stress echo. Copyright © 2013 Wiley Periodicals, Inc.

  13. Electromechanical simulation and test of rotating systems with magnetic bearing or piezoelectric actuator active vibration control

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.; Tang, Punan; Kim, Chaesil; Manchala, Daniel; Barrett, Tim; Kascak, Albert F.; Brown, Gerald; Montague, Gerald; Dirusso, Eliseo; Klusman, Steve

    1994-01-01

    This paper contains a summary of the experience of the authors in the field of electromechanical modeling for rotating machinery - active vibration control. Piezoelectric and magnetic bearing actuator based control are discussed.

  14. Flight Technology Improvement. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Shortcomings in spaceborne instrumentation technology are analyzed and recommendations are given for corrections and technology development. The technologies discussed are optical radiometric instruments and calibration, attitude control and determination, and electromechanical and power subsystems.

  15. Electromechanical Properties and Spontaneous Response of the Current in InAsP Nanowires.

    PubMed

    Lee, Jong Hoon; Pin, Min Wook; Choi, Su Ji; Jo, Min Hyeok; Shin, Jae Cheol; Hong, Seong-Gu; Lee, Seung Mi; Cho, Boklae; Ahn, Sang Jung; Song, Nam Woong; Yi, Seong-Hoon; Kim, Young Heon

    2016-11-09

    The electromechanical properties of ternary InAsP nanowires (NWs) were investigated by applying a uniaxial tensile strain in a transmission electron microscope (TEM). The electromechanical properties in our examined InAsP NWs were governed by the piezoresistive effect. We found that the electronic transport of the InAsP NWs is dominated by space-charge-limited transport, with a I ∞ V(2) relation. Upon increasing the tensile strain, the electrical current in the NWs increases linearly, and the piezoresistance gradually decreases nonlinearly. By analyzing the space-charge-limited I-V curves, we show that the electromechanical response is due to a mobility that increases with strain. Finally, we use dynamical measurements to establish an upper limit on the time scale for the electromechanical response.

  16. An inverse method for estimating the electromechanical parameters of moving-coil loudspeakers.

    PubMed

    Tsai, Yu-Ting; Wang, Chi-Chang; Huang, Jin H

    2013-11-01

    This article presents an inverse method for estimating the electromechanical parameters of a moving-coil loudspeaker with or without the eddy current and suspension creep effects. With known voice-coil displacement, voice-coil current, and stimulus signal as inputs, four calculation procedures for the direct problem, adjoint problem, sensitivity problem, and conjugate gradient method are involved in inversely solving the unknown electromechanical parameters. The proposed method features high efficiency in solving the direct problem through a hybrid spline difference method. It requires a small number of iterations for the computational algorithm, while offering excellent accuracy in parameter estimations. Analysis results demonstrate small differences between the estimated and measured electromechanical parameters under a variety of stimulus signals, excitation times, and initial guesses. The results are also confirmed by experimental measurements. These results indicate that the proposed method has a strong potential for estimating the electromechanical parameters of moving-coil loudspeakers.

  17. Electromechanical simulation and testing of actively controlled rotordynamic systems with piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Lin, Reng Rong; Palazzolo, A. B.; Kascak, A. F.; Montague, G. T.

    1991-01-01

    A method is presented for simulating the coupled 'electromechanical' system to predict rotordynamic stability and unbalance response along with control system stability. The piezoelectric actuators and their amplifiers are represented as equivalent linear electrical circuits. The electromechanical system modeling approach is utilized to correlate test results from a double overhung rotor rig. The test results also show the effectiveness of the control system for suppressing the unbalance response of two modes using active stiffness and active damping.

  18. Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers

    PubMed Central

    Lin, Shuyu; Xu, Jie

    2017-01-01

    The input electrical impedance behaves as a capacitive when a piezoelectric transducer is excited near its resonance frequency. In order to increase the energy transmission efficiency, a series or parallel inductor should be used to compensate the capacitive impedance of the piezoelectric transducer. In this paper, the effect of the series matching inductor on the electromechanical characteristics of the piezoelectric transducer is analyzed. The dependency of the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient, the electrical quality factor and the electro-acoustical efficiency on the matching inductor is obtained. It is shown that apart from compensating the capacitive impedance of the piezoelectric transducer, the series matching inductor can also change the electromechanical characteristics of the piezoelectric transducer. When series matching inductor is increased, the resonance frequency is decreased and the anti-resonance unchanged; the effective electromechanical coupling coefficient is increased. For the electrical quality factor and the electroacoustic efficiency, the dependency on the matching inductor is different when the transducer is operated at the resonance and the anti-resonance frequency. The electromechanical characteristics of the piezoelectric transducer with series matching inductor are measured. It is shown that the theoretically predicted relationship between the electromechanical characteristics and the series matching inductor is in good agreement with the experimental results. PMID:28208583

  19. Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers.

    PubMed

    Lin, Shuyu; Xu, Jie

    2017-02-10

    The input electrical impedance behaves as a capacitive when a piezoelectric transducer is excited near its resonance frequency. In order to increase the energy transmission efficiency, a series or parallel inductor should be used to compensate the capacitive impedance of the piezoelectric transducer. In this paper, the effect of the series matching inductor on the electromechanical characteristics of the piezoelectric transducer is analyzed. The dependency of the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient, the electrical quality factor and the electro-acoustical efficiency on the matching inductor is obtained. It is shown that apart from compensating the capacitive impedance of the piezoelectric transducer, the series matching inductor can also change the electromechanical characteristics of the piezoelectric transducer. When series matching inductor is increased, the resonance frequency is decreased and the anti-resonance unchanged; the effective electromechanical coupling coefficient is increased. For the electrical quality factor and the electroacoustic efficiency, the dependency on the matching inductor is different when the transducer is operated at the resonance and the anti-resonance frequency. The electromechanical characteristics of the piezoelectric transducer with series matching inductor are measured. It is shown that the theoretically predicted relationship between the electromechanical characteristics and the series matching inductor is in good agreement with the experimental results.

  20. Endocardial cushion defect

    MedlinePlus

    ... Cyanosis . As the blood pressure increases in the lungs, blood starts to flow from the right side of ... include: Congestive heart failure Death Eisenmenger syndrome High blood pressure in the lungs Irreversible damage to the lungs Certain complications of ...

  1. Needle Electrode-Based Electromechanical Reshaping of Cartilage

    PubMed Central

    Manuel, Cyrus T.; Foulad, Allen; Protsenko, Dmitriy E.; Sepehr, Ali

    2010-01-01

    Electromechanical reshaping (EMR) of cartilage provides an alternative to the classic surgical techniques of modifying the shape of facial cartilages. The original embodiment of EMR required surface electrodes to be in direct contact with the entire cartilage region being reshaped. This study evaluates the feasibility of using needle electrode systems for EMR of facial cartilage and evaluates the relationships between electrode configuration, voltage, and application time in effecting shape change. Flat rabbit nasal septal cartilage specimens were deformed by a jig into a 90° bend, while a constant electric voltage was applied to needle electrodes that were inserted into the cartilage. The electrode configuration, voltage (0–7.5 V), and application time (1–9 min) were varied systematically to create the most effective shape change. Electric current and temperature were measured during voltage application, and the resulting specimen shape was assessed in terms of retained bend angle. In order to demonstrate the clinical feasibility of EMR, the most effective and practical settings from the septal cartilage experimentation were used to reshape intact rabbit and pig ears ex vivo. Cell viability of the cartilage after EMR was determined using confocal microscopy in conjunction with a live/dead assay. Overall, cartilage reshaping increased with increased voltage and increased application time. For all electrode configurations and application times tested, heat generation was negligible (<1 °C) up to 6 V. At 6 V, with the most effective electrode configuration, the bend angle began to significantly increase after 2 min of application time and began to plateau above 5 min. As a function of voltage at 2 min of application time, significant reshaping occurred at and above 5 V, with no significant increase in the bend angle between 6 and 7.5 V. In conclusion, electromechanical reshaping of cartilage grafts and intact ears can be effectively performed with

  2. Needle electrode-based electromechanical reshaping of cartilage.

    PubMed

    Manuel, Cyrus T; Foulad, Allen; Protsenko, Dmitriy E; Sepehr, Ali; Wong, Brian J F

    2010-11-01

    Electromechanical reshaping (EMR) of cartilage provides an alternative to the classic surgical techniques of modifying the shape of facial cartilages. The original embodiment of EMR required surface electrodes to be in direct contact with the entire cartilage region being reshaped. This study evaluates the feasibility of using needle electrode systems for EMR of facial cartilage and evaluates the relationships between electrode configuration, voltage, and application time in effecting shape change. Flat rabbit nasal septal cartilage specimens were deformed by a jig into a 90° bend, while a constant electric voltage was applied to needle electrodes that were inserted into the cartilage. The electrode configuration, voltage (0-7.5 V), and application time (1-9 min) were varied systematically to create the most effective shape change. Electric current and temperature were measured during voltage application, and the resulting specimen shape was assessed in terms of retained bend angle. In order to demonstrate the clinical feasibility of EMR, the most effective and practical settings from the septal cartilage experimentation were used to reshape intact rabbit and pig ears ex vivo. Cell viability of the cartilage after EMR was determined using confocal microscopy in conjunction with a live/dead assay. Overall, cartilage reshaping increased with increased voltage and increased application time. For all electrode configurations and application times tested, heat generation was negligible (<1 °C) up to 6 V. At 6 V, with the most effective electrode configuration, the bend angle began to significantly increase after 2 min of application time and began to plateau above 5 min. As a function of voltage at 2 min of application time, significant reshaping occurred at and above 5 V, with no significant increase in the bend angle between 6 and 7.5 V. In conclusion, electromechanical reshaping of cartilage grafts and intact ears can be effectively performed with

  3. Cardiovascular magnetic resonance of the myocardium at risk in acute reperfused myocardial infarction: comparison of T2-weighted imaging versus the circumferential endocardial extent of late gadolinium enhancement with transmural projection

    PubMed Central

    2010-01-01

    Background In the situation of acute coronary occlusion, the myocardium supplied by the occluded vessel is subject to ischemia and is referred to as the myocardium at risk (MaR). Single photon emission computed tomography has previously been used for quantitative assessment of the MaR. It is, however, associated with considerable logistic challenges for employment in clinical routine. Recently, T2-weighted cardiovascular magnetic resonance (CMR) has been introduced as a new method for assessing MaR several days after the acute event. Furthermore, it has been suggested that the endocardial extent of infarction as assessed by late gadolinium enhanced (LGE) CMR can also be used to quantify the MaR. Hence, we sought to assess the ability of endocardial extent of infarction by LGE CMR to predict MaR as compared to T2-weighted imaging. Methods Thirty-seven patients with early reperfused first-time ST-segment elevation myocardial infarction underwent CMR imaging within the first week after percutaneous coronary intervention. The ability of endocardial extent of infarction by LGE CMR to assess MaR was evaluated using T2-weighted imaging as the reference method. Results MaR determined with T2-weighted imaging (34 ± 10%) was significantly higher (p < 0.001) compared to the MaR determined with endocardial extent of infarction (23 ± 12%). There was a weak correlation between the two methods (r2 = 0.17, p = 0.002) with a bias of -11 ± 12%. Myocardial salvage determined with T2-weighted imaging (58 ± 22%) was significantly higher (p < 0.001) compared to myocardial salvage determined with endocardial extent of infarction (45 ± 23%). No MaR could be determined by endocardial extent of infarction in two patients with aborted myocardial infarction. Conclusions This study demonstrated that the endocardial extent of infarction as assessed by LGE CMR underestimates MaR in comparison to T2-weighted imaging, especially in patients with early reperfusion and aborted myocardial

  4. Controllable optical response in hybrid opto-electromechanical systems

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Cui, Yuan-Shun; Liu, Hong-Xiang; Li, Xiao-Wei; Chen, Gui-Bin

    2015-05-01

    We theoretically investigate the analog of electromagnetically induced absorption and parametric amplification in a hybrid opto-electromechanical system consisting of an optical cavity and a microwave cavity coupled to a common mechanical resonator. When the two cavity modes are driven by two pump fields, a weak probe beam is applied to the optical cavity to monitor the optical response of the hybrid system, which can be effectively controlled by adjusting the frequency and power of the two pump fields. We find that the analog of electromagnetically induced absorption and parametric amplification can appear in the probe transmission spectrum when one cavity is pumped on its red sideband and another is pumped on its blue sideband. These phenomena can find potential applications in optical switching and signal amplification in the quantum information process. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304110 and 11174101), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130413 and BK2011411), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 13KJB140002).

  5. An active strain electromechanical model for cardiac tissue.

    PubMed

    Nobile, F; Quarteroni, A; Ruiz-Baier, R

    2012-01-01

    We propose a finite element approximation of a system of partial differential equations describing the coupling between the propagation of electrical potential and large deformations of the cardiac tissue. The underlying mathematical model is based on the active strain assumption, in which it is assumed that there is a multiplicative decomposition of the deformation tensor into a passive and active part holds, the latter carrying the information of the electrical potential propagation and anisotropy of the cardiac tissue into the equations of either incompressible or compressible nonlinear elasticity, governing the mechanical response of the biological material. In addition, by changing from a Eulerian to a Lagrangian configuration, the bidomain or monodomain equations modeling the evolution of the electrical propagation exhibit a nonlinear diffusion term. Piecewise quadratic finite elements are employed to approximate the displacements field, whereas for pressure, electrical potentials and ionic variables are approximated by piecewise linear elements. Various numerical tests performed with a parallel finite element code illustrate that the proposed model can capture some important features of the electromechanical coupling and show that our numerical scheme is efficient and accurate.

  6. Electromechanical role of fixed charge in the mammalian tectorial membrane

    NASA Astrophysics Data System (ADS)

    Ghaffari, Roozbeh; Page, Scott; Farrahi, Shirin; Sellon, Jonathan B.; Freeman, Dennis M.

    2015-12-01

    The mammalian tectorial membrane (TM) is thought to play a purely mechanical role in stimulating cochlear sensory receptors, but the presence of glycosaminoglycans and associated fixed charge groups suggests that electromechanical properties also may be important. Here, we measure the fixed charge concentration of the TM (-7.1 mmol/L at physiological pH), and show that this concentration of fixed charge is sufficient to generate electrokinetic motions of the TM. Electrically-evoked TM motions were nanometer-scaled (5-200 nm), increased linearly with electric field amplitude (0.05-20 kV/m) and decreased with frequency (1-1000 Hz). This frequency dependence can be understood in terms of the interplay between electrophoresis and electro-osmosis. Although the electric fields applied in this study were large, they are comparable in amplitude to the electric fields generated near hair cell transduction channels. TM electrokinetics could thus play a role in the deflection of cochlear hair bundles in vivo.

  7. Development of micro-electromechanical system (MEMS) cochlear biomodel

    NASA Astrophysics Data System (ADS)

    Ngelayang, Thailis Bounya Anak; Latif, Rhonira

    2015-05-01

    Human cochlear is undeniably one of the most amazing organs in human body. The functional mechanism is very unique in terms of its ability to convert the sound waves in the form of mechanical vibrations into the electrical nerve impulses. It is known that the normal human auditory system can perceive the audible frequency range between 20 Hz to 20 kHz. Scientists have conducted several researches trying to build the artificial basilar membrane in the human cochlea (cochlear biomodel). Micro-electromechanical system (MEMS) is one of the potential inventions that have the ability to mimic the active behavior of the basilar membrane. In this paper, an array of MEMS bridge beams that are mechanically sensitive to the perceived audible frequency has been proposed. An array of bridge bridge beams with 0.5 µm thickness and length varying from 200 µm to 2000 µm have been designed operate within the audible frequency range. In the bridge beams design, aluminium (Al), copper (Cu), tantalum (Ta) and platinum (Pt) have considered as the material for the bridge beam structure. From the finite element (FE) and lumped element (LE) models of the MEMS bridge beams, platinum has been found to be the best material for the cochlear biomodel design, closely mimicking the basilar membrane.

  8. Large scale electromechanical transistor with application in mass sensing

    SciTech Connect

    Jin, Leisheng; Li, Lijie

    2014-12-07

    Nanomechanical transistor (NMT) has evolved from the single electron transistor, a device that operates by shuttling electrons with a self-excited central conductor. The unfavoured aspects of the NMT are the complexity of the fabrication process and its signal processing unit, which could potentially be overcome by designing much larger devices. This paper reports a new design of large scale electromechanical transistor (LSEMT), still taking advantage of the principle of shuttling electrons. However, because of the large size, nonlinear electrostatic forces induced by the transistor itself are not sufficient to drive the mechanical member into vibration—an external force has to be used. In this paper, a LSEMT device is modelled, and its new application in mass sensing is postulated using two coupled mechanical cantilevers, with one of them being embedded in the transistor. The sensor is capable of detecting added mass using the eigenstate shifts method by reading the change of electrical current from the transistor, which has much higher sensitivity than conventional eigenfrequency shift approach used in classical cantilever based mass sensors. Numerical simulations are conducted to investigate the performance of the mass sensor.

  9. Quantum-enhanced accelerometry with a nonlinear electromechanical circuit

    NASA Astrophysics Data System (ADS)

    Jacobs, Kurt; Balu, Radhakrishnan; Teufel, John D.

    2017-08-01

    It is known that placing a mechanical oscillator in a superposition of coherent states allows, in theory, a measurement of a linear force whose sensitivity increases with the amplitude of the mechanical oscillations, a uniquely quantum effect. Further, entangled versions of these states across a network of n mechanical oscillators enable a measurement whose sensitivity increases linearly with n , thus improving the classical scaling by √{n }. One of the key challenges in exploiting this effect is processing the signal so that it can be readily measured; linear processing is insufficient. Here we show that a Kerr oscillator will not only create the necessary states, but also perform the required processing, transforming the quantum phase imprinted by the force signal into a shift in amplitude measurable with homodyne detection. This allows us to design a relatively simple quantum electromechanical circuit that can demonstrate the core quantum effect at the heart of this scheme, namely amplitude-dependent force sensitivity. We derive analytic expressions for the performance of the circuit, including thermal mechanical noise and photon loss. We discuss the experimental challenges in implementing the scheme with near-term technology.

  10. Circulation system of an Antarctic electromechanical bedrock drill

    NASA Astrophysics Data System (ADS)

    Liu, Baolin; Wang, Rusheng; Talalay, Pavel; Wang, Qingyan; Liu, An

    2016-12-01

    For bedrock core drilling below 3000 m in the Antarctic ice sheet, Jilin University has designed a set of modular electromechanical drills with a local reverse circulation system, which works at the bottom of the borehole to remove the rock powder. Thorough removal of the rock powder is critically important to prevent it from accumulating in the bottom of the hole and eventually blocking the drill or causing other problems. During drilling, rock powder is carried by the drilling fluid, which flows from a down-hole pump to the chip chamber. If drilling fluid in the bottom of the hole cannot overcome the flow resistance or if its velocity is too low, the rock powder will not be carried to the chip chamber, and will remain in the borehole or gather in the clearance of the circulation system. Therefore, the down-hole pump performance characteristics are of vital importance. The selection of the down-hole pump for bedrock core drilling should consider both flow rate and outlet pressure. This paper reports a specific calculating method for the rEquired flow rate of the drilling fluid and the pressure losses in the circulation system.

  11. VLT deformable secondary mirror: integration and electromechanical tests results

    NASA Astrophysics Data System (ADS)

    Biasi, R.; Andrighettoni, M.; Angerer, G.; Mair, C.; Pescoller, D.; Lazzarini, P.; Anaclerio, E.; Mantegazza, M.; Gallieni, D.; Vernet, E.; Arsenault, R.; Madec, P.-Y.; Duhoux, P.; Riccardi, A.; Xompero, M.; Briguglio, R.; Manetti, M.; Morandini, M.

    2012-07-01

    The VLT Deformable secondary is planned to be installed on the VLT UT#4 as part of the telescope conversion into the Adaptive Optics test Facility (AOF). The adaptive unit is based on the well proven contactless, voice coil motor technology that has been already successfully implemented in the MMT, LBT and Magellan adaptive secondaries, and is considered a promising technical choice for the forthcoming ELT-generation adaptive correctors, like the E-ELT M4 and the GMT ASM. The VLT adaptive unit has been recently assembled after the completion of the manufacturing and modular test phases. In this paper, we present the most relevant aspects of the system integration and report the preliminary results of the electromechanical tests performed on the unit. This test campaign is a typical major step foreseen in all similar systems built so far: thanks to the metrology embedded in the system, that allows generating time-dependent stimuli and recording in real time the position of the controlled mirror on all actuators, typical dynamic response quality parameters like modal settling time, overshoot and following error can be acquired without employing optical measurements. In this way the system dynamic and some aspect of its thermal and long term stability can be fully characterized before starting the optical tests and calibrations.

  12. Dynamic Electromechanical Hydrogel Matrices for Stem Cell Culture

    PubMed Central

    Lim, Han L.; Chuang, Jessica C.; Tran, Tuan; Aung, Aereas; Arya, Gaurav; Varghese, Shyni

    2013-01-01

    Hydrogels have numerous biomedical applications including synthetic matrices for cell culture and tissue engineering. Here we report the development of hydrogel based multifunctional matrices that not only provide three-dimensional structural support to the embedded cells but also can simultaneously provide potentially beneficial dynamic mechanical and electrical cues to the cells. A unique aspect of these matrices is that they undergo reversible, anisotropic bending dynamics in an electric field. The direction and magnitude of this bending can be tuned through the hydrogel crosslink density while maintaining the same electric potential gradient, allowing control over the mechanical strain imparted to the cells in a three-dimensional environment. The conceptual design of these hydrogels was motivated through theoretical modeling of the osmotic pressure changes occurring at the gel-solution interfaces in an electric field. These electro-mechanical matrices support survival, proliferation, and differentiation of stem cells. Thus, these new three-dimensional in vitro synthetic matrices, which mimic multiple aspects of the native cellular environment, take us one step closer to in vivo systems. PMID:24273479

  13. Electromechanical impedance method to assess dental implant stability

    NASA Astrophysics Data System (ADS)

    Tabrizi, Aydin; Rizzo, Piervincenzo; Ochs, Mark W.

    2012-11-01

    The stability of a dental implant is a prerequisite for supporting a load-bearing prosthesis and establishment of a functional bone-implant system. Reliable and noninvasive methods able to assess the bone interface of dental and orthopedic implants (osseointegration) are increasingly demanded for clinical diagnosis and direct prognosis. In this paper, we propose the electromechanical impedance method as a novel approach for the assessment of dental implant stability. Nobel Biocare® implants with a size of 4.3 mm diameter ×13 mm length were placed inside bovine bones that were then immersed in a solution of nitric acid to allow material degradation. The degradation simulated the inverse process of bone healing. The implant-bone systems were monitored by bonding a piezoceramic transducer (PZT) to the implants’ abutment and measuring the admittance of the PZT over time. It was found that the PZT’s admittance and the statistical features associated with its analysis are sensitive to the degradation of the bones and can be correlated to the loss of calcium measured by means of the atomic absorption spectroscopy method. The present study shows promising results and may pave the road towards an innovative approach for the noninvasive monitoring of dental implant stability and integrity.

  14. Evaluation of Electromechanical Systems Dynamically Emulating a Candidate Hydrokinetic Turbine

    DOE PAGES

    Cavagnaro, Robert J.; Neely, Jason C.; Fay, Franois-Xavier; ...

    2016-11-06

    The use of controllable motor-generator sets to emulate the dynamics of a hydrokinetic turbine is evaluated as an alternative to field testing a prototype. The emulator control dynamic equations are presented, methods for scaling turbine parameters are examined, and experimental results are presented from three electromechanical emulation machines (EEMs) programmed to emulate the same vertical-axis fixed-pitch turbine. Although hardware platforms and control implementations varied, results show that each EEM is successful in emulating the turbine model, thus demonstrating the general feasibility of the approach. However, performance of motor control under torque command, current command or speed command differed. In onemore » of the EEMs evaluated, the power take off controller tracks the maximum power-point of the turbine in response to turbulence. Utilizing realistic inflow conditions and control laws, the emulator dynamic speed response is shown to agree well at low frequencies with numerical simulation but to deviate at high frequencies.« less

  15. A novel electromechanical approach to constant frequency power generation

    NASA Astrophysics Data System (ADS)

    Dishner, Bryan; Morris, Angela

    An alternate design approach to the hydrochemical constant speed drive (CSD) used on aircraft to drive synchronous generators at constant speed has been evaluated. The alternative design replaces hydraulic devices with advanced technology permanent magnet (PM) motor/generators which rely on power semiconductors in the speed compensation link to produce a constant speed output to the synchronous generator. The feasibility study for the product, electrically compensated CSD (ECCSD), has been demonstrated. The ECCSD program demonstrates the basic axial gear differential CSD concept of passing the power and speed trimming functions through gearing, while at the same time efficiently accomplishing the closed-loop speed control function electromechanically with small, high-speed motors. The ECCSD configuration chosen for development uses a 50,000 rev/min PM generator and a 50,000 rev/min motor. A thyristor-based AC-to-DC converter conditions the PM generator output. A transistor-based brushless DC-type motor drive is used with the PM motor. The hardware is described, and test results are presented.

  16. Grinding process monitoring based on electromechanical impedance measurements

    NASA Astrophysics Data System (ADS)

    Marchi, Marcelo; Guimarães Baptista, Fabricio; de Aguiar, Paulo Roberto; Bianchi, Eduardo Carlos

    2015-04-01

    Grinding is considered one of the last processes in precision parts manufacturing, which makes it indispensable to have a reliable monitoring system to evaluate workpiece surface integrity. This paper proposes the use of the electromechanical impedance (EMI) method to monitor the surface grinding operation in real time, particularly the surface integrity of the ground workpiece. The EMI method stands out for its simplicity and for using low-cost components such as PZT (lead zirconate titanate) piezoelectric transducers. In order to assess the feasibility of applying the EMI method to the grinding process, experimental tests were performed on a surface grinder using a CBN grinding wheel and a SAE 1020 steel workpiece, with PZT transducers mounted on the workpiece and its holder. During the grinding process, the electrical impedance of the transducers was measured and damage indices conventionally used in the EMI method were calculated and compared with workpiece wear, indicating the surface condition of the workpiece. The experimental results indicate that the EMI method can be an efficient and cost-effective alternative for monitoring precision workpieces during the surface grinding process.

  17. Development of micro-electromechanical system (MEMS) cochlear biomodel

    SciTech Connect

    Ngelayang, Thailis Bounya Anak; Latif, Rhonira

    2015-05-15

    Human cochlear is undeniably one of the most amazing organs in human body. The functional mechanism is very unique in terms of its ability to convert the sound waves in the form of mechanical vibrations into the electrical nerve impulses. It is known that the normal human auditory system can perceive the audible frequency range between 20 Hz to 20 kHz. Scientists have conducted several researches trying to build the artificial basilar membrane in the human cochlea (cochlear biomodel). Micro-electromechanical system (MEMS) is one of the potential inventions that have the ability to mimic the active behavior of the basilar membrane. In this paper, an array of MEMS bridge beams that are mechanically sensitive to the perceived audible frequency has been proposed. An array of bridge bridge beams with 0.5 µm thickness and length varying from 200 µm to 2000 µm have been designed operate within the audible frequency range. In the bridge beams design, aluminium (Al), copper (Cu), tantalum (Ta) and platinum (Pt) have considered as the material for the bridge beam structure. From the finite element (FE) and lumped element (LE) models of the MEMS bridge beams, platinum has been found to be the best material for the cochlear biomodel design, closely mimicking the basilar membrane.

  18. Possibility of an electromechanical which-path interferometer

    NASA Astrophysics Data System (ADS)

    Armour, A. D.; Blencowe, M. P.

    2001-07-01

    We investigate the possibility of an electromechanical which-path interferometer, in which electrons traveling through an Aharonov-Bohm ring incorporating a quantum dot in one of the arms are dephased by an interaction with the fundamental flexural mode of a radio-frequency cantilever. The cantilever is positioned so that its tip lies just above the dot and a bias is applied so that an electric field exists between the dot and the tip. This electric field is modified when an additional electron hops onto the dot, coupling the flexural mode of the cantilever and the microscopic electronic degrees of freedom. We analyze the transmission properties of this system and the dependence of interference fringe visibility on the cantilever-dot coupling and on the mechanical properties of the cantilever. The fringes are progressively destroyed as the interaction with the cantilever is turned up, in part due to dephasing arising from the entanglement of the electron and cantilever states and also due to the thermal smearing that results from fluctuations in the state of the cantilever. When the dwell time of the electron on the dot is comparable to or longer than the cantilever period, we find coherent features in the transmission amplitude. These features are washed out when the cantilever is decohered by its coupling to the environment.

  19. Characterization of the electromechanical properties of EAP materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrita, Stewart; Bhattachary, Kaushik; Lih, Shyh-Shiuh

    2001-01-01

    Electroactive polymers (EAP) are an emerging class of actuation materials. Their large electrically induced strains (longitudinal or bending), low density, mechanical flexibility, and ease of processing offer advantages over traditional electroactive materials. However, before the capability of these materials can be exploited, their electrical and mechanical behavior must be properly quantified. Two general types of EAP can be identified. The first type is ionic EAP, which requires relatively low voltages (<10V) to achieve large bending deflections. This class usually needs to be hydrated and electrochemical reactions may occur. The second type is Electronic-EAP and it involves electrostrictive and/or Maxwell stresses. This type of materials requires large electric fields (>100MV/m) to achieve longitudinal deformations at the range from 4 - 360%. Some of the difficulties in characterizing EAP include: nonlinear properties, large compliance (large mismatch with metal electrodes), nonhomogeneity resulting from processing, etc. To support the need for reliable data, the authors are developing characterization techniques to quantify the electroactive responses and material properties of EAP materials. The emphasis of the current study is on addressing electromechanical issues related to the ion-exchange type EAP also known as IPMC. The analysis, experiments and test results are discussed in this paper.

  20. Electro-Mechanical Actuator. DC Resonant Link Controller

    NASA Technical Reports Server (NTRS)

    Schreiner, Kenneth E.

    1996-01-01

    This report summarizes the work performed on the 68 HP electro-mechanical actuator (EMA) system developed on NASA contract for the Electrical Actuation (ELA) Technology Bridging Program. The system was designed to demonstrate the capability of large, high power linear ELAs for applications such as Thrust Vector Control (TVC) on rocket engines. It consists of a motor controller, drive electronics and a linear actuator capable of up to 32,00 lbs loading at 7.4 inches/second. The drive electronics are based on the Resonant DC link concept and operate at a nominal frequency of 55 kHz. The induction motor is a specially designed high speed, low inertia motor capable of a 68 peak HP. The actuator was originally designed by MOOG Aerospace under an internal R & D program to meet Space Shuttle Main Engine (SSME) TVC requirements. The design was modified to meet this programs linear rate specification of 7.4 inches/second. The motor and driver were tested on a dynamometer at the Martin Marietta Space Systems facility. System frequency response, step response and force-velocity tests were conducted at the MOOG Aerospace facility. A complete description of the system and all test results can be found in the body of the report.

  1. pH-dependent mechanisms of electromechanical cartilage reshaping

    NASA Astrophysics Data System (ADS)

    Wu, Edward C.; Manuel, Cyrus T.; Protsenko, Dmitriy E.; Karimi, Koohyar; Hamamoto, Ashley; Wong, Brian J. F.

    2011-03-01

    Electromechanical reshaping of cartilage is a novel modality that has significant clinical applications in otolaryngology and plastic surgery. Although EMR dosimetry has been extensively studied, little is known about the mechanisms of EMR, of which local tissue pH changes is believed to play a role. In this study, rabbit nasal septal cartilage is subject to a number of experiments aimed at elucidating pH-related changes using phenol red. The lateral extent and magnitude of pH change as well as factors that impact pH change are studied. Increasing voltage and application appear to increase the area and intensity of color change. With parameters known to produce thermal tissue injury, a transitional zone likely representing a confluence of acid-base products is noted in the region around the bend axis. Furthermore, rehydration and pH indicator application time do not appear to play a role in the quality of pH change. These simple experiments may provide insight into the role of pH changes in EMR that may allow correlation of dosimetry to tissue damage, further optimizing the clinical potential of EMR.

  2. High-speed electromechanical shutter for imaging spectrographs

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor)

    2005-01-01

    The present invention presents a high-speed electromechanical shutter which has at least two rotary beam choppers that are synchronized using a phase-locked loop electronic control to reduce the duty cycle. These choppers have blade means that can comprise discs or drums, each having about 60 (+/-15) slots which are from about 0.3 to about 0.8 mm wide and about 5 to about 20 mm long (radially) which are evenly distributed through out 360?, and a third rotary chopper which is optically aligned has a small number of slots, such as for example, 1 to 10 slots which are about 1 to about 2 mm wide and about 5 to about 20 mm long (radially). Further the blade means include phase slots that allow the blade means to be phase locked using a closed loop control circuit. In addition, in a preferred embodiment, the system also has a leaf shutter. Thus the invention preferably achieves a gate width of less than about 100 microseconds, using motors that operate at 3000 to 10,000 rpm, and with a phase jitter of less than about 1.5 microseconds, and further using an aperture with more than about 75% optical transmission with a clear aperture of about 0.8 mm?10 mm. The system can be synchronized to external sources at 0 6 kHz lasers, data acquisition systems, and cameras.

  3. Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback.

    PubMed

    Pfeiffer, Emily R; Tangney, Jared R; Omens, Jeffrey H; McCulloch, Andrew D

    2014-02-01

    Cardiac mechanical contraction is triggered by electrical activation via an intracellular calcium-dependent process known as excitation-contraction coupling. Dysregulation of cardiac myocyte intracellular calcium handling is a common feature of heart failure. At the organ scale, electrical dyssynchrony leads to mechanical alterations and exacerbates pump dysfunction in heart failure. A reverse coupling between cardiac mechanics and electrophysiology is also well established. It is commonly referred as cardiac mechanoelectric feedback and thought to be an important contributor to the increased risk of arrhythmia during pathological conditions that alter regional cardiac wall mechanics, including heart failure. At the cellular scale, most investigations of myocyte mechanoelectric feedback have focused on the roles of stretch-activated ion channels, though mechanisms that are independent of ionic currents have also been described. Here we review excitation-contraction coupling and mechanoelectric feedback at the cellular and organ scales, and we identify the need for new multicellular tissue-scale model systems and experiments that can help us to obtain a better understanding of how interactions between electrophysiological and mechanical processes at the cell scale affect ventricular electromechanical interactions at the organ scale in the normal and diseased heart.

  4. Micro-electromechanical sensors in the analytical field.

    PubMed

    Zougagh, Mohammed; Ríos, Angel

    2009-07-01

    Micro- and nano-electromechanical systems (MEMS and NEMS) for use as sensors represent one of the most exciting new fields in analytical chemistry today. These systems are advantageous over currently available non-miniaturized sensors, such as quartz crystal microbalances, thickness shear mode resonators, and flexural plate wave oscillators, because of their high sensitivity, low cost and easy integration into automated systems. In this article, we present and discuss the evolution in the use of MEMS and NEMS, which are basically cantilever-type sensors, as good analytical tools for a wide variety of applications. We discuss the analytical features and the practical potential of micro(nano)-cantilever sensors, which combine the synergetic advantages of selectivity, provided by their functionalization, and the high sensitivity, which is attributed largely to the extremely small size of the sensing element. An insight is given into the different types of functionalization and detection strategies and a critical discussion is presented on the existing state of the art concerning the applications reported for mechanical microsensors. New developments and the possibilities for routine work in the near future are also covered.

  5. Dynamic Electromechanical Hydrogel Matrices for Stem Cell Culture.

    PubMed

    Lim, Han L; Chuang, Jessica C; Tran, Tuan; Aung, Aereas; Arya, Gaurav; Varghese, Shyni

    2011-01-07

    Hydrogels have numerous biomedical applications including synthetic matrices for cell culture and tissue engineering. Here we report the development of hydrogel based multifunctional matrices that not only provide three-dimensional structural support to the embedded cells but also can simultaneously provide potentially beneficial dynamic mechanical and electrical cues to the cells. A unique aspect of these matrices is that they undergo reversible, anisotropic bending dynamics in an electric field. The direction and magnitude of this bending can be tuned through the hydrogel crosslink density while maintaining the same electric potential gradient, allowing control over the mechanical strain imparted to the cells in a three-dimensional environment. The conceptual design of these hydrogels was motivated through theoretical modeling of the osmotic pressure changes occurring at the gel-solution interfaces in an electric field. These electro-mechanical matrices support survival, proliferation, and differentiation of stem cells. Thus, these new three-dimensional in vitro synthetic matrices, which mimic multiple aspects of the native cellular environment, take us one step closer to in vivo systems.

  6. Electromechanical battery design suitable for back-up power applications

    DOEpatents

    Post, Richard F.

    2002-01-01

    The windings that couple energy into and out of the rotor of an electro-mechanical battery are modified. The normal stator windings of the generator/motor have been replaced by two orthogonal sets of windings. Because of their orthogonality, they are decoupled from each other electrically, though each can receive (or deliver) power flows from the rotating field produced by the array of permanent magnets. Due to the orthogonal design of the stator windings and the high mechanical inertia of the flywheel rotor, the resulting power delivered to the computer system is completely insensitive to any and all electrical transients and variabilities of the power from the main power source. This insensitivity includes complete failure for a period determined only by the amount of stored kinetic energy in the E-M battery modules that are supplied. Furthermore there is no need whatsoever for fast-acting, fractional-cycle switches, such as are employed in conventional systems, and which are complicated to implement.

  7. Coupling of photomechanical and electromechanical actuations in carbon nanotubes.

    PubMed

    Suri, Ashish; Misra, Abha

    2013-03-15

    It is known that carbon nanotubes (CNTs) possess multifunctional characteristics, which are applicable for a wide variety of engineering applications. CNT is also recognized as a radiation sensitive material, for example for detecting infrared (IR) radiations. One of the direct implications of exposing CNTs to radiation is the photomechanical actuation and generation of a photovoltage/photocurrent. The present work focuses on coupling electromechanical and photomechanical characteristics to enhance the resulting induced-strain response in CNTs. We have demonstrated that after applying an electric field the induced strain in CNT sheet is enhanced to about ∼2.18 times for the maximum applied electric field at 2 V as compared to the photo-actuation response alone. This enhancement of the strain at higher bias voltages (>1 V) can be considered as a sum of individual contributions of the bias voltage and IR stimulus. However, at lower voltage (<1 V) the enhancement in the resulting strain has been attributed to the associated electrostatic effects when CNTs are stimulated with IR radiation under external bias conditions. This report reveals that voltage bias or IR stimulus alone could not produce the observed strain in the CNT sheet under lower bias conditions.

  8. Fail safe controllable output improved version of the electromechanical battery

    DOEpatents

    Post, R.F.

    1999-01-19

    Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition. 4 figs.

  9. Fail safe controllable output improved version of the Electromechanical battery

    DOEpatents

    Post, Richard F.

    1999-01-01

    Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition.

  10. Snare coupling of the pre-pectoral pacing lead delivery catheter to the femoral transseptal apparatus for endocardial cardiac resynchronization therapy : mid-term results.

    PubMed

    Patel, Mehul B; Worley, Seth J

    2013-04-01

    Limitations imposed by the coronary sinus venous anatomy triggered the transseptal approach for endocardial LV lead placement. The alignment of the interatrial septum (IAS) and its neighborhood anatomy does not favor transseptal puncture from the pre-pectoral area. Locating and advancing a pre-pectoral LV lead delivery catheter (PDC) through an opening created in the IAS via femoral transseptal puncture (FTP) is time consuming and technically difficult. We describe a method where the PDC is snare coupled to the femoral transseptal apparatus (FTA). When the FTA is advanced into the left atrium (LA) the coupled PDC follows. The catheter of a 25-mm loop snare kit is replaced with the PDC (SelectSite®). The snare loop is positioned in the right common iliac vein from the pre-pectoral access. The PDC is coupled to the FTA by advancing the transseptal apparatus through the open snare loop. After conventional FTP, the FTA is withdrawn back into the right atrium (RA) over an extra support wire positioned in the LA. The PDC with open snare loop is pulled over the FTA up to the RA. The PDC is advanced to close the snare loop on the extra support wire immediately distal to the tip of the dilator close to the puncture site. The PDC is deflected to align with the FTA. The snare coupled catheters are gently advanced across the IAS into the LA. The PDC is released from the FTA by advancing the snare and opening the loop; the snare is then removed from the PDC. The PDC is deflected and advanced into the left ventricle (LV). After positioning the 4.1 Fr lumen less LV lead, the PDC is sliced and removed. The PDC snare coupled to the FTA was advanced into the LA in all five patients, however, access was lost during catheter manipulation in the one right-sided case. Endocardial LV lead was successfully positioned in all five patients. Snare coupling the pre-pectoral SelectSite® catheter to the FTA is technically simple, reliable and a safe method for transseptal endocardial LV lead

  11. ECG-gated, mechanical and electromechanical wave imaging of cardiovascular tissues in vivo.

    PubMed

    Pernot, Mathieu; Fujikura, Kana; Fung-Kee-Fung, Simon D; Konofagou, Elisa E

    2007-07-01

    In simplistic terms, the motion of the heart can be summarized as an active contraction and passive relaxation of the myocardium. However, the local motion of cardiovascular tissues over the course of an entire cardiac cycle results from various transient events such as the valves closing/opening, sudden changes in blood pressure and electrical conduction of the myocardium. The transient motion generated by most of these events occurs within a very short time (on the order of 1 ms) and cannot be imaged correctly with conventional imaging systems, due to their limited temporal resolution. In this paper, we propose a method for imaging this rapid transient motion of tissues in cardiovascular applications. Our method is based on imaging tissues with ultrasound at high frame rates (up to 8000 fps) by synchronizing the two-dimensional (2D) image acquisition on the electrocardiogram (ECG) signals. In vivo feasibility is demonstrated in anesthetized mice. The propagation of several transient mechanical waves was imaged in different regions of the myocardium and the wave phase velocities were found to be between 0.44 m/s and 5 m/s. These waves may be generated by either a purely mechanical effects or through electromechanical coupling in the myocardium depending on the phase of the cardiac cycle, in which they occur. The abdominal aorta was also imaged using the same technique and the propagation of a mechanical pulse wave was imaged. The pulse wave velocity was measured and the Young's modulus of the vessel wall was derived based on the Moens-Korteweg equation. This method could potentially be used for mapping the stiffness of the myocardium and the artery walls and may lead to the early diagnosis of cardiovascular diseases.

  12. Computed tomography imaging to quantify the area of the endocardial subvalvular apparatus in hypertrophic cardiomyopathy - Relationship to outflow tract obstruction and symptoms.

    PubMed

    Tajima, Miyu; Iguchi, Nobuo; Utanohara, Yuko; Hiroi, Yukio; Mahara, Keitaro; Niwa, Tatsunori; Takayama, Morimasa; Sumiyoshi, Tetsuya; Tomoike, Hitonobu

    2016-01-01

    Abnormalities of the endocardial subvalvular apparatus (SVA), which includes the papillary muscles directly attached to the mitral leaflet and left ventricular apical-basal muscle bundles, are occasionally identified in hypertrophic cardiomyopathy (HCM). Their associations with left ventricular outflow tract (LVOT) obstruction are unknown. We retrospectively reviewed cardiac computed tomography image data sets of 107 consecutive patients with HCM [56 obstructive (HOCM) and 51 non-obstructive (HNOCM)] as well as 53 controls. We evaluated anomalies of the SVA, measured the cross-sectional area of the SVA at the level of the LVOT, and subsequently assessed its correlation with the LVOT pressure gradient with and without medication. The area of the SVA was greater in HOCM than in HNOCM patients and in the control group (2.5 ± 1.3 cm(2), 1.4 ± 0.8 cm(2), and 0.9 ± 0.6 cm(2), respectively; p < 0.0001). Anomalies in the SVA were more often observed in the HOCM group than in the HNOCM patients and controls (abnormal papillary muscles, 14%, 8%, and 0%, respectively; P = 0.010; LV apical-basal muscle bundles, 73%, 65%, and 45%, respectively; P = 0.0094). Among HOCM patients, logistic regression analysis demonstrated that an SVA area of 2.2 cm(2) was an independent risk factor of residual severe LVOT obstruction (≥50 mmHg) after medication (odds ratio, 10.1; 95% confidence interval, 2.05-49.80). An increased area of the endocardial subvalvular apparatus could be an independent risk factor for clinically relevant LVOT obstruction refractory to medication. Copyright © 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  13. Biophysical parameters during radiofrequency catheter ablation of scar-mediated ventricular tachycardia: epicardial and endocardial applications via manual and magnetic navigation.

    PubMed

    Bourke, Tara; Buch, Eric; Mathuria, Nilesh; Michowitz, Yoav; Yu, Ricky; Mandapati, Ravi; Shivkumar, Kalyanam; Tung, Roderick

    2014-11-01

    There is a paucity of data on biophysical parameters during radiofrequency ablation of scar-mediated ventricular tachycardia (VT). Data were collected from consecutive patients undergoing VT ablation with open-irrigation. Complete data were available for 372 lesions in 21 patients. The frequency of biophysical parameter changes were: >10Ω reduction (80%), bipolar EGM reduction (69%), while loss of capture was uncommon (32%). Unipolar injury current was seen in 72% of radiofrequency applications. Both EGM reduction and impedance drop were seen in 57% and a change in all 3 parameters was seen in only 20% of lesions. Late potentials were eliminated in 33%, reduced/modified in 56%, and remained after ablation in 11%. Epicardial lesions exhibited an impedance drop (90% vs. 76%, P = 0.002) and loss of capture (46% vs. 27%, P < 0.001) more frequently than endocardial lesions. Lesions delivered manually exhibited a >10Ω impedance drop (83% vs. 71%, P = 0.02) and an EGM reduction (71% vs. 40%, P < 0.001) more frequently than lesions applied using magnetic navigation, although loss of capture, elimination of LPs, and a change in all 3 parameters were similarly observed. VT ablation is inefficient as the majority of radiofrequency lesions do not achieve more than one targeted biophysical parameter. Only one-third of RF applications targeted at LPs result in complete elimination. Epicardial ablation within scar may be more effective than endocardial lesions, and lesions applied manually may be more effective than lesions applied using magnetic navigation. New technologies directed at identifying and optimizing ablation effectiveness in scar are clinically warranted. © 2014 Wiley Periodicals, Inc.

  14. BIOPHYSICAL PARAMETERS DURING RADIOFREQUENCY CATHETER ABLATION OF SCAR-MEDIATED VENTRICULAR TACHYCARDIA: EPICARDIAL AND ENDOCARDIAL APPLICATIONS VIA MANUAL AND MAGNETIC NAVIGATION

    PubMed Central

    Bourke, Tara; Buch, Eric; Mathuria, Nilesh; Michowitz, Yoav; Yu, Ricky; Mandapati, Ravi; Shivkumar, Kalyanam; Tung, Roderick

    2014-01-01

    Background There is a paucity of data on biophysical parameters during radiofrequency ablation of scar-mediated ventricular tachycardia (VT). Methods and Results Data was collected from consecutive patients undergoing VT ablation with open-irrigation. Complete data was available for 372 lesions in 21 patients. The frequency of biophysical parameter changes were: >10Ω reduction (80%), bipolar EGM reduction (69%), while loss of capture was uncommon (32%). Unipolar injury current was seen in 72% of radiofrequency applications. Both EGM reduction and impedance drop were seen in 57% and a change in all 3 parameters was seen in only 20% of lesions. Late potentials were eliminated in 33%, reduced/modified in 56%, and remained after ablation in 11%. Epicardial lesions exhibited an impedance drop (90% vs 76%, p=0.002) and loss of capture (46% vs 27%, p<0.001) more frequently than endocardial lesions. Lesions delivered manually exhibited a >10Ω impedance drop (83% vs 71%, p=0.02) and an EGM reduction (71% vs 40%, p< 0.001) more frequently than lesions applied using magnetic navigation, although loss of capture, elimination of LPs, and a change in all 3 parameters were similarly observed. Conclusions VT ablation is inefficient as the majority of radiofrequency lesions do not achieve more than one targeted biophysical parameter. Only one-third of RF applications targeted at LPs result in complete elimination. Epicardial ablation within scar may be more effective than endocardial lesions and lesions applied manually may be more effective than lesions applied using magnetic navigation. New technologies directed at identifying and optimizing ablation effectiveness in scar are clinically warranted. PMID:24946895

  15. Early Changes in Atrial Electromechanical Coupling in Patients with Hypertension: Assessment by Tissue Doppler Imaging

    PubMed Central

    Avci, Burcak Kilickiran; Gulmez, Oyku; Donmez, Guclu; Pehlivanoglu, Seckin

    2016-01-01

    Background: Hypertension (HT) is associated with atrial electrophysiological abnormalities. Echocardiographic pulsed wave tissue Doppler imaging (TDI) is one of the noninvasive methods for evaluation of atrial electromechanical properties. The aims of our study were to investigate the early changes in atrial electromechanical conduction in patients with HT and to assess the parameters that affect atrial electromechanical conduction. Methods: Seventy-six patients with HT (41 males, mean age 52.6 ± 9.0 years) and 41 controls (22 males, mean age 49.8 ± 7.9 years) were included in the study. Atrial electromechanical coupling at the right (PRA), left (PLA), interatrial septum (PIS) were measured with TDI. Intra- (right: PIS-PRA, left: PLA-PIS) and inter-atrial (PLA-PRA) electromechanical delays were calculated. Maximum P-wave duration (Pmax) was calculated from 12-lead electrocardiogram. Results: Atrial electromechanical coupling at PLA (76.6 ± 14.1 ms vs. 82.9 ± 15.8 ms, P = 0.036), left intra-atrial (10.9 ± 5.0 ms vs. 14.0 ± 9.7 ms, P = 0.023), right intra-atrial (10.6 ± 7.8 ms vs. 14.5 ± 10.1 ms, P = 0.035), and interatrial electromechanical (21.4 ± 9.8 ms vs. 28.3 ± 12.7 ms, P = 0.003) delays were significantly longer in patients with HT. The linear regression analysis showed that left ventricular (LV) mass index and Pmax were significantly associated with PLA (P = 0.001 and P = 0.002, respectively), and the LV mass index was the only related factor for interatrial delay (P = 0.001). Conclusions: Intra- and interatrial electromechanical delay, PLA were significantly prolonged in hypertensive patients. LV mass index and Pmax were significantly associated with PLA, and the LV mass index was the only related factor for interatrial delay. The atrial TDI can be a valuable method to assess the early changes of atrial electromechanical conduction properties in those patients. PMID:27231168

  16. In Vivo Needle-Based Electromechanical Reshaping of Pinnae

    PubMed Central

    Yau, Amy Y. Y.; Manuel, Cyrus; Hussain, Syed F.; Protsenko, Dmitry E.; Wong, Brian J. F.

    2014-01-01

    IMPORTANCE Electromechanical reshaping (EMR) is a low-cost, needle-based, and simple means to shape cartilage tissue without the use of scalpels, sutures, or heat that can potentially be used in an outpatient setting to perform otoplasty. OBJECTIVES To demonstrate that EMR can alter the shape of intact pinnae in an in vivo animal model and to show that the amount of shape change and the limited cell injury are proportional to the dosimetry. DESIGN, SETTING, AND SPECIMENS In an academic research setting, intact ears of 18 New Zealand white rabbits underwent EMR using 6 different dosimetry parameters (4 V for 5 minutes, 4 V for 4 minutes, 5 V for 3 minutes, 5 V for 4 minutes, 6 V for 2 minutes, and 6 V for 3 minutes). A custom acrylic jig with 2 rows of platinum needle electrodes was used to bend ears at the middle of the pinna and to perform EMR. Treatment was repeated twice per pinna, in proximal and distal locations. Control pinnae were not subjected to current application when being bent and perforated within the jig. Pinnae were splinted for 3 months along the region of the bend using soft silicon sheeting and a cotton bolster. MAIN OUTCOMES AND MEASURES The ears were harvested the day after splints were removed and before euthanasia. Photographs of ears were obtained, and bend angles were measured. Tissue was sectioned for histologic examination and confocal microscopy to assess changes to microscopic structure and cellular viability. RESULTS Treated pinnae were bent more and retained shape better than control pinnae. The mean (SD) bend angles in the 7 dosimetry groups were 55° (35°) for the control, 60° (15°) for 4 V for 4 minutes, 118° (15°) for 4 V for 5 minutes, 88° (26°) for 5 V for 3 minutes, 80° (17°) for 5 V for 4 minutes, 117° (21°) for 6 V for 2 minutes, and 125° (18°) for 6 V for 3 minutes. Shape change was proportional to electrical charge transfer, which increased with voltage and application time. Hematoxylin-eosin staining of the

  17. Design and application of electromechanical actuators for deep space missions

    NASA Technical Reports Server (NTRS)

    Haskew, Tim A.; Wander, John

    1994-01-01

    This progress report documents research and development efforts performed from August 16, 1993 through February 15, 1994 on NASA Grant NAG8-240, 'Design and Application of Electromechanical Actuators for Deep Space Missions.' Following the executive summary are four report sections: Motor Selection, Tests Stand Development, Health Monitoring and Fault Management, and Experiment Planning. Three specific motor types have been considered as prime movers for TVC EMA applications: the brushless dc motor, the permanent magnet synchronous motor, and the induction motor. The fundamental finding was that, in general, the primary performance issues were energy efficiency and thermal dissipation (rotor heating). In terms of all other issues, the three motor types were found to compare quite equally. Among the design changes made to the test stand since the last progress report is the addition of more mounting holes in the side beams. These additional holes allow the movable end beam to be attached in a greater number of positions than previously. With this change the movable end beam can move from full forward to full back in three inch increments. Specific mathematical details on the approach that have been employed for health monitoring and fault management (HMFM) have been reported previously. This approach is based on and adaptive Kalman filter strategy. In general, a bank of filters can be implemented for each primary fault type. Presently under consideration for the brushless dc machine are the following faults: armature winding open-circuits, armature winding short-circuits (phase-to-phase and phase-to-ground), bearing degradation, and rotor flux weakening. The mechanically oriented experiments include transient loading experiments, transverse loading experiment, friction experiment, motor performance experiment, and HMFM experiment.

  18. Electromechanical Battery Program at the Lawrence Livermore National Laboratory

    NASA Astrophysics Data System (ADS)

    Post, R. F.; Bender, D. A.; Merritt, B. T.

    1994-05-01

    New materials and new design concepts are being incorporated in a new approach to an old idea - flywheel energy storage - to create an important alternative to the electrochemical storage battery for use in electric vehicles or for stationary applications, such as computer back-up power or utility load-leveling. We visualize such EMB's (electromechanical batteries) as being modular in character, with small (1-5 kWh) modules being used for power-conditioning and for vehicular use, and paralleled 25 kWh modules being used for bulk storage, i.e., load-leveling, applications. In a funded program at the Laboratory two fractional kWh, 200 kW (design peak power) modules have been constructed and subjected to shake-down testing. Their design for high peak power was prompted by awareness of a particular commercial need, as a component in a power-line conditioning device. In addition to such stationary applications, the high power capability of our EMB designs makes them attractive for use in hybrid-electric vehicles. Important elements of the LLNL program include the development of passive magnetic bearings and the application of new high-efficiency permanent magnet arrays to an ironless generator/motor. Use of these particular elements, together with a multi-ring design for the flywheel rotor, is particularly conducive to a systemic approach to the design of an EMB module. These particular design developments have been motivated by the economic issues of simplification, lowered cost, and extended maintenance-free service life.

  19. Nano-electromechanical oscillators (NEMOs) for RF technologies.

    SciTech Connect

    Wendt, Joel Robert; Czaplewski, David A.; Gibson, John Murray; Webster, James R.; Carton, Andrew James; Keeler, Bianca Elizabeth Nelson; Carr, Dustin Wade; Friedmann, Thomas Aquinas; Tallant, David Robert; Boyce, Brad Lee; Sullivan, John Patrick; Dyck, Christopher William; Chen, Xidong

    2004-12-01

    Nano-electromechanical oscillators (NEMOs), capacitively-coupled radio frequency (RF) MEMS switches incorporating dissipative dielectrics, new processing technologies for tetrahedral amorphous carbon (ta-C) films, and scientific understanding of dissipation mechanisms in small mechanical structures were developed in this project. NEMOs are defined as mechanical oscillators with critical dimensions of 50 nm or less and resonance frequencies approaching 1 GHz. Target applications for these devices include simple, inexpensive clocks in electrical circuits, passive RF electrical filters, or platforms for sensor arrays. Ta-C NEMO arrays were used to demonstrate a novel optomechanical structure that shows remarkable sensitivity to small displacements (better than 160 fm/Hz {sup 1/2}) and suitability as an extremely sensitive accelerometer. The RF MEMS capacitively-coupled switches used ta-C as a dissipative dielectric. The devices showed a unipolar switching response to a unipolar stimulus, indicating the absence of significant dielectric charging, which has historically been the major reliability issue with these switches. This technology is promising for the development of reliable, low-power RF switches. An excimer laser annealing process was developed that permits full in-plane stress relaxation in ta-C films in air under ambient conditions, permitting the application of stress-reduced ta-C films in areas where low thermal budget is required, e.g. MEMS integration with pre-existing CMOS electronics. Studies of mechanical dissipation in micro- and nano-scale ta-C mechanical oscillators at room temperature revealed that mechanical losses are limited by dissipation associated with mechanical relaxation in a broad spectrum of defects with activation energies for mechanical relaxation ranging from 0.35 eV to over 0.55 eV. This work has established a foundation for the creation of devices based on nanomechanical structures, and outstanding critical research areas that need

  20. Electromechanical Battery Program at the Lawrence Livermore National Laboratory

    SciTech Connect

    Post, R.F.; Bender, D.A.; Merritt, B.T.

    1994-05-31

    New materials and new design concepts are being incorporated in a new approach to an old idea -- flywheel energy storage -- to create an important alternative to the electrochemical storage battery for use in electric vehicles or for stationary applications, such as computer back-up power or utility load-leveling. We visualize such EMBs (electromechanical batteries) as being modular in character, with small (1--5 kWh) modules being used for power-conditioning and for vehicular use, and paralleled 25 kWh modules being used for bulk storage, i.e., load-leveling, applications. In a funded program at the Laboratory two fractional kWh, 200 kW (design peak power) modules have been constructed and subjected to shake-down testing. Their design for high peak power was prompted by awareness of a particular commercial need, as a component in a power-line conditioning device. In addition to such stationary applications, the high power capability of our EMB designs makes them attractive for use in hybrid-electric vehicles. Important elements of the LLNL program include the development of passive magnetic bearings and the application of new high-efficiency permanent magnet arrays to an ironless generator/motor. Use of these particular elements, together with a multi-ring design for the flywheel rotor, is particularly conducive to a systemic approach to the design of an EMB module. These particular design developments have been motivated by the economic issues of simplification, lowered cost, and extended maintenance-free service life.